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An Interactive Tutorial for NP-Completeness

Nabanita Maji

(ABSTRACT)

A Theory of Algorithms course is essential to any Computer Science curriculum at both the undergraduate
and graduate levels. It is also considered to be difficult material to teach or to learn. In particular the topics
of Computational Complexity Theory, reductions, and the NP-Complete class of problems are considered
difficult by students.

Numerous algorithm visualizations (AVs) have been developed over the years to portray the dynamic nature
of known algorithms commonly taught in undergraduate classes. However, to the best of our knowledge,
the instructional material available for NP-Completeness is mostly static and textual, which does little to
alleviate the complexity of the topic.

Our aim is to improve the pedagogy of NP-Completeness by providing intuitive, interactive, and easy-to-
understand visualizations for standard NP Complete problems, reductions, and proofs. In this thesis, we
present a set of visualizations that we developed using the OpenDSA framework for certain NP-Complete
problems. Our paradigm is a three step process. We first use an AV to illustrate a particular NP-Complete
problem. Then we present an exercise to provide a first-hand experience with attempting to solve a problem
instance. Finally, we present a visualization of a reduction as a part of the proof for NP-Completeness.

Our work has been delivered as a collection of modules in OpenDSA, an interactive eTextbook system
developed at Virginia Tech. The tutorial has been introduced as a teaching supplement in both a senior
undergraduate and a graduate class. We present an analysis of the system use based on records of online
interactions by students who used the tutorial. We also present results from a survey of the students.

This research was funded in part by NSF grants IIS-1258571 and DUE-1432008.
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Chapter 1

Introduction

According to Lewin, “There’s nothing so practical as good theory” [18]. A typical Computer Science Cur-
riculum mandates a course on Algorithms and Complexity Theory. In the “Algorithms and Complexity”
knowledge area of the ACM 2013 Computer Science Curriculum [9], NP-Completeness has been identi-
fied as a core topic. The importance of learning NP-Completeness is rooted in the fact that its concepts
pervasively influence several disciplines like statistics, artificial life, automatic control, nuclear engineering,
cryptography [19], neural networks [11], and many more. Unfortunately, NP-Completeness is also known
to be one of the hardest topics to teach and learn. We conducted a survey among students (see Appendix A)
where 78% of the survey-respondents stated NP-Completeness to be more difficult than other topics.

Continual efforts have been made to make the pedagogue of Computer Science more interactive and in-
volving. With the ubiquity of the internet, increasing use of online media to provide adequate resources
to replace or supplement learning in a traditional classroom comes as no surprise. A digital platform for
delivery of information enables us to use new and interesting methods for presenting material to students.
Visualization in general is one such technique. For our purpose of teaching Complexity Theory, Algorithm
Visualization (AV) is a potentially effective method that can help explain otherwise difficult concepts with
the help of graphics and interactivity. However, unfortunately as we show in our literature review in Chapter
2, few AVs for NP-Completeness have been developed.

This thesis presents our work on developing visualizations and exercises that we hope will provide a
better understanding of the NP-Complete class of problems, the concept of reductions, and specific NP-
Completeness proofs. The material has been introduced as a supplement to a graduate level and a senior
undergraduate level course, and data has been collected about the students’ experience in using the material.
Figure 1.1 shows a screenshot of the table of contents for the tutorial.

Major contributions of this Thesis include :

e Visualizations to introduce and define certain NP Complete problems
e Exercises to enable students to try solving problem instances from selected NP-Complete problems
e Visualizations to explain reduction of one NP Complete problem to another

e Data and analysis for the use of the material.
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Figure 1.1: Table of Contents for the tutorial.

This document is organized as follows. Chapter 2 consists of the literature review, the description of the
tools and frameworks used (OpenDSA, JSAV, Khan Academy), and some background about NP Complete-
ness. Chapter 3 discusses some NP Complete problems, and the visualizations developed to introduce these
problems. Chapter 4 describes the exercises that let students explore some NP-Complete problems. Chapter
5 describes the modules on reduction and proofs of NP Complete problems, and the visualizations devel-
oped to explain the concepts. Chapter 6 presents the efforts made to gauge use of the material by students.
Chapter 7 summarizes our contributions and provides recommendations for future work.




Chapter 2

Background

In this chapter we first provide a short explanation of the theory of NP-Completeness that we believe is
necessary to understand the rest of the document. We review the literature on the use of visualizations in the
pedagogy of NP-Complete problems. Finally, we talk about the OpenDSA Framework, JSAV library, and
the exercise framework that our tutorial is based on.

2.1 NP-Completeness Terminology

In computational complexity theory, there exist various complexity classes of problems. In this context,
a “class” is a collection of problems that are related in some way, typically in terms of the runtime cost
required by any solution. Relevant to this document, it is helpful to understand the “NP-Complete” class.
But before defining the “NP-Complete” class, it is required to define the “NP” and “NP-hard” classes.
“Non deterministic polynomial” or “NP” problems can be solved in polynomial time on a non-deterministic
parallel machine. A problem H is “NP-hard” if any problem in “NP” can be reduced to H in polynomial
time. “NP-Complete” consists of problems which are both in “NP” and “NP-hard”. These are defined as
decision problems, where each problem instance has a “yes” or a “no” solution. Some of the “NP-Complete”
problems may also be expressed as an equivalent optimization problem. Problems considered in our tutorial
are presented on both their decision and optimization variants, where applicable. In this document, we refer
to problems as “hard” when no algorithm is known to exist that can solve the problem in polynomial time.

2.2 Related Work

The use of visualizations in the pedagogy of algorithms dates back to the 1980s. The earliest known effort
is a video titled “Sorting out Sorting” by Robert Baecker in 1981 [8, 10]. The first system for implementing
algorithm animation was named BALSA [13]. In the past 30 years, hundreds of visualizations have been de-
veloped (reported by Shaffer, et al [22]). However, the content of these AVs mostly focuses on introductory
data structures and algorithms. Little has been documented about the use of AVs in the instructional material
for computational complexity theory, which is an integral and difficult part of a course on algorithms.



Some early visualizations to teach complexity theory and NP-Completeness appeared in the late nineties.
Pape [21] lays out ideas about visualizations that can help in teaching NP-Completeness. He presents the
idea of developing exercises on reduction of one NP-Complete problem to another. He describes a Java-
based exercise on the proof of NP Completeness for the Tiling problem. Pape [20] presents an automatic
tutor for an exercise on reduction to prove MONOTONE-3SAT is NP-Complete. James Ten Eyck [16] de-
scribes an interactive Reduction Engine built in Java that can reduce one given NP Complete problem to
another. Crescenzi [15] introduces an AV environment named AlViE [1] that provides animations for reduc-
tion from 3-SAT to 3-coloring, Hamiltonian path, Subset Sum, and Vertex Cover. These visualizations are
delivered as Java applets and are not interactive in nature. Vegdahl, et al. [26] discusses the idea of teaching
NP-Complete problems by mapping Circuit-SAT into the given problem using intuitive visualizations. But
the visualizations provided are static images.

Few visualizations have previously been developed to teach NP-Completeness. These are mostly focused on
the Reductions. Shaffer, et al. [7,23] presents visualizations that allow students to try out problem instances
of NP-Complete problems but limits it only to the Vertex Cover problem. Brandle, et al. [4, 12] present
several Java-based AVs for NP-Completeness, where the user can specify the input for a particular problem
instance or reduction and the corresponding output is generated by the AV.

2.3 OpenDSA and Related Development Tools and Libraries

OpenDSA [24] is an open-source system for developing active e-Textbooks for Data Structures and Algo-
rithms courses. It consists of numerous interactive AVs and exercises presented with explanatory textual
content. OpenDSA supports assessment of the the exercises attempted by the student to provide adequate
feedback. Each HTML page is a separate module. A book instance is a collection of selected modules. Each
module is configurable on its own, hence the content of a book instance can be tailored according to the
requirements of a specific course or instructor. Our tutorial on NP Completeness was delivered as two sep-
arate book instances in OpenDSA, namely CS5114S15 (http://algoviz.org/OpenDSA/Books/
CS5114515) and CS4104S15 (http://algoviz.org/OpenDSA/Books/CS4104S15), to act as
supplements for a graduate and undergraduate class, respectively.

The JavaScript Algorithm Visualization Library (JSAV) [2, 17] is a JavaScript library that provides easy
to use programming interfaces to support development of visualizations for complex data structures and
algorithms. For example, it provides APIs to display graphs, arrays, linked lists etc. It also supports various
levels of user interactions on these. It also supports various graphical primitives, which can be useful
in developing new wrapper functionality on top of JSAV without much effort. (We use this to develop
functionality for circuit elements in the Circuit Satisfiability problem described in Section 3.2.1). The library
provides APIs to develop a visualization in the form of a slideshow, which can be integrated with textual
content and which the student can view at their own pace. JSAV also provides support for developing
interactive exercises and their assessment. It enables the recording of every student interaction event for
later analysis. The content developed using JSAV can be easily embedded in a HTML file. JSAV provides
the backbone for the OpenDSA framework. All the dynamic content (AVs and exercises) in OpenDSA have
been developed using JSAV.

The Khan Academy [5, 6, 25] provides open-source software for developing practice exercises. A whole
range of exercises can be implemented using their software. In our case, we integrate JSAV with the Khan



Academy framework to develop exercises. This enables us to use the rich features of JSAV to visualize
our problem instance on top of the Khan Academy control structure. The Khan Academy framework also
facilitates providing hints that can be used to guide the student towards the correct solution. OpenDSA
provides easy integration with the Khan Academy software, thus making Khan Academy an ideal choice for
our set of practice exercises described in Chapter 4.



Chapter 3

The NP-Complete Problems

This chapter discusses the set of visualizations used in the tutorial for the purpose of introducing and ex-
plaining the problem statement for some standard NP-Complete problems. We start by explaining why these
visualizations are necessary. Then we list the NP-Complete problems covered in the tutorial, and finally we
describe the design and implementation of each visualization.

3.1 Motivation

The first and arguably most important part of a problem is understanding the problem statement. NP-
Complete problem statements are often defined in mathematical terms using formalisations that take some
time and effort to comprehend. We believe a visual illustration will reduce the cognitive load of under-
standing the problem statement. For example, a pictorial representation of Vertex Cover is much easier to
understand than its textual formal definition. The satisfiability of a long boolean formula in conjunctive
normal form (CNF) can be made visually obvious by using a truth table.

In most cases, before defining the problem statement, it is necessary to provide some context which may
include explanations of concepts and processes that are dynamic in nature. For example, to understand
the Circuit Satisfiability problem, it is necessary to understand the elements of a circuit and how signals
propagate in a circuit. Our tutorial uses slideshows to provide step by step descriptions of dynamic processes.

The definition of a problem alone often does not suffice. The definition can be supported by relevant exam-
ples. For each problem, our tutorial graphically illustrates at least one example each for problem instances
with an “yes” and a “no” answer. (Recall from Section 2.1, NP-Complete problems are expressed as deci-
sion problems with a “yes” or a “no” answer.) We discuss the visualizations in the next section individually
in the context of each problem.



3.2 The Visualizations

3.2.1 Circuit Satisfiability (Circuit-SAT)
Statement for Decision Problem:

INSTANCE: A Boolean Circuit C'.
QUESTION: Is (' satisfiable ?

