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Chapter 1
INTRODUCTION

In the text to follow the conservative neutron transport
equation (both one-speed and multi-group) and the temperature-
density equation of Kinetic Theory will be studied for time-

‘ independent, one dimensional problems. The general form of these

equations is,

(1) )y Ly gu) = g Gow).

In the case of the neutron transport equation | represents the
neutron distribution function and 2my{x,u) dxdu>is the number of
neutrons at position x, x € R, traveling in the direction specified
by the polar angle COS-l(u) where cos_l(u) is the angle betﬁeen the

x axis and the velocity vector of the neutrons (uel[-1,1]). q is

a source function and K_l is the neutron transport operator. Since
we are dealing with the conservative neutron transport equation we
are considering neutron transport in conserving media. As a result
of this condition K-l is non-invertible. 1In the case of the tempera-
ture-density equation R is a two component vector function depending
on the spatial coordinate x, x ¢ IR, and the molecular velocity yu,

p e R. ¢ is a perturbation from an equilibrium distribution of a
rarefied gas; one component of { is the perturbation of the density

and the other the perturbation of the temperature. In this case 9



is zero and K_1 is the temperature~density operator. An analogous
equation for.the perturbation in the transverse velocities of a
gas near equilibrium exists where y 1is a simple function rafher than
a vector function. This "transverse velocity" equation will not be
treated in detail.

Although the operator K_l differs significantly for the
neutron transport case as opposed to the temperature-density case,
the similarities in the spectra of. the two operators allow them to
be treated using the same general technique. 1In fact, the linear
Vlasov equation of plasma physics has been studied by applying the

1
same method. ,
The standard method of treating equations of the form of

Eq(l.1l) was introduced by Case2 in dealing with the non-conservative,
one-speed, Qne—dimensional, neutron transport equation, The conserva-
tive case was worked out later by Shure and Natelson.3 The reason
that Case's original approach could not be applied directly to the
conservative case is basically due to the non-invertibility of the
transport operator for this case. The same problem exists in the
case of the temperature-density equation and the transverse velocity
equation. The simpler transverse velocity equation was first treated
by Cercignani 4 and the coupled temperature-density equation was
treated by Kriese et al.s; in both cases the authors used the
singular eigenmodes approach. In all of these papers the techniques
applied are considered to be heuristic owing to their treatment of

the continuous spectrum (for a critique of the singular eigemmodes



approach see the first chapter of Hangelbroeck's thesis6). As
pointed out by Greenberg and Zweifel7 the singular eigenmodes
approach in transport theory is analogous to Dirac's treatment of
quantum mechanic58 which ignores the fact that the continuous
spectrum actually possesses no eigenvectors. In the case of
gquantum mechanics Dirac's work was Jjustified by von Neuman's
proof of the spectral theorem.9 The justification of Case's
work was to come later.

In 1973 a paper was introduced which employed what is now
known as the Larsen-Habetler resolvent integration techniquelo
for treating linear transport équations. Larsen and Habetler
applied this method to the one-speed, one-dimensional, time-
independent neutron transport equation and duplicated the results
of Case's earlier paper for the non-conservative case while avoiding
the mathematical irregularities committed by Case in his treatment
of the continuous spectrum. Simultaneous to this work Hangelbroeck6
developed a method for treating the one-speed neutron transport
equation in a Hilbert space setting for the non-conservative case.
Lekkerkerkerll extended Hangelbroeck's results to the conservative
case by restricting the domain of the transport operator to a
subspace on which it is invertible, treating the reduced transport
operator by Hangelbroeck's technique and then later extending the
results to the full domain. Greenberg and Zweif‘el12 applied this
procedure to the same equation but were ablé to simplify notation

and achieve more general results by applying the Larsen-Habetler



technique to the reduced transport operator. The Larsen-Habetler
method was used by Bowden, Sancaktar and Zweifel to obtain the
eigenfunction expansions appropriate to full—rangel3 and half-
rangelh problems in multi-group transport theory. Later Bowden,

15

Greenberg, and Zweifel attacked the conservative multi-group case
by treating the reduced multi-group transport operator with this
technique; however, this procedure is troubled by notational
complexities.

The rigorous means of dealing with the conservative
neutron transport equation referred to above are not applicable
to the temperature-density equation or to the transverse velocity
equation because the domains of the operators cdrresponding to these
cases cannot be decomposed, as in the conservative neutron transport
equation, into a finite dimensional subspace and a subspace on which
the transport operator is invertible. However, a modified version
of the Larsen-Habetler technique can be used to attack these
equations. In Chapter 2 it will be shown how this technique can be
applied to the conservative neutron transport equation, both one-
group and multi-group, yielding the proper results while avoiding
the notational complexities of previous methods. In Chapter Y4 this
technique will be applied to the temperature-density equation which,
until now, has only been treated by heuristic arguments. This
approach has been shown to be applicable to the transverse velocity

equation by Bowden and Garbanati.l6 The results presented in

Chapter L4 and those obtained by Bowden and Garbanati have not only



placed the Kinetic Theory equations on a rigorous footing but have
also extended the results obtained by earlier heuristic arguments.
The earlier work forced one to search for solutions to transport
problems in the space of H8lder continuous functions, a space which
is not complete under any reasonable norm. There are two objections
to this constraint. From a purely technical standpoint one would
rather work in the framework of a Banach space rather than an
incomplete space. Secondly, and most important, the constraiﬁt of
Holder continuity has no physical basis. Both of these problems
are solved by the approach presented here. The results obtained
for the temperature-density equation are valid in a physically
reasonable Banach space which is introduced in Chapter M. In
addition, an integral equation for the surface density is presented
for the Kinetic Theory equations. When a mixing of diffuse and
specular reflection of molecules is allowed at a boundary, the
boundary conditions assume a particularly difficult form. Until
now the method of handling this problem involved solving integral
equations for the expansion coefficients. The technique we have
applied leads quite naturally to an integral equation for the
surface density.

