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Fréchet Sensitivity Analysis and Parameter Estimation in Groundwater
Flow Models

Vı́tor Manuel Leite dos Santos Nunes

(ABSTRACT)

In this work we develop and analyze algorithms motivated by the parameter estimation
problem corresponding to a multilayer aquifer/interbed groundwater flow model. The pa-
rameter estimation problem is formulated as an optimization problem, then addressed with
algorithms based on adjoint equations, quasi-Newton schemes, and multilevel optimization.
In addition to the parameter estimation problem, we consider properties of the parameter
to solution map. This include invertibility (known as identifiability) and differentiability
properties of the map. For differentiability, we expand existing results on Fréchet sensitivity
analysis to convection diffusion equations and groundwater flow equations. This is achieved
by proving that the Féchet derivative of the solution operator is Hilbert–Schmidt, under
smoothness assumptions for the parameter space. In addition, we approximate this operator
by time dependent matrices, where their singular values and singular vectors converge to
their infinite dimension peers. This decomposition proves to be very useful as it provides
vital information as to which perturbations in the distributed parameters lead to the most
significant changes in the solutions, as well as applications to uncertainty quantification.
Numerical results complement our theoretical findings.



Acknowledgments

I would like to thank my parents, Suzete and Cecilio, my sisters Soraia and Clara, my
Godson Afonso and my cousin Ricardo, for being supportive all these years in my decision
on being a mathematician; my wife to be, Nicole, for being by my side in graduate school;
my advisor Professor Jeff Borggaard for challenging me throughout my PhD and helping me
grow as a mathematician, both analytically and numerically; Professor Lizette Zietsman for
mentoring me in the SIAM student chapter; Professor Burns for introducing me to sensitivity
analysis; Professor Adjerid for teaching finite elements; Professor Elgart for teaching me
fun and interesting mathematics; and Meijing Zhang and Professor Burbey for helping me
comprehend groundwater flow modeling. I also would like to thank Mariana and the Polanah
family for adopting me as their own, as well as my ICAM friends Weiwei, Hans, Zhu, Boris,
Erich, Chris, and Dave.

iii



Contents

1 Introduction 1

2 Groundwater Flow Models 3

2.1 PDE Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 The Classical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.3 The Multilayer Model . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.4 The Poroelastic Media Model . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Finite Difference Discretization of the Classical Model . . . . . . . . . 10

2.2.2 Finite Element Discretization of the Classical Model . . . . . . . . . . 11

2.2.3 Finite Volume Discretization of the Multilayer Model . . . . . . . . . 13

2.2.4 Four Layer Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 General Finite Volumes Methods for Groundwater Flow Models . . . . . . . 17

3 Theoretical Aspects of Parameter Estimation in Groundwater Flow Mod-
els 18

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Well-Posedness of the Groundwater Flow Inverse Problem . . . . . . . . . . 19

3.2.1 Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Non Identifiability of the Homogenous Case . . . . . . . . . . . . . . . . . . 22

3.4 Optimization with PDE Constraints . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Lagrange Multipliers and Optimality Conditions . . . . . . . . . . . . 23

3.4.2 Identifiability Under Finite Dimensional Approximations . . . . . . . 25

iv



4 Numerical Groundwater Inverse Problems 28

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 The Cost Functional and Optimization Algorithm . . . . . . . . . . . . . . . 29

4.2.1 Cost Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.2 Steepest Descent and Newton’s Method Using the Adjoint Equation . 30

4.2.3 KKT Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Las Vegas Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Cost Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.2 Optimization Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.3 Zonation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.4 Multi-Level Optimization . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Sensitivity Analysis and Fréchet Derivative Operators 43
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Notation

[Dq[z(t; q)]]q=q0 Fréchet derivative of the solution operator z(t; q) with respect to

the parameter q at q0

[Dq[z(q)]]q=q0 Fréchet derivative of the solution operator z(q) with respect to

the parameter q at q0

H preconsolidation head
h water head
ha water head in the aquifer
hI water head in the interbed
T transmissivity
K = (Kx, Ky, Kz) hydraulic conductivity
W groundwater flow source term
kv vertical hydraulic conductivity of the interbed
S specific storage
Sske elastic skeletal storage
Sskv inelastic skeletal storage
λ, µ Lamé constants (when used together)
α Biot-Willis constant
µf fluid viscosity
c0 constrained specific storage
κ symmetric permeability tensor
u displacement
p pressure
J cost functional
q general parameter
A(q) differential operator (depending on parameter q)
Q parameter space
Qad admissible parameter set
Ω spatial domain, subset of Rn

∂Ω boundary of Ω
~n unit boundary normal vector
λ Lagrange multiplier
Πk interpolation operator of degree k
HN finite element space of dimension N
SN finite element space of dimension N (solution space)
QM finite element space of dimension M (parameter space)
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Chapter 1

Introduction

Since the early stages of human history, the search for water supplies has been a fundamental
problem. This alone justifies the importance of modeling and identifying model parameters
(parameter estimation) of groundwater flows. Since most of the water is stored beneath the
surface; it is very challenging to obtain the information on those parameters that model
the distribution the water in reservoirs. Most scholars approach the problem within the
framework of poroelastic media models, where the fact that the water flow has a direct
impact on the shape and storage properties of the reservoir in question is considered. For
instance the processes of dryness by pluming or change in the volume for natural reasons
on an aquifer leads to subsidence. The data used in parameter estimation has two distinct
forms. The subsidence data is provided by satellite, whereas the volume of water is by
measurements on wells. Here the major problem is that the number of wells is relatively
small when compared to the size of the land in question. For example, one can have wells
that they are dozens of miles apart. Therefore one will need to interpolate the data spatially,
it will also be necessary to interpolate the data in time since it is not collected constantly.

In this work water supplies from the Las Vegas Valley is considered. The objective is to
improve the existence model and to estimate relevant parameters. The forward problem is
modeled numerically by MODFLOW [13] , [22] and [44], [55], as well as a solver that we
developed. The parameters, specific storage and transmissivity can be estimated by UCODE
[40], or the adjoint quasi Newton optimization solver that we developed. The major problem
of UCODE is that it can only estimate the parameter values once their distribution in space
is known (zonation). Therefore we developed an algorithm that coupled with UCODE can
estimate the parameter values without prior knowledge of the zonation. Both UCODE and
MODFLOW use a finite volume scheme to approximate the partial differential equation
(PDE).

Once the parameters are identified, the study take another direction, namely determining
how those parameters impact the solution or the system’s output. This is process is called
sensitivity analysis. Sensitivity analysis gives insight into the impact of changes on the distri-
bution of the porous media, wells and even the existence of a construction site on the water
reservoir. This is done by considering the data or the solution of a PDE as a function of
the distributed parameters, boundary conditions and/or forcing term, since this functional
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is well defined on the set of parameters which leads to a unique solution. Under certain
assumptions it is possible to differentiate the operator with respect to the parameters of
interest. This derivative is an operator called the Fréchet derivative. Motivated by ground-
water sensitivity analysis, we developed results on the steady advection-diffusion equation
and convection-diffusion equation. These results include the existence of Fréchet derivatives
in Hilbert spaces, their spectral decomposition and numerical approximation. In previous
works by Herdman and Spies [21] and Seubert and Wade [44], the differentiation is considered
in Banach spaces. Although these spaces are more general than Hilbert spaces, they lack
some essential mathematical structure for considering approximations. Furthermore, the
additional Hilbert space structure allows us to prove that if one assumes some smoothness
in the PDE parameters and source term, the Fréchet operator is Hilbert-Schmidt, the infi-
nite dimensional equivalent to the singular value decomposition (SVD). This decomposition
allows us to identify which parameters are the most important, reduce the dimension of the
Fréchet derivative operator, and create an adaptive meshing strategy. All of these results are
developed within an infinite dimensional framework. There are several advantages of such a
decomposition.For example, in parameter estimation the gradient is explicitly computed and
a lower dimensional representation of it can be computed by truncating the Hilbert-Schmidt
expansion.

Outline

This work starts by discussing groundwater flow (GWF) models and their particularities
as their approximation technics. The numerical approximation of the flow is not straight
forward. One must take aspects such as mass conservation, subsidence and the low values of
the storage parameter into account. The main model is based on Leake’s model [30] and is
presented in Chapter 2. This is followed by the discussion of the existence and uniqueness of
the solution of the inverse problem and the Lagrangian associated with it in Chapter 3. The
next step is the development of techniques to estimate the parameters and include techniques
such as djoint methods and zonation algorithms. The parameter estimation study is followed
by theoretical and numerical sensitivity analysis results. Chapters 6 and 7 are dedicated to
numerical results for sensitivity analysis and parameter estimation.

2



Chapter 2

Groundwater Flow Models

2.1 PDE Models

2.1.1 Introduction

In this chapter we present three groundwater flow (GWF) models that are used to study large
aquifers. The first is known as the classical model, developed in Section 2.1.2, and is the basis
of the U.S. Geological Survey (USGS) package MODFLOW [24]. This model is generalized
to a multilayer model in Section 2.1.3 and accounts for land subsidence and is implemented in
the USGS SUB Package [30]. The multilayer model is a simplification of Biot’s general theory
of three-dimensional consolidation [7] and is given in Section 2.1.4. While we do not use the
resulting poroelastic model in any of our work, this model of the pressure head and the elastic
displacement of the aquifer serves to enhance the understanding of the approximations made
in the multilayer model. The extension of the results of this dissertation to the poroelastic
equations is outlined Chapter 9. Following the introduction of these models, we review
numerical discretization approaches in Section 2.2. This includes finite difference and finite
element approximations of the classical model in Sections 2.2.1 and 2.2.2, respectively. The
finite element approximation is used for our work on Fréchet sensitivity analysis. A combined
finite volume/finite difference approximation for the multilayer model is provided in Section
2.2.3. This combined approximation is used by MODFLOW.

2.1.2 The Classical Model

The classical PDE model for describing the piezometric head h for a saturated flow combines
mass balance with Darcy’s law. The result (assuming anisotropic hydraulic conductivity,
cf. [5, p. 180]) is{

S d
dt
h(t,x) = (Kxhx(t,x))x + (Kyhy(t,x))y + (Kzhz(t,x))z +W (t,x),

h(0) = h0, h0 ∈ H1
0 (Ω),

(Cq)
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for all t ∈ [0, T ], and x ∈ Ω, a convex subset of R3. The spatially varying functions Kx,
Ky and Kz represent the hydraulic conductivity in the x, y and z directions respectively.
THe storativity is denoted by S = S(x) and W is the source term. The source term models
effects such as rain and well pumping.

Theorem 2.1.1 (Existence and uniqueness of solutions to the classical model ). Let Ω ⊂ R3

be bounded, S ∈ Qs := {q ∈ C(Ω) : ∃αs > 0 such that q(x) > αs ∀x ∈ Ω}, Kx, Ky, Kz ∈
Qk := {q ∈ C(Ω) : ∃αk > 0 such that q(x) > αk ∀x ∈ Ω},W (t, ·) ∈ L2(Ω) for all t > 0, and
W satisfies the condition that there exist constants v, β > 0 such that

‖W (t, ·)−W (s, ·)‖L2(Ω) ≤ β|t− s|v for all s, t > 0.

Then there exists an unique solution h ∈ C1(]0,∞[ ;H2(Ω) ∩H1
0 (Ω)) to (Cq).

Proof. The proof of this theorem is a direct consequence of Corollary 2.8 in Chapter 7,
Pazy [37] since the operator

A(x)(·) =
1

S(x)
[(Kx(x)(·)x)x + (Ky(x)(·)y)y + (Kz(x)(·)z)z]

is strongly elliptic. The strong ellipticity follows immediately from our assumptions on S
and (Kx, Ky, Kz).

The main limitation of the classical model is that it does not account for the fact that
an aquifer is a poroelastic medium. In other words, as flow occurs in the aquifer, the
domain shape changes through time. This displacement leads to a change in the storativity
parameter, S.

The standard correction to the classical model subdivides the domain into layers, some of
which are incompressible (the aquifer) and others are compressible (the interbeds). These
layers each have different physical properties: thickness, storativity, and conductivity. The
layers are approximated by coupling layers of two dimensional models. The individual layer
models are constructed by averaging the quantity of water in the vertical direction, this is
discussed in the next section.

2.1.3 The Multilayer Model

The previous model is not practical for real aquifers since it does not incorporate subsidence
and its effect on the specific storage. Furthermore, most aquifers are well approximated by
layers of uniform material. Numerical approximations of (Cq) do not take specific advantage
of this distribution of the aquifer specific storage and transmissivity. Thus a model that
divides the domain into a union of horizontal layers is common in the literature. The are
two type of layers, aquifer layers and interbed layers, see Figure 2.1.
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Figure 2.1: Groundwater model layers.

Their physical properties are significantly different and this leads to the following assump-
tions:

Aquifer Layer

• High permeability that allows water to flow in ordinary conditions.

• The water only flows horizontally within the layer.

• It is incompressible (for example, sand or gravel).

Interbed Layer

• It transmits water at a much lower rate compared to aquifer layers.

• The horizontal conductivity is assumed to be zero or almost zero.

• It is compressible (for example, clay).

The layers are constructed distinctly in order to better fit the previous assumptions. The
average quantity of water in a layer l that is bounded at each point (x, y) by bal1 (x, y) (bottom)
and bal1 (x, y) (top) is given by

h̃al(x, y) =
1

bal2 (x, y)− bal1 (x, y)

∫ b
al
2 (t,x,y)

b
al
1 (x,y)

h(x, y, z) dz.

It is relevant to point out that aquifer layers are averaged over an interval in which the
relative location of its endpoints do not change over time. This is in contrast with the
similar definition for interbed layers where the relative locations of endpoints may evolve
over time because they are assumed to be compressible layers. Within interbed layers, we
assume that Kx(x, y, z) ≡ 0 and Ky(x, y, z) ≡ 0. Thus, the flow within interbed layers is
vertical, and contributes a source/sink to adjoining layers.

5



Aquifer Layer Model Equations If we consider transmissivity to be equal in each di-
rection (Cq) can be reduced to the following PDE: S(x) d

dt
h(t,x) = ∇ · (K(x)∇h(t,x)) +W (t,x), h(t, ·) ∈ H1(Ω) ;

K(x)∇h(t,x) · ~n = 0 x ∈ ∂Ω
h(0) = h0 h0 ∈ L2(Ω), t ∈ [0, T ].

(2.1)

The source term W is now more complex since it incorporates the discharge/recharge
from adjacent (aquifer/interbed or interbed/interbed) layers as well as all other possible
sources or sinks. Integrating both sides of (2.1) in the vertical direction z over the interval
[bal1 (t, x, y), bal2 (t, x, y)] (and ignoring the arguments of bali ) results in:∫ b

al
2

b
al
1

S(x)
d

dt
h(t, x, y, z)dz =

∫ b
al
2

b
al
1

∇ · (K(x)∇h(t,x)) +W (t,x) dz (2.2)

for the aquifer layers and, similarly for the interbed layers (keeping the t argument to em-
phasize that the interval is time dependent)∫ b

Il
2 (t)

b
Il
1 (t)

S(x)
d

dt
h(t, x, y, z) dz =

∫ b
Il
2 (t)

b
Il
1 (t)

∇ · (K(x)∇h(t,x)) +W (t,x) dz (2.3)

for the interbed layers. We now apply the layer modeling assumptions to the ∇ · (K∇h)
terms in the equations above. In the aquifer layers,∫ b

al
2

b
al
1

∇ · (K∇h(x, y, z)) dz =

∫ b
al
2

b
al
1

∇(x,y) ·
(
K∇(x,y)h(x, y, z)

)
+

∂

∂z

(
K
∂

∂z
h(x, y, z)

)
dz

=

∫ b
al
2

b
al
1

∇(x,y) ·
(
K∇(x,y)h(x, y, z)

)
dz +

(
K
∂

∂z
h(x, y, z)

)∣∣∣∣z=b
al
2

z=b
al
1

.

Interchanging the ∇(x,y)· and
∫ bal2

b
al
1

operations leads to

= ∇(x,y) ·
∫ b

al
2 (x,y)

b
al
1 (x,y)

(
K∇(x,y)h(x, y, z)

)
dz +K∇(x,y)h(x, y, bal2 (x, y)) · ∇(x,y)b

al
2 (x, y)

−K∇(x,y)h(x, y, bal1 (x, y)) · ∇(x,y)b
al
1 (x, y) +

(
K
∂

∂z
h(x, y, z)

)∣∣∣∣z=b
al
2 (x,y)

z=b
al
1 (x,y)

.

By assuming there is no subsidence in the aquifer and horizontal flow, h(t, x, y, z) = ha(t, x, y),
one can define, for each aquifer layer l, the transmissivity, storativity, and effective source as

T l(x, y) =

∫ b
al
2 (x,y)

b
al
1 (x,y)

K(x, y, z) dz, S̃(x, y) =

∫ b
al
2 (x,y)

b
al
1 (x,y)

S(x, y, z) dz,

and

P (x, y, t) =

∫ b
al
2 (x,y)

b
al
1 (x,y)

W (x, y, z, t) dz.
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Each aquifer layer then is modeled by a two dimensional PDE in x̃ = (x, y).

Since water flows more freely in the aquifer layers than the interbed layers, we assume that
the flow in the interbed is only vertical, thus Kx = Ky = 0. Furthermore, assuming it is an
isotropic porous medium, (2.1) simplifies to a series of one dimensional PDEs (at each x̃).
The multilevel model then becomes

S̃
∂hal (t, x̃)

∂t
=∇x̃ · (T l(x̃)∇x̃h

a
l (t, x̃))

+K(l+1)∂h
Il+1

∂z
|
z=b

Il+1
1 (t,(x,y))

−K(l−1)∂h
Il−1

∂z
|
z=b

Il−1
2 (t,(x,y))

+ Pl(t, x̃) (Ma
q)

for aquifer layers, and

S(l)
o

∂hIl
∂t

(z) = K(l)∂
2hIl
∂z2

(z) (MI
q)

(at each x̃) for interbed layers. These equations are coupled through the continuity of the
flux K ∂h

∂z
across the layers. Thus, the aquifer equation (Ma

q) for layer l has a source term
from the interbed layer above (l + 1) and below (l − 1). These terms vanish at the top and
bottom boundaries and for adjacent aquifer layers.

We assume that the shape of Ω does not change vertically, in other words,

Ω =
{

(x, y, z) : (x, y) ∈ Ω2 ⊂ R2, z ∈ [θbottom, θtop]
}
.

The actual compression of the interbed is accounted for through the time-varying specific
storage S

(l)
0 . More details of the modeling of this term are provided in Section 2.2.3.

The boundary conditions are then inherited from (2.1) therefore:

T l(x̃)∇x̃h
al(t, x̃) · ~n(x̃) = 0 x̃ ∈ ∂Ω2

hIl(t, x̃, bIl1 (t, x̃)) = hal−1(t, x̃) t > 0

hIl(t, x̃, bIl2 (t, x̃)) = hal+1(t, x̃) t > 0

h̃al(0, x̃) = 1
b
al
2 (x̃)−bal1 (x̃)

∫ bal2 (x̃)

b
al
1 (x̃)

hal(0,x) dz

h̃Il(0, x̃) = 1

b
Il
2 (0,x̃)−bIl1 (0,x̃)

∫ bIl2 (0,x̃)

b
Il
1 (0,x̃)

hIl(0,x) dz.

(BC)

These boundary conditions insure that the flow is continuous over the layers. The next
section discusses a more fundamental PDE model based on explicitly modeling the elastic
effects of the storage media which we will refer to as the poroelastic model, [46].

2.1.4 The Poroelastic Media Model

Although we do not delve into too much detail, a more general framework for modeling the
elastic deformations in groundwater flows was analyzed by Showalter [46] and numerically
simulated by Phillips [38, 39]. The poroelastic model considers the displacement produced
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by the flow. This leads to a coupled system for both the pressure p and displacement u,

−(λ+ µ)∇(∇ · u(t))− µ∇2u(t) + α∇p(t) = h(t) on Ω
d
dt

(cop+ α∇ · u(t)) + 1
µf
∇ · κ(∇p(t) + ρfg) = h(t) on Ω

p(t) = p0 on Γp,
κ(∇p+ ρfg) · ν = q on Γf ,
u(t) = uD on Γo,
σ̃(u)ν = tN on Γt,
p(0) = po, on Ω
u(0) = uo, on Ω

(Pq)

where ∂Ω = Γp
⋃

Γf and ∂Ω = Γt
⋃

Γo, λ, µ are the positive Lamé constants, α is the
Biot-Willis constant, µf the fluid viscosity, c0 the constrained specific storage, and κ is
the symmetric permeability tensor. For the problems considered here, u : [0, T ] × R3 →
R3, p : [0, T ] × R3 → R+

0 , V := {v ∈ H1(Ω) subject to v|ΓS
= 0} , and V := {v ∈

H1(Ω)×H1(Ω)×H1(Ω) subject to v|Γo
= 0}. The physical interpretation of the operator

C(u)− (λ+µ)∇(∇·u)−µ∇2u is the elastic operator and A(p) = −∂j(k∂jp) is the diffusion
operator. By the considering h(t) = 0 the first equation on 2.11 can be rewritten as u(t) =
C−1 (∇p(t)) which then reduces the problem to one variable, since the second equation is
then written as:

d

dt
(c0Pp(t)) + ~∇ · C−1 (∇p(t)) + A(p(t)) = h(t) (2.4)

Which is an implicit evolution equation, this is thoroughly studied by on chapter IV of R.E.
Showalter [46]. Since it can be written as:

d

dt
B (p(t)) = A (p(t)) + h(t) (2.5)

Obviously the Ker of these operators will play an important role in the uniqueness of a
solution. For instance suppose that p(t) is a solution and r(t) is a nontrivial element of
Ker(B) ∩ Ker (A) then p(t) + r(t) will be a solution of 2.5 as long r(t) satisfies initial and
boundary conditions. Thus assumptions on the operators A and B must be made in order
to guarantee uniqueness. Which in our case in then Ker(c0P − ~∇ · C−1~∇) ∩ A = 0. This
motivates the following theorem:

Theorem 2.1.2. If Ker(c0P − ~∇ · C−1~∇) ∩ A = 0, T > 0, v0 ∈ L2(Ω), v1 ∈ L2(ΓS),
h0(.) ∈ Cα ([0, T ], L2(Ω)) and h1(.) ∈ Cα ([0, T ], L2(ΓS)) then there is an unique pair of
functions p(.) : (0, T )→ V and u(.) : (0, T ]→ V such as:

(P)q



(λ+ µ)∇(∇ · u(t)) + µ∇2u(t) + α∇p(t) = 0 on Ω
d
dt

(cop+ α∇ · u(t)) + 1
µf
∇ · κ(∇p(t) + ρfg) = h(t) on Ω

p(t) = 0 on Γ1,
κ(∇p+ ρfg) · ν = q on Γf ,
u(t) = 0 on Γo,
∂
∂t

((1− β)u(t) · ~n)χS + k ∂p(t)
∂n

= h1(t)χs on Γf ,
lim
t→0+

(cop+ α∇ · u(t)) = v0, in L2(Ω)

lim
t→0+

(1− β)u · ~n = v1, in L2(ΓS)

(2.6)
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The next last section on theoretical models, will show that the classical equation (Cq) is a
particular case of (2.5).