Description of the Visualization: Our visualization starts with a description of the circuit elements, the
logic gates with their corresponding truth tables. The use of input signals and wires is described before
laying out an example circuit. Figure 3.1 shows some slides from the visualization.

—

12132 g |23r32 ~

Tabular representation of the circuit Propagation of signals
1 S 1 —
1 ~ — 5 \
g 2 ) B xl 2 | B )
*2 - =/ — < — B
) E ) 8 E 8
z ~ — ~
—@;&E G 10 4*:):5 G |10
S 9 - = = N 9 i =
) F) | a|oie-|olei|r]e. F) | ‘A Bic-[p.|eric]
3 LA — | T 5 3 o4 oyl =
-~ o
3 —|>Lﬁ D : : x3 D ==Ly

Papulating the table for Gate D As signals 5 and & pass through Gate E, wire 8 gets value T.

\
- -
-
=
=l = [~
[
\-FII'J
&
]

®
w
=)

31732 T |32/32 (']

Example of Clrcuit Satisflability Example of Circuit Satisfiability
S T~
x1 ") 8) :; — 8) 1| x2 [ x3 | x0
- = 3 = ~ T|T|T|F
E ) E }
A 1 . TIT|F|F
b ™,
—‘: >0 G } G
— E,- _‘ 2y T|F|T|F
F/\ | F 3} T|F[(F|F
_- 7
3 b— I_Dw, — 2 _@ 'u\'J— FIT|T|F
3 O 1D} > )
L — ElT|e|F
FIF|T|F
FIF|E|F

This circuit is satisfied for the assignment { r1=T,72=F,23=T }

As seen form the table above, pessible assigment for x1, x2 and x3 satisfies the above circuit.
Hence the circuit is not satisflable,

Figure 3.1: Slides from the circuit-SAT problem visualization.

The slideshow then explains a tabular representation for the circuit. The tabular representation is useful in
explaining the propagation of signals. It is expected to prove useful if we incorporate a practice exercise for
Circuit-SAT in future. Our visualization provides a detailed description of building the table from a circuit
diagram. We highlight each gate and populate the cells in the table corresponding to that gate. Once the



table is populated, we use this representation to explain propagation of input signals through the circuit,
corresponding to an example assignment of input signals. Again, each gate is considered one by one as
all the input wires get assigned. The gate under consideration is highlighted in the circuit diagram and its
output wire is colored (Green if True, Red if False) based on its inputs. The corresponding cell in the table
is also colored accordingly.

The visualization then defines satisfiability of a circuit and provides an example circuit (using circuit di-
agrams), first for a satisfiable and then for a non-satisfiable circuit. For a satisfiable circuit, a satisfying
assignment is provided as input, and the wires are colored (Green for True, Red for False) to visually depict
that the output wire is indeed “True”. For the non-satisfiable circuit, a table is provided listing the output of
the circuit for all possible input assignments, which clearly shows that the output is always “False”.

Drawing the circuit diagram: One of the major challenges in creating this visualization was that JSAV
does not provide API support for drawing circuit elements like it does for graphs or linked lists. Hence we
developed a wrapper class that uses graphical primitives of JSAV to draw logic gates and perform certain
operations on them. An object to denote the circuit board can be created by calling the function newCircuit().
This class provides the following methods (All the APIs listed below do not return anything):

e hide ()/show () : Used to show or hide a circuit diagram.

e addGate (av, GateType, x, y, r) : Adds a new gate to the circuit diagram. The JSAV object correspond-
ing to the visualization containing the circuit is passed as parameter ‘av’. The type, position and size

€0 6

of the gates is passed as input parameters ‘GateType’, x’, ‘y’ co-ordinates and radius 7’
e getGates () : Returns an array of gates that are a part of the given circuit diagram.
e clearGate (gate) : Removes the specified gate from the circuit diagram.

e connectGates (av, gatel, gate2, ip, brkpoints) : Connects the output pin of ‘gatel’ to the input pin
‘ip’ of ‘gate2’. A gate is designed to have 3 input pins. The wire can bend at specified breakpoints
(passed as an array of points ‘brkpoints’), to give a neat look to the circuit diagram.

o inputToGate (av, sname, startpt, gate, ip, brkpoints) : Connects an input signal ‘sname’ to the input
pin ‘ip’ of ‘gate’. The wire corresponding to the input signal is drawn from position ‘startpt’ and
bends at points specified in ‘brkpoints’.

e changeGate (av, gate, type) : Replaces ‘gate’ by a new gate of type ‘type’ in the diagram.
e addSignals (arr) : Adds input signals passed as an array ‘arr’ to the circuit.

e getSignals () : Returns an array of input signals used in the circuit.

o assignSignal (sname, bool) : Assigns the truth value ‘bool’ to the signal ‘sname’.

o unassignSignal (sname) : Unassigns the signal ‘sname’.

o assignOP (gate, bool) : Assigns the truth value ‘bool’ to the output pin of ‘gate’.

e unassignOP (gate) : Unassigns the output pin of ‘gate’.

e assignlP (gate, ip, bool) : Assigns the truth value ‘bool’ to the input pin ‘ip’ of ‘gate’.



e unassignlP (gate, ip): Unassigns the input pin ‘ip’ of ‘gate’.

This wrapper class has also been used in the visualization to explain the reduction of Circuit-SAT to
SAT (discussed in Chapter 5), and can be reused in future for other visualizations using circuits.

3.2.2 Formula Satisfiability (SAT)

Statement for Decision Problem:

INSTANCE: A boolean formula ¢ in conjunctive normal form.

QUESTION: Is ¢ satisfiable ?
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Background

Boolean variables are variables that can have a value from {T,F}, where ‘T stands for TRUE
and 'F* for FALSE. For example %1, 2, 73

Boolean operators are AND (+) , OR (), NOT (=) which fallow the truth table

The NOT Operator The AND Operator The OR Operator

z
T|F
FIT

LRI
A=
w |||
IR
a4 =
LI

A Boolean formula is composed of boolean variables and operators. For example 1 + 2. 73
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Background

An assignment to the boolean variables in a formula is knewn as a truth assignment.

A truth assignment of variables is said to be satisfying, if it causes the formula to evaluate to "TRUE".

A CNF is said to be satisfiable if it has a satisfying assignment.

For example (21 + 22.73) is "True” for 71=T , 23=T, 13=T , hence satisfiable.
(¥1.21) is always "False”, hence not satisfiable.
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Example of SAT

P = (51 + 32).(%2 + 5 + D)7 + B2 + 33 + T). (@@ + 73)

Truth Table for P

There exists assignments that
makes the formula true (The
green rows)

P is satisfiable
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Example of SAT

P = (21 + £2).(T2 + T3 + Ta).(23 + T4).(T1 + T1). (51 + T2 + T3 + )

Truth Table for P

o o2 = |2 | P oo | x| P

There does not exist any
assignment that makes the
formula true (No green rows)

P is non satisfiable

Figure 3.2: Slides from the SAT Problem Visualization.

Description of the Visualization: The slideshow starts by defining boolean operators (AND, OR, and
NOT) and providing a truth table for each operator. It provides definitions of literals, clauses, conjunctive
normal forms, and boolean formula, supporting each definition with examples. After providing the necessary
context, the meaning of satisfiability for a boolean formula is explained. Two examples are provided. The
first example portrays a satisfiable boolean formula in CNF and its corresponding truth table. The rows in
the truth table that yields a value “True” for the formula are marked in green, and the rows yielding a “False”
are marked in red. The presence of green rows in the truth table illustrate the fact that the example formula




is satisfiable. The second example is of a non-satisfiable formula and its truth table. All the rows of the
truth table being red demonstrates that the formula is non-satisfiable. Figure 3.2 shows some slides from the

visualization.

3.2.3 3-CNF Satisfiability (3-SAT)

Statement for Decision Problem:

INSTANCE: A boolean formula ¢ in conjunctive normal form with each clause containing exactly three

literals.
QUESTION: Is ¢ satisfiable ?

)

6.1’18/

Background

A 3-CNF is a Boolean formula that is an AND of clauses, each of which is an OR of
exactly 3 distinct literals.

Example of 3-CNF: (21 + 22+ Z13).(F1 + T4+ T6). (P2 + T5 + F3). (21 + T2 + T6) .
An assignment to the boolean variables in a formula is known as a truth assignment.
A truth assignment of variables is said to be satisfying, if it causes the formula to evaluate to "TRUE"

A 3-CNF is said to be satisfiable if it has a satisfying assignment.

12/ 18

v

Example of 3-SAT

Pe(@m+n+nhu+n+a) (m+0+n0)  (B+nu+n) . (H+R+0) A0+ T+ 7). (71 +
T2 + 74)

Truth Table for P

There exists assignments that
makes the formula true (The
green rows)

P is satisfiable

1?!?

Example of 3 - SAT

P=(n+n+mfaun+D+n).(+n+n). (R+u+n), (n+2+n).(n++n).(n+
T2 + T4) . (T1 + T2 + T4)

Truth Table for P

x|z |3 |z | P 1 |z |z3|za | P

There exists no assignments
that makes the formula true (No
green rows)

P is not satisfiable

18/ 18 ™y . A "4 5

! (« . (> @
. - - _—

Insights

Size of the truth table is 2* where n is the number of boolean variables involved

Hence the problem gets exponentially harder as number of variables increase.

Figure 3.3: Slides from the 3-SAT Problem visualization.

Description of the Visualization: This is a short visualization similar to the formula satisfiability slideshow.
First, the definition of 3-CNF (conjunctive normal form with exactly three literals in each clause) is provided.
The meaning of satisfiability for such a formula is explained and the 3-SAT problem is stated. Two examples
are provided, one for a satisfiable formula and other for a non-satisfiable one. The rows in the truth table
that yield “True” are marked in green, and the rows yielding ‘“False” are marked in red. The presence of
green rows in the truth table corresponding to a satisfiable boolean formula in 3-CNF prove that the formula
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is satisfiable. The example of a non-satisfiable formula has a truth table with all rows in red, showing that
the formula is not satisfiable. Figure 3.3 shows some slides from the visualization.

3.2.4 The Clique Problem

Statement for Decision Problem:

INSTANCE: A graph G and an integer bound k.
QUESTION: Does G contain a clique of size > k ?

3/12 B ) R ,f:/- 712

Clique Clique in a graph
A Clique is complete graph i.e. a graph where each node is connected to every other nodes by atleast The cligue with largest number of vertices in a graph G is called Maximum Clique in G

one edge
For example; Maximum Clique in the graph is a 4-clique
Example of a clique :

O
J ™ | 12/12
B :2/ : 2 v
Example of Clique Problem: Example of Clique Proble m:
In the graph below does there exist a clique of size >=57 In the graph below does there exist a clique of size >=47
No Yes

Figure 3.4: Slides from the the Clique Problem visualization.

Description of the Visualization: This visualization starts by defining a clique, with the example of a
complete graph. The following slides show examples of finding subgraphs in a graph that form cliques of
different sizes. The definition of the clique problem can also be expressed as an optimization problem to
find the largest clique in the graph. The slideshow presents the clique problem in both it’s decision problem
and optimization problem forms. It then shows two examples. The first example is of a graph where a clique
of a given size does not exist. The second example is a graph where a clique of the given size exists. The
subgraph forming the clique is highlighted using a different color. Figure 3.4 shows some slides from the
visualization.
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3.2.5 The Independent Set Problem
Statement for Decision Problem:

INSTANCE: A graph G and an integer bound k.
QUESTION: Does G contain an independent set of size > k ?