Since the basis of this work depends on the Larsen-Habetler
resolvent integration technique, the basic ideas of this method
will be sketched. But first, a few general transport theory
references are in order. In neutron transport theory the standard

reference is Case and ZweifellY, in Kinetic Theory Cercignani‘sl8’19



books are recommended and Chandrasekhgr's20 book on radiative
transfer may be helpful as many of the methods used in radiative
transfer are also applicable in neutron transport theory and
iKinetic Theory.

The basic method of solution employed by Case2 for subcritical

problems assumes that a separation of variables exists of the form

N +1
(1.2)  ¢lx,u) =2 aipi(x)qi(u) ¥ f A(v)¢v(u)6v(x)dv,
i=1 -1

where a;s 1 < i <N, and A(v) are expansion coefficients; pi(x)

and ev(x) are eigenvectors of ; qi(u) and ¢“(u) are eigenvectors

ax

of K—l. Suppose that the following relations hold,

(1.3a) K—;qi(U) = ——-qi(u) ,

(1.30) K7H0 (u) = 0o (W),

Since pi(x) and Gv(x) given by

(1.4a) p,(x) = e™Vi,

(1.h0) 8 (x) = XV

are eigenvectors of %;—with eigenvalues of - %—, —-% then Y(x,u)
i

given by Egs. (1.2), (1.3) and (1.4) is a solution of Eq. (1.1)

for qo = 0, i.e.,

N
(1.5 G- ae™ Vi )+ e (e e = 0.
i_



The expansion coefficients a, and A(v). can be determined by the

boundary conditions at x = 0,

N +1
(1.6)  vy(o,u) = i:laiqi(U)+{lA(V)¢v(u)dv'

Thus, we are led to seek an expansion of ¥(O,u) in terms of the
eigenfunctions of K_l. The eigenfunctions corresponding to the
discrete spectrum, qi(u), are readily obtained. The contribution
due to the generalized eigenvectors, ¢v(U)’ which correspond to the
continuous spectrum of K—l, must be handled more delicately.

K =~ is an unbounded operator but possesses a bounded
inverse. In order that the vast literature on bounded operators
could be employed Larsen and Habetler chose to study the bounded
‘operator K. In the case of the discrete spectrum, note that if
N is an eigenvector of K with eigenvalue A, then n is also an
eigenvector of K—l with eigenvalue 1/A. In the case of generalized
eigenvectors and eigenvalues one can apply the spectral mapping
theorem to obtain the same result. Thus, finding an expansion in
terms of eigenfunctions of the more tractable operator K gives us

1

the expansion we require in terms of eigenfunctions of K ~. By

employing the following identity for bounded operators,

;—'I(ZI—K)—l

(1.7) o p(u)dz = p(u),
r

where T is a contour enclosing the spectrum of K, Larsen and Habetler



obtained the‘desired eigenfunction expansion in an elegant fashion
while avoiding the difficulties which were previously encountered
in dealing with the continuous spectrum.

In the case of conservative neutron transport this technique
is not directly applicable. As for the Kinetic Theory equations,
this technique is again not directly applicable and furthermore,
the method of dealing with a reduced transport operator is also
unworkable. As mentioned earlier the reason for the difficulties
encountered stems from the non-invertibility of K—l. The |

solution to this problem has been suggested by Larsen. If one

defines the operator

(1.8) 7% = kg, T

where z, is a complex number not contained in the spectrum of K_l,

then S_l is an unbounded but invertible operator. Its bounded
inverse, S, can be treated by the standard Larsen-Habetler method
and an expansion of w(O,u) in terms of its eigenfunctions can be
obtained. Again, applying the spectral mapping theorem, we see
that if n is an eigenvector of S with eigenvalue A then n is also
an eigenvector of K-l but with eigenvalue (1/A+z5). A similar
result 1s seen to hold for the continuous spectrum. Then, the
eigenfunction expansion desired is obtained by studying the well-
behaved, bounded operator S rather than the ill-behaved operator

K’l .



In the chapters to follow these sketchy ideas will be
elaborated on at great length. In Chapter 2 the technique
mentioned above will be applied to the one-group and multi-group
conservative neutron transport equations. The full-range and
half-range expansions will be obtained. These results will then
be used to solve the Milne problem. Many of the details of these
calculations parallel the details of previous approaches (c.f.

Ref. 12-15) and thus these calculations will not be reproduced.
The main cbjectives of this chapter are to demonstrate the technique
and to note its obvious notational advantages over previous methods.

Chapter 3 contains a development of the primary equation of
interest in this work, the temperature-density équation, from basic
principles.