Groundwater as a particular case

Since the specific storage over (Cq) in not time dependent one can claim that S(x) d
dt
h(t) =

d
dt
S(x)h(t) thus one can define B(h) = h and A(h) = S(x)−1[(Kx(x)hx)x + (Ky(x)hy) +

(Kh(x)hz)z]. Then (Cq) is of the type:

d

dt
(h(t)) = A(h(t)) +W (t) (2.7)

It is trivial to prove that A : H1
0 (Ω) → L2(Ω) is regular accretive and that under the

assumption that S ∈ Qsand that Kx, Ky, Kz,∈ Qk :

lim
‖v‖

H1
0(Ω)
→∞

(A(v), v)L2(Ω) + ‖v‖2
H1

0 (Ω)

‖v‖H1
0 (Ω)

=∞ (2.8)

This fulfills all the assumptions of Proposition 5.1 on [45] the there is an unique solution to
(2.7) and consequently to (Cq) as next theorem says:

Theorem 2.1.3. For each h0 ∈ H2(Ω) and W ∈ W 1,1 (0, T ;H1
0 (Ω)) then there is an unique

h ∈ W 1,∞ (0, T ;H1
0 (Ω)) such as h(0) = h0 and ∀t ∈ [0, T ] we have:

d

dt
(h(t)) = A(h(t)) +W (t) (2.9)

Which can be translated as there is an unique h ∈ W 1,∞ (0, T ;H1
0 (Ω)) such as h(0) = h0 and

∀t ∈ [0, T ] we have:

(P)q

{
S d
dt
h(t,x) = (Kxhx(t,x))x + (Kyhy(t,x))y + (Kzhz(t,x))z +W (t,x) ;

h(0) = h0 h0 ∈ H1
0 (Ω).

(2.10)

For the non homogeneous case, Showalter uses second consolidation system:

Theorem 2.1.4 (Existence of a strong solution). Under the assumption that λ∗ > 0, c0 > 0,
v0 ∈ V ′a, w0 ∈ V, and

H(.) ∈ Cα
(
[0, T ], L2(Ω)⊕ L2(ΓS)

)
h(.) ∈ Cα ([0, T ], V ′a)

There is an unique pair of functions p(.) : (0, T ]→ V , u(.)→ V such as:

c0Pp(.) + ~∇ · u(.) ∈ C0 ([0, T ], V ′a) ∩ C1 ((0, T ], V ′a)
[∇ · u(.),u(.) · n] ∈ C0 ([0, T ], L2(Ω)⊕ L2(ΓS)) ∩ C1 ([0, T ], L2(Ω)⊕ L2(ΓS)) that satisfy the

9



initial-value problem

(P)q


−λ∗∇

(
d
dt
∇u(t)

)
− (λ+ µ)∇(∇ · u(t))− µ∇2u(t) + α∇p(t) = H(t) in V′

d
dt

(cop+ α∇ · u(t)) + 1
µf
∇ · κ(∇p(t) + ρfg) = h(t) in V ′a and t ∈ (0, T ]

limt→0+

(
c0Pp(t) + ~∇ · u(t)

)
= v0 in V ′a ,

limt→0+ ~∇ · u(t) = ~∇ ·w0 in L2(Ω)⊕ L2(ΓS)
(2.11)

Where A(p) = [−∂j(k∂jp), k∇p · ~n] , Va := Rg(A) ⊂ L2(Ω) ⊕ L2(ΓS), ~∇ = [∇,−βp~n],
P : L2(Ω)⊕ L2(Γd)→ L2(Ω)⊕ {0} and ΓS = Γf ∩ Γt

This ends this topic of groundwater and poroelastic media modeling. In the next section we
discuss strategies to compute numerical approximations of the models discussed above.

2.2 Discretization

The discretization of a model depends on historical choices, accuracy requirements, enforcing
physical constraints such as mass conservation, and how the model will be used. For example
a particular discretization may be better suited for forward simulations than for parameter
estimation algorithms and vice versa. In this section we present several methods to discretize
the models presented above as well as discuss some of their advantages and disadvantages.

2.2.1 Finite Difference Discretization of the Classical Model

This is a commonly used method due to its fairly simple implementation, the down side is
its convergence rates are not optimal and depend on the smoothness of the problem. We
subdivide the spatial domain into a grid of rectangles of dimension ∆x by ∆y with Nx

points on the x-axis and Ny points on the y-axis as shown in Figure 2.2. The time domain
is discretized into subintervals of length ∆t. Let hmi,j denote the value of the water head at
(xi, yj) at time tm.

One classical example for this type of discretization is the implicit scheme:

Si,j
hm+1
i,j − hmi,j

∆t
=

[
∂Kx

∂x

]
i,j

hm+1
i+1,j − hm+1

i,j

∆x
+Kx

i,j

hm+1
i−1,j − 2hm+1

i,j + hm+1
i+1,j

(∆x)2
+

[
∂Ky

∂y

]
i,j

hm+1
i,j+1 − hm+1

i,j

∆y
+Ky

i,j

hm+1
i,j−1 − 2hm+1

i,j + hm+1
i,j+1

(∆y)2
+Wm+1

i,j . (2.12)

This is equivalent to the system

A(S,K)hm+1 = R(S,K)hm for m ≥ 0 (2.13)

where A(S,K) is a matrix of dimension N × N where N = NxNy − 2Nx − 2(Ny − 2) and
hm a vector of dimension N × 1. It is relevant to mention that the dimension of A is N ×N
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Figure 2.2: Discretization of an aquifer layer (left) around a region of interest (right), [6]
.

rather then NxNy × NxNy due to the boundary conditions which results in a reduction of
the number of variables.

With the error bounded by ( [2] K. E. Atkinson)

M [(∆x)4 + (∆y)4 + (∆t)2] (2.14)

where M is a constant that depends on the domain and the coefficients S and K.

Note that this traditional finite difference approach does not have the property of conserva-
tion of mass.

2.2.2 Finite Element Discretization of the Classical Model

The finite element method was introduced in the early 1940’s. The underlying functional
analysis used in developing the method enabled convergence results by taking advantage of
its Hilbert space structure. In our case consider a Hilbert space H = H1

0 (Ω) and a finite
dimensional subspace HN with orthonormal basis {φi(x)}i=Ni=1 . Multiplying (Cq) by φi and
integrating results in∫

Ω

φiS
d

dt
h(t)dx =

∫
Ω

φi[(K
xhx)x + (Kyhy) + (Kyhz)z +W (t)]dx.

11



The weak form of (Cq) holds for all φi ∈ HN . Using the divergence theorem gives∫
Ω

φiS
d

dt
h(t)dx =−

∫
Ω

∇φi · [Kxhx, K
yhy, K

yhz]dx

+

∫
∂Ω

φi[K
xhx, K

yhy, K
yhz] · ~ndΓ +

∫
Ω

φiW (t) dx. (2.15)

Since we are looking into H1
0 (Ω) solutions, (2.15 ) is equivalent to∫

Ω

φiS
d

dt
h(t)dx = −

∫
Ω

∇φi · [Kxhx, K
yhy, K

yhz]dx +

∫
Ω

φiW (t)dx. (2.16)

Let

hN(t,x) :=
N∑
i=0

φi(x)hi(t).

Then (2.16) is equivalent to the following system of differential equations

S
d

dt
hN(t) = [Kx + Ky + Kz]hN(t) + F(t) (2.17)

where

hN(t) =[h1(t), . . . , hN(t)]T , Si,j =

∫
Ω

φi(x)φj(x)s(x)dx,

Kx
i,j =

∫
Ω

φi(x)xφj(x)xK
x(x)dx, Ky

i,j =

∫
Ω

φi(x)yφj(x)yK
y(x)dx

Kz
i,j =

∫
Ω

φi(x)zφj(x)zK
z(x)dx, and Fi(t) =

∫
Ω

φi(x)W (t)dx.

Any implicit method can be used to solve (2.17). For example, Crank-Nicolson or Runge
Kutta methods. Using the Crank-Nicolson scheme with a time step ∆t leads to

S
hN(t+ ∆t)− hN(t)

∆t
= [Kx + Ky + Kz]

hN(t+ ∆t) + hN(t)

2
+

F(t+ ∆t) + F(t)

2
.

This can be factored as[
S

∆t
− 1

2
[Kx + Ky + Kz]

]
hN(t+∆t) =

[
S

∆t
+

1

2
[Kx + Ky + Kz]

]
hN(t)+

F(t+ ∆t) + F(t)

2
.

The error bounds and rate of convergence depend inherently on the type of domain, type
of mesh and of course, the type of basis, and the time discretization. The advantage of this
method is that it is very similar to the weak formulation of the PDE. Therefore all the tools
from PDE analysis and functional analysis can be applied to analyze its convergence. The
details of these properties will be discussed in Appendix A.
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2.2.3 Finite Volume Discretization of the Multilayer Model

The most common discretization methods in the groundwater flow literature are based on
finite volume approximations. This is true for both forward and inverse problems. The
main motivation for these methods is better mass conservation. Therefore, finite volume
discretizations do not seek to estimate the quantity at each point but rather the volume
average of a quantity over small geometric regions. The domain is discretized into rectangular
prisms or cubes in three dimensions and into rectangles or squares in two dimensions. Due
to the different nature of both layers their discretization changes as indicated in Figure 2.3.
The image on the left illustrates the fact the flow moves horizontally in the aquifer layer,
while the image on the right relies on the fact that flow is only vertical in the interbed as
discussed in Section 2.1.3.

Figure 2.3: Finite volume discretizations.. Aquifer layer (left) and interbed layer (right), [6].

Discretizing the Equations for Aquifer Layers

In Section 2.1.3, we showed that the flow in aquifer layer l could be modeled by (Ma
q)

S̃(x̃)
∂hal(t, x̃)

∂t
=∇x̃ · (T l(x̃)∇x̃h

al(t, x̃))

+K(l+1)∂h
Il+1

∂z
|
z=b

Il+1
1 (t,(x,y))

−K(l−1)∂h
Il−1

∂z
|
z=b

Il−1
2 (t,(x,y))

+ Pl(t, x̃). (Ma
q)

Let the mesh of Ω2 be composed of disjoint rectangles Ωi,j of dimension ∆xi by ∆yj and
centered at the point (xi, yj). The finite volume method is based on converting equation
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(Ma
q) to an integral equation on each rectangle. This leads to∫

Ωi,j

S̃(x̃)
∂hal(t, x̃)

∂t
dx̃ =

∫
Ωi,j

∇x̃ · (T l(x̃)∇x̃h
al(t, x̃))dx̃ +

∫
Ωi,j

K(l+1)∂h
Ii+1

∂z
|
z=b

Ii+1
1 (t,(x,y))

dx̃

−
∫

Ωi,j

K(l−1)∂h
Ii−1

∂z
|
z=b

Ii−1
2 (t,(x,y))

dx̃ +

∫
Ωi,j

Pl(x, y) dx̃. (2.18)

Using Stokes’ theorem on the term
∫

Ωi,j
∇x̃ · (T l(x̃)∇x̃h

a
l (t, x̃))dx̃, we obtain∫

Ωi,j

∇x̃ · (T l(x̃)∇x̃h
al(t, x̃)) dx̃ =

∫
∂Ωi,j

T l(x̃)∇hal(t, x̃) · ~n d∂Ωi,j. (2.19)

Substituting this expression into (2.18) yields

∫
Ωi,j

S̃
∂hal

∂t
dx̃ =

∫
∂Ωi,j

T l∇hal · ~n d∂Ωi,j +

∫
Ωi,j

K(l+1)∂h
Ii+1

∂z
|
z=b

Ii+1
1 (t,(x,y))

dx̃

−
∫

Ωi,j

K(l−1)∂h
Il−1

∂z
|
z=b

Il−1
2 (t,(x,y))

dx̃ +

∫
Ωi,j

P (x, y)dx̃. (2.20)

Replacing hal , T , and S̃ by their cell averages, with hal(tk, xi, yj) ≡ hki,j, the left hand side
(2.20) is discretized as ∫

Ωi,j

S̃
∂h(tk, x̃)

∂t
dx̃ ≈ Si,j

hk+1
i,j − hki,j

∆t
∆xi∆yj.

The discretization of the right hand side of (2.20) requires more care since the derivative at
the edge of the rectangle must be approximated from the surrounding cell averages and T l

must also be approximated there. This can be performed by either a simple average of T l in
neighboring cells or by the harmonic average. Each cell is connected to four adjacent cells.
Thus a cell can receive or lose volume of water through each of those. Let ∂1Ωi,j, ∂2Ωi,j, ∂3Ωi,j

and ∂4Ωi,j denote the left, bottom, right and top edges of the rectangle ∂Ωi,j respectively.
By considering an implicit scheme, we have the following approximations for the boundary
integrals: ∫

∂1Ωi,j

T∇h · ~nd∂Ωi,j ≈ (Qx)i− 1
2
,j := −Ti− 1

2
,j∆yj

hk+1
i,j − hk+1

i−1,j

∆xi− 1
2

,

∫
∂3Ωi,j

T∇h · ~nd∂Ωi,j ≈ (Qx)i+ 1
2
,j := Ti+ 1

2
,j∆yj

hk+1
i+1,j − hk+1

i,j

∆xi+ 1
2

,

∫
∂2Ωi,j

T∇h · ~nd∂Ωi,j ≈ (Qy)i,j− 1
2

:= −Ti,j− 1
2
∆xi

hk+1
i,j − hk+1

i,j−1

∆yj− 1
2

,

∫
∂4Ωi,j

T∇h · ~nd∂Ωi,j ≈ (Qy)i,j+ 1
2

:= Ti+ 1
2
,j∆xi

hk+1
i,j+1 − hk+1

i,j

∆yj+ 1
2

,
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where

∆xi− 1
2

:=
∆xi−1 + ∆xi

2
, ∆xi+ 1

2
:=

∆xi+1 + ∆xi
2

, ∆yj− 1
2

:=
∆yj−1 + ∆yj

2

and ∆yj+ 1
2

:=
∆yj+1 + ∆yj

2
.

The harmonic mean is

Ti− 1
2
,j =

∆xi−1 + ∆xi
∆xi−1

Ti−1,j
+ ∆xi

Ti,j

, Ti+ 1
2
,j =

∆xi+1 + ∆xi
∆xi+1

Ti+1,j
+ ∆xi

Ti,j

and Ti,j+ 1
2

and Ti,j+ 1
2

are analogously defined. Then

∫
∂Ωi,j

T∇h · ~nd∂Ωi,j ≈ (Qx)i− 1
2
,j + (Qx)i+ 1

2
,j + (Qy)i,j− 1

2
+ (Qy)i,j+ 1

2
.

Consequently, the aquifer finite volume representation is given by

Si,j∆xi∆yj
hk+1
i,j − hki,j

∆t
= (Qx)i− 1

2
,j + (Qx)i+ 1

2
,j + (Qy)i− 1

2
+ (Qy)i+ 1

2

+Ni,j∆xi∆yj + Pi,j∆xi∆yj

where Ni,j is the connection between the aquifer and interbed. Abstractly, we can write the
discrete form of the model as a system with the following structure

Ba(S, T,∆t)h
m+1 = Aa(S, T,∆t)h

m + fm. (2.21)

In order to introduce Neumann boundary conditions, T∇h · ~n = 0 one has to set

(Qx)1− 1
2
,j = (Qx)Nx+ 1

2
,j = (Qy)i,1− 1

2
= (Qy)i,Ny+ 1

2
= 0 ∀i, j.

Discretizing the Equations for Interbed Layers

The Interbed equation at a point (x, y) in the horizontal plane is given by

S
dhI(t)

dt
= Kv

∂2hI(t)

∂z2
. (2.22)

Since the interbed is a compressible medium, there must be some adjustments to its dis-
cretization. The subsidence alters the speed of the flow and the specific storage as well. S.
A. Leak [30] introduces an artificial variable called the precondition head H which is defined
as

Definition 2.2.1. Precondition Head
Given H0 = H0 then

Hm
i,j :=


Hm−1
i,j if hI,m−1

i,j > Hm−1
i,j

hI,m−1
i,j if hI,m−1

i,j ≤ Hm−1
i,j

(2.23)
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Definition 2.2.2. Skeletal Specific Storage

Smkj :=

{
Skej if hI,mj > HI,m−1

j

Skvj if hI,mj ≤ HI,m−1
j

(2.24)

where Ske is the elastic storage and Skv is the inelastic storage. Their contribution to the
model is that the term S dh

dt
can be estimated at time tm by

S
dh(t)

dt

∣∣∣∣
t=tm

≈ Smk
∆t

(hI,mj −HI,m−1
j ) +

Ske
∆t

(HI,m−1
j − hI,m−1

j ). (2.25)

This implies that the discretization of (MI
q) is as follows

Smk
∆t

(hI,mj −HI,m−1
j ) +

Ske
∆t

(HI,m−1
j − hI,m−1

j ) = Kvi

hmj+1 − 2hmj + hmj−1

2∆z
(2.26)

which leads to the following scheme

BI(S, T, h
I,m+1)hm+1 = AI(S, T )hI,m + rm. (2.27)

Aquifer-Interbed Coupled Model

To connect both layers we use Darcy’s law. The term N = Kv
(hI−ha)

∆z
is added as forcing term

to the aquifer and Kv

∆z
ha as a boundary condition to the interbed. Since the two equations

are now coupled, (2.21) and (2.27) give rise to[
Ba C1

C2 BI(h
m+1
I )

] [
hm+1
a

hm+1
I

]
=

[
Aa C3

C4 AI

] [
hma
hmI

]
+

[
Fm

rm(hm,m)

]
. (2.28)

This has the form
B(q(hm+1))hm+1 = A(q)hm + R(q(hm)). (2.29)

The nonlinearity arising in the interbed model (since the storage is a function of h) is treated
using a Newton method. Groundwater models where the domain consists of more than two
layers is given by the block tridiagonal system

Ba1 C2
I1,a1

0 0 0 0
C1
a1,I1

BI1 C2
I1,a2

0 0 0
0 C1

I1,a2
Ba2 C2

a2,I2
0 0

0 0
. . . . . . . . . 0

0 0 0 C1
an−1,In−1

BIn−1 C2
In−1,an

0 0 0 0 C1
In−1,an

Ban





hm+1
a1

hm+1
I1

hm+1
a2
...

hm+1
In−1

hm+1
an


=



Aa1 C4
a1,I1

0 0 0 0
C3
a1,I1

AI1 C4
I1,a2

0 0 0
0 C3

I1,a2
Aa2 C4

a2,I2
0 0

0 0
. . . . . . . . . 0

0 0 0 C3
an−1,In−1

AIn−1 C4
In−1,an

0 0 0 0 C3
In−1,an

Aan





hma1

hmI1
hma2
...

hmIn−1

hman


+



Fm

rm1 (hm,m)
0

rm2 (hm,m)
0
...

rmn−1(hm,m)
0


.
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2.2.4 Four Layer Model

An example of a four layer, aquifer-interbed-interbed-aquifer is shown in Figure 2.1. This is
equivalent to the model derived in Section 2.1.4 by appropriately arranging the layers and
introducing the proper connection terms. The four layer model will be used in some of our
numerical results in Chapter 7.

2.3 General Finite Volumes Methods for Groundwater

Flow Models

The main difference between finite volume and finite element schemes is the definition of the
flux, more generally the discretization of∫

∂1Ωe

T∇h · ~nd∂Ωe.

As one can imagine this can be done in several ways with various types/orders of discretiza-
tion. Although these methods have substantial differences, they all follow the same foun-
dational premise, mass conservation. In this section we only considered one methodology
which is used in MODFLOW.

In the Chapter 3 we discuss the well-posedness of the inverse problem as well as necessary
conditions for optimality.
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Chapter 3

Theoretical Aspects of Parameter
Estimation in Groundwater Flow
Models

3.1 Introduction

The availability of accurate groundwater flow models (GWFMs) is valuable since they can
be used to evaluate a variety of scenarios ranging from drought to residential development.
This so-called forward problem is described in Chapter 2. It consists of being given a set
of parameters, the initial state of the aquifer, and knowledge of source terms then using a
GWFM to predict the evolution of the aquifer (piezostatic head and/or displacement). In
most cases, the parameters are not available or information known about them is sparse or
inaccurate. This chapter is dedicated to answering a different problem, known as the inverse
problem or parameter estimation problem. Given data about the flow, the objective is to
recover those parameters that best generate the known flow data when used in a GWFM.

Mathematically, we pose this problem as finding an estimate of q∗ = (S∗, Kx∗, Ky∗, Kz∗)
that solves an optimization problem. Given continuous or discrete time measurements of
the piezostatic head hdata, we seek the q∗ that solves the following parameter estimation
problem: 

min
q∈Q

1

2
‖h(q)− hdata‖2

H + P (q)

subject to:

(F)

{
d
dt
Sh(t; q) = A(q)h(q; t) +W (t) h(t) ∈ H1

0 (Ω) ;
h(0) = h0 h0 ∈ H1

0 (Ω), t ∈ [0, T ].

(PE)

Here q = (S,Kx, Ky, Kz), A(q)h = (Kxhx)x + (Kyhy)y + (Kzhz)z, P (q) is a penalty term
such as the subsidence or the norm of q and finally Ω is a subset of R3 with C0 Lipchitz
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boundary.

The first instinct of a mathematician is to ask, “is there a solution?”, “how dependent
is that solution on the data?”, “where is the data and the solution defined?” and “is the
problem well defined?”. All of these questions are reasonable and crucial and one should
not attack the problem numerically without having these answered. The next section is
dedicated to address this issues.

3.2 Well-Posedness of the Groundwater Flow Inverse

Problem

In this section we discuss the well-posedness of (PE). That is, is there a unique parameter
associated with each data set? One needs to decide in which spaces the data, the parameters
and cost functional are defined. All of those choices will determine the applicability of any
numerical method discussed in the next chapter.

3.2.1 Identifiability

The first step in parameter estimation is to assure that the parameter is identifiable and if
the process of doing it is stable. The definition of identifiability may vary, in this work we use
the Kravaris and Seinfield definition [27]. First we need to clarify some concepts, the goal is
to use data on the water heads and/or subsidence to identify the vector q = (S,Kx, Ky, Kz)
that reasonably estimates the data. In other words, given a tolerance δ > 0, determine q
such that

‖h(q)− hdata‖S < δ where S denotes the solution space. (3.1)

This automatically gives rise to the following question, “ Does there exist a q in the parameter
space Q that satisfies this condition for each δ?”. The answer is affirmative or negative
depending on the choices of Q and S. To answer this question we define the observation
functional.

Definition 3.2.1 (Observation Functional-Infinite Dimensional Spaces). An observation
functional, Φ, is a mapping from the parameter space Q to the observation space H. That
is Φ : Q → H. This functional can be can be considered as Φ(q) = C(h(q)) where h(·) is the
solution operator and C is the projection from the solution space into the observation space

Φ(q) : Q → S → H. (3.2)

Now that the observation functional if defined the definition of identifiability comes naturally.

Definition 3.2.2 (Identifiability, Banks and Kunish, [4]). The parameter q is identifiable at
q∗ with respect to Q if for any q ∈ Q, Φ(q) = Φ(q∗) implies q = q∗.
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The previous definition is then equivalent to sate that the observation functional is injective.
Which is a reasonable property to ask. Since given data one should only recover one and
one only parameter.

Theorem 3.2.3 (Identifiability). If f(x) > 0 a.e. and S is constant, and known, over Ω then
the system Cq is identifiable over the spaces Q := Qs×Qk×Qk×Qk where Qs := {q ∈ C(Ω) :
∃αs > 0 such that ∀x ∈ Ω, q(x) ≥ αs} and Qk := {q ∈ C(Ω) : ∃αk > 0 such that ∀x ∈ Ω,
q(x) ≥ αk} and S = H = L2((0, T );H1

0 (Ω)) and ‖q‖Q := ‖S‖∞+‖Kx‖∞+‖Ky‖∞+‖Kz‖∞.

Proof. This is a direct result of Kravaris and Seinfield [27].

The existence of a minimum requires a smaller admissible set and a larger solution space
both defined in the following theorem.

Theorem 3.2.4 (Cost functional Minimizer). There is a global minimum q∗β ∈ Qad to the
objective functional

Jβ(h, q) =
1

2
‖h− hdata‖2

H +
βS
2
‖S‖2

L2(Ω) +
βKx

2
‖Kx‖2

L2(Ω) +
βKy

2
‖Ky‖2

L2(Ω) +
βKz

2
‖Kz‖2

L2(Ω)

(3.3)
where the admissible set is defined by:

Qad = {(S,Kx, Ky, Kz) ∈ Q : s1 ≥ S(x) ≥ s0, K
x
1 ≥ Kx(x) ≥ Kx

0 , Ky
1 ≥ Ky(x) ≥ Ky

0 ,

and Kz
1 ≥ Kz(x) ≥ Kz

0 ,∀x ∈ Ω} (3.4)

where si > 0, Kx
i , K

y
i and Kz

i for i=1, 2 are fixed positive constants.