5“2/ ] 8112/
Independent Set The Independent Set Problem

An Independent Set of a graph is a set of vertices such that no two of them are connected

- . The Independent Set Problem can be defined as either of the following:
i.e. there exists no edge between any two vertices of an Independent Set.

The largest poessible Independent Set of a graph is called the "Maximum Independent Set”.
Given a graph G = (V,E), find the Maximum Independent Set in G,

The colored vertices in this graph form
an independent set.

The Independent set is {1,3,5,7} Given a graph & = (V,E), and a number k, does & contain an Independent Set of size >=k?
10/ y 5 |12/ y
Example of Independent Set Problem: Example of Independent Set Problem:
Does the graph below have an independent set of size >=97 Does the graph below have an independent set of size >=77
Mo Yes @
I Ow
[
/ V. |

Figure 3.5: Slides from the Independent Set Problem visualization.

Description of the Visualization: The visualization starts with a definition of an independent set and a
maximum independent set. The definition is supported by an example with a graph, where the vertices
forming the independent set are highlighted using colors. In this visualization, the edges incident on a
vertex that is a part of the independent set are highlighted with the same color as the vertex itself. The intent
is to make the association of edge and vertex visually obvious so as to portray that the colored vertices do
not share an edge with any other colored vertex, and hence form an independent set. Examples are provided
in the visualization showing subgraphs in a graph containing independent sets of varying sizes using the
same coloring scheme. The independent set problem can also be defined as an optimization problem of
finding the largest independent set in the graph. The visualization defines both the decision problem and its
optimization variant, and follows it up with two examples. The first shows a graph that does not contain an
independent set, that is larger than or equal to a given size. The second example shows a graph containing an
independent set of the given size, highlighted using the aforementioned coloring scheme. Figure 3.5 shows
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some slides from the visualization.

3.2.6 The Vertex Cover Problem
Statement for Decision Problem:

INSTANCE: A graph G and an integer bound k.

QUESTION: Does G contain a vertex cover of size < k ?

4_.'1‘1/ B _ ) _ (:)

Vertex Cover

A Vertex Cover of a graph is a set of vertices such that any edge of the graph is incident on at least one
wvertax of the set

The smallest possible Vertax Cover of a graph is called the "Minimum Vertex cover"

The colored vertices in this graph form
a Vertex Cover,
The Vertex Coveris {1, 3, 5}

®

5/ ll/

Example of Vertex Cover in graph

The following graph contains a Vertex Cover of size 6. (i.e. {1,2,3,6,9,10})

Example of Vertex Cover Problem:
Does the graph below have a vertex cover of size <=3 7

No

!l!y

Example of Vertex Cover Problem:

Does the graph below have a vertex cover of size <=4 7

Figure 3.6: Slides from the the Vertex Cover Problem visualization.

Description of the Visualization: This visualization uses the same coloring scheme mentioned earlier for
the independent set problem, that is, using the same colors for a vertex and the edges incident on the vertex
to show their association. In this case, the goal is to portray that all the edges are colored, implying that
they are all incident on one of the colored vertices and the colored vertices indeed form a vertex cover. The
visualization starts by defining a vertex cover and portraying examples of graphs, with their vertex covers
portrayed using colored vertices. There are a few examples showing graphs containing vertex covers of
various sizes. The optimization variant of this problem is to find the smallest vertex cover in the graph.
The slideshow defines both the decision problem and its optimization variant. It then illustrates the problem
using two examples. The first example is of a graph that does not contain a vertex cover of the specified
size. The second example is of a graph that yields a “yes” answer to the Vertex Cover problem, the vertex
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cover being highlighted using the color scheme mentioned before. Figure 3.6 shows some slides from the

visualization.

3.2.7 The Hamiltonian Cycle problem

Statement for Decision Problem:

INSTANCE: A graph G
QUESTION: Does G contain a Hamiltonian Cycle ?

i;‘H/ (o) 4:5/

Hamiltenian Cycle The Hamiltonian Cycle Problem

Hamiltonian Cycle is a graph cycle in an undirected or adirected graph that passes through each vertex . : )
y Given a graph € = (V,E), does the graph contain a Hamiltonian Cycle?

exactly once.

For example - The edges marked in red in the graph below forms a Hamiltonian Cycle

6-’5% I a;s/

Example of Hamiltonian Cycle Problem Example of Hamiltonian Cycle Problem

Does the graph below contain a Hamiltonian Cycle 7 Does the graph below contain a Hamiltonlan Cycle ?

No

Figure 3.7: Slides from the the Hamiltonian Cycle Problem visualization.

Description of the Visualization: This is a short visualization that starts by defining a Hamiltonian Cycle.
It then shows an example of an undirected graph containing a Hamiltonian Cycle. The edges that form the
Hamiltonian Cycle are highlighted using a different color. The Hamiltonian Cycle problem is then defined.
Two examples are shown to help explain the problem. The first example shows a directed graph that does
contain a Hamiltonian Cycle, which is highlighted in the graph. The second example shows a directed graph
where no Hamiltonian Cycle exists. Figure 3.7 shows some slides from the visualization.

14



3.2.8 The Traveling Salesman Problem
Statement for Decision Problem:
INSTANCE: A weighted, complete graph G (with the weight of an edge denoting its length) and an integer

bound &
QUESTION: Does G contain a simple cycle that includes all vertices and and has total length < k ?

5/10 9 fer10 ]
Traveling Salesman The Traveling Salesman Problem

There are n cities. Every pair of cities is separated by some distance. A traveling salesman aims to visit
them all in a way that no city is visited more than once and the total distance covered during the tour is
as short as possible

The Traveling Salesman problem can be defined either as a decision problem or not. The decision form s
know to be NP-complete_

This can be modelled as a complete graph where each node represents a particular city and the welght of

the edges denote the distance between the two cities it connects Given a graph & = {V,E), find the shortest simple cycle that passes through all vertices of the graph.The
The problem now can be stated as finding the shortest simple cycle in the graph that passes through all | length of the cycle Is the sum of weights of its edges.

vertices in the graph. ( The length of a cycle baing the sum of weights of all the edges included in the

cycle OR

MNote: A simple cycle may be defined as a closed walk with no repatitions of vertices and edges allowed, (Decision Problem Form:) Given a graph G = (V, E) and integer k, does the graph contain a simple cycle
other than the repetition of the starting and ending vertex. that passes through all vertices and has length <= k?

Gl The red edges farm a minimum-length taur
° X ° with total length being 24

a/10 Ty Jw0r10 o]

/ « = & / &
Example of Traveling Salesman Problem (decision form) Example of Traveling Salesman Problem
Does this graph have a simple cycle that includes all vertices and has length <= 507 Does this graph have a simple cycle that includes all vertices and has langth <= 557

No Yes

[The cycle has a length of 51]

Figure 3.8: Slides from the Traveling Salesman Problem visualization.

Description of the Visualization: The Traveling Salesman problem uses a weighted, complete graph and an
integer as its input instance. It can also be expressed as an optimization problem to find the shortest simple
cycle that includes all the vertices of the graph, where the weight of an edge denotes its distance. This
visualization starts by explaining the Traveling Salesman problem. It does so using a weighted complete
graph of 5 nodes and highlights the shortest simple cycle covering all vertices, in red. It then formally states
the Traveling Salesman problem, both the decision problem and its optimization variant. Then come two
examples. In the first example, a graph is shown that does not contain a simple cycle covering all vertices
with length less than or equal to the given length. The second example shows a graph that has a “yes” answer
to the Traveling Salesman Problem within the given integer bound. The cycle is highlighted in red and its
length is mentioned, to convincingly show that this problem instance indeed yields a “yes” answer. Figure
3.8 shows some slides from the visualization.
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Chapter 4

Exercises for NP-Complete Problem
Instances

This chapter presents the interactive exercises that were created for the NP-completeness tutorial. We start
our discussion by explaining the motivation behind these exercises. We then explain some problems that
we had to overcome and the guiding philosophy that influenced the design decisions when developing the
exercise. We conclude with the design and implementation for each exercise.

4.1 Motivation

While developing the visualizations to introduce and define a particular NP Complete problem, we were
faced with an impediment. Recall that an NP Complete problem can be defined as a decision problem with a
“Yes ” or a “No” answer. It is fairly simple to graphically illustrate a problem instance with a “Yes” answer.
For example, giving a satisfying assignment for a “satisfiable” boolean formula convinces the learner that
the formula is indeed satisfiable. A highlighted k-clique or Hamiltonian Cycle in a graph makes the presence
of a k-clique or Hamiltonian Cycle self evident. However, that is not the case for an example with a “No”
answer. When we present a formula that is NOT satisfiable or a graph that DOES NOT contain a k-clique,
it is not visually obvious to the learners that the graph does have this property. In fact this is a hallmark of
NP-Complete problems.

There is another important aspect in which textbooks have always been rather authoritative. While talking
about NP-Complete problems, they often just state it for a fact that the problem is “hard”, which may
not seem convincing to a student right away. Some NP-Complete problems share a close resemblance to
problems that can be solved in polynomial time. For example, 3-CNF satisfiability is hard whereas 2-CNF
satisfiability! is not. Checking whether a graph has a Euler tour” can be done in polynomial time, whereas
checking the presence of a Hamiltonian Cycle is a NP-Complete problem. This difference in behavior
for seemingly similar problems often makes it counter-intuitive for a student to recognize a NP-Complete
problem as hard.

12-CNF is a boolean formula in conjunctive normal form where each disjunction contains at most 2 variables.
2An Euler tour is a closed walk that uses every edge of a graph exactly once.
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The Constructivist Theory of education [27] argues that humans learn more from the interaction between
their experiences and their ideas. In our case we realized that both of our above-mentioned shortcomings
can be remedied by hands-on experience in attempting the problem. If we provide students with an instance
of a problem, in the attempt to find a solution, they should begin to appreciate the complexity of the problem
and internalize the fact that the problem is indeed hard. For problem instances with a “No” answer (for
example, if provided with a Non-Satisfiable boolean formula), the student can keep trying to find a satisfying
assignment until they are convinced that none exists. A conclusion derived from their own experience is
always more convincing for them than stated facts.

We emphasize that we are discussing practice exercises on instances of NP-Complete problems. So far
we are not dealing with proofs of NP-Completeness. Visualizations of such proofs are covered in the next
chapter.

4.2 Salient Features

Before starting to design and implement an exercise, there were a few important aspects that we had to
consider. This section lists and elaborates on those aspects.

4.2.1 Generating a Problem Instance

The first requirement in an exercise is the problem to be solved. Problem instances can either be selected
from a bank of pre-compiled questions, or can be generated dynamically at runtime. We use the latter
approach. Although it is tougher to implement, generating problems dynamically reduces the chance that
the same problem instance gets repeated for a student. It also increases the number and type of instances that
are covered by our exercises. Our first thought was to use a randomized graph generation algorithm for all
exercises corresponding to graph-related problems. We planned to use a separate algorithm for generating
a random instance of 3-CNF formulas. The use of randomized algorithms ensured that a different instance
is generated almost every time that a student attempts the exercise. However our initial attempt restricted
us from having control on the kind of the graph that was generated. For example, for an exercise on the
Hamiltonian Cycle problem, it is desired that the generated graph does or does not include a Hamiltonian
Cycle with equal likelihood. That is, the probability of a Hamiltonian Cycle being present whenever a
new problem instance is generated should be close to 0.5. However, when we tested our randomized graph
generation algorithm, this property was not ensured. Hence, we had to modify our algorithm to suit the
requirement of each exercise individually, thus giving us a finer level of control. In all the exercises listed
in Section 4.3, the pseudo-random algorithms used to generate problem instances are described for each
individual exercise.