In Chapter L} the modified Larsen-Habetler approach is
applied to the temperature-density equation and the full-range and
half-range expansions are obtained. These results are initially
obtained for a restricted class of functions and then the results
are extended to the full Banach space. In order that these
expansions can be used to solve transport problems a functional
calculus is developed for the operator S.

Using the results of the previous chapters the solution
to the temperature-jump problem, for complete accommodation, is
presented in Chapter 5. Also in Chapter 5, the temperature-jump
problem with arbitrary accommodation at the boundary is studied.

For this case the boundary conditions of both the temperature-



10

density equation and the transverse velocity equation are
particularly difficult to deal with. We will present integral
equations for the surface densities in both cases. Once the
surface densities are known these problems can be solved by the
same technique that was applied to the temperature-jump problem
with complete accommodation. In previous work the standard
technique involved solving rather unwieldly integral equations
for the expansion coefficients. In the case of the temperature-
density equation the existence of solutions to these integral
equations has not been proven. We will show that the integral
equations we obtain have solufions for all but, at most, a finite

number of values of the accommodation coefficient.



Chapter 2
CONSERVATIVE NEUTRON TRANSPORT
Section 1: The One-Speed, Full-Range Expansion

The homogeneous, one-speed neutron transport equation for

a conservative medium can be written in the form,

(1.1a) aii§§31-+K'lw(x,u) = 0.

K is an operator which acts only on the p dependence of ¥ and is
given by
+1
-1 1 1
(1.1v) (X "£)(n) = =[£ln)-5 s f(s)as].
u 2
-1
The domain of K_l is usually taken to be the space of Htlder

continuous functions with index o defined on [—l,l]. We will

designate this space by Hba([—l,l]). Here

(1.2a) Ho (X) = {r:][g]] <=3,

where |l' |a is given by

(1.2b) i]f|la = sup T(X)Ig( )
X,yeX X-y
x#y

With this domain K_l is a non-invertible operator, in fact,

11



12

(1.3a) K (1) = 0,

_1(

(1.3b) K (u) = 1.

The vectors eg{u) = 1 and el(u) = y span the zero-root linear
manifold of K_l. One easily verifies this assertion. Using

Eq. (1.1b) and solving
-1

(1.4) (K 7fo)(u) =0

for £, we obtain

(1.5) folu) a polul,

where pi(u) is a polynomial in p of degree i. Similarly, solving

(1.6a) K_Efl = 0,

we have

(1.6D) k‘l(K'lfl) = 0.

Using Egs. (1.4) and (1.5) this implies that

(1.6¢c) (K—lfl)(u) a polu).

Hence we obtain the result

(1.7) £ (u) a pl(u).

Assume that

(1.8a) (K "r )(w) =0, n> 3, and
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(1.80) (ke )(w) # o.

Then

(1.9a) K o(x™Pr () = o,

and thus, by Egs. (1.6a) and (1.7) we have

—l( —n+3f )(

n

(1.9b) X (K u) o pl(u)-

n+3

Solving the above for K f we find that

(1.9¢) (K—n+3fn)(u) o p,(u).

2

A simple calculation shows that this result contradicts Eqs. (1.8a)

and (l.8b).. Hence
(1.10) (k") (u) = 0

implies that f(u) is a linear combination of the vectors eo(u) = 1

and el(u) = u . In previous work the span of {1,n} is the finite-

dimensional subspace which is substracted from the domain of K_l

. 11,12 . .

in order that the reduced transport operator be invertible.

-1
)

It is well known that the spectrum of K—l,c(K , 1is

restricted to the real axis. Thus, if we define S—l by,

(1.11) st = K'l-il,

then g™t has a bounded inverse on Héa([-l,l]) and S_l can be dealt

with by applying the Larsen-Habetler resolvent integration technique.



1k

S, the inverse of S_l, may be computed by solving,

(1.12) s7%f =4

for f in terms of n. Of course, f,neHda([—l,l]). Using Eqs. (1.1b)

and (1.11) we have

1 1+
(1.13a) =[f(u)- E-If(S)dS]~if(u) = n(u),
H -1
or,
u 1 1
(1.130)  £(w) = 757 n(w) + 5y _{f(s)ds.

Integrating both sides of Eq. (1.13b) with respect to u and
rearranging we obtain the following expression for the integral

on the r.h.s. of Eq. (1.13b),

+1 +1

(1.1%a)  sf(s)ds = A~ (=1) 5 =2 — n(w)du,
3 3 1-iu

where i = V-1 and we have introduced the definition

+] q
(1.1%b)  A(z) =1 _—g— =25,
%S

Inserting the 1.h.s. of Eq. (1.1ka) into Eq. (1.13b) we have f in
terms of n and thus, using Eq. (1.12), we conclude that the action

of S onn is given by

. oy—1 +1
(1.15)  (sn)(u) = lﬁiu n(u) + ékzigg / snifzgs
-1

S is a bounded operator on the space Lp([-l,l],|u[pdu) given by,



15
(1.16) Lp(X,g(s)ds) = {f:f|f(s)|Pg(s)ds<w}.
X

We will restrict the domain of S to the smaller space, Hp, defined by
(1.17) H, = {f:uf(u)eHda([—l,l])},

in order that the resolvent of S may be studied. The results we

obtain on this restricted domain can be extended to the full domain

of 8.12’21

The resolvent of S, (zI—S)_l, is computed in the same way that

S is obtained from S—l. The result is

+1

(1+iz) ™" ((1eiy) £(p) + v(1+iz)_l sf(s)ds

b
£ (2)-u 20(t7(z2)) -1 t7(2)-s

(1.18) (zl-s)"lf(u) =

where we have employed Eq. (1.14b) and the following definitions:

z
1-iz

(1.192) +t(z) =

and

-1 _ 2
(1.19p) t (z) = T41s

{

Note that t-l is the inverse of the operator t rather than the
reciprocal of the function t(z), i.e., (t_lt)(z) = 7.

