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Chapter 1 

INTRODUCTION 

In the text to follow the conservative neutron transport 

equation (both one-speed and multi-group) and the temperature- 

density equation of Kinetic Theory will be studied for time- 

independent, one dimensional problems. The general form of these 

equations is, 

(1.1) Sy a) + KT (xu) = qo (xsy). 

In the case of the neutron transport equation py represents the 

neutron distribution function and 2lp(x,p) dxdy is the number of 

neutrons at. position x, x e R, traveling in the direction specified 

by the polar angle cos (y) where cost (y) is the angle between the 

x axis and the velocity vector of the neutrons (yel-1,1]). q. is 

a source function and qt is the neutron transport operator. Since 

we are dealing with the conservative neutron transport equation we 

are considering neutron transport in conserving media. As a result 

of this condition Kot is non-invertible. In the case of the tempera- 

ture-density equation R is a two component vector function depending 

on the spatial coordinate x, x e R, and the molecular velocity uz, 

ype R. wp is a perturbation from an equilibrium distribution of a 

rarefied gas; one component of w~ is the perturbation of the density 

and the other the perturbation of the temperature. In this case dg



is zero and Kt is the temperature-density operator. An analogous 

equation for the perturbation in the transverse velocities of a 

gas near equilibrium exists where ~ is a simple function rather than 

a vector function. This "transverse velocity" equation will not be 

treated in detail. 

Although the operator Kt differs significantly for the 

neutron transport case as opposed to the temperature-density case, 

the similarities in the spectra of the two operators allow them to 

be treated using the same general technique. In fact, the linear 

Vlasov equation of plasma physics has been studied by applying the 

1 
same method, ’ 

The standard method of treating equations of the form of 

Eq(1.1) was introduced by Case” in dealing with the non-conservative, 

one-speed, one-dimensional, neutron transport equation, The conserva- 

tive case was worked out later by Shure and Natelson.> The reason 

that Case's original approach could not be applied directly to the 

conservative case is basically due to the non-invertibility of the 

transport operator for this case. The same problem exists in the 

case of the temperature-density equation and the transverse velocity 

equation. The simpler transverse velocity equation was first treated 

by Cercignani 4 and the coupled temperature-density equation was 

treated by Kriese et al.?s in both cases the authors used the 

singular eigenmodes approach. In all of these papers the techniques 

applied are considered to be heuristic owing to their treatment of 

the continuous spectrum (for a critique of the singular eigenmodes



approach see the first chapter of Hangelbroeck's thesis®). As 

pointed out by Greenberg and tweiter! the singular eigenmodes 

approach in transport theory is analogous to Dirac's treatment of 

quantum mechanies® which ignores the fact that the continuous 

spectrum actually possesses no eigenvectors. In the case of 

quantum mechanics Dirac's work was justified by von Neuman's 

9 proof of the spectral theorem. The justification of Case's 

work was to come later. 

In 1973 a paper was introduced which employed what is now 

known as the Larsen-Habetler resolvent integration technique!” 

for treating linear transport equations. Larsen and Habetler 

applied this method to the one-speed, one-dimensional, time- 

independent neutron transport equation and duplicated the results 

of Case's earlier paper for the non-conservative case while avoiding 

the mathematical irregularities committed by Case in his treatment 

of the continuous spectrum. Simultaneous to this work Hangelbroeck 

developed a method for treating the one-speed neutron transport 

equation in a Hilbert space setting for the non-conservative case. 

Lekkerkerker’+ extended Hangelbroeck's results to the conservative 

case by restricting the domain of the transport operator to a 

subspace on which it is invertible, treating the reduced transport 

operator by Hangelbroeck's technigue and then later extending the 

results to the full domain. Greenberg and Zweifel t= applied this 

procedure to the same equation but were able to simplify notation 

and achieve more general results by applying the Larsen-Habetler



technigue to the reduced transport operator. The Larsen-Habetler 

method was used by Bowden, Sancaktar and Zweifel to obtain the 

eigenfunction expansions appropriate to full-range*? and half- 

ranges‘ problems in multi-~group transport theory. Later Bowden, 

Greenberg, and Zweifel’? attacked the conservative multi-group case 

by treating the reduced multi~group transport operator with this 

technique; however, this procedure is troubled by notational 

complexities. 

The rigorous means of dealing with the conservative 

neutron transport equation referred to above are not applicable 

to the temperature-density equation or to the transverse velocity 

equation because the domains of the operators corresponding to these 

cases cannot be decomposed, as in the conservative neutron transport 

equation, into a finite dimensional subspace and a subspace on which 

the transport operator is invertible. However, a modified version 

of the Larsen-Habetler technique can be used to attack these 

equations. In Chapter 2 it will be shown how this technique can be 

applied to the conservative neutron transport equation, both one- 

group and multi-group, yielding the proper results while avoiding 

the notational complexities of previous methods. In Chapter 4 this 

technique will be applied to the temperature-density equation which, 

until now, has only been treated by heuristic arguments. This 

approach has been shown to be applicable to the transverse velocity 

equation by Bowden and Garbanati .2° The results presented in 

Chapter 4 and those obtained by Bowden and Garbanati have not only



placed the Kinetic Theory equations on a rigorous footing but have 

also extended the results obtained by earlier heuristic arguments. 

The earlier work forced one to search for solutions to transport 

problems in the space of Hdlder continuous functions, a space which 

is not complete under any reasonable norm. There are two objections 

to this constraint. From a purely technical standpoint one would 

rather work in the framework of a Banach space rather than an 

incomplete space. Secondly, and most important, the constraint of 

H6lder continuity has no physical basis. Both of these problems 

are solved by the approach presented here. The results obtained 

for the temperature-—density equation are valid in a physically 

reasonable Banach space which is introduced in Chapter 4k. In 

addition, an integral equation for the surface density is presented 

for the Kinetic Theory equations. When a mixing of diffuse and 

specular reflection of molecules is allowed at a boundary, the 

boundary conditions assume a particularly difficult form. Until 

now the method of handling this problem involved solving integral 

equations for the expansion coefficients. The technique we have 

applied leads quite naturally to an integral equation for the 

surface density. 

Since the basis of this work depends on the Larsen-Habetler 

resolvent integration technique, the basic ideas of this method 

will be sketched. But first, a few general transport theory 

references are in order. In neutron transport theory the standard 

reference is Case and gweifel!, in Kinetic Theory Cercignani's!0>19



books are recommended and Chandrasekhar's@° book on radiative 

transfer may be helpful as many of the methods used in radiative 

transfer are also applicable in neutron transport theory and 

Kinetic Theory. 

The basic method of solution employed by Case“ for subcritical 

problems assumes that a separation of variables exists of the form 

N +1 
(1.2) wlx,u) = 2 a.p,(x)a,(u) +f Aly) (u)6 Cx)dv, 

4=1 -1 

where a, 1 <i <N, and A(v) are expansion coefficients; p, (x) 

and 8 (x) are eigenvectors of = ; qa, (u) and ou) are eigenvectors 

of Kt, Suppose that the following relations hold, 

-L 
(1.32) Kva,(u) = 7a.) 

~1 1 
(1.3b) K (a) = st (yu). 

Since p, (x) and 8 (x) given by 

(1.Wa) p(x) = ei, 

(1.4) 6 (x) = ely 

are eigenvectors of — with eigenvalues of - =, - ~ then w(x,u) 
i 

given by Eqs. (1.2), (1.3) and (1.4) is a solution of Eq. (1.1) 

for dg = O, i.e., 

N 

(2 +e) a,e Vig. (u) + Pave (ule Yau] = 0. 

-1 

(1.5) 
i=1



The expansion coefficients a, and A(v). can be determined by the 

boundary conditions at x = 0, 

+1 
pata Wt AW) 6 (uav. o

t
 eS 

(1.6) wlo,u) = 

Thus, we are led to seek an expansion of ~(0O,u) in terms of the 

eigenfunctions of qt, The eigenfunctions corresponding to the 

discrete spectrum, qa,(u), are readily obtained. The contribution 

due to the generalized eigenvectors, oO)» which correspond to the 

continuous spectrum of qt, must be handled more delicately. 

K ~~ is an unbounded operator but possesses a bounded 

inverse. In order that the vast literature on bounded operators 

could be employed Larsen and Habetler chose to study the bounded 

operator K. In the case of the discrete spectrum, note that if 

NT is an eigenvector of K with eigenvalue 4A, then 1 is also an 

eigenvector of Kot with eigenvalue 1/4. In the case of generalized 

eigenvectors and eigenvalues one can apply the spectral mapping 

theorem to obtain the same result. Thus, finding an expansion in 

terms of eigenfunctions of the more tractable operator K gives us 

1 
the expansion we require in terms of eigenfunctions of K~. By 

employing the following identity for bounded operators, 

|r
 

(1.7) f(21-K)tw(u)az = v(u), 
T 

NM
 

TI 

where [ is a contour enclosing the spectrum of K, Larsen and Habetler



obtained the desired eigenfunction expansion in an elegant fashion 

while avoiding the difficulties which were previously encountered 

in dealing with the continuous spectrum. 

In the case of conservative neutron transport this technique 

is not directly applicable. As for the Kinetic Theory equations, 

this technique is again not directly applicable and furthermore, 

the method of dealing with a reduced transport operator is also 

unworkable. As mentioned earlier the reason for the difficulties 

encountered stems from the non-invertibility of KT, The 

solution to this problem has been suggested by Larsen. If one 

defines the operator 

(1.8) gt = Kt Leo 

where Z is a complex number not contained in the spectrum of Kt, 

then got is an unbounded but invertible operator. Its bounded 

inverse, S, can be treated by the standard Larsen-Habetler method 

and an expansion of v(O,u) in terms of its eigenfunctions can be 

obtained. Again, applying the spectral mapping theorem, we see 

that if n is an eigenvector of S with eigenvalue ’ then n is also 

an eigenvector of Ko but with eigenvalue (1/At+z,). A similar 

result is seen to hold for the continuous spectrum. Then, the 

eigenfunction expansion desired is obtained by studying the well- 

behaved, bounded operator S rather than the ill-behaved operator 

gt,



In the chapters to follow these sketchy ideas will be 

elaborated on at great length. In Chapter 2 the technique 

mentioned above will be applied to the one-group and multi-group 

conservative neutron transport equations. The full-range and 

half-range expansions will be obtained. These results will then 

be used to solve the Milne problem. Many of the details of these 

calculations parallel the details of previous approaches (c.f. 

Ref. 12-15) and thus these calculations will not be reproduced. 

The main objectives of this chapter are to demonstrate the technique 

and to note its obvious notational advantages over previous methods. 

Chapter 3 contains a development of the primary equation of 

interest in this work, the temperature-density equation, from basic 

principles. 

In Chapter 4 the modified Larsen-Habetler approach is 

applied to the temperature—density equation and the full-range and 

half-range expansions are obtained. These results are initially 

obtained for a restricted class of functions and then the results 

are extended to the full Banach space. In order that these 

expansions can be used to solve transport problems a functional 

calculus is developed for the operator 5S. 

Using the results of the previous chapters the solution 

to the temperature-jump problem, for complete accommodation, is 

presented in Chapter 5. Also in Chapter 5, the temperature-—jump 

problem with arbitrary accommodation at the boundary is studied. 

For this case the boundary conditions of both the temperature-
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density equation and the transverse velocity equation are 

particularly difficult to deal with. We will present integral 

equations for the surface densities in both cases. Once the 

surface densities are known these problems can be solved by the 

same technique that was applied to the temperature-jump problem 

with complete accommodation. In previous work the standard 

technique involved solving rather unwieldly integral equations 

for the expansion coefficients. In the case of the temperature- 

density equation the existence of solutions to these integral 

equations has not been proven. We will show that the integral 

equations we obtain have solutions for all but, at most, a finite 

number of values of the accommodation coefficient.



Chapter 2 

CONSERVATIVE NEUTRON TRANSPORT 

section 1: The One-Speed, Full-—Range Expansion 

The homogeneous, one-speed neutron transport equation for 

a conservative medium can be written in the form, 

(1.1a) gba) shy (xu) = 0. 

K is an operator which acts only on the »p dependence of y» and is 

given by 

+] 

S f(s)ds]. 

1 
(1.1b) (K™*#)(u) = AL eu) 3 

u 

The domain of Kt is usually taken to be the space of Htlder 

continuous functions with index a defined on [-1,1]. We will 

designate this space by HS ([-1,1]). Here 

(1.2a) HO (X) = {f:||f|| <@}, 

  where | |- ly is given by 

(1.20) | |e] |, = sup fxj-fly) 
x,yex | x-y | 

xFY 

With this domain Kt is a non-invertible operator, in fact, 

11



12 

(1.3b) Ko (yu) = 1. 

The vectors e,(y) = 1 and e, (uw) = y span the zero-root linear 

manifold of KT, One easily verifies this assertion. Using 

Eq. (1.1b) and solving 

-1 
(1.4) (K “fo)(u) = 0 

for f, we obtain 

(1.5) fo(u) O Polu)s 

where p,(u) is a polynomial in yw of degree i. Similarly, solving 

2 
(1.6a) K f, = 0, 

we have 

(1.60) K(K™'£,) = 0. 

Using Eqs. (1.4) and (1.5) this implies that 

(1.6¢) (72, )(u) @ poln). 

Hence we obtain the result 

(1.7) f,(u) OL p,{u). 

Assume that 

(1.8a) (KE Cu) =O, n> 3, and
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(1.8) (Ke )(u) #0. 

Then 

(1.98) KR(K™PTFe (u) = 0, 

and thus, by Eqs. (1.6a) and (1.7) we have 

(1.90) KTP) (u) o 9, (u). 

+3 Solving the above for kK” f, we find that 

(1.9¢) (Ke) (yu) 2 po(u). 

A simple calculation shows that this result contradicts Eqs. (1.8a) 

and (1.8b). Hence 

(1.10) (KT "f)(u) = 0 

implies that f(u) is a linear combination of the vectors eo(p) = 1 

and e, Gu) =u . In previous work the span of {l1,y} is the finite- 

dimensional subspace which is substracted from the domain of Kt 

. 11,12 . : 
in order that the reduced transport operator be invertible. 

~1 
It is well known that the spectrum of Kv o(K ), is 

restricted to the real axis. Thus, if we define got by 5 

~l -1 , 
(1.11) S$ =K-il, 

then gt has a bounded inverse on HS ([-1,1]) and svt can be dealt 

with by applying the Larsen-Habetler resolvent integration technique.



1h 

S, the inverse of gt) may be computed by solving, 

(1.12) stre ny 

for f in terms of yn. Of course, f,ncHd ([-1,1]). Using Eqs. (1.1b) 

and (1.11) we have 

  

1 yt 
(1.13a) =[f(y)- 5 Jf(s)ds]-it(y) = nu), 

R ~1 
or, 

Lu i +1 
(1.13b) f(y) = T-in n(u) + Bli-in) Lts)as. 

Integrating both sides of Eq. (1.13b) with respect to » and 

rearranging we obtain the following expression for the integral 

on the r.h.s. of Eq. (1.13b), 

+1 +1 

(l.lba) = st(s)as = A*(-i) ¢ RE alan, 
1-1 

~1 -1 

where i = y~1 and we have introduced the definition 

+1 d 

(1.14b) A(z) =1-2 sp, 
2 _ 278 

Inserting the l.h.s. of Eq. (1.l4a) into Eq. (1.130) we have f in 

terms of n and thus, using Eq. (1.12), we conclude that the action 

of S on n is given by 

  

  

~ yell +1 

(1.15)  (Sn)(u) = Toy n(u) + se f snisias 
~l 

S is a bounded operator on the space b((-1,11,|u{ Paw) given by,
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(1.16) L(X,8(s)ds) = {f:s\t(s) |Pe(s)ds<o}. 
x 

We will restrict the domain of S to the smaller. space, qo defined by 

(1.17) H, = {f:uf()chHs ([-1,1])}, 

in order that the resolvent of S may be studied. The results we 

obtain on this restricted domain can be extended to the full domain 

of g te,el 

The resolvent of S, (2t-8)7t, is computed in the same way that 

S is obtained from gut The result is 

  

a _ y-l +1 

(1.28) (2t-s)te(y) = GHA (a ayyeQ,) + Gee); stlsdas 
t ~(2)=u 2A(t ~(z)) -1 t ~“(z)-s 

where we have employed Eq. (1.14b) and the following definitions: 

  (1.19a) t(z) = ms 

and 

  

—l _ 2 
(1.19b) +t -“(z) = Ttiz 

( 

Note that aot is the inverse of the operator t rather than the 

reciprocal of the function t(z), i.e., (t744) (2) = 2. 

