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The critical behavior ofd-dimensional systems with amcomponent order parameter is reconsidered at
(m,d,n)-Lifshitz points, where a wave-vector instability occurs inremlimensional subspace &f. Our aim
is to sort out which ones of the previously published partly contradictegypansion results to second order
in e=4+m/2—d are correct. To this end, a field-theory calculation is performed directly in the position space
of d=4+m/2— e dimensions, using dimensional regularization and minimal subtraction of ultraviolet poles.
The residua of the dimensionally regularized integrals that are required to determine the series expansions of
the correlation exponents,, and »,, and of the wave-vector exponegt; to ordere? are reduced to single
integrals, which for generan=1,... d—1 can be computed numerically, and for special valuesnof
analytically. Our results are at variance with the original predictions for generBbr m=2 andm=6, we
confirm the results of Sak and Grd&®hys. Rev. B17, 3602(1978] and Mergulha and Carneiro’s recent
field-theory analysi$Phys. Rev. B59, 13 954(1999].

I. INTRODUCTION of critical behavior at such Lifshitz points is clearly very
desirable.

A Lifshitz point'~is a critical point at which a disordered ~ The problem has been studied decades ago by means of
phase, a spatially homogeneous ordered phase, and a sjgé-e expansion about the upper critical dimensigr
tially modulated phase meet. In the case a-dimensional
system with am-component order parameter, it is called an m
(m,d,n)-Lifshitz point (or m-axial Lifshitz poin} if a wave- d*(m)=4+ -, m=<8. (@D
vector instability occurs in am-dimensional subspace. Such 2
multiphase points are known to occur in a variety of distinct
physical systems, including magnetic oRésferroelectric ~ Other investigations employed the dimensionality expansion
crystals” charge-transfer salfé liquid crystalsl® systems ~about the lower critical dimensiéhd, (m)=2+m/2 for n
undergoing structural phase transitibher having domain- =3, or the 1h expansior:*** Unfortunately, the
wall instabilities'? and the ANNNI model’®* A survey  e-expansion results to orde” one group of authots®2?
covering the work related to them till 1992 has been given byobtained for the correlation exponeng, and 7, and the
Selke? which complements and updates an earlier review byvave-vector exponeng, are in conflict with those of Sak
Hornreich® Recently there has also been renewed interest iand GresP for the casesn=2 andm=6.
various aspects of the probleftr,*®including the effects of In order to resolve this long-standing controversy, Mer-
surfaces on the critical behavior at Lifshitz poifts?? gulfi and Carneirt"*® recently presented a reanalysis of

From a general vantage point, critical behavior at Lifshitzthe problem based on renormalized field theory and dimen-
points is an interesting subject in that it presents clear andional regularization. Exploiting the form of the resulting
simple examples ddnisotropic scale invarianceEpitomized  renormalization-group equations, they were able to derive
also by dynamic critical phenomena near thermalvarious(previously given general scaling laws one expects
equilibrium?® and known to occur as well in other static to hold according to the phenomenological theory of scaling.
equilibrium systems(e.g., uniaxial dipolar ferromagnets However, their calculation of critical exponents was limited
this kind of invariance has gained increasing attention inn a twofold fashion: They treated merely the special cases
recent years since it was found to be realized in many nonm=2 andm=6, in which considerable simplifications oc-
equilibrium systems such as driven diffusive systéhamd  cur. Their results fom;, and 7,4 to ordere?, agree with Sak
in growth processes. and Grest'® but disagree with Mukamel? Second, the

Systems at Lifshitz points are good candidates for studyexponentg, (an independent exponent that does not follow
ing the general aspects of anisotropic scale invariahte. from these correlation exponents via a scaling)lawas not
For one thing, the continuum theories representing the uniconsidered at all by them. Thus it is an open question
versality classes of systems with short-range interactions avhether Sak and Grest’s or Mukamet¥ e?) results forg,
(m,d,n)-Lifshitz points are conceptually simple; second, with m=2 andm=6 are correct. Furthermore, for other val-
they involve the degeneraay as a parameter, which can ues ofm, the published?(e?) result€®2?°for the exponents
easily be varied between 1 addA thorough understanding 7,, 74, and3, remain unchecked. It is the purpose of this
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work to fill these gaps and to determine thexpansion of up—a™ug. 3
the critical exponents,,, , and B for general value®of . . . . .
m to order €2 P 2> Ma Fqlorg Thus, appropriate invariant interaction constants are

Uooo ™4 pooe” 2, andr,, and the dependence on the par-

Technically, we employ dimensional regularization in C | X . o
y pioy g allel coordinates is through the invariant combination

conjunction with minimal subtraction of poles & This way 14y
of fixing the counterterms appears to us somewhat more corffo _ *I- o , )

venient than the use of normalization conditiofes was Dimensional analysis yields the dimensidng
done in Refs. 17 and 18In order to overcome the rather [x(]=[0o]¥4u 12
demanding technical challenges, we have found it useful to | ol A
work directly in position space. Thus the Laurent expansion
of the distributions to which the Feynman graphs of the