In order to employ the identity given by Eq. (1.1.7) we must
determine the spectrum of the operator S. If we view the r.h.s. of
Eq. (1.18) as a function of z then the spectrum of S will be those
points at which this function fails to be analytic. We examine the

leading multiplicative term,
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(1+iz)~ o1
t—l(z)—u z-(1+iz)u

(1.20)

and note that it does not give rise to a pole at z = i. However,
this term does give rise to a first order pole at z = t(u).

From Eq. (1.14b) it is clear that A(z) is non-zero and
analytic for z in the finite plane,17 provided z ¢ [-1,1]. For =z
large A(z) can be expressed in the form,

+1
(1.21)  A(z) = 1 - * ras(1+

2—1 |z|+m

N |0
+
—~

Since [t_l(z)|+m as z»i, the factor of A—l(t—l(z)) in Eq. (1.18) gives
rise to a second order pole at z = 1i.
-1, -1
Both A (t ~(z)) and the term
+1

(1.22) I
-1t

sfis)ds = al(z)
(z)-s

are discontinuous across {z:t_l(z)e[—l,l]}, since the Plemel}
formulas applied to Eq. (1.22) yield,

+1

(1.232) g'(u) = s SEElE 2ty e e,
-1t (u)-s
where,
+1
(1.230)  g(y) = 1im s -Sffs)ds
e»0 -1 t (u)tie-s
e>0

A similar result is obtained when the Plemelj formulas are applied
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to Eq. (1.14b). Thus, A_l(t-l(z)) and the integral term introduce
a branch cut, {z:t-l(z)e[—l,l]}.

The complete spectrum is accounted for by the semi-circle,
{z:2 = %{i+exp(i®)),—ﬂ§9§p}, and the point, z=i. We enclose the
spectrum of S in two disjoint contours, T and Fi, with T surroundigg
the semi-circle and Fi surrounding the point z=i. Employing the

identity (1.1.7) we calculate the contribution due to the semi-circle,

-1 +1
-1 1 .1 A (z') “sf(s)ds
i(zI—s) flu)dz = 5+ ?,z'—u (£(u) + 5 _iz._s )

(1.2h) az'.

1
201
Here I'' is a contour surrounding [-1,1] and the change of variable

z!' = t_l(z) has been applied. The r.h.s. of Eq. (1.24) is precisely

the result of Ref. 12 for the branch cut integration. Thus, we are

led directly to the standard formula,lo’12
1 1 L
(1.25a) Tl S(zI-8) "f(u)dz = SA(v)® (u)dv,
11., -1 Y
with
+1
(1.25b) A(v) = e -isf(s)Qv(s)ds,
-V _l_ 1‘.+ =
(1.25¢) o (u) = 5 P o=+ SIA (V)47 (V) ]8(v-u),

and, -

(1.254)  NW(v) = vAT (VA (V).
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Consider the integration about Ii. Note that the analytic
behaviour of the first term on the r.h.s. of Eq. (1.18), in a
neighborhood of z=i, is given by Eq. (1.20) and thus is analytic
there. Consequently, the contribution due to the integration
about Ti will be given entirely by the second term on the r.h.s.
of Eq. (1.18). This term is given by

+1

1 AT ) Tst(s)as g _ pla)
z—(1+iz)u 2 lz—(l+iz)s qlz)

(1.26) >
where p(z) is analytic in a neighborhood of i and is given by,

o+l
(1.27)  p(z) = Bla-(1riz)u) ™ s SHlds

-1
and q(z) is given by,
(1.28) ql(z) = A(t_l(z))-

q{z) vanishes at z=i as well as its first derivative giving rise to
a second order pole. The integration of the resolvent about Fi is

obtained by applying the standard residue formula for a second order

pole,
1 . plz) = ___Jé__;__ ' " '
(1.29) o078 (z) 9% = - 5 (3p'(z)a (ZO)—p(ZO)q (z5)),
3(q"(z))
and evaluating for zo=i. The result is
+1 +1

(zI-s)'lf(u) dz = %{u [sf(s)ds + fszf(s)ds].