The solution space by H = W 1((0, T );H1
0 (Ω)) and βS, βKx , βKy and βKz are positive con-

stants.

Proof. By Theorem 1.45 in [23] there is a minimum, under the following assumptions:

H1 Qad is convex bounded and closed

H2 (3.3) has a feasible point h ∈ H

H3 e(h, q) has a bounded solution operator h(q) where e(h, q) :=

(
d
dt
h(t)− A(q)h(t) +W (t)

h(0)− h0

)
H4 (h, q) ∈ H ×Q 7→ e(h, q) ∈ L2((0, T );L2(Ω)) is continuous under weak convergence.

H5 Jβ is sequentially weakly lower semicontinuous

Hypotheses 1 and 2 are easily verified but more detail are needed for Hypotheses 3 to 5.

Consider Hypothesis 3: On the admissible set we have the following inequality by Evans,
(Theorem 7.2, [18]):

‖h(q)‖W 1((0,T );H1(Ω)) ≤ C(q)
(
‖W‖L2((0,T );L2(Ω)) + ‖h0‖L2(Ω)

)
(3.5)
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where C(q) depends continuously on q in the norm on C0 denoted by ‖ · ‖0. It follows that
C(q) is bounded since Qad is bounded and this implies that h(q) is bounded.

Consider Hypothesis 4: Note that we only focus on the convergence of the first component
of the vector e(h, q). The second component converges by hypothesis. Let {(hn, qn)} be an
arbitrary convergent sequence with (hn, qn) →

H×Q
(h, q), and φ ∈ H then one have

∣∣∣∣∫ T

0

∫
Ω

φ (e(hn, qn)− e(h, q)) dxdt
∣∣∣∣ =

∣∣∣∣∫ T

0

∫
Ω

φ

(
d

dt
Sh− d

dt
Snhn + A(qn)hn − A(q)h(q; t)

)
dxdt

∣∣∣∣
≤

∣∣∣∣∫ T

0

∫
Ω

φ

(
d

dt
Sh− d

dt
Snhn

)
dxdt

∣∣∣∣
+

∣∣∣∣∫ T

0

∫
Ω

φ (A(qn)hn − A(q)h(q; t)) dxdt

∣∣∣∣ . (3.6)

Now we consider the two previous terms separately. First,

∣∣∣∣∫ T

0

∫
Ω

d

dt
Sh− d

dt
Snhndxdt

∣∣∣∣ ≤ ∣∣∣∣∫ T

0

∫
Ω

d

dt
(Sh− Snh)dxdt

∣∣∣∣+

∣∣∣∣∫ T

0

∫
Ω

d

dt
(Snh− Snhndxdt

∣∣∣∣
≤ ‖S − Sn‖0‖

d

dt
h‖L2(0,T ;L2(Ω))‖φ‖L2(0,T ;L2(Ω))

+‖Sn‖0‖
d

dt
(h− hn)‖L2(0,T ;L2(Ω))‖φ‖L2(0,T ;L2(Ω))

≤ ‖φ‖L2(0,T ;L2(Ω))

[
‖S − Sn‖0‖

d

dt
h‖H + ‖Sn‖0‖(h− hn)‖H

]
.

Since ‖φ‖L2(0,T ;L2(Ω)) <∞ and Sn converges uniformly to S we have that for n > p1, p1 ∈ N
the previous equation is bounded by ε

2
.

Now we focus on the second term of (3.6).∣∣∣∣∫ T

0

∫
Ω

φ (A(qn)hn − A(q)h(q; t)) dxdt

∣∣∣∣ ≤ ∣∣∣∣∫ T

0

∫
Ω

Kxnφxh
n
x −Kxφxhxxdt

∣∣∣∣
+

∣∣∣∣∫ T

0

∫
Ω

Kynφyh
n
y −Kxφyhydxdt

∣∣∣∣
+

∣∣∣∣∫ T

0

∫
Ω

Kznφzh
n
z −Kzφzhzdxdt

∣∣∣∣ .
(3.7)
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The first term can be bounded by:∣∣∣∣∫ T

0

∫
Ω

Kxnφxh
n
x −Kxφxhxxdt

∣∣∣∣ ≤ ∣∣∣∣∫ T

0

∫
Ω

Kxφxh
n
x −Kxφxhxxdt

∣∣∣∣
+

∣∣∣∣∫ T

0

∫
Ω

Kxφxhx −Kxnφxh
n
xxdt

∣∣∣∣
≤ ‖Kx‖0‖hnx − hx‖L2(0,T,H1

0 (Ω))‖φx‖L2(0,T,H1
0 (Ω))

+‖Kx −Kxn‖0‖φx‖L2(0,T,H1
0 (Ω))‖h‖L2(0,T,H1

0 (Ω)).

(3.8)

There exists a px ∈ N such that for n > px, (3.8) is bounded by ε
6
. Similarly for the remaining

terms in (3.7). Thus for p := max{p1, px, py, pz} and n > p we have that∣∣∣∣∫ T

0

∫
Ω

φ (e(hn, qn)− e(h, q)) dxdt
∣∣∣∣ ≤ ε

2
+
ε

6
+
ε

6
+
ε

6
= ε

which proves the weak continuity of e(h, q).

In Hypothesis 5, Jβ is the sum of continuous functions and is consequently continuous.

3.3 Non Identifiability of the Homogenous Case

Theorem 3.3.1. By Definition 3.2.2 the system not identifiable

(P)q

{
S d
dt
h(t,x) = (Kxhx(t,x))x + (Kyhy(t,x))y + (Kzhz(t,x))z ;

h(0) = h0 h0 ∈ H1
0 (Ω).

(3.9)

Proof. Let (S1, K1) = α(S,K) where α ∈ R+
1 and (S,K) ∈ Qad. Then h(S1, K1) = h(S,K)

since w = h(S1, K1)− h(S,K) is the solution of

(P)q

 (S1 − S) d
dt
h(t,x) = ((Kx

1 −Kx)hx(t,x))x + ((Ky
1 −Ky)hy(t,x))y+

((Kz
1 −Kz)hz(t,x))z;

h(0) = 0.
(3.10)

This implies that w = 0 so the cost functional is not injective and therefore the problem is
not identifiable.

3.4 Optimization with PDE Constraints

In this section we discuss necessary conditions to optimality, the existence of the Lagrange
multiplier and the adjoint equation. The framework is quite different from the previous
section since (PE) is a constrained optimization problem.
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3.4.1 Lagrange Multipliers and Optimality Conditions

Rewriting (PE) we have

min
(h,q)∈H×Q

1

2
‖h− hdata‖2

H +
βS
2
‖S‖2

L2(Ω) +
βKx

2
‖Kx‖2

L2(Ω) +
βKy

2
‖Ky‖2

L2(Ω) +
βKz

2
‖Kz‖2

L2(Ω)

subject to:

(F)

{
S d
dt
h(t) = A(q)h(t) +W (t) z(t) ∈ H1

0 (Ω) ;
h(0) = h0 h0 ∈ H1

0 (Ω), t ∈ [0, T ].
s1 ≥ S(x)− s0 ≥ 0
Kz

1 ≥ Kx(x)−Kx
0 ≥ 0

Kz
1 ≥ Ky(x)−Ky

0 ≥ 0
Kz

1 ≥ Kz(x)−Kz
0 ≥ 0

where si > 0, Kx
i , K

y
i and Kz

i for i=1,2 are fixed positive constants.
(3.11)

As stated in Theorem 2.1.1 this condition is sufficient for existence and uniqueness of the
forward problem. In the next paragraphs we use the following notation

• J(h, q) := 1
2
‖h− hdata‖2

H+ βS
2
‖S‖2

L2(Ω) + βKx

2
‖Kx‖2

L2(Ω) + βKy

2
‖Ky‖2

L2(Ω) + βKz

2
‖Kz‖2

L2(Ω)

• e(h, q) :=

(
d
dt
h(t)− A(q)h(t) +W (t)

h(0)− h0

)
• Q = C(Ω)× C(Ω)× C(Ω)× C(Ω)

• Qad = {(S,Kx, Ky, Kz) ∈ Q : s1 ≥ S(x) ≥ s0, K
x
1 ≥ Kx(x) ≥ Kx

0 , Ky
1 ≥ Ky(x) ≥ Ky

0 ,
and Kz

1 ≥ Kz(x) ≥ Kz
0 , ∀x ∈ Ω}

• K := {0}

• H = L2((0, T );H1
0 (Ω))

Then 3.11 is equivalent to 

min
(h,q)∈H×Q

J(h, q)

subject to
e(h, q) ∈ K and
q ∈ Qad.

(3.12)

Definition 3.4.1 (Robinson’s Condition). w = (h, q) satisfies the Robinson’s condition if

0 ∈ int{G(w) +G′(w)(C − w)−KG} (3.13)
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where

G(w) =

(
e(h, q)
h

)
(3.14)

and KG = {0} ×H.

Lemma 3.4.2 (Ulbrich [23]). If ey(w) ∈ L(Y, Z) is surjective and if there exists a y ∈ Y
and q ∈ Qadsuch that

ey(w)(ỹ − y) + eq(w)(q̃ − q) = 0 (3.15)

then the Robinson condition is satisfied.

Theorem 3.4.3. Equation (3.12) satisfies the Robinson condition.

Proof. The proof is based on the fact that (3.12) satisfies the hypothesis of Lemma 3.4.2.
Obviously eh(w) is a bounded linear operator. The next step is to prove surjectiveness

eh(w)δh =

(
d
dt
δh(t)− A(q)δh(t)

δh(0)

)
. (3.16)

Given a pair (f, p) ∈ L2((0, T );L2(Ω))×H1
0 (Ω). Find δh ∈ H such that

eh(w)δh =

(
f
p

)
. (3.17)

This is equivalent to prove that for all pairs (f, p) the following there is a solution v(t) to{
S d
dt
v(t) = A(q)v(t) + f(t) v(t) ∈ H1

0 (Ω),∀t ∈ [0, T ]
v(0) = p p ∈ H1

0 (Ω).
(3.18)

The next step is to prove that there is h̃ and q̃ such as

eh(w)(h̃(t)− h) + eq(w)(q̃ − q) = 0⇔ (3.19)(
d
dt

(h(t)− h̃(t))− A(q)(h(t)− h̃(t)) + (S − S̃) d
dt
h(t)− A(q − q̃)h(t)

h(0)− h̃(0)

)
= 0. (3.20)

Doing the change of variables v(t) := h(t)− h̃(t) it is equivalent to prove that there is a v(t)
such as (

d
dt
v(t)− A(q)v(t) + (S − S̃) d

dt
h(t)− A(q − q̃)h(t)

v(0)

)
= 0 (3.21)

which is true for all q̃ such as S̃(x) − S ≥ 0, K̃x(x) −Kx(x) ≥ 0, K̃y(x) −Ky(x) ≥ 0 and
K̃z(x)−Ky(z) ≥ 0 for all x ∈ Ω. This completes the proof.

Since (3.12) satisfies Robinson’s condition, J and e are Fréchet differentiable, K is a closed
convex cone and moreover Qad is closed. The problem fulfills all the hypotheses of Theorem
1.56 in [23] that is taken from Zowe and Kurcyusz, [56].
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Theorem 3.4.4 (Karush Kuhn Tucker (KKT)-Optimality Condition Groundwater Flow).
Let (h∗, q∗) ∈ H×Q ⊂ H× [H2(Ω)×H2(Ω)×H2(Ω)] be a the solution of (3.12) then there
is a Lagrange multiplier λ that defines the Lagrangian

L(h, q, λ) := J(h, q) + 〈e(h, q), λ〉L2((0,T );H−1(Ω)),L2((0,T );H1
0 (Ω)) (3.22)

.Moreover

(OC)



(F)

{
d
dt
Sh(t) = A(q)h(t) +W (t) h(t) ∈ H1

0 (Ω), t ∈ [0, T ];
h(0) = h0 h0 ∈ H1

0 (Ω).

(A)

{
S d
dt
λ(t) = −A(q)λ(t)− (z − zdata) λ(t) ∈ H1

0 (Ω),t ∈ [0, T ];
λ(T ) = 0.

〈βS, S − S∗〉+ βKx〈Kx, Kx −Kx∗〉+ βKy〈Ky, Ky −Ky∗〉+
+βKz〈Kz, Kz −Kz∗〉+ 〈eq(h, q), q − q∗〉 ≥ 0 ∀q ∈ Qad.

(3.23)

3.4.2 Identifiability Under Finite Dimensional Approximations

In the real world the optimization is done in the finite dimensional setting. This means that
the adjoint equation has to be discretized. This implies an approach to first discretize then
optimize. This gives rise to two questions. Is there a solution for each discretization and
does the sequence of solutions converge to a solution if the (PE)? This problem is addressed
by [29]. They define q∗N the solution of the following inverse problem

min
q∈Q

1

2
‖hN(q)− hdata‖2

H

subject to:

(F)

{
d
dt
SNhN(t; q) = AN(q)hN(q; t) hN(t) ∈ H1

0 (Ω) ;
hN(0) = hN0 hN0 ∈ H1

0 (Ω), t ∈ [0, T ].

((PE)N)

This gives the rise to the question: “Does q∗N → q∗ solution of ((PE)N) as N →∞?”. The
answer is: not necessarily. Some assumptions must made in the cost functional regularity,
definition of H regularity of the initial condition, the definition of the admissible set and
finally the type of discretization ofH. In order to have a precise and clear idea of the problem
Kunish and White on [29] provided the following definition:

Definition 3.4.5 (PEC- Kunish and White [29]). A sequence (HN , AN(q), C) is called pa-
rameter estimation convergent (PEC) scheme for (1.2) if (PEN) has a solution q∗N for
N=1,2..., if there exist a convergent subsequence q̃Nk → q∗ a solution of (PE) such that

hN(t, ·; q∗N)→ h(t, ·; q∗) ∈ H0(Ω), t ∈ [0, T ], as N →∞ (3.24)

JN(q∗N)→ J(q∗), as N →∞. (3.25)
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As one can see this is a very reasonable propriety to ask, specially if one intents to find a
numerical approximation of the (PE) solution. Under some regularity assumptions this is
true, the next paragraph is dedicated to the introduction of those assumptions and to their
applicability to our problem, ((PE)N). The problem of identifiability is ill-conditioned in
the homogenous case and that hapens when it is pumping season. Therefore one should aim
to identify the quotient.

S
dh

dt
= (Kx(h(t))x)x + (Ky(h(t))y)y + (Kz(h(t))z)z ⇔ (3.26)

dh

dt
=

(
Kx

S
(h(t))x

)
x

+

(
Ky

S
(h(t))y

)
y

+

(
Kz

S
(h(t))z

)
z

−(
Kx

S

)
x

(h(t))x −
(
Ky

S

)
y

(h(t))y −
(
Kz

S

)
z

(h(t))z ⇔ (3.27)

dh

dt
=

3∑
i=1

(
Di(aiD

i(h(t))
)
− b · ∇h(t). (3.28)

Where ai = Kxi

S
, bi = Di(K

xi

S
)Di(h(t)), x1 = x, x2 = y, x3 = z and Di = ∂

∂xi
. In the paper

written by Kunish and White there are sufficient conditions to the (PE) previous problem
to be PEC. For that (3.26) must fulfill the following hypothesis:

Theorem 3.4.6 (PEC-Groundwater Flow Inverse problem). If z0 ∈ H1
0 and the cost func-

tional is defined as C(u) =
M∑
i=1

∫
Ω

|u(ti, q,x)− z(ti,x)| and the admissible set is

Q := {(q1, q2) ∈ C1(Ω) : qi ≥ γ, ∀x ∈ Ω and ‖qi‖1 ≤ η for i = 1, 2}
W 1,2(Ω,R3,3)×L2(Ω,R3)

Qad := Ps ∩Q

where Ps is the set of all polynomials of degree s, the discrete version of H is the space HN

and is the set of all functions which are linear with respect to some triangulation of Ω, with
diameter of the triangles bounded by 1

N
.

Proof. The theorem’s proof requires that the problems fulfills three hypothesis, but first one
must rewrite the problem in the following fashion:

H1 ∃ε > 0 such as ε‖x‖2 ≤
3∑
i=1

aix
2
i

H2 There exist a constants α such as Q is a closed convex subset of

X :=
{

((ai), (bi)) : ‖ai‖W 1,2(Ω) ≤ α, ‖bi‖L2(Ω) ≤ α and ‖z0‖H0 ≤ α
}

H3 Qad is a compact subset of W 1,2(Ω,R3,3)× L2(Ω, R3)
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Hypothesis 1 and 2 are fulfilled since Q = C1(Ω) × C1(Ω) × C1(Ω) × C1(Ω) and by the
definition if an element on the admissible set.
Compactness, since Qad is the intersection of a finite dimensional space Ps, therefore com-
pact, with a closed subspace Q it makes it compact.

This section ends then this chapter. In the following chapter we will discuss strategies to
estimate q∗ more exactly how to estimate q∗N .
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Chapter 4

Numerical Groundwater Inverse
Problems

4.1 Introduction

Contrasting with the previous chapter, this chapter is dedicated to the numerical aspect
of inverse problems and the choice of the cost functional. Inverse problems are inexorably
linked to a cost functional and the consequent problem of minimizing it. The choice of the
cost functional is a discipline on it is own, one can not derive a priori the cost functional. Its
form, the space where is defined, the convexity or lack of it, the choice between the strategy of
discretize and then minimize versus minimize and then discretize, the type of discretization,
all depends exclusively in the problem in hands. In Groundwater flow modeling it is very
common to discretize using Finite Volumes and then perform the minimization on the discrete
level. The main obstacle on inverse problems in GWF is that the data is very sparse in the
space domain, for instance information about the water heads might be kilometers apart
and there is almost no information in depth, this leads to use an auxiliary type of data by
satellite, which consists on knowing how much the land has subsided. The chosen strategy by
my the research group was to use Leaks model since that is the one available in MODFLOW.
After that choice was made the next step is to define the how to invert the data in hands. We
chose to use a least square cost functional with a regularization term the penalized bounded
variation norm. This last one was chosen because leads to a piecewise constant solution,
which is ideal for rocks modeling. As gradient estimation we chose the adjoint methods.
Adjoint methods have been used to compute gradients of functionals for several years, their
advantage comes from the fact their computation is fast and they don’t require to much
memory. One of the problems of adjoint methods is that the only outcome is the gradient,
one should then decide afterwards which path to take on the optimization method. For
instance a linear approximation of the cost functional, as the steepest descendent method
only requires the computation of the gradient but it has a small rate of convergence. On
the other hand a better accuracy and faster convergence can be reached by the quadratic
approximation of the functional, Newton methods, here the problem is that computing the
Hessian is often not sustainable in terms of computation time and memory space. The first
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problem is solved by the Quasi-Newton methods, among this class of methods a very popular
one is the BFGS method, were the Hessian is approximated by small rank matrix easy to
compute. The second problem by a line search. Sensitivity analysis is the other hand is post
parameter estimation study. The main purpose of of sensitivity analysis is to module the
impact and influence that the parameters have on the PDE. For instance one can rank the
importance of the different parameters on the model and which kind of effect they produce
on the PDE, form dissipativity or delay in time propagation.

4.2 The Cost Functional and Optimization Algorithm

In this subsection we will derive the adjoint equations and an iterative method to estimate
the parameters. For instance one should assure that every formulation and step on the
estimation process the parameters are in the conditions of 2.1.1.

4.2.1 Cost Functional

The main goal is to find the set of parameter such the forward problem generated by them
fits the best the data. The definition of best is very dubious and dependent on the problem
itself, for instance depends on the definition of the parameter space and solution space as
well. For well-posedness purposes the common technic is to add a penalty term and a
regularization term. The objective of the penalty term is to introduce numerical stability
and improve convergence rates in the other hand the regularization terms are responsible to
add regularity to the solution and the problem it self, for instance requiring the solution to
C2 or piecewise constant as adding the term ‖∇q‖ on the cost functional, by regularizing
the cost functional is always common to refer it as adding convexity to the problem.
A classical Cost Functional for the ground water flow would be the following:

J(h, q) :=
1

2
‖h−hdata‖2

Z+
βS
2
‖S−Sdata‖2

L2(Ω)+
βKx

2
‖Kx−Kx

data‖2
L2(Ω)+

βKy

2
‖Ky−Ky

data‖
2
L2(Ω)

(4.1)
Where q = (S,K) the solution space Z is L2((0, T );H1

0 (Ω)) and the time space domain
ΩT = (0, T )× Ω and h is the solution of:

(P)q

{
S d
dt
h(t) = (Kxhx(t))x + (Kyhy(t))y +W (t) h(t) ∈ H1

0 (Ω) ;
h(0) = h0 t ∈ [0, T ].

(4.2)

The dependence of h from the the parameters trough the forward problem leads to the
definition os the set of q′s such as h is well defined, the admissible set of parameters Qad, a
subset of Q a Banach or Hilbert space. So the parameter estimation set up is:

min
(h,q)∈Qad

1

2
‖h−hdata‖2

Z +
βS
2
‖S−Sdata‖2

L2(Ω) +
βKx

2
‖Kx−Kx

data‖2
L2(Ω) +

βKy

2
‖Ky−Ky

data‖
2
L2(Ω)

(4.3)
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Subject to

(P)q

{
S d
dt
h(t) = (Kxhx(t))x + (Kyhy(t))y +W (t) h(t) ∈ H1(Ω);

h(0) = h0 t ∈ [0, T ].
(4.4)

This is the classical approach to a general inverse problem, due to the differences in the
physics and model of each problem the choice of the perturbation on regularization term
is tremendously important. In groundwater flow modeling often the distribution of the pa-
rameters is considered to be piecewise constant, then the most adequate regularization term
is the bounded variation norm, βq

∫
Ω

√
‖∇q‖2 + γq, since this penalizes the non piecewise

constant functions. Changing then the cost functional to:

J(h, q) =
1

2
‖h−hdata‖2

Z+
βS
2
‖S−Sdata‖2

L2(Ω)+
βKx

2
‖Kx−Kx

data‖2
L2(Ω)+

βKy

2
‖Ky−Ky

data‖
2
L2(Ω)+

αS

∫
Ω

√
‖∇S‖2

2 + γSdx + αKx

∫
Ω

√
‖∇Kx‖2

2 + γKxdx + αKy

∫
Ω

√
‖∇Ky‖2

2 + γKydx (4.5)

4.2.2 Steepest Descent and Newton’s Method Using the Adjoint
Equation

Now the problem becomes a constrained optimization problem, therefore one should set the
Lagrangian and the adjoint equation associated with problem. Looking to local optimal
solutions, the Lagrangian associated with this problem:

L : Z ×QS ×QK ×H−1 → R

Defined by:

L(h, S,K, λ) = J(h, q)−
∫

ΩT

λ(t)(S
d

dt
h(t)− (Kxhx(t))x − (Kyhy(t))y −W (t))dtdx (4.6)

Integrating by parts in time the Lagrangian becomes:

J(h, q)−
∫

Ω

λ(T )Sh(T )− λ(0)Sh0dx +

∫
ΩT

Sλt(t)h(t)dtdx−∫
ΩT

λ(t)(−(Kxhx(t))x − (Kyhy(t))y −W (t)))dtdx (4.7)

Then the adjoint equation is then defined by:

∂L

∂z
(δh) = 0 ∀δh (4.8)
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Which is equivalent to:∫
ΩT

δh(h− hdata)dtdx +

∫
ΩT

λt(t)S(δh)dtdx−

−
∫

Ω

λ(T )Sδh(T )dx +

∫
ΩT

λ(Kxδhx(t))x + (Kyδhy(t))ydtdx = 0 (4.9)

Since (4.8) has to hold for all directions δh the Lagrangian multiplier must be a solution of:

(A)q

{
S d
dt
λ(t) = −(Kxλx)x − (Kyλy)y − (h− hdata) λ(t) ∈ H1

0 (Ω);
λ(T ) = 0 t ∈ [0, T ].