[x ]=n"t

[TO]ZMZ, [Po]:[00]1/2 )

primitively divergent vertex functions correspond in position [Uol=[oo]™4uc with e=d*(m)—d,
space must be determined to the required ordet. in
The source of the technical difficulties is that these Feyn- [hi(X)]=[ 0] ™8y ld=2-m2)/2 (4)

man graphs, at criticality, involve a free propaga®(x) ) ,
which is ageneralized homogeneouather than a homoge- Wherex is an arbitrary momentum scale. Let
neous function, because of tlamisotropicscale invariance (N) _ cum
: SN | (X, o XN =(i (%) L.y (X
of the free theory. While such a situation is encountered also Gl (X X =( iy (xa) - i X)) ®

in other cases of anisotropic scale invariance, the scalingenote the connectel-point correlation functiongcumu-
. X

complicated function in the present case of a genera\llertex functio'n”s”Usin ower counting one concludes that
(m,d,n)-Lifshitz point. (For general values ah, it is a sum : gp 9

of two generalized hypergeometric functions the ultraviolet (uv) singularities of these functions can be
9 1yperg i . absorbed through the reparametrizations
In the next section, we recall the familiar continuum

model describing the critical behavior at a,d,n)-Lifshitz ¢:Z¢1/2¢ren: (63)
point and discuss its renormalization. In Sec. Il details of
our calculation are presented, and our results for the renor- To— Toc= M°Z,T, (6b)
malization factors are derived. Then renormalization-group
equations are given in Sec. IV, which are utilized to deduce 00=2,0, (60
the general scaling form of the correlation functions, to iden-
tify the critical exponents, and to derive their scaling laws as Ugoy m"‘Ad,m: MEZyu, (6d)
well as the anticipated multi-scale-factor universality. This is
followed by a presentation of ourexpansion results for the (Po—Poc)To VP=pu Z,p, (69

critical exponentsy,,, 74, and By. Section V contains a
) . . where
brief summary and concluding remarks. Finally, there are

two Appendixes to which some computational details have 4 7972
been relegated. Ad m=Sd—mSm= i—m (7)
F(T)F(m/Z)
Il. THE MODEL AND ITS RENORMALIZATION

iS a convenient normalization factor we absorb in the renor-

We consider the standard continuum model representing . .
alized coupling constant. Here

the universality class of anf,d,n)-Lifshitz point with the
Hamiltonian 2 ;D12

1 SO=T(D/2) ®
H[ $]= Ef ddX[po(V<l>)2+<ro(A<z—”)2

is the surface area of @-dimensional unit sphere.
The quantitiesto, and po. correspond to shifts of the
+(V, )2+ rod?+ ﬁ| ¢|4]. ) L_ifshitz point. IIn our perturbati_ve approach based on dim(_an-
12 sional regularization they vanish. If we wanted to regularize
Here (X)=(dby, ..., ) is an n-component order- the uv singularities via a cgtoﬁ (restricting the intggl/r?tions
parameter field. The coordinate: R has anm-dimensional  ©Ver parallel and perpendicular momenta| by <o \/X _
parallel componenty;, and a ¢i—m)-dimensional perpen- qnd|%|$A), they v_vould .be needed_ to absorb uv singulari-
dicular onex, . Likewise, V| andV, denote the associated 1S quadratic and linear i, respectively. _
parallel and perpendicular components of the gradient opera- N the renormalization scheme we use, the renormaliza-

tor V, while A means the Laplaciaﬂﬁ. At the level of tion factorsZy,, Z,., Z;, Z,, andzy, for given vglues (.)f the
Landau theory, the Lifshitz point is located @j=o=0. parameterse, n, and m, depend just on the dimensionless

The Hamiltonian is invariant under the transformation renormalized coupling constaot that is, they are indepen-
dent of o, 7, and p. This follows from the fact that the

X|—ax), X, —X_, d—a M2, primitive divergences of the momentum-space vertex func-
tions T@(q) and T™(q,,...,q), at any order of
oo—atoy, po—aZpy, To— To Uooo ™4, are poles ine whose residua depend linearly on
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q7 . podf. ooqf, and 7, in the case of the former and are o (M=2)12 o

independent of these momenta and mass parameters in th@®(v)= —d/zj dqg qZ*GJ(m,z),Z(qu)K(d,m),z,l(qz).
case of the latter. Subtracting these poles minimally as usual (2) 0

implies that these renormalization factors differ from 1 (15
through Laurent series ia: The integral remaining in Eq15) can be expressed as a

combination of generalized hypergeometric functiois,

B § ). “p (see Appendix A For special values ah andd, the result
Zb_l+p:l a,plu;m,n)e reduces to simple expressions, which we have gathered in
Appendix A.

