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Abstract: We consider steady, laminar, compressible lubrication flows in a high-speed two-dimensional
journal bearing governed by the appropriate Reynolds equation. The thermodynamic states correspond
to pressurized gases and are in the single-phase regime. Simple explicit formulas for the load capacity,
power loss, and attitude angle are derived by applying the virial (or small density) expansions of
pressure and shear viscosity to results developed in previous studies. The present virial approximation
was compared to the exact numerical solutions to the Reynolds equation. It was shown that the
results based on our virial expansions are quite accurate at thermodynamic states corresponding to
dense and supercritical gases. The first virial correction is seen to significantly improve predictions
based on the ideal gas theory.

Keywords: fluid mechanics; supercritical fluids; virial expansion; compressible lubrication;
low Reynolds number

1. Introduction

The canonical equation governing many lubrication flows is the Reynolds equation [1]. Since its
introduction in the late 19th Century, it has been generalized to include the effects of three-dimensional
unsteady flow, turbulence, non-Newtonian constitutive laws, two-phase flow, and wall slip [2–5].
Conditions under which the Reynolds equation is valid are satisfied in many devices [6–10].
An important motivation for the use of the Reynolds equation is that it provides a relatively simple,
computationally-efficient, and easily-reproducible context in which to examine physical effects and
mathematical models.

Recent interest in novel power systems have motivated the use of gases rather than highly
viscous oils [11–15]. The advantages of gases over liquids include weight reduction, elimination of
complications associated with fouling due to leaks and complications due to phase changes, and the
compatibility with working fluids of the parent power system.

Because the viscosity of gases is smaller than that of oils, gas lubrication requires high speeds
to support reasonable loads, and the resultant flows are very often compressible. The overall
compressibility of the flow is usually characterized by the speed or bearing number defined as a
non-dimensional measure of the flow speed; a precise definition of the version of the speed number
used here will be given in the next section.

In most of the previous investigations of gas lubrication, the ideal gas model was
employed [3,11,16]. One of the first analytical studies is due to Gross et al. [3], who developed
approximations to the Reynolds equation valid for large speed numbers and ideal gases. It was shown
that the first correction for finite speed number to the lowest-order, i.e., that corresponding to an
infinite speed number, load and loss of a simple journal bearing is of the order of the inverse square of
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the speed number. For journal bearings lubricated with ideal gases, Gross et al. [3] provided explicit
formulas for load and loss in terms of the speed number and eccentricity.

When the pressures are on the order of those of the thermodynamic critical point, the gas can
no longer be regarded as ideal, and more complex gas models must be employed. In order to
investigate the effects of pressurized gases on bearing performance, previous studies [17–20] have
numerically solved the Reynolds equation along with digital table look-ups to capture the real gas
behavior. Conboy [17], Kim [18] and Qin [19] used the NIST REFPROPdatabase [21], while Guenat
and Schiffmann [20] employed the COOLPROPdatabase [22].

At the thermodynamic critical point, properties such as the specific heat at constant pressure
and the thermal expansivity are singular; as a result, the Prandtl number is also singular at the
thermodynamic critical point. Additionally, the bulk modulus:

κT = κT(ρ, T) ≡ ρ
∂p
∂ρ

∣∣∣∣
T
≥ 0, (1)

where ρ > 0, T > 0, and p = p(ρ,T) are the fluid density, absolute temperature, and thermodynamic
pressure, is seen to be zero at the thermodynamic critical point and has a non-monotone variation with
density at constant temperature.

A plot of a scaled version of Equation (1) is provided in Figure 1. Recognition of the singular
behavior of high pressure gases has led [23] to examine the validity of the Reynolds equation in the
general single-phase regime. These authors have given a careful derivation of the Reynolds equation
and corresponding temperature equation valid for compressible flows of pressurized gases. The usual
constraints of a thin fluid layer and small lubrication Reynolds number were imposed along with mild
conditions on any imposed temperature differences. The resultant form of their Reynolds equation is
given in the next section. The Reynolds and temperature equations of [23] were found to be valid over
most of thermodynamic states corresponding to ideal, dense, and supercritical fluids, but were seen to
break down simultaneously in the near-critical regime. The size of this near-critical region was given
in terms of the lubrication Reynolds number; see, e.g., Section IV of [23]. It was shown by [23,24] that,
within the stated region of validity, the solutions to the Reynolds and temperature equation of [23]
were found to be in excellent agreement with the Navier–Stokes equations.

Figure 1. Variation of the scaled bulk modulus with reduced specific volume for CO2. Subscripts “c”
will always denote quantities evaluated at the thermodynamic critical point and V ≡ ρ−1 = the specific
volume. The curves were generated using the Redlich–Kwong–Soave (RKS) equation of state. Details
of the RKS equation are given in [25] along with the physical constants for CO2.
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Chien and Cramer [26] derived approximate solutions to the Reynolds and temperature equation
of [23] valid for pressurized gases and large speed numbers. Explicit expressions for the local density,
pressure, temperature, and heat flux were given in terms of the bulk modulus, shear viscosity, thermal
conductivity, thermal expansivity, Prandtl number, speed number, and the film thickness. In [27],
Chien and Cramer used approximations, which are second-order in the speed number, to derive
general expressions for the load, loss, and attitude angle for a two-dimensional journal bearing.
For convenience, the relevant results of [27] are recorded in the next section. While the results are
explicit, the results require the numerical evaluation of a number of integrals if the gas model is more
complicated than that of an ideal gas. Numerical integration will also be required if the fluid properties
are supplied by digital table look-ups.

