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ABSTRACT
 

ii ii

This research discusses the mechanical characteristics of laminated piezoelectric 

actuators that are manufactured at an elevated temperature, to cure the adhesive bonding the 

layers together, or to cure the layers made of polymeric composite material, and then cooled 

to a service temperature. Mainly discussed are actuators that are composed of layers of 

passive materials and a layer of piezoelectric material. THUNDER (THin layer UNimorph 

ferroelectric DrivER and sensor) and LIPCA (LIghtweight Piezo-composite Curved 

Actuator) actuators, which consist of layers of metal, adhesive and piezoelectric material, 

and carbon-epoxy, glass-epoxy and piezoelectric material, respectively, are studied and 

investigated in detail to understand the thermal effects due to the elevated manufacturing 

temperature. Owing to the large out-of-plane deformations of the THUNDER actuators as a 

result of cooling to the service temperature, inclusion of geometric nonlinearities in the 

kinematic relations is taken into consideration for prediction of the thermally-induced 

deformations and residual stresses. The deformations and residual stresses are predicted by 

using a 23-term Rayleigh-Ritz approach and more rigorous, time-consuming, finite-element 

analyses performed with ABAQUS. The thermally-induced deformations of THUNDER 

actuators can result in multiple room-temperature manufactured shapes, whereas those of 

LIPCA actuators (LIPCA-C1 and LIPCA-C2) exhibit single room-temperature 

manufactured shape. Actuation responses of these actuators caused by a quasi-static electric 
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field applied to the piezoelectric layer are also studied with the Rayleigh-Ritz approach. It is 

shown that geometrical nonlinearities play an important role in the actuation responses, and 

these nonlinearities can be controlled by the choice of actuator geometry and the materials in 

the passive layers. In addition, blocking forces representing load-carrying capability of 

THUNDER and LIPCA actuators are determined. Support conditions and again geometrical 

nonlinearities are vital factor in load-resisting performances. Amongst the actuators 

considered, the actuated deflection and blocking forces are compared. Finally, based on the 

outcome of this study, new criteria for designing a new type of laminated piezoelectric 

actuators with improvement of performance characteristics are proposed.  
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Chapter 1 

INTRODUCTION 

1.1 Overview of Piezoelectricity 

 

It has been over a decade since so-called “smart materials” first emerged to lead 

to technological innovations appearing in various fields such as aerospace, manufacturing, 

civil infrastructure systems, biomechanics, etc. The definition of a “smart material” is given 

in several publications: a few examples are given in references [1-3]. As defined in [1], a 

smart material is a non-biological material or material system having the following 

attributes: (i) a definite propose; (ii) a means and imperative to achieve that propose; and 

(iii) a biological pattern of functioning. Thus, to possess the above characteristics, the key 

functions of a smart material or structure are sensing and actuating. As stated in [2], the 

sensor part has ability to feedback thermal, electrical, and magnetic signals, like a human 

nervous system. The actuator part has the capability of changing shape, stiffness, position, 

natural frequency, damping, and/or other mechanical characteristics of the system in 

response to changes in temperature, electric field, and/or magnetic field analogous to a 

motor system in biological functions. Piezoelectric materials, magnetostrictive materials, 

shape memory alloys, electrorheological fluids, magnetorheological fluids, and optical fibers 

are examples of the smart materials in use today that accomplish these tasks. The work 

described herein is focused on piezoelectric materials. 

Piezoelectric materials are materials that exhibit an interaction between 

electrical and mechanical response; namely they generate an electric charge when strained, 

the direct piezoelectric effect, and they deform (strain) when an electric field is applied, the 
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converse piezoelectric effect. The former phenomenon is a sensor property and the latter one 

is used for actuation purposes. The two piezoelectric effects are a physical property of 

acentric crystal materials, i.e., there is no center of symmetry in the elementary cell (unit 

cell) of the materials. In centric crystals, the center of positive and negative charge remains 

fixed when a force is applied because of the symmetry of the center. In acentric crystals, the 

centers of positive and negative charge are displaced by an applied force, and therefore, the 

crystal may possess “polarization” or net electric charges [4]. The polarization that is 

developed in a piezoelectric crystal is dependent on the orientation of the applied force. For 

example, the directional nature of the converse piezoelectric effect can be visualized by 

considering the effect of tensile stress on the two-dimensional hexagonal unit cell shown in 

Figure 1.1. In the unstressed unit cell illustrated in Figure 1.1(a), the center of positive 

charges coincides with the center of negative charges. When the unit cell is subjected to a 

tensile stress in the direction shown in Figure 1.1(b), the crystal deforms and the centers of 

positive and negative charges are separated. This results in the net polarization of the unit 

cell, i.e., piezoelectricity is observed. However, when the direction of the applied stress is  

Tensile stress Tensile stress

Figure 1.1: Directional Dep

(c) (a) (b)

e e n
Negative charg
Positive charg
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Indicated in Figure 1.1(c), the crystal deforms but the centers of positive and negative 

charges are not separated, i.e., no piezoelectricity is noticed. 

Based on the possible symmetries of unit cells in nature, there are 32 crystal 

classes (or point groups). Out of these, 21 are acentric and thus piezoelectric. In 11 of the 

piezoelectric classes, a spontaneous polarization of the crystal structure is present in the 

absence of an applied stress or electric field. These 11 piezoelectric classes are so-called 

pyroelectric crystal classes, in which a net polarization change is induced by a change in 

temperature. In addition, certain pyroelectric crystals can switch the polarization direction 

by application of an opposite electric field; such crystals are also classified as ferroelectric 

crystals. The piezoelectric effects observed in ferroelectric crystals are much more 

noticeable than the effects in non-ferroelectric piezoelectric crystals. Normally, natural 

piezoelectric crystals such as single-crystal quartz exhibit the piezoelectric phenomenon, but 

their response is quite weak due to being non-ferroelectric. Furthermore, they are susceptible 

to moisture and chemical reactions in a typical atmosphere, as well as being more expensive 

to create. Therefore, polycrystalline ferroelectric ceramics such as BaTiO3 and Pb(Zr,Ti)O3 

(Lead Zirconate Titanate, or PZT) have been produced to overcome these shortcomings.  

The materials BaTiO3 and PZT are composed of a mass of tiny crystallites. 

Above a specific temperature, called the Curie temperature (around 135  and 350  for 

BaTiO

C° C°

3 and PZT, respectively), these crystallites have perovskite structure and exhibit cubic 

symmetry, which is centric or centrosymmetric, as shown in Figure 1.2(a). As a result, the 

materials don’t possess piezoelectric behavior. Below the Curie temperature, however, the 

crystallites take on tetragonal symmetry in which the positive charge from central the metal 

ion is biased toward one direction, as illustrated in Figure 1.2(b). Each elementary cell then 

has a built-in electric dipole, which may be reversed, and which also may be switched to 

certain allowed directions by the application of an electric field. These dipoles are not 

randomly oriented throughout the material. Neighboring dipoles align with each other to 
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form regions of local alignment known as Weiss domains. Within a domain, therefore, all 

the dipoles are aligned, giving a net dipole moment to the domain, and hence a net 

spontaneous polarization (dipole moment per unit volume). However, these domains are 

formed with random orientation in the material, so that no net overall polarization or 

piezoelectricity is observed in the bulk material. Piezoelectricity can be induced in the 

ferroelectric ceramics by a process of subjecting them to a strong electric field and elevated 

temperature (slightly lower than Curie temperature). This process is known as poling. 

During poling, the direction of spontaneous polarization within each domain is switched and 

nearly aligned with the applied field. This process makes the domains elongate in the 

direction of the poling field (poling axis). When the field is removed, most of the dipoles 

remain locked in the approximate alignment, so that the material will have a permanent 

residual (remanent) polarization and deformation after poling [4-6], as shown in Figure 1.3. 

After the poling process is complete, an applied voltage lower than the poling 

voltage causes dimensional changes in the piezoceramic material due to movement of the 

ions within the unit cell, as long as the voltage is held. A voltage with the same polarity as 

the poling voltage (defined as positive field) generates more expansion along the poling 

 

+ 
Electric Dipole 

- 

(a) Cubic (above Curie point) (b) Tetragonal (below Curie point) 

Pb2+ or Ba2+ O2- Ti2+ or Zr2+
 

Figure 1.2: BaTiO3 and PZT Unit Cell (after [5]) 
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            (a) Before poling                 (b) During poling                     (c) After poling     

Figure 1.3: Effects of Poling 

axis and contraction perpendicular to the poling direction. A voltage with the opposite 

polarity (negative field) has the opposite effect: contraction along the poling axis, and 

expansion perpendicular to the poling axis. In both cases, under the quasi-static field, the 

ceramic element returns to its poled dimension when the voltage is removed from the 

electrodes. These so-called converse effects are shown exaggerated in Figure 1.4. In either 

case, the applied voltage shouldn’t be too high. When the voltage in the case of Figure 1.4(a) 

is applied higher than the coercive, or depoling, field of the piezoelectric element, the 

polarization is deteriorated and repoling process is needed to rebuild piezoelectric capability 

in the element. Moreover, when an extremely high field is applied to the element, electrical 

breakdown can occur, and eventually the piezoelectric function of the material is destroyed. 

 On the other hand, as illustrated in Figure 1.5, the direct effect can be obtained 

in the polarized piezoelectric element by applying forces to the material. A voltage with the 

same polarity as the poled element results from a compressive force applied parallel to the 

poling axis, or from a tensile force applied perpendicular to the poling axis.  However, a 

tensile force applied along the poling direction or a compressive force applied perpendicular 

to the poling axis produces electrical charges against the original polarity of the material. 

Again, care must be taken when the force is applied as in the case of Figure 

- 
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+
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Poling axis 

                                   

 
      (a) Applied voltage of opposite       (b) No voltage        (c) Applied voltage of same  
            polarity as poling voltage                                                polarity as poling voltage 

Figure 1.4: Piezoelectric Actions from Applied Voltages 

 
     (a) Output voltage of same          (b) No applied force      (c) Output voltage of opposite  
           polarity as poled element                                                   polarity as poled element 

Figure 1.5: Piezoelectric Voltages from Applied Forces 

1.5(a). A sufficiently strong force can switch the poled domain and weaken the piezoelectric 

effect.    

 The piezoelectric effects described above can be formulated as mathematical 

relations. When the applied field or force is not too large, the linear relationship between 

piezoelectric response and electrical or mechanical input is assumed. The linear 

piezoelectric effect has a tensor property that relates the generated polarization (or electrical 

charge) in response to an exerted mechanical stress. The property is a third-order tensor 

because it depends on the orientation of the second-order tensor applied stress to generate a 
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polarization vector, as depicted in Figure 1.1. In tensor notation, the direct piezoelectric 

effect is given by [4, 7]  

 jkijki dP σ=  (1.1) 

where  and k are indices of Cartesian axes running from 1, ,i j 3− , is the piezoelectric 

coefficient or piezoelectric modulus, 

ijkd

jkσ is the applied stress, and  is the polarization 

generated along the i -axis in response to the applied stress. In addition, because of the 

balance of linear momentum in the material, 

iP

jk kjσ σ= , it follows from Equation (1.1) that 

the tensor  is symmetric in the last two indices, so Voigt’s notation can be employed and 

Equation (1.1) can be expressed as 

ijkd

 i ijP d jσ=  (1.2) 

where  and .      1 3i = − 1 6j = −

 With the same repeated indices as defined above, the converse effect can also be 

modeled mathematically using Voigt’s notation as 

                                           (1.3) ε =E
j ijd Ei

where is electric field and iE ε E
j  is strain induced by piezoelectricity.  

 The piezoelectric coefficients can have several components, depending on 

classes of symmetry of a crystal or piezoelectric material. It can be noted that, as seen from 
Figure 1.1 and Equation (1.2), some of components of can be zero. A poled ferroelectric 

ceramic is categorized in the class of 6mm and has been proven to have 3 independent 

piezoelectric moduli, namely and where index 3 indicates the poling direction. 

The longitudinal piezoelectric coefficient  relates the polarization developed along the 

poled axis to a stress applied in that same direction. The transverse piezoelectric coefficient 

relates the polarization along the 3-axis to a stress applied in a perpendicular direction (1 

direction). The shear piezoelectric coefficient  relates the polarization along the 1-axis to 

a shear stress applied in the 2-3 plane. 

ijd

ijd

33,d 31,d 15 ,d

33d

31d

15d
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1.2 Unimorph and Bimorph Actuators 

 

 Although the piezoelectric coefficient of the ferroelectric ceramics is 

substantially higher than those of natural crystals, in some practical applications the 

amplification of the piezoelectric response is often required, especially for producing 

displacements by actuating the piezoelectric material. Examples of enhanced piezoelectric 

actuators include stacks, unimorphs, and bimorphs [5, 8]. A stack is made from several 

piezoelectric transducers connected mechanically in series and electrically in parallel. The 

stack illustrated in Figure 1.6 (a) uses piezoelectric coefficient  in actuation to create a 

displacement in the direction of stacking. The displacement of each transducer element adds 

to the total displacement. On the other hand, unimorph and bimorph actuators, shown in 

Figure 1.6 (b) and (c), are constructed in laminated cantilever beam or plate configurations. 

A unimorph is composed of a single layer of piezoelectric material with another layer of 

elastic material as a passive layer, whereas a bimorph is made from two layers of 

piezoelectric material with or without a passive layer. Both types of actuators utilize 

piezoelectric coefficient  to generate deformations parallel with the actuator’s midplane 

that are unsymmetrical with respect to the actuator’s mid-plane and thus induce more 

appreciable out-of-plane deflection through bending. Table 1.1 compares the performance 

characteristics of these actuators. 

33d

31d

Table 1.1: Performance Characteristics Comparison of Various Transducers (After [8]) 

 
Transducer 

Type 
Displacement 

Generated 
Force 

Generated 
Electro-Mechanical 

Energy Transfer 
Resonant 
Frequency 

Bulk PZT Low Medium Medium Medium 
Stack Medium High High High 
Unimorph/ 
Bimorph 

High Low Low Low 
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 Due to their performance characteristics, the unimorph and bimorph usually are 

used for audio and ultrasonic alarm devices, relay motors, positioning devices, motion 

detectors, and instrumentation pick-up indicators. In order to properly design and implement 

this kind of transducer in a specific application, several mathematical models have been 

proposed during the past two decades. First, the model of integrating a piezoelectric layer 

with a passive substrate was developed in 1985 by Bailey and Hubbard [9]. However, their 

model was one-dimensional and took into account only uniform strain in both piezoelectric 

and passive layers, so it could not capture the bending strain in the transducers. In 1987, 

Crawley and de Luis derived the pin- force model, including flexural stiffness of the passive  

 

Displacement 

 

Figure 1.6: Displacement-Enhanced Piezoelectric Transducers 
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layer, which, therefore, acted as a beam [10]. However, the piezoelectric layer still had 

uniform strain distribution. Chaudhry and Rogers [11] proposed the enhanced pin-force 

model in 1994 by incorporating the bending stiffness of the active layer. Nonetheless, the 

piezoceramic layer was assumed to bend around its own neutral axis (at its geometric center) 

and actuation from the piezoceramic layer passed through the passive layer by two 

imaginary pins located at the edge of layer interface.  

 These models, even though they are simple and easy to use, have some 

limitations for certain thickness and stiffness ratios between the piezoceramic and passive 

layers. Thus, the more accurate model, so called the Euler-Bernoulli model, which is based 

on classical beam and plate theories, was put forward by Chaudhry and Rogers [11], 

Crawley et al. [12,13], Smits et. al. [14, 15], and Wang and Cross [16]. This model is 

equivalent to classical lamination theory for composite laminated beams and plates. 

Therefore, the model can accurately predict the strains and curvatures of unimorph and 

bimorph actuators throughout the actuators. However, since such models are based on 

geometrically linear theory, they are not able to capture the correct behavior of newer 

unimorph-type actuators like RAINBOW, THUNDER, and LIPCA, which possess 

geometrically nonlinear characteristics caused by the large deformations due to their 

elevated-temperature manufacturing process and subsequent cooling. These actuators are 

discussed next. 

1.3 RAINBOW, THUNDER, and LIPCA Actuators 

 

 The models for unimorph and bimorph actuators discussed above were applied 

to actuators that were fabricated at room temperature or slightly above. The flexural motions 

of these actuators were limited either by the voltage limitations or the low tensile strain limit 

of the piezoceramic material. The notion of fabricating actuators so the piezoceramic 

material was in an initial state of compression was motivated by the desire to overcome the 
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latter limitation. An initial state of compression could be achieved by fabricating the 

actuator at an elevated temperature and using passive materials with thermoelastic properties 

that produced compression in the piezoceramic layer when cooled to the actuator service 

temperature. Unless the layer material properties were chosen properly, had the right 

thickness, and were located relative to the piezoceramic layer in a specific manner, 

fabrication at an elevated temperature and then cooling would result in an actuator with an 

initial curvature as well as initial stresses, much like a bimetallic strip. However, it was 

generally believed that the initial curvature enhanced the deflection characteristics, relative 

to a flat actuator, when the piezoceramic layer was activated. There has been some work on 

predicting the initial curved shapes and subsequent deflections due to activating the 

piezoceramic material. Nonetheless, there are still many issues that are not understood. To 

follow is a brief description of the three actuators mentioned above, namely RAINBOW 

[17-23], THUNDER [24-29, 49], and LIPCA [30-33].  

1.3.1 Manufacturing Processes and General Characteristics of RAINBOW, THUNDER, and 
LIPCA 

 First developed by Haertling in 1990 [19], the RAINBOW actuator is composed 

of two different layers, specifically a reduced layer as an elastic passive layer and 

unreduced, or active, layer. A photo of a round RAINBOW actuator and a schematic cross-  

 

 

Figure 1.7: Photo of Round RAINBOW  
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Reduced layer 

Unreduced layer 

 

Figure 1.8: Cross-Section of RAINBOW Actuator 

section of a RAINBOW actuator are illustrated in Figures 1.7 and 1.8, respectively. The 

actuator is manufactured by placing a standard flat piezoelectric material, such as PZT or 

PLZT ((Pb,La)(Zr,Ti)O3), in wafer form on top of a carbon block. Then, the whole assembly 

is heated in a furnace to approximately 700-1,000 . This heating process is called a 

reduction process because the carbon oxidation at the ceramic-carbon interface takes the 

oxygen atoms from the PZT oxide ceramics. This, consequently, leaves the ceramic wafer 

with two distinctive layers, like the standard unimorph illustrated in Figure 1.6(b). The 

bottom layer is a cermet layer of lead, titanium oxide, or zirconium oxide, and the top layer 

is the intact PZT material. The thickness of the unreduced layer can be adjusted by altering 

the process temperature and the soaking time in the furnace. As a major effect, the reduced 

layer is no longer piezoelectrically active, but it is electrically conductive. Also as a result of 

the change in chemical component of the reduced layer from that of original PZT, a thermal 

expansion coefficient and elastic modulus mismatch between these two layers is generated. 

Specifically, there is a lack of symmetry of the layer thermoelastic properties with respect to 

the actuator’s geometric midplane i.e., the actuator is an unsymmetric laminate [39]. 

Accordingly, the stiffness properties of the actuator are characterized by exhibiting bending-

stretching coupling (B matrix) and thermally-induced effective moments. This lack of 

symmetry causes the residual stresses and the large out-of-plane deformation during cooling 

of the wafer to room temperature.  

C°

 The THUNDER actuator, as seen in Figure 1.9, is another type of curved 

actuator, similar to RAINBOW. It was developed by the NASA Langley Research Center in 
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19 nd now is manufactured and distributed by Face International Corporation [25]. 

However, unlike RAINBOW, which is a monolithic layered structure, THUNDER is 

composed of a PZT layer sandwiched between layers of metal, such as aluminum, stainless 

steel, beryllium, etc., all of which are bonded together in a flat condition with a polyimide 

adhesive that is cured approximately at 325 C° . A schematic cross-section of a THUNDER 

actuator is illustrated in Figure 1.10. The bottom layer serves as the backbone of the actuator 

and is used to attach the actuator to a structure. The very thin top layer, which is optional, is 

used for protecting the piezoceramic layer from direct exposure. All the layers are 

assembled in the desired order and thermally processed in an autoclave to produce the 

actuator. The temperature is raised to 320-325 C°  at 5 C° /min with a full vacuum. Then, the 

autoclave is pressurized to 207 kPa for 30 min and cooled at a rate of 5 C° /min until the 

temperature reaches 200 C°  [26]. After this, the vacuum is released and the actuator is 

allowed to cool to ambient temperature. Again, because the actuator is  unsymmetric 

laminate, residual stresses and large out-of-plane deformations develop, so the cooled, or 

manufactured, shape is not flat. 

 LIPCA is a recent variant of THUNDER introduced by Yoon, et al [30]. They 

put forward the idea of using fi

94 [24] a

an

ber-reinforced composite materials as the passive layers in 

order to save weight without losing the capabilities for generating high force and large  

 

 

Figure 1.9: Photo of Rectangular THUNDER  
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Figure 1.10: Cross-Section of THUNDER Actuator 

H 

 

Figure 1.11: Photo of Rectangular LIPCA 

displacement during electrical 

called LIPCA-C1 [30, 32], LIPCA-K [31], and LIPCA-C2 [33]. Figure 1.11 shows a photo 

 

actuation. The main devices they have been developing are 

of a LIPCA actuator. LIPCA-C1 consists of three different materials, namely a glass-epoxy 

layer, a piezoceramic wafer with electrode surfaces and silver pasted copper strip wires, and 

a carbon-epoxy prepreg layer. All of the materials are stacked in that order, from bottom to 

top, resulting in an unsymmetric laminate. Due to the epoxy resin prepreg material system, 

the actuator can be manufactured without adhesive. The stacked layers are vacuum bagged 

and cured at 177 C°  for 2 hours in a cure oven. After removal from the flat mold, the device 

possesses residual stresses and curvatures.    

Backbone layer 
Adhesive 
PZT layer 

Adhesive 
Top layer 
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 LIPCA-K is very similar to LIPCA-C1 except Kevlar49-epoxy is used for the 

top layer instead of carbon-epoxy. It has been reported that LIPCA-K generates a larger 

manufactured curvature than LIPCA-C1. Nevertheless, the comparison of actuation 

responses between the two actuators has not been published. A schematic cross-section of 

LIPCA-C1 or LICA-K is illustrated in Figure 1.12. 

 Recently, Yoon, et al have introduced LIPCA-C2. The key objective of the 

LIPCA-C2 design is to place the neutral axis of the actuator laminate above the piezoelectric 

ceramic layer in order to produce compressive stresses in that layer. Based on the work of 

Barrett and Gross [34], Yoon and coworkers believe that the actuation displacement and 

force can be increased significantly by placing the ceramic layer on the compressive side of                         

laminate at the service temperature. The actuator has five layers, namely glass-epoxy as a 

bottom layer, piezoceramic, glass-epoxy, carbon-epoxy, and again glass-epoxy as a top 

layer. Figure 1.13 shows a schematic cross-section of a LIPCA-C2 actuator. After hand lay-

up, the stacked laminate is vacuum-bagged and cured at 177  for 2 hours in a cure oven. 

Experiments [33] have shown that a LIPCA-C2 beam generates twice as large a 

displacement as a LIPCA-C1 beam, for a simply-supported configuration.  

C°

 It should be noted here that many performance tests of RAINBOW [18, 20, 23, 

41, 42], THUNDER [26-28, 43-47], and LIPCA [30, 32-33, 47] actuators have been 

investigated and reported in the literature. Both quasi-static and dynamic actuated responses 

with either low or high applied electric field have been studied. Of interest are the maximum 

 

 

Figure 1.12: Cross-Section of LIPCA-C1 or LIPCA-K Actuator 
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Figure 1.13: Cross-Section of LIPCA-C2 Actuator 

deflections, the ability to move a load, i.e., a dead weight in most experiments reported, and 

the so-called blocking force, i.e., the force necessary to restrain the deflection of an actuator 

when an electric field is applied. However, some investigators have not paid enough 

attention to the effects of the boundary conditions on the test actuators. A clamped or fixed 

boundary condition may suppress the anticlastic curvature of the actuators dramatically, 

change the apparent stiffness of the actuators, and alter the actuated responses in an 

unaccounted for way, depending on the details of the clamping fixture, clamped position on 

the actuator, and how hard the actuators are clamped.  Care also needs to be taken in the 

case of simply-supported boundary condition. This type of support has been simulated by 

using a knife edge, support jig, or a flat surface on which the actuator rests. Friction forces 

may be generated at points of contact at the supports and cause undesired effects on the 

actuated responses. Because of the variation in boundary conditions used in the laboratory to 

evaluate the performance of different actuators, it has been difficult to interpret and compare 

some of the reported results in the literature. Consequently, performance analyses of these 

newly-developed actuators with a range of boundary conditions should be carried out in 

order to evaluate actuator behavior due to a mechanical load and/or an applied electric field. 

The result would be specification of a set of boundary conditions which should then be used 

to design a standard performance test for actuators in order to obtain consistent experimental 

data and facilitate performance comparison among the actuators. 

Glass-epoxy layer 

PZT layer 

Carbon-epoxy layer 
Glass-epoxy layer 
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1.3.2 Previous Analysis and Mathematical Modeling 

 The modeling of round and rectangular RAINBOW actuators to determine the 

manufactured shapes and quasi-static-actuated shapes has been discussed by Jilani and Hyer 

[35-37], wherein RAINBOW actuators are modeled as a thin laminated plate subjected to a 

thermal load due to the manufacturing process and then are subjected to additive quasi-static 

electrical input. The energy-based Rayleigh-Ritz approach, which uses approximations to 

the three components of displacement, is employed to minimize the total potential energy of 

the actuator. Since the manufactured shape shows large out-of-plane deformation, the von 

Kármán assumption for nonlinear strain-displacement relations is utilized. All material 

properties are assumed to be uniform and independent of temperature. The actuation strains 

of the piezoelectric layer are assumed to vary linearly with applied electric field strength. 

Assumed displacement functions with 14, 35, and 81 unknown coefficients [37] are 

employed for round RAINBOW actuators. The analysis predicts that the manufactured 

shape would be dome-like or near-cylindrical. Which shape occurs is predicted to depend on 

the radius to total thickness ratio and also the thickness of the reduced layer relative to the 

unreduced layer. Additionally, for certain geometries for which the manufactured shape is 

near-cylindrical, there exists another possible near-cylindrical shape, i.e., multiple near-

cylindrical shapes. The actuator can be snapped back and forth between these two shapes by 

applying moments on its edges.   

 Manufactured shape comparisons between the Rayleigh-Ritz approach and 

finite-element modeling with the commercial code ABAQUS for round RAINBOW 

actuators are also made by Jilani and Hyer [35-37] to verify the Rayleigh-Ritz approach. It is 

concluded that the 14-term approximation is not sufficient enough to achieve accurate 

deformations, but the 35- and 81-term approximations are in good agreement with finite-

element results. The 35-term approximation is also used to predict actuated displacements, 

and they are found to vary almost linearly with applied voltage.  
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 For rectangular RAINBOW actuators, a four-term approximation using the 

Rayleigh-Ritz approach is applied [36]. It has been shown there is a critical value of the ratio 

of actuator length to thickness that determines whether the manufactured out-of-plane shape 

is dome-like or near-cylindrical. In addition, there is a critical value of the ratio of the 

reduced layer thickness to total thickness which determines which shape will occur. Also, 

snap-through behavior between multiple near-cylindrical shapes can be observed when a 

snapping moment is applied on the edges of the actuator. Assuming the piezoceramic strain 

response varies linearly with applied electric field strength, the actuated displacement is 

investigated and revealed to be very nearly linear with applied field strength, like the case of 

the round RAINBOW actuator. Nonetheless, Jilani [35] has pointed out that there are some 

discrepancies in the curvature vs. cooling temperature relation between the four-term 

approximation and finite-element analyses from ABAQUS. Firstly, with the four-term 

approximation, the curvatures are uniform along the length and across the width of the 

actuator, but the result from ABAQUS shows the curvatures vary with position. Secondly, 

the four-term solution predicts the existence of a pitchfork bifurcation in the curvature vs. 

temperature relation, resulting in two stable solutions and one unstable solution, the stable 

solutions being the two near-cylindrical shapes. The ABAQUS finite-element results show 

no evidence of a pitchfork bifurcation. Instead one of stable paths runs smoothly over the 

entire domain of cooling temperature and the other stable path abruptly appears at a 

temperature without a connection with the former stable path. However, in general, fairly 

good correlations can be observed between the two theories when ignoring the bifurcation 

point problem. The net result is that both approaches predict that the character of the out-of-

plane shape is dome-like or near-cylindrical, depending on the values of the above-

mentioned thickness parameters. 

  A rectangular THUNDER actuator has been modeled by Hyer and Jilani [38] by 

employing the same energy-based Rayleigh-Ritz with four-term approximation approach as 
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used for rectangular RAINBOW. The similar conclusion can be drawn from the analysis 

from which multiple solutions for the THUNDER actuator shape and snap-through 

phenomenon between the solutions are obtained due to the geometrical nonlinearity nature 

of the problem. Again, the same bifurcation point disagreement probably would apply here, 

but it was not specifically mentioned in the reference.  

  Analyses of LIPCA have been done by Yoon, et al [30-33]. Most of the analyses 

employ linear classical laminated plate theory to predict curvatures and residual stresses 

caused by the manufacturing process. Some analysis is conducted by using geometrically 

nonlinear finite-element plate modeling [31]. Actuator central deflection differences of 6-7% 

between linear and nonlinear laminated plate models are reported. However, it must be 

noted that the considered cases are beam-like structures and, therefore, the nonlinearity may 

not exhibit any significant influence, as it would with a plate-like structure. Furthermore, 

according to the deformation plots resulting from the finite-element analyses in [31], the 

actuators develop considerable out-of-plane deformations and observable anticlastic 

curvatures despite their beam-like configuration. These characteristics suggest the necessity 

of employing the geometrically nonlinear plate theory to predict manufactured shapes of a 

LIPCA actuator in order to disclose interesting behavior of the actuator, especially possible 

multiple equilibrium shapes, snap-through phenomenon between the shapes, and critical 

bifurcation or limit points. 

1.4 Objectives of This Research 

 

 In light of the literature review discussed above, it is clear that none of the 

mathematical models developed so far has been able to predict the manufactured shapes of 

these new unimorph-type rectangular actuators accurately. The manufactured-shape-

prediction model utilized by Yoon and coworkers may not able to capture accurate out-of-

plane deformations and residual thermal stresses for LIPCA actuators with other geometries 
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or with composite materials which require higher curing temperature because only a 

geometrically linear model has been presented. This is important since the cooled shapes 

and residual stresses can be keys to the behavior and performance of the actuators. The 

inclusion of geometric nonlinearities in the shape prediction of a THUNDER or RAINBOW 

rectangular actuator was considered by Hyer and Jilani. However, their Rayleigh-Ritz 

approach with a four-term displacement field approximation is too restrictive, especially 

because of the uniform curvature prediction and the prediction of bifurcation behavior that 

was not collaborated by finite-element analysis. Therefore, a more accurate model is 

warranted, and the development of such a model is one of the objectives here. Specifically, a 

more accurate Rayleigh-Ritz model is developed.  

 In addition, as mentioned, due to the inconsistency of the boundary conditions 

used by the investigators in the performance test of the actuators, a fair performance 

comparison among the actuators is difficult. Thus, by employing the to-be-developed 

mathematical model, the performance of different actuators with identical boundary 

condition can be predicted and compared. By studying the behavior and performance of the 

existing actuators in detail, an improvement of the actuators can then be proposed.  

 In summary, the objectives of this research are: 

(1) To develop a more representative model to predict manufactured and actuated shapes of 

the newly-developed rectangular laminated piezoelectric actuators, such as THUNDER and 

LIPCA actuators 

(2) To study the sensitivity of the cooled shapes and actuated deflections of existing actuator 

designs to material and geometric parameters 

(2) To study the sensitivity of the blocking forces of existing actuator designs to material 

and geometric parameters. 
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1.5 Road Map to Subsequent Chapters 

 

 The next chapter discusses the improved Rayleigh-Ritz model developed to 

capture the manufactured and actuated shapes of a rectangular laminated actuator. The 

model is based on a 23-term approximation rather than the 4-term approximation of the 

previous work. The section which describes the 23-term Rayleigh-Ritz model is divided into 

two parts. The first part is for THUNDER-type actuators, which are composed of layers of 

isotropic materials. The second part is for LIPCA-type actuators, for which some layers are 

made of composite materials. In each part, the total potential energy, including the linear 

stress-strain relations for isotropic or composite materials, von Kármán nonlinear strain-

displacement relations, and thermally-induced strain is formulated. The 23-term Rayleigh-

Ritz approximation to the displacement fields is presented. The approximation takes into 

account inplane shear strains and twisting curvatures. Equilibrium conditions are obtained 

by extremizing the total potential energy. Stability of the equilibrium conditions is evaluated 

by investigating the second variation of the total potential energy. A geometrically nonlinear 

finite-element model utilizing ABAQUS is also developed to compare with the 23-term 

Rayleigh-Ritz approach. The extensions of the Rayleigh-Ritz model to include a tab region 

of the steel layer which is used for attaching a THUNDER actuator to a structure are 

discussed. In addition, the total potential energy is extended by including piezoelectrically-

induced strains defined in Equation (1.3) into constitutive equations so as to predict the 

actuated shapes and displacement due to application of an electric field through the 

thickness of the piezoceramic layer. Finally, the inclusion in the total potential energy of 

mechanical work due to distributed edge moments and concentrated forces applied to 

actuators is put forward to characterize mechanical behavior and load-carrying capability of 

actuators.   

 In Chapter 3, numerical results for rectangular THUNDER actuator 

characteristics are presented. A THUNDER-type actuator is more preferably chosen to be a 
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calculation example rather than a RAINBOW actuator because of the variety of THUNDER 

actuators available in terms of size, geometry, and materials used, and their commercial 

availability, as illustrated in Figure 1.14, where the manufactured shape of actuators with a 

variety of shapes and sizes can be seen. In the Rayleigh-Ritz model the 23 equilibrium 

equations resulted from the first variation of the total potential energy developed in Chapter 

2 are solved to obtain THUNDER actuator equilibrium shapes. Stability of the shapes is 

determined by investigating eigenvalues of the Hessian matrix generated from the second 

variation. The shapes of THUNDER actuators as a function of temperature relative to the 

manufacturing temperature are predicted, simulating the cool-down process. Manufactured 

shapes as a function of actuator geometry are also predicted. Validation of the equilibrium 

shapes computed from the Rayleigh-Ritz model is performed by comparing with the  

 

 

Figure 1.14: Variety of THUNDER Available 

ABAQUS model. The snap-through phenomenon between two manufactured shapes of a 

THUNDER actuator is discussed. Additionally, the effects of tabs on actuator shapes are 

investigated. At the end of this chapter, free actuation responses and blocking forces of 
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THUNDER actuators, namely, actuator authority, are calculated from the modified total 

potential energy expressions formulated in Chapter 2. 

 Chapters 4 and 5 consider rectangular LIPCA-C1 and LIPCA-C2 actuators, 

respectively. Analogous to Chapter 3, deformation and force characteristics of LIPCA-type 

actuators are evaluated by employing the Rayleigh-Ritz model with incorporation of 

composite material layers in the total potential energy. Manufactured configurations of 

LIPCA-C1 and LIPCA-C2 actuators as a function of their geometry are computed and 

checked for stability. Authorities of the actuators, i.e., free actuation response and blocking 

forces are calculated. Comparison of similarities and differences of the characteristics 

among LIPCA-C1, LIPCA-C2, and THUNDER actuators is presented and discussed.  

 Finally, in Chapter 6, conclusions of this research work are summarized. 

Exploiting geometrically nonlinear effects, design guidelines for laminated piezoelectric 

actuators are hypothesized and proposed. Recommendations for possible future work are 

specified. 
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Chapter 2 

MODELING OF LAMINATED PIEZOELETRIC ACTUATORS:  

SHAPES, DEFORMATIONS, AND BLOCKING FORCES  

2.1 Introduction 

 

 In this chapter, a discussion of the energy-based Rayleigh-Ritz model for 

predicting the deformation characteristics, including the manufactured shape, of rectangular 

THUNDER-type and LIPCA-type actuators is presented. Discussed are the key 

assumptions, the constitutive relations, the strain-displacement relations, including 

geometric nonlinearities, total potential energy, and variational methods. A model to predict 

manufactured shapes of THUNDER actuators with tabs is formulated. Extensions of the 

Rayleigh-Ritz model to embrace piezoelectrically-induced deformations and work done by 

external mechanical forces and moments are elaborated upon. Finite-element modeling 

using the commercial package ABAQUS, version 6.3, in order to compare with the 

Rayleigh-Ritz approach is also developed. A presentation of strategy to obtain multi-

solutions in ABAQUS is given.  

2.2 Problem Statement and Model Definition 

 

 As presented in Chapter 1 and illustrated in Figures 1.10, 1.12, and 1.13, 

laminated actuators are composed of a layer of active layer and several passive layers, all 

bonded together. A THUNDER actuator is manufactured by bonding together a layer of 

piezoceramic material and layers of metal with a polyimide adhesive. In contrast, with 

composite layers in a LIPCA actuator, fabrication is simpler, as adhesive layers are not 
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necessary since the polymer matrix provides the bond to the piezoceramic layer. At the first 

stage of manufacturing process, the initial room-temperature shape of an unbonded actuator 

laminate is flat. Then, the entire laminate is heated to cure the adhesive or the polymer 

matrix. After the adhesive or the polymer has been cured, the actuator in the curing 

temperature environment remains flat. When the actuator is cooled, out-of-plane 

deformations of the actuator develop due to the thermo-elastic property mismatches between 

the layers. Figure 2.1 shows schematic diagram of a rectangular laminated actuator during 

the cooling process. Consider the rectangular laminated actuator situated in an − −x y z  

Cartesian coordinate system as illustrated in Figure 2.1(a). When flat at the curing 
temperature the laminate has inplane dimensions  by . The total thickness of the 

actuator is H. The total numbers of layers is assumed to be N, which is equal to 5, 4, and 5 in 

the case of THUNDER, LIPCA-C1, and LIPCA-C2 actuators, respectively. The electrode 

layers on the piezoceramic layers in the LIPCA-C1 and LIPCA-C2 actuators are not 

included in the analyses. The location 

xL yL

0=z  is the geometric midsurface, here taken to be 

the reference surface. The lower and upper boundaries of layer 1, or the bottom layer, are 

located at  and 0 / 2= = −z z H 1=z z , the boundaries of layer 2 at and , and in general, 

the boundaries of the layer at 

1z 2z
thk 1−kz and . Figure 2.2 shows a general laminated actuator 

with the notations defined above. 

kz

z 

xy 

H ∆Τ 

                        

 Figure 2.1: Initial and Cooled Shape and Coordinate System Used for Analysis 

Ly Lx

w 0

(b) Final shape after cooling (a) Initial shape before cooling 
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Figure 2.2: Laminated Actuator Notation 

 The actuator is cons ptions of 

classical laminated plate theory [39] are adopted. Foremost of these assumptions are: (1) a 

idered a small thin layered plate, so the assum

state of plane stress exists within each layer, and (2) the Kirchhoff hypothesis is valid. The 
plane-stress assumption allows the stress components ,σ z ,τ xz  and τ yz  to be set to zero in 

the problem formulation. The Kirchhoff hypothesis states that the displacements in the 

−x and directions vary linearly with the thickness c te, z, and the displacement in 

ent of any point within the thickness of the lami  can b  written in terms of the 

cem

−

the −z direction is independent of the thickness coordinate. The net result is that the 

displa ent of the reference surface and the 

y oordina

displacem nate e

−z coordinate of the point. Due to expected 

considerable out-of-plane deformation, ow , the von Kármán approximation to Green-St. 

Venant strain measures is applied. Addition r elastic isotropic temperature-

independent material properties are assumed for each layer, including the piezoceramic 

layer, and the temperature changes are considered to be uniform, i.e., independent of the 

spatial coordinates. 

ally, linea

Layer N 

Layer 2 
Layer 1 

z  = -0 H/2 
z1

z2 

zN-1

zN = +H/2 

z

H 

y 
x

Ly
Lx
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2.2.1 Total Potential Energy for THUNDER-type Actuators 

 Based upon the plane-stress assumption, as stated above, the total potential 

energy of a cooled THUNDER-type actutator, Π , may be written as 

 ( ) ( )( )2 2 2

2 2 2

1
2

σ σ ε σ σ ε τ γ
+ + +

− − −
Π = − + − +∫ ∫ ∫

LL yx H

LL yx H

T T
x x x y y y xy xy dxdydz  (2.1) 

where integration is over the volume of the actuator. The strains in the energy expression are 

given by the Kirchhoff hypothesis as 
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The quantities 0 ,ε x
0 ,ε y

0 ,γ xy  and 0 ,κ x
0 ,κ y

0κ xy  are the reference surface strains and curvatures, 

respectively. The reference surface quantities are functions of x and y. Including 

geometrically nonlinear effects, the reference surface strains are 
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where   and are the displacements of a point on reference surface in the x, y, and z 

directions, respectively.  It should be pointed out that the underlined terms represent the von 

Kármán approximation to the full nonlinear strain-displacement relations. For classical 

linear plate theory, the underlined terms are not included. The reference surface curvatures 

are given by 

0 ,u 0 ,v 0w
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For isotropic material behavior, the stress-strain relation for a given layer is 
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In the above 

 21 ν
=

−
EQ  and (1 )σ ν α= + ∆T Q T  (2.7) 

where E is the extensional modulus of the material and ν and α  are the Poisson ratio and 

the coefficient of thermal expansion, respectively. The temperature change due to cooldown 

is given by . The quantity ∆T σ T is primarily for notation but, physically, it is the 

hydrostatic-like stress induced in a fully restrained element of material subjected to 

temperature change . ∆T

 If Equation (2.2) is substituted into Equation (2.1) and the results integrated 

through the thickness of the actuator, the total potential energy becomes 
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In the above Ns and Ms are the force and moment resultants within the actuator and are 

given by 

 
( ) ( )

2

2

2

2

2

2

2

2

2

2

0 0 0 0

0 0 0 0

0 0

0 0 0 0

0 0 0 0

ˆ

ˆ

ˆ

ˆ

ν ν

ν ν

ν ν

ν ν

ν ν

σ ε ε κ κ

σ ε ε κ κ

τ γ κ

σ ε ε κ κ

σ ε ε κ κ

+

−

+

−

+

−

+

−

+

−

= = + + + − ∆

= = + + + − ∆

= = − + −

= = + + + −

= = + + + −

∫

∫

∫

∫

∫

H

H

H

H

H

H

H

H

H

H

T
x x x y x y

T
y y x y x y

xy xy xy xy

T
x x x y x y

y y x y x y

N dz A A B B N

N dz A A B B N

N dz A A B B

∆

T

T

M z dz B B D D M T

M z dz B B D D

( ) ( )2

2

0 0
ν ντ γ κ

+

−

∆

= = − + −∫
H

H

T

xy xy xy xy

M T

M z dz B B D D

 (2.9) 

The quantities ,A ,νA ,B ,νB ,D  and νD  are material properties that can be expressed in 

terms of the extensional modulus, Poisson ratio, and the interface locations of each layer as 
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where the subscripts k on the material properties merely identify the material properties with 

the kth layer. The quantities andˆ TN ˆ TM are also material properties that involve, additionally, 

the coefficients of thermal expansion of each layer and are given by 
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Physically, the As describe the inplane stiffnesses of the layered actuator and the Ds describe 

the bending stiffnesses. The Bs are unique to layered materials. They are called the bending-

stretching coupling terms, and they are also a measure of stiffness. The existence of the Bs is 

one of the keys to the layered actuator deforming out-of-plane as it is cooled from the 
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processing temperature. The quantity is the effective inplane force resultant due to a unit 

temperature change and

ˆ TN

ˆ TM is the effective bending moment resultant, another key to the 

temperature-induced out-of-plane deformations. 