' The leading loop corrections to the vertex functions '

3 r
=1+ Zl pzl aE’rF),(m,n) E’ v=¢,u,m,a,p. (9 and I'® at the Lifshitz point are given in position space by
the graphs <« »y and *<—vy, which are proportional
to G2(x—y) and G*(x—y), respectively. Hence we must de-
termine the Laurent expansion of these distributions. To this
end we set 0,=1 and consider the action (G*,¢) of G*(x)
We compute the leading nontrivial contributions to thesefor s =2,3 on a test function ¢(x). We substitute Eq. (12) for

IIl. OUTLINE OF COMPUTATION AND PERTURBATIVE
RESULTS

renormalization fgctqrs. In th.e cases &f, Z,, andZ,, G and use spherical coordinates (r|,€})) and (r, ,Q,) for
whoseO(u) contrlbutlo_ns vanlsh_, these are of ordes for e parallel and perpendicular components of x, writing
Z, andZ, they are of first order in. _ _ @(x)=(r|, ;7. Q). We thus obtain
To this end we expand about the Lifshitz point, using the
free propagator (GS,9)=(r, ~Z 91 r, ~12),¢)
el (ax+a.-x,) _ dyr —S(2- &S —-1/2
G(X)ZJT- 10 dixr, ~S29D(rr, 1P (x)
a ooq;+qy
. . . . — d— —s(2— 2
Here the(dimensionally regularizédmomentum-space inte- —J d My, 1, TSETOEM2y(x, ), (16)

gral is defined through
where the functions ¢s(X,)=u¢(r, ,Q2,) are defined

J' _J J' _J qu” J« dd_qu_ thrOUgh
q— qH " P M (27T)m Rd*m (Zw)d*m... .
(11 lﬂs(XL)ZJ d™xdS(r) @(rpr,Qpir, Q). (A7)

Let ry=[x| andr, =|x,|. Then the free propagator can be
written in the scaling form

The final result in Eq.(16) is the linear functional
(r,~S@=a9+tm2 ). Generalized functions such as( )

G(x)=riz“agml“@(oo’l"‘ruu’1’2) (12) and their Laurent expansions ar;e discussed_ in Refd_34. Let
P(x )=y(r, ,Q)) be asmoothC”) test function onR?™ ™
with and

i(q-vtq -e — 1

@(U)Eq)(v;m,d)zf%, (13 Ylu(r)= Sd—mf dQ, g(r, Q) (18)
a q/tay

, ) , its spherical average. Then we have

where ve R™ is a vector of lengthv and arbitrary orienta-

tion, while e, means the unit vectax, /r, . Note that the

scaling function® depends parametrically an andd. For (r, ~SG-e+rm2 z//)Ef d9 My, r, TS@mOTM2yx )

the sake of brevity, we will usually suppress these variables,

writing @ (v;m,d) only when special values aof andd are - 2ste(s—1)0
chosen or when we wish to stress the dependence on these =Sd,mf0 drr Proi(r)
parameters.

The integration oveq, in Eq. (13) yields =Sy (1 37250 Yy (19

Herer’, is a standard generalized function in the notation of

— —(d-m)/2 d—m-2 2\ 4 veq A
®(v)=(2m) quH Ka-mr-1(qp)e . Ref. 34. Its Laurent expansion about the poleat—p=

(149 —1-2,...reads
Upon introducing spherical coordinates|=|qy| and \ (—1)P~ 1 5P~y
QM=(0y,...,0,m1) for q, with  dQM = -1 rip +rP+O\+p), (20

=sin™26,,_,d6,,_,dQ™ Y one can perform the angular in-
tegrations. This gives where the generalized function P is defined by
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P2 In order to compute the O(u?) term of Z p» We consider
e(r)— Zo r, ¢1(0) the two-point vertex function with an insertion of the opera-
= tor L [dx(V¢)? (to which py couples). We represent such

2 | Po p P

rp-1 an insertion by the vertex +e+. At the Lifshitz point 7=p
- (p—1)! ¢ : (21) =0, the leading nontrivial contribution to this vertex func-
tion is given by the two-loop graph z«®=0. The upper
Using these results, the leading terms of the Laurent exline involves the convolution
pansions of G% ¢) can be determined in a straightforward  —(V|G*V|G)(x)= o ™" 2" 1" B (0g~ Y4rr, =13,
manner. However, it should be noted that the functions (28
¥s(x,) introduced in Eq(17) are nota priori guaranteed to  \yhere
have the usually required strong properties of test functions
(continuous partial derivatives of all orders and sufficiently . . qﬁ
fast decay asx,|—). In particular, one may wonder z(v)Eﬂ(”?m'd):f(“ﬁL—"’)z
whether the dependence on the variale’r, of ¢ in Eq. a Qi
(17) does not imply that derivatives such s ¢, become is the analog of the scaling functiof(v) [cf. Eq. (12)].
singular at the origin. Closer inspection reveals that this if°roceeding as in the case of the latter, one obtains
not the case since the problematic teran; * involves the

-p — ” -p
(t P () fodru

P=D0)H(1-r)

ei(qH- v+q, -e)
(29)

S . 1 .
vanishing angular integrdldQ x| ¢( . ..). ()= -m-2 2) ol v-q
One obtains () 2(27r)d-mr2 quH (@-m-ay )
(G.0) 0 y(M=2)12
_ — 2—€ 2
Sd"P _ ¢2£ 0T T () + Oe) 22) 2(27T)d/2j0 dg o Im-2)A V) K (g—m-2)Ad°).
—m
and (30
The remaining single integral can again be expressed in
3 — terms of generalized hypergeometric functions. The corre-
(G%¢) _ 5 (0) +r S () 0(e) | (23 sponding general expression, as well as the simpler ones to
Sd—m 4e TS ' which this reduces for special values wof and d, may be

From its definition in Eq.(17) we see that the residuum found in Appendix A.