(4.10)

The strategy now is to use the adjoint equation to find the gradient of J if λ(t) is the solution
of the adjoint equation at a state (h(t;S,K)) then ∇S,KJ is given by:

J ′(h(q), q)δh = Jq(h, q)δq+〈Dq[S
d

dt
h(t)−(Kxhx(t))x−(Kyhy(t))y−W (t)]δq, λ(t)〉Z (4.11)

Where

Jq(h, q)δq = βS

∫
Ω

(S − Sdata)δSdx+βKx

∫
Ω

(Kx −Kx
data)δK

xdx+βKy

∫
Ω

(Ky −Ky
data)δK

ydx+

αS

∫
Ω

∇S · ∇δS√
‖∇S‖2 + γKy

dx+αKx

∫
Ω

∇Kx · ∇δKx√
‖∇Kx‖2 + γKx

dx+αKy

∫
Ω

∇Ky · ∇δKy√
‖∇Ky‖2 + γKy

dx (4.12)

and

〈Dq[S
d

dt
h(t)− (Kxhx(t))x − (Kyhy(t))y −W (t)]δq, λ(t)〉Z =

= 〈δS d
dt
h(t), λ(t)〉Z + 〈δKxhx(t), λx(t)〉Z + 〈δKyhy(t), λy(t)〉Z (4.13)

Steepest Descent Methods

This is a gradient method base approach since it only uses gradient information . The main
idea is to use the fact that once one is close to the the local minimum the gradient is a
descent direction therefore the optimal steepest descent would be by starting with an initial
guess q0 {

µ∗ := arg min
µ
J(qk − r∇J(qk))

qk+1 = qk − µ∗∇J(qk)
(4.14)

The main problem of this method that it has a low rate of convergence. For this same reason
the Newton method is more popular and that is the one used in this work.
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Newton’s method

Now the following approximation

m(δq) = J(q0 + δq) = J(q0) + 〈J ′(q0), δq〉+
1

2
〈J ′′(q0)δq, δq〉 (4.15)

Then locally the maximum is the solution of:

m′(δq) = 0 (4.16)

〈J ′(q0), δq〉+ 〈J ′′(q0)δq, δq〉 = 0 (4.17)

For all possible variations of δq.
The main goal now is to find the minima for that the most appropriate is the Newton’s
method. One start with an initial guess q0 and recursively update the new q in the following
fashion:

(N )q

{
qk+1 = qk + δq; where h is the solution of:
〈J ′(qk), δq〉+ 〈J ′′(qk)δq, δq〉 = 0.

(4.18)

The evaluation of the Hessian is generally costly, a vast of literature of ways of approximate
the Hessian in an iterative fashion. The one we use is the so called BFGS, this method,
named after its creators, Broyden, Fletcher, Goldfarb, and Shanno. Theoreitical aspects of
the algorithm are discussed at [8]. It is defined by the recursive algorithm:

BFGS-Algorithm

• start with an initial guess of x0 and an Hessian inverse H0

• x1 = x0 −H0x0

Repeat the steps 1 to 5 until convergence

1. sk = xk+1 − xk

2. yk = ∇fk+1 −∇fk

3. Hk+1 = (I − ρkskyTk )Hk(I − ρkyksTK) + ρksks
T
k

4. xk+2 = xk+1 −Hk+1∇fk+1

5. stop if ‖∇fk+2‖ ≤ tol

4.2.3 KKT Conditions

As the KKT conditions are necessary conditions to optimality, this section presents two
numerical methods to find a local optimal solution. The constrained optimization problem
(4.3)–(4.4) can be rewritten in the following fashion.{

min
(h,q)∈Qad

J(h, q) subject to:

e(h, q) = S d
dt
h(t)− (Kxhx(t))x − (Kyhy(t))y −W (t) = 0, for all t ∈ [0, T ].

((O)q)
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Then once one write the Lagrangian, J(h, q) +
∫ T

0
〈e(h, q), λ(t)〉L2(Ω)dt the KKT condition is

true at an extremal point (q∗, λ∗):
Lh = ∇hL(q∗, λ∗) = 0
Lq = ∇qL(q∗, λ∗) = 0
Lλ = ∇λL(q∗, λ∗) = 0

(KKT )

Which equivalent to the system of five equations

(Lh, LKx , LKy , LS, Lλ) = 0 (4.19)

That is translated to:

1.

Lh(δq) =

∫
ΩT

δh(h(t)− h(t)data)dtdx−
∫

ΩT

dλ(t)

dt
S(δh)dtdx+∫

Ω

λ(T )Sδh(T )dx +

∫
ΩT

λ(t)(Kxδhx(t))x + λ(t)(Kyδhy(t))ydtdx = 0 (4.20)

2.

LS(δS) = βS

∫
Ω

δS(S − Sdata)dx +

∫
ΩT

λ(t)δS
dh(t)

dt
dtdx = 0 (4.21)

3.

LKx(δKx) = βKx

∫
Ω

δKx(Kx −Kx
data)dx−

∫
ΩT

λ(t)(δKxhx(t))xdtdx = 0 (4.22)

4.

LKy(δKy) = βKy

∫
Ω

δKy(Ky −Ky
data)dy −

∫
ΩT

λ(t)(δKyhy(t))xdtdx = 0 (4.23)

5.

Lλ(δλ) =

∫
ΩT

(δλ)S
dh(t)

dt
dtdx+∫

ΩT

δλ(−Kxδhx(t))x − (Kyδhy(t))y −W (t)))dtdx = 0 (4.24)

Using integration by parts in time and Green’s formula, the previous integrals are equivalent
to

1. ∫
ΩT

δh(h− hdata)dtdx−
∫

ΩT

dλ(t)

dt
S(δh)dtdx +

∫
Ω

λ(T )Sδh(T )−∫
ΩT

δh(Kxλx(t))x + δh(Kyλy(t))ydtdx = 0 (4.25)
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2.

βS

∫
Ω

δS(S − Sdata)dx +

∫
ΩT

λ(t)δS
dh(t)

dt
dtdx = 0 (4.26)

3.

βKx

∫
Ω

δKx(Kx −Kx
data)dx +

∫
ΩT

δKxλx(t)hx(t)dtdx−
∫
∂ΩT

λ(t)δKxhx(t)nxdtdΓ = 0

(4.27)

4.

βKy

∫
Ω

δKy(Ky −Ky
data)dy+∫

ΩT

δKyλy(t)hy(t)dtdx−
∫
∂ΩT

λ(t)δKyhy(t)nydtdΓ = 0 (4.28)

5.

Lλ(δλ) =

∫
ΩT

(δλ)S
dh(t)

dt
dtdx−∫

ΩT

δλ(−Kxhx(t))x − (Kyhy(t))y −W (t)))dtdx = 0 (4.29)

Finally this can be described as the weak solution of:

(F)q

{
S d
dt
h(t) = (Kxhx(t))x + (Kyhy(t))y −W (t)

h(0) = h0

(A)q

{
S d
dt
λ(t) = −(Kxλ(t)x)x − (Kyλ(t)y)y − (h(t)− hdata(t))

λ(T ) = 0

βKx(S − Sdata) +
∫ T

0
dλ(t)
dt
h(t)dt = 0

βKx(Kx −Kx
data) +

∫ T
0
λx(t)hx(t)dt = 0

βKy(Ky −Ky
data) +

∫ T
0
λy(t)hy(t)dt = 0

((KKT )q)

Gauss-Seidel Algorithm

Given an initial guess (Sn, Kn) one can solve for h(t):

Sn
d

dt
h(t) = (Kxnhx(t))x + (Kynhy(t))y +W (t) (4.30)

which makes it possible to solve for λ(t):

Sn
d

dt
λ(t) = −(Kxnλ(t)x)x − (Kynλ(t)y)y − (h(t)− hdata(t)) (4.31)

This makes it possible to update Sn+1, Kxn+1 and Kyn+1 through:

βS(Sn+1 − Sdata) +

∫ T

0

λt(t)h(t)dt = 0 (4.32)
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βKx(Kxn+1 −Kx
data) +

∫ T

0

λx(t)hx(t)dt = 0 (4.33)

βKy(Kyn+1 −Ky
data) +

∫ T

0

λy(t)hy(t)dt = 0 (4.34)

Theorem 4.2.1. If βS = βKx = βKy = β > 0 and q0 is sufficiently close to q∗ then
the previous algorithm converges to q∗. Moreover the method is equivalent to a steepest
descendent method with an update of 1

β
Jq(h(q), q).

Proof. By definition of the Lagrange multiplier:

Jq(h(q), q) = Jq(h, q) + 〈eq(h, z), λ〉 (4.35)

which is equivalent to :

Jq(h(q), q) =

 β(Sn − Sdata) +
∫ T

0
λt(t)h(t)dt

β(Kxn −Kx
data) +

∫ T
0
λx(t)hx(t)dt

β(Kyn −Ky
data) +

∫ T
0
λy(t)hy(t)dt

 (4.36)

Therefore one can write the updates (4.32), (4.33) and (4.34) as

qn+1 = qn − 1

β

 −βSdata +
∫ T

0
λt(t)h(t)dt

−Kx
data +

∫ T
0
λx(t)hx(t)dt

−Ky
data +

∫ T
0
λy(t)hy(t)dt

 = qn − 1

β
Jq(h(q), q)(qn + 1) (4.37)

which is the steepest descendent update.

The natural path to follow is to derive the finite dimensional equivalent of the previous
algorithm and this is discussed in the next subsection.

Finite Dimensional Approximation Using Gauss-Seidel

Using finite elements, the finite dimensional version of the previous algorithm is:
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Given an initial guess of the vectors SN0 , K
xN

0 and KyN
0 solve:

SNn ⊗
d

dt
hN(t) = AN,N(KN

n )hN(t) +WN(t) (4.38)

given that hN(0) = hN0 . Solve for λN(t):

SNn ⊗
d

dt
λN(t) = −AN,N(KN

n )λN(t)− (hN(t)− hNdata(t)) (4.39)

Where λN(0) = 0N . Update SNn+1, KxN
n+1 and KyN

n+1 by:

SNn+1 = SNdata −
1

βS

∫ T

0

λNt (t)hN(t)dt (4.40)

KxN
n+1 = KxN

data −
1

βKx

∫ T

0

λNx (t)hN(t)xdt (4.41)

KyN
n+1 = KyN

data −
1

βKy

∫ T

0

λNy (t)hN(t)ydt (4.42)

It is relevant to point out that the data has the same space discretization and time step
as the approximation. In the event that the data is sparser one can interpolate in time and
space. The previous scheme is still infinite dimensional in time, therefore it is a differential
equation. To solve the differential equations (4.38) and (4.39) the Crank-Nicolson method
and ode45 in Matlab are used. The comparison is shown in Chapter 6.

All at Once

This is a common method to solve (4.19). Instead of solving the set of equations (KKT )
sequentially, this method tries to find the root of (Lh, LKx , LKy , LS, Lλ) by firstly finding
the numerical approximation (LNh , L

N
Kx , LNKy , LNS , L

N
λ ) and then finding the root. Which by

defining the functional F (hN , λN , SN , KxN , KyN) as:

F (hN , λN , SN , KxN , KyN) :=


SN ⊗ d

dt
hN(t)− AN,N(KN)hN(t)−WN(t)

SN ⊗ d
dt
λN(t) + AN,N(KN)λN(t) + hN(t)− hNdata(t)

SNdata − 1
βS

∫ T
0
λNt (t)hN(t)dt

KxN
data − 1

βKx

∫ T
0
λNx (t)hN(t)xdt

KyN
data − 1

βKy

∫ T
0
λNy (t)hN(t)ydt


Then all at once method is based on finding (hN

∗
, λN

∗
, SN

∗
, KxN ∗, KyN ∗) such that

F (hN
∗
, λN

∗
, SN

∗
, KxN ∗, KyN ∗) = 0. (4.43)

Any root solver can be used.
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4.3 Las Vegas Model

As stated before, the main goal is to model the Las Vegas Valley as described in Section 2.1.3.
The methods used will now exclusively be in the finite dimensional space. Due to the lack
of depth data, subsidence data becomes crucial to groundwater flow parameter estimation.
This leads to the introduction of a new regularization term into the cost functional, the
subsidence data fitting. This incorporates the subsidences data obtained by satellite and the
Leak’s simulation of subsidence. The model will then discretized in the following fashion:

The Aquifer is divided into NA cells, the interbed into NI =

NA∑
i=1

NI i cells and finally the time

interval [0, T ] into M intervals, where 0 is when the first measurements take place. Since
the wells pump water periodically, distributed into pumping cycles and non-pumping cycles.
The non-pumping cycles lead to the non identifiability discussed in Section 3.3 therefore one
should try to estimate the data over the periods of pluming. The following paragraphs define
subsidence and its relationship with the specific storage and the water head.

Definition 4.3.1 (Subsidence-Interbed). Let i be a column as described in Figure 2.3 where
bi its thickness and NI i the number of cells in that same column. Then the subsidence at
each time tm in the column i is given by

[∆bm]i =

NI i∑
j=1

∆bmi,j (4.44)

where ∆bmi,j is given by:

∆bmi,j = −∆z[Smsk(h
m
i,j −Hm−1

i,j ) + Sske(H
m−1
i,j − hm−1

i,j ), j < NI i (4.45)

∆bmi,j = −∆z

2
[Smsk(h

m
i,j −Hm−1

i,j ) + Sske(H
m−1
i,j − hm−1

i,j ), j = NI i (4.46)

and Smkj:

Smkj =

{
Skej if hI,mi > HI,m−1

j

Skvj if hI,mi ≤ HI,m−1
j

(4.47)

Due to the nonlinearity a Newton step must be introduced at each iteration.

Definition 4.3.2.

Ssk(h
I,m;α) :=

Ske
π

[tan−1(α(hI,mj −HI,m
j )) +

π

2
] +

Skv
π

[tan−1(α(HI,m
j − hI,mj )) +

π

2
]. (4.48)

As α → ∞ (4.3.2) converges to (4.47) so one should use a α > 104 to approximate the
parameter Ssk, or an α that is large comparatively difference between the precondition-head
and the the drawdown.
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4.3.1 Cost Functional

Definition 4.3.3. Let X ⊂ Rn then

PWCT (X) := {f : X → R+such as f is piecewise constant over X}

Admissible set:

Qad := {q = (S,Kx, Ky, Kv, Ske, Skv), S,K
x, Ky ∈ PWCT (Ωa) and Kv, Ske, Skv ∈ PWCT (ΩI)}

Where Ωa (Ωb) is a connected finite union of rectangles (rectangular prisms) in R2(R3). The
cost functional is then defined by

Jβ(h, q) =
1

2

∑
m≤M

‖ha(t(m))− hdata(t(m))‖2
l2w

+
1

2

∑
m≤M

‖∆bm −∆bmdata‖2
l2w

+ r(q, β) (4.49)

and the penalty/regularization term r, is defined as:

r(q, β) =
θS
2
‖S − Sdata‖2

L2(Ω) +
θKx

2
‖Kx −Kx

data‖2
L2(Ω) +

θKy

2
‖Ky −Ky

data‖
2
L2(Ω)+

αS

∫
Ω

√
‖∇S‖2

2 + γSdx + αKx

∫
Ω

√
‖∇Kx‖2

2 + γKxdx + αKy

∫
Ω

√
‖∇Ky‖2

2 + γKydx

and subject to the constraints:

(a) ea(ha, hI , q) = S d
dt
ha− (Kxhax)x− (Kyhay)y)−

∑
Pi(t)δ(x−xi)−

∑
Kvi

dhl

dz
δ(x−xj) = 0

(b) eIj (h
a, hI , q) =

Sm
k

∆t
(hI,mj −HI,m−1

j ) +
Sm
ke

∆t
(HI,m−1

j − hI,m−1
j )−Kvih

I
j
m

zz
= 0 ∀m, j

(c) eIBj(h
a, hI , q) = hI j(x

i)− ha(xi) = 0

The constraint (a) is responsible for the aquifer, (b) for the interbed and finally (c) for the
link between the aquifer and the interbed and l2w is the weighted l2 inner product.

4.3.2 Optimization Approach

This is an the opposite approach form the previous methods since it is discretize and then
optimize. The book Lagrange Multiplier Approach to Variational Problems and Applications
from It and Kunisch [25] this is discussed very thoroughly.This approach is the most intuitive
since the data lives in a discrete setting therefore lifting it to a continuos space might enable
the existence of convergence results it won’t necessary make the problem easier. As it was
discussed on 3.
The previous constraints in finite dimensional on 2.29 approximation using finite volumes
can be written as the augmented system:

e(hm, qm) = B(q(hm+1))hm+1 −A(q)hm −R(q(hm)) (4.50)
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Where hm = [ha,m, hI,m] and M,N, NI are the time, horizontal and vertical dimensions re-
spectively.

The next step is to construct the finite dimensional Lagrangian:

Lβ(ha, hI , q, λa, λI , λB) = Jβ,N,NI ,M(ha, hI , q)+∑
m≤M

〈B(q(hm+1))hm+1 −A(q)hm −R(q(hm)), λm〉l2 (4.51)

Solving for λM,N the adjoint equation (backwards in time with λM,N
M,. = 0):

∂

∂h
Jβ,N,NI ,M(ha, hI , q) +

∑
m≤M

〈 ∂
∂h

[B(q(hm+1))hm+1 −A(q)hm −R(q(hm))], λM,N
m,. 〉l2 = 0

(4.52)
then we can use λM,N to compute:

d

dq
Jβ,N,NI ,M(h(q), q)δq =

∂

∂h
Jβ,N,NI ,M(ha, hI , q)δq+

∑
m≤M

〈 ∂
∂q

[B(q(hm+1))hm+1 −A(q)hm −R(q(hm))]δq, λM,N
m,. 〉l2 (4.53)

Since the Lagrangian 4.51 the partial derivatives in (4.52) and (4.53) and the total derivatives
(4.52) are all finite dimensional, it is important to point the fact that δq has the dimension
of the discrete version of (S,Kx, Ky, Kv, Ske, Skv) consequently the dimension of the vector
is large this requires an intelligent assembly and the use of parallel programing rather than
sequential. As in (4.15) we approximate J(h(q), q) around q0 by a quadratic function:

m(q) = J(q0) + Jq(q0)q + qTJqq(q0)q (4.54)

As before to find the minimum we have to solve the mq(q) = 0 and use the BFGS method
to approximate Jqq(q0). Since the optimization problem is hard and costly one should use
the so popular multilevel optimization. Starting then with a corse mesh and agglutinating
then zones that have nearly the same values as the following algorithm illustrates:

This approach can be summarized in the following pseudo code:
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Figure 4.1: On the left is the mesh before the agglutination where on the right after the
agglutination

4.3.3 Zonation Algorithm

• Given T 0,0, S0,0, tol, ZT
0, ZS

0,ε, N out, rT , rS, k = 0, j = 0.

1. Optimize using Quasi-Newton while 1a and 1b are false

(a) ‖J(T k,j, Sk,j)‖ < ε stop

(b) ‖J(T k,j+1, Sk,j+1)− J(T k,j, Sk,j)‖ < tol move to 2

2. Regroup from ZT
k, ZS

k, to ZT
k+1, ZS

k+1, zones as follows:

– for 2 ≤ n ≤ Ny − 1

– for 2 ≤ m ≤ Nx − 1

(a) For all neighbors T k,ja,b of T k,jn,m, if |T k,jn,m−T
k,j
a,b | < rT then set Zk

T a,b = Zk
T n,m

(b) For all neighbors Sk,ja,b of Sk,jn,m, if |Sk,jn,m−S
k,j
a,b | < rS then set Zk

Sa,b = Zk
Sn,m

– end for

– end for

3. Change the variables change from T k,j to T k+1,0 and Sk,j to Sk+1,0 by the trans-
formations

– T k+1,0
l = average{T k,j, such as T k,j ∈ Z(l)}

– Sk+1,0
l = average{Sk,j, such as Sk,j ∈ Z(l)}

– k = k + 1

4. Repeat 1,2 and 3 until convergence.

The results of the implementation of this algorithm can be find Section 7.1
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4.3.4 Multi-Level Optimization

. This technique as been used in medical imaging more specifically in registration. Jan Mod-
ersitzki has developed this very elegantly on his book Numerical Methods for Image Regis-
tration [33], and Melissa Weber Mendona in her thesis Multilevel Optimization: Convergence
Theory, Algorithms and Application to Derivative-Free Optimization [32] has proved rele-
vant results in convergence. As it is known it is a very hard problem to choose the right
initial guess for a newton scheme and since their convergence is local rather than global its
importance must not be neglected. The Multi Level is then an approach that tries to get a
good initial guess by, firstly starting with an initial guess, it can be constant across the whole
domain, and a very sparse mesh which is a easier problem to solve. This will converge even-
tually then the next step to refine the previous mesh and optimize on that same mesh using
as the initial guess the latest iteration of the previous Newton optimization, this process is
repeated until a minimum or a tolerance is reached. Mesh independence [26], a nonintuitive
result, states that the number of iterations for convergence of the Newton method is inde-
pendent of the size of the discretization. The following pseudo code illustrates this method
when applied to the problem in hand.

• Given T 0,0, S0,0, tol, ZT
0, ZS

0,ε, N out, rT , rS, k = 0, j = 0.

1. Optimize using Quasi-Newton while 1a and 1b are false

(a) ‖J(T k,j, Sk,j)‖ < ε stop

(b) ‖J(T k,j+1, Sk,j+1)− J(T k,j, Sk,j)‖ < tol move to 2

2. Partition ZT
k, ZS

k, into a finer submesh ZT
k+1, ZS

k+1,.

3. Change the variables change from T k,j to T k+1,0 and Sk,j to Sk+1,0 by the trans-
formations

– T k+1,0
l = {T k,j, such as T k,j ∈ Z(l)}

– Sk+1,0
l = {Sk,j, such as Sk,j ∈ Z(l)}

– k = k + 1

4. Repeat 1,2 and 3 until convergence.
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Figure 4.2 illustrates an example of this mesh partition:

Figure 4.2: From left to right is a sequence of meshes from coarse to fine

In the sequence above, we would have T 0
2 (Z2

1) := T f1 (Z1
1). The implementation of this method

is discussed in 7.3.
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Chapter 5

Sensitivity Analysis and Fréchet
Derivative Operators

5.1 Outline

This chapter is dedicated to the study of sensitivity analysis for steady elliptic equations,
convection-diffusion, and groundwater flow equations. In particular, it discusses the existence
of the Fréchet derivative of the solution of a PDE with respect to distributed coefficients
in the PDE as well as boundary conditions. This is followed by results on the existence of
a spectral decomposition of this operator, which under suitable conditions is shown to be
Hilbert–Schmidt. Furthermore, to set up our numerical algorithms, we present results on the
approximation of the operator using sensitivity equations. An overview of the finite element
spaces is presented and convergence results for the spectral decomposition are thoroughly
discussed.

5.2 Background

One of the main problems in parameter estimation is the lack of sensitivity of the cost
functional to variations in the parameters. In other words, when large variations in the
parameter lead to small variations in the solution and consequently, the cost functional. The
study of the effect of the parameters on the solution is known as sensitivity analysis. To
illustrate its importance we consider perturbing one parameter in the 1D groundwater flow
equation. The model equation, including specific parameter values for this study is

(1 + sin(πx))
d

dt
z(t, x; q) = (e−4xz(t, x; q)x)x + 1 + x+ t, z(t, ·; q) ∈ H1([0, 1]) (5.1)

z(0, x; q) = x x ∈ [0, 1]

z(t, 0; q) = 0 t ∈ [0, 1]

z(t, 1; q) = e−t t ∈ [0, 1].
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Perturbing the elliptic coefficient q(x) = e−4x by the small variation δq(x) = 1
100
e9(x−1), a

relative change of 2.4× 10−3 in the L2-norm leads to the system

(1 + sin(πx))
d

dt
z(t, x; q + δq) = ([e−4x +

1

100
e9(x−1)]z(t, x; q + δq)x)x + 1 + x+ t

z(0, x; q + δq) = x x ∈ [0, 1]

z(t, 0; q + δq) = 0 t ∈ [0, 1]

z(t, 1; q + δq) = e−t t ∈ [0, 1].