2.2.2 Total Potential Energy for LIPCA-type Actuators 

 The total potential energy of a LIPCA-type actuator is somewhat different than 

that of a THUNDER-type actuator expressed in Equation (2.1). For composite materials, 

thermally-induced inplane shear effects are possible. Accordingly, using the Kirchhoff 

hypothesis of Equation (2.2), the total potential energy becomes 
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where, as before, using the von Kármán approximation of the geometric nonlinearities,                            
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and 

 

2 0
0

2

2 0
0

2

2 0
0 2

κ

κ

κ

∂
= −

∂
∂

= −
∂

∂
= −

∂ ∂

x

y

xy

w
x
w
y

w
x y

 (2.14) 

30 30



 

As before, all the strains, curvatures, and deformations in Equations (2.13) and (2.14) are 

defined at the midplane (reference plane) of the LIPCA actuator so they are not a function of 

the coordinate variable z.    

For composite materials, the plane-stress stress-strain relations for a given layer 

in the actuator coordinate system indicated in Figure 2.1 (a) are 
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In the above, the ijQ  are the transformed reduced stiffnesses and are defined by 
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where cos ,θ=m  sinθ=n , in which θ  is an angle between the actuator coordinate system 

and the fiber-direction of the composite material in the given layer. The  are the reduced 

stiffnesses and are functions of the engineering constants as follows: 

ijQ
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Here, 1E  and 2E  are inplane extensional modulus of the composite material in the fiber 

direction and transverse to the fiber direction, respectively. The property  is inplane 

shear modulus. In addition, 

12G

12ν  and 21ν  are major and minor Poisson’s ratios, respectively, 
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which are related through the well-known reciprocity relation. The thermal-induced stresses 
( ,σ T

x ,σ T
y τ T

xy ) in Equations (2.12) and (2.15) are defined as 
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where the pertinent coefficients of thermal deformation in the actuator coordinate system are 

given as 
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and 1α  and 2α are coefficients of thermal expansion of the composite material in the fiber 

direction and transverse to the fiber direction, respectively. 

Integrating through the thickness of the LIPCA actuator, the total potential 

energy becomes 

 ( )2 2

2 2

0 01 ˆ ˆ ˆ{( ) ( )
2

0ε ε γ
+ +

− −
Π = − ∆ + − ∆ + − ∆∫ ∫

LL yx

LL yx

T T T
x x x y y y xy xy xyN N T N N T N N T  (2.20) 

                     + 0 0ˆ ˆ ˆ( ) ( ) ( ) }κ κ κ− ∆ + − ∆ + − ∆T T T
x x x y y y xy xy xy

0M M T M M T M M T dxdy  

where the force and moment resultants expressed in Equation (2.20) are defined as 
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where 
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and 
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 (2.23) 

Since only  or  fiber angles are used in the composite layers, and the 

piezoceramic layer is assumed to be isotropic in the LIPCA actuators, 

0° 90°

16 ,A 26 ,A 16 ,B 26 ,B  

and 16 ,D 26 ,D ˆ ,T
xyN ˆ T

xyM  are zero. Also, it should be noted that Equations (2.12)-(2.23) can be 

simplified to become Equation (2.1)-(2.11) when all layers in the actuator are assumed to be 

isotropic materials, like the case of a THUNDER-type actuator. 

2.2.3 Total Potential Energy for THUNDER-Type Actuators with Tabs 

 The formulations of the total potential energy discussed in Sections 2.2.1 and 

2.2.2 are for the laminated actuators neglecting the existence of tabs because all the layers 

are assumed to have the same inplane dimensions Lx by Ly. Generally, tabs are included in 

the construction of an actuator by making some or all of the passive layers longer than the 

piezoceramic layer, as can be noticed in Figures 1.9 and 1.14, and 1.11 for THUNDER and 

LIPCA actuators, respectively. The extra length extends outward beyond two opposite edges 

of the piezoceramic and the other passive layers, and holes or slots are then machined in the 
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extensions for accepting small screws or other mechanical fasteners for attaching the 

actuator to a base or structure. Shown in Figure 2.3 are schematic diagrams of a THUNDER 

actuator with tabs on the x-edges before being cooled to room temperature. Here it will be 

assumed that the steel layer is 20% longer in the x-direction than the piezoceramic and 

aluminum layers. The notation Lx denotes the length of the piezoceramic and aluminum 

layers, i.e., the active portion of the actuator, and denotes the length of the tab on each 

edge of the actuator. Referring to Figure 2.3, there is thus a 10% additional length beyond x 

= +L

t
xL

x/2 and 10% beyond x = 2− xL . 

 To calculate manufactured shapes of THUNDER actuators with tabs, the total 

potential energy in Equation (2.8) is modified in order to take into account the tab regions.  

z 

xy 
Tab 

t
xL  

LxLy
t
xL  

 

Figure 2.3: THUNDER Actuator with Tabs    

x 

Lx

Top layer 

t
xL  

H1 
H 

Backbone layer 

Adhesive 
PZT layer 

(a) Initial Shape of THUNDER Actuator with Tabs 

(b) Cross Section of THUNDER Actuator with Tabs 
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The additional strain energy associated with the tabs on both ends of the actuator can be 

expressed as  

 ( ) ( )( )122 2

22 2

σ σ ε σ σ ε τ γ
+ + +

+ −

− +

−
= − + − +∫ ∫ ∫

LL ytx HL Hx

LL yx H

T T
t x x x y y y xyU dxy xdydz  (2.24) 

 All stresses defined in Equation (2.24) are stresses in the backbone layer, which is stainless 

steel in this case. Note that there is no factor of ½ in front of the integral sign due to its 

cancellation with the factor of two from doubling the strain energy from just one tab. 

Consequently, the modified total potential energy including the strain energy of the tabs is 

written as  

  2 2

2 2

0 01 ˆ ˆ{( ) ( )
2

0ε ε
+ +

− −
Π = − ∆ + − ∆ +∫ ∫

LL yx

LL yx

T T
x x y y xy xyN N T N N T N γ  (2.25) 

                              + 0 0 0ˆ ˆ( ) ( ) }κ κ κ− ∆ + − ∆ + +T T
x x y y xy xy tM M T M M T M dxdy U  

 Before closure of this section, it should be noted here that all total potential 

energy expressions developed in this dissertation except Equation (2.25) do not consider the 

existence of tabs. It is believed that contrary to some designs that include rather lengthy tabs, 

for small actuators, alternative fastening techniques, such as bonding, are applicable since 

the force levels are not large. Tabs add weight to the actuator and represent a region of the 

actuator that contributes nothing to the actuation capability. 

2.2.4 The Rayleigh-Ritz Approach 

After formulating the total potential energy of a cooled laminated actuator, 

approximate solutions of this problem can be obtained by employing the Rayleigh-Ritz 

approach. This is done by approximating the reference surface displacement fields in the 

forms of linear combinations of known functions multiplied by unkown coefficients, which 

are solved for by extremizing the total potential energy with respect to these coefficients. 

Based on the observed shapes of real actuators (see Figure 1.14) and extending the previous 

analysis conducted by Jilani and Hyer [35, 36], the displacement fields are approximated as 
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  (2.26) 
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u x y c x c x c xy c x c x y c xy c x

v x y c y c y c x y c y c x y c x y c y

6

There are 23 unknown coefficients in the above equations. The first two terms for ( )0 ,w x y  

and the first terms for and  represent the linear solution to the problem, 

which can be determined in closed form, as shown in Appendix A. The higher powers of x 

and y represent deviations from the linear solution. Additionally, it should be noted that the 
polynomials used for are a linear combination of monomial even functions of x and 

y complete to order six, whereas the polynomials used for ( ) are linear 

combinations of monomial odd functions of x (y) and even functions of y (x) complete to 

order five. The assumed functions are intuitively selected by considering the symmetry and 

antisymmetry of the various components of the deformations with respect to x- and y- axes 

(see Figure 2.1). The orders of the polynomials for  and are systematically chosen 

by examining the convergence of unknown coefficients after extremizing the total potential 

energy. The validation of these assumed deformation fields will be shown later when 

comparing with the finite-element analyses from ABAQUS. 

0 ( , )u x y 0 ( , )v x y

(0 ,w x y)
0 ( , )u x y 0 ( , )v x y

0 ,u 0 ,v 0w

 To proceed, the expressions for the three components of displacement are 

substituted into the strain and curvature expressions of Equations (2.3) and (2.4), and these 

in turn, are substituted into the expressions for the force and moment resultants, Equation 

(2.9). All of these results are then substituted into the expression for the total potential 

energy, Equation (2.8). Integration with respect to x and y can be carried out explicitly, The 

final result is an algebraic expression for the total potential energy that is a function of the 

material properties, the geometric dimensions of the actuator and, of course, the 23 unknown 

coefficients. 

 At this point, the actuator, which was initially described as a continuous 

laminated plate, is discretized into a lumped system with 23 degrees of freedom governing 

the shape. The total potential energy of this lumped system needs to be extremized in order 
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to obtain the equilibrium shape of the actuator, or, in the other words, to solve for the 23 

unknown coefficients. The extremization is accomplished by taking the first variation of the 

total potential energy with respect to each unknown coefficient, as indicated below: 

 1 2 22
1 2 22 23

23δ δ δ δ δ∂Π ∂Π ∂Π ∂Π
Π = + + + +

∂ ∂ ∂ ∂
…c c c

c c c c
c

23

 (2.27) 

                                       
1 2 22 231 2 22δ δ δ= + + + +…c c c c δf c f c f c f c  

As the first variation must be zero for equilibrium, the result leads to 23 nonlinear algebraic 

equations for the 23 unknowns . These equations are of the form 1,c 2 , ,c … 22 ,c 23c

      
1

0=cf 2
0=cf  …   

22
0=cf     

23
0=cf       (2. 28) 

They can be solved and numerical results obtained for specific values of material and 

geometric parameters with the aid of Mathematica™ [40]. 

 The second variation of the total potential energy also must be examined in 

order to evaluate stability of the equilibrium shapes found above. The second variation can 

be written as 

 { } [ ]{ }2δ Π = Tq C q         (2.29) 

where 

 { } { }1 2 22 23δ δ δ δ= …Tq c c c c                                 (2.30) 

and the matrix [ ]C is called Hessian matrix given by 

 [ ]

1 1 1 1

2 2 2 2

22 22 22 22

23 23 23 23

1 2 22 23

1 2 22 23

1 2 22 23

1 2 22 23

∂ ∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂
⎢ ⎥

∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥=
⎢ ⎥
∂ ∂ ∂ ∂⎢ ⎥

⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂
⎢ ⎥

∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

"

"

# # % # #

"

"

c c c c

c c c c

c c c c

c c c c

f f f
c c c c

f

f f f
c c c c

C

f

f f f
c c c c

f

f f f
c c c c

f

 (2.31) 
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The equilibrium shape is stable if and only if 2δ Π  is positive for every vector { },q or 

equivalently, the Hessian matrix is positive definite. The shape is unstable if 2δ Π  is 

negative for any vector { },q or the Hessian matrix is not positive definite. (It is not 

necessary for it to be negative definite.) In this analysis, the positive definiteness of matrix 

[ ]C  is examined by calculating its eigenvalues. If all eigenvalues are positive, [ ]C  is 

positive definite and the equilibrium solution is stable, otherwise if any eigenvalue is zero, 

[ ]C is semi-positive definite and the equilibrium solution is critical, or if any eigenvalue is 

negative, the equilibrium solution is unstable. 

2.3 Modeling Extension to Include Application of Electric Field 

 

 The strain response of a piezoelectric material when an electric field is applied 

can be quite complicated. In the case of a high applied quasi-static electric field relative to 

the coercive field, the motion of Weiss domain boundaries (domain walls) and 

electrostrictive effects, i.e., electrostrictive strain is proportional to the square of electric 

field, can be significant. Thus, the relationship between piezoelectrically-induced strains and 

an applied electric field may not be linear. Also, there is the potential for interaction between 

the state of stress in the piezoelectric material and electric field effects. Furthermore, the 

presence of the electric field can change the elastic properties of the piezoelectric material, 

the so-called ferroelastic effect. If the electric field is periodic in time, the response can be 

frequency dependent, and include hysteresis.  However, to gain physical insight into the 

change in curvature caused by activating the piezoceramic layer with an electric field 

through its thickness, the linear converse piezoelectric effect in Equation (1.3) is assumed 

and employed in the following model regardless of the magnitude and rate of change with 

time of the applied electric field. 
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2.3.1 Total Potential Energy 

 The extension of the energy-based Rayleigh-Ritz model to include the 

piezoelectric effect is analogous to the model for the dilatational strains produced by a 

temperature change in isotropic materials, an effect modeled in Section 2.2. Therefore, 

piezoelectric effects can be added to the effects of a temperature change. The plane-stress 

stress-strain relations for a THUNDER-type actuator, which were given in Equation 2.5, are 

modified as follows: 
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or  
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T
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Q Q
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Q
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where 

  (2.34) 31 3(1 )E Qd Eσ ν= +

In the above,  is the transverse piezoelectric coefficient of the piezoceramic material and 

 is the dilatational strain in the x- and y-directions produced by the electric field  in 

the z-direction. It is assumed the piezoelectric effect is the same in the x- and y-directions. 

The similarities between dilatational strains due to a temperature change and converse 

piezoelectric effect in Equations (2.32) and (2.33) are obvious.  

31d

31 3d E 3E

 Substitution of the stress-strain relations in Equation (2.33) into the total 

potential energy expression of Equation (2.32) and again integrating through the thickness 

results in the following terms being appended to the integrand of the total potential energy 

expression of Equation (2.8):   
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By the form of these terms, it is obvious that they should be inserted, with a minus sign, next 

to  and ˆ TN T∆ ˆ TM T∆  in Equation (2.8). Certainly the only layer contributing to the 

summations in the above expressions is the piezoceramic layer. 

 For LIPCA-type actuators, the extension of the total potential energy to include 

the converse piezoelectric effect is analogous to that of THUNDER-type actuators. The 

effects of the dilatational piezoelectrically-induced strains produced by an electric field need 

to be included in the constitutive equation of Equation (2.15). Thus, the modified stress-

strain relations for a given layer in a LIPCA actuator is written as 
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where ,E
xσ ,E

yσ  and E
xyτ  are piezoelectrically-induced stresses, which are related to the 

piezoelectrically-induced strains as follows: 
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 (2.38) 

Again, it is assumed the piezoelectric effect is the same in the x- and y-directions.  
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Including Equation (2.38) in Equation (2.12) in the same manner as the 

thermally-induced strains were included results in effective piezoelectrical inplane force and 

moment resultants, which are expressed as 
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 (2.39) 

These effective force and moment resultants, with a minus sign, are appended the integrand 

of the total potential energy expression of Equation (2.20) adjacent to the effective force and 

moment resultants caused by thermal effect from cooling process. As stated above, the only 

layer contributing to the summations in Equation (2.39) is the piezoceramic layer. 

2.3.2 The Rayleigh-Ritz Approach 

 To determine the predicted deformations caused by the electric field, the same 

23-term approximation to the displacement fields given in Equation (2.26) is used in the 

appended total potential energy expression and 23 simultaneous nonlinear algebraic 

equations result. The forcing terms now include the additive effects of temperature change 

and electric field, and the solution for the coefficients  reflect the totality of 

the effects. 

1,c 2 , ,c … 22 ,c 23c
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2.4 Modeling Extension to Include Mechanical Moments and Forces  

 

 When in use, besides being subjected to an application of electric field, an 

actuator can be subjected to an applied mechanical load, i.e., a bending moment and/or 

force. The associated deformations and stresses developed due to the simultaneously applied 

electric field and mechanical load could be catastrophic and stop the actuator from 

functioning. Therefore, it is necessary to be able to predict the deformations and stresses 

under the action of loads in order to be able to analyze the operational range and eventually 

design a suitable actuator for a specific working condition. Again, the Rayleigh-Ritz model 

can be implemented to investigate these issues by including an additional term representing 

the work done by the applied moment and force.  

2.4.1 Total Potential Energy 

 The work term caused by the moments, WM, as illustrated in Figure 2.4, can be 

written as  
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where s
xM  is the uniform moment applied along the edges x = +Lx/2 and x = -Lx/2, and s

yM  

the uniform moment applied along the edges y = +Ly/2 and y = -Ly/2. The minus signs in 

front of the out-of-plane deflection gradients evaluated at the positive x- and y-edges 

indicate that the positive applied moments illustrated in Figure 2.4 cause the negative 

rotations on the corresponding edges. On the contrary, the minus signs are not required for 

the out-of-plane deflection gradients evaluated at the negative x- and y-edges because the 

positive applied moments cause the positive rotations on these edges. For equilibrium, the  
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Figure 2.4: Actuator Subjected to Positive Edge Moments  

moments applied on the positive edges are equal in magnitude to the ones applied on the 

negative edges. 

 The work done by forces applied to the actuator can be formulated similarly to 

Equation (2.40). As an example and as a way to further determine the force-carrying 

capability of the actuator based on the already-developed Rayleigh-Ritz model in Sections 

2.2.1 and 2.2.2, the force application schematic is illustrated in Figure 2.5. It is assumed that 

the actuator is supported in the center, as shown. Hence, the corresponding work done can 

be expressed as 
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Figure 2.5: Actuator Subjected to Concentrated Forces   
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where u is the x-direction deformation at a point in the actuator where the load is applied and 

is defined as 

 
0

0 ∂
= −

∂
wu u z
x

  (2.42)  

It should be noted that the u displacement is evaluated at z = -H/2, i.e., the lower surface of 

the actuator, as that is most likely where contact with the edge of the actuator would be 

made, especially for force P.  

 Thus, the modified total potential energy for THUNDER actuators subjected to 

applications of an electric field and the mechanical loads is   
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Likewise, the modified total potential energy for LIPCA actuators is written as 
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2.4.2 The Rayleigh-Ritz Approach 

 Overall deformation shapes and the associated inplane stresses can be evaluated 

by employing the Rayleigh-Ritz approach with the same 23-term approximate displacement 

field as presented in Section 2.2.4, namely Equation (2.26) The forcing terms in this case 

include the temperature change effect, piezoelectric effect, and mechanical load effect.  

 This modeling extension can be used to further characterize the physical 

behavior and performance of the actuator. For instance, if there exist multiple manufactured 

shapes of the actuator due to geometrically nonlinear effects, the magnitude and direction of 

the edge moments that can be applied to snap the actuator from one shape to another shape 
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can be investigated. Additionally, blocking forces of the actuator can be determined by using 

the total potential energy of Equation (2.44) and by implementing the Rayleigh-Ritz 

approach with a supplementary algorithm. This algorithm will be discussed in the next 

section.  

2.4.3 Blocking Force Calculation  

 As discussed in Section 1.3.1, a blocking force is another measure of 

performance of laminated actuators. In practice, a blocking force is measured by using a 

force load cell or force sensor. The load cell is held unmovable and its probe is bonded to a 

point of an actuator so the point is fixed in the direction of the probe alignment, regardless 

of the electric field strength applied to the actuator. Normally, the desired point is selected at 

the region where the deflection of the actuators is maximal in order to obtain strong output 

signal from the probe. Thus, based on the extended model developed in Section 2.4.1 and 

illustrated in Figure 2.5, forces P, or P and R, can be used to represent blocking forces of the 

actuator, since the maximum deflection occurs on the x-edge. If the subscript ‘bl’ denotes 

blocking force, then Pbl is the force P evaluated in such a way that when the actuator is 

subjected to an electric field there is no motion in the z-direction (no w0) at the point of the 

applied force relative to no-field configuration. Similarly, forces Pbl and Rbl are the forces P 

and R evaluated in such a way that there is no motion in both the z- and x-directions (no w0 

and u, respectively). Viewing differently, Pbl or Pbl and Rbl are equivalent to the forces 

generated at the supports of the actuator as pinned-roller or pinned-pinned support 

conditions, respectively, when the actuator is clamped at the central point and subjected to 

an electric field, as illustrated in Figure 2.6.  

 Obviously, the approximate displacement field of Equation (2.26) cannot be 

used directly to represent the kinematics of the pinned-roller and pinned-pinned cases. 

Furthermore, with the variational approach, the determination of the forces at the location of 

the kinematic constraints is not straightforward. However, considerable expenditure of time 
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and effort were devoted to developing computational schemes based on the approximate 

displacement field of Equation (2.26). Thus, this displacement field was used as the basis to 

compute the blocking forces associated with the pinned-roller and pinned-pinned cases of 

Figure 2.6 as follows:  

 To calculate the blocking force for a pinned-roller support case by using the 

displacement field of Equation (2.26), Pbl is the vertical force applied at the support position 
( ) (( , , 2,0, 2= ± −xx y z L H ))  such that the relative deformation at that position due to 

the force and electric field strength E cancels the relative deformation resulting from only 

the applied electric field strength E. (It is now clear why in previous equations contact was 

assumed to occur at z = -H/2, the bottom surface of the actuator.) Consequently, an 

additional iterative algorithm can be created to directly solve for P

0w

0w

bl, as shown in the 

flowchart in Figure 2.7, by employing the following algebraic equation; 

z 
y x

 

Figure 2.6: Equivalence between Mathematical and Physical Models   

(a) Pinned-Roller

Pbl

Pbl

Pbl

Rbl

Rbl

Pbl(b) Pinned-Pinned
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( ) ( ) 1, 2,0= +

0
2∆ = +

xx y L
w a P a  (2.45) 

where 
( ) (

0

, 2= +
∆

xx y L
w

),0
 is relative deformation at 0w ( ) ( ), = + xx y L 2,0 due to the force P 

and electric field strength E. In terms of a mathematical expression, 

 
( ) ( )

( )
( ) ( )

( )
( ) (

0 0 0
3 3, 2,0 , 2,0 , 2

, 0 0, 0
= + = + = +

∆ = = ≠ − = =
x xx y L x y L x y L

w w E E P w E P
),0x

Figure 2.7: Flowchart of Pbl Calculation   
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∆
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Constants a1 and a2 are blocking force-deflection param  pinned-roller case, and 

they are determined and updated in each iteration used to determine the value of Pbl. As 

eters for the

shown in Figure 2.7, the computation starts with speculating two possible blocking force 

values and substituting them each into Equation (2.46). This results in two values of 

( ) ( )
0

= +
∆ w and the associated two values of P, which in turn are each substituted in 

 to give two algebraic equations in a

, 2,0xx y L

Equation (2.45)
parameters a1 and a2 can be evaluated. Then, setting 

1 and a2. With two algebraic equations, 

( ) ( )
0

of P, which is now P

, 2,0= +
∆

xx y L
w equal to zero, the value 

 However, the 

be accurate, since the parameters a1 and a2 are obtained from the two initially speculated 

bl bl

bl

bl 

bl

bl 

bl, can be calculated from (2.45). calculated Pbl might not 

forces P. Therefore, iterations need to be conducted to obtain a more accurate estimate of 

P . To do so, another speculated value of P, in addition to the just-calculated value, P , can 

be used. The new speculated P can be more systematically chosen based on the first P  

value obtained. For example, a value of P just 10% difference from the P value first 

calculated could be used as the new speculated P. Then, the same calculations could be 

repeated and as a result, a more accurate value of P  is acquired. Iteration will continue until 

the value of P converges and approximately satisfies       

 ( ) ( )
( ) ( )

0 0
3 3, 0, 0⎡ ⎤

, 2,0
0

= +
= = =

xx y L
 (2.47) 

Likewise, blocking forces Pbl and Rbl for the pinned-p

computed by implementing another iterative algorithm, of which flowchart is illustrated in 

Figure 2.8. Note that rather th

− = =⎣ ⎦blw E E P P w E P

inned case can be 

an checking only relative out-of-plane deformation, as done in 

the pinned-roller case, both relative inplane and out-of-plane deformations need to be taken 

into consideration simultaneously in this case. Therefore, analogous to Equation (2.45), the 

assumed linear relations between the two relative deformations and forces P and R are  

 
( ) 1 2 3, ) ( 2,0= +

∆ = + +
xx y L

w b P b R b  (2.48) 0
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Figure 2.8: Flowchart of Pbl and Rbl Calculation   
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as well as 

 ( ) ( ) 4 5, , 2,0, 2= + −
∆ = +

xx y z L H
u b P b R b6+  (2.49) 

where 
( ) (

0

, = +
∆

xx y L
w

)2,0
 has been defined already in Equation (2.46) and ( ) ( ), , 2,0, 2= + −

∆
xx y z L H

u  

is relative deformation u at ( ) ( ), , 2,0, 2= + −xx y z L H due to the forces P and R and 

electric field strength E. In terms of a mathematical expression, 

  ( ) ( ) ( ) ( ) ( )3, , 2,0, 2 , , 2,0, 2
, 0, 0

= + − = + −
∆ = = ≠ ≠

x xx y z L H x y z L H
u u E E P R  

                                    ( ) ( ) (3 , , 2,0, 2
0, 0, 0

= + −
− = = =

xx y z L H
u E P R

)
              (2.50) 

constants b1, b2, …, b6 are blocking force-deflection parameters for pinned-pinned case, and 

they are determined and updated in each iteration. According to Figure 2.8, three pairs of 

forces P and R are guessed initially. Then, the relative deformations in Equations (2.46) and 

(2.50) can be computed. Utilizing Equations (2.48) and (2.49), this results in six algebraic 

equations with six unknown blocking force-deflection parameters; thus b1, b2, …, b6 can be 

solved for. Because of the definition of blocking forces previously stated, the relative 

deformations are set to be zero, and thus Pbl and Rbl can be calculated from Equations (2.48) 

and (2.49). However, since the blocking force-deflection parameters are obtained from the 

speculated forces P and R, the accuracy of the acquired Pbl and Rbl may not be desirable. 

Therefore, the computational iteration indicated in Figure 2.8 is necessary. Two more pairs 

of speculated forces P and R besides the pair of Pbl and Rbl just calculated are required to 

repeat the computation. Again, values of the new forces P and R could be assumed to be 

within 10% difference from the value of Pbl and Rbl just obtained. Until the blocking forces 

converge to desired accuracy level and approximately satisfy Equations (2.47) and a similar 

equation for u, namely  

 ( ) ( )
( ) ( )3 3 , , 2,0, 2

, , 0, 0, 0 0
= + −

⎡ ⎤= = = − = = = =⎣ ⎦
x

bl bl x y z L H
u E E P P R R u E P R  (2.51) 

more iterations are necessary. 
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 It should be noted here that the blocking forces Pbl, or Pbl and Rbl, represent 

concentrated forces generated at the pinned-roller or pinned-pinned supports, respectively. 

As stated earlier, the supports are in contact with the actuator on the bottom surface at a 

midpoint of its two opposite edges. Therefore, z = -H/2 is used. Although these supports 

appear simple, they can be difficult to incorporate into a real experiment. However, there are 

two important reasons for considering these cases: (1) the physical interaction of the 

supports with the actuator is easy to understand and incorporate to the Rayleigh-Ritz model, 

and the cases provide valuable information regarding the actuator characteristics; (2) the 

supports considered here do not interfere with or distort the manufactured shapes of the 

actuator, since they act at points. This is not the case for clamped supports with a flat 

clamping fixture. A flat clamping fixture will suppress the anticlastic curvature of the 

actuators which develops during the cooling process. This will adversely affect the overall 

characteristics of the actuators when subjected to applications of electric field and 

mechanical loads.   

2.5 Finite-element Modeling 

2.5.1 Modeling of Manufactured Shapes 

 As a comparison to the Rayleigh-Ritz approach, the commercial code 

ABAQUS, version 6.3, is employed to conduct finite-element modeling of the actuator 

cooling process. For each finite-element analysis, nine-node shell elements (S9R5), which 

impose the Kirchhoff assumptions numerically in the element, are used. A S9R5 element 

provides for arbitrarily large rotation but only small strains. The composite shell section 

option in the code is utilized so as to be able to define the laminated materials and their 

physical properties. All nodes are situated on the element reference surface, which by 

default in ABAQUS is the midplane of the laminate. The actuator is assumed to be free on 

the four edges. However, due to the lines of symmetry about x- and y-axes, only one-quarter  
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Figure 2.9: Finite-Element Model of a Quarter of Actuator 

of the actuator is modeled, as shown in Figure 2.3. The geometric center of the actuator, 

which is located at the origin of the coordinate axes, is additionally fixed in the z-direction to 

revent a rigid body translation along the z-axis. The boundary conditions specified at the 

nodes along the symmetric planes x = 0 and y = 0 are 0 0=u and 0 0,∂ ∂ =w x  and 0 0=v and 
0 0,∂ ∂ =w y  respectively. A constant temperature change is applied at every node. The 

geometrically nonlinear algorithm NLGEOM is used to capture the geometrically nonlinear 

behavior of the actuator due to large out-of-plane deformations. Displacements and 

curvatures of the actuator are computed by ABAQUS at every node. Stresses are obtained at 

integration points through-the-thickness of each layer. Force and moment resultants defined 

in the integral definitions of Equation (2.9) are also obtained at the integration points within 

the elements on the reference surface. 

 It must be stated that the finite-element analysis of the actuator will always 

converge to only one equilibrium solution at any particular geometry and cooling 

temperature. Multiple equilibrium shapes have never been revealed with the normal analysis 

procedure. Jilani [35] has proposed a method to acquire other stable equilibrium solutions, if 

they exist, by introducing a slight imperfection in the initial shape of the actuator. Thus, 

Ly/2 

Symmetry boundary  
conditions about x = 0 plane 

Symmetry boundary  
conditions about y = 0 plane 

x z 

Free edge
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according to [35], to obtain multiple stable equilibrium shapes, two series of finite-element 

calculations have to be conducted. However, Jilani could not find a way to obtain the 

unstable equilibrium solution from ABAQUS. Thus, Jilani could not verify some of the 

results obtained with the four-term Rayleigh-Ritz solution regarding the existence of 

bifurcation points and unstable solutions. In the present study, a method to obtain multiple 

equilibrium solutions from ABAQUS, including both stable and unstable configurations, is 

developed as follows: To coax ABAQUS to the other equilibrium shapes, the ABAQUS 

computation process needs to be divided into two steps. Initially, the out-of-plane 

deformations due to cooling are evaluated by the 23-term Rayleigh-Ritz approach. Then, in 

the first step in ABAQUS, each node is forced to deform out-of-plane the same amount as 

the deformations obtained from Rayleigh-Ritz approach, and the inplane deformations 

throughout the actuator are solved for. Therefore, at the end of this step, the deformation 

state of the actuator will approximate the cooled equilibrium state that will eventually be 

obtained from ABAQUS. In the second step, which occurs in ABAQUS right after the first 

step is complete, the out-of-plane deformation restraint is released from the already-

deformed actuator, and the change in temperature representing the cooling process is applied 

to the actuator. Consequently, the analysis will readily converge to the desired equilibrium 

shape because of the similarity of the initial and final configurations within the second step. 

In the case of convergence to unstable equilibrium shapes occurring, ABAQUS will give a 

warning message that at least one negative eigenvalue of the tangent stiffness matrix of the 

problem is encountered.   

2.5.2 Modeling of Manufactured Shapes with Tabs Inclusion

 The ABAQUS models previously discussed are also modified to include the tabs 

in the analysis. The additional mesh for the tab region is generated in a one-quarter actuator 

model in ABAQUS. However, care must be taken regarding the midplane and reference 

surface of the tab, since ABAQUS will automatically use the midplane of the tab portion as 
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the reference plane, so in the finite-element model the tab would erroneously not be a part of 

the backbone layer of the actuator, but instead would be attached to the PZT layer and share 

the nodes along the x = Lx/2 edge with the actuator active portion. To correct this, the offset 

option in ABAQUS is used to translate the tab portion in the z-direction so the midplane of 

the tab coincides with the midplane of the backbone layer, yet the reference surface of the 

tab remains the same as the reference surface of the active portion of the actuator.  

2.5.3 Modeling of Actuated Shapes 

 Besides the ABAQUS models developed in the previous section in order to 

compare manufactured shapes of an actuator with the 23-term Rayleigh-Ritz model, a 

comparison of actuated shapes is sometimes required to ensure the validity of the extended 

Rayleigh-Ritz model presented in Section 2.3. However, ABAQUS version 6.3 does not 

provide a shell element with the inclusion of piezoelectric effects in its constitutive laws; it 

only has a three-dimensional element (a so-called brick element) that possesses 

piezoelectricity properties. Even though the brick element is more powerful and accurate in 

modeling the behavior of a piezoelectric material, it consumes considerable computational 

memory and time, especially for geometrically nonlinear large-scale problems. Thus, to 

avoid these undesirable issues and still keep the finite-element model simple and 

meaningful, the thermally-induced expansion (or contraction) analogy to the converse 

piezoelectric effects, as seen in Section 2.3, is employed to predict actuated shapes of the 

actuator. More specifically, the induced dilatational strains caused by a temperature change 

( ), which is denoted by ∆T ,ε T and an electric field applied in the z-direction (E3), which is 

denoted by ,ε E  in the piezoceramic layer are expressed as 

 ε α= ∆T T  (2.52) 

and  

  (2.53) 31 3ε =E d E
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 Thus, the thermally-induced strain analogy to the combination of these two strains can be 

written as 

 ( ) 31 3α α∆ = ∆ +a aT T d E  (2.54) 

where αa is the analogous coefficient of thermal expansion, and ∆  the analogous 

temperature change. If it is assumed in the finite-element model that the analogous 

temperature change of the actuator is the same as the actual temperature change, i.e., 

, the analogous coefficient of thermal expansion is expressed as 

aT

∆ = ∆aT T

 31 3α α= +
∆a

d E
T

 (2.55) 

As a result, actuated shapes of the actuator can be predicted using the same ABAQUS model 

presented in Section 2.5.1 by altering the actual thermal coefficient of expansion of the 

piezoceramic layer to be the analogous coefficient of thermal expansion in Equation (2.55). 

No other modeling changes are necessary.  

2.6 Chapter Summary 

 

 In this chapter, a Rayleigh-Ritz model for predicting the room-temperature 

shapes of rectangular THUNDER-type and LIPCA-type actuators without tabs has been 

developed. The assumptions adopted to develop the model, the expression for the total 

potential energy, including thermally-induced strain effects, the constitutive equations, the 

strain-displacement relations with the inclusion of geometrical nonlinearities, the 

approximate displacement fields, equilibrium, and stability were discussed. An extension of 

the Rayleigh-Ritz model to predict the manufactured shapes of THUNDER-type actuators 

with tabs has also been established by adding the strain energy contributed from the tabs to 

the total potential energy of the no-tab case. Additionally, the Rayleigh-Ritz model is 

modified to include (1) the piezoelectric actuation and (2) mechanical loads. Subsequently, 
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the modified models can be used to investigate performances and characteristics of the 

actuators such as free actuation response and load-carrying capability. Blocking forces of the 

actuators with pinned-roller or pinned-pinned supports can also be determined by utilizing 

the latter modified model with the supplementary algorithm that relates actuator 

deformations at the support position to forces applied at the same positions but with the  

supports removed. Besides the Rayleigh-Ritz model and its derivatives, a finite-element 

modeling using thin shell elements in ABAQUS version 6.3 is also developed to predict 

manufactured shapes as a comparison. A thermal analogy to the converse piezoelectric 

effect is utilized in the ABAQUS models to further predict the actuated shapes of the 

actuators by only altering the thermal expansion coefficient of the piezoelectric layer.  

 In the next chapter, numerical results for deformation and force characteristics 

of THUNDER-type actuators are presented. Cooled shapes of THUNDER actuators will be 

predicted as functions of actuator geometry and cooling temperature relative to the curing 

temperature. All equilibrium configurations within the parametric range of interest are found 

by employing the Rayleigh-Ritz model developed in this chapter. Stability of the 

configurations found is determined. Validity of the Rayleigh-Ritz model used to predict the 

cooled shapes will be compared with the ABAQUS model. Additionally, effects of tabs on 

manufactured shapes of THUNDER actuators will be considered. Performances of 

THUNDER actuators will be investigated, i.e., free actuation responses and blocking forces. 

Dependency of the performances evaluated on the actuator geometries and applied electric 

fields will be examined. 
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Chapter 3 

NUMERICAL RESULTS OF THUNDER CHARACTERISTICS  

3.1 Introduction 

 

 This chapter presents shape predictions of rectangular THUNDER actuators by 

employing the energy-based Rayleigh-Ritz approach discussed in Chapter 2. The cooled 

shapes of the actuators are calculated as functions of temperature decrement relative to the 

curing temperature of the polyimide adhesive and their sidelength-to-thickness ratio. Finite-

element modeling using the commercial package ABAQUS, version 6.3, in order to provide 

a comparison with the Rayleigh-Ritz approach, is also developed. Actuated shapes of the 

rectangular THUNDER actuators are computed by utilizing the modified Rayleigh-Ritz 

model with the inclusion of peizoelectrically-induced strains. Finally, blocking forces of the 

THUNDER actuators subjected to an application of electric field with pinned-roller and 

pinned-pinned supports are calculated and discussed.  

3.2 Numerical Results for Cooled Shapes 

3.2.1 Deformation Characteristics of THUNDER without Tabs

 To illustrate the results predicted by the energy-based Rayleigh-Ritz approach, 

consider a rectangular THUNDER actuator without tabs consisting of 5 layers, as depicted 

in Figure 1.10. In the following analyses, the material properties and thicknesses of the 

layers are taken from [38], and they are given here in Table 3.1. Steel is used as the 

backbone of the actuator, PZT 4 as the actuating layer, and aluminum foil as the top layer. It 

is assumed that the three materials are bonded together with a film adhesive that cures at  
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Table 3.1: THUNDER Material Properties 

 
Properties Steel Aluminum foil PZT 4 Adhesive 

Thickness ( )mµ  127.0 25.4 173.0 50.8 
E  ( )GPa 207.0 70.0 69.0 3.45 
ν  0.3 0.3 0.31 0.4 

( )610 / Cα − °  10.8 23.4 2.0 45.0 

( )12
31 10 m/V−d  - - -122 - 

 

cureT = 325 , and the whole laminate is cooled to the service temperature, or room 

temperature, . 

C°

25T = C°

 In practice, THUNDER actuators are vacuum bagged in specially-made molds 

during the time they are cured at the elevated temperature  and then cooled to room 

temperature. Though stresses develop during the curing process, the mold essentially forces 

the actuator to remain flat until the pressure is released after it cools. The model presented 

above is formulated such that if the actuator was not forced to remain flat, but rather could 

deform freely as it was cooled, by virtue of the through-thickness asymmetry of the material 

properties, the shape of the actuator at any temperature below cure can be predicted. 

Alternatively, if the cured actuator was heated from the room-temperature condition, the 

shape as a function of temperature above room temperature could also be predicted. This 

approach of modeling the actuator deformations during cooling is fictitious because, as 

stated, the mold restrains the deformations of the actuator, but since the process is modeled 

as being reversible, e.g., when there is no slippage or friction in the mold, the approach is 

valid. 

cureT

 Figure 3.1 illustrates the deformation behavior of a square THUNDER actuator 

(Ly/Lx=1) with a length-to-thickness ratio Lx/H of 100. Considering the numerical values of 

thicknesses in Table 3.1, this represents an actuator 42.7 by 42.7 mm, a relatively small 

actuator. In the figure, the relations between the average curvatures along the centerlines of 
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the actuator in the −x  and directions (−y Κ x  and Κ y , respectively) and the temperature 

change relative to the cure temperature  are shown. The average curvatures and the 

temperature change are defined by 

cureT

 
( )

( )

02
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2

1 ,0

1 0,
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−

Κ =

Κ =

∫

∫
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x
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L

Lx x
x

L

Ly y
y

x dx
L

y dy
L

 (3.1) 

 ∆ = − cureT T T  (3.2) 

Thus, = 0  at the beginning of the cooling process when T is equal to the curing 

temperature of 325  and = -300  at the end of the cooling process when T is equal 

to the room temperature of 25 . It must be noted that from this point on, all of the figures 

associated with the average curvatures have the negative average curvature ( −Κ or 

∆T C°

C,° ∆T C°

C°

x −Κ y ) as 

an ordinate axis. This arrangement is used because of the minus signs in the definition of the 

curvatures in Equation (2.4). Also, it is important to note that curvature is used as the 

measure of shape rather than, for example, the displacement of the edges of the actuator 

relative to the center (i.e., so called dome height), because a relative displacement measure 

involves curvature and the dimensions of the actuator. Two actuators could have 

significantly different curvatures in the x-direction and therefore have different shapes, but 

because the dimensions of an actuator that is almost flat could be larger, the relative 

displacement could be the same as that of an actuator with a significant curvature but 

smaller dimensions. A displacement measure would indicate the two actuators have the 

same shape when, in fact, they do not. 

 Point A in Figure 3.1 represents the actuator flat at its elevated curing 
temperature, i.e., = 0 and −Κ x −Κ y = 0. When the temperature is reduced, the actuator 

develops positive average curvature in the x- and y-directions, i.e., deforms as in Figure 2.1 

(b). The two average curvatures are equal and increase in magnitude in a slightly nonlinear  
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Figure 3.1: Temperature vs. Curvature Relations of Square THUNDER (Lx /H = 100) 
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fashion as temperature is decreased. The 30 by 20 mesh finite-element modeling of a quarter 

of this actuator is also conducted as a comparison. The 23-term Rayleigh-Ritz and 

ABAQUS models are in very good agreement. Also shown in Figure 3.1 is the prediction of 

the geometrically linear model, for which curvatures are a linear function of temperature 

change. The slope of the geometrically linear model is tangent to the temperature-curvature 

relation at point A. It is seen that the linear model overpredicts the magnitude of the average 

curvatures relative to the nonlinear models. All models predict stable curvatures throughout 

the temperature range. Figure 3.2 illustrates the room-temperature shapes ( = -300 ) as 

predicted by 23-term Rayleigh-Ritz and finite-element models, point E in Figure 3.1. In the 

figure the out-of-plane displacement has been normalized by the actuator thickness H and 

the x- and y-axes have been normalized by L

∆T C°

x and Ly, respectively. In an average sense, the 

predicted room-temperature shape is near-spherical, or dome-like, in nature, with almost 

equal curvatures in all directions. There is some twist curvature, especially in the corners 

 

                  (a) 23-term Rayleigh-Ritz                                                (b) ABAQUS     

Figure 3.2: Equilibrium Shapes of Square THUNDER at Point E (refer to Figure 3.1) 
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due to the contribution form the non-zero coefficients  through  in the first equation of 

Equation (2.26), but it is small compared to curvatures in the x- and y-directions. 