,(0) on the right-hand side of E¢22) reduces to a simple ~ The required graph z<*s,0 is proportional to the distri-

expression= ¢(0). We thus arrive at the expansion bution
D(x)=—G*(x)(V|G*V|G)(X). (31)
G2(x)  JgAm,d*) : .
= S5(x)+0O(€%), (24)  Whose pole term can be worked out in a straightforward fash-
Adm € ion by the technigues employed above. One finds
whereJg , is a particular one of the integrals —Gz(x)(V”G* ViG)(x)  11(m,d*)A;8(x) o
= +O(€”)
Ad,m 4me
Jp,s(m,d)zf V" ITPHS(y:m,d)dw. (25 ) (32
0 with
In order to convert the Ifur?nt expén.smm%) into qne Il(m,d)Ef HD2ymd) E(emd)dy. (39
for G3(x), we must compute/; ?£(0). This in turn requires 0

the calculation of the following angular average: A convenient way of computing the renormalization fac-

tor Z_ is to consider the vertex function I'>" with a single

92 Q.9 R — T O] : : L 2 : ; Y
- (P(ru\ﬁaﬂu Q) - (XH‘VH)A(P(O) insertion of the operatory2 d)(y) , whlch.we depict azs 7 Its
r=0 * one-loop contribution %> 18 proportional to G*(x—y).
T

Hence the required Laurent expansion follows from that of
40 A2 q p
I 'Qi: r(Afe) (0 (ALe)(0) _ the latter quantity.
4m(m+2) d-m Let us introduce coefficients,(m) for the leading non-
(26) trivial contributions to the renormalization factars, writ-
ing these in the form

. 0 )
+(e.-V,)? ¢(0)

Using this in conjunction with Eq(23) gives

n+8 u
Zu=1+bu(m)Tz+(’)(u2), (34)
G*x) Jagdm,d*) AfS(x) . Joa(m,d*)A | 8(x)
Agm  16m(m+2)e 4(d* —m)e

+0O(€9).

B n+2u s
(27) ZT— 1+ bT(m)T E‘I‘O(U ), (35)
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and

n+2 u? 5
Z§=l+b§(m)T?+(’)(u ), 9=¢),0’,p. (36)

From the pole terms oB?(x—y) given in Eq.(24) one

easily deduces that

3
by(m)=3b(m) = 5 Jo Am,d*). (37)

The pole terms proportional ta\, 5(x), Aﬁ&(x), and
A 8(x) of the two-loop graphs considered above are ab-
sorbed by counterterms involving the renormalization factors
Zy,2,=2,Z,, andezsz¢Zal’Z, respectively. Utilizing
the Laurent expansion®7) and (31), one finds that their

coefficients are given by

b,(m) 1 1 Jpi(m,d*) 38)
m)y=—— ,
¢ 24 d*—m Ad*,m
. 1 1 Jsa(m,d*)
b (m)= 96 m(m+2) Age | (39
and
. 1 14(m,d*)
b,(m=-——7—. 40
i (40)
The coefficientd,, andb,, are related to these via
be(M)=b,(m)—b,(m) (41)
and
. 1 1.
b,(m)=b,(m) = Sby(m)—5b,(m). (42

IV. RENORMALIZATION-GROUP EQUATIONS AND
e-EXPANSION RESULTS

The reparametrization&) yield the following relations
between bare and renormalized correlation and vertex func-

tions:
GM(x),x,)=Z NG (%)%, ), (439

TM(x),x, ) =24 V28 (%)%, (43b)

wherex andx; stand for the set of all parallel and perpen-
dicular coordinates on whio8™ andI"™Y) depend. For con-

ciseness, we have suppressed the tensorial indjces . ,iy
of these functions and will generally do so below.