These two solutions are simulated and displayed in Figure 5.1. As one can see, a small

Figure 5.1: On the left is the solution of the original system, on the middle the solution of
the perturbed system and finally on the right the difference between both solutions

perturbation in the parameter leads to a dramatic change in the solution (the difference has
a maximum value of 1.5×10−1, or a 10% relative difference for a relative change of less than
a percent). This effect can be amplified by changing parameter values. Thus, this simple
example motivates the study of sensitivity analysis, which is detailed in this chapter. We
apply sensitivity analysis on groundwater flow equations, among others.

In mathematics when one needs to study the behavior of a real valued function, such as
finding a local maximum or minimum, or study where it is increasing or decreasing, an
important tool is the function’s derivative, if it exists. This same line of reasoning can be
extended to a functional, and leads to, for example, Gâteaux or Fréchet derivatives. We
review their definitions below.

Definition 5.2.1. [Gâteaux differentiable operator] Let X and Y be normed spaces and
A : X → Y be an operator. The operator A is Gâteaux-differentiable at x in the direction h
if and only if there exists an operator Gx : X → Y such that

lim
t→0

‖A(x+ th)− A(x)−Gx(h)‖Y
t

→ 0. (5.2)
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Definition 5.2.2 (Fréchet differentiable operator). Let X and Y be normed spaces and
A : X → Y be an operator. The operator A is Fréchet-differentiable at x if and only if there
exists a bounded linear operator Fx such that

lim
‖h‖→0

‖A(x+ h)− A(x)− Fx(h)‖Y
‖h‖X

→ 0. (5.3)

There are several differences between Gâteux and Fréchet differentiability. For one, the
Gâteux derivative is not necessarily either continuous or linear, whereas the Fréchet deriva-
tive must be a bounded linear operator. However, if the operator is Fréchet differentiable,
we know it is also Gâteux differentiable.

Proposition 5.2.3. Let X and Y be normed spaces and A : X → Y be a Fréchet-
differentiable operator. Then A is also Gâteux-differentiable at x. Furthermore, the di-
rectional derivative of A with respect to x in the direction h, written Gx(h) is given as

Gx(h) = Fx(h),

where Fx is the Fréchet derivative of A with respect to x.

5.3 Sensitivity Analysis using Fréchet Derivatives

The Fréchet derivative operator is very useful for parameter estimation and performing
sensitivity analysis for PDE’s or dynamical systems. They provide useful information on
parameter variations, including their “energy” and the spatial characterization of the impact
they have. In the following paragraphs, we discuss the existence of the Fréchet derivative of
the solution to a PDE with respect to the PDE parameters. Motivated by our groundwater
flow models, we first consider an elliptic equation then consider advection-diffusion equations.

Consider the following elliptic PDE

−∇ · (q∇z) = f, f ∈ L2(Ω)

z ∈ H1
0 (Ω), Ω ⊂ Rn.

(5.4)

One can consider the solution z, as an operator acting on q. Then we can write this operator
z(q) with domain Qad ⊂ L2(Ω), the set of all q such that there exists an unique solution
of (5.4). Now that the operator z(q) is defined, we can study the existence of the Fréchet
derivative of z(q) with respect to q.

5.3.1 Fréchet Differentiability and the Sensitivity Equation

For this discussion, we assume Ω is bounded with a C0 boundary and the set of admissible
parameters q is

Qad ≡ {q : q ∈ C1(Ω) and q(x) ≥ α0 > 0, ∀x ∈ Ω} (5.5)

and consider the max norm on Qad, ‖h‖ = maxx∈Ω{|h(x)|}+maxx∈Ω{|h′(x)|}.
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Theorem 5.3.1 (Fréchet Differentiability of Solutions to Elliptic Equations). Let z(q) be
the solution to (5.4) with q ∈ Qad. Then the Fréchet derivative of z(q) with respect to q
applied to h,

vh ≡ [Dqz(q)]q=q0(h) (5.6)

is the weak solution of the well-posed elliptic equation

Sq0
{
−∇ · (q0∇vh) = ∇ · (h∇z(q0))
vh ∈ H1

0 (Ω).
(5.7)

Proof. Let zh be the solution to{
−∇ · ((q + h)∇zh) = f, f ∈ L2(Ω)
zh ∈ H1

0 (Ω).
(5.8)

then subtracting (5.4) from (5.8) we obtain

−∇ · (q∇(zh − z(q))) = ∇ · (h∇zh)

then subtracting equation (5.7) we find

−∇ · (q∇(zh − z(q)− vh)) = ∇ · (h∇(zh − z(q))).

Multiplying by (zh − z(q)− vh), and integrating by parts we obtain:∫
q|∇(zh − z(q)− vh)|2 = −

∫
h∇(zh − z(q))∇(zh − z(q)− vh).

Taking the absolute value and applying the Cauchy-Schwarz inequality leads to∫
α0|∇(zh − z(q)− vh)|2 ≤ ‖h‖

∫
|∇(zh − z(q))‖∇(zh − z(q)− vh)|.

Since Ω is bounded we apply Poincare’s inequality on the left side and Holder’s inequality
on right side. Thus there is a constant C such that

α0‖zh − z(q)− vh‖2
H1 ≤ C‖h‖‖zh − z(q)− vh‖H1‖zh − z(q)‖H1 . (5.9)

However, for all h such that ‖h‖ ≤ 1 there exists C > 0 such that

‖zh − z(q)‖H1 ≤ C‖h‖‖f‖L2 . (5.10)

Therefore by combining (5.9) with (5.10) we obtain ‖zh − z(q)− vh‖H1 ≤ C‖h‖2‖f‖L2 . Di-
viding both sides by ‖h‖ and taking limits,

lim
‖h‖→0

‖zh − z(q)− vh‖H1

‖h‖
≤ lim
‖h‖→0

C‖h‖‖f‖L2 ,

which leads to

lim
‖h‖→0

‖zh − z(q)− vh‖H1

‖h‖
= 0.

We can conclude that [Dqz(q)]q=q0(h) = vh. In other words, the solution to (5.7) is indeed
the Frechét derivative of z with respect to q applied to h.
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5.3.2 Approximation of the Fréchet Derivative Operator

Upon careful inspection of equation (5.7), we see that we need to first evaluate the solution to
(5.4) in order to obtain the derivative. The solution to (5.4), z, is required to form the right
hand side of (5.7). There are a number of relevant questions to ask when approximating the
Fréchet derivatives: when we compute the finite element solution of (5.4) with mesh size ∆x1,
z∆x1 , and substitute it into (5.7) approximated with mesh size ∆x2, does the Finite Element
solution, vh∆x2

, converge as ∆x2 and ∆x1 converge to zero? especially in the typical case
∆x1 = ∆x2? In other words, does vh∆x2

converge to [Dqz(q)]q=q0(h) = vh? This is answered
by the following theorem.

Theorem 5.3.2 (Operator convergence). Let z(q) and z∆x1 be the solution and the finite
element solution of the elliptic equation (5.4). Let r = vh be the solution of the sensitivity
equation (5.7). Respectively, let r̃ and r̃∆x2 be the solution and finite element solution of

−∇ · (q∇r̃) = ∇ · (h∇z(q)∆x1
), r̃ ∈ H1

0 (Ω). (5.11)

Then if ∆x1 → 0 and ∆x2 → 0, we have ‖r̃∆x2 − [Dqz(q)]q=q0(h)‖H1 → 0.

Proof. Adding and subtracting r̃ and applying the triangle inequality to ‖r − r̃∆x2‖H1 , we
obtain

‖r − r̃∆x2‖H1 ≤ ‖r − r̃‖H1 + ‖r̃ − r̃∆x2‖H1 . (5.12)

First we bound the term ‖r − r̃‖H1 . If we subtract (5.7) and (5.11), we obtain

−∇ · (q∇(r − r̃)) = ∇ · (h∇(z(q)− z∆x1)).

Multiplying this by (r − r̃) and integrating by parts we obtain∫
q|∇(r − r̃)|2 = −

∫
h(∇(z(q)− z∆x1)) · ∇(r − r̃)) ≤ hmax‖r − r̃‖H1‖z(q)− z∆x1‖H1 .

Poincaré’s inequality combined with the fact that α0 ≤ q, from (5.5), we see that there exists
a C > 0 such that

‖r − r̃‖2
H1 ≤ C

∫
q|∇(r − r̃)|2.

Combining this with (5.12) we get:

‖r − r̃‖2
H1 ≤ Chmax‖r − r̃‖H1‖z(q)− z∆x1‖H1 .

Thus
‖r − r̃‖H1 ≤ Chmax‖z(q)− z∆x1‖H1 . (5.13)

We now bound the term ‖r̃ − r̃∆x2‖H1 . By Theorem 9.1.10 from [15],

‖r̃ − r̃∆x2‖H1 ≤ C1∆x2‖∆r̃‖L2 . (5.14)

This same theorem can be applied to the finite element approximation of z to find

‖z(q)− z∆x1‖H1 ≤ C2∆x1‖∇z‖L2 .
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Combining (5.13) and the above inequality with (5.12) we have

‖r − r̃∆x2‖H1 ≤ C2∆x2‖∆r̃‖L2 + C2hmaxδx1‖∆z(q)‖L2 .

Applying the limit

lim
∆x2→0,∆x1→0

‖r − r̃∆x2‖H1 ≤ lim
∆x2→0,∆x1→0

C2(∆x2‖∆r̃‖L2 + ‖z(q)− z∆x1‖H1) (5.15)

= lim
∆x2→0

C2(∆x2‖∆r‖L2) = 0, (5.16)

since r, z ∈ H2(Ω).

Any linear operator defined on the finite dimensional space H, is uniquely defined by the
image of a basis. Therefore if we project the admissible set Qad onto a finite dimensional
space, typically a Galerkin finite element basis, we have a finite rank representation of the
Fréchet derivative operator. The following theorem considers the convergence of the finite
rank operator to the infinite dimensional counterpart.

Theorem 5.3.3 (Operator approximation). Let HN be a finite dimensional space of C1(Ω)
with basis {φi}i=Ni=1 . Let PN be the projection of C1(Ω) onto HN . Furthermore, let DN be the
linear operator that is defined by [Dqz(q)]q=q0(φi) = vφi, where vφi is the solution of (5.7)
when φi = h. If PN is the finite element projection operator satisfying

‖P nh− h‖ → 0 as N →∞, ∀h ∈ C1(Ω).

Then DN(PNh)→ [Dqz(q)]q=q0 as N →∞.

Proof. Let z(q) be the solution of (5.4) and let h ∈ C1(Ω) be given. Define h̃ = PNh and∑N
i=1 hiφi. Then DN(PNh) is the solution to

−∇ · (q∇w) = ∇ · (h̃∇z(q)), w ∈ H1
0 (Ω). (5.17)

Let vh be the solution of (5.17) with h̃ replaced by h, then:

−∇ · (q∇(vh − vh̃)) = ∇ · ((h− h̃)∇z(q)).

Multiplying both sides by vh − vh̃ and integrating by parts we obtain∫
q|∇(vh − vh̃)|

2 =

∫
(h− h̃)∇(vh − vh̃) · ∇z(q),

which leads to the following inequality

‖vh − vh̃‖
2
H1

0
≤ C‖h− h̃‖‖vh − vh̃‖H1

0
‖u‖H1

0

then ‖vh − vh̃‖H1
0
≤ C‖h − h̃‖‖u‖H1

0
. By our assumption on PN , ‖h − h̃‖ → 0 as N → ∞.

Therefore ‖vh − vh̃‖H1
0
→ 0.

48



Since we can find a finite dimensional representation of [Dqz(q)]q=q0 , we would like to prove
that the infinite dimensional operator is Hilbert–Schmidt or at least has a dominating eigen-
value. As we discuss below, the Hilbert–Schmidt triplets can be approximated by the singu-
lar value decomposition of our finite dimensional representation to [Dq(q)]q=q0 . Furthermore,
these triplets lead to interesting applications.

Definition 5.3.4 (Hilbert-Schmidt Operator). A linear operator F : H1 → H2, where H1

and H2 are Hilbert spaces, is Hilbert–Schmidt if and only if there exists an H1-orthornormal
sequence in H1, {vk}, an H2-orthornormal sequence in H2, {uk}, and positive decreasing
sequence of numbers {σk} satisfying

∑∞
k=1 σ

2
k <∞, such that for any h ∈ H1,

F (h) =
∞∑
k=1

σk〈vk, h〉H1uk.

Theorem 5.3.5 (Sufficient Condition). If there exists an orthonormal basis {φ}n of H2 such
that ‖Fφn‖ ∈ l2, then F is a Hilbert-Schmidt operator [41].

Lets consider the space H2+ε(Ω) where ε > 0 and Ω ⊂ R2 is bounded. It is well known
that X = H2+ε(Ω) ↪→ C1(Ω). Thus convergence in H2+ε(Ω) implies convergence in C1(Ω).
Therefore one can consider a Hilbert–Schmidt decomposition of the operator Dqz(q) since
both the domain D = H2+ε(Ω) and the range R ⊂ H1

0 are Hilbert spaces. Since D is a
subset of C1(Ω) the conditions of Theorem 5.3.1 are met. Thus the operator [Dqz(q)]q=q0 is
well defined. Now we just have to prove the existence of the Hilbert-Schmidt decomposition.

Theorem 5.3.6 (Dq(z(q)) is a Hilbert–Schmidt Operator). If ∇z ∈ L∞(Ω) then the Fréchet
derivative of z(q) with respect to q, [Dqz(q)]q=q0, is a Hilbert-Schmidt operator in the domain
H2+ε(Ω) with ε > 0. As an example that the hypothesis, ∇z ∈ L∞(Ω) can be achieved
consider the case f ∈ H1(Ω), q ∈ C2(Ω). This implies that z(q) ∈ H3(Ω) and by the Sobolev
imbedding theorem, z(q) ∈ C1(Ω).

Proof. As shown in Adams [1], there is an orthonormal basis, {φn}n≥1, of H2+ε(Ω), where
‖φn‖L2(Ω) is an l2 sequence. Then using the equation (5.7), we have that vφn = [Dqz(q)]q=q0(φn)
is a solution of

−∇ · (q∇vφn) = ∇ · (φn∇z(q0)), vφn ∈ H1
0 (Ω).

Multipying both sides of the equation by vφn and integrating by parts we obtain∫
q|∇vφn|2 = −

∫
φn∇z · ∇vφn .

Since q is bounded below by a constant, we apply the Hölder inequality to obtain q0‖∇vφn‖2
L2 ≤

‖φn∇z‖L2‖∇vφn‖L2 . Using the Poincaré inequality, there is a constant c such that ‖vφn‖2
H1

0
≤

c‖φn∇z‖L2‖vφn‖H1
0
. Thus ‖vφn‖H1

0
≤ c‖φn∇z‖L2 .

Note that φn = sin(2πnx)
1/2+2n2π2+8n4π4 is a orthonormal basis in H2(0, 1) ∩H1

0 (0, 1). However, the

L2 norm of the nth element is given by: 1
1+4n2π2+16n4π4 . Therefore the sequence ‖φn‖L2 is an

l2 sequence.
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By hypothesis, ∇z ∈ L∞(Ω). Thus we have ‖vφn‖H1
0
≤ c‖∇z‖L∞‖φn‖L2 . This will lead us to

[Dqz(q)]q=q0(φn) ∈ l2 since ‖φn‖L2 ∈ l2 using Theorem 5.3.5 we have that [Dqz(q)]q=q0(φn) is
a Hilbert-Schmidt operator.

Theorem 5.3.7. The Fréchet derivative operator is compact, cf. [54].

Theorem 5.3.8. [Differentiability with a Parameterized Forcing Term] Let p = (q, θ) belong
to the admissible set

Qad = {(q, θ) : q, θ ∈ C1(Ω) and ∃α0 > 0 such that q(x) ≥ α0, ∀x ∈ Ω}.

Let z(p) be the solution of

−∇ · (q∇z(p)) = f(θ), f ∈ L2(Ω), and z ∈ H1
0 (Ω). (5.18)

where the norm on Qad is defined by ‖h‖ ≡ ‖q‖+‖θ‖. If f is Lipchitz continuous with respect
to θ, then the Fréchet derivative of z(q, θ) with respect to (q, θ) at p0 = (q0, θ0) applied to
h = (δq, δθ), vh = [Dpz(p)]p=p0(φn), is the weak solution of

−∇ · (q0∇vh) = ∇ · (δq∇z(p0)) + [fθ]θ=θ0(δθ), vh ∈ H1
0 (Ω). (5.19)

where [fθ]θ=θ0(δθ) is the Fréchet derivative of f at θ0 applied to δθ.

Proof. Given
−∇ · (q0∇vh) = ∇ · (δq∇z(p0)) + [fθ]θ=θ0(δθ),

−∇ · ((q0 + δq)∇zh) = f(θ0 + δθ), (5.20)

and
−∇ · (q0∇z(p0)) = f(θ0). (5.21)

We can combine the three equations above to obtain

−∇ · (q0∇(zh − z(p0)− vh))−∇ · (δq∇(zh − z(p0))) = f(θ0 + δθ)− f(θ0)− [fθ]θ=θ0(δθ).

Multiplying by zh − z(p0)− vh and integrating by parts,∫
q0|∇(zh − z(p0)− vh)|2 ≤

∫
|δq|∇(zh − z(p0)) · ∇(zh − z(p0)− vh)

+

∫
|f(θ0 + δθ)− f(θ0)− [fθ]θ=θ0(δθ)(zh − z(p0)− vh).

Applying applying Poincaré’s inequality to the left hand side and Holder’s inequality on the
right hand side

‖(zh − z(p0)− vh)‖2
H1

0
≤C‖δq‖‖(zh − z(p0))‖H1

0
‖(zh − z(p0)− vh)‖H1

0
+

‖f(θ0 + δθ)− f(θ0)− [fθ]θ=θ0(δθ)‖L2‖(zh − z(p0)− vh)‖H1
0
.
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This leads to

‖(zh − z(p0)− vh)‖H1
0
≤C‖δq‖‖(zh − z(p0))‖H1

0
+

C‖f(θ0 + δθ)− f(θ0)− [fθ]θ=θ0(δθ)‖L2 .

which, using (5.20) and (5.21) is

‖(zh − z(p0)− vh)‖H1
0
≤ C‖δq‖(‖δq‖+ ‖δθ‖) + C‖f(θ0 + δθ)− f(θ0)− [fθ]θ=θ0(δθ)‖L2 .

Dividing by ‖δh‖ = ‖δq‖+ ‖δθ‖,

‖(zh − z(p0)− vh)‖H1
0

‖δq‖+ ‖δθ‖
≤ C‖δq‖+ C

‖f(θ0 + δθ)− f(θ0)− [fθ]θ=θ0(δθ)‖L2

‖δq‖+ ‖δθ‖
.

Now, using the fact that [fθ]θ is the Fréchet derivative, the last terms vanishes as ‖δθ‖ → 0.
Therefore,

lim
‖δq‖+‖δθ‖→0

‖(zh − z(p0)− vh)‖H1
0

‖δq‖+ ‖δθ‖
= 0.

Theorem 5.3.9. Under the conditions of Theorem 5.3.8 and the added condition that
[fθ]θ=θ0(δθ) be Lipchitz continuous, the Fréchet derivative, vθ = [Dpz(p)]θ=θ0(δθ) is the solu-
tion of

−∇ · (q0∇vθ) = [fθ]θ=θ0(δθ), vθ ∈ H1
0 (Ω). (5.22)

Proof. Follows from Theorem 5.3.8 with δq = 0.

Theorem 5.3.10. Let HN be a finite dimensional subspace of C1(Ω), let PN be the projection
of C1(Ω) onto HN , and {φi}i=Ni=1 be a basis for HN . Furthermore, let DN be the linear operator
that is defined by [Dθz(θ)]θ=θ0(φi) = vφi where vφi is the solution of (5.22) when δθ = φi.

If ‖P nθ − θ‖ → 0 as N → ∞, for all h ∈ C1(Ω), then DN(PNh) → [Dθz(θ)]θ=θ0(δθ) as
N →∞.

Proof. Let r be the solution of (5.22), and let δθ ∈ C1(Ω) and δθ̃ = PNδθ =
∑N

i=1 δθiφi.
DN(PNδθ) is the solution of:

−∇ · (q0∇r) = [fθ]θ=θ0(δθ̃), r ∈ H1
0 (Ω). (5.23)

Let vδθ be the solution of (5.3.10) then

−∇ · (q∇(vδθ − vθ̃)) = [fθ]θ=θ0(δθ − δθ̃)

Multiplying both sides by vδθ − vδθ̃ and integrating by parts we obtain∫
q0|∇(vδθ − vδθ̃)|

2 =

∫
(vδθ − vθ̃)[fθ]θ=θ0(δθ − θ̃).
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Using similar arguments used in the proof of Theorem 5.3.8, the following inequality holds

‖vδθ − vδθ̃‖
2
H1

0
≤ C‖δθ − δθ̃‖‖vδθ − vδθ̃‖H1

0
,

thus
‖vδθ − vδθ̃‖H1

0
≤ C‖δθ − δθ̃‖.

Due to the approximation property of PN , ‖δθ − δθ̃‖ → 0 as N →∞. Therefore

‖vδθ − vδθ̃‖H1
0
→ 0.

Combining Theorems 5.3.3 and 5.3.10, we have the following result

Theorem 5.3.11. Under the hypotheses of Theorems 5.3.3 and 5.3.10,

[Dpz(p)]p=(q0,θ0)(δh, δθ) = [Dqz(q)]q=q0(δh) + [Dθz(θ)]θ=θ0(δθ). (5.24)

Proof. Let HN be a finite dimensional subspace of C1(Ω) and let PN be the projection of
C1(Ω) × C1(Ω) into HN with basis {(φi, 0); (0, φj)}i,j=Ni,j=1 . Let DN be the linear operator
that is defined by [Dpz(p)]p=p0(φi, φj) = v(φi,φj) where v(φi,φj) is the solution of (5.19) when
(δh, δθ) = (φi, φj).

Since ‖PNh− h‖ → 0 as N →∞, ∀h ∈ C1(Ω), we have

DN(PN(δq, δθ))→ Dp[z(p)]p=p0((δq, δθ)),

as N →∞.

Theorem 5.3.12. The Fréchet derivative of z(q) with respect to q, [Dpz(p)]p=p0, is a Hilbert-
Schmidt operator.

Proof. Since the space of Hilbert-Schmidt operators is a vector space one can infer that
since [Dqz(q)]q=q0(δh) and [Dθz(θ)]θ=θ0(δθ) are Hilbert-Schmidt then the sum [Dpz(p)]p=p0

also is.

5.3.3 Generalization to the Steady Advection-Diffusion Equation

Now we will discuss the following steady equation:

A(q)z(q) = f, f ∈ L2(Ω), and z(q) ∈ H1
0 (Ω),

where A(q) is defined on H2(Ω) as A(q)z = ∇· (a∇z) + b ·∇z+ cz and its range is contained
in L2(Ω). We use the notation q = (a, b, c) and δq = (δa, δb, δc) in the following paragraphs.
Note that b has two components, (bx, by), thus q represents four parameters.
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Theorem 5.3.13. The solution operator z(q) is weakly Fréchet differentiable as an operator
between the spaces L∞(Ω)×L∞(Ω)×L∞(Ω)×L∞(Ω) and H= H2(Ω)×H2(Ω)×H2(Ω)×H2(Ω)
where Ω = (0, 1)× (0, 1). Furthermore [Dqz(q)]q=q0h is the H1

0 (Ω) weak solution of:

A(q0)vh = −A(h)z(q0), vh ∈ H1
0 (Ω).