The goal of the present investigation is to develop a simplified model for the load, loss, and attitude
angle based on virial, i.e., small density, expansions of the pressure and shear viscosity. The resultant
expressions will obviate the need for numerical evaluations of the integrals and provide explicit
expressions for the load, loss, and attitude angle in terms of the first virial coefficient for pressure and
a reference viscosity.

2. General Formulas

We begin with the general formulas for the load, loss, and attitude angle derived in [27] for
large speed number. These formulas were derived by finding the second-order approximations to the
Reynolds equation of [23,24] and then integrating the results for pressure over the journal bearing
configuration sketched in Figure 2. The Reynolds equation is valid for steady, two-dimensional,
compressible, laminar, single-phase flows at thermodynamic states sufficiently far from those of
the thermodynamic critical point. Again, we refer the reader to [23,27] for details, derivations,
and validation of these results. In the following, we summarize the principal results of [27], which
form the basis for the present study.

Figure 2. Sketch of two-dimensional journal bearing. The angular velocity of the rotor ω = constant.
The angle ϕ is the angle between the force F′ and the positive x′ axis. The angle ψ ≡ π − ϕ.

The configuration considered in this study is a two-dimensional, infinitely-long journal bearing
as sketched in Figure 2. The inner cylinder corresponds to the rotor, which has a radius Ri and is
centered at x′ = 0 and y′ = 0. The rotor rotates at a rate of ω = U/Ri, where the constant U is the speed
of the surface of the inner cylinder. The outer cylinder represents a stator, which is stationary and has
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a radius = Ro > Ri. The center of the stator is located at x′ = −e ≡ − ε (Ro − Ri), y′ = 0. Here, ε is
the eccentricity.

We take the gap between the rotor and stator to be sufficiently small compared to their radii.
We can then approximate the flow using the unwrapped configuration sketched in Figure 3. The film
thickness is given by the function h(x); the surface of the stator is taken to be y = h(x); and the surface
of the rotor is to be given by y = 0. The coordinate x is the distance taken along the inner cylinder, i.e.,
the rotor, and is related to the angle θ by θ ≡ 2πx/L where L ≡ 2πRi is the circumference of the rotor.
The coordinate y is taken to be normal to the rotor. The minimum film thickness occurs at the origin
and is given by ho ≡ h(0), and the maximum thickness is hm ≡ h(x = L/2) = h(θ = 2π). Because of the
periodicity of the physical configuration and the choice of the coordinate system,

h(0) = h(L) = ho, (2)

dh
dx

(0) =
dh
dx

(0) = 0, (3)

d2h
dx2 (0) =

d2h
dx2 (L) > 0. (4)

The general results of [27] were obtained using the relatively weak condition on h(x) that it is
symmetric about x = L/2 or θ = π, i.e.,

h(π − θ) = h(θ − π) or h(L/2− x) = h(x− L/2). (5)

The formulas derived in Section 5 use an explicit form of h(x) corresponding to a two-dimensional
journal bearing sketched in Figure 2. When the gap width is small compared to the radii of the rotor
and stator, we find that h(x) can be approximated by:

h = h(x) ≡ h(x)
ho
≈ 1 + δ− δ cos(θ), (6)

= 1 + δ− δ cos(2 π x), (7)

where x ≡ x/L = θ/2π, and the parameter δ is related to the eccentricity by δ ≡ ε/(1− ε).

Figure 3. Unwrapped configuration: The surface y = 0 corresponds to the surface of the inner cylinder,
i.e., the rotor. The surface y = h(x) corresponds to the surface of the outer cylinder, i.e., the stator.
The minimum film thickness is taken to be ho ≡ h(0), and the maximum film thickness is taken to be
hm ≡ h(L/2).

In terms of the unwrapped configuration of Figure 3, the non-dimensional form of the Reynolds
equation derived by Chien and Cramer [23] is:

d
dx

(
h

3
κTe

dρ

dx

)
= Λ

d(ρh)
dx

, (8)
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subjected to the periodicity condition:

ρ = 1 at x = 0, 1. (9)

Here, x ≡ x/L = θ/2π, and:
ρ ≡ ρ

ρre f
(10)

is the scaled fluid density. The subscript “ref ” will always refer to a reference thermodynamic state;
throughout this study, we take this reference state to be that at the minimum gap thickness, i.e., at x =
0, 1 or, equivalently, θ = 0, 2π. The thermodynamic function:

κTe = κTe(ρ, T) ≡ κT(ρ, T)
µ(ρ, T)

, (11)

is the effective bulk modulus, which gives a measure of the relative strength of the local fluid stiffness
to the fluid friction. The quantity µ = µ(ρ,T) > 0 is the shear viscosity. The scaled version of the effective
bulk modulus, i.e., Equation (11), is:

κTe ≡
κTe(ρ, Tre f )

κTe(ρre f , Tre f )
=

κTe(ρ, Tre f )

κTe|re f
. (12)

As in the classical lubrication theory, the flow may be regarded as isothermal for the purposes of
computing the density and pressure. The temperature is therefore taken to be Tre f throughout this
calculation. The constant:

Λ ≡ 6UL
h2

oκTe|re f
(13)

is the speed number. This form is the one that arises naturally during the non-dimensionalization
process when pressurized gases are of interest.