In order to employ the identity given by Eq. (1.1.7) we must 

determine the spectrum of the operator 8S. If we view the r.h.s. of 

Eq. (1.18) as a function of z then the spectrum of S will be those 

points at which this function fails to be analytic. We examine the 

leading multiplicative term,
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(1+iz)7 _ 1 
tt ( 2) ap gz—(i+iz)u 
  (1.20) 

and note that it does not give rise to a pole at z= i. However, 

this term does give rise to a first order pole at z= t(p). 

From Eq. (1.14b) it is clear that A(z) is non-zero and 

Lf analytic for z in the finite plane,’ provided z ¢ [-1,1]. For z 

large A(z) can be expressed in the form, 

yt 5,2 1 (1.21) A(z) =1-= sas(1+ 2+ (2) 2. .) OK 
2 Z Z 3 
a |z | co 

. ~1 . ~1,,-1 . Since |t “(z)|+~ as zi, the factor of A(t ~(z)) in Eq. (1.18) gives 

rise to a second order pole at z= i. 

-l,,-l Both A(t “(z)) and the term 

+1 

(1.22)  sfisids_ = g(z) 
-l t 1 (2)-s 

are discontinuous across {zit 1 (z)e[-1,1]}, since the Plemelj 

formulas applied to Eq. (1.22) yield, 

+1 

(1.232) ef(u) =P fp SESS8 Fe yece ta), twel-a.il, 
-l1 t “(y)-s 

where, 

+1 
(1.236) ef (y) = lim fs sils)as 

erO0 -1 t “(y)tie-s 
e>O 

A similar result is obtained when the Plemelj formulas are applied
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to Eq. (1.14b). Thus, Av tet (zy) and the integral term introduce 

a branch cut, {2:t + (2)e[-1,1]}. 

The complete spectrum is accounted for by the semi-circle, 

{z:z = 5(itexp(ie)),-1<e<o}, and the point, z=i. We enclose the 

spectrum of S in two disjoint contours, [ and Tes with [. surrounding 

the semi-circle and r. surrounding the point z=i. Employing the 

identity (1.1.7) we calculate the contribution due to the semi-circle, 

    (ron) Be pores) Te(ujan = ep Be (e(y) + Me) “potlsdasy a, : ami mee Oni yztn e 2 12's 

Here [' is a contour surrounding [-1,1] and the change of variable 

gio t (2) has been applied. The r.h.s. of Eq. (1.24) is precisely 

the result of Ref. 12 for the branch cut integration. Thus, we are 

led directly to the standard formula, 12°14 

1 1 +1 
(1.25a) Om S(zI-S)""f(u)dz = SA(v)® (u)dv, 

i v 
r -1 

with 

L +1 
(1.25b) A(v) = wevy {S8F(s)4 (sas, 

_ _i i + ~ (1.25c) % (u) = 2P Sat tA (v)+A (v) 16(v-u), 

and, 

(1.254) Nv) = vAT(V)AT(V).



18 

Consider the integration about T,. Note that the analytic 

pehaviour of the first term on the r.h.s. of Eq. (1.18), ina 

neighborhood of z=i, is given by Eq. (1.20) and thus is analytic 

there. Consequently, the contribution due to the integration 

about r. will be given entirely by the second term on the r.h.s. 

of Eq. (1.18). This term is given by 

  

-1,.-1 +1 
1 A(t “(z)) “Ust(s)ds _ plz) 

(1.26) z—(l+iz)u | 2 te-(1+iz)s l= q(z) ” 

where p(z) is analytic in a neighborhood of i and is given by, 

+L 

(1.21) pla) = Zim(eiehul 5 stisiis— 

and q(z) is given by, 

(1.28) q(z) = A(t™*(z)). 

q(z) vanishes at z=i as well as its first derivative giving rise to 

a second order pole. The integration of the resolvent about I; is 

obtained by applying the standard residue formula for a second order 

pole, 

lo, plz), 2 ; i (1.29) ami i ata) dz = - 5 (3p'(z,)aq (2) )-p(2z))a' (25)), 
3(q (25)) 

and evaluating for Zon. The result is 

1 -1 3, 7 tl 5 
(1.30) om (zI-S) ~f(y) dz = =[u Ssf(s)ds + ss f(s)ds]. 

et op al -1 
1
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Combining the results of these -integrations, Eqs.(1.25) and 

(1.30), we obtain Eq.(10) of Ref. 12, i.e., the Case full-range 

expansion formula for c=l, 

+1 

(1.31) f(u) = dag-dayyt So ACv)e (av, 
O 1 “1 

where the expansion coefficients, a.» are defined by, 

+1 

(1.32) a, = 3S (ay)? Fr e(u)an. 
-1 

Section 2: The Half-Range Expansion 

In this section we will obtain the half-range expansion 

making use of the results from Section 1. In the previous section 

we obtained the eigenfunction expansion, 

+1 

(2.1) yplO,u) = 24,28, ut i A(v)@ (u)dv, 

where the expansion coefficients are given by Eqs.(1.25b) and (1.32), 

substituting w(0O,u) for f(n). wlx,y) given by 

+1 / 

(x-y) + Sf A(v)o (u)e™ Yau 
-1 

(2.2) wlx,y) = ta.tha 
0 1 

is a solution to Eq.(1.la) provided y(0,u) is specified for pe[-1,1]. 

For half-range problems ~(0,u) is specified only for pe[0,1] and 

the additional boundary condition, 

(2.3) Lim w(x,u) — constant 
x0
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is usually given. In order to satisfy boundary condition (2.3), 

y(x,u) given by Eq. (2.2) must have 

(2.4a) a. = 0 

and 

(2.4b) A(v) = 0 , ve[-1,0). 

Thus, for half-range problems, we seek an expansion of the form, 

1 

(2.5) plO,n) = ZagtSA(y)o (u)dv. 
0 V 

Functions satisfying Eq. (2.5) are clearly a subset of the functions 

expandable by the full-iange expansion, Eq. (2.1). 

It is convenient fo:' the following analysis to introduce the 

+ 

operator P L([-1,1], 
  
:|Pas) — L,([0,1],|s|Pds) defined by, 

(2.6) (P'f)(y) = tly) , poo. 

Define the operator B:L,([0,1],|s|"as) — L.({-1,11,|s|*as) by 

(2.7a) PEP y = Py, 

+1 . 
(2.7b) f s(EP y)(s)ds = 0, 

-L 

and, 

(2.7c) (21-S)~*(EP*y) (y) analytic in z for Re z<O. 

If an E exists which satisfies the above conditions and if y(0,,)



el 

is given by 

(2.8)  y(O,n) = (EP"y)(0,u), 

then w(x,u) given by Eq. (2.2) will satisfy boundary condition (2.4a) 

due to Eq. (2.7b) and boundary condition (2.4b) due to Eq. (2.7c). 

Furthermore, if » is specified for Wel0,1], which is the usual | 

boundary condition for half-range problems, then y is given on the 

full-range by Eq. (2.8). In other words, specifying w(0,n) for 

ue[0,1] with the added condition (2.3) is equivalent to specifying 

w(O,u) on [-1,1]. 

The operator E is given, as in Ref. 12, by 

(2.9) (EP’f)(u) = 

Here X(z) provides the Wiener-Hopf factorization of A(z)**: 

(2.10) x(z)x(-z) = 3a(z), 

where X(z) is analytic in @\[0,1] and vanishes as z+ as | z |. 

Not only does the existence of E imply that the boundary condi- 

tions (2.4a) and (2.4b) can be satisfied, the stronger statement 

(2.11) {a, = 0, A(v) = 0, ve[-1,0)} = wlO.u) = (EP*W)(O,n) 

can be made. The proof of (2.11)is left for Appendix III. 

According to Eq. (2.11) the expansion appropriate to half- 

+ 

range problems will be given by the full-range expansion of EP y.
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In order to express this result in the usual form, Eq. (2.5), some 

rearrangement is necessary. The expansion coefficients can be 

obtained by applying Eqs. (1.25b) and (1.32) directly to EP’p or 

by using the identity (1.1.7) on EP y. We choose the latter method. 

Substituting Eq. (2.9) into Eq. (1.18) we obtain, 

  

  

. yok . ycl 

(2.128) (2-8) tep*y](u) = B22 — (1 -ay)y(y)+ 2 
t (z)-p 2A(t (z)) 

+1 + 
rf (EE )(s) ds , us0, 

-l1 t (z)-s 

and, 

(2.12) [(2t-s) tmp *y ]( )= (14iz)7t (1-ip) 35 sw(s) ds 

" R ote) oy X(p) 2 oX(-s)(s-u) 

(atte) " s (HP) (s) ds}, <0. 
2A(t -(z)) -1 t “(z)-s 

Let us consider the term 

(2.13) f -(2Pv) (s)ds = i ds , dt sx (s)_ 3 tl 
1 t (2)-s -l 0 t (z)-s X\-t)(t-s 

Using a partial fraction decomposition of the denominator on the r.h.s. 

of Eq. (2.13), making the change of variable s > -s, and interchanging 

limits of integration we arrive at the result, 

  
0 + 1 1 

s(EP yp) 3 Ss Ss (o.1h) sS4BPY) yas = Sat fas 2L - 
1 t7 (2-8) o 609) 2 ks) stt)  x¢ ey (gat ty z)) 

tv(t) 
x(-t) 

x 
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To proceed we need the equation from Ref. 12, 

1 
(2.15) X(2) =f 

0 

Using Eq. (2.10) in (2.15) we obtain, 

Ss 

(2.16) &Q) = 5S cy (san) ds. 

NO
 {

Lo
 

O
n
N
-
 

Substituting the above into Eq. (2.14) and multiplying by 

(on(t7t(2)))7> we have 

    

  

    

0 + 1 

(2.17) 5 s SUE Wis) as = $——— f sbis) ds 
PA(t ~(z)) -1 t “(z)-s X(t “(z)) O X(-s)(t (z)-s) 

_~ i j si/(s) ds, 

en(t ~(z)) 0 + *(z)-s 

and since EP™ is the identity on [0,1] we conclude that 

+] + 1 

(2.18) z i f a Wits) a, = 3 a y —svls) ds. 
eA(t “(z)) -1 t (z)-s x(t ~(z)) 0 x(-s)(t ~(z)-s) 

With this result Eq. (2.12) can be cast in the form, 

yal yl 
(2.198) [(2t-s)tzpty](u) = G2 — (rau yy(u) + GHA — 

t (z)-u X(t ~(2)) 

  

and



2h 

  

  

-l_+ _3 (atiz)7 (1-ip) T _sy(s) 
(2.19b) [ (zI~s) BP wi (u) - 2D tno { X(y) 5 X(-s)(s-u) ds 

L+iz)7> ; sw(s) ds <0 
~1 ~1 > ue 

X(t “(z)) O X(-s)(t “(z)-s) 

Fq. (2.19) can be used to quickly verify that E satisfies 

Eq. (2.7c). To see this, note that 47+ maps the left half complex 

plane into itself and is analytic except for a simple pole at z=i. 

Thus x(t7+(z)) is analytic for Rez<0. Moreover, for y>O and Re z<0, 

| (1tiz)(t7(2)-y) | is finite. Therefore, from Eq. (2.19a), we 

have that (21-s)"tEp*y is analytic in z for Re 2<0 and uO. To see 

that (z1-s)7tep*y is analytic for Re z<O when »p<0, we need only check 

yo + 
that z=t(u) is not a singularity of (zI-S) “EP y. This is done by 

- recalling from Eq. (1.19) that t+ (t(n)) =. Thus, (21-s)~*Epty is 

analytic for Re z<O. At z=i we note from Eq. (2.19) that (z1-s)~tEP*y 

has a simple pole induced by the zero of x(t +(z)). 

Integrating (21-s)~*zp*y on z along a contour containing the 

point i and the semicircle, {z:z = 4(it+ exp(ie)), -m/2<a<0}, yields 

the Case half-range eigenfunction expansion, 

(2.20a) ly) = 4 
1 

ao + , Alv)o (udv, 

where, 

t S (s) 1 sds (2.200) a. = 2 SH as:   

and,
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sy(s)o (s) 

X(-s) 
  ds. 

section 3: The Multigroup Full-Range Expansion 

We write the multi-group neutron transport equation in the 

(3.1) awl, uy) + Ko (xu) = ale) ou #0, 
ox 

with, 

; +1 

(3.2) K y(xsu) = Lay(x.u)=c f yGosias tay # 0. 

Here y is an N-component vector where the i-th component represents 

the neutron angular densities in the i-th group, 5 is the diagonal 

cross section matrix, and C the group-group transfer matrix. The 

appropriate space to seek a solution is 

a N 

P ©, "P 

and x is the Banach space mentioned in Section 1. As in the one-speed 

case, the computations are done in a dense subspace of Hdélder contin- 

uous functions, and the results can be extended to x, by continuity.~* 

We have the dispersion function 

+1 

y-~S sD(zy,s)ds, 
1 

(3.3) A(z) = (2-20)07+ 

where,
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(3.4) D(z,u) = (2tepxt)7t, 

As we are dealing with the case of conservative neutron 

transport we have 

(3.5)  det(z-2c) = 0. 

In this case K7~ given by Eq. (3.2) is not invertible on its range. 

Thus, defining S as before, i.e., S = (Keay, we find 

-1 +1 +1 

(3.6a)  Sn(u) = B(u)(un(u) + x(c7 - ¢ Bls)ds)7+ ¢ sB(s)n(s)ds), 
=-1 1 

where, 

(3.6b) Bly) = (s-ipt)7. 

We have assumed that z = i is in the resolvent set of KT, If not, 

any other point could be chosen, assuming the spectrum of Kt does 

not consist of the entire complex plane. Furthermore, we have 

assumed that det A(z) vanishes as 1/z as |z|>~. 

It is convenient to define, 

-1 
(3.7) F(z,u) = (2I-uBly)) ~. 

Then a direct computation gives 

+1 
(3.8a) (zI-S)~tw(y) = F(zyu)(w(u) + B(y)R7(z) [C7 f Bls)ds] 

-1 

-L 

+] 

x f tB(t)F(z,t)w(t)at). 
~-1
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Here we have defined 

+1 +1 

    

  

  

  

  

(3.8b) R(z) = I-[c7t- sB(s)as]7> ¢ tB°(t)F(z,t)at. 
-1 =-1 

R is related to A by 

+) 
~- -1_-1 ~ -1 

(3.9) R(z) = [c 1 SB(s)das] Tymt act Leys . 
=~] 

To see this we note that 

+1 +1 
2] _ s -l, Z -1,-1 . -1 

(3.10a) is (s)F(z,s)ds = i Tis (az I-sz) “(r-isI) “ds, 

and thus, 

+1 +1 +] _-1 

(3.100) (C7 fB(s)ds)R(z) = C~ se} (I-ist™*)*as- s2% 
iz 

-1 -1 -1 

Z -l,-1,.-1 . —1 
x ( Teig I-82 ) “(2 ~-isI) “ds, 

which yields, 

+] +1 

(3.10c) n(o7t sB(s)ds)R(z)57> = rc trex Ni t-sz7 
iz 

~-1 ~-l 

sp7t Zz -l -1 
+ Leis! ‘Taig 278* )(Z-isI) “dst 

+1 
= - 4 f_ 2 -1,-1 = rote. fie Tee I-sz) “ds 

+1 
oath Z yay Zz -1,-1 

= fC “f-2r- Sig I~ Tyan t sl) (735 I-sz ) ds 
~1
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1, 7 1 1 
= (y-2C)C “r- SsD(t “(z),s)ds = A(t “(z)), 

~ 

and hence Eq. (3.9) is verified. Since det A(z) has a double zero 

at infinity, it follows that det R(z) will have a double zero at 

t(») = i. The continuous spectrum of K transorms into the semicircle, 

ul {z:z2 = $(i+ exp(ie)),-1<6<0}, and the additional eigenvalues of K 

(zeroes of A(z)) transform by v4> t(y,). 

The eigenfunction expansion is again obtained by integrating 

the resolvent around the spectrum. The integration around the 

continuous spectrum can be transformed into the identical form found 

in Ref. 15 (or see the result for the subcritical situation which is 

13 by the change of variable z' = tv (2). Similarly also identical) 

the integration about the isolated point eigenvalues, Vi. can, by 

the same change of variable, be transformed into the expansion met 

in Refs. 15 and 17. Only the contribution from the double pole at 

i remains to be evaluated. Again the appropriate residue for a 

second order pole must be used. 

