Comparison of Unix Communication Facilities
Used In Linda

Chuck Schumann, Kenneth Landry,
and James D. Arthur

TR 92-06

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

March 6, 1992

Comparison of Unix Communication Facilities
Used in Linda

Chuck Schumann
Kenneth Landry
James D. Arthur

Computer Science Department
Virginia Polytechnic Institute and State University

Comparison of Unix Communication Facilities
Used in Linda

Chuck Schumann
Kenneth Landry
James D. Arthyr

Abstract

The Linda system supports the specification of parallel computation, realized
through concurrent processes that communicate through a shared dataspace called
Tuple Space. This Teport presents the resulis of an investigative effort that focuses
on a first step toward providing a distributed framework for Linda processes. In
particular, we discuss the restructuring of the kernel "process” to support tuple
Space access through UNIX socket calls rather than through shared memory
primitives based on semaphore usage. A description of the restructured system and
the rationale for such Testructuring is presented first. Most intrj guing, however, are
the latter sections that discuss the ramifications and insights gained from our
particular approach to system redesign, i.e. the urmmecessary serialization of tuple
Space access, redundant memory copies, being victimized by the UNIX scheduler.

1.0 Introduction and Background

As the computing demands jn the 90's increase, so must the computing power of
machines. Parallel machines and parallel programming environments are being used
more as the computational limits of uniprocessor machines and conventional serial
programming are being taxed. Linda is one such paraile] programming environment
offering the ability to write parallel programs explicitly. Linda is a coordination
language rather than a complete parallel programming language. A coordination
language [CARRISY and ZENIT90] provides the primitives to create processes as well as
coordinate communication among processes. By virtue of being a coordination language,
Linda primitives can be introduced into many base programming languages. The
original implementation, using C as its base language, exploits a preprocessor approach
which transforms Linda operations into C source code, Implementing the Linda

The Linda approach Supports process creation and inter-communication through a shared
data/process repository called Tuple Space (TS). Linda provides operations to generate
data tuples (out), to read data tuples (rd), and to remove them from TS (in). Tuple
Space not only contains data tuples but also process tuples (created with the eval
operation) which are often called "live tuples." These process tuples are instantiated and

of actions that processes perform,

A number of Linda applications have been written either as examples of Linda's
expressivity or as "rea]" programs used in industry, These applications include DNA
Sequencing, finding primes and process lattices [CARRISS]. Moreover, Cogent has
designed a Unix operating system for its XTM machine that reflects the Linda paradigm
[LELER90] and has tested the System by developing a Linda-based parallel window
server called PIX [LELERS3].

When one discusses the Lindg paradigm, two characteristics are often touted: its ease of
use and its portability. From a conceptual standpoint, parallel programming within the

Linda framework is intentionally high level, which is exactly why it is so flexible and
powerful. Not so surprising, however, this high-level approach is at the root of Linda's
greatest criticism - its questionable performance [DAVID89]. Linda does exhibit
acceptable performance on both shared and distributed memory parallel (MIMD)
machines [BJORNSS, BIORNS9 and CARRI87], performance also suffers for full-scale
local area network platforms. Since a network version of Linda is a primary goal of the
Linda group at Virginia Tech, performance js critical.

The original design of Linda uses the shared memory model for the communication
medium. In this approach, the kernel routines are a part of each Linda process and TS
resides in shared memory. Synchronization of data access js achieved through the use of
semaphores. Many Linda processes may be concurrently executing kernel code but
access to TS data is serialized to insure data integrity. This approach to communication

Our current implementation of Linda uses a socket-based approach to communication
between the kernel and Linda processes. In this design, the kerne] is stripped out of the
Linda processes and implemented as single, separate process. By removing the kernel
routines and TS from the Linda process and instantiating them as a Separate, but single,
process the Linda processes now send and receive data from the kernel process by
sending structured messages through UNIX sockets. In this model, data is sent to the
kemnel with the particular service to be performed prepended to the data. The kernel
reads the service Tequested and the data on which to perform this service and then
continues just as if the Linda process had made a function call to the kernel routine (as in
the shared memory approach). Operations on TS behave the same as in the share
meémory model, the only difference in the two communication models is in the location