Proof. The proof is equivalent to Theorem 5.3.1.

Theorem 5.3.14. Under the assumptions of the previous theorem, the operator [Dqz(q)]q=q0(h)
is Hilbert–Schmidt over H.

Proof. The proof is equivalent to the proof of Theorem 5.3.6.

5.3.4 Differentiation of Boundary Conditions

Let z(g) be the solution of the following steady equation with non-homogeneous boundary
conditions,

∇ · (a∇z(g)) + b · ∇z(g) + cz(g) = f
z|∂Ω = g

(Pg)

The previous equation has a parameterized boundary condition, indeed we will consider the
entire boundary condition itself as a parameter.

Theorem 5.3.15. If Ω = (0, 1) × (0, 1) and f ∈ L2(Ω), then z(g) is Fréchet Differentiable

in H
1
2 (∂Ω). Moreover, for any h ∈ H 1

2 , [Dgz(g)]g=g0h = vh is the solution of:

∇ · (a∇vh) + b · ∇vh + cvh = 0, vh|∂Ω = h.

Proof. Let zh and vh be the solution of:

A(q)zh = f, f ∈ L2(Ω)

zh|δΩ = g + h ∈ h ∈ H
1
2 (Ω),

and

A(q)vh = 0, f ∈ L2(Ω)

vh|δΩ = h ∈ L2(Ω),

respectively, then zh − z − vh is the solution to

A(q)(zh − z − vh) = 0 zh|δΩ = 0 ∈ h ∈ H
1
2 . (5.25)

Since solutions are unique and 0 is a solution, we have that:

lim
‖h‖→0

‖zh − z − vh‖
‖h‖

= lim
‖h‖→0

0

‖h‖
= 0 (5.26)

thus vh = Dgz(g).

Theorem 5.3.16. If Ω = (0, 1) × (0, 1) and f ∈ L2(Ω), then the Fréchet Derivative
[Dgz(g)]g=g0 is Hilbert–Schmidt over H1(∂Ω).

Proof. The proof is identical to the time dependent case below in Theorem 5.4.14.
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5.4 Sensitivity of the Convection-Diffusion Equation

5.4.1 Background

In this section we consider the solution of the abstract convection-diffusion equation, z(t, q),
as a function of its distributed parameters and its boundary conditions. The Fréchet Deriva-
tive operator is well defined for the set of the parameters that leads to unique solutions of
the PDE. As in the previous section when the Fréchet Derivative of the solution operator
exists and when applied to suitable parameters variation,, it is the solution of the sensitivity
equation. The existence of such a representation is discussed in several papers including
Seubert and Wade [44] and Davis and Singler [17]. The convection-diffusion case is analysed
in [44] and a special case is considered in [17]. Therefore the main focus of this chapter is
restricted to the study of the spectral properties of the operator [Dqz(t, q)]q=q0 , more specifi-
cally the existence of a Hilbert–Schmidt decomposition. Once we show the existence of such
decomposition, we then derive a finite representation of the operator and then prove that its
singular values and vectors converge to their infinite dimensional peers.

5.4.2 Fréchet Differentiability

The choice of the admissible set and the norm associate is crucial, these choices will determine
if the solution operator z(t, q), is well defined and moreover if it is F-differentiable. In the next
paragraphs the parameter space Q, is the normed space: Q = C0(Ω)×C0(Ω)×C0(Ω)×C0(Ω)
and q is the vector (a, bx, by, c). The admissible set will be given by: Qad = {q ∈ Q such that
A(q) is strongly elliptic}. The domain Ω ⊂ R2 is closed, and Ωf = Ω × [0, T ] The spacial
solution to the convection-diffusion equation z(t, q), satisfies the equation:

(P)q

{
d
dt
z(t; q) = ∇ · (a∇z(t; q)) + b · ∇z(t; q) + cz(t; q) + f(t) z(t) ∈ H1

0 (Ω)
⋂
H2(Ω)

z(0, ·) = z0.
(5.27)

We will assume that f, f ′ ∈ L∞(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;H2(Ω)) and z0 ∈ H1

0 (Ω)
⋂
H2(Ω),

this will guarantee that z ∈ Z = L∞(0, T ;H2(Ω)). Defining the operator A(q) on H2(Ω) as
A(q)z = ∇ · (a∇z) + b · ∇z + cz and rewriting the system Pq we have

(P)q

{
d
dt
z(t; q) = A(q)z(t; q) + f(t) z(t) ∈ H1

0 (Ω)
⋂
H2(Ω) ;

z(0, x) = z0
(5.28)

Since all the spaces and the operator A(q) satisfy the the hypothesis of the main result from
Singler [9], we are in position to state the differentiability of z(t, q).

Theorem 5.4.1 (Fréchet differentiability of z(t;q)). The operator z(t;q), is weakly Fréchet
differentiable over Qad and vh(t) := [Dqz(t, q)]q=q0h is the weak solution of the abstract
Cauchy problem:
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(S)q

{
d
dt
vh(t) = A(q0)vh(t) + A(h)z(t; q0) vh(t) ∈ H1

0 (Ω)
⋂
H2(Ω) ;

z(0, x) = 0 t ∈ [0, T ].
(5.29)

Proof. See [17].

Extension to the Groundwater Flow Equation:

We now extend this result to the groundwater flow equation Cq. Let Ω be a closed bounded
subset of R2 and
Qad = {q = (S, kx, ky) such that S, kx, ky ∈ C1(Ω) and S(x, y) ≥ α0 > 0, kx(x, y) ≥ α1 > 0,
ky(x, y) ≥ α2 > 0} ∀(x, y) ∈ Ω. Furthermore, let

Z=L1((0, T ) , H1
0 (Ω)

⋂
H2(Ω)) and ΩT = (0, T )× Ω.

The Groundwater flow problem is given as the solution of z ∈ Z of:

(P)q

{
S d
dt
z(t; q) = (kxzx(t; q))x + (kyzy(t; q))y + f(t, x)

z(0, x) = z0
(5.30)

Theorem 5.4.2 (Sensitivity Groundwater Flow equation). Let z ∈ Z be the solution of 5.32.
The weak Fréchet derivative of z, [Dqz(t; q)], exists and vh = [Dqz(t; q)]h is the solution of:

S d
dt
vh(t; q) + (δS) d

dt
z(t; q) = (kx(vh)x(t; q))x + (ky(vh)y(t; q))y + (δkxzx(t; q))x + (δkyzy(t; q))y;

z(0, x) = 0
(5.31)

Proof. Since [Dq[z(t; q) − z0]]q=q0 = [Dqz(t; q)]q=q0 one only needs to know the case for the
zero boundary condition.
The zero initial condition is given by:

(P)q

{
S d
dt
z(t; q) = (kxzx(t; q))x + (kyzy(t; q))y + f(t);

z(0, x) = 0
(5.32)

Changing variables to w(t) = S
1
2 z(t) and defining f(t, x) = W (t, x) + (kxz0x)x + (kyz0y)y,

the previous equation is equivalent to:

(P)q

{
d
dt
w(t; q) = S−

1
2 (kx(S−

1
2w(t; q))x)x + S−

1
2 (ky(w(t; q)S−

1
2 )y)y + S−

1
2f(t)

w(0, x) = 0
(5.33)

Now we are in condition to use Singler’s result that proves that w(t; q) is Fréchet differentiable
and moreover vh(t) is the solution of the sensitivity equation:

(P)q

{
d
dt
w(t; q) = S−

1
2 (kxwx(t; q))x + S−

1
2 (kywy(t; q))y + S−

1
2f(t);

w(0, x) = 0
(5.34)
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Let B(S, kx, ky) = S−
1
2 (kx(S−

1
2 z)x)x+S−

1
2 (ky(S−

1
2 z)y)y and A(q)z = (kxzx)x+(kyzy)y then :

B′q0(δS, δkx, δky)z = S−
1
2 (δkx(S−

1
2 [z])x)x + S−

1
2 (δky(S−

1
2 [z])y)y+ (5.35)

− 1

2
(δS)S−

3
2 [(kx(S−

1
2 [z])x)x + (ky(S−

1
2 [z])y)y]+ (5.36)

S−
1
2 (kx(−1

2
(δS)S−

3
2 [z])x)x + S−

1
2 (ky(−1

2
(δS)S−

3
2 [z])y)y (5.37)

So [Dqw(t, q)] = vh is then the solution of:

(P)q

{
d
dt
vh(t; q) = B′(h)w(t, q) +B(S, kx, ky)vh + [F ′(q, t)]h

vh(0, x) = 0
(5.38)

Where F (q0, t) = S−
1
2f(t) and

[F ′(q, t)]h = −1

2
(δS)S−

3
2f(t) (5.39)

= −1

2
(δS)S−

3
2 [S

d

dt
z(t; q)− (kxzx(t; q))x − (kyzy(t; q))y (5.40)

So the forcing term, B’(h)w(t,q)+[F’(q,t)]h, from 5.32 can be decomposed as:

B′(h)w(t, q) + [F ′(q, t)]h = B′(h)S
1
2 z − 1

2
(δS)S−

3
2 [S

d

dt
z(t; q)− A(q)z] (5.41)

= S−
1
2A(δq)z − 1

2
δS−

3
2A(q)z − 1

2
A(q)((δS)S−1z)− 1

2
(δS)S−

3
2 [S

d

dt
z(t; q)− A(q)z] (5.42)

= S−
1
2A(δq)z − 1

2
(δS)S−

1
2
d

dt
z(t; q)− 1

2
A(q)((δS)S−1z) (5.43)

Since w = S
1
2 z we have that wh = S

1
2vh + 1

2
(δS)S−

1
2 z so the equation 5.32 is equivalent to :

d

dt
[S

1
2vh +

1

2
(δS)S−

1
2 z] = S−

1
2A(q)S−

1
2 [S

1
2vh+ (5.44)

+
1

2
(δS)S−

1
2 z] + S−

1
2A(δq)z − 1

2
(δS)S−

1
2
d

dt
z(t; q)− 1

2
A(q)((δS)S−1z) (5.45)

which is equivalent to

d

dt
[S

1
2vh + (δS)S−

1
2 z] = (5.46)

= S−
1
2A(q)[vh +

1

2
(δS)S−1z] + S−

1
2A(δq)z − 1

2
A(q)((δS)S−1z) (5.47)
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which is equivalent to

d

dt
[S

1
2vh + (δS)S−

1
2 z] = S−

1
2A(q)vh + S−

1
2A(δq)z (5.48)

d

dt
[Svh + (δS)z] = A(q)vh + A(δq)z (5.49)

Which ends the proof.

5.4.3 Hilbert–Schmidt Decomposition

In order to prove that the operator [Dqz(t, q)]q=q0 is Hilbert–Schmidt, it is necessary that
both parameter and solution spaces be Hilbert spaces. Therefore one must change the
spaces of differentiation, since the Q defined in the previoussection is a Banach space but
not a Hilbert space.

Existence Results

Theorem 5.4.3. If z(t) ∈ Z = W 0,∞(0, T ;W 2,∞(Ω)) then for every t ∈ [0, T ] the operator
[Dqz(t, q)]q=q0h defined on the Hilbert space H=H3(Ω)×H2(Ω)×H2(Ω)×H2(Ω) with range
on H1

0 (Ω) ∩H2(Ω) is Hilbert–Schmidt.

Proof. There are orthonormal basis en ∈ H3(Ω) and fn ∈ H2(Ω) such as ‖en‖H1(Ω) and
‖fn‖H0(Ω) are l2 sequences by Adam’s [1]. From (5.29) we know that

‖Dqz(t, q)]q=q0hn‖H1
0
≤ ‖A(hn)z(t; q0)‖L2(0,T,L2(Ω)) ≤ [‖en‖H1 + 3‖fn‖H0 ]‖z‖Z (5.50)

Therefore by Theorem 5.3.5 the operator is Hilbert–Schmidt.

Theorem 5.4.4. For every t ∈ [0, T ] the operator [Dqz(t, q)]q=q0h defined on the Hilbert
space H=H5(Ω)×H4(Ω)×H4(Ω)×H4(Ω) with range on H1

0 (Ω) ∩H2(Ω) is Hilbert–Schmidt.

Proof. By Adams [2], there are orthonormal basis en ∈ H5(Ω) and fn ∈ H4(Ω) such as
‖en‖H3(Ω) and ‖fn‖H2(Ω) are l2 sequences From (S)q we know that

‖Dqz(t, q)]q=q0hn‖H1
0
≤ ‖A(h)z(t; q0)‖L2(0,T,L2(Ω)) (5.51)

≤ [‖en‖1 + 3‖fn‖0]‖z‖L2(0,T,H2(Ω)) (5.52)

≤ [‖en‖H3 + 3‖fn‖H2 ]‖z‖L2(0,T,H2(Ω)) (5.53)

Therefore by Theorem 5.3.5 the operator is Hilbert–Schmidt.

Theorem 5.4.5. For every t ∈ [0, T ] the operator [Dqz(t, q)]q=q0h defined on the Hilbert space
H= H2((0, 1)× (0, 1))×H2((0, 1)× (0, 1))×H2((0, 1)× (0, 1))×H2((0, 1)× (0, 1)) with range on
H̃= H1

0 ((0, 1)× (0, 1)) ∩H2((0, 1)× (0, 1)) is Hilbert–Schmidt.
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Proof. The proof of this theorem is based on the fact that if the there is a orthonormal basis
{φn}n≥1 of H such that ‖Aφn‖ ∈ l2 then A is a Hilbert–Schmidt operator in H, Reed and
Simon [41]. It is know that φn,m(x, y) = an,m sin(πnx) sin(πny) is a orthonormal basis over
H1

0 ((0, 1)× (0, 1)) where:

an,m =
2√

(1 + n2π2 + n4π4)(1 +m2π2 +m4π4)
.

Then
{(φn,m, 0, 0, 0), (0, φn,m, 0, 0), (0, 0, φn,m, 0), (0, 0, 0, φn,m), n,m ∈ N}

form an orthonormal basis in H. Next we will prove that image of each component is a l2

sequence. From the last proof we known that:

‖Dqz(t, q)]q=q0(φn,m, 0, 0, 0)‖H1
0
≤ ‖A((φn,m, 0, 0, 0))z(t; q0)‖L2(0,T,L2(Ω)) (5.54)

≤ [‖φn,m‖1‖z‖L2(0,T,H2(Ω)) ≤ (1 + (n+m)π)an,m‖z‖L2(0,T,H2(Ω)) (5.55)

which obviously is a l2 sequence. Also,

‖Dqz(t, q)]q=q0(0, φn,m, 0, 0)‖H1
0
≤ ‖A((0, φn,m, 0, 0))z(t; q0)‖L2(0,T,L2(Ω)) (5.56)

≤ ‖φn,m‖0‖z‖L2(0,T,H2(Ω)) ≤ an,m‖z‖L2(0,T,H2(Ω)) (5.57)

Which is also a l2 sequence. With same type of argument one can prove for the cases
(0, 0, φn,m, 0) and (0, 0, 0, φn,m). By adding these four inequalities together, it is easy to
verify that the full basis is a l2 sequence. Finally since H̃ is dense in H2((0, 1)× (0, 1)) this
basis is a basis in H and therefore the operator is Hilbert–Schmidt in H.

5.4.4 Finite Dimensional Representation

Any linear operator defined on finite dimension space H, is uniquely defined by the image of
a basis. Therefore, if we project the admissible set Qad onto the basis of a finite dimensional
space, typically a finite element basis, and apply the Fréchet derivative, we have a finite rank
representation of the Fréchet derivative operator. In this section, we prove that the finite
dimensional operator converges in norm to infinite dimensional operator (defined on Qad).
This results also holds for the singular vectors and singular values.

Operator definition: Let SN be a finite element space of H1
0 (Ω), with polynomials of

degree s ≥ 2 such that SN ↪→ SN+1 ∀N ∈ N2, and let QM be a finite dimension space of
H and let PM be the projection of H onto QM . Let DN,M

q (t) be the linear operator that is
defined in the following way:

Definition 5.4.6 (Approximate Operator). DN,M
q (t) : H → H1

0

DN,M
q (t)h = vNPMh(t), where v

N
PMh(t) is the finite element solution of vPMh(t).
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Theorem 5.4.7. Convergence of the Operator Estimation
For all t ∈ [0, T ] the operator DN,M

q (t) converges uniformly to [Dqz(t, q)]q=q0.

Proof. For any norm the following inequality holds:

‖[DN,M
q (t)− [Dqz(t, q)]q=q0 ]h‖ =

= ‖DN,M
q (t)h− [Dqz(t, q)]q=q0P

Mh+ [Dqz(t, q)]q=q0P
Mh− [Dqz(t, q)]q=q0h‖ (5.58)

≤ ‖DN,M
q (t)h− [Dqz(t, q)]q=q0P

Mh‖+ ‖[Dqz(t, q)]q=q0P
Mh− [Dqz(t, q)]q=q0h‖ (5.59)

Obviously the second term converges to zero since [Dqz(t, q)]q=q0 is continuous. The sec-
ond term converges by the finite element theory:
From theorem 5.5 from [50] we have the following inequality:

‖DN,M
q (t)h− [Dqz(t, q)]q=q0P

Mh‖ = ‖vNPMh(t)− vPMh(t)‖H1 (5.60)

≤ C∆r−1[‖vPMh(t)‖H1 + ‖A(PMh)z0‖H1 + ‖DtvPMh‖L2(0,t;Hr−1)] (5.61)

where ∆ is maximum diameter of the triangles, using r=2.

∆[‖vPMh(t)‖H1 + ‖A(PMh)z0‖H1 + ‖DtvPMh‖L2(0,t;H1)] (5.62)

≤ C∆[‖[Dqz(t, q)]q=q0‖‖PMh‖+ C‖PMh‖‖z0‖+ ‖A(PMh)z‖]H1(0,T,L2) (5.63)

≤ C∆[‖[Dqz(t, q)]q=q0‖‖PMh‖+ C‖PMh‖‖z0‖+ ‖PMh‖‖z‖]H1(0,T,H2) (5.64)

≤ C(t)∆‖PMh‖ ≤ C(t)∆‖h‖ (5.65)

Therefore DN.M(t) converges in norm to [Dqz(t, q)]q=q0 , since both parts converge to zero so
does the left-hand side.

Now the focus will be to prove that the singular values of the finite dimension operator
converges to the singular values of the infinitesimal operator, before we will need to prove
some preliminary results.
In following paragraphs we will use the following notation D(t) := [Dqz(t, q)]q=q0 . Firstly
we will prove the the convergence of the singular decomposition of D1

M(t) = D(t)PM for
the one of D(t), the second step is to proof the same convergence of decomposition of the
D2

N(t) = vNh (t), finally by an triangular type of argument we will prove the decomposition
convergence of DN.M(t).
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Corollary 5.4.8. Let D1
M(t) = D(t)PM then D1

M(t)→ D(t) and D1
M ∗D1

M → D(t)∗D(t)
uniformly.

Proposition 5.4.9. If QM are nested in such a way that QM ⊂ QM+1 and PM → I
uniformly then: The eigenvalues of RM

1 (t) = D1
M(t)

∗
D1

M(t) = PMR1(t)PM converge to the
eigenvalues of R1(t) = D(t)∗D(t).

Proof. The proof is a result from [19]-page 160

Corollary 5.4.10. Let D2
N(t) = vNh (t) then D2

N(t) → D(t) and D(t)2
N(t)

∗
D(t)2

N(t) →
D(t)∗D(t) uniformly.

Proposition 5.4.11. If HN are nested in such a way that HN ⊂ HN+1 and PN → I
uniformly then: The eigenvalues of RN

2 (t) = D2
N(t)D2

N(t)
∗

converge to the eigenvalues of
R2(t) = D(t)D(t)∗.

Proof. Let δ > 0 and the following u’s be in H then

λn1 ≤ max
‖u‖=1

〈Rn
2 (t)u, u〉 ≤ max

‖u‖=1
〈[Rn

2 (t)−R2(t)]u, u〉+ 〈R2(t)u, u〉 (5.66)

≤ ‖Rn
2 (t)−R2(t)‖+ max

‖u‖=1
〈R2(t)u, u〉 ≤ δ + λ1 (5.67)

for N sufficiently lagre.
Then λn1 ≤ λ1. Using the same argument we can prove that λ1 ≤ λn1

Theorem 5.4.12. In the hypothesis from Propositions 4.3 and 4.5 for every t > 0 the
singular values of DM,N(t) converge to the singular values of D(t):=[Dqz(t, q)]q=q0 .

Proof. The proof follows immediately from Propositions 5.4.9 and 5.4.11:

lim
N

lim
M
σN,M1 (t) = lim

N
lim
M

sup
‖u‖=1

〈DN,M(t)
∗
DN,M(t)u, u〉 (5.68)

= lim
N

sup
‖u‖=1

〈DN(t)
∗
D(t)Nu, u〉 = lim

N
sup
‖v‖=1

〈DN(t)DN(t)
∗
v, v〉 (5.69)

= sup
‖v‖=1

〈D(t)D(t)∗v, v〉 = σ1 (5.70)

to prove the convergence of the greater singular values, comes from repeating the proof on
the complement of the expansion of span {u1(t), ...uk(t)}.

Theorem 5.4.13. Under the same Hypothesis as the previous theorem , plus that D(t) has
no double singular vectors and values, then the singular vectors of DN,M(t) converge to their
infinitive dimension pears.
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Proof. By definition of of [DN(t)]DN(t) we are find the eigenvalues in HN of D∗(t)D(t) since
the H∞ is dense on H and their are nested, this means that we are solving the problem in
a sequence of problem that close and close to H.

σN(t) = min
‖u‖∈Hn

〈D(t)v,D(t)v〉 (5.71)

Then for ε > 0 exists p such N > p

| min
‖v‖∈Hn

〈D(t)v,D(t)v〉 − min
‖v‖∈H

〈D(t)v,D(t)v〉| < ‖σN(t)− σ(t)‖ < ε (5.72)

Since there is an unique solution v∗ to

v∗ := arg min
‖v‖∈H

〈D(t)v,D(t)v〉 (5.73)

and the the spaces Hn are nested this means that v∗N does converge to v∗

5.4.5 Differentiation of Boundary Conditions

In this section we will Fréchet differentiate the solution operator, z(t; g), of the convection
equation, with respect to a boundary condition, u(t)g(x). Once proven the differentiability,
we present some spectral decomposition results. The convection diffusion equation written
as follows:

(P)q


d
dt
z(t; g) = ∇ · (a∇z(t; g)) + b · ∇z(t; g) + cz(t; g) + f(t) z(t) ∈ H1(Ω)

z(t; g)|∂Ω = z0|∂Ω + u(t)g;
z(0; g) = z0 t ∈ [0, T ].

(5.74)

Q = C0(Ω) × C0(Ω) × C0(Ω) × C0(Ω) and q is the vector (a, bx, by, c). The admissible set
will be given by: Qad = {q ∈ Q such as A(q) is strongly elliptic} f ∈ L2(0, T ;L2(Ω)) and
z0 ∈ H1(Ω) then we will have the guarantee that z ∈ Z = L∞(0, T ;H1(Ω)) and u(0) = 0.

Theorem 5.4.14. For q ∈ Qad and if Ω ⊂ R2 is a bounded Lipschitz domain and u, u′ ∈
L2([0, T ]), with u(0)=0 then z(t; g) is weakly Fréchet differentiable with respect to g on

H
3
2 (∂Ω). Moreover, vh := [Dgz(g)]g=g0h is the solution of the sensitivity equation:

(S)g


d
dt
vh(t) = ∇ · (a∇vh(t)) + b · ∇vh(t) + cvh(t) = 0

vh(t)|∂Ω = u(t)h
vh(0) = 0

(5.75)

Proof. Let D(t, h) = z(t, g + h)− z(t, g)− vh(t)then D(t,h) is the weak solution of:

(R)h


d
dt
r(t) = ∇ · (a∇r(t)) + b · ∇r(t) + cr(t) = 0

r(t)|∂Ω = 0
r(0) = 0

(5.76)
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Since for all h the only solution of (R)h is the zero solution, we have D(t, h) = 0; therefore
∀t > 0

‖D(t, h)‖H1(Ω)

‖h‖
H

3
2 (∂Ω)

→ 0 (5.77)

The following theorem will provide a sufficient condition to the Hilbert–Schmidt decompo-
sition of the previous operator.