Denoting the integral by I, we have from Eqs. (3.8a) and (3.9), 

, EAL (t7"(z)) +1 
(3.11) Ty = ana f (PCesw)BCu) “Gethlzy) E fsBle)Pla,s)i(s)ds}dz. 

i 

Using the diagonal expansion of detA(z) (see Appendix I), we find 

1 
(3.12) det A(z) = det(EC r-25)- = tr(z7* Aa (#)) + O(=p), 

32 Z 

where A (2) is the cofactor matrix of A(z). By definition of the
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critical multi-group problem, the first term on the r.h.s. of 

Eq. (3.12) is zero and the remaining term gives us, 

+1 

(3.13) 1,» a amis (F(z ,u)B(u)EA (t7"(2))= fsB(s)F(z,58))(s)ds) 
~1 

Ys 

x (= BEE Poe (ety (m)) + 0( (BEE) ) “Mae 

We note the following equalities, 

(3.14a) F(i,y)Blu) = Bly)F(i,u) = wir, 

(3.ahb)  <Sr(zsu)| = -F(aou), 
Z=1 

and, 

(3.1be)  F(iyu) = -(aT+ur +). 

Using Eq. (3.l4a) one finds, 

+1 +1 

(3.15) F(i,n)B(w)EAr ss sB(s)F(i,s)p(s)ds = -~Ats sy(s)ds. 
Cul CL 

Using the above and simple residue theory for a second order pole we 

obtain 

“Lt 1 p, tt i 
(3.16) I, = = (Str (7A (e ye [-2in (@)s sy(s)ds - F(isu)A,(#) 

-1 

+1 +1 
x f sy(s)as-A.(~)/ F(i,s)sp(s)ds] = (Sr (x77 Al (o))J7 

_1 ~1 ° 

+1 +1 
x (~24AT (ew) f sy(s)ds + inl () f sy(s)ds + yr oP (o ) 

Cel Cal



+1 mp tt T 1 tt 5 
x f sv(s)ds + id (@)f sw(s)ds + AT (*)2°7 JS sbls)ds] 

ec Cc -1 -1 -l 

+] +] 

= [ftr(rtat («yyy tpat(eyemt 6 5*bls)as + ux tal (mys sv(s)as] 
3 eC eC 1 c “1 

Using the results of Ref. 15 for the integrations about the 

continuous spectrum and the isolated point eigenvalues and Eq. (3.16) 

for the integration about the double pole we have, 

en +1 
2 ~1 -1 T -1 2 

(3.17) wu) = 2 ob + bt [Str (2 A C@))] ~~ [AL Ce) £ s°(s)ds 
Vv. T 3 Cc Cc 

i=l 2 -1 

L *1 
+ ub “A (~)S sb(s)ds] 

~1 

The last term on the r.h.s. of Eq. (3.17) can be expressed in the 

manner of Ref. 15 by noting (see Appendix I) that 

~ T 

(3.18) AL(~) = Str(2A (#)) EEE, 
C 3 c 

and thus, 

(3.18b) A (@) Eb = Sor EA (#) EW ELE, 
and, . 

(3.18c) EP AN(@)y = Sre(arta (#))[y te] Eg, 

where ~ is a column vector and we have defined the inner product 

[-,-] by, 

N 
[a,b] = % 

1=1 

(3.18d) wb.. 
1 1 

a



Combining the above with Eq. (3.17) we obtain 

on +1. 2 . +] . “1 

(3.19) p(y) =f Vy) + Ve + fds s“[w(s),b]5 + fds s[p(s),t€]ur “€e. 
i=l i -l —l 

The first term on the r.h.s. is the contribution from the finite 

eigenvalues of K. This, along with Ves is identical to the sub- 

critical result obtained in Ref. 13. Only the contribution from 

the eigenvalue at infinity is essentially different in the critical 

case. 

Section 4: The Multigroup Half-Range Expansion 

For the half-space expansion, again an "albedo operator" E 

must be introduced. This operator has precisely the same properties 

as in the one-speed case presented in Section 2. The appropriate E is 

~l1-1 2 
u)fs(ues) “Y “(-s)z vo (s)ds]., ~1s<o usd, 

(4.1) (EW), (o.n) = 
i’ oi . 

23 
where X and Y provide the Wiener-Hopf factorization of A, 

(4.2) Y(-2)xX(z) = A(z). 

We now compute 

(4.3) sacl (2-8) *By (uaz 

about the spectrum of 5S obtaining



  
Ty. MN 

f (2t-s)trv(uyaz. 
r 

1 

Here Vr and Yo are defined in Ref. 14 and are computed in analogous 

i 

fashion. The remaining integral is of the same form as I, of Fq. (3.11) 
L 

except with WY replaced by EY. Using the results of Gection 3 one 

finds, 

The second integral on the r.h.s. of Eq. (4.5) is calculated in Ref. 15 

and found to be zero. Thus, we write the half-range expansion in the 

form, 

n +1 5 a 

(4.6) win) = F an fds s°[Fu(s),é]&. 
j=1 “i -l 

section 5: Extension to % and the Development of the Functional 

Caleulus for S. 

In the following sections an outline of the extension to xX 

and the development of the functional calculus for S is presented for 

the one-speed case. The procedures followed are identical in the 

multi-group case. 1? Since a discussion of the multi-group case would 

add no new insights it will be omitted.



S is a bounded operator with domain HS ([-1,1]). As 

HS ([-151]) is a dense subset of the Banach space x the domain 

of & can be extended to x by continuity.*- Define the operators 

T:X > X and T:X > KX_ by 
Pp Pp Pp p 

  

+1 

(5.1) (TA)(u) = S A(v)® (u)dy, 
-1 

and, 

. , 4 
(5.2) (Tb)(v) = Iv) fsv(s)o (s)ds, 

-1 

where o Cy) and N(v) are as defined in Eqs. (1.25c) and (1.25d). 

Define the linear functionals pix > by 

+1 
(5.3) p, Cw) = 3 S(-s) 

—1 
eT wis)as. 

Then the expansion, Eq. (1.31), can be cast in the form 

(5.4) vu) = Zpg(W) =F 0, (v)u + (TA) 

where the expansion coefficient, A, is given by, 

(5.15) Av) = (Ty)(v). 

~ ol 
One can show that the operators, Pas T, T are bounded on X_. 

Furthermore, if we define x by 

(5.6) x = (Pex: 9, (1) = 0, ie{o,1}} 

then it can be shown that for every Ae x there exists a corresponding



weX' such that 
Pp 

(5.7) A=. 

And for every ben’ there exists a corresponding A ¢€ x such that 

(5.8) TA . 

Using these facts one concludes that the expansion (1.31) is valid 

for pe X el 
p 

In order to solve transport problems it is necessary to develop 

a functional calculus for S. Following Ref. 21 we define the operator 

P(w) (corresponding to E(w) in Ref. 21) by, 

Ww 

(5.9) Plw)f(u) = S Alv)d Cuddy, 
-1 

where A(v) is the expansion coefficient, or Case transform, of f. 

oO) is the Case continuum eigenfunction. One can show for 

rex ct 
» 

(5.10) P(w, )P(w,)f = P(w,)f, Wa = inf{w, swt. 

(5.11) P(l) = 7, 

and 

(5.12) P({-1) = 0, 

where I denotes the identity operator. One can also prove that P(w) 

is a continuous function of w in the strong operator topology and 

that the following hold,



+] 

(5.13) Sf = ft(w)dP(w)f, Pex!» 
-1 

where t is given by Eq. (1.19a), and 

(5.14) SP(w) = P(w)s. 

The facts cited above imply that P(w) is the spectral family of 

, oh 
projection operators for S&S. 

Employing the results of. Ref. el we also have that, 

+] 

(5.15) (Sft)u) = st(w)alP(w)tl(n). 
~1 

If we define Po and PL by 

and, 

(5.17) (Pf)(n) = = Fe, (fy, 

then any cA, can be written as 

+1 
(5.18) yu) = [PtP)+ soPGr) Jy. 

-1. 

Furthermore, if F is a rational function and y' = (I-P)-P, )p then 

+1 

(5.19)  F(S)p' = sR(t(w) )apCw)y'. 
—L 

We are interested in the action of Kot 

| re -l 
(5.20) K “pe=kK (I-P)-P, yp + K (PtP, )p- 

on w which can be written



with a slight abuse of notation, where tt is defined as in 

Eq. (1.12b). Fmploying Faqs. (5.21) and (5.19) we have 

+1 
-] 1 

(5.22) K ~(I-P.-P.)y= sf —~——— dP(w)(I-P.-P.)y, 
Ol 21 tel) Ol 

1.e., 

1 oan 
(5.23) K (I-P,-P, yp = i = dp(w)(I-P\-P, )yp. 

The action of Ko" (P +P_) on p is easily calculated and the action 
QO Ll 

of K"(1-P-P, ) is given by Eq. (5.23), which now puts us ina 

position to solve transport problems. 

Section 6: The Milne Problem 

The Milne problem involves the determination of the neutron 

distribution in a source-free half-space with zero incident flux.t! 

A solution to the one-speed, homogeneous transport equation of the 

form, 

+1 

(xen) + salve (ye! 
QO Vv MO

 
|
b
 

(6.1) ¥ (xu) = 5a + 
M 0 dv 5 

is sought which obeys the boundary condition, 

(6.2) ¥,(0,u) = 0, n> 9.



Let 

+1 

a. + fA(v)@ (u)dy. (6.3) Wu) = Sa, 
Q 

ro
[K
 

By Eq. (2.11) v must obey 

(6.4) w= EP. 

The boundary condition, Eq. (6.2), implies 

(6.5) Pw - Pou =o. 

Applying E to Eq. (6.5) and using Eq. (6.4) we obtain, 

(6.6) w= 5 mPn, 

and thus the coefficients, a, and A(v), are obtained by applying 
Q 

the half-range expansion to at The result is, 

1 1. 

(6.7a) 29 = fsy(s)ds / fy(s)ds, 
0 0 

and 

L V 1 
(6.7b) A(v) = °° y(v)NOv) fsy(s)®, s)ds 

By construction the function obtained satisfies the boundary conditions. 

To show that it also satisfies the transport equation it is necessary 

to apply Eq. (5.23) of the previous section.



Chapter 3 

INTRODUCTION TO THE TEMPERATURE DENSITY EQUATION 

section 1: Derivation of the Boltzmann Equation 

The state of a gas containing N molecules enclosed in a 

finite volume, V, can be represented by a probability density, 

t) where P.. dx. ,dx 
Pry Nw? yn OAV 

co J. we 
ni*y2*o pb 08 1°72? 2° 

dx, dé dé, ee dé is the probability of finding molecule n in 

the volume element dx centered at the position x with a velocity 

in the volume element dé centered at the velocity OF at time t with 

n ranging from 1 to N. It will be assumed that the molecules do not 

interact with the boundary of V except when they strike it. The 

only restriction on the type of interaction at the boundary is that 

the net flux of molecules through the boundary is zero, i.e., 

4-0 

(1.1) { f€§.*da.P. = 0, 
g _wo t 1 N 

where S is the boundary of V and da. is the area element of the i-th 

coordinate. Note that Maxwell's boundary condition with arbitrary 

accommodation satisfies this restriction. It will also be assumed 

that the molecules have no internal deprees of freedom so that they 

can be considered as essentially point masses. In this case 

Py O35 st) = 0 for x, ¢ V, 1 < i< N, because no molecules can escape 

V (here X represents the 3N dimensional space xy x Xo toss x Xo 

and = the corresponding velocity space o x Ee, 1... ® By): 
a 

38
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Furthermore, 

(X;£;t)dXde& = 1, (1.2) ss P y N 

{1
} 

since this expresses the certainty of finding all N molecules in the 

volume V. 

st) is given by The one-particle distribution function PL (x, 38,3 
N 

(1.3) pt yi%s8z5t) = f P(Xsgst)a(X-x, Jaze, ), 
. N 1 

Avk Sm 8a 

L.e., all coordinates except x, and by are integrated over. Conse- 
1 

quently, P (x, 36, 5t)dx, dé, expresses the probability that molecule 1 
N 

is located in the volume element dx, centered at Xo with a velocity 

in the velocity element dé at time t, independent 1 centered at & 
L 

of the positions and the velocities of the other N-1 molecules. 

Similarly, the two-particle distribution function, PO (x, oX_i8, East) 
a) ~ a 

is given by 

(1.4) PO (4, 9X 5384 9Bnst) = f f P(X3;23t)d(X-x,-x,) N . 
Xexj-%5 Eo Ey mE 

x d(S-£)-€,)- 

If N is very large the molecules will be constantly undergoing collisions 

with each other. In addition, if we assume that the molecular inter- 

action hus a finite Tange ,o, and if it is assumed that the molecules 

are in thermal equilibrium, then the velocities and positions of the 

molecules will be uncorrelated.-° Thus, the probability of finding



molecule 1 at xy with velocity & and simultaneously finding molecule 
1 

2 at position x, with velocity ED will simply be the product of the 
2 

probability that molecule 1 has coordinates (x, »8,) independent of 

the other molecules and the probability that molecule 2 has coordinates 

(x558,) independent of the other molecules, i.e., 

q 2 : w+ _ 1 : . 2 , ef. 

For a gas isolated from external forces and confined to the 

volume, V, the state of the fas will be constant in time and thus 

the total time derivative of POs 53t) must be zero. This requirement 

yields the Liouville equation, 

  
dP N N 

. + + Yi + _ > = 0, (1.6) 5 a es ee en es 
i=] 1=1 j 

where Vi, is the gradient with respect to the i-th spatial coordinates, 

Ve is the gradient with respect to the i-th velocity coordinates and 

i 

Re is the force on the i-th molecule. It is assumed that the inter- 

molecular force is repulsive, of finite range, o, and is directed 

along the line connecting the interacting molecules. In this case 

we have, 

N X ok, 

(1.7a) F. = - F(|x,-x.]) +L ; 

j=. ’ |x, -x, | 

j#i J 

where, 

(1.7b) F(s) = 0, s>o



If we restrict our attention to rarefied pases it is 

reasonable to assume that trinary collisions and higher order 

collisions may be neglected, i.e., assume that only binary colli- 

sions occur. Let V,, denote the volume (x: |x,-x| <0 and Ix ,-x| <0) 
& 

* 9 and let S.. be the surface of V... In the repion, R = V-U V., 
ij ij .. ig 

1J 
the Liouville equation reduces to, 

OP N 

(1.8) s+ Fe Vv. P. = 0, 
at j=. 2 i WN 

Since there are no intermolecular forces in this region. Integrating 

(1.8) over all spacial coordinates except x, and over all velocity 

coordinates except &—,, one obtains 
1 

OP 
—_ se VL Pd ( X-x To (1.9a) aC ; . fo b+ Vy gd (X x, a(S B) 

TX EE 

N 
+h fF S B, ¢ V,Pyd(X-x, Jd(e-€,) = 0 

jHe X-x, E-€ 
- 1-71 

Thus, 

aPC 36,56) 
Q J * . » ~ ~ on (1.9b) EY Vj Pyle 38,38) (N-l)s sf (Een) 

5S, 12 

x pelx. 5x36. ,£-3t)dalx, de, + (N-1) ¢ fle APE (x X38, 56,3¢) 
MOL? 2? rr re? eee Balsa a > 2 N71?" 2? 71772? 

x dalix, dE = 0, 
2 

where the velocity integration is over all velocity space and the



surface integrals are over the sphere of radius o centered at x) 

with inward normal n. The first surface integral in Iq. (1.9b) is 

due to the dependence of the range of integration in Eq. (1.9a) on 

the x, coordinates and the second surface integral is due to the 

application of Gause's theorem. Additional surface integrals arise 

from the dependence of the integration range on the coordinates with 

subscripts greater than 1 but these cancel each other. The integration 

over the surface enclosing V is zero by Eq. (1.1). 

Equation (1.9b) can be rewritten as, 

aPi(x365t) 
(1.10) N -+ 6 + UP (365) = (N-1) fs f 

Jt 

eo A 
o) . . _ . z ; 

* Palo x, 3656, st) (E E4? Y da(x, dé, 

If we consider molecules such that (E-6, ) - 71 > 0, these molecules are 

just entering into a collision and, if N is very large, we may assume 

that they are uncorrelated, just as in the case of a dense gas. This 

is the molecular chaos assumption. Consequently, 

C L 1 a 
. . «4. = 3 ~ fe ¥ . . —_ . > . (1.11) 9 PO(x, x, 58,6,3t) = Polxsést)Pl(x, 58,350), (6-€)) + n> 0 

This assumption cannot be made for molecules which have just interacted 

because their trajectories are correlated by the collision. However, 

inside the sphere of radius o we know that, 

  ‘(1.12a)  £



b 3 

de 
- 1 > = GE (1.12b) Foor > Fa 

and thus, 

o 

aP dx. . 1 2. dx 2 2 2 
‘ ——_ + —— . + —-—— .e 3 + 4 » XV + 4 « = (tec) Se + ae Py tae 7 Py ty fey * Bt UePy = 0 

1.@. 5 

2 
ar, 

(1.12d) ae (X96, 3b) = 0. 