Upon exploiting the invariance of the bare functions un-
der a changeu— u(1)=pu | of the momentum scale in the
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Dy~ 5 n4rse”n>=o (45

with

D,u::u“ a,u—’_ﬁuau_ Ng0 05— (2+ 777') Td— (1+ ﬂp)P&p )
(46)
where the beta and eta functions are defined by

BUEM0#|OUI_U[E+ 7u(u) ] (47)

and
n=wrdloinZ,, =¢,0,p,7U, (48)

respectively. Her@ |, means a derivative at fixed bare vari-
ablesug, pg, 09, and . Owing to our use of the minimal

subtraction procedure, the functioms can be expressed in
terms of the residua, ;(u;m,n) as

_da,
nL(u)__u du 1

t=¢,o,p,T,U. (49

To solve the renormalization-groufRG) equations(43)
via characteristics, we introduce flowing variables through

d— _ _
Iu=BuD], u(@)=u, (50
d— -
Iaa(l)z —-n,(Wo, o(l)=o0, (52
d— -
|ap(|)=—[1+ 7,(W]p, p(1l)=p, (52
and
d— _
|a7(|)=—[2+ nAu)]r, w(1l)=r. (53

The flow equation(50) for the running coupling constant
u(l) can be solved fol to obtain

u dx
uBu(X)’

For e>0, the beta functiorB,(u) is known to have a non-
trivial zero u*, corresponding to an infrared-stable fixed
point. Expanding about this fixed point gives the familiar
asymptotic form

Inl= (54)

u(l) = u* +(u—u*)l®u+ O(12 “u) (55)
|—0

in the infrared limitl —0, where

dg,
wu= () (56)

usual fashion, one arrives at the renormalization-group equas positive.

tions

GcM=o, (44)

N
DM+ E?’]d,

The solutions to the other flow equatioris]1)—(53), can
be conveniently written in terms of the anomalous dimen-
sions ¥ =75,(u*) and the renormalization-group-trajectory
integrals
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— u(l)
EL[U,U]=eXp{j dx
u

which approach nonuniversal constants

77— 1,(X)

W] S

(57)

ET(U)EEL(U*,U), L:¢107P!Ta (58)
in the infrared limitl —0.
One finds
a()=1"7E [u(l),ulo ~ |- %wEX(we, (59
|—0
p(D=1")E [u(l),ulp ~ I~ 7S (u)p, (60)
|—0
and
() =1"@E [u(h),ulr ~ |~ @H7)E* (u) 7. (61)
|—0

Solving the RG equatiori43a in terms of characteristics

yields
Glen (X)X, ;p,7,U, 0, 2)
|77* N/2
| —| &W o T u 0l
E (Uu) ren(XH!XLJp!TIUIO-IM
[ ’

N/2

G (P12 )% | X, ;

*

m
(w)8=2-32175

;m/4E d’(E U)

X p,7,u,1,1]. (62

To obtain the second equality, we have used the relation

Glon(x| X, ;p,7,U, 0, 1)

— [lu’d_2_m/ZU_m/4]N/2GElle\lr‘)l(0-_1/4lM1/2XH ,,LLXJ_ :
Xp,7,u,1,1), (63

implied by our dimensional consideratio(¥.
Let us assume that the functid@®) on the right-hand

side of EQ.(62) has a nonvanishing limis— u* for e>0.
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the crossover exponent
(P=V|2(1+7]:)1 (67)
as well as the correlation lengths
& =p = p  ET (U o]] M2 (68)
and
;(| ) 1/4
HzﬂTlrz ~u YES (U)o EX (U)] 7],

(69

In terms of these quantities the asymptotic critical behav-

H N
ior of G{{Y) becomes

GN(X.X, ;p, 7 U0, 1)

2
po e
*
Es

N/2
- _m_ * —-m
fL (d 2+7]"’)§|| }

XX

(N 2
Xz [§|,§L

:Emeaw’V'z} (70)
with
(7D)

The result is the scaling form expected according to the phe-
nomenological theory of scaling. As it shows, the scaling
functionGg™ is universal, up to a redefinition of the nonuni-
versal metric factors associated with the relevant scaling
fields, i.e E}, E;, E}, andEj . (Note thatE} , whose
change would affect the overall amplitude @£V, as usual
corresponds to a metric factor associated with the magnetic
scaling field; see, e.g., Ref. 35.

The correlation exponents;, and »,, are given by

GM(x %, :p)=Gn(x.x, 1p, = 1u*,1,2).

M2= 14 (72)
and
* *
770' + 77¢
na=4 2 (73

This assumption is in Conformity with, and can be CheckedThiS can be seen either by taklng the Fourier transform of the

by, RG-improved perturbation theory. We chodsd ; such
that

(l,)=x1 for =7>0 (64)

and consider the limitr—0=x. To write the resulting

asymptotic form ofG{Y) in a compact fashion, we introduce

the correlation-length exponents

1
V)= 65
12 2 (65
and
2+ 7]:
Vig= [NE] (66)
42+ n¥)

above resul{70) with N=2 or else by solving directly the

renormalization-group equation &fz)(g,q,). In order to
identify the wave-vector exponeg,, we utilize the scaling
form

T@(q,a ;7.p,u)=|77Y < (qi€,q. €, ;pl7]7%) (74)

of the inverse susceptibilit} () and argue as in Ref. 28: On
the helical branchTg(p) of the critical line, the inverse
susceptibility vanishes eqcz(qﬁ ,0)# 0. Hence in the scal-
ing regime, the lineT,¢(p) is determined by the zeroes of
the scaling functiorY (p,0,0). Denoting these as. ando.,
we obtain the relations

qf=pcéj t~pel "4 (75)

and
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p=047°%, (76) 1n+2
Au)=— 5 ——b,(mu+0O(u?), (80)
which yield g 3 3 v
of ~| 7l (77 and
with n+8
Bu(u)=—u| e= ——by(m)u+0O(u?)|. (81)
* 9
Vig 2+ Mo
Be=——=—"",0, (78) _ _
¢ A1l+9;) From the last equation we can read off thexpansion of

* n7i .
where the last equality follows upon substitution of E@) u*, the nontrivial zero ofs,

and(66) for ¢ and 4, respectively.