5c 7c

The influence of simply doubling the sidelengths Lx and Ly of the actuator is 

illustrated in Figures 3.3 and 3.4. As can be seen, the behavior of this actuator as a function 

of temperature is more complicated than that of the smaller actuator. Again, at the curing 

temperature, point A, the actuator is flat. As the actuator is cooled, the x- and y-direction 

average curvatures are equal and increase in magnitude. At point B, following the solid line, 

the solution bifurcates into branches BC, BD, and BE. The various branches correspond to 

different shapes of the actuator. Following branch BC, at room temperature, point C, the 

actuator has a small average curvature in the x-direction and a large average curvature in the 

y-direction. Conversely, following branch BD, at room temperature, point D, the actuator 

has a small average curvature in the y-direction and a large average curvature in the x-

direction. The room-temperature shapes represented by these two branches can be described 

as near-cylindrical, since the average curvature in one direction is only about 16% as large 

as the average curvature in the other direction. Following branch BE, the actuator has equal 

average curvatures in the two directions, similar to the smaller actuator previously 

discussed. However, in this case, the solutions on branch BE correspond to unstable 

equilibrium solutions, while the solutions on the other two branches represent stable 

equilibrium solutions. The 23-term Rayleigh-Ritz solutions agree very well with the 

ABAQUS solutions, which are based on 57 by 57 mesh, except near room temperature for 

unstable branch BE. The lack of stability means that the configuration described by that 

solution, which corresponds to a dome-like shape, will never be observed. The existence of 

two near-cylindrical shapes at room temperature means the actuator can be transformed, or 

snapped, from one cylindrical shape to the other by applying external moments to the edges 

of the actuator. The magnitude and direction of the moment required for snapping can be 

predicted by the Rayleigh-Ritz approach. The influence of applying external moments will  
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Figure 3.3: Temperature vs. Curvature Relations of Square THUNDER (Lx /H = 200) 
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          (a) 23-term Rayleigh-Ritz at point C                            (b) ABAQUS at point C    

  

         (c) 23-term Rayleigh-Ritz at point E                            (d) ABAQUS at point E    

  

       (e) 23-term Rayleigh-Ritz at point D                            (f) ABAQUS at point D    

Figure 3.4: Equilibrium Shapes of Square THUNDER (refer to Figure 3.3) 
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be discussed in Section 3.2.3. The geometrically linear prediction is again given by the line 

tangent to branch AB at the cure temperature, and, of course, there is only a single stable 

branch with this prediction. Such a prediction is clearly off the mark. Geometrically 

nonlinear behavior could be expected, since the actuator is a plate-like structure and the out-

of-plane deflections are many times the actuator thickness, as can be observed in Figure 3.4, 

which illustrates the predicted room-temperature shapes for the three branches. Out-of-plane 

deflections on the order of eight actuator thicknesses are predicted. In Figure 3.4, the vertical 

scale is the same as the vertical scale in Figure 3.2, for comparison, but results in a 

somewhat exaggerated rendering of the deformed actuator. It is interesting to note that the 

single dome-like stable configuration, which characterizes the smaller 42.7 by 42.7 mm 

square actuator (Lx/H = 100), is unstable when the size of the actuator is increased (Lx/H = 

200). 

 The influence of actuator sidelength for square actuators is illustrated in Figure 

3.5. In this figure, the average room-temperature curvatures in the x- and y-directions as a 

function of the sidelength-to thickness ratio are shown. It can be seen that for sidelength-to-

thickness ratio less than 120, the actuator has only one predicted room-temperature shape, 

namely the dome-like-shape, and the average curvatures are given by branch A B′ ′ . For 

sidelength-to-thickness ratios greater than 120, the actuator has two possible stable shapes, 

given by branches and B D . For sidelength-to-thickness ratios greater than 150, both 

shapes are near-cylindrical, as the ratio of the magnitudes of the average curvatures is at 

least three to one. For sidelength-to thickness ratios between 120 and 150, the shapes have 

noticeable average curvatures in both directions. Because of the bifurcation characteristic, 

manufacturing an actuator with a sidelength-to-thickness ratio near 120 could result in 

unexpected behavior, particularly during dynamic operation. Interestingly, for sidelength-to-

thickness ratios between 120 and 200, the 23-term Rayleigh-Ritz solution predicts three 

solutions, one of which is unstable. However, beyond sidelength-to-thickness of 200, five  

B C′ ′ ′ ′
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Figure 3.5: Sidelength-to-Thickness Ratio vs. Curvature Relations of Square THUNDER 
( ∆T C= -300° ) 
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solutions are predicted, three of which are unstable. The ABAQUS solutions for the stable 

shapes are in good agreement with the 23-term Rayleigh-Ritz model. For the unstable 

shapes, near the region where the number of solutions from the 23-term Rayleigh-Ritz 

models increases from three to five, the Rayleigh-Ritz model is not in agreement with the 

ABAQUS calculations. The unstable solutions from the ABAQUS model beyond Lx/H = 

200 seem to follow one of the two just-emerging unstable branches resulting from Rayleigh-

Ritz approach. The prediction of a linear theory would be given by a horizontal line 

coincident with point  and corresponds to an actuator with a sidelength-to-thickness ratio 

approaching to zero. The shape corresponding to the linear theory would always be dome-

like, independent of actuator length-to-thickness ratio. 

A′

 The aspect ratio of the actuator, Ly/Lx, has an interesting influence on the 

predicted shapes. The average curvature vs. temperature relation for a rectangular actuator 

with an aspect ratio of 0.7 and a sidelength-to-thickness ratio of 200 is shown in Figure 3.6. 

Except for a slightly smaller dimension in the y-direction, this actuator is identical to the one 

described in Figures 3.3 and 3.4. Considering the 23-term Rayleigh-Ritz predictions, as the 

temperature is initially reduced from the curing temperature, the actuator develops equal 

average curvatures in the x- and y-directions. Upon cooling 150 , the x-direction average 

curvature begins to increase more rapidly with temperature decrease, while the y-direction 

average curvature begins to decrease. Continued cooling along this path results in an 

actuator at room temperature that has a large positive average curvature in the x-direction 

and average curvature in the y-direction about 25% as large, as indicated by point D on the 

figure. The shape of the actuator is near-cylindrical, but less so than the case shown in 

Figure 3.3. At a temperature decrease of about 200 , at point B, limit point behavior is 

exhibited, resulting in two more branches, branches BC and BE. Branch BC represents 

stable shapes, whereas branch BE represents unstable shapes. The room-temperature shape 

at point C represents an actuator with a large positive average curvature in the y-direction  

C°

C°
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Figure 3.6: Temperature vs. Curvature Relations of Rectangular THUNDER (Ly /Lx = 0.7,         
Lx /H = 200) 
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          (a) 23-term Rayleigh-Ritz at point C                            (b) ABAQUS at point C    

 

          (c) 23-term Rayleigh-Ritz at point E                            (d) ABAQUS at point E 

  

          (e) 23-term Rayleigh-Ritz at point D                            (f) ABAQUS at point D 

Figure 3.7: Equilibrium Shapes of Rectangular THUNDER (refer to Figure 2.9) 
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and a smaller positive average curvature in the x-direction, the smaller average curvature 

again being about only 25% of the larger average curvature. The unstable solutions at point 

E have almost equal average curvatures in the x-and y-directions, and could be described as 

dome-like. The 23-term Rayleigh-Ritz calculations are in good agreement with the 

ABAQUS results, including the limit point behavior. The geometrically linear analysis again 

gives the curvature prediction as the tangential straight lines at point A. It should be noted 

that the slope of the lines are equal to the counterpart ones in Figures 3.1 and 3.3. In 

accordance with the geometrically linear model, this indicates that the curvature vs. 

temperature relations are all the same regardless of inplane dimensions, i.e., at the same 

cooling temperature, the curvatures are predicted to be the same no matter how large or what 

the aspect ratio of the actuator is. In reality, as shown in Appendix A, the x- and y-direction 

curvatures predicted from the linear theory depend only on the material properties and 

thickness of each layer in the laminate. The shapes at room-temperature points C, D, and E 

in Figure 3.6 are illustrated in Figure 3.7, where the rectangular aspect ratio of the actuator is 

represented. It should be mentioned that more than likely a THUNDER actuator with an 

aspect ratio of 0.7 would be manufactured with the intent to have the larger curvature in the 

x-direction, as in Figure 3.7(e) and (f). The excellent agreement between the shape 

prediction of the Rayleigh-Ritz and the finite-element models should also be noted. 

 The dependence of room-temperature shape on the sidelength-to-thickness ratio, 

Lx/H, for actuators with an aspect ratio Ly/Lx = 0.7 is illustrated in Figure 3.8. It is seen that 

for thickness ratios less than 166, a single shape exists at room temperature. Recall from 

Figure 3.5 that for square actuators it was necessary to have Lx/H less than 120. Above a 

sidelength-to-thickness ratio of 166, multiple room-temperature shapes are predicted to 

exist, although some shapes are unstable. Another difference attributable to aspect ratio is 

that for square actuators, bifurcation behavior occurs (point B′ in Figure 3.5), while for the 

rectangular actuators limit point behavior, point B′ in Figure 3.8, prevails. The linear  
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Figure 3.8: Sidelength-to-Thickness Ratio vs. Curvature Relations of Rectangular 
THUNDER (Ly /Lx = 0.7, ∆T C°= -300 ) 
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solution to the problem corresponds to horizontal lines coincident with point  on the two 

curvature relations. To be noted both in Figures 3.5 and 3.8 is that with sidelength-to-

thickness ratios above 160, the curvature in the x-direction along the branch A D

A′

′ ′ is 

enhanced relative to the linear prediction, while the curvature in the y-direction is 

suppressed considerably, leading to the near-cylindrical shape. Along branch B C′ ′ , the 

reverse occurs, the curvature in the x-direction being suppressed and the curvature in the y-

direction being enhanced. Since the actuator is smaller in dimension in the y-direction, the 

deflection enhancement is not as noticeable for this branch. This enhancement and 

suppression of the curvatures is clearly a nonlinear effect and is felt to be a beneficial effect. 

For the rectangular actuator, Figure 3.8, it can be seen that beyond the sidelength-to-

thickness ratio of around 240, there are five solutions predicted from the 23-term Rayleigh-

Ritz method rather than three, the additional two being unstable. 

 Finally, Figure 3.9 illustrates the influence of sidelength-to-thickness ratio on 

the average curvatures for actuators with an aspect ratio Ly /Lx = 0.3. This represents a more 

beam-like actuator than the previous aspect ratios considered. Only the 23-term Rayleigh-

Ritz solution is shown, and to be noted is the lack of multiple solutions. The linear solution 

would correspond to a straight horizontal line coincident with point . For sidelength-to-

thickness ratio up to 100, the linear solution is accurate. This value of L

A′

x/H corresponds to 

an actuator 42.7 mm long and 14.23 mm wide. The agreement for values of Lx/H  up to 100 

should be compared to deviations from the linear solution for sidelength-to-thickness ratios 

of 50 or less for the other aspect ratios considered above. For the shorter actuators with an 

aspect ratio of 0.3, the average curvatures in the two directions are equal, though because of 

the longer dimension in the x-direction, the curvature in that direction would be more 

noticeable. As the length of the actuator increases, geometrically nonlinear effects begin to 

suppress the average curvatures in both directions. The curvature in the y-direction is 

suppressed more, making the actuator flatter in the y-direction than in the x-direction. Again, 
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Figure 3.9: Sidelength-to-Thickness Ratio vs. Curvature Relations of Beam-Like 
THUNDER (Ly /Lx = 0.3, ∆T C°= -300 ) 
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since the actuator is longer in the x-direction, the curvature in the x-direction would be even 

more pronounced. Also, note that since the THUNDER actuators with an aspect ratio of 0.3 

is beam-like, it is interesting to compare the x-direction curvature in Figure 3.9 with that 

predicted by either geometrically nonlinear or linear laminated beam models, as derived in 

Appendix B. By using Equation (B.36) or (B65), = 2.97 mK x
-1, a constant over the range of 

sidelength-to-thickness ratios considered. This value is only a few percent different than the 

geometrically linear calculation of = 2.88 mK x
-1 from the 23-term Rayleigh-Ritz solution. 

3.2.2 Force and Moment Resultant and Stress Characteristics of THUNDER without Tabs 

 As stated earlier, the curvatures due to cooling are accompanied by residual 

stresses, and hence residual force and moment resultants, as defined in Equation (2.9). From 

the ABAQUS calculations, the force and moment resultants at room temperature for a 

rectangular actuator with aspect ratio of 0.7 and sidelength-to-thickness ratio of 200 are 

illustrated in Figure 3.10. The actuator is in the configuration given by point D in Figures 

3.6 and 3.7, and hence has significant average curvature in the x-direction and is relatively 

flat in the y-direction. As mentioned, this is most likely the configuration the manufacturing 

process is intended to produce. Since the boundaries of the actuator are traction free, specific 

force and moment resultants are zero on the boundaries, as seen in Figure 3.10. Also 

illustrated in the figure, extreme values of the force and moment resultants occur in narrow 

regions along the edges of the actuator. These force and moment resultants build in 

magnitude quite rapidly as the edges are approached from the central portion. Away from 

the edges, the magnitudes of the force and moment resultants are more uniform, and in some 

cases quite small. It is important to note that for a geometrically linear analysis, all force and 

moment resultants are exactly zero, so all the force and moment resultants illustrated in 

Figure 3.10 are due to geometric nonlinearities. The nonzero values associated with the 

geometrically nonlinear analysis can be explained briefly as follows: For a geometrically 

linear analysis, the room-temperature shape of the actuator is dome-like, with equal  
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(a) Force Resultant Nx

 

(b) Moment Resultant Mx

 

(c) Force Resultant Ny

 

(d) Moment Resultant My

 

(e) Force Resultant Nxy

 

(f) Moment Resultant Mxy

Figure 3.10: Force and Moment Resultants in Rectangular THUNDER (Ly /Lx = 0.7,  Lx/H = 
200, ∆T C= -300° ) 
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(a) Force Resultant Nx

 

(b) Moment Resultant Mx

 

(c) Force Resultant Ny

 

(d) Moment Resultant My

 

(e) Force Resultant Nxy (f) Moment Resultant Mxy

Figure 3.11: Force and Moment Resultants in Rectangular THUNDER (Ly /Lx = 0.3,  Lx/H = 
200, ∆T C= -300° ) 
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curvatures in the x- and y-directions (see Figures 3.6 and 3.8). For the geometrically 

nonlinear analysis, for the situation shown in Figure 3.10, as noted, the actuator is relatively 

flat in the y-direction, but still has curvature in the x-direction. Such a shape could be 

generated by starting with the dome-like configuration, and then applying the appropriate 

force and moment resultants along the edges by some mechanical means, or by starting with 

the flat actuator and applying different force and moment resultants along the edges. 

Because of the large out-of-plane deflections of the actuator as it cools, the thermal stresses 

within the various layers generate the forces and moments to make the room-temperature 

shape near-cylindrical rather than dome-like. When geometrical nonlinearities are 

considered, the near-cylindrical shape represents a lower total potential energy state for the 

actuator than the dome-like shape. In a sense, the actuator “self-generates” the forces and 

moments along the edges to achieve the lower total potential energy state near-cylindrical 

shape. Note that the extreme values of Nxy and Mxy are small compared to extreme values of 

Nx and Ny, and Mx and My, respectively. This is an indication that shear effects are minimal, 

though they are not zero. 

 A similar picture emerges for the more beam-like actuator. Figure 3.11 shows 

the force and moment resultants for the actuator with an aspect ratio of 0.3 and a sidelength-

to-thickness ratio of 200. The magnitude of the force and moment resultants does depend on 

the aspect ratio, to some degree, but the general character of the spatial distribution changes 

only slightly with aspect ratio.  

 A sample of the stresses that lead to the force and moment resultants Nx, Ny, Mx, 

and My for the rectangular actuator with an aspect ratio of 0.7 and a thickness ratio of 200 

are illustrated in Figures 3.12 and 3.13 for four locations within the actuator. The through-

thickness distributions of the inplane normal stresses near the center of the actuator x ≅ 0, 

y 0 (see Figures 1.10 and 2.1) are illustrated in Figure 3.12 (a), while the distributions near 

the midpoints along the longer edge (x

≅

≅ 0, y ≅ Ly/2) and near the shorter edge (x L≅ x/2, y ≅ 0)  
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(a) Distribution of Normal Stresses at x ≅ 0, y ≅ 0 
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(b) Distribution of Normal Stresses at x ≅ 0, y ≅ Ly/2 

Figure 3.12: Stress Distributions in THUNDER (Ly /Lx = 0.7, Lx/H = 200, ∆ = -300 ) for 
Two Locations near Centerline x = 0  

T C°
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(a) Distribution of Normal Stresses at x ≅ Lx/2, y 0 ≅
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(b) Distribution of Normal Stresses at x ≅ Lx/2, y ≅ Ly/2 

Figure 3.13: Stress Distributions in THUNDER (Ly /Lx = 0.7, Lx/H = 200, ∆ = -300 ) for 
Two Locations near Boundary x = L

T C°
x/2  
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are illustrated in Figures 3.12 (b), and 3.13 (a), respectively. The distributions near a corner 

(x L≅ ≅x/2, y Ly/2) are displayed in Figure 3.13 (b). Since the stress calculations resulting 

from the ABAQUS model are expected to be more accurate than from the 23-term Rayleigh-

Ritz approach, the following discussions about the stress distributions are based on the 

finite-element results, although the stresses computed by the Rayleigh-Ritz approach are in 

good agreement with finite-element results.  

 At first glance all distributions look very similar, but upon a closer inspection, 

the distributions change from figure to figure, reflecting the dependence of the force and 

moment resultants on spatial location, as presented in Figure 3.10. For instance, when 

comparing the inplane normal stress σ x  distribution in Figure 3.12 (a) with the one in 3.12  

(b), it is seen that the distributions of σ x  in every layer are roughly identical except for the 

steel backbone layer (the bottom layer). Near the center of the actuator, there is a net 

positive contribution to Nx from the steel layer in Figure 3.12 (a). However, near the 

midpoint along the longer edge, Figure 3.12 (b), the net contribution is close to zero, since 

the stress is linearly distributed and changes sign midway through the steel layer. Therefore, 

the difference in the distributions in the stainless steel layer leads to a more negative value 

of Nx, and a more positive value of Mx, near the edge than near the center. A comparison 

between the distribution of σ x  in Figure 3.12 (a) and the one in Figure 3.13 (a) can also be 

considered. Following the same explanation given above, the main difference is again in the 

steel layer. Due to the more positive values of σ x  in steel near the center, Figure 3.12 (a), 

than near the midpoint along the shorter edge, Figure 3.13 (a), the slightly positive value of 

Nx and slightly negative value of Mx near the center will decrease and increase, respectively, 

such that they are zero near the shorter edge, a consequence of the traction-free boundary 

conditions. In addition, it can be noticed that the distribution of σ x  in Figure 3.13 (a) that 

contributes to zero force and moment resultants at x ≅ Lx/2, y ≅ 0 is the same as the 
distributions of σ x  and σ y  near the corner x ≅ Lx/2, y ≅ Ly/2 in Figure 3.13 (b). This is again 
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a reflection of the traction-free boundary conditions imposed on all free edges. Note that 
both σ x  and σ y  in the PZT layer are compressive everywhere. Also, it should be mentioned 

that the geometrically linear theory would predict the inplane normal stresses at every point 

in the actuator to be almost identical to those near the corner, Figure 3.13 (b), because all 

force and moment resultants are zero according to the linear theory, as they are at the corner 

for the nonlinear theory.  

3.2.3 Snap-Through Behavior of THUNDER without Tabs Induced by Moments 

 As stated in Sections 2.4.2 and 3.2.1, an actuator with geometric parameters 

such that it has multiple stable equilibrium shapes can be transformed, or snapped, from one 

stable shape to the other. The snap-through action can be accomplished by applying a pair of 

moments along two opposite edges of the actuator. It is instructive to study magnitudes and 

directions of the applied moments that can be employed to snap the actuator and study how 

the actuator behaves. The Rayleigh-Ritz model presented in Section 2.4 can be implemented 

to investigate these issues. By specifying values of the moments in Equation (2.40) and then 

substituting WM into Equation (2.43) and omitting WF, approximate equilibrium shapes of a 

THUNDER actuator subjected to the applied moments can be computed. Here the 

THUNDER actuator at room temperature with Ly/Lx = 0.7 and a sidelength-to-thickness ratio 

close to the limit point (Lx/H = 166 in Figure 3.8), i.e., within 15% of the limit point, or Lx/H 

= 190, is chosen as a calculation example of the snap-through phenomenon. 

 Consider the THUNDER actuator subjected to applied edge moments, as 
illustrated in Figure 2.4. In the case of 0=s

yM , a relation between the average curvatures of 

the actuator and the applied moment s
xM  is presented in Figure 3.14. Initially, before s

xM  is 

applied on the edges x = +Lx/2 and x = -Lx/2, the manufactured room-temperature 

configuration is assumed to be on the stable branch A D′ ′ in Figure 3.8 and corresponds to 

point on branch in Figure 3.14, where the average curvature in the x-direction is 

larger than that in the y-direction. Referring to Figure 3.14, when a positive value of

A∗ B C∗ ∗

s
xM  is  
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Figure 3.14: Moment along the x edges vs. Curvature Relations of Rectangular THUNDER      
(Ly /Lx = 0.7, Lx/H = 190, ∆T C°= -300 )   
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Figure 3.15: Moment along the y edges vs. Curvature Relations of Rectangular THUNDER      
(Ly /Lx = 0.7, Lx/H = 190, ∆T C°= -300 )   
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applied to the actuator, the actuator configuration moves from point  toward point BA∗ ∗  

along branch . Its average curvature in the x-direction increases rapidly, whereas the 

average curvature in the y-direction decreases slowly due to the anticlastic curvature effect. 

Along the path from A  to , there exists no critical point where the actuator transforms 

from one stable shape to the other. Rather, the average curvatures change gradually relative 

to the stable shape at point . On the other hand, starting at point , when a negative 

value of 

B C∗ ∗

∗ B∗

A∗ A∗

s
xM  is applied to the actuator, the configuration moves toward point C  on branch 

such that the x- and y-direction average curvatures decrease and increase, respectively. 

When the applied moment equals -0.25 N·m/m, the actuator suddenly changes configuration, 

or snaps through, from point C on stable branch 

∗

B C∗ ∗

∗ B C∗ ∗ to point D∗ on stable branch E G∗ ∗ . In 

the snapped configuration, the average curvature in the x-direction is smaller than that in the 

y-direction. If the a more negative moment is applied, the actuator’s shape moves from point 

 toward point . If the magnitude of the negative moment is decreased to zero, the 

configuration moves to point 

D∗ E∗

F∗ , which corresponds to a point on branch  in Figure 

3.8. Analogously, the manufactured shape of a THUNDER actuator given by point 

B C′ ′

F∗ can be  

transformed to the shape at point A∗  by first applying a positive value of s
xM  of about 0.2 

N·m/m. The configuration of the actuator will change from point  to along branch 

, and then from to  with a snap-through phenomenon. Finally, when the applied 

positive moment is decreased to zero from point 

F∗ G∗

E G∗ ∗ G∗ H∗

H∗ , the actuator assumes the manufactured 

shape given by point . A∗

 Snap-through behavior can also be observed with the sole application of 
moment s

yM , as illustrated in Figure 3.15. Again, the initial room-temperature shape of the 

actuator is assumed to be located at point A∗ , the same configuration as point  in Figure 
3.14. When the actuator is subjected to a negative value of 

A∗

s
yM , its x- and y-direction 

average curvatures increase and decrease along branch B C∗ ∗ , respectively. However, when 

the actuator is subjected to a positive value of s
yM , its configuration moves toward point C∗ . 
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When  N·m/m, the actuator snaps through to another configuration, point D0.38=s
yM ∗ , 

After the snap-through phenomenon, the actuator is in the new stable equilibrium state that 

lies on branch . The actuator’s shape will follow this branch to point  if a higher 

positive 

E G∗ ∗ E∗

s
yM  is applied, or point F∗  if the moment is released. Note that point F∗ in this 

figure is the same configuration as point F∗ in Figure 3.14. At point F  if the actuator is 

subjected to a negative value of 

,∗

s
yM  which reaches a value of -0.12 N·m/m, the actuator’s 

configuration will move to point G∗  in such a way that its x- and y-direction average 

curvatures increase and decrease, respectively, and then the actuator snaps again to the 

stable branch at point H . Finally, the original stable shape at point is obtained 

when the negative value of 

B C∗ ∗ ∗ A∗

s
yM  is released. 

 In addition, according to Figures 3.14 and 3.15, two more important comments 

can be stated. Firstly, the actuator’s configuration at point A∗  seems to be more stable than 
that at point  because the required magnitude of the snapping moment (either F∗ s

xM  or s
yM ) 

that causes the configuration transformation from point A∗ to F∗ is always larger than the 

one that causes the transformation from point F∗ to point A∗ . Secondly, for the stable 

equilibrium shapes, structural compliance in the direction of the larger room-temperature 

average curvature is more than structural compliance in the direction of the smaller room-

temperature average curvature. For example, the rate of change of the x-direction average 

curvature at point  with respect to moment A∗ s
xM  in Figure 3.14 is larger than the rate of 

change of the y-direction average curvature at point A∗  with respect to moment s
yM  in 

Figure 3.15. An analogous comment can also be made regarding point . F∗

3.2.4 Effects of Tabs on Deformation Characteristics of THUNDER 

 As stated, the results of THUNDER actuators discussed above did not include 

attachment tabs. To consider effects of tabs on the deformation characteristics, the 23-term 

Rayleigh-Ritz model developed in Section 2.2.3 is employed to find room-temperature 

shapes of a THUNDER actuator with tabs. After taking the first and second variations of the 
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total potential energy in Equation (2.25), equilibrium and stability conditions of the cooled 

THUNDER actuator can be computed.  

 The relationships between the thickness ratio and the average curvatures for a 

THUNDER actuator with tabs for Ly/Lx = 0.7 and 1 are shown in Figures 3.16 and 3.17, 

respectively. Figures 3.16 and 3.17 can be compared with their counterpart Figures 3.8 and 

3.5, respectively, which illustrate the same relationship for the case of no tabs. It can be seen 

that for rectangular actuators with and without tabs (Ly/Lx = 0.7), the overall characteristics 

of the average curvatures vs. sidelength-to-thickness ratio are similar. The analyses show 

that the existence of the tabs shifts the limit point to the right, from Lx/H = 166 to Lx/H = 170 

according to the ABAQUS model, or to Lx/H = 178 according to the Rayleigh-Ritz model. A 

good agreement of the average curvatures between the ABAQUS and Rayleigh-Ritz models 

can be seen for branch A  but not for branch D ,′ ′ C B E′ ′ ′ . This difference occurs because the 

23-term Rayleigh-Ritz model is capable of predicting the configurations of the actuator in an 

average sense only. It cannot accurately capture the local deformations of the small tab 

regions when there is a larger average curvature in the y-direction than in the x- direction, 

branch . An extremely high degree of assumed polynomial functions is needed to 

capture the local effects represented by branch C B

C B E′ ′ ′

E′ ′ ′ . Thus, in this sense the Rayleigh-Ritz 

approach has a disadvantage compared with the finite-element model. However, overall, the 

Rayleigh-Ritz model is fairly good in terms of limit point prediction with less than 5% 

difference when compared with thousands of degrees of freedom of the finite-element 

model. An important point is that the ABAQUS model predicts the tabs have less influence 

on branch C B  than the Rayleigh-Ritz model predicts. E′ ′ ′

 Comparison of Figures 3.17 and 3.5 shows the addition of tabs drastically 

changes the characteristics of the sidelength-to-thickness ratio vs. average curvature 

relations of actuators with a square active portion (Ly/Lx = 1). Immediately obvious is the 

fact that bifurcation behavior does not occur when tabs are included, rather limit point  
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Figure 3.16: Sidelength-to-Thickness Ratio vs. Curvature Relations of Rectangular 
THUNDER with Tabs (Ly/Lx = 0.7, ∆T C 0.1=t

x xL L= -300 ° , ) 
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Figure 3.17: Sidelength-to-Thickness Ratio vs. Curvature Relations of Square THUNDER 
with Tabs (Ly/Lx = 1, ∆T C° 0.1=t

x xL L= -300 , ) 
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behavior characterizes the relationship. With no tabs, the relationship exhibits bifurcation 

behavior due to the symmetry of the actuator, i.e., Lx = Ly. With tabs along two opposite 

edges, that symmetry no longer exists and the relationship resembles that of an actuator with 

an aspect ratio of 0.7, Figure 3.8, and exhibits limit point behavior. The limit point behavior 

in Figure 3.17 occurs at Lx/H = 132, according to the finite-element analysis, whereas the 

bifurcation behavior in Figure 3.5 occurs at Lx/H = 120. The deviations between the 23-term 

Rayleigh-Ritz predictions and the ABAQUS results for branch C B E′ ′ ′ can be observed, but 

they are not as great as for rectangular actuators with tabs, i.e., Figures 3.16 vs. Figure 3.8. 

This is due to having less degree of structural orthotropy in the case of square actuators than 

in the case of rectangular ones. In Figure 3.17, difference in the limit point prediction is only 

2 % between the Rayleigh-Ritz and ABAQUS models. 

3.3 Numerical Results for Actuated Shapes 

3.3.1 Deformation Characteristics of THUNDER subjected to Applied Electric Field 

 The effects of the electric field on the shape of a THUNDER actuator will be 

described two ways. An actuator with an aspect ratio of 0.7 will be considered. The effects 

of applying the electric field on the predicted average curvatures at  = -300  as a 

function of the sidelength-to-thickness ratio are illustrated in Figure 3.18. The response to 

both positive and negative fields, relative to the direction of polarization, is shown. The field 

strength is assumed to be 2 MV/m, a very high field for the pizoceramic materials 

considered. The curvatures with no field, from Figure 3.8, are repeated on the figure. Tabs 

are not included. The vertical distance between the no-field relation and the relations with 

2 MV/m represents the change in average curvature. What is to be noted is that the 

average curvature change is a function of the sidelength-to-thickness ratio of the actuator, 

and the average curvature in the x-direction does not necessarily change the same amount as 

the average curvature in the y-direction. For example, for an actuator with L

∆T C°

±

x/H = 200, for  
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Figure 3.18: Influence of Actuation on the Change of Curvatures of Rectangular 
THUNDER (Ly /Lx = 0.7, ∆T C°= -300 ) 
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    (a) With -2 MV/m field            b) Without electrical field           (c) With +2 MV/m field     
          (on branch )                     (on branch N NA D A D′ ′ )                       (on branch ) P PA D

Figure 3.19: Out-of-Plane Shapes of THUNDER under Electrical Voltage Actuation (Lx/H 
= 200, Ly/Lx = 0.7, ∆T C°= -300 ) 

 

    (a) With -2 MV/m field            b) Without electrical field           (c) With +2 MV/m field     
          (on branch )                     (on branch N NB C B C′ ′ )                       (on branch ) P PB C

Figure 3.20: Out-of-Plane Shapes of THUNDER under Electrical Voltage Actuation (Lx/H 
= 200, Ly/Lx = 0.7, ∆T C°

A D

= -300 ) 

the shape on the branch referred to in Figures 3.8 and 3.18 as branch , the average 

curvature in the y-direction hardly changes, while the average curvature in the x-direction 

changes considerably. Figure 3.19 illustrates the shapes of the actuator with positive, 

negative, and no electric fields applied, assuming the actuator is characterized by branch 

. The zero field shape is repeated from Figure 3.7 (e). The change of one curvature 

more than the other due to the application of the electric field is a geometrically nonlinear 

effect. On the stable portion for the branch referred to in Figures 3.8 and 3.18 as branch 

A D′ ′

′ ′
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C B E′ ′ ′ , the curvature in the y-direction changes much more than the curvature in the x-

direction, as also shown in Figure 3.20. This again reflects a geometrically nonlinear effect. 

For an actuator with Lx/H = 100, the curvature in the x-direction changes slightly more than 

the curvature in the y-direction, and as Lx/H approaches the limit point value, the curvature 

changes even more in relation to the curvature change in the y-direction. Additionally, it can 

be noted that an applied electric field also alters the value of critical sidelength-to-thickness 

ratio. A positive field increases the critical limit point value, and a negative field decreases 

the limit point value. This makes sense, since the positive field tends to flatten the actuator 

(reduces the average curvatures), as illustrated in Figures 3.19 and 3.20, and, therefore, 

suppress the geometric nonlinearity due to the large out-of-plane deformation generated 

during the cooling process. As a result, the variations of the average curvatures in the x- and 

y-directions over the considered sidelength-to-thickness ratios for branch are less than 

those without an electric field applied, branch 

P PA D

A D′ ′ , and the emergence of the limit point or 

multiple solutions is shifted to a larger sidelength-to-thickness ratio (point  compared to 

point ). These behaviors are trends toward the geometrically linear plate model. On the 

other hand, a negative field tends to bend the actuator more and, thus, enhance the geometric 

nonlinearity. This in turn causes more average curvature variation along branch  in 

relation to sidelength-to-thickness ratio and reduces the critical sidelength-to-thickness ratio 

value (point  compared to point 

PB

B′

N NA D

NB B′ ). The curvature changes predicted by the 

geometrically linear Rayleigh-Ritz model are given by the vertical distances at point A′ , 

specifically from  to  for positive field and from A′ PA A′  to  for negative field, in 

Figure 3.18. The curvature changes for the linear model are independent of the sidelength-

to-thickness ratio. 

NA

 Figure 3.21 illustrates the average curvature of square THUNDER actuators at 

= -300  due to an application of T∆ C° 2±  MV/m electric fields vs. sidelength-to-thickness 

ratio. The stable and unstable branches from Figure 3.5 are also included for reference. The 
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same conclusions can be drawn from Figure 3.21 as were drawn from Figure 3.18, except 

that in this case the critical points are bifurcation points instead of limit points. For example, 

for Lx/H = 200, application of the electric field has very little effect on the y-direction 

curvature for branch  and very little effect on the x-direction curvature for branch 

. 

B D ,′ ′

B C′ ′

 It should be noted that in Figures 3.18 and 3.21, suppression or enhancement of 

the curvature change, relative to the geometrically linear prediction, occurs and is a function 

of sidelength-to-thickness ratio. For example, looking at Figure 3.18, the vertical distance 

between branches  and  for LP PA D N NA D x/H = 100 is less than the vertical distance of Lx/H 

0, the linear prediction. This is evidence that geometrically nonlinear effects are 

detrimental. On the other hand, at L

≈

x/H = 250 the vertical distance between those two 

branches is considerably greater than the linear prediction. This is evidence that for this 

value of Lx/H, geometrically nonlinear effects are beneficial.    

 Actuation responses of beam-like THUNDER actuators at  = -300  with 

an aspect ratio of 0.3 to an applied electric field of 

∆T C°

2±  MV/m illustrated in Figure 3.22. 

Again, the average curvatures with zero electric field shown in Figure 3.9 are included here 

for reference. Unlike the two previous cases of Ly/Lx = 0.7 and 1, which posses multiple 

branches in sidelength-to-thickness ratio vs. average curvature relations, the Rayleigh-Ritz 

model predicts only one stable branch for each actuation field applied to actuators with Ly/Lx

= 0.3. As seen, the average curvature changes in the x- and y-directions gradually decrease 

as sidelength-to-thickness ratio increases, until the ratio reaches the value of around 200. 

When the sidelength-to-thickness ratio is more than this value, the change in the x-direction  

average curvature slightly increases, whereas that in the y-direction decreases 

monotonically. Interestingly, and especially for the y-direction average curvature, the 

average curvature change caused by a positive voltage is not equal in magnitude to the 

curvature change caused by a negative voltage. This, again, is a direct effect of geometric  
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Figure 3.21: Influence of Actuation on the Change of Curvatures of Square THUNDER 
(Ly/Lx = 1, ∆T C= -300° ) 
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Figure 3.22: Influence of Actuation on the Change of Curvatures of Beam-Like THUNDER 
(Ly/Lx = 0.3, ∆T C°= -300 ) 
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nonlinearities and has ramifications for dynamic behavior due to, for example, a harmonic 

variation of electric field strength. Also, note that since the actuator is beam-like, the 

comparison of the x-direction curvatures due to the applied electric field strengths between 

the presented Rayleigh-Ritz model and the beam theories developed in Appendix B is of 

interest. By employing Equation (B.42) or (B.68), = 2.31 mK x
-1 and 3.63 m-1 for ±2 MV/m, 

respectively. The curvatures are uniform over the range of sidelength-to-thickness ratios 

considered and their values are close to the values of the x-direction actuated curvatures 

predicted by the geometrically linear Rayleigh-Ritz model of K = 2.22 mx
-1 and 3.55 m-1 for 

±2 MV/m. Though they are not shown in Figure 3.22, the actuated curvatures predicted by 

the geometrically linear Rayleigh-Ritz model can be represented by straight horizontal lines 

tangent to point AP and AN for +2 MV/m and -2 MV/m field strengths, respectively. It is 

obvious that for shorter actuators, the geometrically linear theory is sufficient. 

 Viewed differently, the average curvature changes as a function of electric field 

strength can be considered. For example, THUNDER actuators with two different actuator 

sidelength-to-thickness ratios are investigated in Figure 3.23, Lx/H = 200 in Figure 3.23 (a) 

and Lx/H = 100 in Figure 3.23 (b). The aspect ratio for both actuators is 0.7. These figures 

also include the curvature changes predicted by the geometrically linear Rayleigh-Ritz 

model and the average curvature changes predicted for a flat actuator. The geometrically 

linear prediction is indicated by the dotted lines in the figures. The analysis for the flat 

actuator is conducted with the same 23-term Rayleigh-Ritz analysis, but using a temperature 

change of zero. Referring to Figure 3.23 (a) and the average curvature change from branch 

 to branches  and  of Figure 3.18, it is again observed that the average 

curvature change in the y-direction due to actuation is very small, while that in the x-

direction is quite large. The geometrically linear analysis predicts less curvature change in 

the x-direction, and the curvature changes in the x- and y-directions are equal rather than the 

change in the y-direction being close to zero. For a flat actuator the x- and y-direction  

A D′ ′ P PA D N NA D
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(b) Lx/H = 100 

Figure 3.23: Change of Average Curvatures as a Function of Electric Field Strength for 
THUNDER and Counterpart Flat Actuators, Ly/Lx = 0.7 
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curvature change vs. field strength relations are practically identical and similar to the linear 

relations, but are slightly nonlinear and the curvature change is less than for the linear 

analysis. Near E3 = 0 V/m, the slope of curvature change for the geometrically linear 

analysis is equal to the slopes in both the x- and y-directions for a flat actuator, but is not 

close to those for a curved THUNDER actuator, the latter having greater slopes for ∆Κ x  for 

branch  and for  for branch C BA D′ ′ ∆Κ y E′ ′ ′ . Since superposition of deformation is 

applicable to the geometrically linear analysis, the deformations due to the cooling process 

do not have an effect on the change in the average curvatures induced by an electric field. 

Thus, the curvature change gradients based on the linear analysis are equal to those of a flat 

actuator (no the cooling process) subjected to a weak electric field, i.e., E3 near zero. 

Compared to a flat actuator, the average curvature change in the x-direction for branch A D′ ′  

is greater by a factor of about 1.4. This enhancement is clearly a geometrically nonlinear 

effect in the curved actuator. 

  Considering the stable portion of branch C B E′ ′ ′  in Figure 3.18 and referring to 

Figure 3.23 (a), the characteristics of the curvature changes in the x- and y-directions are 

reversed relative to branch  just discussed. For branch C BA D′ ′ E′ ′ ′  the curvature change in 

the y-direction is considerably larger than that in the x-direction, and about 1.5 times larger 

than the y-direction curvature change predicted for a flat actuator.  

 For the case of thickness ratio Lx/H = 100, illustrated in Figure 3.23 (b), 

geometrically nonlinear effects in a curved actuator result in less curvature change due to 

activation than would occur in a flat actuator. Furthermore, the geometrically linear model 

reveals the corresponding change in curvatures to be very close to those of a flat actuator 

and practically indistinguishable. Specifically, the curvature change in the x-direction for a 

curved actuator is about 0.8 of the curvature change for a flat actuator. This characteristic is 

in contrast to the case of Lx/H = 200, where it was seen that the existence of initial curvature 

can be an advantage. Furthermore, for the case of Lx/H = 100, activation for either a curved 
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actuator or a flat actuator results in almost equal curvature changes in the x- and y-

directions.  

3.3.2 Stress Characteristics of THUNDER subjected to Applied Electric Field 

 Before closing Section 3.3 it is of value to examine the change in stresses caused 

by actuation of the piezoceramic material. The through-thickness distribution of the 

thermally-induced inplane normal residual stresses at room temperature in a rectangular 

actuator with Ly/Lx = 0.7 and Lx/H = 200 were described in Figures 3.12 and 3.13. These 

stress distributions are shown again in Figures 3.24 and 3.25 for two locations near the 
center  and near the midpoint of the shorter edge( ) , along 

with the distributions resulting from ±2 MV/m electric fields through the thickness of the 

piezoceramic material. It can be seen from the figures that application of the electric field 

has little influence on the distribution or the magnitude of the stresses in any particular layer. 

The piezoceramic layer remains in compression, while the foil remains in tension, the 

location of zero stress changes somewhat in the steel, and the adhesive is unaffected, due to 

its relatively low extensional modulus. That the piezoceramic remains in compression bodes 

well for there being little potential for tension cracking in the piezoceramic, a characteristic 

of a brittle material.  