Thus, if the duration of the collision is taken to be tT we have, 

t) = Pe (a0 x: tort:steq) % 128 2]? T 3 

2 | (1.132) 9 PrCx,x, 5856) 5 N N 

where, 

(1.13b) (E-£,) -n < 0 and (e'-e',) ~ f> 0. 

% % , 
Here the coordinates x 9K EI SE) are the coordinates of the molecules 

before the collision and X5X) 9858, the coordinates after the collision. 

Since the molecules are uncorrelated before the collision we may write, 

t) = Phx set yter) P(x 5 Rep tog Po X sFE I 3t t). 
) 

(1.14) PY (xx, 5858 ay 1? 

Since the duration of a collision is very short and the region of 

interaction is of the same order of magnitude as o, a very small 

quantity, Eq. (1.14) reduces to,



2 . . _ ly. . sty. . ',. (1.15) Pay l%aX, 3608, 3) = PyGge'st)Py x, 36,30), 

where &', EL! are related to £, by by energy and momentum conserva- 

tion. Thus, for N very large, we have, 

oP (x365t) 1 
(1.16) See VP («363t) =N fs f 

|x-x, [=o (E-£, )+n>0 

1 . . yl . . yl rs te. 4 L are t ° x [Py (x56 st) Py (58, 5t) ~ PCase st) PL Case pt] 

x | (E-€, ) +n} dase, )dg, . 

Define f by f(x,e,t) = HP (2355). Then the equation for 

fois, 

clr 
(i.ita) (E) E- vtle) = seltle)ele,) - tle')rte',)] 

ot 1 1 

x Vdalx, )dg, ; 

where, 

(1.175) v= [(e-6,) + nf, 

and the limits of integration are understood to be the same as in 

Eq. (1.16). 

Equation (1.17) is the Boltzmann cquation for f, the particle 

distribution function. Various moments of f give the macroscopic 

physical properties of the gas. The number density of the gas is 

given by,



(1.182) n(x) = ff(x,£)dz, 

the fluid velocity by, 

(1.18b) v(x) = ff(x,f)edet/n(x), 

and the temperature of the gas by, 

m 
kn(x) 
  (1.18e) P(x) = 5 fle-w(x) ) fx, e)ae, 

here m is the mass of a molecule and k is Boltzmann's constant. 

Before moving on a few of the properties of Eq. (1.17) 

should be discussed; for a detailed discussion see Refs. 18 and 19. 

Eq. (1.17a) is usually written in the form, 

at - vf = 7 (1.19) st e+ ve = Q(f,f), 

where Q(f,f) is the bilinear functional defined by, 

) + e(e)tle,) - tCe')ele',) 
1 

(1.20) Q(f,e) = 5 sr{tledele, CLES 1 

)d& ~ £(e' Jele')} Vv dalx, )de,. 1 L 

It can be shown that, 

(1.21) salt,f)o(e)de = 0, 

if and only if » has the property, 

(1.22) (8) + o(é,) = p(e') + o(e',), 
1.



6 

j.e., if ¢ is a conserved quantity. Functions satisfying (1.21) 

are called collision invariants because the average effect of 

collisions leaves them unchanged. The collision invariant functions 

. , ~ pe are the set spanned by the five functions: £58) E52 308 . The 

function, 1, corresponds to conservation of particles, Eb and 
cc 

. 2 
correspond to conservation of momentum, and &” corresponds to 53 

conservation of energy. Functions of the form, 

2 
(1.23) q(é) = exp(atb-f+cé"), 

where a and c are constants and b is a constant vector have the 

property, 

(1.24) Q(qle),qle)) = 0. 

Finally, if one defines the quantities, 

(1.25) He=/s f in(f)de, 

(1.26) H, = fe,f In(f)dé, 

and, 

(1.27) 4H = fildx, 
V 

then one can prove Boltzmann's H theorem using the fact that, 

(1.28) fin(ejyatr, tide «< 0. 

The H theorem states that the quantity H always decreases with time 

except when f is Maxwellian and then H remains constant.



section 2: Derivation of the Temperature Density Equation and the 

Transverse Velocity Equation. 

Due to the complicated nature of the collision operator, 4, 

model equations are studied in which the collision integral is 

replaced by a more tractable expression. We will study one of the 

simplest of these model equations, the BGK model, in which the 

collision operator is replaced by J(f) where, 

(2.1) d(f) = v(F(x383t) - £(x,85t)). 

Here the constant parameter, v, is the collision frequency and 

f(x3;£3;t) is a Maxwellian satisfying, 
> 

(2.2) sflxse3t) - tlx;e;t)U(e)de = 0, 

—
—
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An f satisfying (2.2) will give, at any point in space and any 

    
instant in time, the same density, fluid velocity and temperature 

as f. This model term,J(f), has the advantage of relative simplicity 

as well as retaining many of the important properties of the collision 

18 oe 
operator, Q(f,f). It can be shown” that J has the same collision 

invariants as Q and that Iq. (1.28) remains valid with Q replaced by



NB 

J and thus, solutions to the model equation will obey an H theorem. 

We will consider time-independent problems with plane symmetry, 

allowing Eq. (1.19) to be cast in the form, 

(2.4) 6 evelxs6) = v(t(x36)-f(%56)), 

where Q(f,f) has been replaced by J(f). Equation (2.4) may appear 

Simple. However, the requirement that f satisfy (2.2) introduces 

complications. To further simplify the equation we will assume 

that to zeroeth order the state of the pas can be described by a 

Maxwellian, fle), and to first order f is piven by, 

(2.5) Ff Oc36) = fole)(1+n(x;8)), 

9 

so that terms of order (foh)” may be nerlected. 

Let 

  _ —m 3/2 at ot 2 
(2.6) f.(&) = 0 BTiKE exp(- ant * Yo) ), 

where n, is the density, T 0 the temperature and Vy the fluid velocity 

18 
0 

corresponding to f.(&). Also define the inner product, 
0 

(2.7) (pia) = ft.(e)ple)ale)de. 
0 

Define the dimensionless velocity, C, by 

  

(2.8) Cs (1 (py ). 
5 : 

Then, 

(2.9) {dé = nit! exp(-C*)uc.



a) 

Note that the basis vectors, 

  

. _. -1/2 
(2.108) e5 = Ny 5 

(2.10b) e, = (2) 1/25 »> il <i < 3, 
1 n i —_ = 

0 

2 1/2 
(2.10e) e = (= yV/ (c* 3), 

h 3n 2 
0 

satisfy 

(2.11) (e.,e.) = 6... 
Log iJ 

Equation (2.2), 

One easily verifies that f piven by (2.12) pives the same density, 

fluid velocity and temperature as f, to first order, by using the 

orthoponality of the e,- For example, the density corresponding to 

f is given by, 

(2.13) f£(x3&)de = f{n 1/2, f (zr) E(1l+h(x3&),e. )e. }dg, 
0 0-0 f=1 ii 

\ /2 L/2 = y(lth(x;£),e.)n I “Ce se.) = nv’ “(l+th(x3t),e,) 
0 Or 2 0 

i=l 

= ff (Ce) (lth(x;6) de.



But the last term on the r.h.s. is the density given by f, to 

first order. 

It is easily shown that with J(f') piven by Eqs. (2.1) and 

(2.12), the collision invariants remain invariant, i.e., that 

(2.14) sd(fiele)de = 0, 

if o(&) is a collision invariant function. We have, 

y 

(2.15) so(f)ple)de = fo{fye) B(1+h(x3¢),e, Je,-fle) }oledde. 
j=1 

To first order we obtain, 

h 

(2.16) salt )gleldg =v{ E(1th,e, )(e,,g)-(1th,6)}, 
i=] 

and thus, by Eq. (2.16), Eq. (2.14) is satisfied for the collision 

invariant functions, because the collision invariants span the same 

subspace as the C.- 

Finally, to show that the solutions will obey an H theorem 

one must prove that, 

(2.17)  sin(r)d(f)de < 0. 

To first order we have, 

(2.18)  sinlr)a(f)ae = sin(f (1th) folie, 

 , . 
where h is given by, 

y 

(2.19) h = ghye.)e. -h. 
ica 

i=l



Equation (2.18) can be expanded as follows, 

oe 

(2.20) sin(t)d(#)ag = (in(t,),8) + Gn(atn),n), 

where the inner product given by Eq. (2.7) has been used. Since 

fy is a Maxwellian, in({f)) is a linear combination of the collision 

. . . 4 . . . 
invariants which are orthogoanl to h . Taking this into account and 

expanding ln(lth) to first order one has, 

A 
(2.21) fin(t)d(f)de = (hyh ) = (h yh ). 

But the term on the far r.h.s. of Eq. (2.21) is zero to first order 

and consequently Eq. (2.17) is obtained. 

If we consider only problems with plane symmetry, upon 

substituting Eq. (2.12) into Eq. (2.4) and simplifying we obtain 

the linearized BGK equation, 

(2.22) Ey ah" 6) L v{ “xCh(x',E),e Je, - h(x',e)}. 
ox 

For time-independent problems with plane symmetry, if Vo1 is the 

component of the fluid velocity in the x' direction, then Vor QO. 

Tf not, any spatial variations of the distribution function along 

the x' axis would propagate along the x' axis contradicting the 

hypothesis of time-independence. 

Let 

  m™m yi fe 
(2.23a) x = aa x", 

then,



ee (my l/2 3. 
(2.23b) x! Se) ax? 

and Eq. (2.22) can be written as, 

where C is given by Eq. (2.8). Multiplying Eq. (2.24) by fy and 

integrating over velocity space we see that, 

0 
(2.25) aut Cy oh) = 0. 

Define 

(2.26a) h=h - (e,,hje 1? 

then, 

(2.26b) (hye 

Furthermore, using (2.25), we see that h satisfies (2.24) and thus, 

w.l.0.g., we may assume, 

(2.27) (hye, ) =O, 

We introduce a second inner product and basis vectors, 

N
 

(2.28) (p.q),, = Spa exp(-c -C5)ac,ac.,, 

PO
 

(2.298) g, 20 /*,



— _-1/2,,2. 2 
(2.29b) o, = 7 (C5+C5-1), 

_ 21/2, 
(2.29c) 0, = (7) Cs ie{2,3}, 

and observe, 

(2.30) (520 s)o = 6.., 
ij 

(2.31a) (ge )5 = (08 (8, + 72 (0,°- Bod, 

(2.31b) (0,50, )5 = (So baa, 

(2.31e)  (¢,.0,), = (Y/s,,, 
e 12 No 12 

(2.314) (5,6,), = 8, 

Let yp = Cy and take the (2) inner product of Fq. (2.24) with bo and 

e+ to obtain, 

(2.32) 193 3X (1y$5)5 = (h,eg)(egsby). + (hye) ley sda), a (hsdbo)os 

and 

a _ > 
(2.33) 15} 9x Ch, 6s), _ (heen )(en.$, )5 + (hye ley 5¢4)5 a (hogy )o- 

Note that, 

Jn + 5 
(2.3h4a) (ne) = i exp(-u")(hyo,).du, 

Yn +0 
ce O O eC 1 (2.3he) Cre) = FS G2 rexp(-u7) (m9), + (x? - Bn,45),)- 

= CO



If we define, 

(2.35a)  v,(xu) = (hs do)o, 

(2.35b) Vol, u) = (hsb). 

and 

(2.35¢) ¥(x,u) = : 

then, using Eqs. (2.35), (2.33) and (2.32), we obtain the following 

equation for ¥, 

+00 

(2.36) y PRM vy) = alu) sale)utx,s) exp(-s“)as, 

T 
where Q .1s the transpose of Q and 

2,2 1 
joi Ja - 9) I 

2 P 
(2.37) Qu) = 

Equation (2.36) is the temperature-density equation and 

contains all information necessary to determine the perturbations 

in the temperature and density. 

Note that, 

-3/ ] 
(2.38) s(a'y), exp(c “Jac, = el ey exp(-C")dc, 

2 L 

and using (2.9) we see that, 

  (2.39) Q'v), exp(-C 

where,



(2.40) n(x) = ny + An(x). 

pimilarly the perturbation in the temperature, AT, can be found by 

considering, 

WA
) it _3/) 

(2.41) r(qty) exp(-C “Jac, = /2 il 3/" exp(-c*) (c*-2)nac. 

no
] 

1 1 

AT is given by, 

-3/2 2., 2 > (2.42) ar = tq ror 2)n exp(-c°)ac, 
0 3 

and thus, 

T 
(2.43) £(Q ¥), exp(-C 

Thus the perturbations in the temperature and density are given by 

T . . 
the components of @ ¥Y integrated over the velocity variable with 

the appropriate weight function. 

Now take the (2) inner product of Eq. (2.24) with bs. 

ie {2,3}, to obtain, 

h 
0 _ . 

(2.44) Wy, bods do = gene eye tile - (hos), 

= (nye, (yl? _- (hid), = i ay exp —y “)du-(h4$,5 5. 

0 SS VT 

Thus, if y is a solution to (2.44) with i ¢ {2,3} then py must satisfy, 

+00 

(2.45) port + (xu) = tt fw (x.s)exp(-s*)ds, 
‘ Jn eo 

the transverse velocity equation. The solutions to Eq. (2.45) will



ON
 

give the perturbations in the components of the fluid velocity in 

the transverse directions. 

The perturbation of the fluid velocity in the x direction 

is obtained by multiplying Eq. (2.24) by fo and integrating over 

velocity space to obtain Eq. (2.25). 

Thus, the solutions to Eqs. (2.37), (2.45) and (2.25) yield 

the macroscopic quantities of interest; the fluid velocity, the 

temperature and the density. of the gas.



Chapter 4 

THE TEMPERATURE-DENSITY EXPANSION 

section 1: Full-Range 

The equation of interest, the temperature-density equation, 

is given by Iq. (3.2.36), 

+00 

(2) yp RH) v6) = aly) 10% s)¥(xs)exp(-s")as, 

with, 

2 e od 

(1.2) au) =o" (Be 9 

Multiplying Eq. (1.1) by a Gut and defining =(x,y) by, 

_ T 
(1.3) =(x,u) = A] (u)¥(x.u), 

leads to the following equation for e(xyy): 

Gib) 2800u) 4 ti) = 0, 
ax 

where we have defined K+ by, 

+o0 
. -l 1 oO 

(1.5) K “s(x,u) = o [a(x ,p)-Flu)re(x,s)exp(-s*)ds], 

and F is piven by, 

_ AT 
(1.6) Fly) = Q°(1)Qtn). 

a7
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Recalling Eqs. (3.2.39) and (3.2.43) we see that, 

+00 

(1.7) f 
—o 

g, (xswexp(-u)au a AT(x). 

l.e., the integral of = E, over yi with the weight function, exp(-"), 

is proportional to the perturbation in the temperature and, 

+00 

(7.8) f2n(x,u)exp(-u") dy a An(x), 
= CO 

. 2 
i.e., the integral of =, over y with the weight function, exp(-y"), 

2 

is proportional to the density. Consequently, it is physically 

reasonable to seek solutions to Fg. (1.4) which are differentiable 

. C 
w.r.t. x and p-integrable w.r.t. yp with the weight function exp(-y) 

for each x. Define the I(p,n) norm by, 

n + 

(1.9a) ) =( f st, (u)|Pac(w)/?, 
i=l -o 

Mla 

with, 

o 
(1.9b) do(u) = exp(-u")dp. 

Define the Banach space, xR) by, 

n _ . <0 
(1.10) X UR ) = f/f laop a) }. 

} 
We seek solutions to Eq. (1.4), Ew), such that =f) € XR) 5 pol. 

For convenience the dependence of {rt
} on x will be dropped and the 

identification, 

(1.11) || - Mt) = || “Tep,e) , will be made.
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It is clear from Eqs. (1.4), (1.5), (2.1.la), (2.1.1b), 

(2.3.1) and (2.3.2) that the one-speed and multigroup neutron 

transport equations are very similar to the temperature-density 

equation. Furthermore, the transport operator and the temperature- 

density operator have similar properties, i.e., in the case of 

conservative neutron transport, the transport operator is non- 

invertible as is the temperature-density operator. 