4.2.2 Level of Problem Difficulty

The second important question that we needed to address was how hard should the problem be. Since
our objective behind developing the exercises is to help the students internalize the fact that NP-Complete
problems are indeed hard, the exercises should not be too simple. In other words, the problem instance
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should not be so easy that the answer becomes obvious. However, the exercises should not be so difficult
that the student gets bored or discouraged and gives up. The level of difficulty should be optimal to ensure
that it does require the right amount of effort to get the answer.

That raises the question of how to control the level of difficulty for a particular exercise. In our case, the
level of difficulty mostly depends on the problem size. But there are other factors specific to the particular
problem being addressed. For example, the number of vertices and the number of edges for a graph affects
the difficulty level of a Clique Problem. The distribution of weights in the weighted graph determines how
difficult an instance of the Traveling Salesman Problem is. In Section 4.3, we provide details of these factors
and their reflection in our implementation, in the context of each individual exercise.

Our tuning of factors affecting the level of difficulty is purely based on the developer’s usability testing.
However, it is fairly simple to adjust the difficulty in future based on continued feedback from students and
instructors.

4.2.3 Solving the Problem Instance

The third aspect of an exercise is to generate the correct answer for the problem instance to be able to verify
the student’s response as well as to show them the solution in case of failure. Since our problem instances are
generated at runtime, there needs to be an algorithm that can be triggered at runtime to calculate the answer.
The algorithms used for finding a solution by definition are of non-polynomial complexity. However this
does not pose a concern for our system because the size of our problem instances are small.

4.2.4 Verification and Evaluation

The fourth aspect of an exercise is validating a student’s response. A student can be evaluated at every step
of the exercise or on the final response. The nature of NP-Complete problems restricts us to the latter. In
order to encourage the students to attempt a problem in whatever way they want, we refrain from alerting
them on any wrong intermediate move. Only the submitted response is verified, and the student is informed
about the correctness of the response. The grades/penalties assigned for the exercises and the number of
allowable attempts can be adjusted according to an instructor’s requirement.

4.2.5 Framework

We develop our exercises (as opposed to the other types of proficiency exercise implementations used in
OpenDSA) using the JSAV library and the Khan Academy framework. The choice of the Khan Academy
framework was guided by our requirement to evaluate only the final response from a student (and not every
step). The implementation details are provided in the next section.
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4.3 The Exercises

This section describes the collection of exercises that we developed. In the subsequent subsections, we
elaborate on the implementation details for each exercise.

4.3.1 3 CNF Satisfiability
Problem definition:

INSTANCE: A boolean formula ¢ in 3-CNF.
SOLUTION: A satisfying assignment if ¢ is satisfiable, “Not Satisfiable” otherwise.

Student’s response: Either provide a satisfying assignment for the formula or claim that the formula is
Non-Satisfiable.

Layout Design and User Interactions: Figure 4.1 portrays a screenshot for the exercise. The layout
consists of an array of buttons, where each button represents a boolean variable. A variable is in unassigned
state to start with. When an unassigned variable is clicked, it gets assigned to True (the button turns green). If
we click on a variable that’s already True, it gets re-assigned to False (the button turns red). If we click on a
variable that’s already False, the variable gets unassigned. When a particular variable is clicked, the clauses
in the 3-CNF formula containing that variable are evaluated. At every step, with the current assignment, if
any clause evaluates to True, the clause shows up as green on the screen. Similarly, if any clause evaluates
to False with the current assignment, it shows up as red. The “Reset” button can be clicked at any point, to
return to the initial state. The checkbox for “Non-satisfiable” can be checked to claim that the given formula
is not satisfiable. Clicking the “Check Answer” button submits the answer for validation. If the answer is
correct, the student can move on to repeat the exercise with a different problem instance. If the answer is
wrong, the student can retry.

Generation of problem instance: As a general observation about the 3-SAT problem, it is well known that
when a formula contains many variables and few clauses, or few variables and many clauses, it becomes
easy to determine its satisfiability. Hence an optimal balance between the number of variables and clauses is
desirable for our purposes. For our case, we vary the number of variables from 4 to 6 and number of clauses
from 8 to 12. This is easily adjustable. The number of clauses and literals are randomly picked from the
given range. For each clause, three literals are randomly picked from the set of given variables and their
compliments. Finally, a problem instance is generated using these clauses.

4.3.2 Clique Problem
Problem definition:

INSTANCE: A graph G.
SOLUTION: The largest clique in G.

Student’s response: The student needs to provide a set of vertices that forms the largest clique in the given
graph.
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3-sat problem. Current score: 1 out of 1

Your task in this exercise is to find out an assignment of the boolean variables that makes the Answer
expression true or declare that no such assignment exists

Assign the variables appropriately to satisfy the expression.

Click on the variable once to assign it true | twice to assign it false and thrice to reset =
Reset Not Satisfiable
e Need help?
.. I'd like a hint
L5 | L6
(z3 + 22 + ). (T2 + 25 +24). (Tatzatzs) (Ts+21+Ts). (24425 +z3)
(Fa+z2+71). (;a+Z2+26). (Ti+zs+32). (Tat+o+35)  (z3+71 +24)

(zs + 71 +T3)-

Figure 4.1: Exercise for 3-CNF Satisfiability.

Layout Design and User Interactions: Figure 4.2 portrays a screenshot of the exercise. Clicking on a
vertex toggles it’s state between selected and unselected. If two vertices connected by an edge in the given
graph is selected, the connecting edge gets highlighted in red to assist the student in judging the connections.
The “Reset” button can be clicked at any point, to clear all selections and return to the initial state. Clicking
the “Check Answer” button submits the answer for validation. Validation is done by determining whether
the selected vertices form a clique in the graph and whether the size of this clique is equal to the largest
clique. The largest clique in the graph is pre-calculated using a non-polynomial algorithm. If the answer
passes the validation, the student can move on to repeat the exercise with a different graph. If the answer is
wrong, the student can retry.

Generation of problem instance: For a clique problem, the level of difficulty depends on the size and
density of the graph. It is relatively easier to spot a clique in a sparse graph than on a dense one. For our
problem instances, we first randomly chose the number of vertices from the range [10,12]. If the number
of vertices is n, the number of edges vary from 2n + 3 to 3n. With the number of vertices and edges
decided, our algorithm generates a random adjacency matrix which we use to generate a problem instance.
The number of vertices and edges for the problem instance are adjustable parameters. Our tuning of these
parameters are solely based on our own usability testing.

4.3.3 Independent Set Problem
Problem definition:

INSTANCE: A graph G.
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Maximum Cllque Problem Current score: 1 out of 1

Your task in this exercise is to find the largest clique Answer

Select the vertices that can form the largest clique.

Reset @) J

Figure 4.2: Exercise for the Clique Problem.

SOLUTION: The largest Independent Set in G.

Student’s response: The student needs to provide a set of vertices that forms the largest independent set in
G.

Layout Design and User Interactions: Figure 4.3 portrays a screenshot of the exercise. Clicking on a
vertex toggles it’s state between selected and unselected. The “Reset” button can be clicked at any point, to
clear all selections and return to the initial state. Clicking the “Check Answer” button submits the answer
for validation. Validation is done by determining whether the selected vertices form a independent set for
the graph G and whether the size of this Independent Set is equal to the largest Independent Set. The largest
Independent Set in the graph is calculated beforehand by using a non-polynomial algorithm. If the answer
is validated, the student can try the same exercise with a different graph. If the answer is wrong, the student
can retry.

Generating a problem instance: For the Independent Set problem, the level of difficulty depends on the
size and density of the graph. It is relatively simple to find an independent set on a sparse or dense graph,
compared to a graph of moderate density. For our problem instances, we first set the number of vertices to a
random number from the range [10,12]. If the number of vertices is n, the number of edges vary from n + 3
to 2n. With the number of vertices and edges decided, our algorithm randomly populates the adjacency
matrix maintaining the constraint on the number of vertices and edges. This adjacency matrix is used to
generate the graph that acts as our problem instance.
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Maximum Independent Set Problem Current score: 1 out of 1

Your task in this exercise is to find the maximum independent set Answer

Select the vertices that can form a mximum independent set.

Reset @) ]

Figure 4.3: Exercise for the Independent Set Problem.

4.3.4 Vertex Cover Problem
Problem definition:

INSTANCE: A graph G.
SOLUTION: The smallest Vertex Cover in G.

Student’s response: A student needs to provide a set of vertices which forms the smallest vertex cover in

G.

Layout Design and User Interactions: Figure 4.4 portrays a screenshot of the exercise. Clicking on a
vertex toggles it’s state between selected and unselected. Once a vertex is selected, the edges adjacent to
the vertex turn gray. This helps the students to see which edges are covered by their selection. The “Reset”
button can be clicked at any point, to clear all selections and return to the initial state. Clicking the “Check
Answer” button submits the answer for validation. Validation is done by determining whether the selected
vertices form a vertex cover for the graph and whether the size of this vertex cover is equal to the largest
vertex cover. The largest vertex cover in the graph is calculated beforehand by using a non-polynomial
algorithm. If the answer is validated, the student can move on and repeat the exercise with a different
problem instance. If the answer is wrong, the student can retry.
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Minimum Vertex Cover Problem Current score: 0 out of 1

Your task in this exercise is to find the minimum vertex cover Answer
Select the vertices that can form a minimum vertex cover.

| Reset |

® Q
%, R
® @

Figure 4.4: Exercise for the Vertex Cover Problem.

Generation of problem instance: Similar to independent set, the level of difficulty for a Vertex Cover
problem also depends on the size and density of the graph. It is relatively simple to find a vertex cover on
a very sparse or very dense graph, compared to a graph of moderate density. Our graph generation for the
Vertex Cover problem is similar to that used in the Independent Set problem. That is, the number of vertices
is set to a random number from the range [10, 20]. If the number of vertices is n, the number of edges vary
from n + 3 to 2n. Then our algorithm randomly generates the adjacency matrix maintaining the constraint
on the number of vertices and edges. This adjacency matrix is used to generate the problem instance.

4.3.5 Hamiltonian Cycle Problem

Problem definition:
INSTANCE: A graph G.
SOLUTION: A Hamiltonian Cycle in ( if there exists one, “No Cycle” otherwise.

Student’s response: Either declare that the graph GG does not contain a Hamiltonian Cycle or provide a set
of edges that form a Hamiltonian Cycle in G.