( 0, 0≅ ≅x y ) 0, / 2≅ ≅ yx y L

 In addition, the changes in the normal stresses in each layer due to the 

application of electric fields are consistent with the deformations of the actuator. For 

example, when -2 MV/m field is applied, both the x- and y-direction curvatures increase in 

magnitude as seen in Figures 3.18 and 3.19. Consequently, the normal stresses in each layer 

in Figures 3.24 and 3.25 are higher in magnitude and gradient. In contrast, when +2 MV/m 

field is applied, both the x- and y-direction curvatures decrease in magnitude and therefore, 

lessen the magnitude and gradient of normal stresses in each layer.  
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(a) Distribution of Normal Stress in the x-direction near Center, x 0, y 0 ≅ ≅
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(b) Distribution of Normal Stress in the y-direction near Center, x 0, y 0 ≅ ≅

Figure 3.24: Stress distributions in rectangular THUNDER near center when subjected to 
applied electric fields, Ly/Lx = 0.7, Lx/H = 200 
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(a) Distribution of Normal Stress in the x-direction near Edge, x 0, y L≅ ≅ y/2 
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(b) Distribution of Normal Stress in the y-direction near Edge, x 0, y ≅ L≅ y/2 

Figure 3.25: Stress distributions in rectangular THUNDER near midpoint of longer edge 
when subjected to applied electric fields, Ly/Lx = 0.7, Lx/H = 200 
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3.4 Numerical Results for Blocking Forces 

3.4.1 Blocking Forces of THUNDER as a Function of Electric Field Strength 

 As discussed in Chapter 2, with an aid of the supplementary algorithms 

presented in Section 2.4.3, the blocking force of an actuator with pinned-roller and pinned-

pinned supports can be determined. To facilitate discussion of the results from the blocking 

force calculations, it is of value to repeat the physical meaning of blocking forces. For the 

pinned-roller case, Figure 2.6 (a), if the actuator is subjected to an applied electric field and 

is completely fixed at its central point, the blocking force Pbl represents the force that must 
be applied on the two opposite edges at positions ( ) ( ), , 2 ,0, 2= ± −xx y z L H  to fully 

restrain the z-direction deformation at these points. Alternatively, if the actuator is pinned-

roller supported, force Pbl is half of the dead-weight load that the activated actuator can 

carry at the central point and still have no vertical deflection of that point. Analogously, for 

pinned-pinned cases, Figure 2.6 (b), the blocking forces Pbl and Rbl represent the forces that 
must be applied on the two opposite edges at positions ( ) ( ), , 2,0, 2= ± −xx y z L H  to keep 

the positions fixed in both the x and z-directions when the actuator that is fixed at the central 

point is subjected to an electric field. Like the pinned-roller case, force Pbl can also be 

interpreted as half of a dead-weight load that can be placed on the activated actuator at the 

central point such that the point has no net deflections.  

 First, consider rectangular THUNDER actuators with an aspect ratio Ly/Lx = 0.7 

and sidelength-to-thickness ratios of 100 and 200 with shapes given by branch A D′ ′ in 

Figure 3.8. Figure 3.26 shows relations between their blocking forces and applied electric 

field E3. For comparison, predictions when geometric nonlinearities are ignored are 

included. The blocking forces of the THUNDER actuators with both types of supports are 

illustrated in the figure for comparison purposes. From the figure, it is seen that blocking 

forces predicted from the nonlinear theory vary almost linearly with electric field strength. 

Slight nonlinearities of the blocking force vs. electric field relationships can be observed  
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Figure 3.26: Blocking Force vs. Electric Field Relations of Rectangular THUNDER          
(Ly/Lx = 0.7) 
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when the field strength is stronger than ±1 MV/m. For the pinned-roller case, force Pbl for 

the actuator with Lx/H = 200 is approximately two times as large as that with Lx/H = 100 

over the range of electric field strength considered. Indeed, force Pbl seems to be 

proportional to the change in curvature in the x-direction, K ,∆ x due to electrical actuation 

shown in Figure 3.23. There is no force Rbl because the supports can freely move in the x-

direction. The geometrically linear theory predictions are independent on the sidelength-to-

thickness ratios. For the pinned-pinned case, opposite behaviors can be noticed. The value of 

force Pbl for the actuator with Lx/H = 200 is approximately two times smaller than that for an 

actuator with Lx/H = 100. The magnitude of force Rbl for the actuator with Lx/H = 100 is 

very high (around 15 times as high) compared to the value of associated force Pbl. By 

contrast, the magnitude of force Rbl of the actuator with Lx/H = 200 is relatively small. As 

such, associated force Pbl is fairly close to Pbl from the pinned-roller case, for which force 

Rbl is exactly zero. The linear theory predictions of Pbl are again independent of sidelength-

to-thickness ratio. However, the linear theory predictions of Rbl are not; the larger the 

sidelength-to-thickness ratio, the larger force Rbl. In fact, for force Rbl, the force and 

sidelength-to-thickness ratio are linearly proportional.  

 The relations between blocking forces and electric field strength for square 

actuators with Lx/H = 100 and 200 with shapes given by branch in Figure 3.5 are 

illustrated in Figure 3.27. The effects of geometrical nonlinearities on the relations can be 

noticed more easily when the sidelength-to-thickness ratio is increased from 0.7 to 1. Only 

within the range of ±0.5 MV/m can the relations be approximated to be linear. Similarities to 

Figure 3.26 in blocking force behaviors can be observed. Overall, the influence of 

sidelength-to-thickness ratio on the blocking forces of the square actuators is amplified 

when compared to those of the actuators with L

A D′ ′

y/Lx = 0.7 with the same type of support. An 

exception is for force Pbl for the square actuators with pinned-pinned supports, for which the  
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Figure 3.27: Blocking Force vs. Electric Field Relations of Square THUNDER                 
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Figure 3.28: Blocking Force vs. Electric Field Relations of Beam-Like THUNDER               
(Ly/Lx = 0.3)  
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electric field vs. force Pbl relation for Lx/H = 200 and negative field strengths is noticeably 

nonlinear. This causes the reduction in the influence of sidelength-to-thickness ratio.  

 Finally, consider beam-like actuators with an aspect ratio of 0.3 and sidelength-

to-thickness ratios of 100 and 200 with shapes given by branch in Figure 3.9. As 

illustrated in Figure 3.28, the relations of blocking forces vs. electric field strength are quite 

linear over the whole range of ±2 MV/m. The overall behaviors of the relations are similar 

to the results in Figures 3.26 and 3.27. Yet the influence of sidelength-to-thickness ratio on 

the blocking forces of the actuators with the same type of support is reduced for this smaller 

aspect ratio. It must be pointed out that even though the relations seem to be linear, 

geometrically nonlinear effects are still appreciable because all the relations deviate from the 

linear theory predictions. The smallest deviation between linear and nonlinear predictions is 

for force P

A D′ ′

bl of the actuator with pinned-roller supports and Lx/H = 100. Actually, this makes 

sense, since when considering Figures 3.9 and 3.22, the manufactured and actuated 

curvatures of the actuator with Lx/H = 100 are very close to the ones predicted by the linear 

theory (represented by the horizontal lines tangent to points A′ ,  and ). For the 

pinned-pinned case there are differences between the predictions of the linear theory and 

those of the nonlinear theory. These occur as a result of the large magnitude of R

PA , NA

bl 

(approximately ten times as high as that of associated force Pbl) that is required to restrain 

the x-direction deformation at the support, this restraint, coupled with geometric 

nonlinearities, thereby altering the structural stiffness of the curved actuator.  

3.4.2 Blocking Forces of THUNDER as a Function of Sidelength-to-Thickness Ratio: 
Pinned-Roller Case 

 Relations of the blocking forces vs. sidelength-to-thickness ratio are quite 

informative. These relations not only show variations of load-carrying capability as a 

function of actuator geometry, but also provide information as to how to select an actuator to 

meet both the actuation displacement and load-carrying capability requirements.  
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 Figure 3.29 illustrates the relations between blocking force Pbl and sidelength-

to-thickness ratio for pinned-roller supported THUNDER actuators with an aspect ratio of 

0.7 with shapes given by branch A D′ ′ in Figure 3.8 and subjected to ±2 MV/m. For both the 

+2 MV/m and -2 MV/m field strengths, the ordinate axis is normalized by a blocking force 

of a THUNDER actuator with Lx/H approaching zero, the result for the geometrically linear 
theory. Therefore, at very small values of sidelength-to-thickness ratio ( )0 3< <xL H 0 , the 

normalized values of Pbl for ±2 MV/m are approximately equal to one. When the value of 

Lx/H increases, the normalized relation for Pbl for +2 MV/m separates from the normalized 

relation for -2 MV/m, but the relations have similar trends. Indeed, this somewhat indicates 

the degree of nonlinearities induced by electric field strength. If the relations resulting from 

±2 MV/m coincided, then the relation between the blocking force and electric field strength 

would be linear. On the other hand, if the relations are separated from each other, the more  
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Figure 3.29: Blocking Force vs. Sidelength-to-Thickness Ratio Relations of Pinned-Roller 
Supported Rectangular THUNDER (Ly/Lx = 0.7)   
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they separate the more nonlinear should be the relations observed. In the range of 

30 130< <xL H , both normalized relations for Pbl decrease and are less than one. In 

actuality, the same phenomenon can be seen in Figure 3.18, where the change in curvature 

due to +2 MV/m is different than change in curvature due to -2 MV/m (the vertical distance 

from branch  to , and ). These differences are a function of sidelength-to-

thickness ratio. Also, the changes in curvature in the x-direction in the region 

A D′ ′ P PA D N NA D

30 130< <xL H  decrease and are less than those in the region 0 3< <xL H 0 . The 

minimum values of Pbl for ±2 MV/m field strengths occur around Lx/H = 130, where the 

changes in actuated curvatures shown in Figure 3.18 are also lowest. These behaviors 

evidently show the proportionality between a change in curvature due to an application of 

electric field and blocking force for the pinned-roller support case. Also at the sidelength-to-

thickness ratio of 130, the separation of the normalized values of Pbl for ±2 MV/m is largest 

(difference of 0.2). When Lx/H > 130, the normalized blocking force increases and the 

separation gap between ±2 MV/m cases reduces. It should be noted here that in the region 

where 135 150< <xL H , the normalized blocking force for -2 MV/m cannot be obtained by 

the algorithm presented in Section 2.4.3 because the algorithm fails to converge. This occurs 

because it is believed that actuators with Lx/H in this range will snap to another equilibrium 

configuration. However, this phenomenon does not arise when the actuators are subjected to 

+2 MV/m, since geometrically nonlinear effects are reduced slightly, as discussed in Section 

3.3.1, such that this rules out the possibility of the actuators snapping to another 

configuration. When the sidelength-to-thickness ratio is large enough (Lx/H > 200), the 

normalized values of Pbl are larger than one. The blocking force relations predicted by the 

geometrically linear theory, Pbl,lin, are also illustrated in the figure. The prediction exhibits 

constant blocking forces for ±2 MV/m ( 0.735 N, respectively) regardless of sidelength-to-

thickness ratio and therefore are drawn as coincident horizontal lines with values equal to 

one. The signs of all the blocking forces resulting from both linear and nonlinear theories are 

∓
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consistent with the predicted curvature changes of Figure 3.18. Specifically, without 

blocking forces the free edges of the actuator will move up (down) due to a curvature 

decrease (increase) when the positive (negative) electric field is applied, and thus negative 

(positive) blocking forces are required to hold the support positions fixed. Finally, it is very 

important to note that according to Figure 3.29, designing a pinned-roller supported 

THUNDER actuator in the region of 30 200< <xL H  results in an actuator with less 

blocking force than a counterpart flat actuator with the same stacking material sequence and 

dimensions. Such a flat actuator, which can be approximately modeled by the linear theory, 

is predicted to perform the task better, since its normalized blocking force is one, whereas 

the dashed and solid lines in Figure 3.29 are considerably less than one. 

 Analogous to Figure 3.29, Figure 3.30 illustrates the relations between the 

blocking force and sidelength-to-thickness ratio for pinned-roller supported THUNDER 

actuators with an aspect ratio of one subjected to ±2 MV/m. Equilibrium manufacturing 

configurations of the THUNDER actuators considered in this case have shapes given by 

stable branch A B  shown in Figure 3.5. Again, the vertical axis of the plot is normalized 

by the blocking forces of the same actuators for ±2 MV/m predicted by the geometrically 

linear theory. In general, the relations in Figure 3.30 have very similar behaviors to those in 

Figure 3.29. Behavior predicted by the linear theory occurs when L

D′ ′ ′

x/H is small, as the values 

of normalized blocking forces for ±2 MV/m are approximately equal to one. However, the 

range of Lx/H for which the linear theory is valid is shorter than that of the actuators with an 

aspect ratio of 0.7 because it covers the range of 0 25< <xL H . When 25>xL H , the 

normalized blocking force decreases rapidly. For -2 MV/m, the normalized value of Pbl 

reaches the minimum value close to zero at Lx/H = 110, while for +2 MV/m, the normalized 

value of Pbl has the lowest value of 0.15 at Lx/H = 120. Note that unlike the smoothly 

changing slope in Figure 3.29, where the blocking force is a minimum for +2 MV/m, there is 

a slope discontinuity at the minimum blocking force on the plot of normalized Pbl vs. Lx/H  
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 Figure 3.30: Blocking Force vs. Sidelength-to-Thickness Ratio Relations of Pinned-Roller 
Supported Square THUNDER (Ly/Lx = 1) 

for +2 MV/m illustrated in Figure 3.30. This discontinuity in slope occurs due to the 

immediate change in curvature at bifurcation point B′  in Figure 3.5. After the minimum 

points, the normalized blocking force increases monotonically in relation to the increase of 

sidelength-to-thickness ratio and exceeds the value of one around Lx/H = 160 (compared to 
Lx/H = 200 for THUNDER with 0.7=y xL L ). Again, the algorithm failed to converge for 

the -2 MV/m case in the range of 110 130< <xL H . Additionally, like the case of the aspect 

ratio of 0.7, the blocking forces predicted by the linear theory, Pbl,lin, are independent of the 

actuator sidelength-to-thickness ratio, so they are represented by straight horizontal lines 

with the unit value. The force Pbl,lin of the square actuator is equal to 0.961 N for ±2 

MV/m, respectively. Compared with the pinned-roller supported THUNDER actuators with 

L

∓

y/Lx = 0.7, the pinned-roller supported square ones have 30.7% higher blocking force based 
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on the linear theory, and they are 42.9% larger in terms of size. Like actuators with aspect 

ratio 0.7, as discussed in Figure 3.29, it can be stated that designing a square pinned-roller 

supported THUNDER actuator in the region of 25 160< <xL H  results in an actuator with 

less blocking force than a counterpart flat actuator with the same stacking material sequence 

and dimensions. 

 Now, consider pinned-roller supported THUNDER actuators subjected to ±2 

MV/m field strength with an aspect ratio of 0.3. The manufactured shapes of the actuators 

are given in Figure 3.9. Shown in Figure 3.31 are relations between the normalized blocking 

force and sidelength-to-thickness ratio. When Lx/H 70,< the relations can be approximated 

by the geometrically linear theory very well. This linear region is the largest of all for three 

aspect ratios considered because of the weak geometrical nonlinearity associated with the 

beam-like configuration. When Lx/H  the normalized blocking force decreases 

gradually and reaches the lowest value at L

70,>

x/H = 250. Similar to that of aspect ratio 0.7, the 

blocking force separation for the positive and negative fields is maximal at the lowest value 

of blocking force. The lowest normalized values of Pbl for ±2 MV/m are 0.6 and 0.45, 

respectively. Unlike the actuators with aspect ratios of 0.7 and 1, the actuators with an 

aspect ratio of 0.3 have no evidence of blocking force enhancement for the pinned-roller 

support case within the considered range of sidelength-to-thickness ratio. The value of Pbl 

predicted from the geometrically nonlinear theory is usually lower than ones predicted from 

the linear theory, a theory associated with a flat actuator. Since a transformation between 

multiple equilibrium states is not an issue for the beam-like actuators, there does not appear 

to be any range of Lx/H for which snap-through would occur. The linear theory predicts 

Pbl,lin to be 0.331 N for ±2 MV/m field strength, respectively. The value of P∓ bl,lin in this 

case is lower than the linearly predicted value for an aspect ratio of 0.7 by 55.0%, while the 

active area of the beam-like actuator is less than that of the rectangular one by 57.1%. 

Additionally, it can be noted that because of the comparatively small aspect ratio, it 
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Figure 3.31: Blocking Force vs. Sidelength-to-Thickness Ratio Relations of Pinned-Roller 
Supported Beam-Like THUNDER (Ly/Lx = 0.3) 

is interesting to compare the blocking forces in Figure 3.31 with the ones computed from the 

nonlinear and linear beam theories developed in Appendix B. By utilizing Equation (B.41) 

or (B.67), and setting the relative transverse deflection, w0, due to ±2 MV/m field strength to 

be zero at 2xx L= ± , the blocking force predictions based on beam theory can be solved for 

and found to be 0.326 N for ∓ ± 2 MV/m, respectively. These blocking forces are 

independent of the sidelength-to-thickness ratio, like those predicted from the geometrically 

linear theory illustrated as the dotted line in Figure 3.31.  

3.4.3 Blocking Forces of THUNDER as a Function of Sidelength-to-Thickness Ratio: 
Pinned-Pinned Case 

 In this section, blocking forces of an actuator with pinned-pinned supports as a 

function of sidelength-to-thickness ratio are taken into consideration. Illustrated in Figure 
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3.32 are relations of blocking forces Pbl and Rbl for ±2 MV/m for a THUNDER actuator with 

an aspect ratio of 0.7. The influence of restraining the motion in the x-direction is evidently 

strong because the normalized Pbl relations shown in Figure 3.32 are totally different from 

those shown in Figure 3.29. The ordinate axis of the plot illustrating the behavior of force 

Rbl for +2 MV/m and -2 MV/m is normalized by the value of Rbl predicted by the 

geometrically linear theory (Rbl,lin) for +2 or for -2 MV/m, respectively. When the 

sidelength-to-thickness ratio is less than 10, both normalized values of Pbl and Rbl coincide 

with the linear predictions. As the sidelength-to-thickness ratio increases, the normalized 

values of Pbl deviate from the linear predictions and increase moderately in magnitude, 

while values of Rbl are still in agreement with the linear predictions and increase 

considerably in magnitude. The deviation of Pbl from the linear theory occurs at a lower 

value of Lx/H compared to Figure 3.29 because the magnitude of the associated force Rbl is 

relatively large and changes the structural stiffness of the actuator in a manner not 

represented by the linear theory. The normalized values of Pbl and Rbl reach their peak 

within the region 90 120,< <xL H  and then decrease monotonically as Lx/H increases 

further. Note that for sidelength-to-thickness ratios between 120 and 165, the blocking 

forces of the actuators subjected to the application of -2 MV/m electric field strength are not 

shown. A lack of solution algorithm convergence, as discussed in connection with in Figures 

3.29 and 3.30, again occurs, When 200≅xL H , the values of Rbl are equal to zero, and thus 

the values of Pbl in Figure 3.32 are identical to those in Figure 3.29. As Lx/H increases 

beyond 200, the normalized values of Rbl change sign. In the other words, force Rbl changes 

direction. According to Figures 3.32 and 3.29, except when 200>xL H , the value of Pbl for 

the pinned-pinned supported actuators is higher than that for the pinned-roller supported 

actuators. This occurs because when 200<xL H , the direction of Rbl favors the magnitudes 

of Pbl, namely the load-carrying capability in the vertical direction. However, when 

normalized values of Rbl are negative, the load carrying capability in the vertical direction is  
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Figure 3.32: Blocking Force vs. Sidelength-to-Thickness Ratio Relations of Pinned-Pinned 
Supported Rectangular THUNDER (Ly/Lx = 0.7) 
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deteriorated. Indeed, the differences of the blocking force results between the two types of 

support conditions are attributed to effects of the manufactured curvatures of the actuators 

that are not attainable by a flat actuator. The predictions of Pbl,lin from the linear theory again 

reveal values independent of sidelength-to-thickness ratio, i.e., 1.016 N for ±2 MV/m. The 

values of P

∓

bl,lin are greater than the linear values of the forces for the pinned-roller case by 

38.2%. However, the values of Rbl,lin are dependent on sidelength-to-thickness ratio. As can 

be inferred from the lower portion of Figure 3.32, without the normalization factor Rbl,lin 

force Rbl for ±2 MV/m is a linear function of Lx/H with a slope of ±0.273 N, respectively. 

 As a comparison with Figure 3.32 and for an examination of the influences of 

aspect ratio, Ly/Lx, on blocking forces of pinned-pinned supported actuators, the values of Pbl 

and Rbl for square and beam-like (Ly/Lx = 0.3) actuators as a function of sidelength-to-

thickness ratio are illustrated in Figure 3.33 and 3.34, respectively. Considering Figure 3.33, 

the overall relations are very similar to the ones in the Figure 3.32 except for the unusual 

behavior, i.e., the slope discontinuity in the relations, that appears at Lx/H = 120. This 

behavior corresponds to bifurcation point B′  on branch A B D′ ′ ′  in Figure 3.5. It should be 

noted that at Lx/H 160, the normalized values of R≅ bl are zero and they change direction 

(sign) when Lx/H is larger. It should be noted that this occurred at Lx/H 200 for aspect 

ratio of 0.7. Therefore, for sidelength-to-thickness ratios less than 160, the values of P

≅

bl for 

pinned-pinned case are always higher than the values of Pbl for pinned-roller case because 

the direction of Rbl is beneficial and enhances the load-carrying capability in the vertical 

direction. Beyond Lx/H = 160, the converse results are predicted, since the direction of Rbl 

generates an adverse effect on the load-carrying capability. Additionally, the geometrically 

linear theory predicts Pbl,lin to be constant over the considered sidelength-to-thickness ratios, 

i.e., 1.3 N for ±2 MV/m, respectively. The values of P∓ bl,lin for this case are higher than the 

values Pbl,lin of the pinned-pinned supported actuator with an aspect ratio of 0.7 by 28.0%, 

while the actuators in this case are larger than those of the previous case by 42.9%.  
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Figure 3.33: Blocking Force vs. Sidelength-to-Thickness Ratio Relations of Pinned-Pinned 
Supported Square THUNDER  
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Figure 3.34: Blocking Force vs. Sidelength-to-Thickness Ratio Relations of Pinned-Pinned 
Supported Beam-Like THUNDER (Ly/Lx = 0.3) 
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Furthermore, by adding restraint in the x-direction at the support points, the values of Pbl,lin 

are increased by 35.3% compared to the pinned-roller square actuator case of Figure 3.30. 

For the linear theory, the slope of the relation between values of Rbl,lin and sidelength-to-

thickness ratio is 0.328 N, which is 20.1% increase from the case of aspect ratio 0.7. 

 Lastly, the relations of blocking forces vs. sidelength-to-thickness ratio for 

pinned-pinned supported THUNDER actuators with an aspect ratio of 0.3 are considered in 

Figure 3.34. Similar to the relations in Figures 3.32 and 3.33, the normalized values of Pbl 

are in good agreement with the linear predictions for small sidelength-to-thickness ratios 

(less than 10). Beyond Lx/H = 10, the normalized values of Pbl deviate from the horizontal 

line representing the linear blocking force prediction, Pbl,lin. Nonetheless, for Lx/H < 30, the 

normalized values of Rbl agree well with the normalized values of Rbl,lin as predicted by the 

linear theory. Note that for this aspect ratio the values of Rbl do not change sign as they did 

for the other two aspect ratios discussed. Consequently, the direction of Rbl will always 

enhance Pbl, which in turn results in it always being larger than Pbl for the pinned-roller case 

in Figure 3.31. The geometrically linear theory predicts the values of Pbl,lin to be 0.494 N 

for ±2 MV/m, respectively. These values are 51.4% less than the values of P

∓

bl,lin for the 

pinned-pinned supported actuator with an aspect ratio of 0.7, while the active area of the 

actuators in this case is less than the case with an aspect ratio of 0.7 by 57.1%. Moreover, by 

adding restraint in the x-direction at the support points, the values of Pbl,lin are increased by 

49.2%, compared to the values for the pinned-roller case cited in Figure 3.31. For the linear 

theory, the slope of the relation between Rbl,lin and sidelength-to-thickness ratio is 0.161 N, 

which is a 41.0% decrease from the case of the actuators with pinned-pinned supports and 

aspect ratio 0.7. 

3.4.4 Blocking Forces of THUNDER as a Function of Electric Fields: Non-convergence 

 Before closing Chapter 3, more details of the missing sections of the solid lines 

in the relations between the blocking force at -2 MV/m and sidelength-to-thickness ratio in 
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Figures 3.29, 3.30, 3.32 and 3.33 should be discussed. As an example, the relations for the 

THUNDER actuators with an aspect ratio of 0.7 in Figures 3.29 and 3.32 are selected for the 

examination. Seen in Figures 3.35 and 3.36 are the blocking forces Pbl, and Pbl and Rbl, for 

pinned-roller and pinned-pinned cases, respectively, as a function of electric field strength. 

The abscissa axis is for negative electric field strength so more focus can be put on the lack 

of convergence of the solution algorithm for the pinned-roller supported and pinned-pinned 

supported actuators in the region of 135 150< <xL H  and 120 165< <xL H , respectively. 

Therefore, sidelength-to-thickness ratios presented in the figures are chosen to be 135, 

137.5, 140, 142.5, 145, 147.5, and 150 for the pinned-roller case, and 120, 127.5, 135, 

142.5, 150, 157.5, and 165 for the pinned-pinned case. 

 Seen in Figure 3.35 are the values of Pbl for the pinned-roller case over the range 

135 150< <xL H  as a function of electric field strength. The symbol ‘× ’ marks the point 

where lack of convergence begins as the magnitude of electric field strength increases. 

Obviously, the sidelength-to-thickness ratios which result in a lack of convergence are 

strongly coupled with the minimum applicable electric field strengths. At Lx/H = 135, force 

Pbl can be solved for with a negative electric fields of magnitude 2 MV/m. With Lx/H > 135, 

if a negative electric field stronger than 2 MV/m in magnitude is applied to the actuators, 

then the relations between Pbl and the applied electric field cannot be solved by using the 

algorithm presented in Chapter 2. Thus, with Lx/H > 135, under the solvability condition, if 

the negative electric field strength increases in magnitude to more than 2 MV/m, then an 

envelop of solvability starts to develop. However, when the sidelength-to-thickness ratio 

reaches a value within 142.5 145< <xL H , the maximum magnitude applicable electric 

field strengths stop decreasing, and the envelope turns back to higher magnitude electric 

field strengths. Not until Lx/H = 150 does the maximum magnitude negative electric field 

strength does return to be 2 MV/m and the solvability of force Pbl is possible over the 

remaining range of the sidelength-to-thickness ratios considered. The envelop also implies  
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Figure 3.35: Blocking Force vs. Electric Field Strength Relations of Pinned-Roller 
Supported Rectangular THUNDER (Ly/Lx = 0.7) in Non-converging Region 

that there are families of plots similar to Figure 3.29 for any other electric field strengths 

with varying unsolvable regions of blocking force. For instance, for an applied electric field 

of 1.7 MV/m, the unsolvable region will be within − 142.5 145,xL H< <  as clearly 

indicated in Figure 3.35.  

 A similar conclusion can be made from Figure 3.36, in which relations between 

blocking forces Pbl and Rbl and electric field strength for the pinned-pinned case in the 

region 120 165< <xL H  are illustrated. Compared to the relations for the pinned-roller case 

in Figure 3.35, the values of Pbl and Rbl for the pinned-pinned case are related to electric 

field strength in a more linear fashion. Additionally, the envelope of non-converging values 

Pbl is narrower; thus it is more difficult to be detected. This is because the actuators with 

pinned-pinned supports are much stiffer structurally than the actuators with pinned-roller  
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Figure 3.36: Blocking Force vs. Electric Field Strength Relations of Pinned-Pinned 
Supported Rectangular THUNDER (Ly/Lx = 0.7) in Non-converging Region 
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supports, so the blocking force Pbl in Figure 3.36 is less sensitive to a sidelength-to-

thickness ratio. In contrast, the envelope of unsolvable Rbl is more observable than that of 

Pbl. Finally, it should be pointed out that at the same value of sidelength-to-thickness ratios, 

the applied electric fields corresponding to the minimum applicable blocking forces for the 

pinned-pinned case are lower than those for the pinned-roller case. This is again due to the 

increased structural stiffness and larger blocking forces that actuators with pinned-pinned 

supports possess, and as a result, more tendency to snap to other configurations.  

3.5 Chapter Summary 

 

 In this chapter, the numerical results for cooled and manufactured shapes of 

THUNDER-type actuators are first presented. Without tabs, the model presented in Chapter 

2 was shown to have a good agreement with the finite-element results obtained using 

ABAQUS. The Rayleigh-Ritz model was shown to have several formulative and 

computational advantages over finite-element analysis. These advantages include simplicity 

of formulation, much less computational time, and potentially relative ease of extending the 

model to include piezoelectric-induced deformations and computing blocking forces. This is 

in contrast to ABAQUS, which, as the code is presently configured, requires a three-

dimensional analysis to model the piezoelectric-induced deformations, several calculation 

steps, and difficulties in obtaining multiple solutions directly. The results indicate that the 

predicted shapes for square and rectangular THUNDER actuators strongly depend on 

cooling temperature and sidelength-to-thickness ratio because of geometrically nonlinear 

effects. This is interpreted to mean that for values of cooling temperature and sidelength-to-

thickness ratio greater than the critical value (bifurcation or limit point), a THUNDER 

actuator exhibits multiple shapes. Two of the shapes are stable and, in general, near 

cylindrical. The remaining shape is dome-like and unstable. The Rayleigh-Ritz model is able 

to predict the multiple equilibrium shapes quite easily. On the other hand, ABAQUS always 
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converges to one equilibrium shape and has to be coaxed to obtain the remaining solutions. 

The existence of a critical value of sidelength-to-thickness ratio suggests that care should be 

taken when designing rectangular THUNDER actuators. Indeed, two similar but slightly 

different rectangular THUNDER actuators that are each manufactured with a geometry that 

is very close to the critical value may behave quite differently, depending on whether Lx/H is 

slightly less than or slightly greater than the critical value. The snap-through behavior 

between two stable equilibrium states of THUNDER actors due to applied edge moments 

was also discussed. The behavior indicates the magnitude and direction of the snapping 

moments. Also the effects of tabs for actuator fastening proposes were investigated. The 

effects of tabs on the general characteristics of square THUNDER actuators are more 

obvious than those of rectangular ones. Rather than the appearance of a bifurcation point as 

with square actuators without tabs, a limit point emerges instead for square actuators with 

tabs. Generally, the presence of tabs in THUNDER actuators increases the critical 

sidelength-to-thickness ratios.  

 In addition, the results of extension of the Rayleigh-Ritz model to predict the 

actuation response at service temperature of rectangular THUNDER actuators were 

presented. The average curvature change caused by piezoelectric actuation is a function of 

the sidelength-to-thickness ratio of actuators. The average curvature in the x-direction does 

not necessary change the same amount as the average curvature in the y-direction. This is 

due to geometrically nonlinear effects. As observed in Figures 3.18 and 3.21, For 

THUNDER actuators with aspect ratios of 0.7 and 1, the x-direction actuation responses on 

branch are enhanced when their sidelength-to-thickness ratios are relative large (LA D′ ′ x/H 

approximately more than 150). In contrast, as observed in Figure 3.22, there is no 

enhancement in the actuation response in the x-direction on branch of THUNDER 

actuators with an aspect ratio of 0.3 due to their beam-like configuration. However, 

suppression of the y-direction actuation responses on branch A D

A D′ ′

′ ′  is clearly noticeable for 
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the THUNDER actuators with the three aspect ratios considered. Figure 3.23 is quite 

revealing. It shows that the relationship between the change in average curvatures and the 

applied electric field for THUNDER actuators with an aspect ratio of 0.7 and Lx/H = 200 

and 100 is rather linear. Due to enhancement of geometrically nonlinear effects, the change 

in the x-direction average curvature for Lx/H = 200 is more than that for Lx/H = 100.  

 Finally, the blocking force predictions from the extension of the Rayleigh-Ritz 

model used to predict cooled shapes and actuated shapes of THUNDER-type actuators were 

presented. All numerical results of the blocking forces are computed based on manufactured 

shapes given by branch  and their associated actuated shapes given by branches 

and , as illustrated in Figures 3.18, 3.21, and 3.22, for THUNDER actuators 

subjected to +2 MV/m and -2 MV/m, respectively. For equivalently pinned-roller supported 

THUNDER actuators with aspect ratios of 0.3, 0.7, and 1, blocking force P

A D′ ′

P PA D N NA D

bl is normally less 

than those of the counterpart flat actuators except for THUNDER actuators with aspect 

ratios of 0.7 and 1, and sidelength-to-thickness ratios larger than 200 and 160, respectively. 

In actuality, for the pinned-roller case this indicates some degree of proportionality between 

a change in the x-direction curvature due to an application of electric field and a blocking 

force Pbl. Over the sidelength-to-thickness ratio for which the actuation response is 

suppressed (or enhanced) relative to the linear prediction, the blocking force Pbl will 

decrease (or increase) relative to the linear prediction. For equivalently pinned-pinned 

supported THUNDER actuators, the existence of force Rbl strongly influences the magnitude 

of blocking force Pbl, since the comparatively large magnitude of force Rbl alters the 

structural stiffness of THUNDER actuators. The direction of Rbl increases the magnitude of 

Pbl for the pinned-pinned case in the region of the sidelength-to-thickness ratio that force Pbl 

for the pinned-roller case is less than the linear predictions.  Oppositely, the direction of Rbl 

reduces the magnitude of Pbl for the pinned-pinned case in the region of the sidelength-to-

thickness ratio that force Pbl for the pinned-roller case is more than the linear predictions. 
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Consequently, in order to design an actuator to carry a transverse load or an inplane normal 

load, a careful analysis on actuator performance should be conducted, since its service-

temperature shape and support type have very strong effects on the actuator capability. Each 

specific actuator configuration has its own advantages over others in a specific task and 

operating condition.      

 In the next chapter, the numerical results of characteristics of LIPCA-C1 

actuators will be presented, analogous to those of THUNDER actuators discussed in this 

chapter. Shape and associated stress predictions of LIPCA-C1 actuators at service 

temperature due to the manufacturing process and an application of a quasi-static electric 

field will be given. Equilibrium and stability of the calculated shapes will be determined. In 

some selected problems, validity of the Rayleigh-Ritz model with an incorporation of 

composite material layers will be examined by the ABAQUS model. Blocking forces of 

LIPCA-C1 actuators with two different support types, i.e., pinned-roller and pinned-pinned 

supports will be presented in relation to electric field strength and sidelength-to-thickness 

ratios.   
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Chapter 4 

NUMERICAL RESULTS OF LIPCA-C1 CHARACTERISTICS  

4.1 Introduction 

 

 This chapter presents shape predictions of rectangular LIPCA-C1 actuators by 

employing the energy-based Rayleigh-Ritz approach with the incorporation of the 

constitutive equations for composite layers, as discussed in Chapter 2. The manufactured 

shapes of the actuators are computed as a function of sidelength-to-thickness ratio. 

Predictions of ABAQUS models are correlated with those of the Rayleigh-Ritz approach for 

selected problems. Actuated shapes of the rectangular LIPCA-C1 actuators are also 

calculated by utilizing the modified Rayleigh-Ritz model with the inclusion of 

piezoelectrically-induced strains. Finally, blocking forces of the LIPCA-C1 actuators 

subjected to the application of an electric field with pinned-roller and pinned-pinned 

supports are calculated and discussed. 

4.2 Numerical Results for Manufactured Shapes 

4.2.1 Deformation Characteristics of LIPCA-C1 Actuators without Tabs 

 To illustrate the results of LIPCA-C1 actuators predicted by the energy-based 

Rayleigh-Ritz model presented in Section 2.2.2, consider a rectangular LIPCA-C1 actuator 

without tabs consisting of 4 layers, as illustrated in Figure 1.12. The LIPCA-C1 design 

utilized two layers of glass-epoxy on the bottom and a unidirectional carbon-epoxy layer 

with its fibers in the x-direction as the top layer. The glass-epoxy layers have the same 

elastic properties in the x- and y-directions, so in a limited sense are isotropic in orientation  
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Table 4.1: LIPCA Material Properties 

 
Properties Carbon-epoxy PZT-5H Glass-epoxy 

Thickness ( )mµ  100.0 250.0 90.0 

1E  ( )  GPa 231.2 67.0 21.7 

2E  ( )  GPa 7.2 67.0 21.7 

12G  ( )  GPa 4.3 25.57 3.99 

12ν  0.29 0.31 0.13 

( )6
1 10 / Cα − °  -1.58 3.0 14.2 

( )6
2 10 / Cα − °  32.2 3.0 14.2 

( )12
31 10 m/V−d  - -190 - 

  

used. The piezoceramic material is sandwiched between the two composite layers. The 

curing temperature of the epoxy matrix is taken to be 167 . The end of the cooling process 

is when temperature is equal to the room temperature of 25 . Thus , which was 

defined in Equation (3.2), is equal to -142 . In the following analyses, the material 

properties and thicknesses of the layers are taken from Yoon et al [33], and they are given 

here in Table 4.1. It should be kept in mind that for a given value of sidelength-to-thickness 

ratio, a LIPCA-C1 actuator is longer in the x-direction than a THUNDER actuator with the 

same sidelength-to-thickness ratio due to the larger value of H for the LIPCA-C1 cross 

section. (For THUNDER H = 0.427 mm, for LIPCA-C1 H = 0.530 mm.) 

C°

C° ∆T

C°

 Figure 4.1 illustrates the relations between average curvature and sidelength-to-

thickness ratio of LIPCA-C1 actuators with an aspect ratio of 0.7. As seen in the figure, the 

room-temperature curvature in the x-direction depends little on the sidelength-to-thickness 

ratio, and the curvature prediction is close to the geometrically linear value, which is shown 

as the dotted horizontal straight line tangent to point A′ . Geometrically nonlinear effects 

neither suppress nor enhance the room-temperature curvature to any significant degree. By 

way of contrast, the y-direction room-temperature curvature is influenced by geometrically 

nonlinear effects and is a strong function of sidelength-to-thickness ratio. Unlike the  

128 128



 

Lx/H
0 50 100 150 200

-Κ
x 
 (m

-1
)  

-6

-5

-4

-3

-2

-1

0

23−term approx. 
ABAQUS 

Geometrically Linear Theory

A' D'

 

Lx/H
0 50 100 150 200

-Κ
y 
 (m

-1
)  

-6

-5

-4

-3

-2

-1

0

23−term approx.
ABAQUS 

Geometrically Linear Theory

A'

D'

 

Figure 4.1: Sidelength-to-Thickness Ratio vs. Curvature Relations of Rectangular LIPCA-
C1 (Ly /Lx = 0.7, ∆T C= -142° ) 
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THUNDER actuators with an aspect ratio of 0.7, as illustrated in Figure 3.8 and discussed in 

Section 3.2.1, there are no multiple equilibrium branches of LIPCA-C1 actuator shapes over 

the range of sidelength-to-thickness ratios considered. Also the room-temperature curvatures 

in the two directions are not equal over the considered range, the curvature in the y-direction 

being somewhat less than half the value of the curvature in the x-direction for sidelength-to-

thickness ratios less than 50. This is believed to occur because of the inplane elastic property 

orthotropy of the carbon-epoxy layer. For larger sidelength-to-thickness ratios, nonlinear 

effects make the y-direction curvature even smaller than the x-direction curvature. The 

suppression of the y-direction room-temperature curvature with increasing sidelength-to-

thickness ratio is similar to the behavior of THUNDER actuators on branch in Figure  A D′ ′

 

(a) 23-term Rayleigh-Ritz, Lx/H = 100 

  (b) 23-term Rayleigh-Ritz, Lx/H = 200                    (c) ABAQUS, Lx/H = 200 

Figure 4.2: Equilibrium Shapes of Rectangular LIPCA-C1 (Ly/Lx = 0.7, = -142° ) ∆T C
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3.8. Also in Figure 4.1, the average room-temperature curvatures as predicted by the 23-term 

Rayleigh-Ritz model are compared with those predicted by the finite-element model from 

ABAQUS, and the comparison is good. The room-temperature shapes of rectangular 

actuators with Ly/Lx = 0.7 and Lx/H = 100 and 200 are illustrated in Figure 4.2. As seen, for 

actuators with the same thickness H, the x-direction curvature for Lx/H =100 is less 

pronounced than that for Lx/H = 200, despite the values of their x-direction curvatures being 

almost equal. This is because the actuator with Lx/H =100 is a factor of two shorter than one 

with Lx/H =200. In addition, the curvatures in the y-direction are difficult to detect due to 

their smaller magnitudes and the smaller y-dimension compared to the x-dimention. Figures 

4.2 (b) and (c) also depict the comparison of the room-temperature shape of the actuator 

with a sidelength-to-thickness ratio of 200 between the 23-term Rayleigh-Ritz and 

ABAQUS models. Again the comparison shows a very good agreement in the manufactured 

shape prediction. The very good correlations between the numerical results predicted from 

the developed 23-term Rayleigh-Ritz model incorporating the composite material layers and 

the finite-element model provide the validity of the former model. Therefore, the 23-term 

Rayleigh-Ritz model will be used to study other LIPCA-C1 characteristics with a high 

degree of confidence.  

 Considering square LIPCA-C1 actuators, the relationships between the 

sidelength-to-thickness ratio and the average room-temperature curvatures are illustrated in 

Figure 4.3. Overall, the relationships are very similar to the ones in Figure 4.1. Specifically, 

as can be seen, the x-direction room temperature curvature is still almost independent of 

sidelength-to-thickness ratio, like that of the actuators with Lx/H = 0.7. However, stronger 

geometrically nonlinear effects due to longer dimension Ly for the square actuators can be 

readily observed from the y-direction curvature in Figure 4.3, where the curvature is 

suppressed when the sidelength-to-thickness ratio is larger than 30. The suppression of the 

curvature in the y-direction is substantial for values of Lx/H > 150. The key reason for the 
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Figure 4.3: Sidelength-to-Thickness Ratio vs. Curvature Relations of Square LIPCA-C1  
( ∆T C= -142° ) 
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value of the x-direction curvature barely changing and value of the y-direction curvature 

changing significantly is that geometrically nonlinear effects have stronger influence on the 

curvature with the smaller magnitude. Nonlinear effects will notably suppress the curvature 

with the smaller magnitude and only slightly suppress or even enhance the curvature with 

the larger magnitude. Also, the fiber direction of the carbon-epoxy layer is aligned 

longitudinally (along the x-direction), so the actuator is much stiffer in the x-direction than 

in the y-direction. The curvature in the x-direction is thus less susceptible to geometrically 

nonlinear effects than the y-direction curvature.  