For Λ � 1, the work in [27] has shown that the net force on the rotor seen in Figure 2 can be
written as:

6|F′|
pcRib

= −
3κT |re f

πpc
Ix1

[
1 +

1
Λ2

(
Ix3

Ix1
+

1
2

I2
y2

I2
x1

)]
+ O(

1
Λ3 ), (14)

where F′ is the dimensional force, pc is the pressure at the thermodynamic critical point, and b is the
length of the bearing in the axial direction, i.e., the direction orthogonal to the diagrams of Figures 2 and 3.
The quantities Ix1, Ix3, and Iy2 arise naturally in the course of the derivation of [27] and are defined as:

Ix1 ≡− 2π
∫ 2π

0

κTo

h
dh
dθ

sin(θ)dθ, (15)

Ix3 ≡− 8π3
∫ 2π

0

[
1
2

κ2
Teo

∂

∂ρ

(
κT
ρ

) ∣∣∣∣
o
+ hκTo

∂κ2
Te

∂ρ

∣∣∣∣
o

](
dh
dθ

)2

cos(θ)dθ

+ 8π3
∫ 2π

0
κToκ2

Teoh
3 d2h

dθ2 cos(θ)dθ

− 8π3 d2h
dθ2 (0)

∫ 2π

0
κTocos(θ)dθ, (16)

Iy2 =− 4π2
∫ 2π

0
κToκTeo h

dh
dθ

sin(θ)dθ, (17)

where:

κT ≡
κT(ρ, Tre f )

κT(ρre f , Tre f )
. (18)
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The subscripts “o” denote quantities evaluated at the lowest order density ρ ≈ 1/h, e.g.,

κTo ≡ κT(
1
h

, Tre f ). (19)

The attitude angle (ϕ) is defined as the angle between F′ and the positive x′ axis seen in Figure 2,
and was found to be:

ϕ ≡ tan−1
( Fy′

Fx′

)
≈ π − 1

Λ
Iy2

Ix1
+ O(

1
Λ2 ). (20)

Because both Ix1 and Iy2 are always < 0, the force on the rotor will always lie in the second
quadrant of the x′ − y′ plane sketched in Figure 2. It will therefore be convenient to define the
associated acute angle ψ ≡ π − ϕ.

Under the same conditions, the work in [27] has shown that the scaled power loss can be written as:

− P = − ho

bLU2µre f
P =

∫ 1

0

µ

h
dx +

3
Λ2

∫ 1

0
κTeo κTo h

(
dh
dx

)2

dx + O(
1

Λ3 ), (21)

where P is the dimensional power loss having units of energy per time, and negative if fluid friction
opposes the motion of the rotor. The quantity:

µ = µ(ρ, Tre f ) =
µ(ρ, Tre f )

µ(ρre f , Tre f )
(22)

is the shear viscosity scaled with the reference value. The evaluation of the scaled viscosity in the first
integral on the right-hand side of Equation (21) can be done by using the second-order expression for
density derived by [27] or by expanding µ(ρ,Tre f ) in a Taylor series. In [27], the first approach was used
in detailed numerical examples. Each approach will give approximations that are consistent with the
accuracy of [27]. Here, it will be convenient to use the second approach. We first expand µ in a Taylor
series for densities near the lowest-order density distribution, i.e., near ρ = 1/h. This expansion reads:

µ = µo +
∂µ

∂ρ

∣∣∣∣
o
(ρ− 1

h
) +

1
2

∂2µ

∂ρ2

∣∣∣∣
o

(
ρ− 1

h

)2
+ O(

1
Λ3 ), (23)

where, as pointed out above,

µo ≡ µ(
1
h

, Tre f ). (24)

and the derivatives are to be evaluated at ρ = 1/h and T = Tre f . If we further use the second-order
expansion for the density, we have:

ρ =
1
h
+

1
Λ

ρ1 +
1

Λ2 ρ2 + O(
1

Λ3 ), (25)

where ρ1 and ρ2 are O(1) expressions given in [27]. Substitution in Equation (23) and the first integral
on the right hand side of Equation (21) yields:

∫ 1

0

µ

h
dx =

∫ 1

0

µo

h
dx +

1
Λ2

∫ 1

0

[
∂µ

∂ρ

∣∣∣∣
o
ρ2 +

1
2

∂2µ

∂ρ2

∣∣∣∣
o
ρ2

1

]
dx
h

+ O(
1

Λ3 ), (26)

where the symmetry condition, i.e., Equation (5), has been used to show that the O(Λ−1) contribution
is identically zero.
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3. Virial Expansion of Pressure and Bulk Modulus

The ideal gas theory is valid at low pressures. In particular, the densities are taken to be small
compared to those at the thermodynamic critical point, i.e., when:

ρ� ρc, (27)

where the subscript “c” will always denote quantities evaluated at the thermodynamic critical point.
Thus, the expansion of pressure in a power series for small density and constant temperature can
be written as:

p = ρRT
∞

∑
i=0

Bi(T)ρi, (28)

where the Bi = Bi(T) are referred to as the virial constants and R = the gas constant. In order that
p = p(ρ,T) −→ ρRT as ρ −→ 0, we require that B0 = 1, so that:

p = ρRT[ 1 + B1ρ + O(ρ2) ]. (29)

Here, B1 will be referred to as the first virial coefficient. We now define a nondimensional version
of this factor as:

B = B(
T
Tc

) ≡ −ρcB1 (30)

so that:
p = ρRT[ 1− B

ρ

ρc
+ O

( ρ

ρc

)2
]. (31)

Here, we have chosen to rescale B1 with a minus sign due to the fact that the first effect of
intermolecular forces is to lower the pressure relative to the ideal gas value as the density is increased
from zero.