Design: Figure 4.5 portrays a screenshot of the exercise. This exercise uses a directed graph. Clicking on
an edge toggles it’s state between selected and unselected. The “Reset” button clears all selection and brings
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the exercise to its initial state. A student can check the “No Cycle” checkbox to declare that there is no
Hamiltonian Cycle present. Clicking on “Check Answer” submits the answer to be validated. If the “No
Cycle” button is clicked, then the answer is declared correct if there indeed exists no Hamiltonian Cycle.
Otherwise the selected edges are verified to see if they form a Hamiltonian Cycle. The presence or absence
of a Hamiltonian Cycle is computed beforehand. If the answer is validated, then the student can repeat the
exercise with a different problem instance. If the answer is incorrect, then the student can retry the same
problem instance.

Hamiltonian Cycle Problem Currentscore: 1 out of 1

Your task in this exercise is to find a Hamiltonian Cycle. Answer

Select the edges that can be a part of a Hamiltonian Cycle.

Reset No Cycle
© J

Figure 4.5: Exercise for the Hamiltonian Cycle Problem.

Generation of problem instance: Unlike the other exercises, this exercise uses a directed graph. We
also ensure in our problem generation algorithm that the graph used for this exercises is connected. The
number of vertices for this problem vary from 7 to 9. If the number of vertices is n, number of edges varies
from n 4 5 to 2n. Once the number of edges and vertices are randomly picked from the given range, the
adjacency matrix is populated and a graph is generated. However, when we tested these graphs, most of
the time the generated graphs contained no Hamiltonian Cycles. To remedy this we tweaked our graph
generation algorithm so that a Hamiltonian Cycle is induced with a probability close to 0.5. We generate a
random number and check if its even. If even, we generate a graph using the algorithm similar to previous
problems. To this graph, we add extra edges such that a Hamiltonian Cycle is induced. Using this algorithm,
we generated 1000 problem instances for this exercise, out of which, 526 instances conatined a Hamiltonian
Cycle and the remaining 474 instances did not.
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4.3.6 Traveling Salesman Problem
Problem definition:

INSTANCE: A weighted, complete graph G where weight of an edge denotes its length.
SOLUTION: The shortest simple cycle passing through all vertices in G.

Student’s response: The student needs to provide the set of edges that form the shortest simple cycle
containing all vertices in G.

Design: Figure 4.6 portrays a screenshot of the exercise. Clicking on an edge toggles it’s state between
selected and unselected. The “Reset” button clears all selections and returns the exercise to its initial state.
A student can click on “Click Answer” to submit an answer. The answer is then validated. Validation
happens in steps. It is first checked if the selected edges form a cycle. The second check is if the cycle
formed visits all vertices exactly once. The third check is if the cycle is the shortest in length. The length
of the shortest cycle is pre-calculated by a non-polynomial time algorithm. If the answer is validated, then
the student can do the exercise with a different problem instance. If the answer is incorrect, then the student
can retry.

Traveling Salesman Problem Current score: 0 out of 1

Your task in this exercise is to find the shortest simple cycle that includes all nodes of the graph. Answer
Select the edges that can be a part of the shortest simple cycle.

| Reset |

Need help?

I'd like a hint

Figure 4.6: Exercise for the Traveling Salesman problem.

Generation of problem instance: The level of difficulty for a Traveling Salesman problem instance de-
pends on the size of the graph. We limit the number of vertices to be either 5 or 6. This is mainly due to the
restrictions on the on-screen space. Any more vertices makes the graph look too congested with overlapping
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edges, making them difficult to be clicked. This severely hampers usability. However, the level of difficulty
also depends on the distribution of the value of weights. If the weights vary a lot, the choice of one edge over
another becomes obvious. However if the weights are close enough to each other, then the problem becomes
difficult. The number of edges in a 6-node complete graph is 30. We randomly pick the weights of the edges
from the range [1,30]. This gives us a wide range of minimum weights for the shortest Hamiltonian Cycle
in a problem instance. [ See Appendix B]
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Chapter 5

Proofs of NP-Completeness

In this chapter we discuss the visualizations created to explain first the concept of reduction and then to
explain the special form of reduction used in NP-Completeness proofs. The next section presents the vi-
sualizations developed to explain reduction in general. Then, we discuss the use of reduction in proving
NP-Completeness and the reduction order that we used for our proofs. In the last section, we discuss the
design and implementation details of the visualizations that we created specific to each NP-Complete prob-
lem.

5.1 Reduction as a BlackBox

In Computational Complexity Theory, reduction is a way of transforming one problem into another. That is,
reduction allows us to solve one problem in terms of another. This makes it an important method for proving
bounds on the complexity and degrees of unsolvability of a problem, when that of the other is known. For
example, if a problem A can be transformed efficiently to problem B, then the solution of B can be used to
solve A. Therefore, problem A can not be harder than problem B, and more importantly (for our purpose),
B can not be easier than A.

Reduction is centrally important to complexity theory proofs, but is not straightforward for a beginner to
grasp. For example, the mapping of instances between two problems or the correct order of reduction for
writing a proof can seem confusing to begin with. Hence we include reduction in our tutorial as a separate
module whose objective is to drive the concept of "Reduction as a BlackBox”, as shown in Figure 5.1 for
transforming an arbitrary instance of problem A to an instance of problem B. It explains how knowing the
existence of an efficient transformation and reverse transformation function can be used to construct a lower
bound proof for a problem.

We provide visualizations in the form of slideshows to explain three example reductions.
Sorting to pairing:

This example explains how a sorting problem can be solved in terms of a pairing problem. The slideshow
explains the steps involved in transforming an instance of sorting to an instance of pairing. It also provides
a step by step explanation of how to interpret (reverse transform) the solution of pairing problem to get a
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Problem A:
| : arbitrary instance of Problem A

F1 (Transformation)

| “: an instance of Problem B

Problem B

S * : solution of Problem B for I

F2 (Reverse Transformation)

S : solution of Problem A for instance |

Figure 5.1: BlackBox diagram for general process of reduction

solution for the sorting problem. Figure 5.2 shows a screenshot of the final slide that gives the blackbox
representation for this reduction.

Pairing to sorting

This example explains how a pairing problem can be solved in terms of the sorting problem. The slideshow
explains the steps involved in transforming an instance of pairing to an instance of sorting, then interpreting
(reverse transform) the solution of sorting problem to get a solution for pairing. Figure 5.2 shows the
screenshot of the final slide that gives the blackbox representation for this reduction.

Matrix multiplication to Symmetric matrix multiplication

This example explains how a general matrix multiplication problem can be solved if we know how to solve
symmetric matrix multiplication. The slideshow explains each step involved in transformation and reverse
transformation. Symmetric matrix multiplication might seem to be computationally faster than general ma-
trix multiplication. This example is used to show that it is computationally at least as hard as general matrix
multiplication. Figure 5.2 shows the screenshot of the final slide that gives the blackbox representation for
this reduction.

5.2 Proving NP Completeness using Reduction

To prove that a given problem is NP-Complete involves proving two things: 1) The problem is in NP (i.e. the
problem can be solved in polynomial time on a non-deterministic parallel machine) and 2) It is NP-Hard (i.e.
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Figure 5.2: Example of reductions.

all problems in NP can be reduced to this problem in polynomial time). The first part of the proof is usually
fairly straightforward for a NP-Complete problem. The second part involves proving that the given problem
is reducible to a known NP-Complete problem, in polynomial time. These reductions often involve complex
transformation functions and constructions that are neither intuitive nor easy to perceive for a beginner in
the subject. Some of these reductions involve two problems from entirely different genres, so they appear
to a novice to be dissimilar. This adds to the complexity of the proofs. For example, reduction of a 3 CNF
Satisfiability problem to a Hamiltonian Cycle problem is not intuitive

Our approach is to develop visualizations in the form of slideshows that use graphical aids to explain the
reductions. As mentioned above for the second part of the proof for a particular problem, it is required to
reduce it to a known NP-Complete problem in polynomial time. This means that we need to know at least
one NP-Complete problem. For our set of proofs, we start from the Circuit Satisfiability problem, that is
we take it for a fact that circuit-SAT is a NP-Complete problem. We use this to develop proofs for other
problems in the order mentioned in Figure 5.3. We traverse the chart top to bottom. We use reduction
of Circuit-SAT to SAT to prove SAT is NP-Hard. We use reduction of SAT to 3-SAT to prove 3-SAT is
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Circuit-SAT

SAT

3-SAT

AN

Clique Hamiltonian Cycle

Independent Set Traveling Salesman

Vertex Cover

Figure 5.3: Order of reduction for NP-Complete proofs

NP-Hard, and so on.

For each reduction, in our visualizations, we first formalize an if-and-only-if relation between two problems.
For example, for reduction of SAT to 3SAT, the formal statement is the SAT formula is satisfiable if and
only if its reduced 3-SAT instance is satisfiable. We then provide a detailed proof for the correctness of the
if-and-only-if relation, providing detailed descriptions for the transformations used. We then illustrate the
transformations with examples for in-depth understanding.

5.3 The Reductions

This section describes the NP-Complete reduction proofs for which we provide slideshows. Design and
implementation details are provide for each visualization.

5.3.1 Reducing Circuit-SAT to SAT

Formal statement of claim: An instance C of the Circuit Satisfiability problem can be reduced to a CNF
formula ¢ in polynomial time, such that the circuit C'is satisfiable if and only if ¢ is satisfiable.

Description : This slideshow starts with a brief background on the relevant laws of Boolean Algebra. We
provide an equivalent CNF expression for each type of gate in a circuit. We acknowledge the fact that it is
not always easy to perceive why the reduced boolean formula’s behavior is equivalent to the gate. So we
provide an elaborate step-by-step derivation of the formula. For AND and OR gates, we show a detailed
derivation when the number of inputs is 2 or 3, and extend the pattern for multiple inputs. After providing
an equivalent CNF formula for each gate, we describe how these can be used to derive a formula for the
circuit as a whole. We illustrate this idea with an example circuit, and its equivalent CNF formula using
color coding to denote each gate. Figure 5.4 show some screenshots. Finally, we provide an explanation for
how the circuit is satisfiable if and only if this equivalent boolean formula in CNF is satisfiable.
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9/40 - [ 4 ~
Reduction for NOT gate Reduction for AND gate with 3 inputs,
x1 x2 x1
x2 x4
X3
The reduced CNF formula ¢ = (Zz 4 21) The reduced CNF formula ¢ = (&4 ¢2ay - T2-33 )
= (T2 +71)- (24 T1) [ Using Identity 1 { refer to slide 2) ] =(r4+Ti-38-73)-(Ta+ 7 22-7) | Using ldentity 1]
= (71 +72)-(m1+=2)  which is a conjunction of clauses. =(m+T+ T2+ 58) (Ba+3-22-73) [ Using De Morgan's Law ]
(AT AT+ ). (1) (3 [
Mote: Since 22 is the output of NOT on 21, (32 ¢ 21) (i.e. &) is always True. A e S R =i et g
which is a conjunction of clauses.
Note: Since %4 is the output of AND on 1 ¥2 and 23, (T4 & 71 =22 -73) (i.e. ¢) is always True.
NOT gate can be reduced to a CNF formula in polynomial time
AND gate with any number of input wires can be reduced to a similar CNF formula
in polynomial time
~ 38/ 4 -~
27140 &y |®'* - : . o

v

Reduction for OR gate.

The reduced CNF formula & = (Ze ¢+(Ty + 22 4 73) )

= (B+ (@ +22+3)) (B +(3+224+7)) [ Using identity 1 ]
=(®+5-72-8) (T +n +o2+2) [ Using De Morgan's Law |

= (T4 4+ T1) (24 4+ T7) - (24 4 T3) - (B4 4 71 4+ 22 4 73)  [Using Distributive Law]
which is a conjunction of clauses.