 Finally, the influence of sidelength-to-thickness ratio on the room-temperature 

curvatures of a beam-like LIPCA-C1 actuator with an aspect ratio of 0.33 is illustrated in 

Figure 4.4. Note that the value of 0.33 is chosen because it is the value of the aspect ratio 

investigated by Yoon et al [33] in their work on LIPCA actuators. With Ly/Lx = 0.33, both 

the geometry and material ‘favor’ the x-direction. Like the results show in Figures 4.1 and 

4.3 for aspect ratios Ly/Lx = 0.7 and 1, respectively, for the beam-like LIPCA-C1 actuator the 

room-temperature curvature in the x-direction is virtually insensitive to sidelength-to-

thickness ratios. The y-direction room temperature is smaller by approximately a factor of 

two for short actuators, and gradually decreases as Lx/H increases, but not as much as for the 

other two aspect ratios studied. This indicates weaker effects of geometrical nonlinearities 

on the actuator shape characteristic, primarily because the dimension in the y-direction is 

small. Overall, except for magnitude and sign, the general characteristics of the curvature vs. 

sidelength-to-thickness ratio relations for the beam-like LIPCA-C1 actuators are similar to 

those of beam-like THUNDER actuators in Figure 3.9. Identical to the case of the aspect 

ratios of 0.7 and 1, the geometrically linear Rayleigh-Ritz model predicts spatially uniform 
x- and y-direction curvatures, Κ x = 4.06 m-1 and Κ y = 1.69 m-1. Additionally, since the 

LIPCA-C1 actuators with Ly/Lx = 0.33 are beam-like, the x-direction curvature of the 

actuators can be computed from either geometrically nonlinear or linear laminated beam  
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Figure 4.4: Sidelength-to-Thickness Ratio vs. Curvature Relations of Beam-like LIPCA-C1  
(Ly/Lx = 0.33, ∆T C°= -142 ) 
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models, as derived in Appendix B. Specifically, by using Equation (B.36) or (B.65), Κ x = 

4.31 m-1, a constant over the range of sidelength-to-thickness ratios considered. This value is 

only around six percent different from the geometrically linear Rayleigh-Ritz model 

calculation. However, neither the geometrically linear Rayleigh-Ritz model nor either of the 

beam models is capable of accurately capturing the curvature in the y-direction over the 

whole range of sidelength-to-thickness ratios. Therefore, the geometrically nonlinear model 

represented by the Rayleigh-Ritz approach still plays an important role in predicting the 

manufactured configurations of the LIPCA-C1 actuators, particularly for relatively large 

values of Lx/H.  

4.2.2 Force and Moment Resultant and Stress Characteristics of LIPCA-C1 without Tabs 

 As stated before, due to its elevated-temperature manufacturing process a 

LIPCA-C1 actuator, like a THUNDER actuator, inherently possesses residual stresses. From 

the ABAQUS calculations, the force and moment resultants, as defined in Equation (2.21), 

at room temperature for a rectangular LIPCA-C1 actuator with an aspect ratio of 0.7 and 

sidelength-to-thickness ratio of 200 are illustrated in Figure 4.5. The actuator is in the 

configuration given by point D′ in Figure 4.1 and its corresponding shape is depicted in 

Figure 4.2 (b), (c). Since the boundaries of the actuator are traction free, specific force and 

moment resultants are zero on the boundaries, as seen in Figure 4.5.  Like Figure 3.10 for 

THUNDER actuators and illustrated in Figure 4.5 (a)-(c), extreme values of the force and 

moment resultants occur in narrow regions along the edges of the actuator. Also, the force 

and moment resultant characteristics in Figure 4.5 for the LIPCA-C1 actuator are similar to 

those for the THUNDER actuator in Figure 3.10 except for Mx, which has highly localized 

negative values along the edge y = ± Ly /2 instead of the positive values in the THUNDER 

actuators of Figure 3.10 (b). However, omitting the negative values near the edges, the 

characteristic of Mx in the middle region of the LIPCA-C1 actuator are also similar to that of 

the THUNDER actuator, i.e., being slightly negative in the central region and increasing to  
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          (a) Force Resultant Nx         (b) Moment Resultant Mx

          (c) Force Resultant Ny (d) Moment Resultant My

          (e) Force Resultant Nxy (f) Moment Resultant Mxy

Figure 4.5: Force and Moment Resultants in Rectangular LIPCA-C1  (Ly/Lx = 0.7, Lx/H = 
200, ∆T C°= -142 ) 
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positive values when approaching the actuator edges (y = ± Ly /2). Note that the magnitudes 

of all force and moment resultants of the LIPCA-C1 actuator are smaller than those of the 

THUNDER actuator. The LIPCA-C1 actuator has the lower elevated processing 

temperature, so the values of the thermal-induced residual stresses at room-temperature are 

lower. As with the THUNDER actuators, the geometrically linear plate theory, as derived in 

Appendix A, will predict the values of the force and moment resultants to be exactly zero 

throughout. The lower values of stress resultants also confirm weaker geometrically 

nonlinear effects in the LIPCA-C1 actuator. As mentioned in Section 3.2.2 in relation to 

THUNDER actuators, it can be observed that though the extreme values of Nxy and Mxy in 

Figures 4.5 (e) and (f) are not zero, they are small compared to the extreme values of the 

other force and moment resultants, and they are confined to the corner regions of the 

actuator. 

 Figure 4.6 illustrates its force and moment stress resultants for the beam-like 

LIPCA-C1 actuator with an aspect ratio of 0.33. It is evident that the force and moment 

resultant are similar to those in Figure 4.5. This coincides with the similarity of the shape 

configurations predicted in Figure 4.1 and 4.4, as discussed above. 

 A sample of the stresses that lead to the force and moment resultants Nx, Ny, Mx, 

and My for the rectangular LIPCA-C1 actuator with an aspect ratio of 0.7 and a sidelength-

to-thickness ratio of 200 are illustrated in Figures 4.7 and 4.8 for four locations within the 

actuator. The through-thickness distribution of the inplane normal stresses near the center of 

the actuator  are shown in Figure 4.7 (a), while the distributions near the 

midpoints along the longer edge 

0,≅x 0≅y

( 0, 2)≅ ≅ yx y L and near the shorter edge 

( 2,≅ ≅xx L y 0) are illustrated in Figure 4.7 (b), and 4.8 (a), respectively. The distributions 

near a corner ( 2,≅ ≅x yx L y L 2) are displayed in Figure 4.8 (b). At room temperature, the 

piezoceramic layer experiences some tensile stress in the x-direction, but mostly 

compressive stresses, and is completely in compression in the y-direction. The tensile stress,  
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          (a) Force Resultant Nx         (b) Moment Resultant Mx

          (c) Force Resultant Ny (d) Moment Resultant My

          (e) Force Resultant Nxy (f) Moment Resultant Mxy

Figure 4.6: Force and Moment Resultants in Beam-Like LIPCA-C1  (Ly/Lx = 0.33, Lx/H = 
200, ∆T C= -142° ) 
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(a) Distribution of Normal Stresses at 0,≅x 0≅y  
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(b) Distribution of Normal Stresses at 0,≅x 2≅ yy L  

Figure 4.7: Stress Distributions in LIPCA-C1 (Ly/Lx = 0.7, Lx/H = 200, = -142 ) for 
Two Locations near Centerline x = 0 

∆T C°
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(a) Distribution of Normal Stresses at 2,≅ xx L 0≅y  
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(b) Distribution of Normal Stresses at 2,≅ xx L 2≅ yy L  

Figure 4.8: Stress Distributions in LIPCA-C1 (Ly/Lx = 0.7, Lx/H = 200, = -142 ) for 
Two Locations near Boundary x = L

∆T C°
x/2 
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however, is not large. The carbon-epoxy layer also has both residual tensile and compressive 

stresses in the x-direction on top and bottom portions, respectively. Note that the stress 

gradient through the thickness of the actuator in the x-direction is larger than that in the y-

direction due to the more room-temperature curvature in the former direction than in the 

latter direction. Also it is important to note that the magnitudes of the room-temperature 

stresses are lower than for the THUNDER actuator. This is again due mainly to the lower 

cure temperature for the epoxy in the carbon-epoxy and glass-epoxy layers in the LIPCA-C1 

actuator than for the polyimide adhesive in the THUNDER actuators. That some force and 

moment resultants have increased magnitudes, on the specific edges, as illustrated in Figure 

4.5, can also be explained from the stress distributions. However, unlike the case of the 

THUNDER actuator presented in Section 3.2.2, where the normal stress in the steel layer is 

chiefly attributable for the increased magnitudes, all layers play a key role in the case of the 

LIPCA-C1 actuator when considering Nx and Mx. The values of σ x  in all layers decrease 

when moving from the center to midpoint of the longer edges. This causes the values of Nx 
near 0,=x 2= yy L  to be negative relative to the value at the center. Additionally, due to 

the carbon-epoxy layer having the highest stiffness in the x-direction and being the 

outermost layer, the decrement of the value of σ x  in the carbon-epoxy layer will dominate 

the contribution to moment resultant Mx and, as a result, produce the negative Mx 
near 0,=x 2= yy L . Nonetheless, the extreme negative value of Ny at the midpoint near the 

shorter edge, 2,xx L= 0,y =  is from the PZT and glass-epoxy layer, not the carbon-epoxy 

layer. This is because of the extensional modulus of the carbon-epoxy layer is relatively very 

small in the y-direction. Also illustrated in Figures 4.7 and 4.8, the comparison between the 

predictions of the stress distributions by 23-term Rayleigh-Ritz and ABAQUS models 

reveals a fairly good agreement. The most distinguishable disagreement is with the stress 
component yσ  in the PZT layer at 2.yy L≅  The rest of the good comparisons of the stress 

distributions demonstrates the generally good accuracy of the Rayleigh-Ritz model 
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developed with only 23 degrees of freedom, compared to thousands degrees of freedom for 

the finite element analysis.    

4.3 Numerical Results for Actuated Shapes 

4.3.1 Deformation Characteristics of LIPCA-C1 subjected to Applied Electric Field 

 For the rectangular geometry (Ly/Lx = 0.7), the actuated curvatures in the x- and 

y-directions of LIPCA-C1 actuators are illustrated in Figure 4.9. Also shown in the figure 

are the room-temperature curvatures in the x- and y-directions, which were illustrated in 

Figure 4.1 and are repeated here for comparison. When the LIPCA-C1 actuators are actuated 

with ±2 MV/m, the changes in curvature in the x-direction are only weakly dependent on 

sidelength-to-thickness ratio. There is a slightly noticeable enhancement for the negative 

field strength for sidelength-to-thickness ratio in the range 75-125. Also, like the room-

temperature curvature in the y-direction, the changes in curvature in the y-direction due to 

actuation are suppressed for sidelength-to-thickness ratios greater than 50 owing to 

geometrically nonlinear effects. Interestingly, for shorter actuators, the actuated changes in 

curvature in the y-direction are larger in magnitude than the actuated changes in the x-

direction. This difference in actuated curvature changes for the short actuators can be 

attributed to the relative bending stiffness of the actuators in the x- and y-directions. A 

LIPCA-C1 actuator with this aspect ratio would be intended to utilize the room-temperature 

curvature and the actuated change in curvature in the x-direction rather than in the y-

direction, so the various characteristics of the y-direction curvature may be of little 

consequence. It should be noted that for an electric field of a given sign, the signs of the 

changes in curvature in the x- and y-directions are opposite each other. This was not the case 

for a THUNDER actuator and is believed to be due to the inplane material orthotropy of the 

LIPCA-C1 actuator compared to inplane material isotropy of a THUNDER actuator. For the 

LIPCA-C1 actuator, the carbon-epoxy layer is relatively stiff in the x-direction and 
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Figure 4.9: Influence of Actuation on the Change of Curvatures of Rectangular LIPCA-C1 
(Ly/Lx = 0.7, ∆T C= -142° ) 
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compliant in the y-direction, whereas the glass-epoxy layer is softer in the x-direction and 

stiffer in the y-direction than the carbon-epoxy layer. Therefore, the carbon-epoxy layer acts 

as a virtual backbone layer in the x-direction in contrast to the glass-epoxy layer, which acts 

as a virtual backbone in the y-direction. This causes the LIPCA-C1 actuator to bend 

oppositely in the x-direction to the y-direction. Also, it should be noted that the curvature 

changes of the LIPCA-C1 actuator in the x-direction are close in value to the curvature 

changes in the x-direction for a THUNDER actuator when its room-temperature shape is 

given by branch A D  in Figure 3.18. In fact, considering branch ′ ′ A D′ ′  in Figure 3.18 for the 

THUNDER actuator, for aspect ratio 0.7 the general characteristics of the curvature vs. 

sidelength-to-thickness ratio relations are not all that different, despite the multiple-branch 

character of the relations for THUNDER actuators.  

 For the square geometry, the actuated curvatures in the x- and y-directions of 

LIPCA-C1 actuators are illustrated in Figure 4.10. Interestingly, the x-direction actuated 

curvatures are again almost independent of sidelength-to-thickness ratio. Furthermore, when 

compared to Figure 4.9 for the LIPCA-C1 actuator with an aspect ratio of 0.7, the changes in 

the x-direction curvature are also similar despite more than a 40% increase in aspect ratio. 

The change in the x-direction curvature is strongly influenced by the x-direction room- 

temperature curvature, which itself is hardly sensitive to sidelength to-thinkness and aspect 

ratios, as previously discussed. Analogous to the aspect ratio of 0.7, for the aspect ratio of 1 

there is a slight enhancement for the negative field strength for sidelength-to-thickness ratio 

in the range 50-100. Compared to the rectangular actuator, for the square actuator the 

enhancement is shifted to smaller values of Lx/H. The changes in curvature in the y-direction 

due to the actuation, however, are suppressed noticeably more than for the actuator with the 

smaller aspect ratio (Ly/Lx = 0.7). Again, the changes in curvature in the y-direction are 

influenced by the y-direction room-temperature curvature. At a large sidelength-to-thickness 

ratio, the structural stiffness in the y-direction of the actuator developed during the cooling  
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Figure 4.10: Influence of Actuation on the Change of Curvatures of Square LIPCA-C1 
(Ly/Lx = 1, ∆T C= -142 ° ) 
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process is high due to geometrically nonlinear effects and the stiffness dominates actuated 

deformations in the y-direction at service temperature. Overall, the behaviors of the LIPCA-

C1 actuators with an aspect ratio of 0.7 and 1 as a function of sidelength-to-thickness ratio 

when subjected to an applied electric field are quite similar.  

 The influence of sidelength-to-thickness ratio on actuated curvatures of LIPCA-

C1 actuators with an aspect ratio of 0.33 is illustrated in Figure 4.11. Like the results shown 

in Figures 4.9 and 4.10 for aspect ratios Ly/Lx = 0.7 and 1, for the beam-like LIPCA-C1 

actuators the actuation-induced curvature changes in the x-direction are quite independent of 

sidelength-to-thickness ratio. There is a slight enhancement of the x-direction curvature 

change with an actuation voltage of -2 MV/m for sidelength-to-thickness ratios greater than 

125, though the enhancement is minimal. This enhancement is shifted to occur at larger 

sidelength-to-thickness ratios than for the larger aspect ratios considered previously. The 

actuated changes in curvature in the y-direction are also suppressed as actuator length 

increases, but not as much as for aspect ratios Ly/Lx = 0.7 and 1. Like the case of the larger 

aspect ratios considered, for shorter actuators the actuated changes in curvature in the y-

direction are larger than the actuated changes in the x-direction since their characteristics can 

be governed by the geometrically linear theory, which are independent of actuator inplane 

dimensions. Also, like the case of aspect ratios Ly/Lx = 0.7 and 1, for an actuation voltage of 

a given sign, the signs of the curvature changes in the two directions are opposite each other. 

It should be noted that except for sign, the general characteristics of the curvature vs. 

sidelength-to-thickness ratio relations for the beam-like LIPCA-C1 actuators are quite 

similar to those of beam-like THUNDER actuators in Figure 3.22. In addition, due to the 

beam-like configuration, a comparison of the x-direction actuation-induced curvatures 

between the Rayleigh-Ritz predictions and the beam theories developed in Appendix B is of 

interest. The geometrically linear plate theory Rayleigh-Ritz approach predicts the x-

direction actuated curvatures to be 4.72 and 3.41  for ±2 MV/m, respectively. For  -1m -1m
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Figure 4.11: Influence of Actuation on the Change of Curvatures of Beam-Like LIPCA-C1 
(Ly/Lx = 0.33, ∆T C= -142° ) 
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the beam theories, employing Equation (B.42) or (B.68) in Appendix B, = 4.91  and 

3.70  for ±2 MV/m, respectively. The curvatures calculated from the geometrically 

linear Rayleigh-Ritz approach and geometrically nonlinear and linear beam theories are 

uniform over the range of sidelength-to-thickness ratio considered. 

xΚ -1m

-1m

 The actuation-induced average curvature changes as a function of electric field 

strength can be considered in another way. For example, LIPCA-C1 actuators with two 

different actuator sidelength-to-thickness ratios and the three aspect ratios are investigated in 

Figure 4.12, Lx/H = 200 in Figure 4.12 (a) and Lx/H = 100 in Figure 4.12 (b). Referring to 

Figure 4.12 (a) and the average curvature change from branch A D′ ′ to branches  and 

 of Figures 4.11, 4.9, and 4.10, it is again observed that for L

P PA D
N NA D y/Lx = 0.7 and 1 the 

average curvature changes in the y-direction due to actuation are small due to suppression 

from nonlinear effects. For Ly/Lx = 0.33, due to the weaker suppression, the change in the y-

direction actuated curvature is relatively large and its magnitude is around 60% as large as 

the magnitude of the associated change in the x-direction. The changes in the x-direction 

curvature for Ly/Lx = 0.33, 0.7, and 1 due to actuation are, to all intents and purposes, equal 

each other. Though the relationships between the changes in actuation-induced curvatures 

and electric field strength are slightly nonlinear; they can be accurately assumed to be linear 

in the region of -1 MV/m < E3 < +1 MV/m. The opposite sign of changes in actuation-

induced curvature in the x- and y- direction can be obviously noticed in the figure. 

 For the case of sidelength-to-thickness ratio Lx/H = 100, illustrated in Figure 

4.12 (b), the changes in the y-direction curvatures due to actuation are close in value to or 

greater than the changes in the x-direction curvatures. Like the case of Lx/H = 200, the 

greater the aspect ratio, the less the change in the y-direction curvature. The changes in the 

x-direction actuation-induced curvature are again almost equal to each other over the range 

of the applied electric field considered; some trivial difference in the changes can be 

observed as the magnitude of the applied electric field strength is larger than 0.7 MV/m. In  
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Figure 4.12: Influence of Actuation on the Change of Curvatures of LIPCA-C1             
( ∆T C= -142° ) 
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actuality, the difference is caused by the slight enhancement in actuation responses, as 

discussed above. The changes in the x-direction curvature due to actuation for aspect ratio 

0.33 is approximately in a linear relation over the entire range of applied electric field 

considered. Nevertheless, for aspect ratios of 0.7 and 1, the linear relation can be assumed 

only in the range of -0.7 MV/m < E3 < +0.7 MV/m. Beyond this range, the geometrical 

nonlinearities occur and, as a result, the enhancement of the changes in the x-direction 

curvatures emerge.    

4.3.2 Stress Characteristics of LIPCA-C1 subjected to Applied Electric Field 

 To complete the discussion of free actuation responses of a LIPCA-C1 actuator, 

stress distributions of a LIPCA-C1 actuator when subjected to an electric field will be 

presented in this section. Analogous to Figures 3.24 and 3.25 for THUNDER, the through-

thickness distribution of the thermally-induced and piezoelectrically-induced inplane normal 

stresses at room temperature in a rectangular actuator with Ly/Lx = 0.7 and Lx/H = 200 are 

shown in Figures 4.13 and 4.14. The former and the latter figures illustrate the stress 
distributions near the center ( )0, 0x y≅ ≅  and near the midpoint of the shorter edge 

( 0, 2yx y L≅ ≅ ) . The distributions of piezoelectrically-induced stresses are evaluated under 

the condition of ±2 MV/m electric fields through the thickness of the piezoceramic material. 

As can be seen, the stress components σ x  in the upper one-half of the piezoceramic layer 

and in the central portion of the carbon-epoxy layer changes sign when the electric field 

strength changes from +2 MV/m to -2 MV/m. However, the sign of the stress component σ x  

in the bottom glass-epoxy layer does not change, nor do the signs of the stress 
componentsσ y  in any of the layers, except for a small portion of the piezoceramic layer. 

The sign changes in the stresses in the piezocermaic layer could be detrimental to the fatigue 

life of the actuator. Note that at a particular thickness location, the change in stress 

component σ x  in the carbon-epoxy layer is generally larger than the change in stress 

component σ y  in the same layer. This is because the layer is very stiff in the x-direction, so  
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(a) Distribution of Normal Stress in the x-direction near Center, x 0, y ≅ 0 ≅
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(b) Distribution of Normal Stress in the y-direction near Center, x 0, y 0 ≅ ≅

Figure 4.13: Stress distributions in rectangular LIPCA-C1 near center when subjected to 
applied electric fields, Ly/Lx = 0.7, Lx/H = 200 
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(a) Distribution of Normal Stress in the x-direction near Edge, x 0, y L≅ ≅ y/2 
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(b) Distribution of Normal Stress in the y-direction near Edge, x 0, y ≅ L≅ y/2 

Figure 4.14: Stress distributions in rectangular LIPCA-C1 near midpoint of longer edge 
when subjected to applied electric fields, Ly/Lx = 0.7, Lx/H = 200 
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the changes in σ x  in the layer are significant due to actuation. On the other hand, the layer is 

very soft in the y-direction and thus the changes in σ y  in the layer are much less affected. 

This is due to highly orthotropy of material properties of the carbon-epoxy layer.  

4.4 Numerical Results for Blocking Forces 

4.4.1 Blocking Forces of LIPCA-C1 as a Function of Electric Field Strength 

 Consider LIPCA-C1 actuators with an aspect ratio Ly/Lx = 0.7 and sidelength-to-

thickness ratios of 100 and 200 with shapes given by Figure 4.1 or 4.9. Figure 4.15 shows 

relations between the blocking forces and applied electric field E3. The blocking forces of 

the LIPCA-C1 actuators with pinned-roller and pinned-pinned supports are illustrated in the 

figure. The relations are similar in character to those for THUNDER actuators in Figure 

3.26. However, the sign of force Pbl for the pinned-roller case is opposite that of the 

THUNDER actuators. It is seen from Figure 4.15 that all blocking forces predicted from the 

nonlinear theory vary almost linearly with electric field strength over the entire range of 

electric field strength considered. For pinned-roller case, force Pbl for the actuator with Lx/H 

= 100 is approximately equal to that with Lx/H = 200. This corroborates the hypothesis of 

proportionality between the change in the x-direction curvature due to actuation and 

blocking force Pbl for the pinned-roller case because the changes in the x-direction curvature 

for Lx/H = 100 and 200 in Figures 4.9 and 4.12 are also almost equal to each other and relate 

linearly to the applied electric field strength. Again, the geometrically linear theory 

predictions are independent on the sidelength-to-thickness ratios. Also, they give a good 

correlation with blocking force Pbl predicted by the geometrically nonlinear theory. This is 

because the material properties, staking sequence, and cooling temperature collectively 

influence the actuator to more or less behave in the geometrically linear fashion in the x-

direction. For the pinned-pinned case, as compared to the pinned-roller case, the opposite 

sign of blocking force Pbl is obtained at a given electric field strength. The magnitude of  
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Figure 4.15: Blocking Force vs. Electric Field Relations of Rectangular LIPCA-C1           
(Ly/Lx = 0.7) 
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force Pbl is larger than that for the pinned-roller case by a factor of more than two because of 

the presence of force Rbl in the horizontal direction. The magnitude of force Pbl for Lx/H = 

100 is smaller than for Lx/H = 200, but the counterpart force Rbl at Lx/H = 100 is moderately 

larger than that for Lx/H = 200. Moreover, the magnitude of force Pbl is around 5-15 times 

smaller than the counterpart Rbl. The linear theory predictions of force Pbl are again 

independent of sidelength-to-thickness ratio. However, the linear theory predictions of force 

Rbl are dependent on sidelength-to-thickness ratio and the force Rbl and sidelength-to-

thickness ratio are linearly proportional. Unlike the pinned-roller case, the geometrically 

linear predictions of both forces Pbl and Rbl for the pinned-pinned case give totally different 

values from the geometrically nonlinear theory predictions   

 The relations between blocking forces and electric field strength for square 

LIPCA-C1 actuators with Lx/H =100 and 200 are illustrated in Figure 4.16. For the pinned-

roller case, it can be seen that force Pbl predicted by the geometrically nonlinear theory is 

increased slightly in magnitude due to the change in the aspect ratio from 0.7 to 1. Force Pbl 

at Lx/H = 100 and 200 is again nearly equal each other and relate to applied electric field in 

an approximately linear fashion. The predictions from the geometrically linear theory of 

force Pbl, which is independent of sidelength-to-thickness ratio, are similar to those from the 

nonlinear theory. For the pinned-pinned case, as mentioned, force Pbl has an opposite sign to 

force Pbl for the pinned-roller case, like the behavior of LIPCA-C1 actuators with an aspect 

ratio of 0.7 previously discussed. Nonetheless, magnitude of force Pbl is larger with this 

larger aspect ratio. Contrasting to the pinned-roller case, poor correlations of blocking forces 

Pbl and Rbl between the geometrically nonlinear and linear theories are clearly observed. 

This certainly indicates a stronger degree of nonlinearity in blocking forces of pinned-

pinned supported LIPCA-C1 actuators compared to those of pinned-roller supported 

LIPCA-C1. In general, except for magnitudes of calculated blocking forces, Figures 4.15 

and 4.16 share similar characteristics.   

155 155



 

E3 (106 Vm -1)
-2.0 -1.0 0.0 1.0 2.0

P
bl

 (N
)

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0
pinned-roller, Lx/H  = 100
pinned-roller, Lx/H = 200
pinned-pinned, Lx/H  = 100
pinned-pinned, Lx/H  = 200

Linear, pinned-roller, 
Lx/H   = 100, 200 

Linear, pinned-pinned, 
Lx/H   = 100, 200 

 

E 3 (106 Vm -1)
-2.0 -1.0 0.0 1.0 2.0

R
bl

 (N
)

-80

-60

-40

-20

0

20

40

60

80

pinned-pinned, Lx/H  = 100
pinned-pinned, Lx/H  = 200

Linear, pinned-pinned, 
Lx/H   = 100

Linear, pinned-pinned, 
Lx/H   = 200 

 

Figure 4.16: Blocking Force vs. Electric Field Relations of Square LIPCA-C1            
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Figure 4.17: Blocking Force vs. Electric Field Relations of Beam-Like LIPCA-C1             
(Ly/Lx = 0.33) 
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 Lastly, beam-like LIPCA-C1 actuators with an aspect ratio of 0.33 and 

sidelength-to-thickness ratios of 100 and 200 are considered in Figure 4.17. As seen in the 

figure, the overall behaviors of the relations between blocking forces and electric field 

strength are very similar to those in Figures 4.15 and 4.16. However, it should be noted that 

the magnitudes of all blocking forces are smaller than the ones for the larger aspect ratio of 

0.7 or 1. This happens because the amount of electrical energy that is applied to the actuator 

also depends on the planform area of the actuator or, in the other words, the aspect ratio of 

the actuator when the sidelength-to-thickness ratio is kept constant. Thus, if the aspect ratio 

is smaller, the amount of electrical energy is less and the output energy, which is in terms of 

actuation response or load-carrying capability of the actuator, is also less.        

4.4.2 Blocking Forces of LIPCA-C1 as a Function of Sidelength-to-Thickness Ratio: 
Pinned-Roller Case 

 To complement the investigation of the performance characteristics of LIPCA-

C1 actuators, in addition to the relations of free actuation responses vs. sidelength-to-

thickness ratio presented in Section 4.3.1, relations of the blocking force vs. sidelength-to-

thickness ratio will be presented next.  

 Figure 4.18 illustrates the relation between blocking force Pbl and sidelength-to-

thickness ratio for pinned-roller supported LIPCA-C1 actuators with an aspect ratio of 0.7 

and subjected to ±2 MV/m. Analogous to the figures illustrated in Section 3.4.2, for 

THUNDER actuators, from this point on until the end of this chapter, the axis of ordinate is 

normalized by a blocking force of a LIPCA-C1 actuator with Lx/H value approaching zero, 

the predictions of the geometrically linear theory. Therefore, at very small values of 

sidelength-to-thickness ratio, 0 xL H 25< <  for this case, the normalized values of Pbl for 

±2 MV/m are approximately equal to one. When the value of Lx/H increases, the normalized 

values of Pbl separate from each other, but they have similar trends. In the region of 

25 200< <Lx H , the normalized blocking force Pbl is always larger than one but less than  
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Figure 4.18: Blocking Force vs. Sidelength-to-Thickness Ratio Relations of Pinned-Roller 
Supported Rectangular LIPCA-C1 (Ly/Lx = 0.7) 

1.2. This indicates that even though the enhancement of blocking force Pbl can be observed, 

the degree of enhancement is not much. The enhancement is more noticeable for -2 MV/m 

than for +2 MV/m and the largest enhancement occurs around Lx/H = 75. This actually is in 

agreement with the behavior of the free actuation response illustrated in Figure 4.9 and, 

therefore, confirms the proportionality between the change in curvature in the x-direction 

due to an application of electric field and the blocking force for the pinned-roller support 

case. Unlike the THUNDER actuators in Figure 3.29, at all values of Lx/H there is an 

enhancement for blocking force effects. On the other hand, THUNDER and LIPCA-C1 

actuators exhibit similar characteristic, since wherever the separation between the +2 MV/m 

relation and -2 MV/m relation is greatest, nonlinear effects are strongest and, as a result, the 

effects extremize the enhancement or suppression of blocking force Pbl for the pinned-roller 
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case. The blocking forces predicted by the geometrically linear theory, Pbl,lin, are also 

illustrated in the figure. The prediction exhibits constant blocking forces for ±2 MV/m 

(±0.884 N, respectively) regardless of sidelength-to-thickness ratio values and therefore are 

drawn as coincident horizontal lines with values equal to one. Finally, it is essential to note 

that according to Figure 4.18, designing a pinned-roller supported LIPCA-C1 actuator in the 

region of 25 200< <xL H  to carry a transverse load has a slight advantage from 

geometrically nonlinear effects. However, when compared to that of a pinned-roller 

supported THUNDER actuator presented in Figure 3.29, the desirable load-carrying range of 

sidelength-to-thickness ratio of a pinned-roller supported LIPCA-C1 actuator is wider.  

 Analogous to Figure 4.18, Figure 4.19 illustrates the relation of the blocking 

force and sidelength-to-thickness ratio for pinned-roller supported LIPCA-C1 actuators with 

an aspect ratio of 1 subjected to ±2 MV/m. Generally, the relations in the figures are very 

similar to the case of aspect ratio 0.7 just discussed. A linear behavior of the relations takes 

place when Lx/H is small and the corresponding values of normalized blocking forces are 

equal to one. This linear zone is shorter than that of the LIPCA-C1 actuators with an aspect 

ratio of 0.7 because it covers the range 0 20< <Lx H . When Lx/H > 20, the normalized 

blocking forces increase with increasing Lx/H and reach the largest value around Lx/H = 65. 

Again, the separation of the normalized values of Pbl for ±2 MV/m is highest (difference of 

0.1) at the largest values of Pbl. Beyond Lx/H = 65, the values of the normalized Pbl decrease 

somewhat. Specifically, in the region of 20 200< <xL H , the normalized blocking force 

Pbl is always larger than one but less than 1.3. The blocking force predicted by the linear 

theory, Pbl,lin is independent of the actuator sidelength-to-thickness ratio and is represented 

by straight horizontal lines with the unit value. The force Pbl,lin of the square LIPCA-C1 

actuator is equal to ±1.051 N for ±2 MV/m, respectively. Compared with the pinned-roller 

supported LIPCA-C1 actuators with Ly/Lx = 0.7, the pinned-roller supported square ones  
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Figure 4.19: Blocking Force vs. Sidelength-to-Thickness Ratio Relations of Pinned-Roller 
Supported Square LIPCA-C1 

have 18.9% higher blocking force based on the linear theory, and they are 42.9% larger in 

terms of size. 

 Considering pinned-roller supported LIPCA-C1 actuators subjected to ±2 MV/m 

field strength with an aspect ratio of 0.33, shown in Figure 4.20 are relations between the 

normalized blocking forces and sidelength-to-thickness ratio. When Lx/H < 60, the relations 

can be approximated by the geometrically linear theory very well. This linear region is the 

largest of the three aspect ratios considered because of the weak geometric nonlinearity 

associated with the beam-like configuration. As Lx/H increases beyond 60, the normalized 

blocking forces increase slightly and reach the highest values around Lx/H = 140. Similar to 

those of aspect ratios 0.7 and 1, the blocking force separation for the positive and negative 

fields are maximal at the highest values of blocking forces. The blocking force enhancement  
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Figure 4.20: Blocking Force vs. Sidelength-to-Thickness Ratio Relations of Pinned-Roller 
Supported Beam-Like LIPCA-C1 (Ly/Lx = 0.33) 

in the region of 60 200< <xL H  is small in this case, since the normalized values of Pbl are 

less than 1.1 over the sidelength-to-thickness ratio considered. Stated differently, the 

enhancement is less than 10% compared to the linear predictions. The linear theory predicts 

Pbl,lin to be ±0.494 N for ±2 MV/m field strength, respectively. The values of Pbl,lin in this 

case are lower than the linear value for an aspect ratio of 0.7 by 44.1%, while the active area 

of the beam-like actuator is less than that of the rectangular one by 52.9%. Additionally, it 

can be noted that because of the comparatively small aspect ratio, it is interesting to compare 

the blocking forces in Figure 4.20 with the ones computed from the nonlinear and linear 

beam theories developed in Appendix B. By utilizing Equation (B.41) or (B.67), and setting 

the relative transverse deflection, w0, due to ±2 MV/m field strength to be zero at x = ±Lx/2 , 

the blocking force predictions based on the beam theories can be solved for and found to be 
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±0.462 N for ±2 MV/m, respectively. These blocking forces are independent of the 

sidelength-to-thickness ratio, like those predicted from the geometrically linear theory 

illustrated, as the dotted line in Figure 4.20. 

4.4.3 Blocking Forces of LIPCA-C1 as a Function of Sidelength-to-Thickness Ratio: 
Pinned-Pinned Case 

 In this section, blocking forces of a LIPCA-C1 actuator with pinned-pinned 

supports as a function of sidelength-to-thickness ratio are taken into consideration. 

Illustrated in Figure 4.21 are relations for blocking forces Pbl and Rbl for ±2 MV/m for a 

LIPCA-C1 actuator with an aspect ratio of 0.7. The influence of restraining the motion in the 

x-direction at the support positions is obviously very strong because the normalized Pbl 

relations shown in Figure 4.21 are significantly different from those shown in Figure 4.18. 

Also, it should be noted that the sign of force Pbl (or the direction of force Pbl) at a particular 

sidelength-to-thickness ratio and applied electric field strength for the pinned-pinned case in 

Figure 4.21 is opposite that for the same sidelength-to-thickness ratio and applied electric 

field strength for the pinned-roller case in Figure 4.18. This, again, is due to the associated 

force Rbl generated by restraining the x-direction motion at the supports. It should also be 

noted that unlike the counterpart THUNDER actuator of Figure 3.32, the blocking force Pbl 

is enhanced for the range of sidelength-to-thickness ratios studied. For the LIPCA-C1 

actuators, when sidelength-to-thickness ratio is less than 10, both the normalized values of 

Pbl and Rbl coincide with the linear predictions. As the sidelength-to-thickness ratio 

increases, the normalized values of Pbl deviate from the linear predictions and increase 

moderately in magnitude, while values of Rbl are still in agreement with the linear 

predictions and increase considerably in magnitude. Like the similar phenomenon that 

occurs with THUNDER actuators discussed in Section 3.4.3, the deviation of Pbl originates 

at a lower value of Lx/H compared to the pinned-roller case in Figure 4.18 because the 

magnitude of the associated Rbl is relatively large and this changes the structural stiffness of  
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Figure 4.21: Blocking Force vs. Sidelength-to-Thickness Ratio Relations of Pinned-Pinned 
Supported Rectangular LIPCA-C1 (Ly/Lx = 0.7) 
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the actuator. The normalized values of Pbl reach their peak values around Lx/H = 170 and 

then decrease very little as Lx/H increases further, whereas normalized values of Rbl reach 

their maximum value around Lx/H = 105 and gradually decrease when the value of Lx/H is 

beyond 105. According to Figures 4.21 and 4.18, the magnitude of force Pbl of the pinned-

pinned supported actuators is higher than that of the pinned-roller supported actuators with 

the same sidelength-to-thickness ratio when the sidelength-to-thickness ratio is 

approximately larger than 40. Therefore, it should be stated that in order to design a LIPCA-

C1 actuator to carry a transverse load, the type of the actuator support must be properly 

selected such that the actuator can perform the task. In addition, the predictions of Pbl,lin from 

the linear theory again reveal values independent of sidelength-to-thickness ratio, i.e., 

0.397 N for ±2 MV/m, respectively. However, the values of R∓ bl,lin for ±2 MV/m electric 

field strengths vary with sidelength-to-thickness ratio in a linear relation with slopes of 

±0.593 N, respectively.  

 To examine the influences of the aspect ratio on blocking forces of a LIPCA-C1 

actuator with pinned-pinned supports, the relations between blocking forces and sidelength-

to-thickness ratio for LIPCA-C1 actuators with different aspect ratios than 0.7 are illustrated 

in Figures 4.22 and 4.23. The former figure is for a larger aspect ratio of one and the latter 

one is for a smaller aspect ratio of 0.33. Considering Figure 4.22, the overall relations are 

very similar to the ones in the previous figure for aspect ratio 0.7. For all sidelength-to-

thickness ratios, the values of blocking forces Pbl and Rbl of the square actuators are higher 

than those of the actuators with an aspect ratio of 0.7 because of the square actuators having 

bigger active areas than the rectangular actuators with the same sidelength-to-thickness 

ratio. Additionally, according to Figures 4.22 and 4.19, the magnitude of force Pbl of the 

pinned-pinned supported actuators is higher than that of the pinned-roller supported 

actuators with the same sidelength-to-thickness ratio when the sidelength-to-thickness ratio 

is approximately larger than 40. This value of sidelength-to-thickness ratio is the same as  
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Figure 4.22: Blocking Force vs. Sidelength-to-Thickness Ratio Relations of Pinned-Pinned 
Supported Square LIPCA-C1 (Ly/Lx = 1) 
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that for the actuators with an aspect ratio of 0.7 previously discussed. As can also be seen in 

Figure 4.22, the normalized blocking force plots for ±2 MV/m are almost coincident. This 

means that the relations between blocking forces Pbl and Rbl and electric field strength are 

almost linear, as can be substantiated by Figure 4.16. Note that the higher degree of linearity 

in the blocking force vs. applied electric field relations in this case can be observed when 

compared with the case of an aspect ratio of 0.7 in Figure 4.15, from which slight 

nonlinearities in the relations can be noticed at high electric field strength. As stated before 

in Section 3.4.2, which discussing THUNDER actuators, the weaker nonlinearities in this 

case can also be inferred by the smaller separation between the plots for +2 MV/m and for -2 

MV/m in Figure 4.22 than that in Figure 4.21. The geometrically linear theory, again, 

predicts Pbl,lin to be constant over the considered sidelength-to-thickness ratio, i.e.,∓ 0.595 N 

for ±2 MV/m, respectively. The values of Pbl,lin for this case are higher than the values Pbl,lin 

of the pinned-pinned supported LIPCA-C1 actuator with an aspect ratio 0.7 by 49.9%, while 

the actuators in this case are larger than those of the previous case by 42.9%. A slope of the 

relation between normalized values of Rbl and sidelength-to-thickness ratio is 0.756, which 

is 27.5% increase from the case of aspect ratio 0.7.  

 Last of all three aspect ratios considered, the relations between blocking forces 

and sidelength-to-thickness ratio for pinned-pinned supported beam-like LIPCA-C1 

actuators with an aspect ratio of 0.33 are illustrated in Figure 4.23. The figure is similar to 

the relations in Figures 4.21 and 4.22. For small sidelength-to-thickness ratios (less than 10) 

the normalized values of Pbl are in good agreement with the linear predictions. Beyond Lx/H 

= 10, the normalized values of Pbl deviate from the horizontal line representing the linear 

blocking force Pbl,lin. Nonetheless, for Lx/H up to 30 the normalized values of Rbl agree well 

with the normalized values of Rbl,lin predicted by the linear theory. The values of blocking 

forces Pbl and Rbl of the beam-like actuators are always lower than those of the actuators 

with an aspect ratio of 0.7 due to the smaller piezoelectrically-active area of the beam-like  
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Figure 4.23: Blocking Force vs. Sidelength-to-Thickness Ratio Relations of Pinned-Pinned 
Supported Beam-Like LIPCA-C1 (Ly/Lx = 0.33) 
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actuators. Similar to the previous two aspect ratios, for the aspect ratio of 0.33 the 

magnitude of blocking force Pbl of the pinned-pinned supported LIPCA-C1 actuators shown 

in Figure 4.23 is larger than that of the pinned-roller supported LIPCA-C1 actuators with the 

same sidelength-to-thickness ratio shown in Figure 4.20 when Lx/H > 30. The apparent 

separation between the normalized blocking force plots for +2 MV/m and for -2 MV/m 

indicates some degree of nonlinearity in the relations between the blocking forces and 

applied electric field, as can be seen in Figure 4.17, especially in relations of force Pbl at 

high electric field strength. The geometrically linear theory predicts the values of Pbl,lin to 

be 0.595 N for ±2 MV/m, respectively. They are 12.1% less than the values of P∓ bl,lin for 

the pinned-pinned supported actuator with an aspect ratio of 0.7, while the active area of the 

actuators in this case is less than the case with an aspect ratio of 0.7 by 52.9%. In addition, 

the slope of the relations between normalized Rbl and sidelength-to-thickness ratio is 0.387, 

which is a 34.7% decrease from the case of the actuators with pinned-pinned supports and 

aspect ratio 0.7.   

4.5 Chapter Summary  

 

 In this chapter, the numerical results for manufactured shapes of LIPCA-C1 

actuators were presented. The 23-term Rayleigh-Ritz model with an incorporation of 

composite material constitutive equations presented in Chapter 2 was shown to have a good 

agreement with the finite-element results obtained using ABAQUS for the selected cases 

compared. The results indicate that the predicted shapes for square and rectangular LIPCA-

C1 actuators depend on sidelength-to-thickness ratio because of geometrically nonlinear 

effects. However, the manufactured room-temperature curvature in the x-direction is more or 

less insensitive to sidelength-to-thickness ratio, whereas the manufactured room-temperature 

curvature in the y-direction is suppressed as the sidelength-to-thickness ratio increases. The 

insensitivity of the x-direction curvature is mainly due to the high structural stiffness in the 
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x-direction contributed from the fibers in the carbon-epoxy layer running along the x-

direction. Unlike THUNDER actuators that may exhibit multiple equilibrium shapes at room 

temperature, there exist no multiple equilibrium shapes for LIPCA-C1 in the range of 

parameters considered. All stable manufactured shapes are near-cylindrical; the larger 

curvature is always in the x-direction, and the smaller curvature in the y-direction. 