2,0 Linda and Sockets

Given that a network based Linda environment precludes placing tuple space in shared
memory, new issues are brought to light. Should TS be distributed across several nodes
or located on a single host? IFf it ig distributed, how will TS Integrity be maintained?
What mechanisms can be employed to send to and receive from TS? With distributed
processes trying to simultaneous access TS, should there be 3 fairness policy in the
system? |

be based. Each redesign should possess several properties in order to he useful, It
should:

* bea functional Linda system,

* be atest bed for studying various relationships between design and runtime
characteristics of that implementation,

* be a simulation base for futyre developments,
© portable between BSD and USG systeins,

* have minimal coupling in the method of inter-process communication; we expect that
differing communication facilities will be used in subsequent redesigns,

* minimize changes to the previous working system, Once a redesign is stable then minor
changes could be added before the next major redesign, and

" notinclude changes to the compiler/analyzer parts of the environment. One of our
objectives is to maintain backward compatibility of the runtime system with the clc pre-
processor,

TS from the Linda program, i.e. removing the kernel and TS primitives from the
program support library and replacing the shared memory paradigm with another
communications structure. The new environment is designed around the client-server
model using UNIX sockets as the link between the Linda processes (clients) and the TS
kernel (server). Using this approach allows several features of UNIX to be exploited:

* inter-process communications with sockets,
* use of the fork as the primaty method of implementing the Linda eval opetation, and

* liberty to experiment with different implementations of the Linda eval operation, e.g.
using Remote Procedure Calls (RPCs) or system calls to simulate multi-node distribution.

Through UNIX sockets the programmer is able to use a file descriptor and the read and
write functions to send/receive data to/from independent processes in a manner
resembling file I/0. Effectively, the network is transparent to the programmer and the
corresponding process is treated like a binary file available for reading or writing.
However, there is a distinction, The major distinction, however, is that socket-based
communication is accomplished through links and subsequently does not support forward
or backward seeks. Data, once written, can not be read back. Likewise, data read from
the socket can not be read a second time by rewinding the socket.

Sockets are very useful for designing client-server systems. In our environment there
exists a repository of data (TS) and a body of code (the kernel) that manipulates this data
for the many Linda processes which might be executing. A natural division of labor
establishes the kernel and tuple space as a server and allows the Linda processes as
clients requesting TS services from the server. This relationship is consistent with the
original Linda design where the run-time kemel is supported by library calls and the
compiler generates the necessary code and data structures to call the needed kernel
service.

As mentioned earlier, on each redesign we desire to limit as much as possible the number

of significant changes to the previous system. In this first redesign, the major difference
is the removal of shared memory from the run-time system. The implications being that
all the TS storage structures caq remain unchanged, but that the kernel code must be
heavily modified. The original implementation is intended for shared memory machines
and allows the programmer to take advantage of particular architectural designs to
achieve efficient execution. In particular, the use of pointers in passing data was more the
rule than the exception; structures containing pointers to any piece of possibly useful data
were employed. This presents a specific challenge because 2 structured binary data
stream (no pointers) is required for the client-server model to be practical. This
constraint is pragmatic because the kernel (server) and the Linda processes (clients) has
Separate address spaces, and therefore, cannot pass pointers back and forth.
Subsequently, the de-referencing of pointers and imposing strict formatting conventions
on the transferal of structures also becomes a major issue in the first redesign. The
conirast between the liberal uge of pointers for information storage and the format used
for the stream socket can be seen in Figures 1 and 2, respectively,

The attempt o change as little as possible in order to implement the socket
communications model encourages the continued use of daty structures proven effective
in the original system. The socket based system is designed to leave all run-time data
structures untouched. This implies a conversion from memory organized like that shown
in Figure 1 into a binary stream (Figure 2) and then back to the original structure by the
receiver,

Field Characteristi,
Field Data
Field Characterist

Hash Feld
Line Number
Source Mod

Number Fields
PTP 1d
PTP id

Figure 1, Data structure for a tuple,

ta d
pd
Service l
mum Relds
block st
iofal aize heada Hash Code
Clasa Line Niumnber
Polarity Souroe Modulg
Type &)
o Number Ficlds]
Folarsity PIP id
Type 2 PP W
Clase
FPolartly
Type o
Size block 0
Daia
Size
—]
Data 1

H block I
Stze
(Data |,

Figure 2. Binary stream for a tuple in a socket .

Figure 3 shows the transformation that a tuple takes in its path between a Linda process
and the kernel.