The bulk modulus, i.e., Equation (1), is calculated to be:

κT = ρRT[1− 2B
ρ

ρc
+ O

( ρ

ρc

)2
]. (32)

At the reference density and temperature, the bulk modulus is:

κT |re f = ρre f RTre f [1− 2Bre f ∆ + O(∆2) ] (33)

where:
∆ ≡

ρre f

ρc
� 1 (34)

is the small parameter associated with the virial expansion. The quantity:

Bre f ≡ B
(Tre f

Tc

)
. (35)

To obtain the scaled bulk modulus, i.e., Equation (18), we evaluate Equation (32) at T = Tre f and
take the ratio of Equation (32) and (33), yielding:

κT = ρ[ 1− 2Bre f ∆(ρ− 1) + O(∆2) ]. (36)

The quantity, i.e., Equation (19), seen in our expressions for Ix1, Ix3, Iy2, and Equation (21) is found
to be:

κTo =
1
h
(1 + 2Bre f ∆)− 2Bre f ∆

1

h
2 + O(∆2). (37)
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4. Virial Expansion of the Shear Viscosity

We now expand the shear viscosity in a virial, i.e., small density, expansion,

µ = µ(ρ, T) =
∞

∑
i=0

ai(T)ρi (38)

= a0(T) + a1(T)ρ + O(ρ2). (39)

In order that µ −→ µideal(T) as ρ −→ 0, we require that a0 ≡ µideal(T), so that Equation (39) can
be written as:

µ = µideal [ 1 + â ∆ ρ + O(∆2) ] (40)

where:

â = â(T) ≡ a1(T)ρc

a0(T)
. (41)

We refer to a1 as the first virial coefficient of µ and Equation (41) as the scaled first virial coefficient
of µ. When the viscosity is evaluated at the reference state, we have:

µre f = µideal(Tre f )[ 1 + âre f ∆ + O(∆2) ], (42)

where âre f ≡ â(Tre f ). For future use, we note that:

µre f − µideal(Tre f )

µideal(Tre f )
= âre f ∆ + O(∆2)� 1. (43)

The scaled viscosity Equation (22) is obtained by evaluating Equation (40) at T = Tre f and dividing
the result by Equation (42) to obtain:

µ(ρ, Tre f ) = 1 + âre f ∆ (ρ− 1) + O(∆2). (44)

The quantity, i.e., Equation (24), appearing in Equation (26) is found to be:

µo = µ
(1

h
, Tre f

)
= (1− âre f ∆) + âre f ∆

1
h
+ O(∆2). (45)

Furthermore, the derivatives of µ can be obtained by differentiating Equation (44) to obtain:

∂µ

∂ρ
= O(∆), (46)

∂2µ

∂ρ2 = O(∆2). (47)

Thus, Equation (26) can be written as:

∫ 1

0

µ

h
dx =

∫ 1

0

µo

h
dx + O

( ∆
Λ2

)
=
∫ 1

0

µo

h
dx + o

( 1
Λ2

)
,

= (1− âre f ∆)
∫ 1

0

dx
h

+ âre f ∆
∫ 1

0

dx

h
2 + o

( 1
Λ2 , ∆

)
, (48)

where Equation (45) has been used.

5. Virial Expansions of Load, Loss, and Attitude Angle

We now substitute our virial expansions of the scaled bulk modulus and viscosity in
Equations (14)–(17), (21), (48), and (20). We will retain only terms that are first-order in the small
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density expansion, i.e., those of order ∆, and only terms that are second-order in the speed number Λ,
except in the case of the attitude angle, where we drop all terms o(Λ−1). We therefore will provide the
first corrections to the Λ −→ ∞ theory of ideal gases. Note that any terms multiplied by Λ−2 can be
evaluated in the ideal gas state, i.e., at ∆ = 0. Thus, Equations (15)–(17) become:

− Ix1

2π
= (1 + 2 Bre f ∆)

∫ 2π

0

sin(θ)

h
2

dh
dθ

dθ

− 2 Bre f ∆
∫ 2π

0

sin(θ)

h
3

dh
dθ

dθ + O(∆2), (49)

− Ix3

8π3 = 2
∫ 2π

0

1
h

(
dh
dθ

)2

cos(θ)dθ −
∫ 2π

0

d2h
dθ2 cos(θ) dθ

+
d2h
dθ2 (0)

∫ 2π

0

cos(θ)
h

dθ + O(∆), (50)

−
Iy2

4π2 =
∫ 2π

0

1
h

dh
dθ

sin(θ) dθ

− (4Bre f + âre f )∆
∫ 2π

0

( 1

h
2 −

1
h

)dh
dθ

sin(θ) dθ + O(∆2). (51)

If we now substitute the explicit expression for the film thickness, i.e., Equation (6),
in Equations (49)–(51), we find:

− Ix1

4π2 = C0

[
1 + Bre f ∆

1 + 3δ−
√

1 + 2δ

1 + 2δ
+ O(∆2)

]
, (52)

− Ix3

8π4 = δ− 2C0(3δ + 2) + O(∆), (53)

−
Iy2

8π3 = C0
√

1 + 2δ
[
1 + (4Bre f + âre f )C1∆

]
+ O(∆2), (54)

where the factors:

C0 ≡ C0(δ) =
1 + δ−

√
1 + 2δ

δ
√

1 + 2δ
> 0, (55)

C1 ≡ C1(δ) = 1− 1√
1 + 2δ

> 0. (56)

Through substitution of Equations (52)–(54) in Equation (14) and straightforward manipulation,
we then obtain the virial expansion of the load,