Theorem 5.4.15. Under the same assumptions as the previous theorem [Dgz(g)]g=g0 is
Hilbert–Schmidt over H2(∂Ω) and range in H1(Ω), where Ω = (0, 1)× (0, 1).

Proof. As be before we will use the fact that if the there is a orthonormal basis on H2(∂Ω)
such as the image of it is an l2 basis then the operator is Hilbert–Schmidt.
The basis,
φn1 = an(sin(nπx), 0), φn2 = an(sin(nπx), 1), φn3 = an(0, sin(nπy)), φn4 = an(1, sin(nπy))
where

an =
2√

1 + n2π2 + n4π4

obviously orthonormal over H2(∂Ω). Then for every t and i=1..4

‖Dqz(t, g)]q=q0(φni )‖H1(Ω) ≤ 2T 2C‖z‖1,∞‖φni ‖H 1
2 (∂Ω))

(5.78)

wich is a l2 sequence.

Computing the singular values is very expensive therefore it is mandatory to develop an
efficient way to do it. In the following chapter is dedicated to the numerical aspect of
the computation of the singular values and vectors. Since by definition the singular values
and vectors of [Dqz(q)]q=q0 are the eigenvalues and eigenvectors of [Dqz(q)]∗q=q0 [Dqz(q)]q=q0
respectively, then one can use their favorite eigenvalue estimation technic.

5.5 Application to Parameter Estimation and Second

Derivative

Even is highly costly one can use the Fréchet derivative for parameter estimations purposes,
using the chain rule one can deduce:

[DqJ(q, z(q))]q=q0 = Dq

[
1

2
‖z(q)− zdata‖2

X +
β

2
‖q − qdata‖2

Q

]
q=q0

(h) =

〈z − zdata, vh〉H + 〈q − qdata, h〉Q (5.79)

Since vh is the solution of the sensitive equation, then to a quadratic approximation the most
indicated would be use BFGS or any other type of approximation to the second derivate. In
some cases the second derivative can be evaluate explicitly as in example 5.4.
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5.6 Second Derivative

Theorem 5.6.1. If z(q) is the solution of:

Pq
{
−∇ · (q∇z(q)) = f, f ∈ L2(Ω);
z(q) ∈ H1

0 (Ω).
(5.80)

where Ω ⊂Rn is bounded with a C0 boundary and q ∈ Qad ={q: q∈C1(Ω) and ∃α0 > 0
such as q(x) ≥ α0,∀x ∈ Ω}. The norm on Qad is defined by ‖h‖ = maxx∈Ω{|h(x)|} +
maxx∈Ω{|h′(x)|}.

Then the Fréchet derivative of z(q) with respect to q applied to h, [Dqz(q)]q=q0(h) = vh,
is the weak solution of, the well-posed elliptic equation:

Sq
{
−∇ · (q∇vh) = ∇ · (h∇z(q));
z ∈ H1

0 (Ω).
(5.81)

And the second derivative is the solution of:

SSq
{
−∇ · (q∇rθ,h)−∇ · (θ∇vh) = ∇ · (h∇vθ);
r ∈ H1

0 (Ω).
(5.82)

Proof. This is identical to the proof of Theorem 5.3.1

This can be the used to compute the inverse problem trough a Newton Method. Note that
the finite representation is a 3 dimensional matrix, where the entry (i,j,k) is defined by
[DN,N,M(φi, φj)]k.
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Chapter 6

Numerical Implementation

6.1 Approximation of Singular Values and Vectors

Computing the singular values is computationally intensive. Therefore it is mandatory to
develop efficient algorithms to approximate them. This section is devoted to numerical issues
associated with the computation of the singular values and vectors.

6.1.1 Using the Operator to Evaluate the Singular Values

This method is the most intuitive and most expensive one. The idea is to construct the
operator DM,N(t) from Definition 5.4.6. Let HN be an N dimensional finite element sub-
space for approximating a model solution. Also, let QM be an M dimensional finite element
subspace approximating the parameter q. We

for i = 1 : N
for j = 1 : M

•
(
DN,M
q (t)

)
i,j

=
(

[Dqz(q, t)]|q=q0 (φi)
)
j

the coefficient of [Dqz(q, t)]|q=q0 (φi) on the j −

element− basis on the space QM

end for
end for

[u(t), s(t), v(t)] := svd(DM,N(t))

There are several issues with this approach, firstly it is very expensive since it requires
to compute the solution of (M + 1) PDEs. Furthermore it requires to compute at each time
step ∆t the computation of the singular value decomposition of a N ×M matrix, thus in
a realistic point of view this is not feasible in the sense that a system might have millions
of free parameters. The computation time decreases significantly by applying the previous
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algorithm in parallel. Finally by computing the full SVD one might be doing unnecessary
work since the original operator is Hilbert-Schmidt which implies that only the first singular
directions are relevant where the last ones are just essentially noise. This motivated then to
find different ways to compute those directions. One is instead of computing it in all time
steps one can just take snapshots. The next sections are then dedicated to that purpose.

6.1.2 The Power Method for the Steady Case

Since by definition the singular values and vectors of [Dqz(q)]q=q0 are the eigenvalues and
eigenvectors of [Dqz(q)]∗q=q0 [Dqz(q)]q=q0 respectively, then one can use their favorite eigen-
value estimation technic. The first one is the power method discussed thoroughly at [10].
It’s description is as follows:

1. Start with an h0 in QM

2. For n ≥ 1 repeat until convergence

• Evaluate h̃n−1 = [Dqz(q)]q=q0h
n−1 by solving the sensitivity equation.

• Evaluate hn = [Dqz(q)]∗q=q0h̃
n−1 by solving the adjoint sensitivity equation.

• Set hn = hn

‖hn‖ and λn = ‖h̃n−1‖2.

Example for the interior steady case:

Let A(q)z = −∇ · (q∇z) be a strongly elliptic operator, Ω ⊂ Rn be closed and z(q) the
H1

0 (Ω) weak solution of:

Pq
{
A(q)z(q) = f, f ∈ L2(Ω);
z(q) ∈ H1

0 (Ω).
(6.1)

Then [Dqz(q)]q=q0h is the H1
0 (Ω) weak solution of:

Sq
{
A(q0)vh = −A(h)z(q0)
vh ∈ H1

0 (Ω).
(6.2)

And v∗θ = [Dqz(q)]∗q=q0(θ) is the H1
0 (Ω) weak solution of:

v∗θ = ∇(A−1(q0)θ)) · ∇z(q0) (6.3)

Example for the Boundary steady case:

Let A(q)z = −∇ · (q∇z) be a strongly elliptic operator, Ω ⊂ Rn be closed and z(q) the
H1

0 (Ω) weak solution of:

(P)g


A(q)z(g) = f, f ∈ L2(Ω);

z(g)|∂Ω = g
(6.4)
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Then [Dqz(g)]g=g0h is the H1(Ω) weak solution of:

(S)g


A(q)vh = 0;

vh|∂Ω = h
(6.5)

And v∗θ = [Dqz(q)]∗q=q0(θ) is the realization at the boundary of:

v∗θ = q∇(A−1(q)θ)) · ~n (6.6)

This method is extendable to the convection-ciffusion case, which is discussed in the Ap-
pendix B.2.

6.1.3 Evolving the Singular Values and Vectors in Time

The next paragraph will describe an effective way to calculate the singular values of the
Hilbert-Schmidt decomposition of the Fréchet Derivative operator sh(t) := [Dqz(t, q)]q=q0 h.
We know that sh(t) is the solution of:

(S)q

{
d
dt
sh(t) = A(q0)sh(t) + A(h)z(t; q) sh(t) ∈ H1

0 (Ω)
⋂
H2(Ω) ;

sh(0) = 0 t ∈ [0, T ].
(6.7)

Where

(P)q

{
d
dt
z(t) = A(q)z + f(t) z(t) ∈ H1

0 (Ω)
⋂
H2(Ω) ;

z(0) = z0 t ∈ [0, tf ].
(6.8)

Since [Dqz(t, q)]q=q0 is Hilbert–Schmidt it can be decomposed in the following fashion:

sh(t) =
∞∑
k=1

σk〈vk(t), h〉H1uk(t) (6.9)

Then
svk(t)(t) = σk(t)uk(t) (6.10)

So the pair vk(t), ũk(t) = uk(t)σk(t) is the solution of the PDE:

(SVD)q

{
d
dt
ũk(t) = A(q0)ũk(t) + A(vk(t))z(t) ;

ũk(0) = 0 t ∈ [0, T ].
(6.11)

Once we know a pair vk(t) and ũk(t) at time t1 one can solve (SV D)q. The system Sq on
the finite dimensional space can be written as

(S)∆x
q

{
M∆xsh(t) = S∆xsh(t) +R∆x(t)h ;
sh(0) = 0 t ∈ [t1, T ].

(6.12)

using finite differences in time:

(S ·§)q
{

(M∆x − ∆t
2
S∆x)sh(t+ ∆t) = (M∆x + ∆t

2
S∆x)sh(t) + R∆x(t+∆t)+R∆x(t)

2
h ;

sh(0) = 0 t ∈ [0, T ].
(6.13)
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for t = 0 we have:

(M∆x − ∆t

2
S∆x)sh(∆t) =

R∆x(∆t) +R∆x(0)

2
h (6.14)

sh(∆t) = [(M∆x − ∆t

2
S∆x)−1R

∆x(∆t) +R∆x(0)

2
]h. (6.15)

Defining

E = [(M∆x − ∆t

2
S∆x)−1R

∆x(∆t) +R∆x(0)

2
] (6.16)

the problem is now reduced to a singular value problem or eigenvalue problem for E ′E.
There are several different ways to compute those eigenvalues, and a vast literature on it [42]
Y. Saad, [31] R. B. Lehoucq and [47] G. L. Sleijpen among others. Once we have vk(∆t) and
ũk(∆t) we use them to evolve (SV D)q and find their evolution in time. An intelligent con-
struction of R reduces significantly the computation time, since M∆x and S∆x are inherited
from the from forward problem. The method is then summarized by

• Use the Matrices M and R, inherited from the forward problem (6.8) (defined in (6.12))
to compute E defined in (6.16). Find the singular triplets, [u(t), σ(t), v(t)] of E then
evolve them trough time:

(SVD)q

{
d
dt
ũk(t) = A(q0)ũk(t) + A(vk(t))z(t) ;

ũk(0) = 0 t ∈ [0, T ].
(6.17)

• Compute ui(t) = [Dqz(q, t)]|q=q0 (vi(t))

• Compute σi(t) = ‖ui(t)‖l2

6.2 Numerical results

6.2.1 Motivation

Recalling Example 5.1.

Pq


(1 + sin(πx)) d

dt
z(t, x; q) = (e−4xz(t, x; q)x)x + 1 + x+ t z(t, .; q) ∈ H1([0, 1])

z(0, x) = x x ∈ [0, 1]
z(t, 0) = 0 t ∈ [0, 1]
z(t, 1) = e−t t ∈ [0, 1]

(6.18)

The most sensitive directions from the system are shown in Figure 6.1.

This explains how such a small perturbation in the second half of the interval [0, 1] leads
to such a great change in the solution while a small perturbation in the first half of the
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Figure 6.1: The most sensitive perturbations averaged in time
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interval doesn’t affect the solution significantly. This example shows how relevant the
study of the most sensitive directions is. In this example two perturbations with the same
L2 norm ‖δ1(x)‖L2([0,1]) = ‖δ2(x)‖L2([0,1]) = 2.4 × 10−3 have two completely different re-

sponses. The relative change in z when is perturbed by δ1(x) is
‖z(t;q(x))−z(t;q(x)+δ1(x))‖L2([0,1])

‖z(t;q(x))‖L2([0,1])
=

9.9688 × 10−4 where the perturbation δ2(x) leads to a much greater relative change on z,
‖z(t;q(x))−z(t;q(x)+δ2(x))‖L2([0,1])

‖z(t;q(x))‖L2([0,1])
= 4.37× 10−2. This can be easily explained by the fact that

z(t; q0 + h) = z(t; q0) +Dq[z(t; q)]q=q0h+ o(‖h‖) (6.19)

Since Dq[z(q]q=q0 is Hilbert-Schmidt the previous equation can be rewritten as:

z(t; q0 + h) = z(t; q0) +
∞∑
i=1

〈vi(t), h〉σi(t)ui(t) + o(‖h‖) (6.20)

So those perturbations that have following property |〈vi(t), h〉|si >> 0 for small i and t > 0
will have a major impact on the solution. That is the main difference between δ1(x) and
δ2(x), since |〈v1(t), δ1(x)〉|s1(t) = 0.0420 and |〈v1(t), δ2(x)〉|s1(t) = 0.1005 which explains
why the second perturbation has a greater impact. One can argue that the differentiation
is in a smooth space, since all parameters belong to H2(Ω), and in GWF applications the
parameters are PWCT . This can be solved by using the following elements tanh(x)

6.3 Convection-Diffusion Equation

In this section, we will exemplify the theoretical results. We have some empirical proof
of the singular values convergence. We used an uniform triangular mesh, over the square
[0, 1] × [0, 1] over the time interval [0,1]. The finite elements used were the cubic Hermite
A. They were chosen because to compute the sensitivity equation it requires the partial
derivatives of z. In our test case the parameters are the following: q1(x, y) = e−10xy +
e−10(1−x)y+e−10x(1−y) +e−10(1−x)(1−y)+; q2,1(x, y) = 1+x+y; qy2,2(x, y) = 1.1+cos(3π(x−y));
cq3x, y) = 1.1 + cos(2πx) sin(2πy); the forcing term is given by f(x, y, t) = ty + x the initial
condition is z0 = 0, the time step that as used was ∆t = 10−5 the time solver used was
the mid point and backward Euler, as in (6.13). The next graph shows the different first
directions for different space dimensions and time steps. In all examples M=N, meaning
that the solution space as the same dimension as the parameter space. The following picture
shows the average in time of the first four singular directions:

By close analysis of these graphs it becomes elucidative that there are 2 very sensitive re-
gions, one centered on (1, 0.5) and another on (0.4, 0.5). This information can be interpreted
as the finite element mesh should be finer than in another regions. Analyzing Figure 6.2
around t=0.017 there is a change in direction that is because the most sensitive direction
changes form (1, 0.5) to (0.4, 0.5). This can be seen in the next picture:
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The following table shows the comparison between the first singular value (SV) when the
dimension is 3600 and the first SV for smaller dimensions. It also compares the first SV to
consecutive dimensions.

The following table shows the comparison between the first singular value SV when the
dimension is 3600 and the first sv for smaller dimensions, It also compares the first SV to
consecutive dimensions.

Difference sequence norm Cauchy sequence norm

‖σn6 − σn1‖L2(0,0.1) 3× 10−2 ‖σn2 − σn1‖L2(0,0.1) 1.21× 10−2

‖σn6 − σn2‖L2(0,0.1) 1.3× 10−2 ‖σn3 − σn2‖L2(0,0.1) 6× 10−3

‖σn6 − σn3‖L2(0,0.1) 7.2× 10−3 ‖σn4 − σn3‖L2(0,0.1) 3.4× 10−3

‖σn6 − σn4‖L2(0,0.1) 3.8× 10−3 ‖σn3 − σn2‖L2(0,0.1) 2.2× 10−3

‖σn6 − σn5‖L2(0,0.1) 1.6× 10−3 ‖σn6 − σn5‖L2(0,0.1) 1.6× 10−3

n1 = 100, n2 = 400, n3 = 900, n4 = 1600, n5 = 2500, n6 = 3600. As one can see the difference
converges to zero as n → ∞ Even though we use implicit scheme in time, if ∆t < ∆x∆y
there are some problems with stabilization specially at the initial time steps. Which gives
us the empirical proof of Theorem 5.4.12.
The next example includes differentiation on the boundary.

Boundary Numerical Example

Let z(g) be the solution on [0, 1]× [0, 1] of:

(P)g

{
((1 + x+ 13y)z(g)x)x + ((1 + e−x+5y))z(g)y)y = x+ y + 3
z(g)|∂Ω = g
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Figure 6.5: Third singular vector

0.01

0.01

0.0
1

0.020.030.040.05

x

y

V4
1  averaged in time

 

 

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

0.0001

0.0002

0.
00

01

0.00030.00040.00050.00060.0007

0.0
00

8

0.0009
0.001

x

y

V4
2,1  averaged in time

 

 

0 0.5 1
0

0.2

0.4

0.6

0.8

1

2

4

6

8

10

x 10 4

5e 05

5e
05 0.00010.00015

x

y

V4
2,2 averaged in time

 

 

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0.5

1

1.5

2

2.5

3
x 10 4

5e 05

5e
050.00010.000150.00020.00025

0.00030.000350.0004

x

y

V4
3 averaged in time

 

 

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1

2

3

4

5

x 10 4

Figure 6.6: Fourth singular vector

72



x

y

Most sensitive direction at t=0.001

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

y

Most sensitive direction at t=0.1

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.25

0.2

0.15

0.1

0.05

0

0.05

0.1

0.15

0.2

0.1

0

0.1

0.2

0.3

Figure 6.7: First singular value in time step t=0.001(left) and t=0.1
(right)

Then the Fréchet Derivative of z(g), with respect to the boundary condition g, when applied
to a direction h, vh = [Dgz(g)]g=g0h, is the solution of the sensitivity equation:

(S)h

{
((1 + x+ 13y)vhx)x + ((1 + e−x+5y))vhy)y = 0
vh|∂Ω = h

Figure 6.8: Response to the first most sensitive six directions
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6.4 Applications

The applications of doing such analysis vary from, reduction on the dimension of the gradi-
ent, reduction on the parameter space dimension, mesh refinement and finally uncertainty
quantification.

6.4.1 Parameter Space Reduction

The set if vectors {viq}i≤∞ form a basis of the parameter spaceQN , of dimensionN , since their
importance decay in the l2 norm this means only the first ones are important to development
of the system in the neighborhood of q0. This means that any perturbation δq to q0 that
is represented by a linear combination in the latest singular values will have a small or
irrelevant impact over the solution.

δq =
N∑
i≤r

αivi (6.21)

Then for δq ∈ V Q
ε (q0) for small ε such the linearization is so valid the following holds:

z(q0 + δq) = z(q0) +
N∑
i≤r

αiσiui + o(‖h‖Q) ≈ z(q0) (6.22)

This means that one can use the subspace of Q, Vr := span {vi for 1 ≤ i ≤ r} as reduced
representation of the admissible set.

6.4.2 Uncertainty Quantification

In collaboration with Hans-Werner van Wyk and Jeff Borggaard, the results of Chapter 5
were developed further to an uncertainty quantification framework, this can be seen in more
detail at [11]. One of the differences between the previous approach and the following is
that one have multiple sets of data {(zk, fk)}k=N

k=1 instead of an unique pair of (z, f) this will
lead to N inverse problems and consequently N q′s. Then the solution will be presented as
a distribution and with its moments E(q(x, ·)), V(q(x, ·)) and so forth. This means that for
instance the deterministic equation becomes the stochastic partial differential equation:

Pq
{
−∇ · (q(x, ω)∇z(q(x, ω)) = f(x, ω), f ∈ L2(Ω);
z(q, ω) ∈ H1

0 (Ω).
(6.23)

The standard technique is the so called Monte Carlo method, which is explained in Ap-
pendix C. The sensitivity analysis and most sensitive directions come in place by reducing
the Fréchet operator into and a collection of small rank derivatives that can be used in the
inverse problem. It is known from previous chapters that r sufficiently large and ε suffi-
ciently small ∀h ∈ V Q

ε (q0) one can write ∀h ∈ Vε(q0) we have the following estimation on the
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deterministic level:

z(q0 + h) ≈ z(q0) +
r∑
i=1

〈vi, h〉Qσiui. (6.24)

So q0 can be written as:

q0 + h :=
r∑
i=1

〈vi, q0〉Qvi +
r∑
i=1

1

σi
〈z(q0 + h)− z(q), ui〉Hvi. (6.25)

This can be used then for parameter estimation where there is uncertainty in the parameters,
in the following fashion:

q(·, ω) :=
r∑
i=1

〈vi, q(·, ω0)〉Qvi +
r∑
i=1

1

σi
〈z(q(·, ω0))− z(q(·, ω0)), ui〉Hvi. (6.26)

Which mean that all paths ω that lead to z(·, ω) in a neighborhood of z(·, ω0) can be pre-
dicted, by (6.25) as the following algorithm shows:

Algorithm 1 Estimate the sample paths of the uncertain parameter q based on a random
sample of measurements ẑ of the model output z.

Input: tol, {ẑ(x, ωi)}nmc
i=1 .

Let k = 0, I = ∅.
Choose ik ∈ {1, . . . , nmc}\I and let I = {I, ik}.
Compute the estimate q̂(·, ωik) of q(·, ωik) from ẑ(·, ωik).
Compute the operator Dq[z(q̂(·, ωik))] and its singular value decomposition.
Use (6.26) to obtain estimates {q̃(·, ωi)} of {q(·, ωi)} for all i ∈ {1, . . . , nmc}\I.
while There are paths ẑ(·, ωi) so that

‖z(q̃(·, ωi))− ẑ(·, ωil)‖ ≥ tol (6.27)

for all il, l = 0, ..., k. do
if (6.27) doesn’t hold for i ∈ {1, . . . , nmc}\I then let I = {I, i}.
else

Let ik+1 = i, I = {I, ik+1}. k ← k + 1.
Repeat steps . . .

end if
end while
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Example 6.4.1 (Parameter Identification). Here we apply Algorithm 1 to identify the dif-
fusion coefficient q1(x, ω) from stochastic measurements ẑ of the output, using the method
discussed above. We used a set of 65 sample paths {ẑ(·, yi)}nsc

i=1 corresponding to the quadra-
ture points yi ∈ Γ of a sparse grid stochastic collocation approach, based on a Clenshaw-Curtis
scheme (see [3, 35, 36, 51]). For the estimates q̃, we use a truncation level of r = 99 and
r = 20 respectively. To approximate all sample paths q(·, yi) so that the corresponding model
output differs from the data to within an L2-error tolerance of tol = 0.001 requires 9 linear
models for both truncation levels r = 99 and r = 20, the linearization centers of which are
depicted in Figure 6.9. f(x) = π2 sin(πx)(1 + x)− π cos(πx),
Random diffusion coefficients, q1, q2, and q3, given by

• q1(x, ω) := 1 + x+ 1
2

(
Y1(ω)− 1

2

)
cos(2πx) + 1

2

(
Y2(ω)− 1

2

)
cos(3πx),

• q2(x, ω) := q1(x, ω) + Y3(ω)e(
√

1000(x− 1
2

))2
, and

• q3(x, ω) := q1(x, ω) + Y3(ω)e(
√

1000(x− 1
10

))2
.

Where the random variables (Y1, Y2) ∼ unif([0, 1]2) and Y3 = 1− Ỹ3, with Ỹ3 ∼ beta(2, 5)
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Figure 6.9: Estimates q̂(·, yik) of the linearization centers q(·, yik), k = 1, ..., 9 (dotted lines)
together with their true values (solid lines) for both truncation levels.

Although a lower truncation level r results in a less accurate reconstruction q̃ of q (see Figure
6.10), this doesn’t seem to affect the validity of the linear model, attested to by the fact that 9
linear models with similar linearization centers (see Figure 6.9) are sufficient to explain the
input-output map for both r = 99 and r = 20 to within the required relative error tolerance
(Figure 6.11).