-l . 
The zero-root linear manifold of K is spanned by, 

(1.12) {F(i)vp, Fludvys uF Gi) ys uP(y)v, } 

where, 

1 

(1.13a) Vg = 0 > 

and 

0 

(1.13b) ov, = . 

c 

To see this we first note the form of Kot from Eq. (1.5), 

+00 

Kf = seu) -PGu) rf(s)do(s)]. 
—CO 

suppose that f, satisfies, 
1



Similarly if f, satisfies, 2 

(1.16) (Kt) (y) = 0, 

then, 

(1.17) KK E(u) = 0, 

and hence, by (1.14) and (1.15), 

Te (yu) a Fp)u, ve IR. (1.18) (K - 

But Eq. (1.18) implies that, 

(1.19) 9 fot) a F(y)uy tn), 

where v4 is of the form, 

(1.20) (yu) = uk, +k k_ j,k. ¢ R“. My tg? “yo 

Assume that, 

(1.21) (Ke) Gu) =0, n>3 

and that 

Then, by Eqs. (1.18), (1.19) we have, 

—n+te 
(1.23) (K fC) a F(u)vu,(y), 

1 

and thus,



(Liek) (KMS 6 GN) a FC)u 

where, 

(1.25) up(u) = u°k a + + k 5 Wk, k k. e¢ IR 
2 0° 1 

Operating on both sides of Eq. (1.24) with K7* and employing 

Eqs. (1.19) and (1.16) we obtain, 

~ntl 2 2 
(1.26) K fi au PUK, k, ¢ IRY. 

Thus, by Eq. (1.21), we must have 

(1.27) Ko (u"F(u)k,) = 0, 

but, 

(1.28) Ly" FGu)k,] # 0. 

Thus we are led to a contradiction by the original assumptions, 

Eqs. (1.21) and (1.22), and hence the entire zero-root linear manifold 

is spanned by functions of the form of ry and fy of Eas. (1.15) and 

(1.19). 

We approach the temperature density equation in the same way 

as the conservative neutron transport equation and define the 

-] 
operator, 5 §, by, 

(1.29) gut = Koh il, 

from which we obtain,



  

  

  

(1.30) (88)(u) = &uaty) + ELS aa) ses) 8(s)aa(s) 

Here we have defined, 

-Foo F(s) 

(1.31a) A(z) =Il+af oo da(s), 

_ Z, (1.31b) tla) = > 

ol ~ —2_ (1.31c) t “(z) = Ttan? 

and, 

(1.31d) (it +) (2) = N 

In order to apply the Plemelj formulas to integrals which 

will appear later in the text, such as Iq. (1.52), we restrict the 

class of functions to be considered to those functions in xO CR) 

obeying a Hélder condition. In particular we will work in the space 

H -(3R) where, 
p 

(1.32) HOR) = {f: st(s)exp(-s°/p)eL, (IR ,ds HS (IR) ,p>1}. 

Here, 

(1.33) LL (.t(yay) = ei (slely)|Pelyay) 1 Peo} , 
¥ 

(1.34) HO OR) = {f:[[t] | <0}, 
a O 

and



(1.35) ety, = sup 5 
Xj) FX5 |x, -*, | 

X4 ok eR 

Note that the Holder norm, | 
    

la is actually only a semi-norm. 

In section 2 it will be shown that HOR } is a dense subset of 

x UR) and the results of this section will be extended to the 

entire Banach space, x UR). 

We wish to apply the identity, 

in order to obtain the full-range expansion (here [T' is a contour 

surrounding the spectrum of S). To apply this identity we must 

first establish that S is a bounded operator. From Eqs. (1.30), 

(1.31) and the definition of | 
    

we have, 

  

In(p) 

(1.37) HSE e (5) < SHEL s¢) + CIEL y(p) , 

where, 

-1 
(1. 38a) C, = sup It ~“(udl<0 , 

: ueIR 

1 1 1 
(1.38b) C, = sup |( st ~(s)F(s)da(s)a- (-i)),, | sup TG | <co , 

© igge{1,2} -@ uel is 

2 
and hence S is bounded on x, OR). 

To compute the resolvent operator we solve the following for g, 

(1.39) (2TI-S)f(u) = a(n),
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i.e., 

l (11) \, (L.HO) (zt (u))¢(n) - FEE ATE (-a) st (s)e(s)do(s) = ela). 

Solving for f we find that, 

    

    

  

    

+00 

a\-l _ ~1 -1, FC) 1 S 
(1.41) (2I-S) “e(u) = (2-t “(n)) “telu) + pepe (M-i)+ ae fsa) 

x F(s) L 1 7” sels) i a\\rb sels . 
l-is do(s)) Lt+iz I t(z)-s do(s)} 

Define the operator T. by, 

1 F(s) 
hs = -} S ~ , 

(1.42) hh M—i)+ ltiz > s-t(z) l-is do(s). 

Then we have, 

1 Ly vel Pn) ,, -l 1" “sels) 
(1.43) 9 (2I-S) “g(u) = Ca-t “GP falu) + Tein 71 tig feCa)-els)} 

Now we wish to put Ty into a more familinr form. To this end we 

note that, 

    

S| , i 
(1.44) last i- - 

fj “a
 

pH
! I ht Y 

Using the above and iq. (1.3la) one finds, 

+00 

i F(s) | 
l+iz J (s-t(z2))(1-is) do('s). 

nae UA, 

  (1.45), = A(-i) + = (a(t(2))-1) - 

Using, the partial fraction decomposition,



1 1 _ ltiz i(1+iz) 
(1.46) s-t(z) l-is ” s-t(z) r l-is ° 
  

and Eq. (1.3la) we have, 

  (1.47), = A(-i) +S (A(t(z))-2) - 

Thus, substituting Eq. (1.47) into Eq. (1.%3) and noting that, 

=i —l oo d-iu L 
(1.48) (zt “(u)) ~ = ltiz t(z)-p ’ 

  

we have, 

(hg) (ates)Ps(u) = GHZ cacapyety) + POL areca) . Z1-S B(y) = t(z) ai -ip)e(u ltiz Z 

00 
s=(s) 

x i tl2z)-s do(s)}, 

which is a convenient form of the resolvent operator. 

To determine the spectrum of S, o(S), we examine the points 

where (zI-s)7t fails to be analytic in z. Avt(4(2)) is analytic in 

the complex z plane except along the curve, C = {z:2 = =(itexp(i0)), 
c 

0 < 6 < 2}, and det A(t(z)) has a double zero at z=i where,” 

(1.50) lim aAv*(+(z)).. = = (6(2))©B. /(a40[(4(2))*]), 
ari *d +d 

and, 

1 1 

(1.51) B= 
2 

L 7 
6G G 

This double zero accounts for the only cigenvalues of S. The spectrum
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of S consists of the points {z=u/(l-in), ueIR}. Therefore the entire 

spectrum of S consists of the circle C. 

2 

Let C be enclosed by the contour f' = U {r, UT .UT..} 
j=l J BJ 1J 

where the contours are as in Figure 1. If F' is collapsed around 

Ds is a 
1 HJ W

o
n
 

the spectrum of the resolvent operator then Y = 

J 

circular contour about ttn) with the points where the contour 

2 

intersects C deleted. Ps = JU Mid is a circle about 2=i with two 
: j=l 

C 

points deleted and T = UT, consists of two concentric circles 

j=l 

enclosing the spectrum with the ares contained in the circles, P 

and Ds deleted. 

In evaluating the contour interral on the l.h.s. of Eq. (1.36) 

it is convenient to make the following designations, 

(1.52) N(z) = fs SEAS) ag(s), 

and , 

+ . . + —l_+ 
(1.53) M(y) = lim M(ytie) = (A°(n)) “N'(n), ue BR. 

e>O 
E>O 

Let z' = t(z) and consider the integral about r of (2r-s)7ts, 

Using Eq. (1.49) we obtain, 

1 -1 1 (Leizt)7 
(1.54) sf (2I-S) “f(y)dz = se fo tS 1 i eG) 

eli eli Zi 
tT 

+ Fu) (l-iz')A (2! )N(2")}azt = B(u) + FC) s (Mm (y)4M(u)}



Employing the same change of variable and integrating over [ we have, 

  1 1 1 Mr (s)-M" (s) 
(1.55) nel fats) E(y)dz = apie PE ds, 

where P denotes the Cauchy principal value. Applying the Plemelj 

formulas to Eq. (1.52) we find, 

_ + oy 2 
(1.56a) N (yi) = N (uy) = Omipetydexp(-uo), pe IR. 

Using Hq. (1.53) this can be cast in the form 

+ - + 
(1.56b) enins(y)exp(-u) = =A (u)-A (u)) CM (u)4M (y)) 

M
L
R
 

+ 

+ (a(n) #07 Gi) OF (yw) =i (1). 

n
o
t
r
e
 

“Noting that, 

DM
 

(1.56c) A (yu) - A (1) = -21ipF(u)exp(-y"), 

by applying the Plemelj formulas to Eq. (1.3la) we arrive at the result, 

  

C l - + lL, - + ~ + 
(1.564) 2p) = - 5 FG) (Mt (u)4M (u)) + cep) 24 Cu)ta (y)) OM Gi)-M (ui)). 

Employing the result of Eqs. (1.54) and (1.55) we have, 

1 -1 exp) Loo + 1 - + 
(1.57) sy Ss (2t-S)e(y)dz = ~=(A (i )t+a ()) soy Of (1) -M (1)) 

eli U Cc Elli 
rur 

u 
oo + 

1 M (s)-M (s) 
* alli PQu) ni S-U ds 

We are left with the integral over [T,. Returning, to Eq. (1.49) we 

note that,
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(1.58) lim = -i, 

and hence the first term on the r-.h.s. of Eq. (1.49) is analytic 

in a neighborhood of z=i. Thus we have 

1, F(qy) Av (4 (2) )N(t(z)) 
eli . z-yp(l+iz) l+iz 

i i 

  (1.59) =f (2I-S)7*s(y)az = dz. 

In a neighborhood of z=i, m(t(2))(44iz) > is analytic as is 

(2—p(1+iz))7+, The behaviour of At (4(2)), Zz=i, is given by 

Eq. (1.50). Using elementary means the residue can be evaluated to 

yield 

1 _] +00 4 +00 

(1.60) aay f (zI-S)s(p)dz = F(y)B{fs°e(s)do(s) +n fse(s)do(s)}. 
r. _eo oo 

1 

Define Ps by 

_ en-1_ (1.61), (2) = B fs°"*g(s)do(s) 

Combining Eqs. (1.60), (1.57) and using Eq. (1.61) we have, 

‘ +00 

(1.62) sy J (21-8) 2(u)ae = A(y)ACy) + uIP S Sats) ag(s) 

+ F(u)(p (2) tuo, (2)), 

where we have made use of the definitions, 

1 ~ 
(1.632) AM) = mae (uta (u)), 

and,
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(1.63b) Ay) = u(y) ) exp(u) 
, ellis PAW? 

Note that, 

(1.64) oma) = Mtn) = (ATG) T*NT GD) = (A 

2 crga ~ ata arqa ay) 

+ = Cava) + Ct) Gr) - wa), 

where we have made use of the definitions, Eqs. (1.52) and (1.53). 

Define 

(1.65a) ATG) = see CNT) = 

(1.650) 7G) = 3 CG) + OG) 

Making use of these definitions and applying the Plemelj formulas 

one obtains from Eqs. (1.63b) and (1.64), 

+60 C 

(1.66) a(y) = SPUD s~(uyp sels - SES) as) + a7(ye(n). 
uU-s ~ 

The results of this section are summarized in the following theorem. 

Theorem 1. Every function Sel (mR ) can be expanded in the following 

eigenfunction expansion, 
+00 

(E)tup, (2) + Of b (WIACv)dolv), 

where,



eo +00 
exp(v™) ATV)P S su(s) 

—_ Vv ~ V-S 
do(s). 

Section 2: Extension of the Full-Range Expansion to XC ) 

The results of Theorem 1 are valid for functions contained 

in HeCIR) However this restriction is without a physical basis. 

Furthermore, HO(R ) is not a Banach space, a fact which will inter- 

fere with the development of a functional calculus for S. Here the 

results of section 1 will be extended to x2 CR), a more physically 

reasonable space and a space which is more easily dealt with mathe- 

matically. 

The first matter at hand is to show that HOUR) is a dense 

2 
subset of xR). Recall definition (1.32), 

H (IR) = {f:(sf(s)exp(-s°/p)) ¢ LCR ds) AN, (TR). 

We prove the following lemma. 

Lemma 2. HOR) is dense in x UR) . 

Proof: It is well known that if (sg(s)) e LOR ds) then there exists 

a sequence {se,} € Ho CR) such that tse. + se in the L,, norm, 

. 2 
If fe KOR) then (sf(sjexp(-s*/p)) ¢ LCR ds) and thus 

. 2 
there exists a sequence {se} € Ho GR ) such that (se, } + sf(s)exp(-s /p) 

in L. norm. 
p 

2 
Let y,(s) = n,(sjexp(ts"/p), then ty) € OR) and 

2 | 2 . ; 
{sy, (s)exp(-s /p)} + sf(s)exp(-s°/p) in hi, norm, i.e., 

Mtv lig a) > 0 for i>,



Thus HOR) is dense in xO) in the I(p,l1) norm. 

By lemma 2 HOR) is dense in xR) and thus we conclude 

that HOR ) is dense in KOR) in the I(p) norm. 

It will be convenient to define the following operators, T 

and T, such that, 

+00 

(21a) (ma)(n) = aAv)a(u) + PG) Ps EME ao(s), 

2 Foo 

(2.ab)  (B8)(n) = 0 )e(u) + aT) SELED pp SEM) gals) 

(2.2) A(v) = (TH)(v). 

For Ze x-(R) we will show that A e« xOUR ) where, 

-n a . 
(2.3a) XR) = fe] fl lis, < ow}, 

p,n) 

and 

n + Ist.(s){? 
i   (2.30) [Nel laze ao(s))1/P. 

p,n s“+1|P 
  

Again we will make the identification, 

    Hare jey = Ue Uatepy> 

in order to simplify notation.



We will prove that T is a bounded operator from xC(UIR ) to 

CUR). Using Eq. (2.1b) we observe 

~ (uo) *"s3(s) (2.4) ||Ts ) + | [ap fr=* do(s) + 

Mrr(p) <1PLET larcp Wns Mit(p). 

+ _ 
A (yu) and » (y) are bounded in the finite plane and their behavior for 

large pw is discussed in Appendix II. Here we quote the results of 

Appendix II on the limiting behavior of these functions for large jy; 

(2.5a) sup DG), | +e 
i,je{l,2} d 

and 

(2.5b) sup Gn), | > jurexp(-u") |. 

i,je{1,2} vd 

Using Eq. (2.5a) one finds that the first term on the r.h.s. of 

Eq. (2.4) is bounded by 

2 |p 
+ J 

(2.6) Hell rrp) sup ky — || uelR yor | I+ (p) 

where k, is a constant. Using Eq. (2.5b) we find that the second 

term on the r.h.s. of Eq. (2.4) is bounded by, 

_ ex ( 2) too 3=(s) 9 Pp 

(2.7) |r (p AEE py ae Gols) | lary \< sup oT 
~ u oo Un-s Pp “ue IR u +] 

< exp(-u") [[tl I, 

where kK, is a constant and f is given by 

+co 

(2.8) f=PSs se(s) 
uU-s 

da(s). 

OO



Here it is necessary to introduce the following theorem. 

Theorem oot If fe LOR sds), p> 1, and if g is given by, 

+00 
f(s eu) =p r U8) as, 

-co STH 

then ge L tm, ds) and, 

Nell, <“SHFll, 

where Mo is a constant depending only on p. 

Using Theorem 2 and Eq. (2.8) we obtain 

    (2.9) [ell <M HEN ecg) 

and hence 

- exp ( =) re se(s) (210) | fatty) “Se ss 2968) Tracy) < ¥3t El loop) 

where K, is a constant depending only on p. Combining Eqs. (2.10), 
3 

(2.6) and (2.4) we obtain 

(2.11) || ts < M/s 
Ih tr(p) =ll1(p) 

where M is a constant depending only on p. Thus T is a bounded 

€ x UR) there (1
) 

~2 
operator from x0 UR ) to XR). Hence for every 

2 
exists anAe xO) where A is given by Eq. (2.2). 

Turning our attention to Ty, miven by Inq. (2.la), we note that 

the limiting behavior of A(y), for large y, is given by



(2.12) sup [aCu). . | > y 
on ij 

i,je{1,2} 

Again the details are given in Appendix II Using Eq. (2.12) we find, 

e.l AA <k A 5 ( 3) || Ms ¢p) _ il I t¢p) 

where k, is a constant. The principal value integral in Eq. (2.1a) 

can be bounded by applying the same reasoning as was used to bound 

the principal value term in Eq. (2.1b) with the result, 

+00 

F(y)P pis) 
— OO 

(2.14) | 
  

dols) || 4.) < kA lar(p)> 

for some constant, k depending on p. Using these results we find, 2? 