To compute the exponent functiof®8) and thes func- x__ > +O(€). (82)
tion (47), we insert the residua of the renormalization factors n+8 b,(m)
(34)—(36) into Eq. (49 and expres$ ., in terms ofb, using
Eq. (37). We thus obtain Evaluation of the above exponent functions at this fixed-

point value gives us the expansions of the anomalous di-
n+2 mensionszy* . Substituting these into th ia68)—

_ 2 3 _ 7, g these into the expressid6s)
7s(W)=-2 3 by(mu+O(w),  s=d.0.p, (79 (67), (72), (73), and(78) for the critical exponents yields

1 n+2

=§+m6+0(62), (83

Vi2

(0.02152 form=1,
0.02195 form=2,
vig 1 27(n+2) by(m)—b,(m) , o 1 .. 27(n+2) 2] 0.02231 form=3,
CHO)=5+0(E)™ 1787 7 002263 form=4,
0.02290 form=5,
| 0.02313 form=6,

vz 2 (n+8)%  2p,(m)? 89

(0.01739 form=1,
0.01646 form=2,
27(n+2) 0.01564 form=3,
s (85)
(n+8) 0.01488 for m=4,
0.01418 form=5,

| 0.01353 for m=6,

27(n+2) by(m)

No=— (n+8)2 bu(m)262+0(e3):(9(e3)+

( 0.00827 form=1,
0.01097 form=2,

27(n+2) b,(m) 27(n+2) .| 0.01334 form=3,

__ 2 3y 3y _ 2
M= AT b my2© T TN T g7 € 001548 form=4, (89
0.01743 form=5,
\0'01920 for m=6,
(0.02781 form=1,
0.05487 form=2,
@ 27(n+2) by(m)—2b,(m)+b,(m) 5 ,. 27n+2) ,| 0.07856 form=3,
— =1+ + =1+ -
= hrer b2 EHOEN=1+ 0 1557 0.00980 form=4, &
0.11904 for m=5,
| 0.13658 for m=6,

and



PRB 62 CRITICAL BEHAVIOR AT m-AXIAL LIFSHIT Z . .. 12 345

(0.00852 form=1.

0.02195 form=2.

1 27(n+2)b(m) b,(m) s 1 .. 27(n+2) | 0.03370 form=3.
+ =-+ —

Fa=a " nrr T pympe Qe (n+8)7 ¢ | 004424 form=4.

0.05379 form=5.

| 0.06251 form=6.

(88)

We have expressed the results in terms of the coefficientgrows exponentially as—.) In this manner one arrives at

by(m), by(m), b,(m), andBp(m), which according to Egs. the values of the=? terms given in the second lines of Egs.
(37)—(40) are proportional to the integraldo(m,d*),  (84—(88).
Joa(m,d*), J,5(m,d*), andl,(m,d*), respectively. These In Fig. 1 the coefficients of the? terms of some of these
integrals are defined by Eq&5) and (33). The first one of ~ exponents are depicted for the scalar case,l. As one
them—the one-loop integrally (m,d)—is analytically ~ Sees, _they have a smooth and relatively werdtependence,
computablé® for general values ofl andm. The result is especially forz; and 7,4.
In the special casesn=2 and m=6, the functions
®(v;m,d*) and=E (v;m,d*) become sufficiently simplesee

L F<2_T_e) Egs. (A6)—(A8)], so that the required integrations can be
JoAm.d)— 2 Erz € —4I‘ m done analytically. This leads to
0275 (2m)¢ 2] T(2—¢) 4/ _
(89 -
ivin
o b,(2)= - (91b
. m v 162 (4m®’
by ()= - it (90 11
m=g—— —m (2)=5 73 91c¢
The fixed-point value that results when this valuebgfm) 1-3 Inﬂ
is inserted into Eq(82) is consistent with the one found in b,(6)=— E“J 3 (924
calculations based on Wilson’s momentum-shell integration 4(6)= 9 (4m?2
method?®
The integralsly (m,d*), J, 3(m,d*), andl(m,d*), and 14 1
hence the coefficients,(m), b,(m), and b,(m), can be b,(6)= == 8l a1 (92b
calculated numerically for any desired valuemfusing the (4m)
explicit expressions for the scaling functiods(v;m,d*)  gnqd
andZ (v;m,d*) given in Eqs(A4) and(A5) of Appendix A.
(As discussed there, the numerical evaluation of these inte-
grals for general values ah requires some care because 5 1+6 In§
®(v;m,d*) is a difference of two terms, each of which b,(6)= ¢ i (920
A7
0.06 L) If these analytical expressions for the coefficients are in-
J serted into the expansiori85), (86), and (88) of 75, 74,
n and 8, with m=2 andm=6, then Sak and Grestdresults

for those two values afn are recoveredwhich in turn agree
with Mergulhi@ and Carneiro™® findings for 7,, and 7,,).
0.02f, " As was mentioned already in the Introduction, these re-
sults form=2 andm=6 disagreewith Mukamel's?® More
generally, ourO(e?) results(84)—(88), for all values ofm