6|F′|
pcRib

= 12π C0
∆
Zc

Tre f

Tc

[
1− Bre f ∆CκT

+
2π2

Λ2 (−2 +
√

1 + 2δ)(1 + δ) + O(
∆

Λ2 , ∆2,
1

Λ3 )

]
, (57)

where:

CκT ≡ CκT (δ) =
1 + δ +

√
1 + 2δ

1 + 2δ
> 0, (58)
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and we have recognized that Equation (33) can be rewritten as:

κT |re f

pc
=

∆
Zc

Tre f

Tc

[
1− 2∆Bre f + O(∆2)

]
. (59)

Here:
Zc ≡

pc

ρcRTc
=

pcVc

RTc
(60)

is the critical compressibility.
If we substitute Equations (52) and (54) in Equation (20), we obtain the virial approximation to

the attitude angle:

ϕ = π − 2π
√

1 + 2δ

Λ

[
1 +

µre f − µideal

µideal
C1

+ Bre f ∆
C1

2
(C1 + 4)

]
+ O(

∆2

Λ
,

1
Λ2 ), (61)

where we have used Equation (43).
The expression for virial expansion of the power loss is obtained by substituting Equations (7), (37),

and (45) in Equations (48) and (21), yielding:

−P =
1√

1 + 2δ

[
1−

µre f − µideal

µideal

δ

1 + 2δ

+
12π2

Λ2 C0δ(1 + 2δ)

]
+ O(

∆
Λ2 , ∆2), (62)

Equations (57), (61), and (62) give the dependence of the load, attitude angle, and power loss
in terms of the eccentricity (through δ), the specific gas model, the speed number, and the degree of
pressurization. In the ideal gas limit, i.e., as ∆ −→ 0, µre f −→ µideal , Equations (57) and (62) become:

6|F′|
pcRib

∼ 12π C0
∆
Zc

Tre f

Tc

[
1 +

2π2

Λ2 (−2 +
√

1 + 2δ)(1 + δ) + O(
1

Λ3 )

]
, (63)

−P ∼ 1√
1 + 2δ

[
1 +

12π2

Λ2 C0δ(1 + 2δ) + O(
1

Λ3 )

]
. (64)

Because Bre f > 0 and µre f > µideal , further inspection of Equations (57) and (62) shows that the
load and loss will always be less than that predicted by the ideal gas theory when ∆ 6= 0. That is,
the ideal gas theory will always overpredict the value of the load and loss, at least in the near-ideal
and dense gas regime.

Because the shear viscosity increases with pressurization along isotherms, Equation (62) is
consistent with the observations of [27] that |P| undergoes a weak decrease as the fluid is pressurized,
at least in the near-ideal and dense gas regimes. At this level of approximation, the effect of
pressurization on the scaled loss, i.e., Equation (62), is determined by the ratio:

µre f

µideal

which [27] have pointed out tends to be nearly independent of temperature, particularly in the
near-ideal and dense gas regime. This fact is illustrated in the next section as well. The independence
of the scaled loss with temperature is consistent with the more comprehensive computations of [27].
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In the ideal gas limit, the attitude angle, i.e., Equation (61), reduces to:

ϕ ≈ π − 2π
√

1 + 2δ

Λ
+ O(

1
Λ2 ). (65)

A comparison of Equations (65) to (61) reveals that isothermal pressurizations will increase the
deviation of the attitude angle from the ideal gas result.

Once the fluid is chosen, fluid properties such as the critical pressure and temperature and the
molecular weight can be obtained from widely-available references; in the following examples, we will
use the data found in [25]. Once the degree of pressurization, i.e., ρre f and Tre f , is chosen, the only
remaining material parameters are the scaled virial constant Bre f and µre f /µideal . These parameters are
computed by different approaches depending on the nature of the gas model. If the equation of state
and viscosity is determined by tabular data or is computed by using a digital property bank, the values
of ρre f and Tre f are used to compute or interpolate the corresponding pre f and µre f . The value of
µideal(Tre f ) is estimated by using a sufficiently small value of ρre f /ρc from the tabular data or property
bank. It is then a straightforward matter to compute:

Bre f ∆ ≈ 1−
pre f

ρre f RTre f
and

µre f − µideal(Tre f )

µideal(Tre f )
.

If the equation of state and shear viscosity are modeled by explicit known formulas, the same
approach as for the case of tabular data could be used. That is, we could simply compute pre f , µre f ,
µideal (Tre f ) from ρre f , Tre f . Alternatively, formulas for the required parameters can be computed by
expanding these explicit functions for small values of ρ/ρc. It is this latter approach that we will
employ for the numerical calculations in the next section.

6. Numerical Results

For the purpose of illustration, we take the Redlich–Kwong–Soave (RKS) equation of state
described in [25] and the viscosity model of Chung et al. [28,29] as our exact gas models (EGM).
The fluid is chosen to be carbon dioxide (CO2) and the physical parameters of CO2 were taken from
Reid et al. [25].