(2.15) | | Tal t(p) < MA loz(p)? 

and thus T is a bounded operator from OUR) to xOUR), 

Finally we must prove that the operator, T', given by 

a )+ - (2) +up, (4) 

C 
is a bounded operator from HOC) to xR). Clearly T' is bounded if 

(2.17) sup sup lfo.(s)].| < [Je] | . 

te{0,1} je{l,2} 1 gh = tle gl'i(p,t) 

We have, 

“A
 

Y
 (2.18) [fo (2) ],| 

J   

. ., 24 ; 
Applying, Holder's inequality we obtain,



+co . - 

(2.19) |[p.(e)].| < ( 58 ,(8) Pacs))/P s|s°7éxp[-(1- A)9°]|%as)i/4 
~ 

= ( s[s"Fexpl-(1- 2)s°]|as)!/9) 2 
—CO 

slaepya)- 

Hence there exist constants, Ks, ie{O,1}, such that, 

(2.20) HFG frp) < Kol LEllg(p)> 

and, 

(2-21) |IuFGi)o, (2) [acg) < 1 TEl lap): 

T' defined by Eq. (2.16) is a bounded operator from x°(R) to 

2 . ~ . 
XUR ). Since T', T, T are all bounded operators and since HOC) 

is a dense subset of xCUR) we obtain the desired extension which we 

state as a theorem. 

Theorem 3. ‘The domain of S may be extended to xOGR), p> l, and 

the identity, 

+00 

a(y) = F(u) lp 9(2)+up, (2) ] + fo GiAly)dolv), 

with, 

Cy) = i(yexp(v")6 (vey) + F(q)P vel? 

and, 

  

holds for each = ¢ xR).
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section 3: The Half-Range Expansion 

The half-range expansion is generally of more physical 

interest than the full-range expansion and can be obtained by 

employing the methods of the previous sections. In section 2 the 

full-range expansion, 

too ~ 

(3.1) eG(0,u) = F(u) [og (2,)tup, (Eq) | + ff o Gi)(TED) (v)dolv), 

was obtained where, 

(3.2) E(y) = 8(05n). 

a(x,n) given by, 

+c 

(3.3) E(xjp)= Fu) [og (E5)+(u-x)p, (Ey) | + of ® (i) (Ts 

is a solution to the temperature-density equation, (1.4), provided 

that E(u) is given for yp e IR. For half-range problems Ey tu) is 

. + . 
given only for p e« IR. But, as in the case of neutron transport, 

an additional boundary condition must be met, i.e., 

(3.4) Lim =(x,p) constant. 
Xoo 

In order to satisfy (3.4) we see from Fq. (3.3) that 

(3.5a) (Te,)(vy) = 0, v < 9,



Thus, for half-range problems, we seek an expansion of the form, 

+00 

(3-6)  £(0,n) = Fly)v + so (u)Aly)dolv), 

where V ¢ mR*. Functions of the form given by Eq. (3.6) are clearly 

a subset of the functions expandable by the full-range expansion, 

(3.1). 

Note that boundary conditions (3.5a) and (3.5b) and expansions 

(3.1) and (3.6) are similar to the equations encountered in the case 

of neutron transport in section 2 of Chapter 2. We proceed as in 

+ 2 + 
the neutron transport case and define the operator P ‘x UR ) > X ( 

by , 

(3.7) (Pf) (uy) = fu), wo 0. 

+ 

Define Bix IR ) > xO) by, 

+ + + 
(3.8a) pppts = pts, = ¢ xOUR), 

(3.8d) 0, (uP*s) = 0, 

and, 

(3.8c) (25-8) *(EP*) (y) analytic in z for Re z < 0. 

If an E exists which satisfies the above conditions and if =(0,,) 

is given by 

+ 

(3.9) =2(O,u) = EP &(0,n), 

then =(x,y) given by Eq. (3.3) will satisfy boundary condition (3.5b)



by (3.8b) and boundary condition (3.5a) by (3.8c). If =#(0,p) is 

given for ue IR’, the usual half-range boundary condition, then 

#(O,u) is given by Eq. (3.9) for py ¢ IR. In other words specifying 

2(O,p) for ye IR” with the additional requirement (3.4) is equiva- 

lent to specifying =(O,y) for pe IR. 

We observe that E given by 

+ E(u), uw > 0, 
(3.10) (EP €)(u) = 

oo T 

sH’ (s)#(s) 
do(s), u< O. 

S— 

satisfies properties (3.8a), (3.8b) and (3.8c). In Eq. (3.10) we 

have used, 

(3.11) a(z) = w(2)) tH (a), 

where H(z) is analytic in @ \ JR” and is given by, 

o TT +f 

(3.12) H(z) = I + 2h(2)s MASS) as(s). 

0 

Since H is of such importance to the half-range development 

we list a few of its properties: 

co 7 

(3.13a) Hy) = I + pH(u)s eis) do(s), ue R, 5COS 

(3.13b) sF(s)H(s)do(s) = TI, 
0 

and 

r H(s)¥(s) + (3.13c) MW (y)aA(y) = I+pPs ~—= do(s), we R.



Since the half-range expansion we desire is given by the 

+ 

full-range expansion of EP = we use the results of Theorem 3 to 

obtain, 

| + + a (3.24) 3(u) = Flu) loo (BP*e)4up, (PTE) ] + se GWAC o)dolv), 

where, 

D2. +00 +_ 

(3.15) aCy) = at(y)Cupta)(y) + aT(yRPOEL p pStbP ails) aoc), 

+ 

and = ¢ xOCR). Define the operator, Po > by, 

(=) = 9 (EP*s). Po Po 

Using Eqs. (3.13a) and (3.13b) we find 

oo 

(3-17) 09 (8) = BH, sstt'(s)e(s)do(s), 
0 

where, 

(3.18) = rs'F(s)H(s)dg(s). 

Combining Eqs. (3.14), (3.16) and using (3.8b) the half-range 

expansion takes the form, 

too 

"(s) + fo (u)Aly)dolv). 
00 

(3.19) a(y) = Fly doe, 

Let us define M and N by, 

(3.202) M(z) = a> 
~ 

z)N{ 2) > 

and,



&O 

(3.200) N(z) = s SHE EAS! ag(s), 

Then, using the results of section 1, we have, 

  

  

+co } 

(3.21) -f @ (wA(v)do(v) = 202 exp") ati Lary) 
~. eli u 

_ te We (8) (s) 
+ F(y) OL ef Sa) ds. 

By Eq. (1.55) we have, 

to M(s)-M (s) ~1l,__+ 1 ~ ~ 
S(2T-S)~ (ePs)(p)dz = Say FCP f ——————- ds. 
r Tf _ omy 

1 

eli 
  (3.22) 

co 

In fact, we can decompose this contour interral into two interrals. 

- + 
Let [ be the part of fT for which Re z< 0 and JT be the contribution 

from the remainder of [. Then, 

1   

  

~l 1 +. = - 7. a a (3.23a) Dat f (at-8) (EP =)(y)dz = Oni Pw)P S So ds, 

and, 

1 HL at 1 2 w(s)-u'(s) (3.23b) ana f4(2T-S) (EP =)(u)dz = Sai Plu dps sa 8 

According to Eq. (3.8c) the integrand of the contour integral on the 

l.h.s. of Eq. (3.23a) is analytic for z in the region of interration 

and thus the integral is zero yielding, 

0 M(s)-mM (s) 
(3.2) ) aay PGW)P f Ss ds = 0. 

—co



From the above and Eq. (3.21) we have, 

+ co 

  

  

  

(3.25) F @ (uaCviao(v) = Ae 20D Gt) Gy) 

1 @ MW (s)-N"(s) 
t+ F(u) sor P Ss ds 

Cli SU 0 

Defining AY by 5 

~ + 
2, M (v)-M (v) 

+ _ exp(v) ~ ~ 
(3.26) A (v) = . aT ; 

and inserting into Eqs. (3.25) and (3.19) we obtain the half-range 

expansion, 

co 

09 (2) + Fo (y)A (v)dolv). 
0 Vv 

(3.27) =n) = Fly) 

- + 
Using the decomposition of M -M , 

_ + _ ~ 1 at _ —_ tyre + 

(3.28) M-M = 2 5 GP 4N) + A DON -N), 

we have, 

+ - (v°) ," s(BP"=)(s) (3.29) A’(vy) = A (v)s(y) + aT (vy) SABES pp SEE ag(s) 

. ss . + . 
In order to obtain a more explicit expression for A we consider 

  

the term, 

+00 apts - co =f oo 7 + _ 

(3.30) ps SEEMS) ay( 5) = py s2(s) do(s) - s SHER ENf<s) go(5) 
V-S V-Ss vts 

00 0 Q 

V-S vts t+s
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Making use of the partial fraction decomposition, 

  

st ~ t ( t __y¥ ) 

(vts)(t+s) t-v ‘tts vis’? 
(3.31) 

changing the orders of integration and applying the transpose of 

Eq. (3.13a) one finds 

“+Aoo 

  

7 +. ” sk g)a 
(3.32) Pfs (EP _2)(s) do(s) =H (vy) py © (s)z(s) do({s) 

_ v-s 0 VS 

Substituting Eq. (3.32) into (3.2a) we have, 

-l 2 o TT _ 

(3.33) A*(v) = *()e(v) + aT(v)HT (vy) SPL pp SEES) af), 
Q 

The results of this section are summarized in the following theorem. 

+ 

Theorem 4. Each = ¢ x UIR ) can be expanded in the following 

eigenfunction expansion, 
oo 

+ + 

  

E(u) = Fluo, (=) + fo (JA (vidolv), 
5 v 

where, 

+ + gt exp(y ) © sui (s)e(s) 
A (vy) =’ (v)e(v) +a (v)BD (vy) = Ps = dg(s), - - Vv 0 Vrs 

and, 

i >
 

rc
 

~
~
 

oO * ‘o
O = —
 

O
 -— < ot 7 +
 dq 

—
™
 

rz
 rd
 

ot) vu 

a Section i: Development of the Functional Calculus for S. 

In previous sections we have obtained expansions for functions



a
 

. 2 Cra ty . , 
in xR) and x UR ) in terms of the eigenfunctions of the operator, 

S, where S is related to Kot by, 

(4.1) got = gt + il. 

If A} is an element of the point spectrum of S with eigenvector n 

then a simple calculation shows that nis also an eigenvector of 

xt with eigenvalue (a7t44), i1.e., 

(h.2) Ky = <A 

A similar relation holds when i} is an element of the continuous 

spectrum of S, a fact which will be proven in the remainder of this 

section. 

In order to find how the eigenvectors of 5S and Kt are related 

it is convenient to subtract off the finite dimensional subspace 

corresponding to the discrete spectrum and deal with the rest of 

the Banach space separately. Let 

2 2 . . 
(4.3) Y°OR) = {feX"(IR):9,(f) = 0, ie{O,1}}. 

p p 1 

. 2 
Clearly any function g@ «€ x UR ) can be decomposed by 

(4.4) glu) = Flu) lo ole) tue, (e)] + an), 

where qe ye). 

Define PG) IR) > yeGR) by, 

W 

(45a) P(w)f(u) = Fo Gu) (Te) Cv jdolv), 
wn



that is, 

* vAlv) 
ACWIACW)+FCW)P s ya do(v), uw < w, 

(4.5b) Plw)f(y) = ~~ 
Ww 

F(y) s vA) aoly), Uo> W, 

where A is defined by 

(4.5c) Aly) = (TE)(y). 

The family of operators, P(w) for we IR, forms a part of the spectral 

family of projections for the operator S and is essential to the 

development of this section. In order to prove that these operators 

are a part of the spectral family the following lemmas are introduced. 

Lemma 3. P{w) is a continuous function of w in the strong operator 

topology, i.e., 

a _ 2 (4.6) Min, | [POwte )£-P(w)t| | ¢,) =O, fe YOR), we R. 

Proof: Define f, and f, such that 
1 ° 

(4.7) P(wte )f-P(w)f = f. + fy 

My (TL) (a), ne Cwewte), 

0, YW £ (wowte),



Clearly the norm of tr) can be made as small as desired and the 

contribution due to f, is given by, 
2 

2 +c wtevA,(y) pyl/p 
(4.10) fallacy) <( EM fds|Pf —-—— daly) |") 

i=l 09 W 

2 We 

< (IM, f fut, (vdexp(-v°) Pav)?/?, 
i=l " w 

where My and My are constants determined by simple estimates and the 

application of Theorem 2. By the above we have 

(4.11) lim, {||f 
6>0 

+ Wolleggy} = 9 i! lr) al lr¢p) 

and thus, by Eq. (4.7), P(w) is continuous in the strong operator 

topolory. 

Lemma 4. For f ¢ YOR): 

(i) P(w, )P(w,)f = P(x,)f where \ = inf {W, »Wohs 

+o 

(ii) ste fs t(y)o Cu) (BP) (v) dol); 

(iii) SP(w)f = P(w)sf 

Proof: (i) P(w)f = f o(u)(*e)(v)do(v) = an), 6 yO). Then 
—cO 

+00 

e(u) = Ss @ (u)(Te)(v)dolv),
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(Te)(u) = 
Q > Hy > Ww. 

Thus , 

W A 

Plw,)P(w, )f = Plw,Je = fe & (u) (Te) (v)do(v) = fo (u)(T£)(v)do(v) 

= P(A)£, A = inf{w, ,w,}. 

(ii) Srte=fs (21-8) sraz = f (S-21+z1)( 21-8) faz 
rT! Tr! 

“boo . 

=f 2(2I-s)traz = f "(v6 (u) (Fe) (v)dolv). 
T! _ OO 

WwW 1 . 

(iii) Plw)Sf = st “(ve (v)(TEL)(v)da(y). 

w ~ 2 
SP(w)f = S f o (u) (TP) (v)aaly) = Se, fe Y(R) 

Expressing the expansion coefficient of f, Te, in terms of the 

expansion coefficient of f as in the proof of part (i) we obtain, 

W ~ 

sp(w)f = f 6 (v)e (u) (EF) (v)do(v), 

and hence, 

P(w)S = Sp(w) 

4 P 
Lemma 5. Sf(u) = st “(wialPlw)ftl(u), fe YOR); where the integral 

is defined in the weak sense.



+o 

Proof: Define U(w) such that, Ulw) = fe 
== OO 

TO) P(w)e(ido(n), 

where ei (y) is an element of the dual of yoCR), Now, 

W WwW -++oo ~ 

uiw) =f ea) (Pe)(doly) # 5 ew RGP S ee) dol v)ao(u) 

= tee Tf wpe ge (v)r(v) 7 
= fe (u)rACui(Te)(uido(y) + sS PSs ra ulTf) (u)dalv)doly), 

and thus, 

T + oo p D . 

U'(w) = Le (w)a(w)+P fe (v)P(v) Ze dolv)]e™ (Te) (w) 

Now, 

+00 1 +00 1 ; +00 T 

ft“ w)utGw)dw = sf dolw)t (w)le Gw)aGw)tP f dolve (v)F(v) == J 

Using the above and the definition of U we have 

+00 +00 +00 

ro peta elGialpiel(udelu) = s ei lw) (st) (w)dolw), 

and thus, 

(sf)(u) = s t “(w)dlP(w) tity), 

which yields the result,
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-+Foo 

S=f t. 
= OO 

1 
(wal Plw)]. 

Let us write fe xO) in the form, 

(4.12) f=Hf +f, , 

where 

tt (4.138) f,(y) 1 f(p) - Flu) fo g{f)+up, (2) I, 

(4.130) t,(u) = Plu) log ()4up, (2) 1, 

From Eq. (4.3) we see that fie yeUR). By Theorem 3 and Eq. (4.5a) 

we have, 

(4.tha) Lim P(w)f, = 0, 
W->—00 

(4.t4b) lim Plw) ft, = f,- 

These facts and the preceding lemmas lead to Theorem 5. 

Theorem 5. (i) The family of projections, P(w), is a generalized 

resolution of the identity on vOCR)5 

(ii) for f ¢ yoGR), 

~ 

Gote) Gi) = “0 (wu) (TE) (y)daly) s 

(444) KoPG) = 0 and KT Eyr(y)] = Fly). 

Proof: (i) The proof follows from lemmas 3 and 4 and the fact 

gy 

that Plo) = I on YOR).



(ii) By Lemma 5 we have, 

(se)n) =f tw) 5S P(w) el) law 

Consider, 

1 to d 1.77 4 d 
Sf - sf —-— —[P(w)fldw = SS [f- s —— —([P(w)sflaw], 

-_ tw) dw 6 tow) dw 

where we have used part (iii) of lemma 4 to obtain the r.h.s. of 

ang the equation. Using lemma 5 we have, 

+00 +co +o 

Sve - s ——— alplw)f] = SO Er ¢ Se SS Pw) 8) 
-o +t (w) -o £ “(w) —co 

x Li p(y) flav}aw] 
dv ; ° 

By part (i) of lemma 4 the r.h.s. of the above is, 

2"? 4 a “Mw 4 a 
Ss” [f-S 7 q, ff t ~(v)<— [P(v)f]dv}dw] = 

~ WwW dy 
-o t ~(w) ~© 

leo? -~l,.4 1,.°° 
S“[f- fy It (w)s— [P(w)f] }aw] = S [f- sal P(w)f]]. 