(1.30) i)
Fi -1 -1

L
oni
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Combihing the results of these .integrations, Egs.(1.25) and
(1.30), we obtain Eq.(10) of Ref. 12, i.e., the Case full-range
expansion formula for c=1,

+1
(1.31) f(u) = $a_-Fa_u+ [ A(v)®v(u)dv:

0“1 1
where the expansion coefficients, ass are defined by,
+1

(1.32) a, =3/ (—u)e-if(u)duo
-1

Section 2: The Half-Range Expansion

In this section we will obtain the half-range expansion
making use of the results from Section 1. TIn the previoué section
we obtained the eigenfunction expansion,

+1

(2.1)  wylo,u) = 3a,-%a, u+ {l A(v)¢v(u)dv,

where the expansion coefficients are given by Eqs.(1.25b) and (1.32),
substituting ¢(0,pu) for f(u). ¢(x,n) given by
+1

(x-u) + £ A(v)e (u)e™
-1 v

/v
+1
ao 2al dv

Nf=

(2.2)  wlx,u) =

is a solution to Eq.(1l.la) provided y(0,u) is specified for ue[-1,1].
For half-range problems (0,n) is specified only for ue[0,1] and
the additional boundary condition,

(2.3) 1lim y(x,u) — constant

X0
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is usually given. In order to satisfy boundary condition (2.3),

v(x,u) given by Eq. (2.2) must have

(2.ha) a. =0

and
(2.4b)  A(v) = 0, vel[-1,0).

Thus, for half-range problems, we seek an expansion of the form,

1
(2.5) Pp(0,p) = %ao+éA(v)®v(u)dv-

Functions satisfying Eq. (2.5) are clearly a subset of the functions
expandable by the full-range expansion, Eq. (2.1).
It is convenient for' the following analysis to introduce the

+
operator P :Lp([—l,l],

i) Pds) — Lp([o,l],|s]pds) defined by,

(2.6) (P £)() = £(u) , u0.
Define the operator E:Lp([o,l],|s|Pds) — Lp([—l,l],]s|Pds) by
(2.7a) P'EP'y = Py,
+1 .\
(2.7b) 7 s(EP y)(s)ds = 0,

-1
and,

(2.7¢) (zI—S)_l(EP+w)(p) analytic in z for Re z<O.

If an E exists which satisfies the above conditions and if y(0,y)
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is given by
(2.8)  w(0,u) = (EP )(0,u),

then y(x,u) given by Eq. (2.2) will satisfy boundary condition (2.ka)
due to Eq. (2.7b) and boundary condition (2.4b) due to Eq. (2.7c).
Furthermore, if ¢ is specified for Ve[0,1], which is the usual
boundary condition for half-range problems, then ¢ is given on the
full-range by Eq. (2.8). In other words, specifying ¢(O0,n) for
ue[0,1] with the added condition (2.3) is equivalent to specifying
$(0,u) on [-1,1].

The operator E is given, as in Ref. 12, by

(2.9)  (EP'£)(q) =

Here X(z) provides the Wiener-Hopf factorization of A(z)lg:

(2.10)  x(z)x(-z) = 3A(z),

where X(z) is analytic in (\[0,1] and vanishes as z“l as |z|»w.
Not only does the existence of B imply that the boundary condi-

tions (2.Lka) and (2.4b) can be satisfied, the stronger statement

(2.11)  {a; =0, A(v) = 0, ve[-1,0)} — w(0,u) = (£p"%) (0, )

can be made. The proof of (2.11)is left for Appendix III.
According to Eq. (2.11) the expansion appropriate to half-

+
range problems will be given by the full-range expansion of EP .
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In order to express this result in the usual form, Eq. (2.5), some
rearrangement is necessary. The expansion coefficients can be
obtained by applying Egs. (1.25b) and (1.32) directly to EP+w or

by using the identity (1.1.7) on EP+¢. We choose the latter method.

Substituting Eq. (2.9) into Eq. (1.18) we obtain,

. y=1 .yl
o) oy B2

(2.12a) [(zI-s)'lEP+w](u) = 1
t (z)-u 20t (z))

f ELEE—yli—l-ds , u>0,
-1t (z)

and,

(14i2)7%  (1-ip) sp(s)

3 1
x(w) 2 {X(-5)(s=m)

(2.12v) [(zI-8)" 1pp ¢]( ) =

£ (2)
(1+iz) ™ " s@EN() 4oy .
2A(t‘l(z)) -1 t'l(z)-s

Let us consider the term

Using a partial fraction decomposition of the denominator on the r.h.s.
of Eq. (2.13), making the change of variable s > -s, and interchanging

limits of integration we arrive at the result,

0 + 1 l
(2.1k4) f—§i§5—kl—( Yas = fat fas [ = - S ]
1t (as) A N E) X(=8) (s+t71(z))
<« tv(t)
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To proceed we need the equation from Ref. 12,

sX (s)
20 (s)(s-2)

(2.15) X(=z) = ds.

o =+

Using Eq. (2.10) in (2.15) we obtain,

S

X(=s) (s-m) o5

(2.16)  x(n) =-§

R

Substituting the above into Eq. (2.14) and multiplying by
(2A(t~l(2)))_l we have

0 1

+
(2.17) - gl U)e) 4o o3 Ly sble) as
2A(t7(2)) -1 tT (z)-s X(t77(z)) 0 X(-s)(t ~(z)-s)
_ 1 } si(s) as,
2A(+™H(2)) 0 t7H(z)-s

+
and since EP is the identity on [0,1] we conclude that

(2.18) L +} s(EP"y) (s) ds = = —1 } sb(s) ds.
on(t7H(z2)) -1 t7(z)-s 2 x(+™H2)) 0 x(=s)(+71(2)-5)