 In addition, the results of extension of the Rayleigh-Ritz model to predict the 

actuation response at room temperature of LIPCA-C1 actuators were presented. The average 

curvature changes in the x-direction caused by piezoelectric actuation, again, are almost 

independent of sidelength-to-thickness ratio. There is a slightly noticeable enhancement of 

the changes in the x-direction curvature for the negative field strength. The changes in the y-

direction curvature due to piezoelectrical actuation, like the room-temperature curvature in 

the y-direction, are suppressed gradually as sidelength-to-thickness ratio increases. The 

actuation responses as a function of applied electric field were also discussed. Overall, the 

changes in the x-direction curvature due to actuation are practically linear in relation to 

electric field strength and roughly equal each other for the three aspect ratios considered 

over the range of the applied electric field. The changes in the y-direction curvature due to 

actuation can also approximately be assumed as linear functions of electric field strength to 

some extent, yet they are not equal each other owing to their dependency on aspect ratio. 

Additionally, it should be noted that for an actuation voltage of a given sign, the signs of the 

curvature changes of a LIPCA-C1 actuator in the two directions (the x- and y-directions) are 

opposite each other. 

 Finally, the blocking force predictions from the extension of the 23-term 

Rayleigh-Ritz model used to predict actuated shapes of LIPCA-C1 actuators were presented. 

All numerical results of the blocking forces are computed based on manufactured shapes 

given by branch and their associated actuated shapes given by branches and 

, as illustrated in Figures 4.9, 4.10, and 4.11, for LIPCA-C1 actuators subjected to +2 

A D′ ′ P PA D
N NA D
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MV/m and -2 MV/m, respectively. For pinned-roller supported LIPCA-C1 actuators, 

blocking force Pbl is usually higher than force Pbl,lin, which are predicted by the geometrical 

linear theory, but not by much. In the other words, nonlinear effects enhance blocking force 

Pbl to a limited degree.  For pinned-pinned supported LIPCA-C1 actuators, the existence of 

force Rbl strongly influences the characters of blocking force Pbl because the comparatively 

large magnitude of force Rbl alters the structural stiffness of the actuators. For the same 

aspect ratio, the magnitude of force Pbl decreases for short actuators and increases for long 

actuators, as well as the direction of force Pbl changes oppositely due to the presence of Rbl. 

The relations between blocking forces and applied electric field were also presented. 

Generally speaking, most of the relations are linear but do not correlate well with the 

predictions from the geometrically linear theory. In addition, the opposite directions (signs) 

of force Pbl influenced by the type of support can be clearly seen in the relations. 

Consequently, in order to design a LIPCA-C1 actuator to carry a transverse load or an 

inplane normal load, a careful analysis on actuator performance should be conducted, since 

its room-temperature shape and support type have very strong effects on the actuator 

capability. 

  In the next chapter, the numerical results of characteristics of LIPCA-C2 

actuators will be presented, analogous to those of THUNDER and LIPCA-C1 actuators 

discussed in Chapter 3 and this chapter, respectively. Shapes and associated residual stress 

predictions of LIPCA-C2 actuators at service temperature due to manufacturing process and 

an application of a quasi-static electric field will be given. Equilibrium and stability of the 

calculated shapes will be determined. In some selected problems, validity of the Rayleigh-

Ritz model with an incorporation of the composite material layers used in LIPCA-C2 will be 

examined by the ABAQUS model. Blocking forces of LIPCA-C2 actuators with two 

different support types, i.e., pinned-roller and pinned-pinned supports, will be presented in 

relation to electric field strength and sidelength-to-thickness ratios.  
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Chapter 5 

NUMERICAL RESULTS OF LIPCA-C2 CHARACTERISTICS  

5.1 Introduction 

 

 This chapter presents shape predictions of rectangular LIPCA-C2 actuators 

using the Rayleigh-Ritz model with the incorporation of composite layers into the 

constitutive equations. The manufactured shapes of the actuators are computed as a function 

of sidelength-to-thickness ratio. Actuated shapes of the rectangular LIPCA-C2 actuators are 

also calculated by utilizing the modified Rayleigh-Ritz model with the inclusion of 

piezoelectrically-induced strains. Results from ABAQUS models are compared with results 

from the Rayleigh-Ritz approach for selected problems. At the end of this chapter, blocking 

forces of the LIPCA-C2 actuators subjected to the application of an electric field with 

pinned-roller and pinned-pinned supports are calculated and discussed. 

5.2 Numerical Results for Manufactured Shapes 

5.2.1 Deformation Characteristics of LIPCA-C2 without Tabs 

To illustrate the results of LIPCA-C2 actuators predicted by the Rayleigh-Ritz 

model with the incorporation of composite layers into the constitutive equations, as 

discussed in Section 2.2.2, consider a rectangular LIPCA-C2 actuator without tabs 

consisting of 5 layers, as illustrated in Figure 1.13. The LIPCA-C2 design is composed of 

three layers of glass-epoxy as the bottom, middle, and top layers, and a piezoceramic layer 

and a unidirectional carbon-epoxy layer with its fibers in the x-direction sandwiched 

between the bottom and the middle layers, and the middle and the top layers, respectively. 
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Thus, the carbon-epoxy layer and the piezoceramic layer are further apart than with the 

LIPCA-C1 design. This separation is intentional and is used to provide more authority to the 

actuator. In addition, like a LIPCA-C1 actuator, the glass-epoxy layers of the LIPCA-C2 

actuator have the same elastic properties in the x- and y-directions, so in that sense are 

isotropic. The curing temperature of the epoxy matrix is taken to be the same as for a 

LIPCA-C1 actuator, namely, -142 . The material properties and thicknesses of the layers 

used in the analyses to follow are given in Table 4.1. It should be keep in mind that for a 

given value of sidelength-to-thickness ratio, the LIPCA-C2 actuator is longer in the x-

direction than a THUNDER actuator or a LIPCA-C1 actuator due to the larger value of H 

for the LIPCA-C2 cross section. (for THUNDER H = 0.427 mm, for LIPCA-C1 H = 0.530 

mm, for LIPCA-C2 H = 0.620 mm) 

C°

The relationships between the sidelength-to-thickness ratio and the average 

room-temperature curvatures for rectangular LIPCA-C2 actuators with an aspect ratio of 0.7 

are illustrated in Figure 5.1. From the figure it can be seen that, like the LIPCA-C1 actuator, 

the relationships are single-valued. However, the behavior of the LIPCA-C2 design is 

different than the behavior of LIPCA-C1 design, and for that matter the THUNDER design, 

in that the room-temperature curvature in the y-direction is of opposite sign to the x-

direction curvature. A review of Figures 3.8 and 4.1 shows that with THUNDER and 

LIPCA-C1 designs, the x- and y-direction room-temperature curvatures have the same sign. 

The difference in signs is due to the difference in the stacking sequence among the actuators. 

A second difference between the two composite actuator designs is the dependence of the x-

direction curvature on sidelength-to-thickness ratio. With the rectangular LIPCA-C1 design, 

the x-direction curvature was hardly influenced by sidelength-to-thickness ratio, while the y-

direction curvature was noticeably suppressed for the three aspect ratios considered. For the 

rectangular LIPCA-C2 design, the x-direction curvature can be approximated by the 

geometrical linear theory (independent of sidelength-to-thickness ratio) for Lx/H < 40 and is  
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Figure 5.1: Sidelength-to-Thickness Ratio-Curvature Relations of Rectangular LIPCA-C2 
(Ly /Lx = 0.7, ∆T C= -142 ° ) 
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suppressed with further increasing sidelength-to-thickness ratio, while the y-direction 

curvature remains somewhat constant, with little suppression in magnitude predicted 

compared to the geometrically linear predictions. The reason behind the second difference is 

believed to be caused by the magnitude of room-temperature curvatures in both x- and y-

direction. As discussed in Chapter 4, nonlinear effects appear to markedly suppress the 

curvature that has the smaller magnitude and either slightly suppress or actually enhance the 

curvature that has the larger magnitude. Thus, when compared to LIPCA-C1, it should be 

noted that nonlinear effects have a much stronger influence on the shape characteristics of 

LIPCA-C2 actuators than modulus of elasticity of the materials does because the x-direction 

room-temperature curvature is suppressed considerably due to nonlinear effects, even 

though the LIPCA-C2 actuators are stiff in the x-direction due to the carbon fiber, like the 

LIPCA-C1 actuators are. Also illustrated in the figure are the finite element predictions by 

using ABAQUS. Again, it is apparent that the Rayleigh-Ritz formulation works well for the 

case of fiber-reinforced composite layers. The room-temperature shapes of rectangular 

actuators with Ly/Lx = 0.7 and Lx/H = 100 and 200 are illustrated in Figure 5.2. Opposite to 

the shape characteristics of LIPCA-C1 in Figure 4.2, the y-direction curvature of the LIPCA-

C2 actuators is noticeable in Figure 5.2. Of the actuators with the same thickness, H, the y-

direction curvature for Lx/H = 100 is less pronounced than that for Lx/H = 200, despite the 

values of their y-direction curvatures being almost equal. This is because the actuator with 

Lx/H = 100 is half as wide in the y-direction as the one with Lx/H = 200. The x-direction 

curvatures are less noticeable since they are smaller to begin with and are suppressed by 

geometrically nonlinear effects. Figures 5.2 (b) and (c) also depict the comparison between 

room-temperature shapes predicted by the 23-term Rayleigh-Ritz and ABAQUS models. A 

good agreement can be seen from the comparison. Note that the manufactured shapes of the 

LIPCA-C2 actuators illustrated in Figure 5.2 may not be desirable in a practical sense, since 

the longer direction (the x-direction) is supposed to be exploited in an application and hence  
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(a) 23-term Rayleigh-Ritz, Lx/H = 100 

 

 

  (b) 23-term Rayleigh-Ritz, Lx/H = 200                    (c) ABAQUS, Lx/H = 200 

Figure 5.2: Equilibrium Shapes of Rectangular LIPCA-C2 (Ly/Lx = 0.7, = -142 ) ∆T C°

should have a larger room-temperature curvature. The shorter direction (the y-direction) 

should have a smaller room-temperature curvature so that attaching the actuators to a 

substrate on the x-edge(s) could be done easily.  

 For LIPCA-C2 actuators with an aspect ratio of 1, the relationships between the 

sidelength-to-thickness ratio and the average room-temperature curvature are illustrated in 

Figure 5.3. Overall, the relationships are very similar to the ones in Figure 5.1. However, it 

can be seen in Figure 5.3 that geometrically nonlinear effects are stronger than the case of 

aspect ratio 0.7. This is because the range of sidelength-to-thickness ratios within which the 

square LIPCA-C2 actuators behave linearly is smaller than the rectangular case, i.e., 
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Figure 5.3: Sidelength-to-Thickness Ratio-Curvature Relations of Square LIPCA-C2  
( ∆T C= -142° ) 
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0 xL H< < 30  for this case compared to 0 xL H 40< <  for the rectangular case. In 

addition, the y-direction room-temperature curvature is suppressed about the same as the 

previous case when sidelength-to-thickness ratio increases. The x-direction curvature, on the 

other hand, is not affected much by the change of aspect ratio in general. The room-

temperature shapes for square LIPCA-C2 actuators are analogous to Figure 5.2 and are not 

shown here. The same issue concerning the attachment of square LIPCA-C2 actuators to a 

substrate on the x-edge(s) can be made here, since the dimension in the y-direction is longer 

than that of the rectangular LIPCA-C2 actuators in the previous case and, therefore the 

curvatures in the y-direction are even more pronounced.  

 Finally, the influence of sidelength-to-thickness ratio on the room-temperature 

curvatures of a beam-like LIPCA-C2 actuator with an aspect ratio of 0.33 is illustrated in 

Figure 5.4. Like the beam-like aspect ratio considered for the LIPCA-C1 case, the value of 

0.33 is chosen to represent the geometry of LIPCA-C2 actuators that was used by Yoon and 

coworkers [33] to perform their experiments. With Ly/Lx = 0.33, the geometry does not 

induce nonlinear effects as much compared to the cases with Ly/Lx = 0.7 and 1. As a result, 

the x-direction room-temperature curvature is suppressed less in magnitude when 

sidelength-to-thickness ratio increases. Interestingly, the y-direction curvature is influenced 

more than for the rectangular or square aspect ratios. The geometrical linear Rayleigh-Ritz 

model again predicts spatially uniform x- and y-direction curvatures ( = 1.68 mxΚ -1 and 

= -3.48 myΚ -1), which are independent of sidelength-to-thickness and aspect ratios. 

Additionally, since the LIPCA-C2 actuators with Ly/Lx = 0.33 are beam-like, the x-direction 

curvature of the actuators can be computed from either a geometrically nonlinear or linear 

laminated beam model, as derived in Appendix B. Specifically, by using Equation (B.36) or 

(B.65), = 1.86 , a constant over the range of sidelength-to-thickness ratios 

considered. This value is around 10% different from the x-direction room-temperature 

curvature predicted by the geometrically linear Rayleigh-Ritz model. The shapes at room- 

xΚ -1m
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Figure 5.4: Sidelength-to-Thickness Ratio-Curvature Relations of Beam-Like LIPCA-C2 
(Ly /Lx = 0.33, ∆T C= -142 ° ) 
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   (a) 23-term Rayleigh-Ritz, Lx/H = 100          (b) 23-term Rayleigh-Ritz, Lx/H = 200 

Figure 5.5: Equilibrium Shapes of Rectangular LIPCA-C2 (Ly/Lx = 0.33, = -142 ) ∆T C°

Temperature for Lx/H = 100 and 200 in Figure 5.4 are shown in Figure 5.5. It should be 

mentioned that due to the beam-like geometry of the actuator, with the longer dimension in 

the x-direction, the x-direction curvature is more pronounced than the y-direction curvature 

despite the fact that the magnitude of the former curvature is smaller than the magnitude of 

the latter. Thus, these manufactured shapes seem to be more desirable than the ones with the 

aspect ratios of 0.7 and 1, since attachment on the x-edge(s) would be easier and have less 

adverse effect on the curvature in the y-direction. 

5.2.2 Force and Moment Resultant and Stress Characteristics of LIPCA-C2 without Tabs 

 Generated during the cooling process of LIPCA-C2 actuators, thermal-induced 

residual stresses are present in the actuators at room-temperature, just like the other 

actuators discussed in the previous two chapters. Thus, it is of interest to examine the 

residual stresses and residual force and moment resultants, as defined in Equation (2.9). 

First, consider the force and moment resultants of a LIPCA-C2 actuator resulting from the 

ABAQUS calculation and illustrated in Figure 5.6. The actuator has an aspect ratio of 0.7 

and a sidelength-to-thickness ratio of 200 and is in the configuration shown in Figure 5.2 (c). 

Thus, it has relatively small curvature in the x-direction and large curvature in the y- 
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(a) Force Resultant Nx  

 
(b) Moment Resultant Mx

 
(c) Force Resultant Ny

 
(b) Moment Resultant My

 
(e) Force Resultant Nxy

 
(f) Moment Resultant Mxy

Figure 5.6: Force and Moment Resultants in Rectangular LIPCA-C2  (Ly/Lx = 0.7, Lx/H = 
200, ∆T C°= -142 ) 
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direction. Since the boundaries of the actuator are traction free, specific force and moment 

resultants are zero on the boundaries, as seen in Figure 5.6. Also apparent in Figure 5.6, as 

in Figures 3.10 and 4.5 for THUNDER and LIPCA-C1 actuators, respectively, extreme 

values of the force and moment resultants occur in narrow regions along the edges of the 

LIPCA-C2 actuator. These force and moment resultants build in magnitude quite rapidly as 

the edges are approached from the central portion. Away from the edges, the magnitudes of 

the force and moment resultants are more uniform, and in some cases quite small. In 

addition, by considering Figure 5.6 along with Figures 3.10, 3.11, 4.5 and 4.6, it is 

interesting to summarize that in the direction that the curvature is being suppressed 

compared to the geometrical linear prediction, the associated bending moment resultant in 

that direction always has a noticeable ‘well-like’ distribution in the central portion of 

actuators. Furthermore, the well-like distribution represents negative bending moment 

resultants. Negative bending moment resultants are indeed the key reason for the 

suppression phenomenon, since they will reduce the magnitude of the positive-valued room-

temperature curvatures and, as a result, the curvatures are suppressed. On the other hand, in 

the direction that the curvature is unchanged or enhanced compared to the geometrical linear 

prediction, the bending moment resultant in that direction does not exhibit the well-like 

configuration. Instead, it has relatively large values at some edges and fairly small values in 

the middle portion. Geometrically nonlinear effects on the bending moment resultant in this 

direction are not as strong as in the suppression direction. For inplane normal force 

resultants, comparatively large values at the edges and rather uniform small values in the 

central portion seem to always be the character of the stress resultant distributions for 

THUNDER-type and LIPCA-type actuators. Furthermore, values of inplane shear force and 

twisting moment resultants will always be comparatively small and will be the largest in the 

actuator corners. All of these stress resultant characteristics are due to geometric  
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          (a) Force Resultant Nx         (b) Moment Resultant Mx

          (c) Force Resultant Ny (d) Moment Resultant My

          (e) Force Resultant Nxy (f) Moment Resultant Mxy

Figure 5.7: Force and Moment Resultants in Beam-Like LIPCA-C2 (Ly/Lx = 0.33, Lx/H = 
200, ∆T C= -142° ) 
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nonlinearities, because all force and moment resultants are exactly zero when calculated by 

the geometrically linear theory. 

 Also by employing the ABAQUS model, a similar picture emerges for the more 

beam-like actuator. Figure 5.7 shows the force and moment resultants for the actuator with 

an aspect ratio of 0.33 and sidelength-to-thickness ratio of 200. By comparison with Figure 

5.7, it is observed that the magnitude of the force and moment resultants depends on the 

aspect ratio, to some degree, but the general character of the spatial distribution changes 

only slightly with aspect ratio. Note that the distribution of the y-direction bending moment 

resultant in Figure 5.7 (d) is similar to the distribution of the x-direction bending moment 

resultant in Figure 5.7 (b), the differences being the sign of the bending moment resultant in 

the central region and the edges along which the moment resultants are zero. As stated 

above, the well-like distribution of a bending moment resultant in a particular direction 

represents a curvature suppression characteristic in that direction. Accordingly, the beam-

like LIPCA-C2 actuator at Lx/H = 200 with the well-like and ‘inverted’ well-like 

distributions of the bending moment resultants in the x- and y-directions, respectively, as 

illustrated in Figures 5.7 (b) and (d), has the curvatures being suppressed in the two 

directions at point  in Figure 5.4. Additionally, though the two curvatures are being 

suppressed in magnitude at point 

D′

D′ , the directions (signs) of the curvatures are opposite 

each other and this makes one of the wells ‘inverted’.  

 A sample of the stresses that lead to the force and moment resultants Nx, Ny, Mx, 

and My illustrated in Figure 5.6 for the LIPCA-C2 actuator with an aspect ratio of 0.7 and a 

thickness ratio of 200 are illustrated in Figures 5.8 and 5.9 for four locations within the 

actuator. The through-thickness distributions of the inplane normal stresses near the center 

of the actuator  are illustrated in Figure 5.8 (a), while the distributions near the 

midpoints near the longer edge 

0, 0x y≅ ≅

( )0, 2yx y L≅ ≅  and near the shorter edge 

( 2, 0xx L y≅ ≅ )  are illustrated in Figures 5.8 (b), and 5.9 (a), respectively. The  
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(a) Distribution of Normal Stresses at 0,≅x 0≅y  
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(b) Distribution of Normal Stresses at 0,≅x 2≅ yy L  

Figure 5.8: Stress Distributions in LIPCA-C2 (Ly/Lx = 0.7, Lx/H = 200, = -142 ) for 
Two Locations near Centerline x = 0 

∆T C°
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(a) Distribution of Normal Stresses at 2,≅ xx L 0≅y  
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(b) Distribution of Normal Stresses at 2,≅ xx L 2≅ yy L  

Figure 5.9: Stress Distributions in LIPCA-C2 (Ly/Lx = 0.7, Lx/H = 200, = -142 ) for 
Two Locations near Boundary x = L

∆T C°
x/2 

186 186



 

distributions near a corner ( 2, 2x yx L y L≅ ≅ )  are displayed in Figure 5.9 (b). The 

comparisons of the through-thickness stress distributions between the 23-term Rayleigh-Ritz 

and the ABAQUS models are also given in Figures 5.8 and 5.9. Since the stress calculations 

resulting from the ABAQUS model are expected to be more accurate than from the 23-term 

Rayleigh-Ritz approach, the following discussions about the stress distributions are based on 

the finite-element results. 

 As seen in Figures 5.8 and 5.9, the magnitudes of the room-temperature stresses 

for the LIPCA-C2 actuator are lower than for the THUNDER actuator illustrated in Figures 

3.12 and 3.13, but are on the same order as for the LIPCA-C1 actuator shown in Figures 4.7 

and 4.8. This is principally due to the lower cure temperature for the epoxy in the carbon-

epoxy and glass-epoxy layers in the LIPCA-C2 actuators than for the polyimide adhesive in 

the THUNDER actuators. Despite the fact that the cure temperature for the LIPCA-C2 

actuators is the same as for the LIPCA-C1 actuators, the magnitude of the inplane normal 

stress in the x-direction in the carbon-epoxy layer is the largest stress encountered in the two 

composite actuators and the layer is in compression in this direction at all four locations 

considered.  However, the magnitude of the inplane normal stress in the y-direction in the 

carbon-epoxy layer are trivial and the layer is instead in tension in the y-direction. This is 

evidently caused by the inplane orthotropy of the carbon-epoxy layer, which possesses a 

high elastic modulus and a negative coefficient of thermal expansion in the x-direction, and 

a low elastic modulus and a positive coefficient of thermal expansion in the y-direction. The 

sign of the stress in the piezoceramic layer varies with thickness location and stress 

component. Note that even though the piezoceramic layer is subjected to a tensile stress, 

which is undesirable for a piezoceramic material due to its brittleness, the magnitude of the 

stress is not detrimentally large and should not be a concern. Like the LIPCA-C1 actuator, 

the residual normal stresses in the glass-epoxy layers in the LIPCA-C2 actuator are 

relatively small due to their comparatively low modulus of elasticity. In addition, the 
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increased or decreased magnitudes of some force and moment resultants on the specific 

edges can be explained from the stress distributions in Figures 5.8 and 5.9. For example, for 

the force resultant Nx shown in Figure 5.6 (a), when comparing Figure 5.8 (a) with Figure 

5.8 (b) it can be seen that the main contribution to the large positive value of Nx on the y-

edges comes from the value of xσ  in the carbon-epoxy and piezoceramic layers. The 

magnitude of the negative value of xσ  decreases going from the center to the edges. This 

leads to a positive value of Nx at the edges compared to the center. The glass-epoxy layers 

also have a contribution to the stress resultant behavior, but the magnitude of increase of the 

positive stress component xσ  is small. This is quite different from that of the LIPCA-C1 

actuator presented in Section 4.2.2. The contribution to the large magnitude of resultant Nx 

on the y-edges for the LIPCA-C1 actuator in Figure 4.5 (a) is attributable to a change in 

stress components xσ  in all layers of the actuators at the edges compared to the center 

(Figure 4.7 (b) compared to Figure 4.7 (a)). Similarly, the large magnitudes of the force 

resultant Ny on the x-edges in Figure 5.6 (c) for the LIPCA-C2 actuator can also be studied. 

In contrast to those of the force resultant Nx in Figure 5.6 (a), the large magnitudes of the 
force resultant Ny at the midpoint of one of the x-edges ( )2, 0xx L y= =  compared to the 

central point (  result from an increase of the stress components )0, 0x y= = yσ  in all layers, 

as seen in Figure 5.9 (a) compared to Figure 5.8 (a). Moreover, because the increase in the 
stress component yσ  is nearly the same in all layers, large magnitudes of the moment 

resultant My on the x-edges do not noticeably develop. Finally, the comparison between the 

predictions of the stress distributions by 23-term Rayleigh-Ritz and ABAQUS models in 

Figure 5.8 shows a fairly good agreement. A small discrepancy between both predictions 

can be seen in the carbon-epoxy layer and the piezoceramic layer. However, the comparison 

of stress distributions in Figure 5.9 between the two models reveals a larger discrepancy in 

each layer than the comparison in Figure 5.8, especially in the carbon-epoxy layer in the x-

direction. The reason for this is that the carbon-epoxy layer has a high modulus of elasticity 
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in the x-direction, and thus the normal stress in this direction is highly sensitive to the strains 

computed by using the assumed displacement field of Equation (2.26). 

5.3 Numerical Results of Actuated Shapes 

5.3.1 Deformation Characteristics of LIPCA-C2 subjected to Applied Electric Field

 The relationships between the sidelength-to-thickness ratio and the actuation-

induced curvatures at ±2 MV/m for rectangular LIPCA-C2 actuators with an aspect ratio of 

0.7 are illustrated in Figure 5.10. Also, the room-temperature manufactured curvature vs. 

sidelength-to-thickness ratio relations, which were shown in Figure 5.1, are repeated in 

Figure 5.10 for reference. The characteristics of the actuation-induced curvature for the 

LIPCA-C2 design are quite interesting, and much different than the THUNDER and LIPCA-

C1 actuators discussed. There is considerable enhancement of the actuated curvature change 

in the x- and y- directions for large sidelength-to-thickness ratios when a positive electric 

field is applied. However, suppression of the actuated curvature change in the x-direction 

and some degree of enhancement in the y-direction appear when the actuators are subjected 

to a negative applied electric field. It is interesting to note that the actuated curvature 

changes in the x-direction for positive and negative fields are different by more than a factor 

of five for large sidelength-to-thickness ratios. For a harmonically applied voltage, the 

dynamic response of the actuator could be quite undesirable. The unusual curvature changes 

for large sidelength-to-thickness ratios for positive and negative electric fields is confirmed 

with finite-element calculations for the case of Lx/H = 200 at points and  

respectively. The sign of the changes in curvature owing to an applied electric field is 

consistent with the physical interpretation of actuator deformations based on the stacking 

sequence of the LIPCA-C2 actuators. Due to the comparatively high modulus of elasticity of 

the carbon-epoxy layer and more glass-epoxy layers stacked above the piezoceramic layer 

than below the layer, the effective extensional stiffness of all layers on the top of the  

P2D N2D ,
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Figure 5.10: Influence of Actuation on the Change of Curvatures of Rectangular LIPCA-C2 
(Ly/Lx = 0.7, ∆T C= -142° ) 
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piezoceramic layer is higher than that of the single glass-epoxy layer below the 

piezoceramic layer. As a result, the layers on the top, taken together, act as the backbone of 

the LIPCA-C2 actuator in both x- and y-directions. Thus, when a negative field is applied, as 

an example, the negative room-temperature curvature in the x-direction is reduced in 

magnitude, whereas the positive room-temperature curvature in the y-direction is increased 

in magnitude. The corresponding shapes of the LIPCA-C2 actuator at Lx/H =200 with +2 

MV/m and -2 MV/m applied electric field strengths, as computed by employing the 23-term 

Rayleigh-Ritz model, are compared in Figure 5.11. In addition, the shape of the actuator 

without an applied electric field, which was shown in Figure 5.2 (b), are illustrated in Figure 

5.11 for comparison. Note that the shape of the actuator with +2 MV/m applied in Figure 

5.11 (c) is totally different than the shape of the actuator without an applied electric field in 

Figure 5.11 (b) and with -2 MV/m applied in Figure 5.11 (a). Therefore, it will be of interest 

and value to study the transition of the shape characteristic from the state with no application 

of electric field to the state with an application of the positive electric field. This will be 

discussed more subsequently in this section. 

 

    (a) With -2 MV/m field            b) Without electrical field           (c) With +2 MV/m field     
          (on branch )                 (on branch N2 N2A D A D′ ′ )                         (on branch ) P2 P2A D

Figure 5.11: Out-of-Plane Shapes of LIPCA-C2 under Electrical Voltage Actuation (Lx/H = 
200, Ly/Lx = 0.7, ∆T C= -142° ) 
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 Figure 5.12 illustrates the average curvature of square LIPCA-C2 actuators due 

to an application of ±2 MV/m electric fields vs. sidelength-to-thickness ratio. As can be 

seen, the enhancement and suppression of the changes in actuated curvatures in this figure, 

as compared to those in Figure 5.10, are more pronounced because of the stronger 

geometrically nonlinear effects of the wider actuator. Overall, the behaviors of the LIPCA-

C2 actuators with an aspect ratio of 0.7 and 1 as a function of sidelength-to-thickness ratio 

when subjected to an applied electric field are quite similar. 

 The influence of sidelength-to-thickness ratio on actuated curvatures of LIPCA-

C2 actuators with an aspect ratio of 0.33 is illustrated in Figure 5.13. For this beam-like 

aspect ratio, geometrically nonlinear effects are weaker than for the aspect ratios of 0.7 and 

1 discussed previously. However, the actuation-induced curvature changes in the x- and y-

direction of the beam-like actuators due to a positive voltage increase somewhat in 

magnitude as sidelength-to-thickness ratio increases. On the other hand, compared to the 

rectangular and square actuators, the curvature changes due to a negative voltage are large in 

magnitude. Finally, for these beam-like actuators, it is of value to compare the x-direction 

curvature due to the applied electric field strengths as predicted by the geometrically linear 

Rayleigh-Ritz predictions with the predictions of the beam theories developed in Appendix 

B. By employing Equation (B.42) or (B.68), for +2 and -2 MV/m, xΚ = 2.74 m-1 and 0.98 m-

1, respectively. The curvatures calculated from the beam theories are uniform over the range-

of-sidelength-to-thickness ratios considered. Their values are fairly close to = 2.60 mxΚ -1 

and 0.76 m-1, the values of the x-direction actuated curvatures predicted by the geometrically 

linear Rayleigh-Rtiz approach. 

 Viewed differently, the actuation-induced average curvature changes as a 

function of electric field strength can be considered. For example, LIPCA-C2 actuators with 

two different actuator sidelength-to-thickness ratios are investigated in Figure 5.14, Lx/H = 

200 in Figure 5.14 (a) and Lx/H = 100 in Figure 5.14 (b). Note that only the aspect ratios of  
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Figure 5.12: Influence of Actuation on the Change of Curvatures of Square LIPCA-C2 
( ∆T C= -142° ) 
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Figure 5.13: Influence of Actuation on the Change of Curvatures of Beam-Like LIPCA-C2 
(Ly/Lx = 0.33, ∆T C= -142° ) 
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0.7 and 0.33 are taken into account in the figure because the actuated curvature vs. 

sidelength-to-thickness ratio relations at Ly/Lx =1 in Figure 5.12 are very similar to those at 

Ly/Lx = 0.7 in Figure 5.10. As a result, it is anticipated that the actuation-induced average 

curvature changes vs. electric field strength relations for the two aspect ratios are also very 

similar. Furthermore, without the relations for Ly/Lx =1, the plots in Figure 5.14 are less 

cluttered and it is easier to study the behavior of the LIPCA-C2 actuators as a function of 

electric field strength. Firstly, referring to Figure 5.10, the large difference in the change of 

curvature for positive voltages compared to negative voltages for large sidelength-to-

thickness ratios for the LIPCA-C2 design can be explained by considering Figure 5.14 (a). 

For the case of the actuator with aspect ratio 0.7 and positive field strength, the relationships 

for both the x- and y-direction curvatures exhibit unusual behavior. Specifically, when the 

field strength reaches about +1.3 MV/m, rather than the curvature changing smoothly and 

monotonically with increasing field strength, the curvature changes abruptly. This occurs 

because the actuator suddenly changes configuration by way of a snap-through 

phenomenon. This is a dynamic event, and the snapped configuration has curvatures of 

larger and smaller magnitude, respectively, in the x- and y-directions than the configuration 

just before snapping. This snap-through phenomenon is the reason why the actuated shape 

of the LIPCA-C2 actuator with +2 MV/m illustrated in Figure 5.11 (c) is very different from 

the room-temperature shape without any electric field applied in Figure 5.11 (b). Also, the 

phenomenon is much like the change in configuration of THUNDER actuators that can be 

observed by applying moments along the edges of the actuator to induce snap through back 

and forth between branch and branch A D′ ′ B C′ ′  in Figure 3.8, as discussed in Section 3.2.3 

for an actuator with Lx/H = 200. However, the snap-through phenomenon in Figure 5.14 (a) 

is induced by an applied electric field instead of a mechanical moment. For the beam-like 

LIPCA-C2 actuator, Ly/Lx = 0.33, the snap-through phenomenon does not occur, though the 

curvature change relationships are nonlinear with applied voltage. Note that according to  
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          (a) Lx/H = 200 
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          (b) Lx/H = 100 

Figure 5.14: Influence of Actuation on the Change of Curvatures of LIPCA-C2             
( ∆T C= -142° ) 
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Figure 5.14 (a), the change in the y-direction curvature due to an applied electric field is 

always larger than the change in the x-direction curvature. This is, in a way, not desirable, 

since based on the design intention, the functionality of the LIPCA-C2 actuators are utilized 

along the x-direction, not the y-direction. Thus, more authority should be expected from the 

x-direction free actuation response. However, this is not the case. 

 For the case of sidelength-to-thickness ratio Lx/H = 100, illustrated in Figure 

5.14 (b), the snap-through phenomenon does not occur for either aspect ratio considered, 

though, as can be seen, the curvature change vs. field strength relation is slightly nonlinear 

for the rectangular actuator with the aspect ratio of 0.7. Also, for the rectangular actuator the 

change in the y-direction curvature due to an applied electric field is larger than that in the x-

direction curvature. However, for the beam-like actuator with Ly/Lx = 0.33, the change in the 

y-direction curvature is smaller than in the x-direction. Therefore, this beam-like LIPCA-C2 

actuator is superior to the others in Figure 5.14 in terms of the larger actuated curvature 

occurring in the preferred direction. 

 Before closing this section, it is of value to study the snap-through phenomenon 

induced by an applied electric field for a LIPCA-C2 actuator in more detail. The 

phenomenon can be explained further by considering Figure 5.15. The figure is similar to 

Figure 5.10, but considers only positive voltage levels. The legends are also different. The 

figure is complicated, but it explains the snap-through phenomenon illustrated in Figure 5.14 

(a). Figure 5.15 illustrates the x- and y-direction curvatures as a function of sidelength-to-

thickness ratio for several levels of increasing electric field strengths, starting with the no- 

field level and including +0.7 MV/m, +1 MV/m, +1.2 MV/m, +1.3 MV/m, and +2 MV/m. 

Considering the case Lx/H = 200, for no electric field, the x- and y-direction curvatures are 

about 0.3 m-1 and 3.1 m-1, respectively, as given by branch A D′ ′ . As the field strength is 

increased, the curvatures are determined by moving downward on a vertical line constructed 

at Lx/H = 200. As can be seen, for a field strength of +0.7 MV/m, there are three possible  
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Figure 5.15: Curvature vs. Sidelength-to-Thickness Ratio Relations for Rectangular 
LIPCA-C2 actuators, Ly/Lx = 0.7, various positive field strengths 
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curvatures in each direction. These are given by branches  and 

. Branch  represents unstable configurations, but when the field strength 

is gradually increased from zero, the curvatures change smoothly from branch 

P0.7 P0.7A D , P0.7 P0.7B E ,

P0.7 P0.7B C P0.7 P0.7B E

A D′ ′  to 

branch  so the existence of branch is not an issue. For a field strength of 

+1 MV/m, there are also multiple branches that are appropriately labeled. The curvatures 

move smoothly to branch  and then to branch  for a field strength of +1.2 

MV/m. Notice that for increasing field strength, the U-shaped branches denoted by C, B, 

and E are moving to the right. For a field strength less than +1.3 MV/m, there are multiple 

curvature levels, two associated with the U-shaped branches and one with the other branch. 

For a field strength of +1.3 MV/m, there is no U-shaped branch on the figure. The U-shaped 

branch has move to the right, off the figure. There is thus only a single solution branch, and 

that solution branch is much further down the vertical line at L

P0.7 P0.7A D , P0.7 P0.7B E

P1 P1B C P1.2 P1.2B C

x/H = 200, i.e., the solution 

has to jump because the U-shaped branch has moved out of contention. This is the snap 

through shown in Figure 5.14 (a) at +1.3 MV/m. A reverse jump also occurs at around +0.6 

MV/m when the field strength is decreased from +2 MV/m to zero, as indicated in Figure 

5.14 (a). Consequently, during the decrease of the electric field strength less than +2 MV/m 

but more than +0.6 MV/m, the curvatures changes smoothly. For example, as the field 

strength is decreased from +2 MV/m to +0.7 MV/m, the curvatures move from branch  

 to branch  without a snap-through occurring, smoothly passing branches 

, , and . However, when the electric field strength is decreased to 

be lower than +0.6 MV/m, the actuated curvatures jump, or snap, to a branch that lies 

between the branch A D  and , and finally back to branch   when the field is 

reduced to be zero. Additionally, as can be seen, for values of L

P2 P2A D P0.7 P0.7B C
P1.3 P1.3A D P1.2 P1.2A D P1 P1A D

′ ′ P0.7 P0.7A D A D′ ′

x/H less than 200, there are 

other values of field strength for which U-shaped branch is too far to the right for a smooth 

curvature increase with increasing field strength, so the snap-through phenomenon occurs. It 

can be concluded that for every actuator design, there could be a range of geometries and 
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field strengths where this phenomenon occurs and it needs to be investigated for particular 

actuator designs.  

5.3.2 Stress Characteristics of LIPCA-C2 subjected to Applied Electric Field 

 The through-the-thickness stress distributions of the LIPCA-C2 actuator with 

Ly/Lx = 0.7 and Lx/H = 200 subjected to ±2 MV/m applied electric field are illustrated in 

Figures 5.16 and 5.17. The former figure shows the stress distributions at the location near 

the center (x = 0, y = 0) and the latter figure shows the stress distributions near the midpoint 

of the longer edge (x = 0, y = Ly/2). The room-temperature stress-distributions caused by the 

elevated temperature manufacturing process, as shown in Figure 5.8, are also included in the 

figures as references for no-electric field condition. As seen in the figures, and as was 

discussed before, there is some tensile residual stress in the x-direction at room temperature 

in the piezoceramic layer, and the stress changes sign with the applied electric field. The 

sign changes in the stress in the piezoceramic layer could be detrimental to the fatigue life of 

the actuator. The sign of the stress in the y-direction in the piezoceramic layer does not 

change sign, nor are there sign changes in the composite layers. The sign changes of the 

stress are a direct function of the magnitude of the applied voltage. Note that at a particular 

thickness location, the change in stress component xσ  in the carbon-epoxy layer is generally 

larger than the change in stress component yσ  in the same layer. This is because the layer is 

very stiff in the x-direction, so the changes in xσ  in the layer due to actuation are significant. 

On the other hand, the layer is very soft in the y-direction and thus the changes in yσ  are 

much less affected. These behaviors are like that of the LIPCA-C1 actuator illustrated in 

Figures 4.13 and 4.14 because the both actuators share the same types of materials used, 

despite different stacking sequences.  The changes in the stress in the LIPCA-C2 actuator 

are more significant than for the THUNDER and LIPCA-C1 actuators because of the change 

in actuator configuration that accompanies the snap-through phenomenon for positive field 

strengths. In actuality, by merely looking at Figures 5.16 and 5.17 it is obvious that the 
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(a) Distribution of Normal Stress in the x-direction near Center,  0, 0x y≅ ≅
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(b) Distribution of Normal Stress in the y-direction near Center,  0, 0x y≅ ≅

Figure 5.16: Stress distributions in rectangular LIPCA-C2 near center when subjected to 
applied electric fields, Ly/Lx = 0.7, Lx/H = 200 

201 201



 

σx (Pa)
-1.6e+8 -1.2e+8 -8.0e+7 -4.0e+7 0.0 4.0e+7 8.0e+7 1.2e+8

z 
(m

)

-0.0003

-0.0002

-0.0001

0.0000

0.0001

0.0002

0.0003

ABAQUS, no field
ABAQUS, -2 MVm-1

ABAQUS, +2 MVm-1

Carbon
-epoxy

PZT

Glass-epoxy

Glass-epoxy

Glass-epoxy

 
(a) Distribution of Normal Stress in the x-direction near Edge, 0, 2yx y L≅ ≅  
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(b) Distribution of Normal Stress in the y-direction near Edge, 0, 2yx y L≅ ≅  

Figure 5.17: Stress distributions in rectangular LIPCA-C2 near midpoint of longer edge 
when subjected to applied electric fields, Ly/Lx = 0.7, Lx/H = 200 
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curvatures of the LIPCA-C2 actuator change sign after snap-through phenomenon, which is 

induced by the positive field strengths. This is because the gradients of the stress 

distributions in all layers change sign between the no-field or negative-field state and the 

positive-field state. The only exception is seen in Figure 5.17 (b), in which the gradient of 

stress distributions does not change sign for +2 MV/m. This is a local behavior of stress 
component yσ  due to edge effects and does not represent the overall change in curvature in 

the y-direction. Unlike for THUNDER actuators, for which the piezoceramic materials are in 

biaxial compression within the range ±2 MV/m, it appears there will always be a small 

volume of piezoceramic material in LIPCA-C2 actuators that changes sign with changing 

electric field, no matter how small the magnitude of the applied field.    

5.4 Numerical Results for Blocking Forces 

5.4.1 Blocking Forces of LIPCA-C2 as a Function of Electric Field Strength 

 Consider LIPCA-C2 actuators with an aspect ratio Ly/Lx = 0.7 and sidelength-to 

thickness ratios of 100 and 200 with shapes given by Figure 5.1 or 5.10. Figure 5.18 shows 

relations between the blocking forces and applied electric field E3. The blocking forces of 

the LIPCA-C2 actuators with pinned-roller and pinned-pinned supports are illustrated in the 

figure. Like LIPCA-C1 actuators of Figure 4.15, the blocking force Pbl for the pinned-

pinned case is of opposite sign to the blocking force Pbl for the pinned-roller case, which is 

not the case for THUNDER actuators of Figure 3.26. It is seen from Figure 5.18 that the 

blocking force relations for the pinned-roller and pinned-pinned cases for Lx/H = 100 can be 

approximated as linear functions of applied electric field strength over the range ±2 MV/m. 