Note: Since Z4is the output of OR on 1 7z and T3, (4 ¢+ (21 + 224+ 33)) (i.e. ¢) is always True.

OR gate with any number of input wires can be reduced to a similar CNF formula
in polynomial time

v

Example Circuit

xl
x2

o P

(\Zw+Tr+IZ8+T0) (Tro+27)- (T4 28) -

Note : This CNF expression can be constructed in polynomial time

Figure 5.4: Screenshots of Circuit-SAT to SAT reduction visualization.

5.3.2 Reducing SAT to 3-SAT

Formal statement of claim: An instance ¢ of the Formula Satisfiability problem can be reduced in polyno-

mial time to a 3-CNF formula 3 in polynomial time,

such that ¢ is satisfiable if and only if /3 is satisfiable.

Description: We explain the reduction of SAT to 3-SAT on a case by case basis. We provide an equivalent
3-CNF formula for each type of clause in the CNF formula that might be a part of the input to a SAT

problem. A clause in a CNF can have either 1, 2,

3, or more than 3 literals. We consider each of these

possibilities individually. For clauses containing 1 or 2 literals, we reduce the clause to a 3 CNF formula
and provide truth tables to prove that they are actually equivalent. For clauses with more than 3 literals, we
provide a 3-CNF formula and provide a step by step explanation using color coding and animation to explain
why the 3 CNF formula is satisfiable when the clause is satisfiable, and not-satisfiable when the clause is

not satisfiable. Figure 5.5 shows some screenshots.
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Case 2: Reduction of clauses containing one literal
LetCi = Lwhere ks a literal.

Intreduce 2 new variables #. and 2.
Replace € by conjunction of clauses Z where
Zy=(li+ wa +wia) - (B 0+ w2) - (B + v+ ) - (B

| [ 1 v
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Case 3: Reduction of clauses containing two literals,
Let i = (ha + kL2 ) where ki and L2 are literals.
Introduce a new variable

Replace Ci by conjunction of clauses Z where

Zs=(la + bz + ) (lig + bz + )
I 1
Truth Table :

%

Case 4b. When C; is not satisfiable.

Ci = (a+ha+liz+---+hx) where k>3,
i = lia +Hlia+ w)-(0 4+ fat ) (53
(03 Hig1+k)

it Yy g 352+ bt W (@0 Degont g ) (0 L 4 e 3)

When Ci is not satisfiable NO literal in { &i,1---Ii,k } is True.
For &i to be satisfiable, all its clauses must evaluate to True
For the first clause to be True, g1 = True
Now for the second clause to be True, ¥2 = True
Similarly for the third clause to be True, ya = True

1 =True = 3 =Troe--- = §j 2 =True = §j 1= True = §j

True--- =W a=True= 1 1=True

The last clause evaluates to False, Hence Ziis NOT SATISFIABLE

Truth Table :
G fwa|mal v [ |v| Z B lba|w [0 | 0|2
T(T|T|T|T|T|T|T T{T|T|T|T|T|T
T{T|F|T|T|T|T|T When Ci (i.e. ) is True, Z Is true. TITIRTITITHT When Ci Is true, Z is true.
TIFITIT| 7|77 When Ci (i.e. L) is False, Z is false. TIFP|T|T|T|T When Ci is false, Z is false.
T(F|F|T|T|T|T|T TIr{F|T|T|T|T
Hence Ci can be reduced to Z where each clause in Z Hence Ci can be reduced to Z; where each clause in &
FITITIT|T|TIFIF contains exactly 3 literals and Ci « Z;, FIT)TITT|7T|" contains exactly 3 literals and Ci + Zi.
F{T|F|T|T|F|T|F FIT|F|T|T|T|T
FIF|T|T|F|T|T|F FIF|T|F|T|F|F
FIF|F|F[T|T|T|F FIF|F|F|F|T|F
52154 (_’) -

Case 4a. When C; Is satisflable.

C = +lix) where k>3,
Bi= (i + g+ o (34 Bt ) (07 4l ok w085 34 Lk oy 051+ digoak 3 ) (0 0+ B2+ 3)
(3 dix1 1) i

When Ci is satisfiable atleast one literal in k... Lk is True,

(la+ha+lia+-o-

If bij (where j # {1,2,k — 1,k}) is True, set -+t 2 to True and 851+ ¥ 3 to False,
Let us call the clause in Zi containing Lj in as C'
The third term of all the clauses in Z; left to €' has a literal ¥ (wheren € {1..5 — 2} ) which evaluates to True

The first term of all the clauses in Z; right to €' has a literal ¥» (where n € {j - 1.k - 3} ) which evaluates to
True

Zi has a satisfying assignment

Figure 5.5: Screenshots of SAT to 3-SAT reduction visualization.

5.3.3 Reducing 3-SAT to Clique

Formal statement of claim: Any boolean formula ¢ in 3-CNF with & clauses can be reduced in polynomial
time to a graph G such that the ¢ is satisfiable if and only if G contains a k-Clique.

Description: This reduction involves constructing a graph from the 3-CNF formula. We provide a thorough
explanation of this construction process. We use color codes to express the association between clauses
in the formula and nodes in the graph. We use step-by-step animation to show how the nodes are to be
connected. The example used for this visualization comes from Cormen, et al. [14]. This example graph is
also used to augment our textual explanation for how the presence of a k-clique in the graph determines a
presence or absence of a satisfying assignment for the 3-CNF formula, with a graphical illustration. Figure

5.6 provide some screenshots of slides.
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Example of 3-SAT to k-Cligue Reduction Insights about the graph

Connecting the nodes in the graph

F= (2242 +3).(F0 + 52 +24) -(T2+ 74 +73) True,

(This is true since there is no edge between nodes corresponding to literals of type £ and 7).

to these literals in the graph are connected.

3. Construction of the graph can be performed in polynomial time

® T

1. If two nodes in the graph are connectad, the corresponding literals can be simultanecusly be assigned

2. If two literals, not from the same clause can be assigned True simultaneously, the nodes corresponding

3-SAT to k-Cligue Reduction Example of 3-SAT to k-Clique Reduction

T r ndir i nt: 3 = True, 3 = True, 2y = True
@ has a k-clique if and only if  is satisfiable R T e (T !

L. If the graph G has a k-clique, the clique has exacty ene node from each cluster.

(This is because no two nodes from the same cluster are connected to each other, hence they can never
be a part of the same clique.)

All nodes in a cligue are connected, hence all correspending literals can be assigned True simultaneously.
Each literal belong to exactly one of the k-clauses. Hence # is satisfiable

2. If ® is satisfiable, let A be a satisfying assignment. Select from each clause a literal that is True in A
to construct a set 5. ||§]| =k.Since no two literals in A are from the same clause and all of them are
simulatneously True, all the corresponding nodes in the graph are connected to each other, forming a k-
clique.Hence the graph has a k-clique

Figure 5.6: Screenshots of 3-SAT to Clique reduction visualization.

5.3.4 Reducing Clique to Independent Set

Formal statement of claim: An instance of the clique problem G can be reduced in polynomial time to a
graph G’ such that the G contains a clique of size > k if and only if G’ contains an independent set of size
> k.

Description: The input to the clique problem is a graph. This graph is transformed to its inverse to serve
as an instance to the Independent Set problem. We explain this transformation using visual aids. The
construction of the reverse graph from the original is first explained textually and then illustrated with an
example, using slides with intermediate visuals of the two graphs being superimposed onto one. Figure 5.7
shows some screenshots. This example graph is used to portray how an independent set in the reduced graph
forms a clique in the original. The last few slides in this visualization use this fact to show that the presence
or absence of an independent set of size k in the reduced graph determines the presence or absence of a
clique of size k in the original.
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Example graph The Complement graph

Figure 5.7: Screenshots of Clique to Independent Set reduction visualization.

5.3.5 Reducing Independent Set to Vertex Cover

Formal statement of claim: Any instance of an Independent Set Problem G = (V, E') can be reduced in
polynomial time to a graph G’ such that an independent set of size > k is present in the G if and only if the
G’ contains a Vertex Cover of size < |V| — k.

Description: This is a relatively simple reduction because of the fact that the transformation function is the
Identity function. We use example graphs to show how the vertices not included in an Independent Set in
a graph forms a vertex cover in the same graph. We use color coding to associate an edge to a vertex to
illustrate the fact that all edges are indeed covered by the set of vertices that are not a part of the independent
set. We use examples of both types (i.e. with a “yes” and a “no” answer since it is a decision problem), to
graphically demonstrate that the given reduction works. Figure 5.8 shows key slides.
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Reduction of Independent Set to Vertex Cover Does this 12-node graph have an Independent Set of size >=9 7

In a graph € = {V,E}
Sis an Independent Set < (V - §) is a Vertex Cover.

L If Sis an Independent Set ,there is no edge = (u,v) in &, such that both u,ve §,
Hence for any edge e = (u,v), atleast one of u,v must lie in (V - 5).
s (V - 8) is a vertex cover in G.

2. If (V - 5) is a Vertex Cover, between any pair of vertices (u,v)€ 5 if there exist an edge e,
none of the endpoints of e would exst in (V - 8) violating the definition of vertex cover
Hence no pair of vertices in § can be connectedby an edge

+ 5 is an Independent Set in G.

Hence G contains an Independent Set of size k + G contains a Vertex Cover of size |V| -k,

13115 (o]

Does this 12-node graph have an Independent Set of size >=7 7

Yes

Figure 5.8: Screenshots of Independent Set to Vertex Cover reduction visualization.

5.3.6 Reducing 3-SAT to Hamiltonian Cycle

Formal statement of claim: Any boolean formula ¢ in 3-CNF with k clauses can be reduced in polynomial
time to a directed graph G’ such that the ¢ is satisfiable if and only G contains a Hamiltonian Cycle.

Description: This reduction includes a construction of a graph from the given 3-CNF formula. This con-
struction is complex in nature and hence difficult to understand. Hence this visualization takes care to
explain every step of the construction in detail. First the nodes are mapped to boolean variables in the 3-
CNF. The animation zooms in to each variable, one by one, and draws the nodes on screen. For each clause,
it draws the corresponding node on the screen using color-coding to associate the node with the correspond-
ing clause. For each edge added to the graph, an explanation is provided about the interpretation of the
direction of the edges. Once the graph is constructed, the visualization provides a textual description of how
the presence of a Hamiltonian Cycle in this graph determines the satisfiability of the 3-CNF formula. This
is then demonstrated visually by highlighting the Hamiltonian Cycle in the same graph and using the cycle
to find a satisfying assignment for the 3-CNF formula. Figure 5.9 shows key slides.
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Step 1b: Adding edges to the paths
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Step 7: Connecting clauses to the paths
If a clause €5 contains the variable i,
1.Connect Csto vz 1 and vy

2.The direction of the path connecting Cj,%3 1 and v should be:

a. right to laft if C; contains

For example : C1 Le. (f1 + 73 + T3) contains 1. So C1 should be connected as:

2

b. left to right if C; contains =

p (1

For example : Cz Le. (32 + 23 + Z4) contains #2. So C2 should be connected as;

B

23735

Step?: Connecting clauses to the paths

3-CNF exprassion L 472 4T ) (4T3 bT ) (T 4 4T

28 - . @

Assignment for 3-SAT

From the Hamiltonian cycle below the assignment is :

zy = Truc , 2 = Palse , 1= Truec , ¥4 = False

Y

[

Figure 5.9: Screenshots of 3-SAT to Hamiltonian Cycle reduction visualization.