With this result Eq. (2.12) can be cast in the form,

. -1 . y-L
(2.19a)  [(21-8)""BP Y 1(n) = i%{E—)——-{(l-iu)‘b(“) ¥ (l+ii)
t7(2)-u X(t7(2))
1
3 sy(s)
X "“f dS}g ]J>0,
20 x(-s)(t7(z)-s)

and



2k

s _3_(n)Th (et sy(s)
(2.190)  [(2I-8) "EP $](u) = 3 e (2) o CxG0 I xE) e
w0l L

x(+™5z)) 0 x(-s)(t™ (z)-s)

Eq. (2.19) can be used to quickly verify that E satisfies
Eq. (2.7c). To see this, note that t_l maps the left half complex
plane into itself and is analytic except for a simple pole at z=i.
Thus X(t—l(z)) is analytic for Re z<0. Moreover, for p>0 and Re z<0,
f(l+iz)(t_l(z)—u)|_1 is finite. Therefore, from Eq. (2.19a), we
have that (zI—S)—lEP+¢ is analytic in z for Re z<0 and u>0. To see
that (zI—S)-lEP+w is analytic for Re z<0 when u<0, we need only check
)—l

. ,
that z=t(u) is not a singularity of (zI-S) "EP y. This is done by

-~ recalling from Eq. (1.19) that t’l(t(u)) = u. Thus, (zI—S)—lEP+¢ is
analytic for Re z<0. At z=i we note from Eq. (2.19) that (zI—S)_lEP+¢
has a simple pole induced by the zero of X(t—l(z)).

Integrating (ZI—S)_lEP+¢ on z along a contour containing the

point i and the semicircle, {z:z = }(i+ exp(ie)), -N/2<0<0}, yields

the Case half-range eigenfunction expansion,

(2.20a) ylp) = 3%

1
ag + é A(v)év(u)dva

where,
(2.20b) & =2 5 -S0(s) 40, } sds
’ 0 o X(-s) 0 X(-s) °

and,
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1 sw(s)<1>v(5)

é X(-s)

_ X(-v)
~ N(wv)

(2.20c)  A(v) ds.

Section 3: The Multigroup Full-Range Expansion

We write the multi-group neutron transport equation in the

form,

(3.1) —E’—‘J’%—lﬁ + K () =

M,U#O,
u

with,

+1

[Zw(X’U)"C f lIJ(X’S)dS})U # 0.
1

'_I

(3.2) K “yplx,u) =3
Here y is an N-component vector where the i-th component represents
the neutron angular densities in the i-th group, y is the diagonal
cross section matrix, and C the group-group transfer matrix. The
appropriate space to seek a solution is

XN N

P =@l E
and Xp is the Banach space mentioned in Section 1. As in the one-speed
case, the computations are done in a dense subspace of HOlder contin-
uous functions, and the results can be extended to Xg by continuity.22

We have the dispersion function
+1

Z -/ sD(z,s)ds,
-1

(3.3)  A(z) = (z-2¢)c7t

where,
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(3.4)  D(z,u) = (zI-pz~t)~L.

As we are dealing with the case of conservative neutron

transport we have
(3.5) det(z-2C) = 0.

In this case K~ given by Eq. (3.2) is not invertible on its range.

Thus, defining S as before, i.e., S = (K—l—iI)~l, we find
1 e
(3.6a)  Sn(u) = B(u)(un(n) + (c™ - s B(s)ds)™ s sB(s)n(s)ds),
-1 -1

where,

(3.6p) B(u) = (z—iul)'l.

We have assumed that z = i is in the resolvent set of K-l. If not,

any other point could be chosen, assuming the spectrum of K_l does
not consist of the entire complex plane. Furthermore, we have
assumed that det A(z) vanishes as 1/z as |z|+m.

It is convenient to define,
-1
(3.7)  Flz,u) = (zI-uB(n)) .

Then a direct computation gives

+1
(3.8a)  (2I-8)"Yy(n) = Flz,u)(p(u) + BGIR(z)[c™ - £ B(s)as]™
-1

+1
x [ tB(t)F(z,t)p(t)dt).
-1
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Here we have defined

1 M 1Mo,
(3.8b) R(z) = I-[CcT - fB(s)ds] ~ f tB(t)F(z,t)dt.
-1 -1
R is related to A by
+1
(3.9)  R(z) = [c™*= /B(s)as]Fr~ta(s™4(z))z 2.
-1
To see this we note that
+1 +1
2 _ s -1, z “1\=1,_ . —y\-
(3.10a) —{SB (s)F(z,s)ds = _{ Tris ¢ (Taig I-sf ) (z-isI)
and thus,
+1 +1 +1 _-1
(3.100)  (c™ - sB(s)ds)R(z) = ¢~ = fr i (I-isz™T) tas- fif.
17
-1 -1 -1
7 “1,=1,.-1 , -1
x T+iz I-sy 7) (£ ~-isI) ~ds,
which yields,
+1 +1
(3.10¢) z(c"l- fB(s)ds)R(z)z'l = 5o tz-1 f== I-sz'l
1+iz
=1 -1
szt zZ -1 -1
+ EI;Z](I:I; I-s2 )(Z-isI) ~ds:
+1
- - Z z ~-1,-1
= 1C lz— _{21152(1+1z I-s3 ) “ds
+1
I § 2% z ~1,~1
= 1C Tr-2r- JS(ggy E- Tiig * sy T-st )

-1

lds,

ds
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+1
. st(t"l(z),s)ds = A(t'l(z)),
-1

= (Z~2C)C-l

and hence Eq. (3.9) is verified. Since det A(z) has a double zero

at infinity, it follows that det R(z) will have a double zero at

t(o) = i. The continuous spectrum of K transorms into the semicircle,
{z:z = $(i+ exp(i6)),-N<8<0}, and the additional eigenvalues of K
(zeroes of A(z)) transform by vir t(vi).