However, blocking force relations for the two support cases for Lx/H = 200 vary nonlinearly 

with electric field strength. First, consider the pinned-roller case. The magnitude of force Pbl 

for Lx/H = 100 is lower than that for Lx/H = 200 over the range ±2 MV/m. For applied 

negative voltages, the blocking force relation for Lx/H = 200 is curved toward the blocking  
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Figure 5.18: Blocking Force vs. Electric Field Relations of Rectangular LIPCA-C2           
(Ly/Lx = 0.7) 
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force relation for Lx/H = 100 or, equivalently, the rate of change of Pbl vs. applied electric 

field is decreased. This is because the actuated curvature in the x-direction for Lx/H = 200 

and a negative field is suppressed compared to the linear prediction, as illustrated in Figure 

5.10. On the other hand, for a positive field, the blocking force relation for Lx/H = 200 

deviates from that for Lx/H = 100 or, in the other words, the rate of change of Pbl vs. applied 

electric field increases, since the actuated curvature in the x-direction for Lx/H = 200 is 

enhanced. Note that the relationship between blocking force Pbl and applied electric field 

strength for Lx/H = 100 is close to the geometrically linear prediction, which is computed to 

be identical for the two sidelength-to-thickness ratio considered. For the pinned-pinned case, 

as mentioned, as compared to the pinned-roller case, a blocking force Pbl of opposite sign is 

obtained at a given electric field strength. At Lx/H = 100, the magnitude of force Pbl is 

smaller than that for the pinned-roller case by a factor of two. However, when the value of 

sidelength-to-thickness ratio is doubled, the magnitude of force Pbl is around one and a half 

times larger than that for the pinned-roller case for negative fields. This inconsistent 

behavior occurs due to very strong nonlinear effects as the actuator size is increased. 

Sidelength-to-thickness ratio effects also have an influence on force Rbl, since the magnitude 

of force Rbl for Lx/H = 200 compared to Lx/H = 100 is approximately three times greater for 

negative fields, despite being only two times greater based on the predictions of the 

geometrically linear theory. Like the pinned-roller case, the linear theory predictions of 

force Pbl for the pinned-pinned case are independent of sidelength-to-thickness ratio. 

However, the linear theory predictions for Rbl are dependent on sidelength-to-thickness ratio 

and the force and sidelength-to-thickness ratio are linearly proportional. Finally, it should be 

noted that the values of Pbl resulting from the linear theory for the pinned-pinned support 

case are very small and seen as a nearly horizontal dotted line on the upper portion of Figure 

5.18.       
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 Figure 5.19: Blocking Force vs. Electric Field Relations of Square LIPCA-C2 
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 The relations between blocking forces and electric field strength for square 

LIPCA-C2 actuators with Lx/H = 100 and 200 with shapes given by Figures 5.3 and 5.12 are 

illustrated in Figure 5.19. Effects of geometrical nonlinearities on the relations can be 

noticed more easily when the sidelength-to-thickness ratio is increased from 0.7 to 1, since 

most of the relations shown in Figure 5.19 cannot be approximated as linear functions of 

applied electric field within the range ±2 MV/m. For the pinned-roller case, as compared to 

Figure 5.18, the value of blocking force Pbl for Lx/H = 100 is larger over the entire range of 

electric field strength considered. The value of blocking force Pbl for Lx/H = 200 is larger 

over the entire range of applied voltage, except for large negative electric field strength. This 

is because the significant suppression of change in the x-direction curvature due to the 

negative-field actuation for Lx/H = 200 in Figure 5.12. For the pinned-pinned case, the value 

of blocking force Pbl for Lx/H = 100 is slightly smaller than that for Lx/H = 100 in Figure 

5.18. Nevertheless, the opposite behavior can be observed for Lx/H = 200 because the 

blocking force Pbl is larger than that in Figure 5.18. The value of force Pbl for Lx/H = 200 is 

also considerably larger than that for Lx/H = 100. In addition, as can be seen, at any applied 

electric field strength, the square LIPCA-C2 actuators always have a higher blocking force 

Rbl than the rectangular one previously discussed. 

 Lastly, the relations between blocking forces and electric field strength for 

beam-like LIPCA-C2 actuators with Ly/Lx = 0.33 and Lx/H = 100 and 200 are illustrated in 

Figure 5.20. In general, as seen in the figure, the relations between blocking forces and 

electric field strength are similar to those in Figure 5.18 and 5.19. However, to all intents 

and purposes, all of the blocking force relations vary linearly with applied electric field 

strength due to the beam-like configuration of the actuators. Note that even though the 

relations are approximately linear relative to an applied electric field, the geometrically 

linear theory still cannot predict the relations accurately in some cases, particularly the 

pinned-pinned case. For the pinned-roller case, the blocking force relation for Lx/H = 100 is  
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Figure 5.20: Blocking Force vs. Electric Field Relations of Beam-Like LIPCA-C2           
(Ly/Lx = 0.33) 
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very close to the linear prediction, while the relation for Lx/H = 200 is around 25% higher in 

magnitude than the prediction from the linear theory. The magnitudes of force Pbl for both 

Lx/H = 100 and 200 are lower than the corresponding ones for aspect ratios of 0.7 and 1 

illustrated in Figure 5.18 and 5.19, respectively. For the pinned-pinned case, the magnitude 

of blocking force Pbl for Lx/H = 100 is larger than that of the pinned-roller supported 

actuator with the same sidelength-to-thickness ratio. It is also larger than the magnitude of 

force Pbl for Lx/H = 100 for the two larger aspect ratios considered because of geometrically 

nonlinear effects with the larger aspect ratios. As the sidelength-to-thickness ratio is 

doubled, the magnitude of force Pbl is increased by approximately 70% compared to that for 

Lx/H = 100. The magnitudes of force Rbl for Lx/H = 100 and 200 are lower than the 

corresponding ones for aspect ratios of 0.7 and 1. Finally, it should be noted that for the 

value of sidelength-to-thickness ratio of 200, there exists a region where the algorithm 

presented in Section 2.4.3 fails to converge and, thus the associated blocking forces Pbl and 

Rbl cannot be solved for. The mark ‘× ’ represents the terminated point where the algorithm 

begins to have convergence failure when the magnitude of the negative electric field 

strength is increased. It is believed that the convergence failure is due to a change in the 

configuration or snap-through phenomenon of the actuator induced by the blocking forces 

Pbl and Rbl. Such a phenomenon cannot be captured by the blocking force analysis here. 

5.4.2 Blocking Forces of LIPCA-C2 as a Function of Sidelength-to-Thickness Ratio: 
Pinned-Roller Case 

 As with THUNDER and LIPCA-C1 actuators, in addition to studying the 

relationships between blocking forces and electric field strength, it is also of value to study 

the dependency of blocking forces on the sidelength-to-thickness ratio when LIPCA-C2 

actuators are subjected to applied voltages of ±2 MV/m. Analogous to the blocking force 

analyses for pinned-roller supported THUNDER and LIPCA-C1 actuators presented in 

Sections 3.4.2 and 4.4.2, respectively, the blocking force vs. electric field strength relations 
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for pinned-roller LIPCA-C2 actuators will be computed and analyzed for three aspect ratios, 

i.e., Ly/Lx = 0.7, 1, and 0.33. 

 First, consider Figure 5.21. The figure illustrates the relations between blocking 

force Pbl and sidelength-to-thickness ratio for pinned-roller supported LIPCA-C2 actuators 

with an aspect ratio of 0.7. As before, for both the +2 MV/m and -2 MV/m field strengths, 

the ordinate axis is normalized by a blocking force of a LIPCA-C2 actuator with Lx/H 

approaching zero, the result for the geometrically linear theory. Therefore, at very small 

values of sidelength-to-thickness ratio, 0 xL H 40< < , the normalized values of the force 

Pbl for ±2 MV/m are approximately equal to one. When Lx/H increases, the values of force 

Pbl gradually increase. In the range of 40 120xL H< < , the relations for ±2 MV/m nearly 

coincide. Beyond 120xL H = , the values of normalized Pbl separate from each other. For 

+2 MV/m the value of normalized Pbl still increases monotonically. In contrast, the value of 
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Figure 5.21: Blocking Force vs. Sidelength-to-Thickness Ratio Relations of Pinned-Roller 
Supported Rectangular LIPCA-C2 (Ly/Lx = 0.7) 
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normalized Pbl  for -2 MV/m increases and then decreases as sidelength-to-thickness ratio 

increases beyond 170. According to the figure, an enhancement of blocking force Pbl can be 

observed in the range of 40 200xL H< < . Additionally, it should be noted that when 

compared to the changes in curvatures due to actuation as shown in Figure 5.10, the 

blocking force Pbl is not proportional to the changes in the x-direction curvature, particularly 

for negative field strengths, but are somewhat proportional to curvature changes in the y-

direction. This is because the curvature suppression in the x-direction, when the electric field 

strength of -2 MV/m is applied, should not produce enhancement of the corresponding 

blocking force Pbl. There must be a contribution from the enhancement of the change in the 

y-direction curvature. In fact, this hypothesis is believed to support the cases of THUNDER 

and LIPCA-C1 actuators as well. However, the contribution from the changes in the y-

direction curvature for those actuators is not as obvious as the LIPCA-C2 actuators because 

the changes in the y-direction curvature are strongly suppressed for the THUNDER and 

LIPCA-C1 actuators. The blocking forces predicted by the geometrically linear theory, 

Pbl,lin, are also illustrated in the figure. The prediction exhibits constant blocking forces for 

±2 MV/m (±1.782 N, respectively) regardless of sidelength-to-thickness ratio values and 

therefore are drawn as coincident horizontal lines with values equal to one. Finally, it is 

essential to note that in accordance with Figure 5.21, designing a pinned-roller supported 

LIPCA-C2 actuator in the region of 40 200xL H< <  to carry a transverse load has an 

advantage from geometrically nonlinear effects. When compared to pinned-roller supported 

THUNDER and LIPCA-C1 actuators presented in Figure 3.29 and 4.18, respectively, a 

pinned-roller supported LIPCA-C2 actuator has a higher load-carrying capability. Like the 

LIPCA-C1 actuator and unlike the THUNDER actuator, for the sidelength-to-thickness 

ratios considered, there is enhancement. However, unlike the LIPCA-C1 actuators, the 

difference between positive and negative electric field strengths could be considered a 

disadvantage.   
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 Analogous to Figure 5.21, Figure 5.22 illustrates the relations between the 

blocking force and sidelength-to-thickness ratio for pinned-roller supported LIPCA-C2 

actuators with an aspect ratio of 1 subjected to ±2 MV/m. Generally, the relations in the 

figures are very similar to the case of aspect ratio 0.7 just discussed. A linear behavior of the 

relations takes place when Lx/H is small, but the linear range is shorter than that of the 

LIPCA-C2 actuators with an aspect ratio of 0.7 because it only covers the range 

0 xL H< <35  as opposed to 0 xL H 40< < . When 35xL H > , the normalized blocking 

forces increases with increasing Lx/H. Below Lx/H = 90, the blocking forces for ±2 MV/m 

roughly coincide. Beyond this sidelength-to-thickness ratio, the two blocking force relations 

gradually separate from each other. The value of normalized force Pbl for the positive field 

strength increases, while that for the negative field strength increases slightly and then 

decreases. The separation gap between the normalized relations for blocking force Pbl for +2 
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Figure 5.22: Blocking Force vs. Sidelength-to-Thickness Ratio Relations of Pinned-Roller 
Supported Square LIPCA-C2  
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MV/ m and -2 MV/m at large sidelength-to- thickness ratios is much larger than that of the 

actuator with aspect ratio 0.7. The blocking force predicted by the linear theory, Pbl,lin is 

independent of the actuator sidelength-to-thickness ratio and is represented by straight 

horizontal lines with the unit value. The force Pbl,lin of a square LIPCA-C1 actuator is equal 

to ±2.139 N for ±2 MV/m, respectively. Compared with the pinned-roller supported LIPCA-

C2 actuators with Ly/Lx = 0.7, the pinned-roller supported square ones have 20.0% higher 

blocking force based on the linear theory, and they are 42.9% larger in terms of size. 

 Considering pinned-roller supported LIPCA-C2 actuators subjected to ±2 MV/m 

field strength with an aspect ratio of 0.33, shown in Figure 5.23 are relations between the 

normalized blocking forces and sidelength-to-thickness ratio. When Lx/H < 60, the relations 

can be approximated by the geometrically linear theory very well. This linear region is the 

largest of the three aspect ratios considered because the geometric nonlinearity associated 
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Figure 5.23: Blocking Force vs. Sidelength-to-Thickness Ratio Relations of Pinned-Roller 
Supported Beam-Like LIPCA-C2 (Ly/Lx = 0.33) 
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with the beam-like configuration is the weakest among the three aspect ratios. As Lx/H 

increases beyond 60, the normalized blocking force increases gradually. Unlike the previous 

two cases of aspect ratios of 0.7 and 1, the normalized relations for blocking force Pbl for ±2 

MV/m in this case approximately coincide over the entire range of sidelength-to-thickness 

ratio considered. Thus, to all intents and purposes, there is no apparent separation between 

the blocking force relations. Also, no decrease in blocking force Pbl with increasing Lx/H is 

observed in the figure, as it was for negative field strengths with the other two aspect ratios. 

There are similarities with the previous two aspect ratios. Specifically, excluding the linear 

region for small sidelength-to-thickness ratios, the enhancement of the blocking force Pbl is 

observable over the entire range of sidelength-to-thickness ratio considered 

( 60 200xL H< <  for the beam-like aspect ratio). However, the degree of enhancement is 

smaller than those of the two larger aspect ratios. The linear theory predicts Pbl,lin to be 

±0.977 N for ±2 MV/m field strength, respectively. The values of Pbl,lin in this case are lower 

than the linear values for an aspect ratio of 0.7 by 45.2%, while the active area of the beam-

like actuator is less than that of the rectangular one by 52.9%. Additionally, it can be noted 

that because of the comparatively small aspect ratio, it is interesting to compare the blocking 

forces in Figure 5.23 with the ones computed from the nonlinear and linear beam theories 

developed in Appendix B. By employing Equation (B.41) and (B.67), and setting the 

relative transverse deflection, w0, at x = ±Lx/2 due to ±2 MV/m field strength to be zero, the 

blocking force predictions based on the beam theories can be solved for and found to be 

±0.941 N for ±2 MV/m, respectively. These blocking forces are independent of the 

sidelength-to-thickness ratio, like those predicted from the geometrically linear theory, 

illustrated as the dotted line in Figure 5.23. Finally, in comparing beam-like THUNDER, 

LIPCA-C1 and LIPCA-C2 actuators, the blocking force performance of LIPCA-C2 actuator 

is superior.   
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5.4.3 Blocking Forces of LIPCA-C2 as a Function of Sidelength-to-Thickness Ratio: 
Pinned-Pinned Case 

 In this section, blocking forces of a LIPCA-C2 actuator with pinned-pinned 

supports as a function of sidelength-to-thickness ratio are taken into consideration. 

Illustrated in Figure 5.24 are relations for blocking forces Pbl and Rbl for ±2 MV/m for a 

LIPCA-C2 actuator with an aspect ratio of 0.7. Again, like the case of THUNDER and 

LIPCA-C1 actuators, the influence of restraining the motion in the x-direction at the support 

positions is obviously very strong because the normalized Pbl relations shown in Figure 5.24 

are significantly different from those shown in Figure 5.21. Unlike THUNDER and LIPCA-

C1 actuators, the magnitudes of both the normalized forces Pbl and Rbl generally increase 

with increasing Lx/H. Also, it should be noted that the sign of force Pbl (or the direction of 

the force Pbl) at a particular sidelength-to-thickness ratio and applied electric field strength 

for the pinned-pinned case in Figure 5.24 is opposite to that for the same sidelength-to-

thickness ratio and applied electric field strength for the pinned-roller case in Figure 5.21. 

This behavior is similar to that of LIPCA-C1 actuator. As can be seen, the range of Lx/H for 

which the blocking force Pbl relations are approximately equal to the linear predictions is 

very short. As the sidelength-to-thickness ratio increases, the normalized values of Pbl 

deviate from the linear predictions and increase moderately in magnitude, while values of 

Rbl are still in agreement with the linear predictions and also increase considerably in 

magnitude. Like the similar phenomenon that occurs with THUNDER and LIPCA-C1 

actuators discussed in Sections 3.4.3 and 4.4.3, the deviation of Pbl from the linear 

predictions originates at a small value of Lx/H because the magnitude of the associated Rbl is 

relatively large and this changes the structural stiffness of the actuator through geometrically 

nonlinear effects. However, the deviation of Pbl from the linear theory, in turn, does not 

affect the force Rbl as much due to the comparatively small magnitude of Pbl. The relations 

for blocking forces Pbl and Rbl for ±2 MV/m coincide up to Lx/H = 80 and 100, respectively. 

Beyond these values of sidelength-to-thickness ratio, the relations separate from each other,  
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Figure 5.24: Blocking Force vs. Sidelength-to-Thickness Ratio Relations of Pinned-Pinned 
Supported Rectangular LIPCA-C2 (Ly/Lx = 0.7) 
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with more separation for larger values of sidelength-to-thickness ratio. According to Figure 

5.24 and 5.21, in general the magnitude of force Pbl of the pinned-pinned supported 

actuators is smaller than that of the pinned-roller supported actuators with the same 

sidelength-to-thickness ratio and subjected to the same electric field strength. The only 

exception is for large sidelength-to-thickness ratios and the negative field strength applied, 

for which the blocking force Pbl for -2 MV/m is enhanced in magnitude appreciably. Thus, 

the existence of Rbl can weaken the transverse load-carrying capability of the LIPCA-C2 

actuators. However, the comparison among Figures 5.24, 4.21, and 3.32 shows that the 

magnitude of blocking force Rbl for the pinned-pinned supported LIPCA-C2 actuator is the 

largest of all three actuator-types studied. In addition, the prediction of force Pbl,lin from the 

linear theory again reveal values independent of sidelength-to-thickness ratio, i.e., ±0.0045 

N for ±2 MV/m, respectively. Note that the value predicted from the linear theory is quite 

small. The values of Rbl,lin for ±2 MV/m electric field strengths vary with sidelength-to-

thickness ratio in a linear fashion with slopes of ±1.002 N, respectively.   

 The influence of the aspect ratio on blocking forces of LIPCA-C2 actuators with 

pinned-pinned supports will be examined in Figures 5.25 and 5.26. The figures illustrate the 

relations between blocking forces and sidelength-to-thickness ratio for the actuators with 

aspect ratios of 1 and 0.33. Considering Figure 5.25, the overall relations are similar to the 

ones in the previous figure for aspect ratio 0.7. However, qualitatively, the relations of the 

normalized blocking force Pbl are roughly a mirror image around the abscissa axis of those 

in the upper portion of Figure 5.24, since the normalization factors Pbl,lin for the cases of the 

aspect ratio of 1 and 0.7 have opposite signs for a given electric field strength. In addition, 

when compared to the blocking force Pbl in Figure 5.24, it can be seen that the value of the 

force Pbl of the square actuators is larger only when sidelength-to-thickness ratio is greater 

than a certain value (around 150 for +2 MV/m, and 110 for -2 MV/m). Nevertheless, the 

value of blocking force Rbl of the square actuators is always larger than that of the  
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Figure 5.25: Blocking Force vs. Sidelength-to-Thickness Ratio Relations of Pinned-Pinned 
Supported Square LIPCA-C2  
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rectangular actuators with the same value of Lx/H. Additionally, similar to the case of aspect 

ratio 0.7, the magnitude of force Pbl of the pinned-pinned supported actuators is in general 

lower than that of the pinned-roller supported actuators with the same sidelength-to-

thickness ratio and subjected to the same electric field strength. The exception is for large 

sidelength-to-thickness ratios and a negative field strength. The separation is larger for the 

square actuator due to stronger geometrically nonlinear effects. The geometrically linear 

theory predicts the force Pbl,lin to be constant over the considered sidelength-to-thickness 

ratio, i.e., 0.119 N for ±2 MV/m, respectively. On the other hand, the force R∓ bl,lin for ±2 

MV/m is predicted to be a linear function of sidelength-to-thickness ratio with slopes of 

±1.268 N, respectively. 

 Finally, the relations between blocking forces and sidelength-to-thickness ratio 

for pinned-pinned supported beam-like LIPCA-C2 actuators with an aspect ratio of 0.33 are 

illustrated in Figure 5.26. Overall, the blocking force relations are similar to those in Figures 

5.24 and 5.25. The normalized value of Pbl is in good agreement with the linear predictions 

for small sidelength-to-thickness ratios. The normalized value of Rbl also agree well with the 

normalized values of Rbl,lin predicted by the linear theory, over a limited range of sidelength-

to-thickness ratios. Unlike the case of the LIPCA-C1 actuators, the value of blocking force 

Pbl of the beam-like LIPCA-C2 actuators is not always smaller than those of the actuators 

with aspect ratios of 0.7 and 1. However, the value of blocking force Rbl is always smaller 

than those of the actuators with the larger aspect ratios considered. This inconsistency of the 

blocking forces relative to the aspect ratios is due to strong geometrically nonlinear effects. 

Both the forces Pbl and Rbl increase monotonically with increasing Lx/H. However, it should 

be noted that when the value of Lx/H is beyond 120, the blocking forces for -2 MV/m field 

strength cannot be solved for due to the convergence failure of the algorithm presented in 

Chapter 2. Again, this failure is believed to occur because the LIPCA-C2 actuators snap 

through to another configuration. The geometrically linear theory predicts the values of Pbl,lin  
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Figure 5.26: Blocking Force vs. Sidelength-to-Thickness Ratio Relations of Pinned-Pinned 
Supported Beam-Like LIPCA-C2 (Ly/Lx = 0.33) 
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to be  N for ±2 MV/m, respectively. In addition, the slope of the relations between 

normalized R

0.212∓

bl and sidelength-to-thickness ratio is 0.662. 

5.5 Chapter Summary  

 

 In this chapter, the numerical results for manufactured shapes of LIPCA-C2 

actuators were presented. Similar to LIPCA-C1 actuators, the predicted shapes are single-

valued at room temperature in the range of parameters considered. All manufactured shapes 

are stable and are saddle-like, with a positive smaller curvature in the x-direction and a 

negative larger curvature in the y-direction. Analogous to the LIPCA-C1 actuators, the 23-

term Rayleigh-Ritz model with an incorporation of composite material constitutive 

equations for LIPCA-C2 actuators was shown to have a good agreement with the finite-

element results obtained using ABAQUS for the selected cases compared. The results 

indicate that the predicted manufactured shapes for LIPCA-C2 actuators depend on 

sidelength-to-thickness ratio because of geometrically nonlinear effects. Generally, the x-

direction room-temperature curvature is suppressed with increasing sidelength-to-thickness 

ratio, while the y-direction room-temperature curvature is, by comparison, unchanged. This 

is, in fact, very interesting Because the LIPCA-C2 actuators are much stiffer in the x-

direction than the y-direction due to the carbon fibers in the carbon-epoxy layer, it would be 

expected that the x-direction curvature should not be sensitive to the change in geometry. 

However, this is certainly not the case and accordingly, it can be concluded that nonlinear 

effects are more influential than material stiffnesses on the room-temperature manufactured 

shapes.   

 In addition, the results of extension of the Rayleigh-Ritz model to predict the 

actuation response at room temperature of LIPCA-C2 actuators were presented. 

Interestingly, the average changes in curvature in each direction caused by positive and 

negative field strengths have different behavior with increasing Lx/H, and with aspect ratio. 
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The average curvature change in the x-direction is enhanced when a +2 MV/m field strength 

is applied, while it is suppressed when being subjected to a -2 MV/m field strength. On the 

other hand, when +2 and -2 MV/m field strengths are applied, the curvature change in the y-

direction is enhanced considerably and slightly, respectively. Indeed, the considerable 

curvature enhancement in both the x- and y-directions of the LIPCA-C2 actuator with aspect 

ratios of 0.7 and 1 for +2 MV/m is due to a snap-through phenomenon of the actuator 

configuration. The actuation responses as a function of applied electric field were also 

discussed. The snap-through phenomenon of the actuator with Lx/H = 200 and Ly/Lx = 0.7 

can obviously be seen as a function of applied electric field. Except for this phenomenon, 

the changes in the actuated curvatures vary with applied electric field in a moderately 

nonlinear fashion. Note that according to the change in curvatures vs. applied electric field 

strength relations, the beam-like LIPCA-C2 actuator with Lx/H =100 is superior to the rest of 

the LIPCA-C2 actuators considered in terms of the larger actuated curvature obtained for 

both positive and negative field strengths in the operational x-direction than the unexploited 

y-direction.  

 Finally, the blocking force predictions from the extension of the 23-term 

Rayleigh-Ritz model used to predict actuated shapes of LIPCA-C2 actuators were presented. 

For pinned-roller supported LIPCA-C2 actuators, blocking force Pbl is usually higher than 

force Pbl,lin, namely that predicted by the geometrical linear theory. For the aspect ratios of 

0.7 and 1, the value of blocking force Pbl for +2 MV/m is larger than that for -2 MV/m for 

large sidelength-to-thickness ratios. This is due to the considerable enhancement of change 

in actuation-induced curvature for +2 MV/m. For pinned-pinned supported LIPCA-C2 

actuators, the existence of force Rbl strongly influences the characters of blocking force Pbl 

because the comparatively large magnitude of force Rbl alters the structural stiffness of the 

actuators. For the same aspect ratio, the magnitude of force Pbl increases with increasing 

Lx/H. Also, the direction of force Pbl changes due to the presence of Rbl. The relations 

222 222



 

between blocking forces and applied electric field strength were also presented. Generally 

speaking, the blocking force Pbl vs. electric field strength relations are linear for Lx/H = 100, 

but rather strongly nonlinear for Lx/H = 200. The blocking force Rbl vs. electric field strength 

relations are slightly nonlinear. Consequently, in order to design a LIPCA-C2 actuator to 

carry a transverse load or an inplane normal load, a careful analysis of actuator performance 

should be conducted, since its room-temperature shape and support type have very strong 

effects on the actuator capability. 

 In the next chapter, conclusions regarding the present study are made and 

recommendations for future work are specified.  
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Chapter 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

 

 In this work, a number of predictive analyses were developed to determine the 

deformation characteristics of the manufactured and actuated shapes of rectangular 

THUNDER, LIPCA-C1, and LIPCA-C2 actuators. The key modeling of these analyses, as 

presented in Chapter 2, was based on developing approximate displacement responses that 

minimize the total potential energy of these layered actuators. This was accomplished 

through the use of variational methods along with the 23-term Rayleigh-Ritz approximation 

to the displacement fields. All analyses were based on classical layered plate theory and 

assumed the various layers exhibited linear elastic, temperature-independent behavior.  

Since the out-of-plane deformations of these actuators when cooled from the manufacturing 

temperature to room temperature are several times the thickness of the actuators, geometric 

nonlinearities were important and were included in the strain-displacement relations. The 

presence of geometric nonlinearities implies the possibility of having more than one room-

temperature shape predicted for a given set of parameters. For that purpose, an examination 

of the stability of the predicted shapes was considered. This was achieved by examining the 

second variation of the total potential energy. In addition to this, finite-element models by 

employing ABAQUS version 6.3 were also developed to compare with the predicted room-

temperature and actuated shapes resulting from the 23-term Rayleigh-Ritz model. Nine-node 

shell elements with the geometrically nonlinear kinematics were used in ABAQUS.  

Multiple equilibrium shapes in ABAQUS could be obtained by an aid of the Rayleigh-Ritz 
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solutions. Blocking forces of the actuators were also determined. Two types of blocking 

forces were investigated, i.e., the force that restrained the z-direction motion of the midpoint 

of two edges of an actuator (equivalent to the force at pinned-roller support) and the forces 

that restrained both the x- and z-direction motions of the same points (equivalent to the 

forces at pinned-pinned support). The Rayleigh-Ritz models were modified to calculate the 

blocking forces by adding a work term due to the forces in the total potential energy. 

Supplementary iterative algorithms were developed and employed to solve for the blocking 

forces.  

 The numerical results for square and rectangular THUNDER actuators were 

presented in Chapter 3. As indicated in the chapter, THUNDER actuators could exhibit 

multiple room-temperature shapes for the geometrical and manufacturing parameters 

considered. This would especially occur for actuators with aspect ratios Ly/Lx = 0.7 and 1 

when the inplane dimensions of the actuator’s relative to thickness and temperature 

decrement were sufficiently large (larger than critical values of sidelength-to-thickness 

ratios and lower than critical values of temperature). The critical points of the curvature vs. 

temperature or curvature vs. sidelength-to-thickness ratio relations of the actuators with 

aspect ratios of 0.7 and 1 were limit and bifurcation points, respectively. However, when 

tabs were included in the analysis, the relations for actuators with a square active region 

exhibited limit point behavior rather than bifurcation behavior. This was due to geometric or 

structural orthotropy of the square actuators with tabs. The existence of these critical points 

suggests that care should be taken when designing THUNDER actuators. Indeed, if two 

THUNDER actuators are manufactured with a geometry that is very close to the critical 

value, they may behave quite differently. Specifically, manufacturing irregularities such as 

small variations in material properties, variations in layer thickness, or nonuniform cooling 

may result in different effective sidelength-to-thickness ratio. Hence, two ‘identical’ 

THUNDER actuators will not behave exactly the same way. Also, actuation responses of 
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THUNDER actuators strongly depended on sidelength-to-thickness and aspect ratios. The 

changes in curvatures in the x- and y-directions due to an actuation were not equal because 

of geometrically nonlinear effects. On a branch of stable room-temperature shapes, an 

enhancement of free actuation responses in the x-direction could be observed for actuators 

with aspect ratios of 0.7 and 1, and large values of sidelength-to-thickness ratio, while the 

suppression in free actuation responses in the associated y-direction was noticed. However, 

on the other stable room temperature shape branch, the opposite behavior of free actuation 

responses occurred in the x- and y-directions. The suppression in free actuation responses for 

THUNDER actuators with aspect ratios of 0.7 and 1 in mid-range of sidelength-to-thickness 

ratio and for beam-like actuators with an aspect ratio of 0.3 over the sidelength-to-thickness 

ratio considered could also be observed. As a result, it must be noted that not all THUNDER 

actuators exhibited enhancement of free actuation responses due to the curved shape 

characteristic. For the geometrical configurations that exhibit the suppression in free 

actuation responses, the counterpart flat actuator made from the same material, stacking 

sequence, and dimensions could have larger actuation-induced deflections than THUNDER 

actuators. However, in THUNDER actuator design, the piezoceramic layer always remained 

in compression even when subjected to high electric field strengths. This bodes well for 

there being little potential for tension cracking in the piezoceramic, a characteristic of a 

brittle material. The load-carrying capability of THUNDER actuators was evaluated by 

computing blocking forces, utilizing the blocking force algorithms presented in Chapter 2. 

Generally, transverse blocking forces (Pbl) of THUNDER actuators for the equivalent 

pinned-roller support case were lower in value than those of the counterpart flat actuators, 

except for actuators with aspect ratios of 0.7 and 1, and large values of sidelength-to-

thickness ratio. With additional motion restraint in the x-direction, transverse blocking 

forces (Pbl) for equivalent pinned-pinned support case behaved oppositely and were higher 

in value than those of the counterpart flat actuators for mid-range sidelength-to-thickness 
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ratios. The magnitudes of the associated inplane blocking forces (Rbl) were considerably 

larger compare to those of Pbl for the pinned-pinned case. However, the inplane blocking 

forces were less than those predicted by the geometrically linear theory. Therefore, in order 

to design a THUNDER actuator to carry a transverse load or an inplane normal load, a 

careful analysis of actuator performance should be conducted, since its geometrical 

parameters and support conditions have very strong influences on the actuator load-carrying 

capability. 

 The numerical results for square and rectangular LIPCA-C1 actuators were 

presented in Chapter 4. Unlike THUNDER actuators, LIPCA-C1 actuators exhibited only 

one room-temperature shape for the entire range of all geometrical parameters considered. 

However, LIPCA-C1 actuators with the beam-like aspect ratio had a similar room-

temperature curvature characteristic to beam-like THUNDER actuators, except the 

THUNDER actuators exhibited suppression of the manufactured curvature in the x-direction 

with increasing Lx/H, whereas the LIPCA-C1 actuators did not. Indeed, for all of the aspect 

ratios considered, the room-temperature curvature in the x-direction of LIPCA-C1 actuators 

was insensitive to sidelength-to-thickness ratio, while the y-direction room-temperature 

curvature was noticeably suppressed with increasing sidelength-to-thickness ratio. This was 

principally due to the orthotropic material properties of the carbon-epoxy layer in the 

LIPCA-C1 actuators (fibers running in the x-direction or the operational direction) and the 

specific stacking sequence of the LIPCA-C1 actuators. Compared to those of THUNDER 

actuators, the residual cooling stresses in LIPCA-C1 actuators were lower in magnitude due 

mainly to the lower cure temperature for the epoxy in carbon-epoxy and glass-epoxy layers 

than for the polyimide adhesive in the THUNDER actuators. In addition, when subjected to 

applied electric field strengths, there would be a possibility that stresses in the piezoceramic 

layer of the LIPCA-C1 actuators would change sign, especially in the x-direction. This could 

be detrimental to the piezoceramic layer owing to both tensile stresses, and a reversing stress 
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fatigue condition under an application of alternating electric field. The stresses in LIPCA-C1 

actuators changed more in relation to the residual values when actuated than in THUNDER 

actuators. Analogous to the case of THUNDER actuators, blocking forces of LIPCA-C1 

actuators were evaluated to analyze their load-carrying capability. The results showed that 

nonlinear effects enhance the transverse blocking force Pbl for the pinned-roller case, but the 

degree of enhancement was not significant for the three aspect ratios considered. However, 

for the pinned-pinned case, nonlinear effects enhanced blocking force Pbl remarkably. 

Additionally, the magnitude of the associated inplane blocking force Rbl was much higher 

than that of Pbl. However, geometrically nonlinear effects suppressed the value of Rbl 

relative to the prediction of the linear theory. In conclusion, a thorough analysis of LIPCA-

C1 actuator performances should be conducted when a LIPCA-C1 actuator is designed for a 

specific task, since its performances change with geometrical parameters and support 

conditions. 

 The numerical results for square and rectangular LIPCA-C2 actuators were 

presented in Chapter 5. Similar to the LIPCA-C1 actuator case, there was only one room-

temperature manufactured shape for a given set of geometrical parameters and temperature 

change during cooling. Unlike the other two actuator designs considered, the room-

temperature curvature in the y-direction was of opposite sign to the x-direction curvature. 

Furthermore, the magnitude of the y-direction room-temperature curvature was larger than 

that of the x-direction curvature by at least a factor of two. This might not be favorable 

because it could be difficult to attach LIPCA-C2 actuators to a structure along the x-edges 

without adversely affecting the characteristic of the actuator manufactured shape. The room-

temperature curvature in both directions was suppressed with increasing sidelength-to-

thickness ratio, the x-direction curvature being more suppressed than the y-direction 

curvature. These effects were more pronounced for aspect ratios of 0.7 and 1 than for a 

beam-like aspect ratio of 0.33. For large sidelength-to-thickness ratios and aspect ratios of 
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0.7 and 1, the changes in the actuated curvature in the x-direction (operational direction) 

were appreciably enhanced for a +2 MV/m field strength and appreciably suppressed for a 

 MV/m field strength. This unusual actuation-induced behavior occurred because the 

LIPCA-C2 actuators snapped to another stable configuration when the applied positive 

electric field was sufficiently high. This behavior was not the case for THUNDER and 

LIPCA-C1 actuators and should be circumvented in designing a LIPCA-C2 actuator to 

prevent peizoceramic cracking due to stresses abruptly changing during snap-through. 

Additionally, this phenomenon would provide an undesirable non-harmonic response when 

the LIPCA-C2 actuators were subjected to a harmonic voltage. However, if large, sudden 

actuation is required, this behavior could be an advantage. For beam-like LIPCA-C2 

actuators, free actuation responses were more balanced in the x- and y-directions, but the 

performance was not outstanding. The through-thickness stress distributions accompanying 

the free actuation responses were also determined. Like LIPCA-C1 actuators, there would 

always be a sign change in the normal stress 

2−

xσ  in the piezoceramic layer regardless of 

strength of an electric field. This again could cause a fatigue problem for the PZT layer in 

LIPCA-C2 actuators. Blocking forces of LIPCA-C2 actuators were also evaluated to 

measure the actuator load-carrying capability. It was shown that for all geometries 

considered, blocking force Pbl for the pinned-roller case was enhanced compared to blocking 

force Pbl,lin computed by the geometrically linear theory. Corresponding to the enhancement 

of the change in the actuated curvature caused by snap-through for LIPCA-C2 actuators with 

aspect ratios 0.7 and 1 when a +2 MV/m field strength was applied, the value of force Pbl for 

+2 MV/m was higher than that for -2 MV/m for large sidelength-to-thickness ratios. For the 

pinned-pinned case, the transverse blocking force Pbl was also enhanced by nonlinear 

effects. Note that unlike LIPCA-C1 actuators, the blocking force Pbl for the pinned-pinned 

case was not always larger than the blocking force Pbl for the pinned-roller case of the same 

dimensions. The magnitude of the associated inplane blocking force Rbl for LIPCA-C2 
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actuators was considerably larger than that of force Pbl, similar to THUNDER and LIPCA-

C1 actuators. Nonetheless, force Rbl, in general, was slightly suppressed in relation to that 

predicted by the geometrically linear theory, except for LIPCA-C2 actuators with aspect 

ratios of 0.7 and 1 and large sidelength-to-thickness ratios, for which force Rbl was enhanced 

by nonlinear effects. 

 Finally, the comparisons among the major characteristics of THUNDER, 

LIPCA-C1 and LIPCA-C2 actuators in this study can be summarized as a quick reference in 

Table 6.1. Note that the term ‘plate-like’ in the table refers to the aspect ratios, Ly/Lx, of 0.7 

and 1. The term ‘beam-like’, as defined before, refers to the aspect ratio of 0.3 or 0.33 for 

THUNDER and LIPCA-type actuators, respectively. All enhancement and suppression of 

performance characteristics of these actuators presented in the table are relative to the 

counterpart characteristics predicted by the geometrically linear Rayleigh-Ritz model. 

 



Actuator Type THUNDER LIPCA-C1 LIPCA-C2 
Multiple Room-

Temperature 
Shapes 

Plate-like*: Yes (bifurcation point for Ly/Lx = 
1 , limit point for Ly/Lx = 0.7) 
Beam-like**: No 

No  No

Room-
Temperature 
Curvatures 
(on ) A D′ ′

Plate-like:  moderately suppressed in mid-
range of L

xΚ

x/H and moderately enhanced when 
Lx/H is large,  greatly suppressed yΚ

Beam-like:  moderately suppressed, xΚ yΚ  

moderately suppressed                 

Plate-like: xΚ no effect, yΚ  

greatly suppressed 
Beam-like: xΚ no effect,  

moderately suppressed 
yΚ

 

Plate-like: xΚ greatly suppressed, yΚ  

moderately suppressed 
Beam-like: xΚ moderately suppressed, yΚ  

moderately suppressed 

Residual PZT 
Stresses Biaxial compression Some tension in the x-direction, 

compression in the y-direction 
Some tension in the x-direction, mostly 
compression in the y-direction 

Change in 
Curvatures due 

to Actuation 

Plate-like: moderately suppressed in 
mid-range of L

x∆Κ

x/H and moderately enhanced 
when Lx/H is large,  greatly suppressed y∆Κ

Beam-like:  moderately suppressed, 

 moderately suppressed 
x∆Κ

y∆Κ

Plate-like: x∆Κ no effect except 
for little enhancement in mid-range 
of Lx/H, y∆Κ  greatly suppressed 

Beam-like: x∆Κ  no effect,  

moderately suppressed 
y∆Κ

Plate-like: x∆Κ greatly suppressed for -2 MV/m 

but greatly enhanced for +2 MV/m , y∆Κ  

moderately enhanced for -2 MV/m and greatly 
enhanced for +2 MV/m 
Beam-like: x∆Κ moderately suppressed for -2 
MV/m and moderately enhanced for +2 MV/m,  

y∆Κ  moderately enhanced for ±2 MV/m  

Stress due to 
Actuation Biaxial compression, no reversal Reversal in the x-direction, mostly 

compression in the y-direction 
Reversal in the x-direction, mostly compression 
in the y-direction, gradient change for +2 MV/m  

Blocking 
Forces, 

pinned-roller 

Plate-like: Pbl greatly suppressed in mid-range 
of Lx/H and enhanced when Lx/H is large 
Beam-like: Pbl moderately suppressed 

Pbl slightly enhanced for both 
plate-like and beam-like 

Plate-like: Pbl slightly enhanced – for +2 MV/m 
larger than for -2 MV/m when Lx/H is large  
Beam-like: slightly enhanced 

Blocking 
Forces, 

pinned-pinned 

Plate-like: Pbl slightly enhanced in mid-range 
of Lx/H and suppressed when Lx/H is large, Rbl 
suppressed 
Beam-like: Pbl enhanced, Rbl suppressed 

Pbl enhanced and Rbl suppressed 
for both plate like and beam-like 

Plate-like: Pbl enhanced –for +2 MV/m smaller 
than for -2 MV/m, Rbl suppress in mid-range of 
Lx/H and enhanced for large Lx/H 
Beam-like: Pbl enhanced, Rbl  slightly suppressed 

Unusual 
Characteristics 

Snap through with sufficiently high moment 
applied on edges for plate-like None Snap through with sufficiently high positive 

field for plate-like 

Table 6.1: Summary Table for Characteristics of Laminated Piezoelectric Actuators Studied  
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* plate-like: Ly/Lx = 0.7 or 1, ** beam-like: Ly/Lx = 0.3 or 0.33

 



 

6.2 Actuator Design Recommendations 

 

 All of the results presented in Chapters 3-5 demonstrated that geometrically 

nonlinear effects can be important in determining the manufactured shapes, actuation 

responses, and blocking forces of curved laminated piezoelectric actuators. Performance 

analyses must be meticulously conducted in detail by employing the geometrically nonlinear 

theory in the actuator selection process to meet their functional requirements. Furthermore, 

according to the results obtained in this work, a vital conclusion of a curved laminated 

actuator’s characteristics is deducible. This conclusion can be stated that “upon cooling, or 

with cooling plus actuating, for a curved laminated actuator with a specific aspect ratio, the 

curvature in the direction in which the magnitude of the average curvature is the least will be 

significantly suppressed compared to the linear prediction as actuator sidelength-to-

thickness ratio increases, while the curvature in the direction in which the magnitude of the 

average curvature is the most will be only slightly suppressed or perhaps slightly enhanced 

compared to the linear prediction”. This behavior is completely due to geometrically 

nonlinear effects and believed to be universal for any curved laminated piezoelectric 

actuator. Therefore, the behavior can be exploited to preliminarily design a new curved  

laminated piezoelectric actuator. As suggested by the behavior stated above, assuming the 

curvature changes in the x-direction are to be utilized rather than changes in the y-direction 

curvature, referring to Figure 6.1, these preliminary design criteria read as follows: 

 ,
T T
x lin y linΚ > Κ ,  (6.1) 

 , , ,T E T
y lin y linif +Κ > Κ  ,

T E T E
x lin y linthen +Κ > Κ ,

+  (6.2) 

 , , ,T E T
y lin y linif ′+Κ < Κ  then either , ,

T E T E
x lin y lin

′ ′+ +Κ ≥ Κ  or ,
T E T E
x lin y lin,

′ ′+Κ < Κ +  (6.3) 
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 , , ,
T E T T E T
x lin x lin y lin y lin

+ +Κ − Κ > Κ − Κ ,  or (6.4) 

 , , , ,
T E T T E T
x lin x lin y lin y lin

′ ′+ +Κ − Κ > Κ − Κ  

where  and  are the thermally-induced curvatures due to cooling process in the x- 

and y-directions, respectively. 