N =1,...,6,turn out to be at variance with the latter author’s.
* * N The casem=1 was also studied by Hornreich and Brice,
-0.02 * * who calculatedy; 4(m=1) andg,(m=1) to ordere?. Their
1 2 3 4 5 6 . ) . .
results agree with Mukamel’s and hence diagree with ours.
FIG. 1. Coefficients ok? terms of the exponents, (triangles, Upon extrapolating the series expansidfd)—(88) one

714 (starg, and B, (squaresfor n=1. can obtain exponent estimates for three-dimensional sys-
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tems. Unfortunately, there exist in the literature only verysion about the upper critical dimensioif =4+ m/2. Using

few predictions of exponent values produced by other meansodern field-theory techniques, we have been able to com-
with which we can compare our’. Utilizing high-  pute the correlation exponenis, and 7,,, the wave-vector
temperature series techniques, Redner and Stdnleynd exponents,, and exponents related to these via scaling laws
the estimate3,=0.5+0.15 for the case of a uniaxial to ordere® The resulting series expansions, given in Egs.
(m,d,n)=(1,3,1) Lifshitz point. This is in conformity with (84)—(88), correct earlier results by Mukani®land Horn-

the valueB,=0.519 one gets by setting=1.5 in the corre-  reich and Brucé?® for the special valuesi=2 andm=6, we
spondingm=1 result of Eq.(88). A more recent high- recovered Sak and Grest’dindings.

temperature series analysis by Mo and Férgielded 24 To clarify this long-standing controversy, it proved useful
=1. For the susceptibility exponent to work directly in position space and to compute the Lau-
rent expansion of the dimensionally regularized distributions
N=V12(2= m2) = v1a(4— Ma), (939 associated with the Feynman diagrams. There are two other

the correlation exponent,, and the specific-heat exponent classes of difficult problems where this technique has dem-
onstrated its potential: field theories of polymerizgeth-

a=2—mu—(d—m)y, (94 ered membrane¥~*° and critical behavior in systems with
boundaries>*’ In the present study an additional complica-
tion had to be mastered: The free propagator at the Lifshitz
point, which because of anisotropic scale invariancegsra
eralized homogeneotisnction rather than a simple power of
the distancéx—x’|, involves a complicated scaling function.
For powers and products eimplehomogeneous functions, a

lot of mathematical knowledge on Laurent expansions is

_ _ _ ) available®* Unfortunately, the amount of explicit mathemati-
yield an estimate that can be compared with Glf&”) re- 5| requits on Laurent expansions of powers and products of
sults we consider the ratj6 /y, . S“bgt't“t'”g their exponent  generalized homogeneous functions appears to be rather
values intop :0(0%1_ o= )12 yields® =0.09£0.135and  geqrce. Since we had no such general mathematical results at
Bi1%=0.055, 9. From the asymptotic form(12) of oy disposal, we had to work out the Laurent expansions of

of the (m,d,n)=(1,3,1) Lifshitz point these authors ob-
tained the resultsy,=1.62+0.12, 4»,,=1.63+0.10, and
a;=0.20+0.15. Utilizing these numbers to compuigy via
the scaling law implied by Eq93), 7,4=4— vy, /v,4, yields®
174=0.02=0.5. This may be compared with the valug,
=—0.019 one finds from E(86) upon settinge=1.5.

As a further quantity for which Mo and Ferer’s restfits

Gy M one reads off the scaling law the required distributions by our own tools.
Difficulties of the kind we were faced with in the present
Vi2 Vig i i
Bi=—2(d—m=2+ 7., + —m, (95 work may be enpountered also in stgd|es of other types of
2 2 systems with anisotropic scale invariance. Hence the tech-

niques utilized above should be equally useful for field-

which may be combined with relatiq@3) for 7y, to conclude theory analyses of such problems.

that
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ponents grow withm because of the factordt —3)%=(1
+m/2)2.]

i(v)=v"‘f0 dg o~ J,.(qu)K (7). (A1)

V. CONCLUDING REMARKS . . . . .
This is a standard integr&f,which for arbitrary values of its

We have studied the critical behavior dfdimensional parametersu and v, can be expressed in terms of general-
systems atnaxial Lifshitz points by means of aa expan- ized hypergeometric functiongF;. For the special values
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u=m/2—1 and v=1-m/4—€/2 or v=—ml4—¢€/2 for
which it is needed, it simplifies, giving