- Ww 
—o + (w) —00 

Thus we have 

12 4 ry 
S f= s( —- ijalPGw)e] = sf Talplw)t] - ir, 

  

By Eq. (1.29) we have
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or, using (4.5a), 

+00 

Klee fs =o (u) (££) (v)dolv). 

(iii) The proof follows by a direct calculation. 

+ 

For f ¢€ xR ) one can express Ef in the form, 

(4.15) Ef e= Ef, + Ef, 

where, 

(4.16a) f,(u) = f(p)-F(u)p. (Ef) 

and 

(4.16b) f(y) = Rudo (at). 

Then Ef E yom) and the previous results can be used. Note that 

oO 

(u.17)  Plw)(BPy)(u) = gaps (2T-8) (Bey Mu daz-s 0, (u) (Tee, -1 
1 ( 

ri W 

)(vida(v). 

Using the above and the properties of E we have, 

t 

(4.18) P(w)(Ef, )(p) = 6 (a) (TEP, )(v)do(v), 
1 

O
n
 

= 

where



GL 

(4.19) w' = sup{0O,wh, 

(4.20) Plw)Ef, = 0, w< 0. 
1 

Now we are in position to solve Eq. (1.4). 

Section 5: Solutions to Boundary Value Problems in Kinetic Theory 

We seek solutions to the system, 

(5.1la) (> 4 Kye (yy) = 0 

(5.1b) 2(0,n) = 84(n), 

-] 2 
where K ~ is given by Fq. (1.5) and E bn) c xO) is piven. The 

solution is given by 

oo x/ 

(5.2) 8Gx,u) = Fu) [po (Sp) tix), (Eg) 1 + Ss o (u) (Te) (vie Ydo(v). 

Clearly (5.2) satisfies the boundary condition (5.1b) since the r-h.s. 

of Eq. (5.2) reduces to the full-range expansion of Z, when x = 0. 

To show that =(x,p) given by (5.2) satisfies (5.la) we first note that 

1 (5.3) (24 2 4 KT) Pu) [og(Zg)#uex)0, (Z9)] = 0, 

by part (iii) of Theorem 5. And thus we must show that, 

+00 

(Su) (24K) be (i) (Fe ve Yaalv) = 0, 
x co Vv 

Let EY be defined by



x 6 O 

then 

+00 . 

(5.6) 24) = f Cu) (TE \(v)dolv), 

where 

(5.7) (BE)(v) = (BS) (ve, 

. 2 . ws 
Assuming 5, € XU) we then have, using part (ii) of Theorem 5, 

+00 

(5.8) (TEI) = Fa) (Fv )aa) 

and hence, 

re . / +00 . / 

(5.9) KES a Cu) (PE, )vJe™ dol) = FY a Cu) (TEQ) (ve 

And thus Eq. (5.4) is verified. 

_+ e +, . 
Wor half-range problems = (uy) ¢€ xOUR ) is given and 

(5.10) =(O,u) = & Gy), p> 0. 

[The additional constraint, 

(5.11) lim =(x,p) > constant, 
K-00 

is also applied In this case the solution is of the form, 

+o 

(a") ro (iat vie *aaly), 
OQ 

+ 

(5.12)  8(x,p) = FO )e,



3 

where A’ is the half-range expansion coefficient of a” as in 

Theorem 4. As in the full-range case the r.h.s. of Eq. (5.12)reduces 

to the half-range expansion of af when x = Q. Thus boundary condi- 

tion (5.10) is satisfied. Since x « IR, E(x,u) given by (5.12) 

satisfies (5.11). Verification that =(x,u) is a solution to (5.1la) 

is obtained in the same way as the full-range case.



Chapter 5 

THE TEMPERATURE-JUMP PROBLEM AND RELATED PROBLEMS IN KINETIC THEORY 

Section 1: Introduction to the Temperature-Jump Problem 

The Temperature-Jump problem is defined by a half-space of 

gas bounded by a wall at a uniform temperature, To: It is found 

that the temperature of the gas near the wall differs from the 

temperature of the wall. This is due to a layer of gas called the 

transition region or Knudsen layer. For a discussion of this 

phenomenon see Ref. 26. The thickness of the transition region is 

only a few mean free paths and the temperature gradient just beyond 

this region is constant. Figure 2 illustrates the qualitative 

behavior of the temperature near the wall. The temperature jump is 

defined to be the apparent temperature of the gas at the wall, 

extrapolated from the linear portion of the temperature curve just 

beyond the transition region, and T the wall temperature. Thus if QO? 

we define t by 

(1.1) lx) = T(x) - T' (x), 
0 

where T(x) is the temperature of the gas and T'.(x) is given by, 
0 

(1.2) Tt (x) = Ty(itk'x), 

where KIT) is the asymptotic temperature gradient, then the temperature 

jump is tle). Of course, we must stretch the local coordinate in the 

94
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Knudsen layer in order to consider it a half-space. 

The method of solution proceeds as follows. Denote by 

£1 (0,6) the Maxwellian corresponding to the wall temperature and 

expand the distribution function about ft (x58) given by, 

(Bh 3/8 m ' “exp(- ' O° enkT 0 kT 0 
  (1.3) ft 4 (58) =n (E-v5)), 

where, 

(1-4) ont) = n (dk tx), 

Note that the pressure, n' gl" o> is constant. 

To first order the distribution function, f'(x3&), will be 

given by, 

(1.5) £'(x3e) = £' (ase )(1th(x3@)). 

Note that ft (x38) can be expressed, to first order, as, 

(1.6) £'oGce) = fo (e) late tx(e*-5/2)tn(a5e) 1, 
0 

where c is piven by (3.2.8) and f.(¢) is given by (3.2.6). 
6) 

Substituting (1.6) into (1.5) yields, 

(1.7) f' Ge) = £.(e)[1tetx(e7-5/2) thlxse) J. 
0 

If h'(x,f) is taken to be the deviation of f'(x,z) from f.(&), i.e., 
0 

(1.8)  nt(x,e) = «tx(e°-5/2)+hlx,£), 

then it follows from (3.2.22) that
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gh! (x! :-&) 

oy 3x? ~ vt 
i 

(1.9) (n'(x'5¢),¢€, Je, ~ h'(x's;¢e)]. 
1 

o
m
 

Proceeding as in section 2 of Chapter 3 the above can be transformed 

  

into, 

h 2 \ (1.10) u 3A + kyle -~5/2) = x Chee. je. - h, 5x . i’ “i 
1=0 

with, 

(1.1lla) (hye, ) = 0, 

and 

m atom (1.11b) K ET VK. 
0 

Note that, 

(1.12) (,(c*-5/2),¢,) =0,0<i<h, 

and thus, using (1.10), we see that h" defined by, 

" 2 
(1.13) h"(x5¢) = n(x3e) + kyle -5/2), 

satisfies (3.2.24) and (3.2.25). 

Let 

(Lelha) wp, (xu) = (n",6)) 
O'2 ” 

(1.14b) po(%oy) = (h"5¢5)5 , 

and 

(1-1he) — ¥(xyp) =



Then ¥ will satisfy (3.2.36). 

If foe) is the Maxwellian corresponding to the wall tempera- 

ture then the general boundary condition on the distribution function, 

f'(x,&), is, 

(1.15) f'(05E) sE583) = af,(s) + (L-a)f" (03-8, sE5sE3)> E, > 0. 

Here a ¢ [0,1] is the accommodation coefficient. If gq = 1 then the 

distribution function is equal to the wall Maxwellian and the mole- 

cules perfectly accommodate to the wall. If a = 0 then the molecules 

are specularly reflected from the wall. Values of a between O and 1 

correspond to mixtures of perfect accommodation and specular 

reflection. 

Substituting Eq. (1.5) into (1.15) we obtain the boundary 

condition on h, 

(1.162) fy (&)[1+h(036) 6,563) ] = af ite) + (1-0) £,(€)[1+h(05-€, .6,563) 1}, 

> 
oy O, 

or, 

(1.16b) n(O56, 58 )= (1-0 )hn(05-6, 6,565), E, > 0. 
2° °3 1 

Assuming that the molecules perfectly accommodate to the wall, 

a = 1, we must have, 

(1.172) h(0;6) = 0, f, > 9, 

and thus,



} Q 

(1.170) -n"(036) = kulc°-5/2), uw > 0. 

Recalling Eq. (3.2.35) this boundary condition, in terms of ¥(0,y), 

is, 

¥2/3 

(1.18) ¥(0,p) = ene! yaa) »u> Oo. 
—1 

Thus we wish to find solutions to Eq. (3.2.36), i.e., 

+00 

v(xu) = Qu) s¢ Qi (s)¥(x,s)do(s), a¥v(x,u) SS + 
M ox 

(1.19) 

subject to the boundary condition given by Fq. (1.18). From this 

we can determine the temperature jump, t(~), where 1(x) is given 

by Eq. (1.1). 

section 2: Solution to the Temperature-Jump Problem with Complete 

Accommodation. 

It is convenient to define =(x,p) as in Eq. (4.1.3). 

Equation (1.19) with boundary condition (1.18) expressed in terms 

of =(x,u)are as follows: 

(2.1)  2(0,n) = uF(y)v, p> 0, 

where, 

43/2 
) 

(2.2) yeu! 
-1 

and 

(2.3) Mion) + Ke (xsu) = 0,
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Furthermore, the additional boundary condition is needed, 

(2.4) lim =(x,u) > f(y). 

X00 

The boundary condition, (2.4), is necessary because we are calculating 

a perturbation from an initial distribution whose temperature depends 

linearly on x. Thus the perturbed distribution, which is the product 

of the initial distribution and ] + h, where h is the perturbation, 

will have a linear dependence on x, for large x, if h is independent 

of x for large x. We know that the temperature dependence in the 

Chapman-Enskog region, i.e. x > ~, is linear and thus to match this 

region with the Knudsen layer we must apply the boundary condition, 

(2.4). 

Let P’ be defined as in Eq. (4.3.7). Boundary condition (2.1) 

can be written as, 

+ 

(2.6) Po =(O,u) = pF(p)v. 

The solution to Eq. (2.3) is of the form, 

(25) + se (uat(ve*Y 
0 

+ 

(2.7) E(x,y) = Flulp do(v), 

+ 

according to (4.5.12). A is given by Theorem 4, 

2) « sH'(s)s_(s) -1 

(vdeo) # aT(vHT (y) SPD pp ——8 as), 
0 

+ 

(2.8) A (vy)   

and 

(2.9) Eg th) = uF(p)v.



&(x,u) given 

r.h.s. of Eq. 

when x = 0Q. 

(2.10) Lim 
X00 

100 

by (2.7) satisfies boundary condition (2.1) since the 

(2.7) reduces to the half-range expansion of uF(u)v 

It satisfies boundary condition (2.4) since 

+ 

E(xyp) = F(u)p 4 (uF(u)v). 

Uniqueness is guaranteed by Ref. 28. 

Using 

(2.11) Dy 

the definitions, (4.3.17) and (4.3.18), we have, 

_ _T 
uF(u)v) = BH, H, Vv. 

It can be shown that, 

(2.12) Be 

and 

(2.13) H, 

and thus, 

(2.14) Py uF(y)v) = v. 

By Eqs. (2.10) and (2.14) we have 

(2.15) Lim 
x->00 

S(x,y) = F(y)v. 

According to Eq. (1.8) the perturbation of the distribution 

is h' given by 

(2.16) h' = wx(e"-5/2) + hy
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where h is given by Eq. (1.13), 

" 2 (2.17) heh" = xp(c*-5/2). 

Designate the perturbation to the temperature due to h by AT, due 

to h' by AT! and due to h" by AT". AT" can be written as, 

+00 
—3/h (273 fe, Oxswidolu), (2.18) AT" (x) = Ty 

using Eq. (3.2.43) and the definition of =. AT is given by, 

{w3l2 2 
0 3 f0°-3/2) Th" =u (e°-5/2) Jdalc) = ay", (2.19) aT=T 

where Eqs. (3.2.42) and (2.18) have been used. Thus, the perturbation 

to T AT', will be given by 0? 

qo! 2 eC 
(2.20) AT'(x) = AT(x) + «xT Pe"-5/2)(e°-3/2)dalc) 

Ww 
| 

0 

+ 

= po! ay3 
0 

! 8, (xs p)doly) + T kx: 

Consequently the temperature jump is given by, 

(2.21) t{o) = TK 

section 3: Treatment of the Temperature-Jump Problem with Arbitrary 

Accommodation. 

For the case of arbitrary accommodation the boundary condition on h 

is given by Eq. (1.16b). Using Eq. (1.13) this translates into the 

following boundary condition on h";



LO? 

W 1! 2 

(3.1) oh (038) 565583) = (l-a)h (05-E) 585583) + (2-a)Ku(e"-5/2), E, > 0. 

In terms of = we use Eqs. (3.2.35), (4.1.3), (2.2) and the above to 

write, 

(3.2) 8(0,n) = (l-a)#(0,-p) + (2-a)uF(u)v, p> 0. 

Define 3:x°(IR) > x°(R) by 
Pp Pp 

(3.3) (sft)(u) = f(-p), 

and let 

(3.4) Eg(u) = £(0,n). 

Then boundary condition (3.2) can be written in the form, 

(3.5) (PY) )(u) = (L-a) (PSE) (u) + (2-0) uP(u)y. 

For half-range problems it has been shown that the additional boundary 

condition given by Eq. (2.4) can be satisfied if 

(3.6) 2.(y) = (eP"=.)(y). “0 

In fact, this additional boundary condition is satisfied if and 

only if (3.6) holds. The proof of this is identical to the proof 

in Appendix III for the neutron transport equation except that Ref. 28 

is needed for uniqueness. 

Substituting (3.6) into (3.5) we obtain, 

(3.7) (PTs u) = (2-0)uR(y)v + (l-a)(P’sE][P a )tw)s



an integral equation for the surface density, (P =.)(y). 

‘Tt should be noted that the original boundary condition, (3.5), 

is difficult to use in half-space problems Since P'EGs which is 

usually a completely known function, is given in terms of a known 

function and the unknown function, P'SE,. The approach used to 

overcome this difficulty in other problems with this boundary 

29 nas been to expand both sides of Eq. (3.5) using the condition 

full-range expansion and obtain rather complicated integral equa- 

tions for the expansion coefficients. No papers have appeared in 

the literature to guarantee that these integral equations possess 

solutions or that the numerical techniques applied to them will 

converge. With our approach the surface density is obtained directly 

and in a comparatively simple form. We also claim that solutions to 

(3.7) exist for at least all but finitely many values of a ¢« [0,1]. 

To prove that tq. (3.7) has a solution we need the following 

theorem which we state without proof 

Theorem 6,20 Let <M,1t> be a measure space and H = L°(M,at). Then 

a bounded linear operator, C, from H to H is Hilbert-Schmidt if and 

only if there is a function 

9 

K € Lo (MxM, dt x dt) 

with 

Moreover, 

Nich |? = sliclxyy) |Par (dar ly).
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With this theorem we are able to prove 

+ + 
Theorem 7. The operator, c:x° (UR ) > x5 (IR ), defined by 

2 

(cf) (u) = (PSEF) (1) 

is compact. 

+ 

Proof: Using Eq. (4.3.10) the action of C on fe xe (IR ) is given by, 
2 

eo 

#()H(n)sHo (s) Shi f(s)da(s). (cf)(u) = 

o
m
 

Define the t measure by 

dr(s) = 5° exp(-s°)ds, 

then, 

| |e] | = f Ist(s)|“do(s), I(2) 0 

or, 

Hellijo) =f Jets) |Far(s). T(2) i 

Thus the action of C on f is also given by 

co 

PQ )HG)H (s) (cf)(u) = , s(sti) f(s)dt(s). 

Define the matrix norm, [1+] aps by 

2 

[ol |,, = sup zr |c..| 
je{1,2} isa 79 

where Gs, is the ij-th element of the matrix G. Using Theorem 6 we 

can show that C is compact if



1Q5 

  

2° RG JEG )H (s) 72 . 
PP stsauy hy artwiar(s) 

_* T 2 eC | 
=s s|[FPQ)H()H (s)| |, Ss do(u)do(s) < ». 

00 (sty) 

Since [u/ (nts) 1° is well behaved and since F and H are bounded by 

polynomials the above condition is satisfied. As C is a compact 

= ( 
+ + 

5UIR ) to X°(IR ) its spectrum consists of at most operator from X 5 

a countable number of points. The only possible accumulation point 

in its spectrum is zero which corresponds to ag = ~. Thus there are 

at most finitely many values of a e« [0,1] for which the operator, 

1 + 
(3.8) c= 5, [I-(1-a)P SE], 

is non-invertible. And hence the solution to Eq. (3.7) is given by 

(3.9) (P*s))(y) = (oUF (ude, 

for all but at most a finite number of values of a ¢ [0,1]. 