,
T
x linΚ ,

T
y linΚ

,
T E
x lin

+Κ  and ,
T E
y lin

+Κ  are the thermally- plus piezoelectrically-

induced curvatures. Like superscript +E, superscript E′+  also represents an additional 

inclusion of piezoelectric effects in the thermally-induced curvatures, but the corresponding 

electric field strength is the negative of the field strength associated with superscript +E. 
Symbol …  represents the absolute value of the quantity inside the symbol. Also, as denoted 

by subscript lin after subscripts x and y used to indicate the direction of the curvatures, all 

curvatures evaluated in the design criteria are the values predicted by the geometrically 

linear plate theory in Appendix A, or by the 23-term linear Rayleigh-Ritz model, or by the 

23-term nonlinear Rayleigh-Ritz model when the value of Lx/H approaches zero. This is 

done intentionally, since the nonlinear characteristic of the curvatures as Lx/H increases can 

be heuristically represented by knowing the linear values. The reasons behind the 

inequalities (6.1)-(6.4) in the criteria are given, respectively, as: 

 

 

Figure 6.1: Schematic of Sidelength-to-Thickness ratio vs. Curvature Relations Based on 
Actuator Design Criteria 

, ,
T E T
y lin y lin
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, ,
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(6.1) to suppress the y-direction room-temperature curvature as illustrated in Figure 6.1 

and, therefore, make it easier to attach the actuator to a structure or reduce 

undesirable effects from suppressing the anticlastic curvature when the actuator is 

attached on the x-edge(s), particularly when the dimension Ly is relatively large, 

since the y-direction curvature will be more pronounced. This inequality is not 

satisfied by THUNDER or LIPCA-C2 actuators. LIPCA-C2 actuators seriously 
violate the inequality, but since for THUNDER actuator ,

T T
x lin y linΚ = Κ , , the 

violation is not serious; 

(6.2) to retain the x-direction actuated curvature, while suppressing the y-direction 

actuated curvature, so the change in the x-direction curvature due to actuation with 

electric field strength E is rather uniform with increasing Lx/H, but that in the y-

direction is suppressed. The electrical input energy will be converted to mechanical 

output energy by changing curvature in the x-direction more than in the y-direction. 

This inequality is not satisfied by THUNDER or LIPCA-C2 actuators. The lack of 

satisfying this inequality does not penalize THUNDER actuators as much as 
LIPCA-C2 actuators because ,

T E T E
x lin y lin

+Κ = Κ ,
+  for THUNDER actuators;  

(6.3) to complement the criterion (6.2) when the negative of electric field strength E 

(denoted as E′ ) is applied. The actuated curvature in the y-direction will be 

restricted between the suppressed manufactured curvature and the horizontal axis in 

Figure 6.1 and thus will be suppressed automatically. The value of actuated 

curvature in the x-direction, therefore, has no restricted bound and can be either 

more or less than the actuated curvature in the y-direction. Note that the larger 

value of actuated curvature in the x-direction, however, may be more preferable to 

retain the uniformity of the change in the x-direction curvature due to the applied 

electric field strength E′ ;  
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(6.4)  to obtain larger change in the x-direction curvature than in the y-direction 

curvature due to actuation, as illustrated in Figure 6.1, because the x-direction of 

the actuator is mainly used as the operational direction. This inequality is not 

satisfied by THUNDER or LIPCA-C1 actuators.  

It should be stated that the design criteria just presented provide twofold advantages for 

designing a new type of curved laminated actuator. Firstly, they reduce the trial and error 

process in the preliminary state, since the design parameters are confined into the desirable 

domains by inequalities (6.1)-(6.4). Secondly, without going through the geometrically 

nonlinear analysis every time whenever design parameters are changed, the consumption of 

computational time in design process is reduced considerably. After materials and stacking 

sequence are selected properly such that the resulting curvatures calculated from the 

geometrically linear theory fulfill the design criteria, the geometrically nonlinear analysis, 

however, must be performed to determine the actual characteristics of the actuator, including 

such effects as snap through. 

6.3 Future Work 

 

 The development of these predictive analyses is expected to greatly aid many 

current and ongoing research efforts in the area of laminated piezoelectric actuators. The 

high promise of these analyses suggests the following future activities: 

(1) Evaluate performances of THUNDER, LIPCA-C1, and LIPCA-C2 actuators by 

utilizing the 23-term Rayleigh-Ritz model as a function of thicknesses of steel and 

aluminum layers in THUNDER actuators and thicknesses of glass-epoxy and 

carbon-epoxy layers in LIPCA-C1 and LIPCA-C2 actuators, and then search for the 

optimal thicknesses that provide the maximum performances. 
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(2) Design a new type of curved laminated piezoelectric actuator by employing the 

design criteria proposed in Section 6.2 and analyze its performances as a comparison 

to the existing curved laminated piezoelectric actuators. 

(3) Modify the 23-term Rayleigh-Ritz model by including material nonlinearities in the 

piezoceramic material. 

(4) Extend the 23-term Rayleigh-Ritz model by employing Hamilton’s principle in order 

to evaluate the dynamic behavior of curved laminated piezoelectric actuators. 
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Appendix A 

ANALYTICAL SOLUTIONS FOR LAMINATED PLATES SUBJECTED TO A 
TEMPERATURE CHANGE: GEOMETRICALLY LINEAR MODEL  

A.1 Modeling of Cross-Ply Laminated Plates 

 

 Consider an initially flat rectangular laminated plate with traction-free 

conditions on all four edges, as illustrated in Figure A.1. The plate is located in an − −x y z  

Cartesian coordinate system. The dimensions of the plate before it is subjected to 
temperature increment ∆  are  by . The total thickness of the plate is H and the total 

numbers of layers are assumed to be N. The location 

T xL yL

0=z  is the geometric midsurface of 

the plate, here taken to be the reference surface for the analysis. The lower and upper 

boundaries of layer 1, or the bottom layer, are located at 0 / 2= = −z z H  and 1=z z , the 

boundaries of layer 2 at and , and in general, the boundaries of the layer at 1z 2z thk 1−kz and 

. The upper boundary of layer N is given by kz / 2= = +Nz z H . 

 The plate is assumed to obey classical lamination theory, in which the Kirchhoff 

hypothesis and a plane-stress state are assumed to prevail. Linear kinematic relationships 

and linear elastic orthotropic temperature-independent material properties are assumed. 

Additionally, the temperature change ∆T  is considered to be spatially uniform.  

 The equilibrium equations of a geometrically linear plate subjected to a spatially 

uniform temperature change can be written as follows: 

 , , 0+ =x x xy yN N  (A.1) 

 , , 0+ =xy x y yN N  (A.2) 

 , , ,2 0+ + =x xx xy xy y yyM M M  (A.3) 
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z 

 

Figure A.1: Laminated Plate Subjected to Thermal Load 

In the above,  and  are inplane normal force resultants in the x- and y- 

directions, and inplane shear force resultant, respectively, and 

,xN ,yN xyN

,xM ,yM  and xyM  the 

bending moment resultants in the x- and y- directions, and twisting moment resultant, 

respectively. The comma means partial differentiation with respect to the ensuing variable.  

Here, a cross-ply laminated plate is considered, and hence the constitutive 

equations simplify to become 

 

0
11 12 11 12

0
12 22 12 22

0
11 12 11 12

0
12 22 12 22

ˆ

ˆ

ˆ

ˆ

ε
ε
κ
κ

⎧ ⎫⎧ ⎫⎧ ⎫ ⎡ ⎤ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥= −⎨ ⎬ ⎨ ⎬ ⎨⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭ ⎩ ⎭ ⎩ ⎭

T
xx x
T

y yy
T

x x x

Ty y y

NN A A B B
N NA A B B

T
M B B D D M
M B B D D M

∆ ⎬
⎪
⎪

 (A.4) 

 
0

66 66
0

66 66

γ
κ

⎧ ⎫⎧ ⎫ ⎡ ⎤ ⎪ ⎪=⎨ ⎬ ⎢ ⎥ ⎨ ⎬
⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

xy xy

xy xy

N A B
M B D

 (A.5) 

where ,ijA ,ijB  and  are laminate stiffnesses.  ijD

The geometrically linear inplane strain-displacement and curvature-

displacement relations are given by  

 

0 0
,

0 0
,

0 0
, ,

x x

y y

xy y x

u

v

u v

ε

ε

γ

=

=
0= +

 (A.6) 

H

y x

Ly Lx

∆T
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  (A.7) 

0 0
,

0 0
,

0 0
,2

x x

y y

xy xy

w

w

w

κ

κ

κ

= −

= −

= −

x

y

in the above, 0 ,xε 0 ,yε and 0
xyγ  are inplane extensional strains in the x- and y- directions, and 

inplane shear strain, respectively, and 0 ,xκ 0 ,yκ and 0
xyκ  are bending curvatures in the x- and y- 

directions, and twisting curvature, respectively. Given in Equations (A.6) and (A.7),   

and  are the displacements of a point on reference surface in the x, y, and z directions, 

respectively. 

0 ,u 0 ,v

0w

 Substituting Equations (A.6) and (A.7) into (A.4) and (A.5), and then employing 

Equations (A.4) and (A.5) in equilibrium equations (A.1)-(A.3) yields 

 ( ) ( )0 0 0 0
11 , 12 66 , 66 , 11 , 12 66 ,2xx xy yy xxx xyyA u A A v A u B w B B w+ + + − − + =0 0    (A.8) 

 ( ) ( )0 0 0 0
22 , 12 66 , 66 , 22 , 12 66 ,2yy xy xx yyy xxyA v A A u A v B w B B w+ + + − − + =0 0  (A.9) 

 ( )( ) ( )0 0 0 0 0 0
11 , 12 66 , , 22 , 11 , 12 66 , 22 ,2 2 2xxx xxy xyy yyy xxxx xxyy yyyyB u B B v u B v D w D D w D w+ + + + − − + − =0 0  

  (A.10) 

 As all four edges of the plate are traction-free, the boundary conditions are given 

as follows:  

at x = ,  / 2xL±

 0xN =  (A.11) 

 0xyN =  (A.12) 

 0xM =  (A.13) 

 , ,2x x x xy yV M M 0= + =  (A.14) 

where  is Kirchhoff shear force resultant defined on the x-edges, xV

at y = ,  / 2yL±

 0yN =  (A.15) 
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 0xyN =  (A.16) 

 0yM =  (A.17) 

 , ,2y y y xy xV M M 0= + =  (A.18) 

where  is Kirchhoff shear force resultant defined on the y-edges. Additionally, since all 

edges of the plate are traction-free, conditions must be imposed on the plate to stop rigid 

body motion, i.e., rigid body translations in the x-, y- and z-directions, and rigid body 

rotations around the x-, y- and z-axes. These conditions can be specified at the origin point, x 

= y = z = 0, as 

yV

 0 0u =  (A.19) 

 0 0v =  (A.20) 

 0 0w =  (A.21) 

 0
, 0xw =  (A.22) 

 0
, 0yw =  (A.23) 

 0 0
, , 0y xu v− =  (A.24) 

Equations (A.19)-(A.21) are for preventing rigid body translations in the x-, y- and z-

directions, respectively. Equations (A.22)-(A.24) are for preventing rigid body rotations 

around the x-, y- and z-axes, respectively. 

Assuming an analytical solution of this problem to be of the form 

 ( )0u U x=  (A.25) 

 ( )0v V y=  (A.26) 

 ( ) ( )0
1 2w W x W y= +  (A.27) 

and substituting the assumed and functions from Equations (A.25)-(A.27) into 

Equations (A.8)-(A.10), it can be shown that 

0 ,u 0 ,v 0w
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 11 , 11 1, 0xx xxxA U B W− =  (A.28) 

 22 , 22 2, 0yy yyyA V B W− =  (A.29) 

  (A.30) 11 , 22 , 11 1, 22 2, 0xxx yyy xxxx yyyyB U B V D W D W+ − − =

0

Additionally, the conditions in Equations (A.11)-(A.24), respectively, become: 

at x = ,  / 2xL±

  (A.31) 11 , 12 , 11 1, 12 2,
ˆ 0T

x y xx yy xA U A V B W B W N T+ − − − ∆ =

 66 660 0A B× + × =  (A.32) 

  (A.33) 11 , 12 , 11 1, 12 2,
ˆ 0T

x y xx yy xB U B V D W D W M T+ − − − ∆ =

 11 , 11 1, 0xx xxxB U D W− =  (A.34) 

at y = ,  / 2yL±

  (A.35) 12 , 22 , 12 1, 22 2,
ˆ 0T

x y xx yy yA U A V B W B W N T+ − − − ∆ =

 66 660 0A B 0× + × =  (A.36) 

  (A.37) 12 , 22 , 12 1, 22 2,
ˆ 0T

x y xx yy yB U B V D W D W M T+ − − − ∆ =

 22 , 22 2, 0yy yyyB V D W− =  (A.38) 

and  

 ( )0U 0=  (A.39) 

 ( )0V 0=  (A.40) 

 ( ) ( )1 20 0W W 0+ =  (A.41) 

 ( )1, 0xW 0=  (A.42) 

 ( )2, 0yW 0=  (A.43) 

 0 0 0− =  (A.44) 
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Note that Equations (A.32), (A.36), and (A.44) are automatically satisfied. 

Rearranging Equations (A.28) and (A.29) and differentiating them with respect 

to x and y, respectively, yields     

 11
,

11
xxx xxxx

BU W
A

= 1,  (A.45) 

 22
,

22
yyy yyyy

BV W
A

= 2,  (A.46) 

After employing Equations (A.45) and (A.46), Equation (A.30) can be written as  

 
2 2

11 22
11 1, 22 2,

11 22

0xxxx yyyy
B BD W D W
A A

⎛ ⎞ ⎛ ⎞
− + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
=  (A.47) 

It is clear that the first term on the left hand side of the above equation is a function of x 

only, and the second term is a function of y only. Therefore, both the terms must be equal to 

constants which are opposite in magnitude, or, stated explicitly,  

  
2

11
11 1, 1

11
xxxx

B D W C
A

⎛ ⎞
− =⎜ ⎟

⎝ ⎠
 (A.48) 

 
2
22

22 2, 1
22

yyyy
B D W C
A

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠
 (A.49) 

Equations (A.48) and (A.49) can be solved for  and , which can be expressed as 1W 2W

 
( )

4 3 21 11
1 2 32

11 11 1124
C AW x C x C x

B A D
= + + +

− 4 5C x C+  (A.50) 

 
( )

4 3 21 22
2 6 72

22 22 2224
C AW y C y C y

B A D
−

= + + +
− 8 9C y C+  (A.51) 

After differentiating Equations (A.50) and (A.51) three times with respect to x and y, 

respectively, and substituting them into Equations (A.28) and (A.29), it can be shown that 
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       ( )
11 1 11

22
11 11 11 11

6
⎡ ⎤⎧ ⎫⎪⎢= +⎨

−⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦
∫ ∫

B C AU x
A B A D

⎪ ⎥⎬C dx dx   

                                            
( )

3 211 1 11
2 10 12

11 11 11 11

3
6

B C A
1x C x C x C

A B A D

⎧ ⎫⎪ ⎪= + + +⎨ ⎬
−⎪ ⎪⎩ ⎭

 (A.52) 

and 

         ( )
22 1 22

62
22 22 22 22

6
⎡ ⎤⎧ ⎫−⎪⎢= +⎨

−⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦
∫ ∫

B C AV y
A B A D

⎪ ⎥⎬C dy dy   

                                            
( )

3 222 1 22
6 12 12

22 22 22 22

3
6

B C A y C y C y C
A B A D 3

⎧ ⎫−⎪ ⎪= + + +⎨ ⎬
−⎪ ⎪⎩ ⎭

 (A.53) 

Applying Equations (A.39) and (A.40) to Equations (A.52) and (A.53) yields 

 11 0C =  (A.54) 

 13 0C =  (A.55) 

By inserting Equations (A.50)-(A.53), boundary condition (A.31) can be rewritten as 

( ) ( )

( ) ( )

2 21 11 12 22 1 22
11 2 10 6 122 2

2211 11 11 22 22 22

2 21 11 1 22
11 2 3 12 6 72 2

11 11 11 22 22 22

6 6
2 2

ˆ6 2 6 2
2 2

T
x

C A A B C AB x C x C y C y C
AB A D B A D

C A C AB x C x C B y C y C N
B A D B A D

⎧ ⎫ ⎧ −⎪ ⎪ ⎪+ + + + + −⎨ ⎬ ⎨
− −⎪ ⎪ ⎪⎩ ⎭ ⎩

⎧ ⎫ ⎧ −⎪ ⎪ ⎪+ + − + + − ∆ =⎨ ⎬ ⎨
− −⎪ ⎪ ⎪⎩ ⎭ ⎩

0T

⎫⎪
⎬
⎪⎭

⎫⎪
⎬
⎪⎭

 

  (A.56) 

at x = , or  / 2xL±

 
( ) ( )

212 22 1 22
11 10 3 12 62

22 22 22 22

12 22
12 12 7

22

2 6
2

ˆ2 0T
x

A B C AB C C B y C y
A B A D

A B C B C N T
A

⎧ ⎫⎛ ⎞ −⎪ ⎪− + − + +⎨ ⎬⎜ ⎟
−⎝ ⎠ ⎪ ⎪⎩ ⎭

⎛ ⎞
− − ∆ =⎜ ⎟

⎝ ⎠

 (A.57) 
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at x = . This statement must be valid for any value of y on the x-edges. Therefore, the 

terms in the brace must be zero. As a result, 

/ 2xL±

 1 0C =  (A.58) 

 6 0C =  (A.59) 

and Equation (A.57) becomes 

 12 22
11 3 12 7 11 10 12

22

ˆ2 2 T
x

A BB C B C B C C N
A

− − + + = ∆T  (A.60) 

 Analogously, by inserting Equations (A.50)-(A.53), boundary condition (A.35) 

can be rewritten as 

 
( )

( )

12 11
2 10 22 12

11

12 2 3 22 7

6

ˆ6 2 2 T
y

A B C x C B C
A

B C x C B C N T

+ + −

0+ − − ∆ =
 (A.61) 

at y = . Equation (A.61) must be valid at any value of x on the y edges. Thus, / 2yL±

 2 0C =  (A.62) 

and Equation (A.61) becomes 

 12 11
12 3 22 7 10 22 12

11

ˆ2 2 T
y

A BB C B C C B C N
A

− − + + = T∆  (A.63) 

Additionally, after applying (A.50)-(A.53) to boundary conditions (A.33) and (A.37), it can 

be shown that, respectively, 

 
2

11 12 22
11 3 12 7 10 12

11 22

ˆ2 2 T
x

B B BD C D C C C M T
A A

− − + + = ∆  (A.64) 

at x = , and  / 2xL±

 
2

11 12 22
12 3 22 7 10 12

11 22

ˆ2 2 T
y

B B BD C D C C C M T
A A

− − + + = ∆  (A.65) 

at y = . / 2yL±

At this point, the deformation field simplifies to 
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                             (A.66) 0 2 2
3 4 7 8 5w C x C x C y C y C C= + + + + + 9

 0 11
10

11

Bu C
A

= x  (A.67) 

 0 22
12

22

Bv C
A

= y

2

 (A.68) 

By applying the conditions (A.41)-(A.43) in order to prevent rigid body motions, Equation 

(A.66) is simplified to be 

  (A.69) 0 2
3 7w C x C y= +

Lastly, the deformation fields (A.67)-(A.69) must satisfy the last two boundary conditions 

Equations (A.34) and (A.38). It can be shown that they automatically fulfill these Kirchhoff 

shear boundary conditions on all four edges. Consequently, the deformation fields expressed 

in Equations (A.67)-(A.69) are the analytical solution of this problem with unknown 

coefficients and determined by the set of algebraic equations (A.60), (A.63), 

(A.64), and (A.65), or in the matrix form, 

3,C 7 ,C 10 ,C 12C

 

12 22
11 12 11

22

12 11 3
12 22 22

11 7
2

1011 12 22
11 12

11 22 12
2

11 12 22
12 22

11 22

2 2

ˆ
2 2 ˆ

ˆ
2 2

ˆ

2 2

T
x

T
y

T
x

T
y

A BB B B
A

NA B CB B B
A NC

T
CB B B MD D

A A C M
B B BD D

A A

⎡ ⎤− −⎢ ⎥
⎢ ⎥ ⎧ ⎫⎢ ⎥ ⎧ ⎫ ⎪ ⎪− −⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎢ ⎥ = ∆⎨ ⎬ ⎨⎢ ⎥ ⎬

⎪ ⎪ ⎪− −⎢ ⎥ ⎪
⎪ ⎪ ⎪⎩ ⎭⎢ ⎥ ⎩ ⎭⎢ ⎥

− −⎢ ⎥
⎢ ⎥⎣ ⎦

⎪

 (A.70) 

It should be noted that and do not involve the lengths of the laminate so they 

are independent of the inplane dimensions of the laminate. This also indicates that the 

curvatures in the x- and y-direction of a laminate determined by using Equation (A.7) are 

uniform throughout the laminated plate, and the twist curvature is identically zero. 

3,C 7 ,C 10 ,C 12C
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A.2 Special Case for Isotropic Laminated Plates 

 

 An isotropic laminate, which is a special case of a cross-ply laminate, is 

considered in this section. Due to the material isotropy in each layer, laminate stiffnesses are 

simplified as indicated below:  

 ( )11 22 1211 ν −=
= = = −

−∑N k
k kk

k

EA A A z z     (A.71) 

 (12 1211ν )ν
ν −=

= = −
−∑N k k

k kk
k

EA A z z  (A.72) 

 16 11 12A A A A Aν= − = −  (A.73) 

 ( 2 2
11 22 121

1
2 1 ν −=

= = = −
−∑N k

k kk
k

E )B B B z z  (A.74) 

 ( 2 2
12 121

1
2 1ν )ν

ν −=
= = −

−∑N k k
k kk

k

EB B z z  (A.75) 

 16 11 12B B B B Bν= − = −  (A.76) 

 ( )3 3
11 22 121

1
3 1 ν −=

= = = −
−∑N k

k kk
k

ED D D z z     (A.77) 

 ( 3 3
12 121

1
3 1ν )ν

ν −=
= = −

−∑N k k
k kk

k

ED D z z  (A.78) 

 16 11 12D D D D Dν= − = −  (A.79) 

where E is the extensional modulus of the material and ν  is the Poisson ratio. The subscripts 

k on the material properties merely identify the material properties with the kth layer. In 
addition, the effective inplane force resultants ( ˆ ,T

xN )ˆ T
yN , and the effective bending moment 

resultants ( ˆ ,T
xM )ˆ T

yM due to a unit temperature change are simplified to become 

 ( 11
ˆ ˆ ˆ

1
)α

ν −=
= = = −

−∑NT T T k k
x y k kk

k

EN N N z z  (A.80) 
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 ( 2 2
11

1ˆ ˆ ˆ
2 1 )α

ν −=
= = = −

−∑NT T T k k
x y k kk

k

EM M M z z  (A.81) 

where α  is coefficient of thermal expansion of the material. As a result, Equation (A.70) 

can be written as 
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 (A.82) 

from which it can be proven that  

 3 7 OC C C= =  (A.83) 

 10 12 IC C C= =  (A.84) 

In the above,  and  are the coefficients of the displacement fields, which are now 

expressed as 

OC IC

 ( )0 2
Ow C x y= + 2  (A.85) 

 0
I

Bu C
A

= x  (A.86) 

 0
I

Bv C
A

= y  (A.87) 

Thus, Equation (A.82) is reduced to  
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2 1 1 ˆ
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2 1 1
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B AB B
C NB A
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ν ν

ν ν

⎡ ⎤⎛ ⎞ ⎛ ⎞− + +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎧ ⎫⎧ ⎫⎝ ⎠ ⎝ ⎠ ⎪ ⎪⎢ ⎥ = ∆⎨ ⎬ ⎨⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎩ ⎭
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⎝ ⎠ ⎝ ⎠⎣ ⎦

 (A.88) 

Accordingly,  and  can be solved for as OC IC
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     2
2

ˆ1 1
2 1 1 2 1

T T
O

B AA T BC N
A B AA D BAD B

A D B

ν ν

ν ν ν

M̂⎧ ⎫∆ ⎛ ⎞ ⎛ ⎞= + − +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭⎛ ⎞⎛ ⎞ ⎛ ⎞+ + − +⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

   (A.89)

  

     2
2

2 ˆ1 1
2 1 1 2 1

T
I

D BA T DC N
B D BA D BAD B

A D B

ν ν

ν ν ν

ˆ TM⎧ ⎫∆ ⎛ ⎞ ⎛ ⎞= + − +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭⎛ ⎞⎛ ⎞ ⎛ ⎞+ + − +⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

 (A.90) 

248 248



 

Appendix B 

ANALYTICAL SOLUTIONS FOR LAMINATED BEAMS SUBJECTED TO A 
TEMPERATURE CHANGE, PIEZOELECTRICAL ACTUATION, AND FORCES 

B.1 Geometrically Nonlinear Beam Theory for Pinned-Roller Supports 

B.1.1 Mathematical Formulation and Solution Procedures 

 Consider a laminated beam with simply-supported boundary conditions at each 

end subjected to a thermal load with temperature change, ,T∆  and a force, 2P acting at the 

middle of the beam, illustrated in Figure B.1. Assume one end of the beam is pinned and the 

other end is on rollers i.e., pinned-roller conditions. A Cartesian coordinate system x-z is 

located at the center of the beam. The length and total thickness of the beam are denoted as 

Lx and H, respectively. The number of layers in the beam is assumed to be N. The location z 

= 0 is the geometric midline, here taken to be the reference line of the analysis. The lower 

and upper boundaries of layer 1, or the bottom layer, are situated at  and 

, the boundaries of layer 2 at  and , and in general, the boundaries of the k

0 / 2= = −z z H

1=z z 1z 2z th layer 

at  and .1−kz kz

 The equilibrium equations for the laminated beam, including a geometrically 

nonlinear term, are written as 

 , 0=x xN  (B.1) 

 0
, , 0+ =x xx x xxM N w  (B.2) 

where Nx and Mx are force and moment resultants in the x-direction, and is the deflection 

of the beam in the z-direction. The ensuing comma and subscript x represents the derivative 

with respect to x variable. Equations (B.1) and (B.2) represent force equilibrium in the x-  

0w
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Figure B.1: Pinned-Roller Simply-Supported Laminated Beam Subjected to Thermal Load 
and Vertical Force 

and z-directions, respectively. The second term on the left hand side of Equation (B.2) is the 

geometrically nonlinear term necessary to account for moderate rotations in the x-z plane.  

The constitutive equations for the linear elastic laminated beam are given by 

 0 0
11 11

ˆε κ= + − ∆T
x x x xN A B N T  (B.3) 

 0 0
11 11

ˆε κ= + − ∆T
x x x xM B D M T  (B.4) 

In the above, 11,A  11,B and  are extensional or stretching stiffness, bending-stretching 

coupling stiffness, and bending stiffness, respectively, which are defined as 

11D

 

( )

( )

( )

11 11

2 2
11 11

3 3
11 11

1
2
1
3

−=

−=

−=

= −

=

= −

−

∑

∑

∑

N
x k kkk

N
x k kkk

N
x k kkk

A E z z

B E z z

D E z z

 (B.5) 

Additionally, and ˆ T
xN ˆ T

xM  are equivalent thermal force and moment resultants and are 

defined as 

 ( )11
ˆ α −=

= −∑NT
x x x kk kk

N E z zk  (B.6) 

x 
H/2 

2P
Lx/2 

PLx/2 

z ∆T

Lx

H H 

∆T  

(a) Full laminated beam (b) Half model 
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 ( 2 2
11

1ˆ
2

α )−=
= ∑NT

x x x kk kk
− kM E z z  (B.7) 

where  and xkE α xk  are extensional modulus of elasticity and coefficient of thermal 

expansion in the x-direction of the kth layer, respectively. In addition, the extensional strain 
0ε x , reflecting moderate rotations, and bending curvature 0κ x  are given by 

 
20 0

0 1
2

ε
⎛ ⎞

= + ⎜
⎝ ⎠

x
du dw
dx dx ⎟  (B.8) 

 
2 0

0
2κ = −x

d w
dx

 (B.9) 

where is the x-direction deformation on the reference line. 0u

 The boundary conditions imposed on the half model, which can be employed 

because of symmetry conditions, illustrated in Figure B.1 (b) are as follows: 

at x = 0,       0 0=u  (B.10) 

 0 0=w  (B.11) 

 
0

0=
dw
dx

 (B.12) 

at x = Lx/2,      0=xN  (B.13) 

 =xQ P  (B.14) 

 0=xM  (B.15) 

where  is the transverse shear stress resultant defined as xQ

  (B.16) 0
,x x x xQ M N w= + ,x

0        0 0 0 0
11 , 11 , 11 , , ,xx xxx x xx x xB u D w B w w N w= − + +  

From Equations (B.1) and (B.13), it can be concluded that 

             0=xN  (B.17) 

Thus, 
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  0 0
11 11

ˆ 0ε κ+ − ∆ =T
x x xA B N T  (B.18) 

By inserting Equations (B.8) and (B.9) into Equation (B.18), rearrangement yields  

 ( )20 0 011
, , ,

11 11

ˆ1
2

∆
= − +

T
x

x xx x
N TBu w w

A A
  (B.19) 

After substituting Equations (B.4), and then (B.8) and (B.9), into Equation (B.2) and using 

Equation (B.17), Equation (B.2) is rewritten as 

 ( )( )20 0 0 0 0
11 , , , , 11 , 0+ + −xxx x xxx xx xxxxB u w w w D w =  (B.20) 

By taking second derivative of Equation (B.19) with respect to x and inserting the result into 

Equation (B.20), the following expression is obtained. 

 
2

011
11 ,

11

0
⎛ ⎞

− =⎜ ⎟
⎝ ⎠

xxxx
B D w
A

  (B.21) 

The term in the parenthesis in Equation (B.21) is a function of material properties and 

thickness of the consisting layers, so it is generally not equal to zero. Therefore, the fourth 

derivative of the out of plane deflection must vanish. As a result, is of the form  0w 0w

 0 3 2= + + +w Ax Bx Cx D   (B.22) 

By applying the boundary conditions in Equations (B.11) and (B.12),  

 
0
0

=
=

C
D

 (B.23) 

and becomes 0w

  (B.24) 0 3= +w Ax Bx2

By using Equations (B.8), (B.9), (B.19), and (B.24), and applying the boundary condition of 

Equation (B.14) with the aid of Equation (B.16), it can be shown that 

 
2

11
11

11

6
⎛ ⎞

− =⎜ ⎟
⎝ ⎠

B D A P
A

 (B.25) 
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or 
( )

11
2

11 11 116
−

=
−

A PA
D A B

 (B.26) 

To determine coefficient B in Equation (B.24), the boundary condition in Equation (B.15) 

must be employed in conjunction with Equations (B.4), (B.8), (B.9), and (B.19). Thus, B is 

given by 

 
( )

11 11
2

1111 11 11

ˆ ˆ
22

⎛ ⎞
= ∆ −⎜

− ⎝ ⎠
T T x
x x

PLA BB N T M
AD A B

∆ + ⎟T  (B.27) 

Finally, the deflection  is expressed as 0w

 
( ) ( )

0 3 211 11 11
2 2

1111 11 11 11 11 11

ˆ ˆ
26 2

⎛ ⎞−
= + ∆ − ∆ +⎜ ⎟

− − ⎝ ⎠
T T x
x x

PLA P A Bw x N T M T
AD A B D A B

x  (B.28) 

and the curvature in the x-direction, defined in Equation (B.9), is given by 

 
( )

0 11 11
2

1111 11 11

ˆ ˆ
2

κ
⎧ ⎫⎛ ⎞= − − ∆ + ∆⎨ ⎬⎜ ⎟− ⎝ ⎠⎩ ⎭

T Tx
x

LA BP x N T M T
AD A B x x  (B.29) 

Substituting (B.24) into (B.19), and then, integrating Equation (B.19) with respect to x 

results in  

 0 2 5 4 2 3 211 11

11 11 11

ˆ9 6 2 3 2
10 4 3

⎛ ⎞∆
= − − − + + + +⎜

⎝ ⎠

T
xN TB Bu A x ABx B x Ax B x F

A A A ⎟  (B.30) 

After applying Equation (B.10) to Equation (B.30), it is shown that 

 0=F  (B.31) 

Therefore, Equation (B.30) becomes 

 0 2 5 4 2 3 211 11

11 11 11

ˆ9 6 2 3 2
10 4 3

⎛ ⎞∆
= − − − + + +⎜

⎝ ⎠

T
xN TB Bu A x ABx B x Ax B x

A A A ⎟  (B.32) 

Interestingly, even though the present beam theory is geometrically nonlinear, it can be seen 

that  in Equation (B.28) and 0w 0
xκ  in Equation (B.29) are linear functions of the thermal 

and mechanical loads, i.e., ˆ ,T
xN T∆ ˆ ,T

xM T∆ and P. However,  is a nonlinear (quadratic) 0u
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function of the thermal and mechanical loads because of the presence of  and 2 ,A ,AB 2B in 

Equation (B.32). Thus, the nonlinear effect plays a role in the longitudinal deformation, but 

not in the transverse deformation for the geometrically nonlinear laminated beam theory 

with the pinned-roller simply-supported boundary condition. Additionally, it is evident that 

for this case the theory does not provide multiple solutions despite being a geometrically 

nonlinear. 

 In a special case when 0=P , 

  0=A  (B.33) 

 
( )

11 11
2

1111 11 11

ˆ ˆ
2

T T
x x

A BB N T M T
AD A B

⎛ ⎞
= ∆⎜

− ⎝ ⎠
− ∆ ⎟  (B.34) 

 and Equations (B.28), (B.29) and (B.32) are simplified to become 

 
( )

0 211 11
2

1111 11 11

ˆ ˆ
2

⎛ ⎞
= ∆ −⎜

− ⎝ ⎠
T T
x x

A Bw N T
AD A B

∆ ⎟M T x  (B.35) 

 
( )

0 11 11
2

1111 11 11

ˆ ˆκ
⎛ ⎞

= − ∆ +⎜
− ⎝ ⎠

T T
x x

A B N T M T
AD A B

∆ ⎟x  (B.36) 

 0 2 3 11

11 11

ˆ2 2
3

⎛ ⎞∆
= − + +⎜

⎝ ⎠

T
xN TBu B x B

A A ⎟ x  (B.37) 

It should be noted that the without the applied load P,  and  are an even and odd 

functions of beam coordinate x, respectively. In addition, 

0w 0u
0
xκ  depends only on the material 

properties and the thickness of each lamina and is uniform throughout the length of the 

beam.  

B.1.2 Problem Extension to Include Piezoelectrically-Induced Deformations   

 The analytical solutions of the geometrically nonlinear laminated beam 

subjected to a thermal load and a transverse force established in the previous section can be 

modified to include the piezoelectrically-induced deformation if some of the layers in the 
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laminated beam have piezoelectric properties. The piezoelectrically-induced strain caused 

by the transverse converse piezoelectric effect (  effect) can be modeled in the same way 

as the thermally-induced strain. As a result, analogous to the equivalent thermal force and 

moment resultants,  and 

31d

ˆ T
xN ˆ ,T

xM  equivalent piezoelectrical force and moment resultants for 

the beam are defined as  

 ( )31 11
ˆ NE

x x kk kk
N E d z zk −=

= −∑  (B.38) 

 ( 2 2
31 11

1ˆ
2

NE
x x kk kk )kM E d z z −=

= ∑ −  (B.39) 

Thus, including the piezoelectric effect, Equations (B.27), (B.28), (B.29) and (B.32) are 

modified to become 

 
( ) ( ) ( )11 11

3 32
1111 11 11
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22
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x x x x
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=
−
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κ
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)x x  (B.42) 

 0 2 5 4 2 3 2 311 11

11 11 11

ˆ ˆ9 6 2 3 2
10 4 3

T E
x xN T N EB Bu A x ABx B x Ax B x

A A A
⎛ ⎞∆ +

= − − − + + +⎜ ⎟
⎝ ⎠

 (B.43) 

B.2 Geometrically Linear Beam Theory for Pinned-Roller Supports 

 

 Consider the same laminated beam illustrated in Figure B.1. Geometrically 

linear laminated beam theory will now be investigated. Equilibrium of forces in the x- and z- 

directions is given respectively by 

 , 0=x xN  (B.44) 

 , 0=x xxM  (B.45) 
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Note that the nonlinear term  in Equation (B.2) disappears. The constitutive relations 

used here are the same as Equation (B.3)-(B.7) except for the transverse shear stress 

resultant Q

0
,x xxN w

x, which, for the linear theory, is defined as 

 ,x xQ M x=   

                        0
11 , 11 ,xx xxx

0B u D w= −  (B.46) 

The strain-displacement relations are different, as the rotational term in the longitudinal 

strain in the x-direction is not included for the geometrically linear theory. As a result,  

     
0

0ε =x
du
dx

 (B.47) 

 
2 0

0
2κ = −x

d w
dx

 (B.48) 

The boundary conditions imposed here are pinned-roller simply-supported, which are 

identical to those given in Equations (B.10)-(B.15). By following the solution procedure 

presented in Section B.1, the extensional force resultant can be obtained as 

 0=xN  (B.49) 

Using constitutive equation (B.3) and strain-displacement relations (B.47)-(B.48) in 

Equation (B.49), and rearranging terms, results in  

 0 011
, ,

11 11

ˆ ∆
= +

T
x

x xx
N TBu w

A A
  (B.50) 

After substituting Equation (B.4), and then Equations (B.47) and (B.48) into Equation 

(B.45), Equation (B.45) is rewritten as 

 0 0
11 , 11 , 0− =xxx xxxxB u D w  (B.51) 

By taking two derivatives of Equation (B.50) with respect to x, and inserting the result into 

Equation (B.51), the following expression is obtained: 
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0
⎛ ⎞

− =⎜ ⎟
⎝ ⎠

xxxx
B D w
A

  (B.52) 

Again,  must be zero since the term in the parenthesis is functions of the structural 

stiffnesses and not equal to zero in general. Therefore, the deflection  can be solved for 

and given by 

0
,xxxxw

0w

 0 3 2= + + +w Ax Bx Cx D  (B.53) 

By applying the boundary conditions in Equations (B.11) and (B.12), 

 
0
0

=
=

C
D

 (B.54) 

and becomes 0w

  (B.55) 0 3= +w Ax Bx2

By using Equations (B.47), (B.48), (B.50), and (B.53), and applying Equation (B.14) with 

the aid of Equation (B.46), it can be shown that 

 
2

11
11

11

6
⎛ ⎞

− =⎜ ⎟
⎝ ⎠

B D A P
A

 (B.56) 

or 
( )

11
2

11 11 116
−

=
−

A PA
D A B

 (B.57) 

To determine coefficient B in Equation (B.55), the boundary condition in Equation (B.15) 

must be employed in conjunction with Equations (B.4), (B.47), (B.48), and (B.50). Thus, B 

can be solved to be 

 
( )

11 11
2

1111 11 11

ˆ ˆ
22

⎛ ⎞
= ∆ −⎜

− ⎝ ⎠
T T x
x x

PLA BB N T M
AD A B

∆ + ⎟T  (B.58) 

Finally, the transverse deflection  is expressed as 0w

 
( ) ( )

0 3 211 11 11
2 2

1111 11 11 11 11 11

ˆ ˆ
26 2

⎛ ⎞−
= + ∆ − ∆ +⎜ ⎟

− − ⎝ ⎠
T T x
x x

PLA P A Bw x N T M T
AD A B D A B

x  (B.59) 

and the curvature in the x-direction defined in Equation (B.48) is given by 
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( )

0 11 11
2

1111 11 11

ˆ ˆ
2

κ
⎧ ⎫⎛ ⎞= − − ∆ + ∆⎨ ⎬⎜ ⎟− ⎝ ⎠⎩ ⎭

T Tx
x

LA BP x N T M T
AD A B x x  (B.60) 

Note that the expressions for the transverse deflection and the x-direction curvature of 

geometrically linear laminated beam in Equations (B.59) and (B.60), respectively, are 

exactly the same as those of geometrically nonlinear laminated beam in Equations (B.28) 

and (B.29). This makes sense since the transverse deflection  and the x-direction 

curvature   resulted from the geometrically nonlinear beam theory do not reveal the 

nonlinear relationships with the applied loads.  

0w
0
xκ

 The inplane deformation is obtained by integrating Equation (B.50) once with 

respect to x. The result is expressed as 

 0 211 11

11 11 11

ˆ3 2⎛ ⎞∆
= + +⎜

⎝ ⎠

T
xN TB Bu Ax B x

A A A
+⎟ F  (B.61) 

After applying Equation (B.10) to Equation (B.61), it is shown that 

 0=F  (B.62) 

Therefore, Equation (B.61) becomes 

 0 211 11

11 11 11

ˆ3 2⎛ ⎞∆
= + +⎜

⎝ ⎠

T
xN TB Bu Ax B

A A A ⎟ x  (B.63) 

Unlike the deflection   in Equation (B.63) is, however, partially different from the 

counterpart in Equation (B.32). Specifically what is different is lack of the quantities x 

raised to the third, fourth, and fifth powers in Equation (B.63) compared to Equation (B.32). 

This is because the coefficients of these high degree monomials of x contain the nonlinear 

functions of the applied loads, i.e., 

0 ,w 0u

2 ,A ,AB  and 2B . Thus, the corresponding monomials 

( 3,x  4 ,x )5x  must vanish for the linear case.  

 A special case when 0=P  (or 0=A ) can be obtained for 0 ,w 0 ,xκ and  0u   in 

Equations (B.59), (B.60) and (B.63). In this case the deformations are written as 
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 0 11

11 11

ˆ2⎛ ⎞∆
= +⎜

⎝ ⎠

T
xN TBu B

A A ⎟ x  (B.66) 

In the above, and  are quadratic and linear functions of x, respectively. 0w 0u

B.2.1 Problem Extension to Include Piezoelectrically-Induced Deformations   

Like the discussion in Section B.1.2, the extension of the geometrically linear 

laminated beam problem to include piezoelectrically-induced deformations can also be 

obtained. Employing the same equivalent piezoelectrical force and moment resultants 

defined in Equations (B.38) and (B.39), the beam deformations with inclusion of the 

transverse converse piezoelectric effect are written as  
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 0 2 311 11

11 11 11

ˆ ˆ3 2 T E
x xN T N EB Bu Ax B

A A A
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= + +⎜
⎝ ⎠

x⎟  (B.69) 

where B is given by Equation (B.40).  
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