Sender Unix Socket Receiver

Linda Tuple ﬁHeadcr/Data Stream Linda Tuple

Figure 3. Tuple transformation when transferred between a Linda process and the kernel.

The header block prepended to the data stream is necessary for two reasons. First, in the
original system Linda processes can designate the kernel service to be performed by
making a direct function call to the supporting library routine. In the new system, the
header block contains an identifier indicating the service requested. Second, the number
of fields in the tuple must be known before the receiver can properly convert the data
stream into the correct structure which also must be stored in the header for the new
system. Other information being currently placed in the header is for debugging and run-
time efficiency.

Choosing Unix sockets as the communication medium has several distinct advantages.

Portability. As stated earlier, we wish to insure portability between BSD and USG which is
achieved through the use of sockets,

Reliability. The sockets used are stream sockets which are guaranteed to be reljable where as
data grams sockets, for example, are not.

Simplification of Linda kernel code. Because TS has been moved from shared memory info a

distinct kernel process, access to TS data no longer requires synchronization with
semaphores. This provides for a2 more maintainable and robust system with respect to future
extensions.

Reduction in Linda program size. Since the kernel contains all TS data and management code
each Linda process is smaller. This makes for faster process creation and reduced disk
SWapping. As a result only one kernel exist, whereas originally each process had its own
copy of the kernel code and shared only the data in TS and the semaphores controlling its
access.

Easy prototyping. Inter-process communications can be easily implemented using sockets.
Using sockets provided a proven inter-process communication mode} that could be easily
implemented and easily replaced allowing other mediums to be tested,

The use of sockets in implementing the communication medium between the Linda
kernel and Linda processes has a number of advantages as seen above., However, This
approach does incur certain penalties which are described in the following sections.

3.0 Serialization of TS Access

The problem of unnecessary serialization is a direct result of centralizing the kernel
routines and TS into a single process. That is by implementing TS using private memory
in a separate kernel process and placing all kernel services in the kernel process, any use
of Linda operations (and hence TS access) is necessarily serialized (see Figure 4). In this
model all processes requesting kernel services send their requests to the kernel via UNIX
sockets and the wait. These blocked processes continue to queue up until the kernel is
scheduled to run by the UNIX operation system, at which time, they are processed one at

a time until they have all been serviced or until the UNIX scheduler decides to suspend
the kernel process. Although this course grain serialization is operationally equivalent to
the shared memory model on a uniprocessor (in terms of total kernel service time), it
compares unfavorable on multiprocessor machines.

Kerned Proorss.

.—_‘;“’-@
Tuple Space

(a) Share memory approach (b) Socket approach

Figure 4. Serialization of TS access,

This serialization is also disadvantageous in that many concurrent kernel services do not
require mutual exclusion. Since TS is partitioned into regions based on the
communication patterns of the Linda program (determined at compile time), in most
cases the need for synchronization is at a minimum (i.e. each region of TS can be
accessed at the same time). The current socket implementation does not exploit this fact.

4.0 Redundant Memory Copy

Redundant memory copy operations ate inherent in the use of UNIX sockets. First of all,
the socket write/read sequence requires several copy operations Just to deliver data
from a sender to the receiver process. In general, the sender calls the write function
with a file (socket) descriptor. This transfers (copies) the data to a system buffer for that
socket. The receiving process calls a "read" function whereby the data is transferred
from the system buffer to private memory owned by the receiving process. In Linda,
data being sent requires that it be preceded by a header block (approximately 32 bytes)
telling the receiver what is being sent and how to reconstruct the correct tuple structure at
the receiver end. Thus, for every service requested of the kemel, the tuple data
(including the header) must be copied three times, in the case of a uniprocessor and four

times if communicating over a network. This compares poorly with the shared memory
model which only requires that data for a tuple be copied once for a kernel operation.

Sender's Memory

Figure 5, Asa tuple moves between a process and
the kernel, many buffer copies are made,

Figures 1 and 2, respectively, show the structure of the data used in the kernel and also
the structure of data that is used in sending tuple information through the socket. Since
the data structures in the Linda process and in the kernel were not modified in this
redesign, all transactions with the kernel require a transformation from the Linda tuple
structure shown in Figure 1 to a structured binary data stream show in Figure 2 before
sending the tuple out the socket. The receiver must then reconstruct from the structured
binary data stream, Each transformation (from Figure 1 to Firgure 2) requires a series of
Copy operations to de-reference the pointer fields and construct the tuple as a stream of
contiguous bytes, The transformation has the same number of copy operations when the
operation is done in reverse.