If we expand the pressure for small density and constant temperature, we then obtain the scaled
first virial coefficient for the pressure, i.e., Equation (30), corresponding to the RKS equation of state.
The details are straightforward. In order to conserve journal space, we record only the final result here.
The value of B was found to be:

B(Tr) =
1

Zc

[
k

α(Tr)

Tr
− b0

]
. (66)

Internally consistent values of the nondimensional constants seen in Equation (66) were found to
be k = 0.427480, b0 = 0.08664, Zc = 1/3. The reduced temperature Tr ≡ T/Tc and:

α(Tr) ≡
[
1 + (0.48 + 1.574ωac − 0.176ω2

ac)(1−
√

Tr)
]2

, (67)

is a dimensionless function of Tr and the acentric factor ωac = constant.
We have plotted the scaled version of virial expansion of κT :

κT
pc

=
1

Zc

ρ

ρc

T
Tc

[
1− 2B(

T
Tc

)
ρ

ρc
+ O

( ρ

ρc

)2] (68)

combined with Equation (66) along with its exact value calculated using the EGM and Equation (1)
in Figure 4 at temperatures equal to 1.25 Tc, 1.15 Tc, and 1.05 Tc. The lines represent the exact κT ;
the symbols denote the virial expansion of κT , i.e., Equation (68). As V −→ 0, 2Bρ/ρc becomes O(1)
such that the virial expansion is no longer valid. As a result, we will only consider the cases where
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2Bρ/ρc ≤ 0.5 in all that follows. Examination of Figure 4 reveals that the agreement is very good over
most of the dense gas regime. The differences between the exact κT and the virial expansion of κT are
found to be less than 5% for each temperature and V ≥ 5 Vc.

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

T = 1.05 Tc

T = 1.15 Tc

 

 

 

 

pC

T

V
V

C

T = 1.25 Tc

Figure 4. Scaled bulk modulus vs. V/Vc at T = 1.25 Tc, 1.15 Tc, and 1.05 Tc. The lines represent the
exact bulk modulus obtained from the exact gas model (EGM) and Equation (1). The symbols denote
the virial expansion of the bulk modulus computed using Equations (68) and (66).

In a similar manner, a small density approximation is carried out for the viscosity model of
Chung et al. [28,29]. The details of this expansion are straightforward. We again only record the final
result. The scaled virial coefficient for the viscosity (43) was found to be:

â =
1
6

[
E6 −

2E2E5 + 5(E2 + E3)− E1E2
4

2(E1E4 + E2 + E3)

]
, (69)

where the quantities Ei, i = 1–5, were given in [25,28,29], as functions of the acentric factor, dipole
moment, and association factor of the fluid in question. Thus, â is independent of the temperature for
the Chung et al. model [28,29].

The local form of the shear viscosity can be obtained from Equation (40). The result was found to
be:

µ(ρ, T)
µideal(T)

= 1 + â(T)
ρ

ρc
+ O

( ρ

ρc

)2. (70)

In all that follows, we take â(T) to be given by Equation (69), so that â is a constant. We have
plotted this approximation to the viscosity along with that generated by the exact Chung et al. [28,29]
model for temperatures of 1.25 Tc, 1.15 Tc, and 1.05 Tc in Figure 5. Examination of Figure 5 shows
good agreement between the exact and the virial expansion of µ for V ≥ 5Vc. The difference is found
to be approximately 6.8% at V = 5Vc. Because â = constant for the Chung et al. model, the curve
corresponding to the virial expansion is the same for every isotherm. The exact solution for µ/µideal
is also seen to have only a weak variation with temperature for the temperatures and densities in
Figure 5.
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ideal

Figure 5. Scaled shear viscosity vs. V/Vc at temperatures = 1.25 Tc, 1.15 Tc, and 1.05 Tc. The lines
denote the exact viscosity resulting from the viscosity model of Chung et al. [28,29]. The symbol©
denotes the virial expansion of viscosity computed using Equations (69) and (70).

We now compare the load, loss, and attitude angle predicted by our virial approximations to the
more general integrals, i.e., Equations (14)–(17) and (20)–(21), derived by [27]. We also compare the
virial approximations of the load, loss, and attitude angle to those obtained with the simplification of
the ideal gas theory. For context, we also compare the results based on each of these approximations
to those based on numerical solutions to the exact Reynolds equation, i.e., Equation (8). For the
convenience of the reader, we have summarized these approximations in Table 1.

Table 1. Acronyms and approximations.

Acronym Reference Description

REGM [23,24] Numerical solution to the Reynolds equation with the exact gas model
LLEGM Equations (14)–(17), (20), (21) Large Λ approximation to the Reynolds equation with the exact gas model

LLV Equations (57), (61), (62) Virial expansion applied to LLEGM
LLIG Equations (63)–(65) Ideal gas approximation applied to LLEGM or LLV

We regard the exact solutions to be the numerical integrations of the Reynolds equation derived
and validated in [23,24] and used by [26,27]. The RKS gas model and Chung et al. [28,29] viscosity
models will be employed in the integration of the Reynolds equation. A shooting method is used to
solve the resultant two-point boundary value problem. The procedure for the calculation of the load
and loss from the numerical solutions to the Reynolds equation is described in [27]. Checks on the
tolerance for the shooting method and the resolution in the streamwise direction were carried out
to ensure that the results displayed here are independent of the tolerance and number of points in
x. Further details regarding the solution to the exact Reynolds equation can be found in [23,24,27].
We will refer to this case as numerical solution to the Reynolds equation with the exact gas model
(REGM).

The next level of accuracy is associated with the large Λ theory of [27]. The load, loss, and attitude
angle are given by Equations (14)–(17) and (20)–(21). The integrals are evaluated using Simpson’s
rule. Checks on the number of points have been done to ensure that any results presented here are
independent of the discretization. The material functions in Equations (14)–(17) and (20)–(21) were
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evaluated using the RKS equation of state and the full Chung et al. [28,29] models. This large Λ (LL)
approximation using the exact gas model (EGM) will be referred to as LLEGM.