5.3.7 Reducing the Hamiltonian Cycle Problem to Traveling Salesman

Formal statement of claim: An instance G of a Hamiltonian Cycle problem can be reduced in polynomial
time to a weighted graph G’ such that G has an Hamiltonian Cycle if and only if the G’ has a solution for

Traveling Salesman with cost < 0.

Description: In this reduction the input is a non-weighted graph. The reduction transforms it into a weighted
graph that can act as an instance for a Traveling Salesman problem. An example is used to portray this
reduction with differently colored edges to distinguish between the original and transformed graph. Then
the example graph is used to graphically demonstrate how the presence of a solution for Traveling Salesman
Problem in the transformed graph can be used to determine the presence of a Hamiltonian Cycle in the

original. Figure 5.10 shows some key slides.
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Reduction of Hamiltonian Cycle Problem to Traveling Salesman Problem
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To reduce the Hamiltonian Cycle Problem to the Traveling Salesman problem for a given graph G = (V, E),
complete the graph G, by adding edges between all pairs of vertices that were not connected in G

Let the new graph ba € = (V',E') where V' =V and E'={{u,v]} for any u,ue V',
For edges in G" that were also present in G , we assign a weight 0,

For other edges we assign weight 1

that is , Ve=(u,v) € B,

Wi(e)=0, if (u,v)c E
W(e)=1, if (u,v) ¢ E

Note: Construction of the complimentary graph can be done in polynomial time
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Example graph

The censtructed graph &' is as below.
The blue edges were not present in G and have weight 1.

./-_-\.
(>)

10/11
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Example:

&' has a cycle passing through all vertices exactly once with length <=0

11/11

Example:

&' has a cycle passing through all vertices exactly once with length <=0
This cycle is a Hamiltonian cycle in G.

Figure 5.10: Screenshots of Hamiltonian Cycle to TSP reduction visualization.

37




Chapter 6

Evaluation of Usage Logs and Survey
Feedback

In this chapter we report on our efforts to evaluate the use of the tutorial by students. We first describe
our research population for this evaluation. We then describe in detail our methods of analysis and the
corresponding results for each method.

6.1 Research Population

Our tutorial for NP-Completeness was introduced as supplementary material in two courses, (CS 5114 and
CS 4104) that were taught in Spring, 2015 at Virginia Tech. CS 5114 is a graduate level course on Theory
of Algorithms. CS 4104 is a senior level undergraduate course on Data and Algorithm Analysis. Both
courses include NP-Completeness in their syllabus, but with different levels of coverage. CS 5114 covers
the topic in greater detail than does CS 4104. We factor this difference into our analysis, and report our
results separately for each course. Our evaluation is based on the tracking of online events (such as clicks)
logged by our system, and on the feedback collected from students about their experience with the material.
The size of the class for CS 5114 was 34, and that of CS 4104 was 62. Although the content of the tutorial
for both courses was the same, they were released as two different book instances for the two classes.

We want to emphasize the fact that the use of the tutorial by the students was completely voluntary. None of
the exercises were graded. No extra points or incentive of any sort was provided to the students for adopting
the tutorial.

6.2 Evaluation of Usage Based on Event Logs

The OpenDSA framework has a logging system (documentation available at [3]) that stores event logs in
a MySQL database. The events stored records of interactions that occur in the tutorial, for example, load
a page, gain or lose focus on a window, click on a slideshow, etc. We analyze these events to estimate the
amount of time spent by students on a particular module or exercise, or on the whole tutorial. We plot these
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time values to understand the use of the tutorial with respect to when the topics are taught in class or when
the assignments are due. First, we present the analysis the event log over a period of 30 days for CS 5114
and 24 days for CS 4104. This is the period of timed during which NP-Completeness was taught in these
classes. Then, we also present an analysis of overall usage extending to the last day of the semester to figure
out the usage patterns before the final examination.

One of our major challenges for analyzing the logs was differentiating the usage by one student versus
another. Although the students were encouraged to create a user id of their own, it was not a requirement.
When a student accesses the tutorial without having a user id, the events get logged as a guest user. This
means that the interactions logged under the guest user correspond to multiple students, making it hard to
distinguish. For our purposes, for events logged under the guest user, we treat interactions from distinct
IP-addresses as separate users. We acknowledge that the IP addresses do not exhibit a one-to-one mapping
with actual users. Multiple users may share the same public IP in a shared network, or the same user may
connect using different addresses. However, in our analysis we distinguish between IP addresses only to
isolate one session form another while calculating our timing estimates. We report only the total time spent
by all students on a particular module or exercise. Hence we expect the range of error generated by treating
each IP address as a separate user to be reasonably small. For users who log in using their own user ids, we
do not make this distinction.

Another challenge that we faced was in distinguishing idle time (time when the tutorial is open, but the
student is not looking at it) from productive time (the student is actually working through the tutorial). We
calculate the time of usage based on the timestamp of logged events. This means that if a student opens
a HTML page, and then leaves the browser window open, it is possible that our calculations may end up
including the entire time interval until the window either loses focus or is unloaded. There is no way for us
to differentiate between the student actually looking at the material and just leaving the browser open. To
minimize the problem, we cap each interval to a maximum of 10 minutes. That is, if the gap between two
events is more than 10 minutes, we assume the extra time to be idle time and include only 10 minutes for our
calculations. Hence our timing estimates are shorter than actual recorded times. Our estimates may not be
accurate, but this does not alter the distribution and variance, and hence does not prevent us from studying
the trends of use over the time period.

We report our observations from the event logs separately for CS 5114 and CS 4104 in the following sub-
sections.

6.2.1 Analysis for CS 5114
Curriculum

NP-Completeness was introduced to the class on 02-24-2015. The tutorial was made available to the students
on 03-12-2015. Table 6.1 lists the topics and the dates on which they were taught.

Categorized and per-module Analysis of use

The objective of this analysis is to get an idea of the amount of time spent by students in reading the textual
content, doing slideshows, or looking at proofs. We divide our tutorial into four categories for this analysis.
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Table 6.1: Curriculum for CS 5114.

Date Topic
03-17-2015 NP and Reducibility
03-19-2015 Circuit-SAT, NP-Complete Problems
03-24-2015 SAT, Proof of NP-Completeness
03-26-2015 3-SAT
03-31-2015 Clique to Vertex Cover Reduction, Hamiltonian Cycle and TSP
04-02-2015 Subset Sum
04-10-2015 Homework 7 ( on NP-Completeness) due.

They are Theory, Reduction, Intro, and Proofs. Theory includes modules with just textual content and
no visualizations. Reduction includes the module that introduces the general concepts of reduction. This
module includes both text and visualizations related to Reduction. Intro includes the modules that introduce
the NP-Complete problems. These modules have no textual content and are comprised of visualizations to
introduce the problem, and a practice exercise for a problem instance. We show later that the time spent
on exercises was very little, so it is safe to relate the usage reported under this category to the slideshows
introducing the problem. Proof includes modules that provide visualizations for reductions of NP-Complete
problems. They also have no textual content.

Figure 6.1 plots the time spent by students on the corresponding categories on particular dates. Figure 6.2
plots the per-module use of the tutorial over time. This graph is similar to Figure 6.1, with each category
broken into individual modules. We observe that on the initial days, March 17 and 19, students spent
time looking at the theoretical content and the concept of reduction. This is in tune with the topics taught
in the class. We notice a spike in use from the 26th to 30th of March. Important to note here is that
March 27 was the due date for homework 6 (the homework before the NP-Completeness homework). So
arguably, students start looking into the homework on NP-Completeness (i.e. homework 9) around this
time. Another important observation is that during this period, students spend time looking at visualizations
that introduce the NP-Complete problems as well as reductions and the textual content about how to prove
NP-Completeness. From Figure 6.2, we can see that usage is not restricted to one particular problem. The
students seem to be looking at multiple problems at this point. We assume form this observation that students
used the tutorial to study for their homework. Our belief is reinforced by the spikes in the graph around April
9 and 10, which is close to the homework deadline. During this time students seem to be spending time on
the modules on reduction of NP-Complete Problems.

The total time spent on the tutorial over this period was calculated to be 50.66 hours, which when averaged
over the entire strength of the class, results to about 1.5 hours per student. As mentioned earlier, this is a
stricter estimate where we attempt to remove the idle time.

Analysis of slideshows based on clicks

This analysis is strictly constrained to the use of slideshows, when a student actually clicks on them. We
calculate the time between these clicks. Figure 6.3 plots the time spent over the period of 30 days. An
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Figure 6.1: Categorized usage in CS 5114 by the entire class.

important observation here is the interest in specific visualizations around April 9-10. This is close to the
deadline for submission of homework 7. Students spent a lot of time looking at the visualization of reduction
of 3-SAT to Hamiltonian Cycle and a reasonable amount of time looking at the reduction from 3-SAT to
Clique. Both of these are examples of reduction from 3-SAT to a graph problem, similar to one of their
homework questions. The reason behind the prominent spike in the graph corresponding to the 3-SAT to
Hamiltonian Cycle reduction was due to the fact that the homework question required students to construct
a complex gadget for their solution. We infer that this particular visualization having similar construction
proved helpful in solving the particular problem in their homework.

The total time spent as shown in this analysis is close to 12.17 hours which is about 21 minutes per student
when averaged over all students in the class. This excludes the time spent reading the textual content. As
we mentioned earlier, this is a stricter estimate.

6.2.2 Analysis for CS 4104
Curriculum

NP-Completeness was introduced to the class on 03-31-2015. The tutorial was made available to the students
on 04-01-2015. Table 6.2 lists the topics and the dates on which they were taught.
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CS 5114 Analysis of time spent per module
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Figure 6.2: Usage per module in CS 5114 by the entire class.

Categorized and per-module analysis of usage

The categories and calculations of time estimate for this analysis are the same as described in Section 6.2.1.
Figure 6.4 shows the categorized analysis over time and Figure 6.5 breaks it into individual modules. We
observe that the majority of the time spent was on the textual content and the module on reduction. For this
class also, we notice a spike in use of the tutorial close to the homework deadlines.

However, the total time spent on the material for this class is only about 9.96 hours which is a little less than
10 minutes for each student when averaged over the total strength of the class. This is considerably lower
than for CS 5114. However, NP-Completeness is covered in a greater detail in CS 5114. The homework
problems in CS 5114 are more difficult and more closely aligned to the content of the tutorial. So this result
does not surprise us.

Analysis of slideshows based on clicks
Figure 6.6 shows the time spent on the tutorial when the student clicks on a slideshow, distributed over the

period. The total time spent is about 41 minutes. This is similar to our previous analysis, where we conclude
that the major portion of time spent by the class on the tutorial is on its textual content.
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CS 5114 Analysis of slideshows based on clicks
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Figure 6.3: Usage of slideshows in CS 5114 for the entire class.

6.2.3 Analysis of Exercises

The practice exercises included in the tutorial do not seem to be used much by the students. Only 4 students
in CS 5114 and CS 4104 combined have attempted the exercises, and the total time spent is 1.2 hours. Figure
6.7 shows the usage. We conclude from this that students do not spend time on exercises when they are not
mandated or graded.