The eigenfunction expansion is again obtained by integrating
the resolvent around the spectrum. The integration around the
continuous spectrum can be transformed into the identical form found
in Ref. 15 (or see the result for the subcritical situation which is

13

also identical)”~ by the change of variable z' = t_l(z). Similarly

the integration about the isolated point eigenvalues, V., can, by
the same change of variable, be transformed into the expansion met
in Refs. 15 and 17. Only the contribution from the double pole at
i remains to be evaluated. Again the appropriate residue for a
second order pole must be used.

Denoting the integral by I, we have from Egs. (3.8a) and (3.9),
AL (87 () 41

“deth(z)  ” /sB(s)F(z,s)v(s)ds)dz.

(3.11) I, = ==/ (F(z,u)B(n)
17 e " 2

i
Using the diagonal expansion of detA(z) (see Appendix I), we find

Ly on)- ~g§-Tr(Z—lAC(W)) + O(lg),

3z z

(3.12) det A(z) = det(zC™

where Ac(z) is the cofactor matrix of A(z). Ry definition of the
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critical multi-group problem, the first term on the r.h.s. of
Eq. (3.12) is zero and the remaining term gives us,
1 T, -1 *1
(3.13) 1, = eeed (F(z,u)B(u)EAc(t (z))Z ssB(s)F(z,s)y(s)ds)
r

. : -1
i

< (- 3207 (@) + o((REEY)) e,

We note the following equalities,

(3.1ha)  F(i,1)B(n) = B(WF(i,u) = -iz~t,

(3.100) 53 (z)| = -FP(i,),
z=i

and,
(3.1%)  F(i,u) = -(iI+uz”l).

Using Eq. (3.1ka) one finds,
+1 +1

(3.15) F(i,u)B(u)ZAZZf sB(s)F(i,s)y(s)ds = -AZI sy(s)ds.
-1 -1

Using the above and simple residue theory for a second order pole we

obtain
2 7 7, i
(3.16) 1, = [§Tr<z‘1Ac<m))1'1[-ziAc(m>fls¢(s)ds - Fliu)A (=)
+1 +1
x J sp(s)as-nL(=)f F(i,8)sp(s)as] = [Er_(z71A%(=))]™
-1 -1 ¢

+1 +1
x [-2iAT(m)f sy(s)ds + iAT(m)f ap(e)ds + uE_lAT(w)
c -1 ¢ -1 ¢



+1 +1 +1
x f sp(s)ds + iAZ(m)I si(s)ds + Af(m)z“l 5 s2u(s)as]

-1 -1 -1

1 1T +1
s W(s)ds + Ul TA(=)S sy(s)ds].
-1 ¢ -1

ey 1 AT () 2"

_ 12
= et

Using the results of Ref. 15 for the integrations about the
continuous spectrum and the isolated point eigenvalues and Egq. (3.16)
for the integration about the double pole we have,

2n +1

(3.07) vl = 2w+ e+ BT N1 DAL= S sfu(s)as
i=1 i - -1
o+l
+ uE—lAT(m)f sP(s)ds].
C -1

The last term on the r.h.s. of‘Eq. (3.17) can be expressed in the

manner of Ref. 15 by noting (see Appendix T) that

~ T
Ty 2 o=l o
(3.18) 1% = Ze(shh (N)EE 3,
and thus,
(3.18b) AZ(w)X‘lw - %Tr(Z‘lAC(w))Ew,alg,
and,
(3.18c) Al (=)y = %Tr(z"lA (=))[ v, 28] 5 e,

where ¥ is a column vector and we have defined the inner product
[+-] vy,

N
(3.184) [a,b] = £ a.b..

. 11
i=



Combining the above with Eq. (3.17) we obtain

2n +1 5 ) +1 . -1
(3.19)  w(p) =% @+ Y.+ fas sT[w(s),B]e + fas s[v(s),s8lus ¢,

. v, r

i=1l 1 -1 -1

The first term on the r.h.s. is the contribution from the finite
eigenvalues of K. This, along with wr, is identical to the sub-
critical result obtained in Ref. 13. Only the contribution from
the eigenvalue at infinity is essentially different in the critical

case.
Section 4: The Multigroup Half-Range Expansion

For the half-space expansion, again an "albedo operator'" E
must be introduced. This operator has precisely the same properties

as in the one-speed case presented in Section 2. The appropriate E is

WZ(S)ds}i, -1<0,u<0,

(4.1)  (By)(o.w) = °

23

where X and Y provide the Wiener-Hopf factorization of A,
(4.2) Y(-z)x(z) = Alz2).
We now compute

(4.3) -ngTif(zI—S)—lEtb(u)dz

about the spectrum of S obtaining



Here wr and wr are defined in Ref. 1l and are computed in analogous
i

fashion. The remaining integral is of the same form as I, of Fg. (3.11)

1

except with ¥ replaced by EV. Using the results of Section 3 one
finds,

(ZI~S)—le(u)dz = [ ds s7[EY(s),E]6 + [ ds s

(b.5) == 7
Fi -1 -1

1
201
z -1

x [Ey(s),ze]ur &,

The second integral on the r.h.s. of Eq. (4.5) is calculated in Ref. 15

and found to be zero. Thus, we write the half-range expansion in the

form,
n +1 o R
(h.6)  wlyp) = = R sT[Ey(s), gl &,
i=1 i -1

Section 5: Extension to Xp and the Development of the Functional

Calculusg for S.