The third set of results is based on the virial approximation scheme developed here, i.e., on the
Equations (57), (61), and (62) with Bre f , µre f /µideal(Tre f ) estimated by Equations (66)–(67) and (43)
combined with Equation (69). In the following, we refer to this case as the virial expansion applied to
LLEGM, i.e., LLV.

Finally, we compare each of these results to those obtained in the ideal gas theory. The formulas
corresponding to the ideal gas theory are given by Equations (63)–(65). We refer to this case as ideal
gas approximation applied to LLEGM or LLV, i.e., LLIG.

The accuracy of the virial expansions developed here will be seen by comparing the LLV results to
the integral formulas on which LLEGM theory is based; that is, it provides a measure of the accuracy
of the approximation of the material functions in the context of the load, loss, and attitude angle.
The inclusion of the results of the exact Reynolds equation, i.e., REGM, will give a measure of the total
error due to the large Λ approximation and the virial approximation. The comparison of each of these
theories to the ideal gas theory will give an indication of the error in the ideal gas theory at higher
pressures in the context of load, loss, and attitude angle.

In these examples, we consider the unwrapped journal bearing sketched in Figure 3. The ratio
h0/L = 1.989 ×10−5, and the speed number is taken to be Λ = 50. Unless stated otherwise, δ = 0.5.
Throughout this study, we take the reference thermodynamic state to be that at x = 0 and L.

The variation of the scaled load at Tre f = 1.05 Tc and 1.25 Tc with the reference specific volume
is plotted in Figures 6 and 7, respectively. In all that follows, we only present results for reference
thermodynamic states having 2B∆ ≤ 0.5. Inspection of Figures 6 and 7 reveals that the LLV model is
in excellent agreement with the LLEGM and REGM models for all the given reference thermodynamic
states. As indicated in Section 5, the use of the ideal gas model will result in an overestimation of the
load when the gas is pressurized. A comparison of Figures 6 and 7 shows that the error in the ideal gas
model is larger when Tre f = 1.05 Tc than when Tre f = 1.25 Tc for fixed Vre f . This can be explained by
the fact that the first correction term in Equation (57), i.e., Bre f ∆, decreases as the reference temperature
increases. The maximum difference between the LLV and LLIG model for the case of Tre f = 1.05 Tc

and 1.25 Tc occurs at Vre f = 3.45 Vc and 2.27 Vc, respectively, and its value was found to be 53.7% and
41.2%, respectively.

Observation of Figures 6 and 7 also indicates that the scaled load increased with the pressurization
and the increase of the reference temperature. This is due to the fact that the load is dominated by the
variation of the bulk modulus for fixed δ and Λ. These results are consistent with the findings of [27].
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Figure 6. Scaled load vs. reference specific volume V/Vc at Tre f = 1.05 Tc. The speed number Λ = 50
and the parameter δ = 0.5.
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Figure 7. Scaled load vs. reference specific volume V/Vc at Tre f = 1.25 Tc. The speed number Λ = 50
and the parameter δ = 0.5.

Because it was shown that the effects of the temperature on the scaled loss were insignificant [27],
we have only plotted the variation of the scaled loss corresponding to the case of Tre f = 1.25 Tc;
our results are recorded in Figure 8. We have multiplied the scaled loss by (1 + δ) in concert with the
conventional practice in which the film thickness is scaled with the radial clearance. Examination
of Figure 8 reveals that the agreement between the LLV model and the REGM and LLEGM models
is seen to be excellent even at Vre f = 2.27 Vc where the fluids can be considered to be dense gases
or slightly supercritical fluids. As discussed in [27], the monotone increase of the viscosity with
increasing pressure or decreasing specific volume leads to the decrease of the scaled loss for fixed δ

and Λ. As is clear from Equation (64), the scaled loss predicted by the LLIG model remains constant
with isothermal pressurization. This is due to the fact that the ideal gas viscosity is a function of the
reference temperature only. Again, the LLIG model overestimates the scaled loss in the pressurized
gas regimes. The maximum difference between the LLV and LLIG models was found to be 8% for the
cases considered in Figure 8.
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Figure 8. Scaled loss vs. reference specific volume V(0)/Vc at Tre f = 1.25 Tc. The speed number Λ = 50
and the parameter δ = 0.5.
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We note further that the loss is scaled with the zero-load loss, i.e., when δ = 0. Inspection of
Figure 8 shows that the scaled loss of ideal gases will always be larger than one. On the other hand,
because of the density dependence of the shear viscosity, the scaled loss can become ≤1 at higher
pressures. This result is consistent with [27], but can be easily revealed by Equation (62), at least where
the virial expansion is valid.

The variation of the scaled version of the attitude angle at Tre f = 1.25 Tc is plotted as a function
of the reference specific volume in Figure 9. Here, we use the associated attitude angle ψ ≡ π − ϕ,
i.e., the angle between the direction of the total force F′ and the negative x′ axis seen in Figure 2.
The agreement between the LLV, LLEGM, and REGM models is seen to be excellent. The attitude
angle ψ resulting from the LLV, LLEGM, and REGM models increased as the reference density rose.
Inspection of Equation (65) reveals that ψ is dependent only on δ and Λ for ideal gases. Thus, the scaled
attitude angle corresponding to the LLIG model remained constant, and its value was smaller than
that predicted by the LLV, LLEGM, and REGM models at higher pressures. The maximum discrepancy
between the LLV and LLIG models was found to be 25.6% for the reference states considered in
Figure 9.
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Figure 9. Scaled attitude angle vs. reference specific volume V(0)/Vc at Tre f = 1.25 Tc. The speed
number Λ = 50 and the parameter δ = 0.5.