We have been unable to find a satisfactory upper bound on |{c} |. 

however, we know that 

(3.10) |jc|| >, 

Since, 

(3.11) CF(p)v, = Fly)v., vie I 

To see that Flu)vy is an eigenvector of C we substitute Fu )v, for 

f into the definition of C given in Theorem 7,
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Using the properties of H given in Eqs. (4.3.13a) and (4.3.13b) we 

obtain (3.11). Thus, if there is a solution to the temperature-jump 

problem with © = 0 it is not unique. This leads us to conjecture 

that the Neumann-Liouville series converges for 0 <a< 1. 

Proceeding with the solution of the problem one would solve 

the integral equation for the surface density numerically. Once the 

surface density is obtained the method of solution proceeds exactly 

as in the case of complete accommodation. This, however, is beyond 

the scope of this work. 

Section 4: Treatment of the Transverse Velocity Equation with 

Arbitrary Accommodation 

The form of the transverse velocity equation is similar to 

that of the temperature-density equation although simpler. The 

transverse velocity equation is given by Eq. (3.2.45), i.e., 

4-00 

(iz) Och) f v(x,s)ao(s). - + (x,y) = i 
v7 

The appropriate space to search for solutions to Eq. (.1) is 

1 
( 

p 

appropriate inner products of the perturbation, h, with certain basis 

X-(IR), p > 1 (see Ref. 16). Since the elements of ¥ and are 

vectors (see Eqs. (3.2.35a), (3.2.35b), (3.2.44) and (3.2.45)) the 

boundary condition for arbitrary accommodation takes the same form in
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the transverse velocity case as in the temperature-density case, i.e., 

(4.2) (Pw) (i) = (1-0) (P*Sp) (a) + (2-0) ku. 

+ + 
Here P XC ) + xR ) and $245 (8) + xR) are defined by, 

(4.3) (P’w)(y) = wlu), p> 0, 

(heb)  (Sw)(n) = wl-—y), 

and k is a constant. Boundary condition (4.2) can be derived in 

analogy with boundary condition (3.5) or consult Ref. 31. Equation 

(4.1) along with boundary condition (4.2) and the additional 

requirement, 

(4.5) Lim p(x,p) > fn), 
X00 

define Kramer's problem (or "slip-flow" problem).~* 

As in the case of the temperature-density equation, Eq. (4.5) 

is satisfied if and only if, 

(4.6) wlO,u) = (EP y)(y). 

16 
Here E is given by, 

n f(y), p> O 

(4.8)  (Ef)(y) = | 
1% ys)   

where X and y are as in Ref. 16. Thus, boundary conditions (4.2) and 

(4.5) can be combined as,
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(4.9) (PTW) Gr) = (2-0) [P*SE] [Pw] yn) + (2-0) en, 

31 
an integral equation for the surface density, Py. Cercignani 

has dealt with Kramer's problem with arbitrary accommodation but 

with a different. approach. Rather than -deriving an integral equation 

for the surface density his approach was to expand both sides of 

Eq. (4.2) using the full-range expansion of y and employ boundary 

condition (4.5) to obtain an integral equation for the expansion 

coefficients. He then proved that the integral equation could be 

solved by a Neumann-Liouville series for 0 <a < 1. The integral 

equation that we have obtained, Eq. (4.9), can also be shown to have 

a convergent Neumann—Liouville series, however, we shall omit the proof. 

The solution to Kramer's problem is obtained by first calculating 

the surface density using Eq. (4.9) and numerical procedures. Once the 

surface density is obtained the solution follows by applying the 

methods of Ref. 16.



Appendix I 

Section 1: The Diagonal Expansion of the Determinant of the Multi- 

Group Dispersion Matrix 

If A is an N x N matrix denote by AG; the (N-1) x (N-1) 

matrix formed by deleting the i-th row and the j-th column of A. 

It will be convenient to label the rows and columns of Als with the 

same indices as the corresponding rows and columns of A. Thus the 

matrix, Aas will have its ‘th row and j-th column missing. Keeping 

in mind this convention we define (Ai ace to be the matrix formed by 

deleting the i-th and k-th rows of A and the j-th and 2-th columns 

of A. The element in the i-th row and j-th column of A will be 

given by ee If the matrix A is perturbed by adding a factor, en? 

to the element, a, . » the resulting matrix will be called A{e_) 
n’°*n 

and a matrix with many such perturbations will be labeled Ale, s€52++-e,)- 

It is trivially verified that 

, | 1343) 
(1.1) det({A(e,)) = det(A) + (-1) e,det(A. . ) 

1 1 1, J 
1°1 

We wish to show by induction that, 

n tidy 

(1.2) det(Ale,,e.,...e€_))= det (A) + £ (-1) “ec, det(A, ), 
1° 2 n Kel k 1, k 

to first order ine. Assume that the Es are all of the same order 

of magnitude, €, and that det(Ale_,,e,,...c_)) is given, to first 
1°72 n 

109
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order, by Eq. (1.2). Then, 

(1.3)  det(Ale, se5.---€,4,)) = 

N 1 g 

zy (-1) Mar, Cor Megara sa) 
g=1 nt+1 

' 1 i _— eee ; where a ian is the (iva) th element of Ale, s.€p: Ener? and 

the r.h.s. of Eq. (1.3) is simply the cofactor expansion of 

tt . . Ale, s€50++-€,4))+ Let a ij be the (i,j)-th element of Ale) s€59+--€,)- 

Then, 

(1.4)  det(a( )) ( 1) MALL ge (al ) ) . Ena Engage 0 € = € - CE, s€no+ +9 E_). . 
L°ve nt1 ntl 1?re2 nol ane 

N 1 g 
+1 

+ fF av air}? 7 det (Ale, st55-- ens a) 
Q=1 nt+1 ” ntl 

Here we have used the fact that 

(1.5) Ale.se,,.--e€.,,). = Ale,,e,,..-e_). . 
1°72 n+l ia” lL’ "2 n ta 

The second term on the r.h.s. of Eq. (1.4) is simply det (Ale, ,€55--- n 

and thus, using the assumption, Eq. (1.2), we have 

i iad 
(1.6) det(Ale, se )) = (22) Bt nt 

1 nrre€ Ene cetlA, ) + . 

ntl tne ntl 

where we have used,



(1.7) e det(Ale,,e,,.--5,€ ). . )Fe det(A, . ), 
n+l 1°72 n dao nt nt] 4 ao ns 

to first order in e«. This yields the result, 

(1.8) det(Ale LE )) = det(A) 
Fart ened 

n+1 i, +3 

+ Ey (-1) kek om det(A. . ). 
k=l yd) 

Hence Eq. (1.2) is verified. 

Suppose that the perturbation matrix is B, the elements of 

B being of order ¢«. Then, using Eq. (1.8), we have, 

(1.9) det (A+B) = det(A) + £ (1), detla, ,), 
ij ' 

where bs is the (i,j)-th element of B. By definition 

(1.10) (-1)**%aet(A..) = c.., 
1) Jt 

where Ci is the (i,j)-th element of AL . Substituting Eq. (1.10) 

into Eq. (1.9) we have, 

(1.11)  det(A+B) = det(A) + Tr (BA, ), 

to first order in e«. 

A(z) is given by, 

1 1 Ly-l 
(2.12) A(z) = yC@Ur-2r- ff yp(2l-pr 0) dn. 

Define,
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+1 

(1.13) Gz) = f pletepe7t) tap. 
-1 

Then the elements of G will be given by, 

(1.14) gp. (2) = 0, i# j, 
iJ 

and 

+1 
- iu 

(1.15) 6, , (2) i Zul, , du, 

where the non-zero elements of = are given by 05° 

we have, 

(1.16) g..(z) = i; u (ut + + .. dy = 
11 4 Oo 

To order 27° we have, 

2 
(1.17) Gz) = 32 2, 

and, substituting into Eq. (1.12), we have, 

1 2 2 ~1 -) 
(1.18) Az) = xc “y-2r- Zen + O(z). 

Using the expansion, Eq. (1.11), with 

-1 
(1.192) A = 5C “y-25 

and 

(1.19b) B= - Eg eyot 

For large z



14.3 

we have, 

- - ~) 
(1.20) det(a(z)) = - Sa “or (x ne )) + 0(27"), 

where we have used, 

-1 
(1.21) det(rc “4-25) = 0, 

for the critical case, and 

T ~ T (1.22) AX (w) = (nC E-25)*. 
c eC 

Note that Eq. (1.20) is equivalent to 

2-2 -1 —) 
(1.23) det(a(z)) = - 52 Tr(y “A ()) + O(2 °), 

Since ¥ is diagonal. Thus the two expressions may be used inter- 

changeably. 

section 2 Direct Product Representation of An (). 

Following Ref. 15 we introduce the null vectors & and & 

where, 

(2.1) Alo)E = 0 

and 

Equations (2.1) and (2.2) imply that, 

(2.3) At (o) = aE Bob 6 se ane
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and 

(2.4) A fe) = b Le b,ZE tae byLé , 

i.e., the transpose of the cofactor matrices have columns propor- 

tional to the null vectors. Here the proportionality constants 

are a, and b, with 1 <i< WN. Taking the transpose of Eq. (2.4) 

and equating to Eq. (2.3) we have, 
a\T 

. b, (58) 

(2.5) a,E ADE ang = 5 

, b.(re)? 2 

at! 
by (Ze) 

1.€., 

(2.6) af = (ZE).b, 

or 

(2.7) & = (se), x 
i 

The above implies that a is proportional to EE and thus, using 

(2.3), we have, 

(2.8) Av(@) = &(26)”. 

Let the constant of proportionality be k, 

(2.9) n.(m) = xe ( ne 

and let the normalization of &— and E be given by,



oT 
(2.10) € € = 3/2. 

Then k is determined by, 

-(2.11) Tr(A\(#)E~~) = 

The final result is, 

(2.12) Al (e) = Sm (A 
c 3 

or. 

2 
(2.13) A_(~) = =Tr(z 

Li5 

3 5 k.



Appendix JI 

Denote by A the dispersion matrix for the temperature-—density 

equation. The solutions of the temperature-density equation depend 

on a knowledge of the limiting behavior of aly) for large u- The 

dispersion matrix is given by Eq. (4.1.31la), i.e., 

F(s) 
SZ 
  do(s). 

co 

By a minor rearrangement Eq. (1) can be written as, 

    

(2) Mz) =t+ £ Sé28t8) p(s)a0(s) 
_00 S-2 

+00 +0 
=I - fsF(s)do{(s) + f sug Fls)do(s) 

(4) A(z) = f — + P(s)do(s).   

  (5) A (yw) =P Ss a F(s)do(s) + itur(y)oxp(-u*). 
oO 

Define C and D by,



+co 

(6a) C=P f— F(s)do(s) 
00 S-H 

and 

(6b) De imuF(y)exp(-u*). 

Using Eq. (1.1.11) we have, for large y, 

+ , n 
(7) deta ()) = det(c+D) = det(c) + Tr (DC. ) + O(yexp(-2u")), 

where n is a positive integer. Since we are dealing with 2 x 2 

matrices we have, 

(8) (qty _ _det(c) ol det (D) pvt 

det (A) det (a*) 

and thus, 

  

  

  

  

(9) (a*)7*-(A7) = Cadet (c) (+ - —4+— ) 
det(a )  det(a ) 

+ pt aet(D) ( 1 + i ) 
det(p )  det(a ) 

and 

(20) (a*)t + (av) = oot aet(c) (+ + —4+_ ) 
det(a )  det(a ) 

+ pvtaet(pd){ 1 wt 1 ). 
det(A ) det(a ) 

4 

Expressing det(A~(y)) as the r.h.s. of Eq. (7) we obtain,



11s 

  

  

1 1 _ tr(pe7t) n 2 
(lla) jetta") _ et) = 2 Getty + O(y exp(-2u)), 

and 

(11b) it 4 i = SO) + o(u™ exp(-2u°)), 
det(A*) det(A_) 

where n and n' are integer constants. Substituting Eqs. (lla) and 

(1l1b) into Eqs. (9) and (10) we find, 

(22a) (A) Gi) = (A) Ga) > exp lu), 

for large yp, and 

(2b) (A) Qu) # (AT) a) >, 

for large py. In the above we have made use of the following, 

(13a) sup d.. > uexp(-y"), 

i,je{1,2} J 

(13b) det(D) > wexp(-2n"), 

(13¢) sup d, , > Un, 

i,je{1,2} *9 

(13d) sup eC 1, we 

i,je{1,2} vd 

and 

(13e) det(C) +p,



119 

where di, is the (i,j )-th element of D, a, is the (i,j)-th 

—1. ~l , - 4 - 
element of D , and ci; is the (i,j)-th element of CC”. 

From Eq. (5) we easily obtain 

+ -2 (ub) nt) CT yt) > 

The results are summarized in the following lemma. 

~ 

+ - 
Lemma 6. The limiting behavior of X} , 4 and A, for large u, is 

piven by: 

(15a) sup O()).. + u®, 

(15d) sup (A (u)).. > wexp(-u"), 
iJ 

and 

(15¢) sup (A(u)).. > 4 
i,j



Appendix III 

The solution to the homogeneous neutron transport equation, 

for the conservative case, is unique provided ¥(0,y) is specified 

for pe[-l,1]. Such problems are known as full-range problems. 

The half-range case is when ¥(O,y) is specified for yel0,1] and 

the additional requirement, 

(1) Lim ¥(x,p) + Liu), 
K-00 

is specified. Since the solution is given by (see Chapter 2, 

Section 6), 

+1 

(2) wou) = tap tba, Gon) + salvia (ie */ Yay, 
~1 v 

Eq. (1) implies that 

(3a) a, = 0 

and 

(3b) A(v) = 0, ve[-1,0]. 

Specifying ¥(O,u) on [0,1] with the additional requirement given 

by Eq. (1) is equivalent to specifying ¥(O,y) for pe{[-1,1]. To 

establish this we prove 

Theorem 8. Let poe x OR) then p is expandable in the form, 

+00 
1 1 

vy) = 3497 5 8h Ft J Alv)o (u)dv. 
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The conditions 

and 

A{v) = 0, ve[-1,0] 

are satisfied iff 

+ 

p= EP yp 

+ 

where the operators I and P are defined in Chapter e. 

Proof: (i) By construction of E 

+ 

yp = EP p ->a, = 0, A(v) = 0, ve[-1,0]. 

(ii) Assume that 

+ 

fa, = 0, A(v) = 0, ve[-1,0]} fv = EP yp. 

Then there exists a Vi XR ) such that 

+ 

(4) by # EP W,> 

and



  

+1 D4 

(6a) a, (¥) = -3 Sos ““w(s)ds, 
-1 

- +] 
(6) (#)(v) = a F sols) (sas = a(v) 

Thus Yo given by 

is a solution to the system, 

(8a) ¥(0,u) = v,(u), u > 0, 

(8b) lim ¥(x,u) > bdd, 
Xe 

(8c) 2h4-n74v = 0, 
ox 

where Kt is the transport operator. But Yo given by, 

CaP" y, ) + f ® Cu) (TBP 
0 

(9) Yo (su) = \ivjen*/ Yay, Bo b 

is also a solution to this system, where we have employed the half-range 

expansion. But the system given by Fqs. (8a), (8b) and (8c) is 

known to have 2 unique! solution and thus, 

_ _ + 
(10) ¥, = Y5 => Vy = EP v,- 

This contradicts the original assumption and hence the proof.



  
    

Figure 1: Contours Used in Evaluating the Contour Integral of 

the Resolvent of 5S. 
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Figure 2: Temperature Profile of a Gas Very Near a Wall at 

Constant Temperature.
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FUNCTIONAL ANALYTIC TREATMENT OF LINEAR TRANSPORT EQUATIONS 

IN KINETIC THEORY AND NEUTRON TRANSPORT THEORY 

by 

William Lyle Cameron 

(ABSTRACT) 

The temperature-density equation of Kinetic Theory and the 

conservative neutron transport equation are studied. In both cases 

a modified version of the Larsen-Habetler resolvent intepration 

technique is applied to obtain full-range and half-ranre expansions. 

For the neutron transport equation the method applied is seen to have 

notational advantages over previous approaches. In the case of the 

temperature-density equation this development extends previous results 

by enlarging the class of expandable functions and has the added 

advantage of rigor and simplicity. As a natural extension of the 

Kinetic Theory results, an integral equation for the surface density 

is derived for half-space problems involving the boundary condition 

of arbitrary accommodation.