[l

(I)(U;m,d):22+mﬂ_(6+m72e)/4 2+m
4
3 €
4 255
el 1 5.1 2+m_u v 2 2
*12\ 172277 e 2
I'l1l+—
. L m v* A2
X1 55 e (A2)
and
r 1-€
Ll . J— 1 2
2(v;m,d)= 53+m_(6+m-2e)/4 (m)
I‘ —_
4
I'l{1 <
l—e 1 m | o 2
Xle o A mal T T
2’24’64 4 _[24+m
4
€ 3 2+m v A3
Xl 2 _E,E, 4 164 ( )

At the upper critical dimension, i.e., fa=0, this becomes

_ m| 1 8
@ U’m’4+5 T p5+m_(6+m)/4 2+tm
4
e (gL 2+m v
R b R
P2
_23m/4\/;U2—m/2| m/4(Z) (A4)
and
2 v'm 4+T :; 23m/4\/_ 27m/2| v_z
=\ T o6 m (6 m)a v ma-1{ 2
22 . 1.3 2+m.v4
F(2+mi4t 2 ='2" 4 '64/)

(A5)

respectively, where thig,() are modified Bessel functions of
the first kind.
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In the special cases1=2 and m=6, these expressions
reduce to simple elementary functions: One has

1 2
<I>(v;2,5)=—2( o e v (AB)
1
E(v;2,5)=§<1>(v;2,5), (A7)
2

1- 1+vZ e v

®(v;6,7)= i (A8)
and

= 1 1 —2l4

:(v;6,7)=(47_r)3?(1—e vi4y, (A9)

The reason for the latter simplifications is the following.
If m=2 orm=6 andd=d* =4+m/2 (upper critical dimen-
sion), then Bessel functions Kwith v= + ; are encountered
in the integral(A1), which are simple exponentil8.This
entails that the required single integrations can be done ana-
lytically to obtain the result§91a—(920) for the O(€?) co-
efficients.

For the remaining values af, i.e., form=1,3,4,5, the
required integrals did not simplify to a degree that we were
able to compute them analytically. However, proceeding as
explained in Appendix B, they can be computed numerically.
In the special casesm=2 andm=6, the results of our nu-
merical integrations are in complete conformity with the ana-
lytical ones.

APPENDIX B: ASYMPTOTIC BEHAVIOR OF THE
SCALING FUNCTIONS ®(v) AND E(v)

According to Eq.(A4), the scaling functiond (v;m,d*)
is a difference of a hypergeometric functigh, and a prod-
uct of a Bessel function,, times a power. If one asks
MATHEMATICA °° to numerically evaluate expressioh4) for
@ (v) without taking any precautionary measures, the result
becomes inaccurate wheneuwgebecomes sufficiently large.
We found that such a direct, naive numerical evaluation fails
for values ofv exceedingyy=9.5. This is because both func-
tions of this difference increase exponentiallyas .

To cope with this problem, we determined the asymptotic
behavior of the scaling functionsd(v;m,d*) and
E (v;m,d*) for v—co. From the integral representatiofis3)
and (29) of these functions one easily derives the limiting
forms

®(v:m,d) ~ @Y py:m,d)=v 2D (m,d) (B1)

v—®

and

®_(m,d)

= . ~ = (as) , . = —2+2¢
E(v;m,d) E¥(v;m,d)=v 8(1—e)

v—®©

. (B2)

with
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el(a-e) vanish. For exampleb..(6,7)=1/(8 73), in conformity with
cpoo(m,d):f f Y expressior(A8) for the scaling functionb (v;6,7).

q/a.qy+ay In order to obtain precise results for the integrals

Joa(m,d*), Js4(m,d*), andl,(m,d*), on which the coef-

m o = o
22(dm)57.,(1d)/2p( d—2— _) ficientsb,(m), b,(m), andb,(m) depend, we proceeded as
_ . (B3 follows. We split the required integrals ag; ...dv

F(B_d+m) = SO ...dut ffo .. .dv, choosingyy=9.3. In the integrals

2 ffo ...dv, we replaced the integrands by their asymptotic

At the upper critical dimension, the latter coefficient be-forms obtained upon substitution @b and/or = by their
comes largev approximations® (@ and = given in Egs.(B1)
and (B2), respectively, and then computed these integrals
3-m_—~(6+m)a analytically. The integrals/ ° '56'dv were computed nu-
_ (B84)  Merically, usingMATHEMATICA.>” We checked that reason-
I‘( m— 2) able changes afy have negligible effects on the results. The
4 procedure yields very accurate numerical values of the re-
quested integrals. The reader may convince himself of the
Note that form=2 the asymptotic form(B1) is consistent precision by comparing the so-determined numerical values
with the simple exponential forngA6) since ®..(2,5)=0.  of the integrals form=2 and m=6 with the analytically
However, for other values of, the coefficien{B4) doesnot  known exact values.

O, (m,d*)=
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