To summarize, the typical xd operation involves the following copying operations, none
of which are needed in the original version:

1. convert from the Linda tuple structure to stream buffer

2. the socket write call copies from stream buffer to system buffer

3. the sender copies data from system buffer out the network

4. the receiver node copies data into system buffer

5. socket read call copies data from system buffer to loca] stream buffer
6. receiver converts from stream buffer to the Linda tuple structure

Moreover, most of these Copy operations have associated memory allocation (malloc)
overhead at runtime to provide storage space for the buffers. Together this represents a
considerable degree of additional memory manipulation to the system.

5.0 Victim of the Unix Scheduler

computations after each tuple arrives,

original

version: S T oo S T Fom e !
TO T1 T2 T3

first

redesign: +........+_____+........+_____+........+_____+........+_____}
TO T1 T2 T3

legend: Tesenons " Wall time spent blocked waiting on tuple

from kernel.
------- Wall time spent in computation.

TO, T1,... Tuple request (in/rd operations)

This time line shows that in the original system tuple requests are granted without any
time delay allowing the process to continue with its computation. In the first redesign the

computation continues after the request is received by the kemel, the kemnel finds a
match and sends it to the process, and finally the process is unblocked and reads the tuple
from the socket. Although this is a simple TS rd operation, it illustrates that at g
minimum the Linda process must block for a complete cycle of time slices of all other
competing processes before it can receive a tuple from TS. In the shared memory model,
this time is not wasted since the entire kernel operation is performed under the scheduled
time slice for the Linda process performing the operation and not by a centralized kernel
process.

In order to determine the total effect of the UNIX scheduler on process completion, it
should be compared to other delays with tuple operations. In the example above the
socket overhead and the time spent by the kernel finding a match is considered
negligible. Experience has shown that this time (overhead and matching) is indeed small
in comparison to the time spent waiting for the kernel to execute. Also, as the number of
processes in the system increases this time skew becomes more prominent.

6.0 Conclusion

The migration from a shared memory approach to a socket approach for kernel/process
communication in Linda is necessitated by the ultimate goal of placing Linda on a
network platform. The decision to use sockets as apposed to another method of
communication is made primarily for portability since this is one of the few (reliable)
communication primitives for networks. The redesign using a separate TS and kernel
does pose problem however. In particular, the serialization of TS access, redundant
memory copies, and the detrimental effect of the UNIX scheduler are all problems
inherent in the use of a separate kernel process with socket communication. The
recognition of these problems is not only significant for Linda but for parallel
programming in general when S€parate processes are involved with socket
communication.

REFERENCES

[BJORNSS]

[BIORNS9]

[CARRIS?]
[CARRISS]

[CARRIS9]

[DAVIDS9]

[GELERSO]
[LELERSS]
[LELER90]

[ZENIT90]

R. Bjornson, N. Carriero, D. Gelemter and J. Leichter, "Linda, the
Portable Parallel," Research Repori YALE/DCS/RR-520, January
1988.

R. Bjomson, N. Carriero, and D. Gelernter, “The Implementation
and Perfomance of Hypercube Linda,” Research Report
YALEU/DCS/RR-690, March 1989.

N. Carriero, "Implementation of Tuple Space Machines," Research
Report YALEU/DCS/RR-567 (PhD thesis), December 1987,

N. Carriero and D. Gelernter, "Applications Experience with
Linda," Proc. ACM Symp. Parallel Programming, July 1988.

N. Carriero and D. Gelernter, "Coordination Languages and their
Significance," Yale Tech Report, YALEU/DCS/RR-7 16, July
1989,

C. Davidson, “Technical Correspondence on Linda in Context,”,
Communications of the ACM, Vol. 32, No. 10, October 89,
pp.1249-1252,

D. Gelernter, "Ada-Linda: Motivation, Informal Description and
Examples," Yale Tech Report.

Wm. Leler, "PIX, the latest NeWS," Cogent Technical Report,
Cogent Research, November 1988,

Wm. Leler, "Linda Meets Unix," JEEE Computer, February 1990,
pp.43 - 54.

S. E. Zenith, "Linda Coordination Language; subsystem kernel
architecture (on transputers)," Research Report YALEU/DCS/RR-
794, May 1990.