We also have plotted the variation of the scaled load as a function of δ for Vre f = 5 Vc, 10 Vc,
and 15 Vc at Tre f = 1.05 Tc in Figure 10. Results obtained from the LLV, LLEGM, and REGM models
were found to be in excellent agreement. Inspection of Figure 10 reveals that the differences between
the LLV and LLIG models increased with the increase of δ and reference pressure. The maximum
differences between the LLV and the LLIG models at Vre f = 5 Vc, 10 Vc, and 15 Vc were found to be
23.1%, 12.1%, and 7.4%, respectively, and occurred at δ = 1.

The variation of the scaled loss is plotted against δ at Tre f = 1.05 Tc for Vre f = 10 Vc and 5 Vc in
Figures 11 and 12, respectively. Examination of Figures 11 and 12 indicates that the LLV model is in
very good agreement with the LLEGM and REGM models for a range of δ in both cases. The effects of
the first virial correction term became more significant as δ increased for fixed pressure. The maximum
discrepancy between the LLV and LLIG models for the case of Vre f = 10 Vc and 5 Vc was found to be
approximately 1% and 3%, respectively. The effects of the first virial correction on the scaled loss, i.e.,
Equation (62), seems to be smaller than that on the scaled load, i.e., Equation (57). This is due to the
fact the variation of κT with the density is stronger than that of µ, as shown in Figures 4 and 5.
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Figure 10. Scaled load vs. δ at Vre f = 5 Vc, 10 Vc and 15 Vc for Tre f = 1.05 Tc. The speed number Λ = 50.
The solid lines represent the scaled load obtained from the REGM model; the symbols �,©, and 3
denote the scaled load computed by the LLEGM, LLV, and LLIG approximations, respectively.

Inspection of Figure 12 also shows that the scaled loss had a local minimum at δ = 0.103 for the
Vre f = 5 Vc case. In general, it is easily shown that a local minimum of (1 + δ) |P| occurs when:

µre f

µideal
− 1 =

δ(1 + 2δ)

1 + δ + δ2 , (71)

if we consider only the lowest-order approximation in Λ, i.e, Λ = ∞, for the loss, i.e., Equation (62).
From Equation (71), it is easily shown that the minimum scaled loss of ideal gases will always be at
δ = 0. For pressurized gases, the location of the minimum scaled loss will depend on the ratio of µre f
to µideal . It can be shown that:

δ(1 + 2δ)

1 + δ + δ2

increases monotonically from 0 to 2 as δ −→ ∞. Thus, if µre f /µideal is a constant and Λ � 1, a local
minimum in the scaled loss, i.e., (1 + δ) |P|, occurs iff:

µre f ≤ 3 µideal .

We have also plotted the variation of the scaled attitude angle as a function of δ at Vre f = 5 Vc

and Tre f = 1.05 Tc in Figure 13. Observation of Figure 13 reveals the good agreement between the LLV,
LLEGM, and REGM models, and the predicted attitude angle ψ increased as δ increased. The maximum
difference between the LLV and REGM models was found to be 6.4% and occurred at δ = 1.0. As is
clear from Equation (61), the LLIG model, on the other hand, resulted in underestimation of the scaled
attitude angle and deviated from the LLV model by 23.1% at δ = 1.0. In addition, we note that both Fx′

and Fy′ −→ 0 at the same rate as δ goes to zero; this result is consistent with the findings of [30] for
ideal gases.
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Figure 11. Scaled loss vs. δ at Vre f = 10 Vc and Tre f = 1.05 Tc. The speed number Λ = 50.
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Figure 12. Scaled loss vs. δ at Vre f = 5 Vc and Tre f = 1.05 Tc. The speed number Λ = 50.
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Figure 13. Scaled attitude angle ψ vs. δ at Tre f = 1.05 Tc and Vre f = 5 Vc. The speed number Λ = 50.
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7. Summary

The main goal of the present study was to provide simple explicit formulas for the load, power
loss, and attitude angle for moderately-pressurized gases. We have applied a virial expansion, i.e.,
a ρ/ρc � 1 approximation, to the large speed number approximations developed in [27]. The general
results for the load, attitude angle, and loss are given by Equations (57), (61), and (62). The numerical
results of Section 6 suggests that our virial expansions yield excellent agreement with both exact
solutions to the Reynolds equation and the large Λ approximations of [27] well into the dense gas and
supercritical fluid regime. For example, for CO2 at a reference specific volume of 5 Vc and a reference
temperature of 1.05 Tc ≈ 43.2 °C, the RKS equation of state predicts a reference pressure of 0.55 pc ≈
40.5 bar. Inspection of Figures 6 and 10–13 reveals that our approximations are quite good even at
these elevated reference pressures. The results based on our simple virial expansions are also seen to
be a a significant improvement over those of the ideal gas theory.

Once the virial coefficients, i.e., Equations (30) and (41), are determined from experiment, tabulated
data, or analytical gas models, the formulas presented here can be used to gain intuition regarding
the effects of pressurization, to carry out engineering estimates, and reduce computation time in
large-scale numerical studies involving moderate pressures. The approach taken here was to replace
complex material functions, i.e., complex equations of state and viscosity models, with a simple
approximation. Thus, virial expansions such as that employed here should be equally effective for
unsteady, fully-three-dimensional, and turbulent lubrication flows at moderate pressures.
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