6.2.4 Usage of the tutorial for the finals

Figure 6.8 shows the use of the tutorial by the students in the CS 5114 class. As we see in the figure, the
students seem to use the tutorial a lot before their homeworks, but do no use it much to prepare for their
finals. However, the final examination in CS 5114 was a take-home examination. So the students knew the
questions they had to answer to pass their finals. But in CS 4104, the final examination was not an open
book test, which means the students had to study the entire syllabus for their finals, for which the tutorial
came handy. As we see in Figure 6.9, they use the material heavily during the last two days before their final
examination. The time spent on the tutorial by the class of CS 4104 in the last two days of the semester is
more than 50% of the total time spent by the class in the entire semester.
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Table 6.2: Curriculum for CS 4104.

Date Topic
04-7-2015 Concepts of Reduction
04-9-2015 Cook’s theorem, SAT

04-14-2015 Proof of NP-Completeness
04-17-2015 Homework 8
04-24-2015 Homework 9 due

6.3 Feedback from students

We provided the students in both classes with a questionnaire (see Appendix A), in order to obtain their
feedback on the materials. The following sections summarize the results.

6.3.1 CS5114

The survey was taken by 23 out of 34 students (about 67%) in CS 5114. For 17 out of those 23 students
(about 74%), this was the first time they were learning about NP-Completeness. 18 students (about 78.2%
of the survey respondents) report to have looked into the tutorial and spent some time on it. Among these
18 students, the average time spent on the material as reported in the survey was 2.28 hours. Let us assume
that the same proportion of the students i.e. 78.2% of the entire class actually looked at the tutorial. As
stated earlier, the calculations based on our event logs shows total usage for the entire class during the 30
day period when NP-Completeness was taught, to be 50.66 hours which averages to 1.9 hours per student
who used the tutorial. This is slightly lower than the 2.28 hours calculated from the survey. But, only 2/3rd
of the class responded to the survey and as mentioned earlier our analysis provides stricter time estimates
than actual.

For Questions 2, 4, 5, and 6 in the survey, we map the responses to weights 1-5. Doing so, the average
level of difficulty of NP-Completeness as compared to other topics scores 3.95 out of 5. This supports our
basic assumption that this is a difficult topic to learn. In Question 4, when asked to compare how helpful the
tutorial is as relative to the textbook, among the 21 students who chose to answer the question, we find the
mean to be around 2.65 on a scale of 1-5 which can be interpreted as the tutorial being about equally helpful
as the textbook. In Question 5, where the student is asked about the number of slideshows they looked at, the
mean is again 2.52, which says they worked through a few slideshows. This is consistent with our analysis
of event logs. When asked the same about exercises, the mean is 1.69. This low mean is consistent with the
our previous analysis of event logs.

15 students (about 65%) found the tutorial to be helpful to solve their homework. 4 out of these 15 students
explicitly mention the visualization of reduction of 3-SAT to Hamiltonian Cycle in their feedback. This
is consistent with the trend we see in our analysis of event logs where we see an increased use of this
particular visualization around the homework deadline. 19 students (about 82%) report that they will be
using this tutorial to prepare for their finals. However as can be seen from Figure 6.8, they do not actually
use it much before the finals. The total time spent on the material by the entire class after April 10 is 1.8
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Figure 6.4: Categorized usage in CS 4104 for the entire class.

hours.

When asked to comment on their experience of the tutorial in Question 9, 18 students report this tutorial to
be “good” and “helpful”. Only 1 student reported of the tutorial to be not useful, and 1 other who thinks it
is a good tutorial in general but is just not of much use to the individual because of his prior experience in
the subject.

6.3.2 CS 4104

In a class of 62 students, feedback was provided by 36 students (about 58%). 28 out of these 36 students
(about 77.77%) report no prior experience with NP-Completeness. 14 out of 36 students (about 38.88% of
the survey respondents) report to have spent some time on the tutorial. Among these 14 students, the average
time spent on the material as reported by the survey is about 1.39 hours. Let us assume the same proportion
of students (i.e. 38.78%) of the entire class actually used the tutorial. As we have reported earlier the total
time spent on the tutorial by the entire class as calculated from our event logs, during the 24 days when
NP-Completeness was taught is about 9.96 hours. This averages to about 24.78 minutes per student who
used the tutorial. This is less than the 1.39 hours as reported by the survey. As stated earlier, our estimate
is stricter than actual times recorded. This also indicates that the population of survey respondents includes
most of the students who actually used the tutorial.
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Figure 6.5: Usage per module in CS 4104 for the entire class.

We mapped the students’ answers in Questions 2,4,5 and 6 to a scale of 1-5. The level of difficulty of
NP-Completeness as compared to other topics had a mean of 3.83 out of 5 which shows that the students
find it a somewhat difficult topic to learn. The time spent on the material as reported by the students on the
tutorial averages to about 32 minutes. Question 4 asked students to compare the textbook to the tutorial.
Only 24 out of 36 students answered the question, whose responses lead to a mean of 3.34. This can be
interpreted as students who had an opinion about the relative usefulness of the tutorial as compared to the
textbook think the tutorial is about as helpful. In Question 5, where the students were asked about their use
of the slideshows, the mean response was around 1.69 which indicates low use. In Question 6 which reports
the usage of practice exercises, the mean response is 1.38. Both of these means report low use, which is
consistent with our results from the analysis of event logs.

Among the 36 students filling out the survey, only 7 students report that the tutorial was helpful in solving
their homework. However 25 students report they will be using the tutorial and 6 others report they might
potentially find studying from the tutorial helpful for finals. Interesting to note here, is that about 7 students
report the reason for not using the tutorial to be lack of time and 4 students say they did not remember the
tutorial existed while doing their homework. As we see from Figure 6.9, their usage of the tutorial spikes
up before the finals.

When asked about their experience with the tutorial in Question 9, about 26 students (72%) provide positive
feedback.
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CS 4104 Analysis of time spent per module for finals
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Chapter 7

Conclusion and Future Work

As a part of our tutorial we created 18 visualizations in the form of slideshows and 6 practice exercises, apart
from the textual content. Our visualizations cover § NP-Compete problems, and proofs of NP-Completeness
for 7 problems. We introduced the tutorial as supplementary material in a graduate and an undergraduate
class. We analyzed the interaction logs for the tutorials and collected feedback from the students. Our anal-
ysis suggests that a fair number of students look at the visualizations voluntarily, when they feel that doing
so directly supports completing their assignments. But they do not typically try out exercises voluntarily.

In future, the tutorial needs to be evaluated for pedagogical effectiveness. This can be done by introducing
the tutorial to different batches of students over multiple semesters and collecting their feedback and tracking
their progress. The content can also be expanded to include more NP-Complete problems and corresponding
exercises to solve their problem instances. Different instructors include different NP-Complete problems as
a part of their syllabus. Hence, visualization more NP-Complete problems will facilitate us to selectively
include visualizations as per the need of instructors and have the content customized for each course. The
area of reductions can be further explored to include exercises on reductions. Our current module includes
some textual content on coping with NP-Complete problems, but no visualizations. This can be extended to
include approximation algorithms for NP-Complete problems and visualizations to portray them.
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Appendix A

Student Survey

1. Is this the first course that you have taken that presents the theory of NP-Completeness and NP-Completeness
proofs? [Yes/No]
a. If "No”, please briefly describe your prior exposure to NP-completeness theory.

2. How difficult do you find the topic of NP-Completeness in terms of understanding the concepts?
a. Not at all difficult compared to other topics in this course.
b. Somewhat less difficult compared to other topics in this course
c. It is of average difficulty compared to other topics in this course.
d. Somewhat more difficult compared to other topics in this course.
e. Much more difficult compared to other topics in this course.

3. How much time approximately did you spend on the online OpenDSA tutorial on reductions and NP-
Completeness (in hours)?

4. Compared to the textbook that you used for this course, how helpful did you find the OpenDSA online
tutorial for learning about NP-completeness?

a. The textbook was far more useful than the OpenDSA tutorial.

b. The textbook was somewhat more useful than the OpenDSA tutorial.

c. The textbook and the OpenDSA tutorial were about equally useful.

d. The textbook was somewhat less useful than the OpenDSA tutorial.

e. The textbook was far less useful than the OpenDSA tutorial.

5. Consider in particular the various slideshows that were presented as part of the online tutorial. Which
best describes your use of these?

a. I did not look at any OpenDSA tutorial slideshows.

b. I briefly looked at a couple of slideshows, but did not really work through them.

c. I worked through a few of the slideshows.

d. I worked through half or more of the slideshows.

e. [ worked through all or nearly all of the slideshows.

53



6. The online tutorial included a number of exercises that were meant to help you gain understanding of the
material. Which best describes your use of these?

a. I did not look at any OpenDSA tutorial exercises.

b. I briefly looked at a couple of exercises, but did not really work through them.

c. I worked through a few of the exercises.

d. I worked through half or more of the exercises.

e. I worked through all or nearly all of the exercises.

7. Do you think the OpenDSA tutorial helped you to do your homework on NP-Completeness? Please
explain.

8. Do you think you will use the OpenDSA tutorial to prepare for your finals?

9. Please describe your overall opinion of the OpenDSA online tutorial for reduction and NP-completeness.
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Appendix B

Distribution in problem instances generated
for exercises

In order to inspect the kind of problem instances that get generated for each exercise in the tutorial, we load
each exercise 1000 times. A new problem instance is generated every time an exercise is loaded. The data
collected in this experiment has been tabularized below for each individual exercise.

For example, Table B.1 shows that the problem instance contained a 3-clique at 52 out of 1000 times.

Table B.1: The distribution in problem instances generated for the exercise on Clique Problem.

Size of clique 3 4 5 6
Number of occurrences | 52 | 654 | 284 | 10

Table B.2: The distribution in problem instances generated for the exercise on Vertex Cover Problem.

Size of Vertex Cover 41 5 6 7 8 9 10 |11 |12 |13 |14 | 15| 16 | 17

18

Number of occurrences | 9 | 71 | 201 | 213 | 153 | 165 | 111 | 58 | 6 2 1 1 5 3

Table B.3: The distribution in problem instances generated for the exercise on Independent Set Problem.

Size of Independent Set | 3 | 4 5 6 7 8 9 10 | 11|12 | 13
Number of occurrences | 1 | 48 | 132 | 157 | 177 | 176 | 169 | 106 | 28 | 5 1
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Table B.4: The distribution in problem instances generated for the exercise on Traveling Salesman Problem.

Length of shortest Hamiltonian Cycle Number of occurrences
100, 104, 108, 112, 21, 22, 23, 90, 93, 95, 96, 98 1
101, 16, 20, 24, 31,97 2
26, 28, 87, 94 3
29, 32, 85, 86, 89 4
25,91 5
30, 84, 88 6
34,79, 80 8
74,75, 81, 83 9
69, 82 10
27,73,76,78 11
36,72 12
33,54 13
35,77 15
38, 62, 67 16
37,41, 49, 65, 71 17
48, 66 18
39, 42 19
43, 46,70 20
52,53, 59, 60 21
40, 45, 58, 63, 68 23
51,57 24
50 15
44, 64 26
55 29
56 30
47,61 31
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