. The model reduction was successfully implanted given that the errors are form the same
order as the full rank operator. Another important fact is that the family of linear models
successfully model the solution oprator. This methodology is being developed for the time
dependent case.
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Figure 6.11: Boxplot of the relative L2-error in the model output for the parameter estimate
based on truncated Hilbert-Schmidt decompositions with r = 99 and r = 20 expansion terms
respectively.

6.4.3 Paramater ranking

The Figure 6.8 is very elucidative how one can rank the parameters from the equation,
since the first direction is a vector v1(t) = [vq11 (t), v

q2,1
1 (t), v

q2,2
1 (t), vq31 (t)] and the X =

L1 ((0, 1);L2(0, 1)) of ‖vq11 (t)‖X � ‖vq
2,1

1 (t)‖X , ‖vq11 (t)‖X � ‖vq
2,2

1 (t)‖X and ‖vq11 (t)‖X �
‖vq

3

1 (t)‖X this means that on the parameter dimension basis, the last three components have
a much smaller impact on the system. The ordering in a decreasing order of importance we

have vq11 (t), vq
2,2

1 (t), vq
2,1

1 (t) and vq
3

1 (t) which means that for error purposes one should make
sure that the measurements regarding q1 need to be accurate. This is discussed with more
detail in B.1.
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Chapter 7

Parameter Estimations Results

7.1 Data

In this chapter will present the results of the parameter estimation techniques developed on
Chapter 4, thus the objective is given subsidence, water heads and pumping cycles data,
to estimate the values and spatial zonation of the aquifer’s transmissivity and Interbed’s
skeletal storage. In the following synthetic example we use the forward problem from MOD-
FLOW as data. The initial value for the interbed and aquifer is 800 m3. We consider that
there is no flow coming out of the boundaries (zero Neumann boundary condition). There is
interchange of water between the interbed and the aquifer. The initial value of the precon-
ditioned head is 750 m3 throughout the domain. The pumping cycles are divided essentially
into two types a pumping season and a non pumping season, each of them with a period of
182.5 days, over 15 years. The aquifer’s storativity is assumed to be known and it is constant
throughout the domain S(x, y) = 0.002. The vertical hydraulic conductivity of the interbed
is known as well and is constant with values Kv((x, y), z) = 6× 10−5 m/d. This is modeled
by the following function:

W (t, x) :=

{
W̃ (x) odd stress period
0(m3/d) even stress period

(7.1)

Where x is in thousand of meters (km) and

W̃ (4, 4) = −3000(m3/d)

W̃ (11, 3) = −3000(m3/d)

W̃ (12, 7) = −3000(m3/d)

W̃ (14, 8) = −6000(m3/d)

W̃ (24, 13) = −1000(m3/d)
0(m3/d) otherwise

(7.2)

The variables of interest are the transmissivity of the aquifer and the specific storage of the
interbed. The data is not collected continuously in time therefore one needs to interpolate
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it in the time domain. The interbed thickness is given and it can be seen in the following
figure.
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Figure 7.1: Left: Interbed thickness. Right: Subsidence over the last time step

The distribution of the subsidence can be used to be as initial zonation for the specific
storage.
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Figure 7.2: Left: last time step at a pumping cycle horizontal scale in km and vertical units
in m, Right: Last time step on the last non pumping cycle. Horizontal scale in km and
vertical in m3.

As one can see the wells have a major impact in the water flow. They contribute to a
better identifiably of the transmissivity by doing two parameter estimations one when there
is pumping and other when there is no pumping, this technic is called optimal pumping test
design, this is discussed by [53], where advantages and disadvantages of such an approach
are discussed.
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7.2 Agglutination Algorithm

Using Algorithm 4.3.3 with an initial zonation where all of the cells are a zone, and T (x, y) :=
800 m2/d across the whole domain with the penalty term:

1

2

{
10−6‖T − 800‖2

2 + 10−6‖Sske‖2
2 + 10−9‖Sskv‖2

2 + 10−9

∫
Ω

√
‖∇T‖2

2 + 10−3dx

}
(7.3)

The choice of the a penalty term for Sske greater than the one on Sskv because Sskv � Sske.
The results for the zonation Algorithm 4.3.3 is as follows:
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Figure 7.3: From left to right top to bottom the zonations of T, Horizontal scale in km and
volume in m3
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Figure 7.4: From left to right top to bottom the zonations of Ssk

Number of Zones (K) Relative Error
N = 69 0.8011
N = 38 0.3672
N = 31 0.4365

Number of Zones (Ssk) Relative Error (Sske) Relative Error (Sskv)
N = 19 0.7526 0.5897
N = 11 199.6965 0.5942
N = 7 0.5787 0.2250

This was not a sufficient accurate estimation, therefore we used its information to start an
multilevel Algorithm 4.3.3. Since the number of zones on S are stable enough we froze those
and did a multi level on T .

7.3 Multi-Level

The last iteration of the agglutination one can see two very distinct areas, one in blue very
homogeneous and another very unstructured, that will be a good start for the multi level
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method. The initial guess was T (x, y) = 500 m2/d, and the values of Sske and Sskv those
inherited from the the last iteration of the adjoint method. The sequence of meshes are as
follows:
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Figure 7.5: Values of T for different zones

The sequence of approximations are as follows:
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Figure 7.6: Values of T for different zones

Since this is synthetic data, we have access to the inverse problem solution, the errors are as
follows.
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7.3.1 Error Analysis

Number of Zones Relative Error Cost functional (UCODE)

N = 2 0.5087 3.91× 107

N = 4 0.4610 1.86× 107

N = 7 0.5162 3.01× 107

N = 13 0.4079 8.65× 106

N = 25 0.3550 5.26× 106

N = 49 0.2878 3.76× 106

N = 97 0.3885 3.48× 106

Looking carefully to the table above the value of the cost functional is always decreasing
and the same happens to the relative error except for two iterations. This means that the
optimization problem might need to be adjusted in order to improve identifiably. The other
important fact is that N = 49 has a well defined structure, which gives the indication that
one should use the agglutination algorithm from that point on.

7.4 Inverting from our forward solver

The previous section was the inversion of MODFLOW’s forward data. Using our forward
model from (2.2.3) as data, with the same imputes as the previous sections we obtain better
results, specially for local convertion. In this experiment we perturb the real T ′s (shown
below) and used Algorithm 4.3.3.
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Figure 7.7: Real T ′s perturbation, axis in km
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Figure 7.8: Cost functional’s value

As one can see, the cost functional decreases faster then in UCODE and their values are
considerably small when compared to the ones on Table 7.3.1. Specially the error shown
below.
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Figure 7.9: Cost functional’s value

Which is much better than the UCODE inversion. This ends this section on parameter
estimation.
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Chapter 8

Conclusion

8.1 Groundwater Parameter Estimation

The main goal of this section was the to identify the parameters, transmissivity (aquifer) and
skeletal storage, elastic and inelastic (interbed) by using two distinct strategies, an aggluti-
nation algorithm, Algorithm 4.3.3 and a multilevel algorithm, Algorithm 4.3.4, even though
they both have the same objective they start from opposite principles. The first initiates
with the maximum number of zones (fine mesh), whereas the multilevel begins with a re-
duced amount of zones (coarse mesh). Both have two distinct results and applicabilities, the
multilevel algorithm captures small zones very well, unlike the agglutination algorithm that
identifies the bigger zones. Therefore the combination of them is very valuable, since one can
start guess the big zone with the agglutination and then just focus on the smaller ones with
the multilevel. In a penalty term analysis, the bounded variation term introduced on (4.5)
improved the rate of convergence specially when allied with the agglutination algorithm.
Another conclusion is that from the subsidence data one can recover a good initial guess for
the zonation of the skeleton storage, Ssk, over the interbed. This is done by applying the
zonation algorithm directly to the last time steps of the subsidence data. This leads to a
partition that has the real zonation as subpartition. In a more theoretical framework, we
prove that the problem is parameter estimation convergent, (3.4.5), in a finite dimensional
admissible set, meaning that the sequence of the solution of the finite dimensional optimiza-
tion problems converges to the real parameter that is being identified. We also proved the
existence of the Lagrangian and the fact that it the solution of the adjoint equation, that was
used to compute the cost functional gradient for the optimization. Finally our experiments
shown that by analyzing in non-pumping cycles one can estimate the quotient between T
and S, that is theoretically justified by (3.4.2).

85



8.2 Sensitivity Analysis

In this parallel parameter estimation study, we developed results on the Fréchet differen-
tiability of the solution of a PDE with respect to their parameters, such as transmissivity,
specific storage and further more to the boundary conditions, diffusion coefficient, convec-
tion. Additionally to the results on the existence of such derivatives, we developed results on
the spectral decomposition of the derivative operator, and its approximation. More specifi-
cally the Fréchet derivative operator is Hilbert-Schmidt, (5.4.4). This allowed us to reduced
the parameter space, find the most sensitive directions that made possible to find a reduced
form of the operator, compute an explicitly inverse of the linearization of the parameter es-
timation operator (steady case), which combine with a sampling based framework, enabled
the clustering of parameters of interest into a small set of basis. The use of cubic Hermit
polynomials on solving the forward problem made possible to improve the rate of conver-
gence of the finite element solution of the sensitive equation from linear to quadratic. By
differentiating on the boundary one can determine where the flux will coming from outside
of the domain will impact the system. For the computation of such directions and decom-
position we introduced two algorithms, a power method and an evolution in time, which
saves computational time and memory, and other by evolving the the triplet [u(t), s(t), v(t)]
through time.
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Chapter 9

Future and Current Work

I would like to proceed by extending these sensitivity analysis results to a wider class of
model equations. The singular value decomposition (Hilbert-Schmidt decomposition) has
been applied to sensitivity analysis from a statistical viewpoint [49]. My approach differs
in that it is derived from a partial differential equation that models the physical behavior
of a problem. Additionally, since the decomposition is performed over Hilbert spaces, this
allows me to efficiently rank the importance of the parameters, describe their effects, and
identify the best- and worse-case scenarios. In the near-term, I intend to seek other applica-
tions of the sensitivity analysis for poro-elastic media. In addition to groundwater modeling,
with different material laws, there are direct applications to modeling biological tissues, soil
contamination, and the distribution of oil fields. However, this research is not restricted to
poro-elastic media. There are natural extensions to radar imaging, calibration of machin-
ery, and tomography. I am interested in modeling and analysis of new problems arising in
physical or biological systems. Motivated by applications, I have a strong desire to continue
collaborating with interdisciplinary teams since this is a source of interesting and important
mathematical problems. My theoretical research efforts would be to build a bridge between
the statistical and deterministic sensitivity analysis. Specifically, I would like to establish
a correlation between the statistical and deterministic singular value decomposition of the
parameter space. Another objective is to develop results in the projection of the Fréchet
derivative operator over a reduced-order basis (such as those generated by the proper or-
thogonal decomposition also known as the Karhunen-Loeve expansion). This would be an
important result in the combination of model reduction and optimization algorithms. I am
also interested in do adaptive sampling. Using the most sensitive directions one can use
information of where the data must be the most accurate and by that reducing significantly
the number of measurements. Finally, as current work I am incorporating the algorithms
develop in Chapter 4 into UCODE in oder to be available to other users.
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Appendix A

Hermite Cubic Finite Element
Methods

A.1 Implementation and Approximation Results

As one can read in more detail in, e.g. [12], Hermite cubic finite elements are piecewise
polynomial functions defined over a triangle such that directional derivatives and function
values match along triangle edges. For each triangular elements, the degrees of freedom are

• function values at the 3 vertex nodes

• directional derivatives at each vertex (2 values at each vertex)

• 1 interior node.

The ten basis functions that satisfy the Lagrange interpolation conditions on the reference
triangle (with (r, s) coordinates and vertices (0, 0), (0, 1), and (1, 1)) are

φ1(r, s) := 1− 3r2 − 3s2 − 13rs+ 13r2s+ 13rs2 + 2r3 + 2s3

φ2(r, s) := 3s2 − 7rs+ 7r2s+ 7rs2 − 2s3

φ3(r, s) := 3r2 − 7rs+ 7r2s+ 7rs2 − 2r3

φ4(r, s) := r − 2r2 − 3rs+ 3r2s+ 2rs2 + r2

φ5(r, s) := −r2 + 2rs− 2r2s− 2rs2 + r3

φ6(r, s) := −rs+ r2s+ 2rs2

φ7(r, s) := s− 2s2 − 3rs+ 2r2s+ 3rs2 + s3

φ8(r, s) := −rs+ 2r2s+ rs2

φ9(r, s) := −s2 + 2rs− 2r2s− 2rs2 + s3

φ10(r, s) := 27rs− 27r2s− 27rs2.

Figure A.1 shows these basis functions on the reference triangle.
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Figure A.1: Hermite cubic basis functions

In order to implement the finite element method with these basis functions, one builds a
transformation from the reference element to each element in the domain. It is crucial that
the mapping takes into consideration the fact that element rotation will change the values
and the direction of the normal derivative. This is demonstrated in Figure A.2.

Figure A.2: Mapping from the reference element (left) to a general element (right)

While some simpler implementations match the derivatives along edges, the output is no
longer the gradient but a directional derivative. As one can see in in the weak formulation

89



of the sensitivity equation,

(S)q

{
d
dt
vh(t) = A(q0)vh(t) + A(h)z(t; q0) vh(t) ∈ H1

0 (Ω)
⋂
H2(Ω),

z(0, x) = 0 t ∈ [0, T ],
(A.1)

the presence of A(h)z requires computation of the gradient of z, ∇z. To have a better rate
of convergence and accuracy in the computation of the sensitivities, we use Hermite cubic
polynomials to solve the forward problem

(P)q

{
d
dt
z(t; q) = A(q)z(t; q) + f(t) z(t) ∈ H1

0 (Ω)
⋂
H2(Ω),

z(0, x) = z0 t ∈ [0, T ].
(A.2)

These details are discussed in Banks and Kunish [4]. Note that one does not need to use
the Hermite cubic elements in the approximation of the sensitivity equation. However,
while Hermite cubic elements do not form a subspace of H2(Ω), the do provide adequate
(nonconforming) approximations to many finite element formulations naturally posed in
H2(Ω).

Theorem A.1.1 (Ciarlet [15]). The finite element space Xk generated from Hermite cubic
elements is a subset of C0(Ω) ∩H1(Ω).

Proof. The proof is given as Theorem 2.2.10 in [15].

We provide error estimates for our finite element approximations below.

A.1.1 Error Estimates for Sensitivity Equations Solutions

Theorem A.1.2 (Interpolation, Ciarlet [15]). If u ∈ H3(Ω), and Πk is the interpolation
operator mapping to Xk. Then the interpolated function satisfies the following error estimate

‖u− Πku‖m,Ωk
≤ C∆3−m

k if 0 ≤ m ≤ 3,

where ∆k is the diameter of element Ωk.

Theorem A.1.3. Let vh and be the solution of (A.1) and ṽh be the solution of (A.1) where
the forward problem is the finite element solution of (A.2). Then if z ∈ H3(Ω), there exists
a constant C, independent of z, such that:

• ‖ṽh − vh‖H1(Ω) ≤ C‖h‖0∆2, if the forward problem was evaluated with Hermite cubic
elements, and

• ‖ṽh − vh‖H1(Ω) ≤ C‖h‖0∆, if evaluated with linear elements,

where ∆ is the maximum diameter of the elements.

90



Proof. Let z̃ be the finite element solution of (A.2) then∫
Ω

∇ · (q0∇(vh − ṽh))(vh − ṽh)dx = −
∫
∇ · (h∇(z − z̃))(vh − ṽh)dx. (A.3)

Using the Poincaré inequality, Cauchy-Schwarz inequality, and Theorem A.1.2,

‖vh − ṽh‖H1(Ω) ≤
‖h‖0

inf
x∈Ω

q0(x)
‖z − z̃‖H1(Ω) ≤

‖h‖0

[ inf
x∈Ω

q0(x)]2
‖f‖L2(Ω)C∆2. (A.4)

The same arguments can be used to prove the linear convergence rate with linear finite
elements.
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Appendix B

Extension Results on Sensitivity
Analysis

This appendix is a quick review of sensitivity analysis for discretized problems (or problems
set in finite dimensional spaces). For instance, the consider the discretization of the 1D
Poisson equation with varying conductivity parameter q,

−∇ (qz(q)) = f(x), f ∈ L2(Ω), and z ∈ H1
0 (Ω). (B.1)

If q is discretized as q(x) ≈ qN(x) :=
M∑
i=1

qiφi(x) and the solution z is discretized as z(x; q) ≈

zN,M(x; qM) :=
N∑
i=1

ziψi(x) then one can define the sensitivity as follows:

[
Dqz

N,M(qM)
]
qM=qM0

(hM) := lim
ε→0

zN,M(x; qM0 + εhM)− zN,M(x; qM)

ε

To find the partial derivative qi one just need to set hi = ei where ei is the base i on RM .
Another way is to differentiate directly the solution equation:

AN,N(qM)zN(qM) = FN ,

as follows:
DqM (AN,N(qM)zN(qM)) = DqM (FN)

Under some assumptions this implies

DqM
[
AN,N(qM))zN(qM)

]
qM=qM0

(h) = AN,N(qM)DqM
[
zN(qM)

]
qM=qM0

Which is very similar to its infinite dimensional peer (5.6).

This is the type of approach used by UCODE [40] where they repeatedly evaluate the cost
functional to approximate the gradient. Let J(q) be the cost functional then the gradient is
approximated by the forward difference quotient

[∇J(q)]i ≈
J(q + εei)− J(q)

ε
,
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with ε “significantly small.” This approximates the Gâteaux derivative, as discussed in 5.2.1.
This type of sensitivity approximation is discussed in, e.g. [43].

Other approach for computing sensitivities are considered in, e.g. Borggaard and Burns [9],
Griewank [20], and Turgeon, et al. [48].

B.1 Evaluating Partial Derivatives

Theorem B.1.1. Let F (x, y) : X × Y → Z be functional then if the Frechét derivatives[
D(x,y)F

]
(x,y)=(x0,y0)

, [DxF ]x=x0
and [DyF ]y=y0

exists then the following equality holds:[
D(x,y)F

]
(x,y)=(x0,y0)

(θ, ν) = [DxF ]x=x0
(θ) + [DyF ]y=y0

(ν) (B.2)

This fact it is very important one needs to evaluate the total derivative of the solution
convection diffusion equation. By defining A(q)(.) = ∇ · (q1∇z) + (q2,1, q2,2) · ∇z + q3z and
observing that the partial and vector derivative of the convection-diffusion exists then one
can easily see that:

[Dqz(t, q)]q=q0 (δq) =

[
1 1 1 1

] 
[Daz(t, q)]a=a0 0 0 0

0 [Db1z(t, q)]b1=b10
0 0

0 0 [Db2z(t, q)]b2=b20
0

0 0 0 [Dcz(t, q)]c=c0



δa
δb1

δb2

δc

 .
Therefore one can compute all these derivative separately and taking full advantage of parallel
computation. It is relevant to mention that the SVD the whole matrix can be written as SVD
of the individual matrices. That same sum will provide which direction of which parameter
has the largest value. Whereas the SVD of the whole matrix gives the perturbation on the
whole system. This can be seen in the following set of equations:

z(q0 + h) ≈ z(q0) +
N∑
i=1

〈vi, h〉Qσiui (B.3)

and
z(q0 + h) ≈ z(q0)+

N∑
i=1

〈vai , ha〉Qaσai u
a
i +

N∑
i=1

〈vb1i , hb
1〉Qb1σ

b1

i u
b1

i +
N∑
i=1

〈vb2i , hb
2〉Qb2σ

b2

i u
b2

i +
N∑
i=1

〈vci , hc〉Qcσciu
c
i (B.4)

This means that if you perturb the whole system in the direction v1 you will have a major
impact, whereas if you just want to perturb the diffusion term then is va1 .
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B.2 Power Method for Partial Derivatives of Order

Greater Than Two

In the following paragraph we will discuss the power method to evaluate the most sensitive
directions of the steady advection-diffusion equation.

Lets consider the following PDE:

Pq

{
A(q)z(q) = f, f ∈ L2(Ω);
u ∈ H1

0 (Ω).

Where: A(q)z =
n∑
i,j

(ai,jzxi)xj + bz

Sq

{
−A(q)vh = A(h)z(q), f ∈ L2(Ω);
vh ∈ H1

0 (Ω).

Then one given hm−1 one must find hm = Dqz
∗(Dqz(hm−1)) which is equivalent to:

(hm, φ)L2(Ω)2 = (Dqz
∗(Dqz(hm−1)), φ))L2(Ω)4 =

= (Dqz(hm−1), Dqz(φ))L2(Ω) = (Dqz(hm−1),−A−1(q)A(φ)z(q))L2(Ω) =

= (−A−1(q)∗Dqz(hm−1), A(φ)z(q))L2(Ω) = (−A−1(q)Dqz(hm−1), A(φ)z(q))L2(Ω) =

= (−A−1(q)Dqz(hm−1),
n∑
i,j

(φi,jzxi)xj + φ2z)L2(Ω) =

= −
n∑
i,j

((A−1(q)Dqz(hm−1)xi,j)zxi,j , φi,j)L2(Ω) + ((A−1(q)Dqz(hm−1))z, φ2)L2(Ω)

This leads to :

hm =


−((A−1(q)Dqz(hm−1)x1,1)zxi,j

...
−((A−1(q)Dqz(hm−1)xn,n)zxn,n

[(A−1(q)Dqz(hm−1)] z(q)

 (B.5)

Which enables a fast power method discussed in the next section.

Theorem B.2.1 (Power method convergence). Under the same assumptions of Theorem
5.4.13, the power method converges. At each iteration k of a discretization on HN and QM

the error is bounded by

c

‖Dq(z)−DN,M
q (z)‖+

(
σN,M2

σN,M1

)k
 .

Furthermore, there is a subsequence (M,N,α(M,N)) such that

lim
N,M
‖σ1 − σN,M,α(M,N)

1 ‖ → 0. (B.6)

Where α(M,N) is the iteration number for the power method.
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Proof.
‖σ1 − σN,M,n

1 ‖ ≤ ‖σ1 − σN,M1 ‖+ ‖σN1 − σ
N,M,n
1 ‖ (B.7)

Let ε > 0 then by Theorem 5.4.13 we know that ∃ p such that for N,M > p we have
‖σ1 − σN,M,n

1 ‖ ≤ C‖Dq(z) − DN,M
q (z)‖ < ε

2
. By the same arguments of the power method

for a matrix we have that for fixed N,M there ∃ρM,N such that for k > ρM,N the following

inequality C‖σN1 − σ
N,M,n
1 ‖ ≤

(
σN,M

2

σN,M
1

)k
< ε

2
holds, since by Hypothesis σ1 > σ2 This then

proves that for N,M > p and k > ρM,N this implies that :

‖σ1 − σN,M,n
1 ‖ < ε (B.8)

Finally by choosing α(M,N) = 1+ρM,N , we have that there is a subsequence that converges
to the infinitesimal singular value which completes the proof.
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Appendix C

Monte Carlo Method

The Monte Carlo method is a very common in several types of inverse problems and in
geosciences [28] and [34]. The idea is to given some data compute the parameter estima-
tion individually and then take the moments of those estimated parameters, such as mean,
variance and so forth. The main problem with this method is that the rate of convergence
is of the order of o( 1√

N
). Which is relatively slow, thus the method needs a lot of data to

have a reasonable accuracy, therefore a lot of inverse problems must be computed in order
to have a good accuracy. So for the simple case explained in Section 6.4.2 would have been
a simply inversion for each data zi, q

∗
i and then find E(q) by its natural approximation, the

sample mean q̂ := 1
Nsample

∑Nsample

i=1 q∗i and variance V(q) by it sample counterpart S. This is

the classical method and it is known to be very inefficient. There are several extensions and
improvements of these ideas and applications to a range of application areas, cf. [14], [16],
and [52].
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