In the following sections an outline of the extension to X
and the development of the functional calculus for 8§ is presented for
the one-speed case. The procedures followed are identical in the

o

. 1 . Qs . .
multi-group case. 7 Gince a discussion of the mialti-group case would

add no new insights it will be omitted.



S is a bounded operator with domain Héa([-l,l]). As

Hdu([—l,l]) is a dense subset of the Banach space Xp, the domain
~of S can be extended to Xp by continuity.gl Define the operators

T:X > X and T:X > X by
b 1Y P D

+1
(5.1) (ra)(n) = s A(v)¢v(u)dv
-1
and,
. +].
(5.2) (T)(v) = WT_T flsw(‘>©v(s)d

where @v(u) and N{v) are as defined in Eqs. (1.25c) and (1.254).
Define the linear functionals pj:Xp%-Lm by
+1

(5.3) pi(w) =3 f(-
-1

S)g_iw(s)ds.

Then the expansion, Eq. (1.31), can be cast in the form

L () - ’2— nl(lb)u + (TA)(n),

(5.4)  w(n) =
where the expansion coefficient, A, is given by,
(5.15)  A(v) = (T)(v).

- 21
One can show that the operators, pi, T, T are bounded on Xp'
Furthermore, if we define Xé by

(5.6) X'p = {feXp:pi(f) =0, ie{0,1}}

then it can be shown that for every Ac Xp there exists a corresponding



weX‘p such that

And for every wsX'p there exists a corresponding A ¢ Xp such that

(5.8) ¢ = TA.

Using these facts one concludes that the expansion (1.31) is valid
for ¢ ¢ X .2l

b
In order to solve transport problems it is necessary to develop

a functional calculus for S. Following Ref. 21 we define the operator

P(w) (corresponding to E(w) in Ref. 21) by,
(5.9)  Plw)flu) = 7 Alv)g (u)dv,

where A(v) is the expansion coefficient, or Case transform, of f.
®Q(U) is the Case continuum eigenfunction. One can show for

feX' ,21
D

(5.10) P(wl)P(wg)f = P(w3)f, W, = inf{wv,wg},

3
(5.11) P(1) = T,

and

(5.12) P(-1) = 0,

where I denotes the identity operator. One can also prove that P(w)
is a continuous function of w in the strong operator topology and

that the following hold,



+1
(5.13) st = JSt{w)dp(w)f, ng'p,
-1

where t is given by Eq. (1.19a), and
(5.14)  sp(w) = p(w)s.

The facts cited above imply that P(w) is the spectral family of
C s 2k
projection operators for 5.
Employing the results of Ref. 21 we also have that,
+1
(5.15)  (sr)(u) = stlwialp(w)rl(n).
-1

If we define PO and Pl by

and,

N[+

(5.17) (Plf‘)(u) = ——pl(f)u,

then any EXp can be written as

+1
(5.18)  ylp) = [P +P_+ faP(w)Jy.
0" ]
Furthermore, if ¥ is a rational function and y' = (I—PO—Pl)w then
+1
(5.19)  F(8)y' = JFP(t(w))ar(w)y'.
-1

We are interested in the action of K—l on y which can be written

1 —l(

| - = K "D D] -1
(5.20) X 7y =K I-P =P )} + K (PO+P1)w.



But,

(5.21) K =87 + il = —— ,

"with a slight abuse of notation, where t—l is defined as in

Eq. (1.12b). FEmploying FEgs. (5.21) and (5.19) we have

+1
(5.22) K-1(1~PO—PJ)w= ] 1 dP(w)(I-PO—Pl)w,
) -1t (t(w))
i1.e.,
1 1y
(5.23) K (I—PO—Pl)w = _{ ;-dP(w)(I—PO—Pl)w.

The action of K—l(PO+Pl) on | is easily calculated and the action
of K-l(I—PO—Pl) is given by Eq. (5.23), which now puts us in a

position to solve transport problems.
Section 6: The Milne Problem

The Milne problem involves the determination of the neutron
distribution in a source-free half-space with zero incident flux.17
A solution to the one-speed, homogeneous transport equation of the

form,

+1 /
(x-p) + ra(v)o (u)eﬁx vdv,
0 v

N =

1
(6.1) WM(x,u) =S *

is sought which obeys the boundary condition,

(6.2) wM(o,u) =0, u > 0.



By BEq. (2.11) ¢ must obey
(6.4) =Py,

The boundary condition, Eq. (6.2), implies

Applying E to Eq. (6.5) and using Eq. (6.4) we obtain,

(6.6) ¢ ==TP y,

n =

and thus the coefficients, a_ and A(v), are obtained by applying

0
the half-range expansion to %v. The result is,

1 1
(6.7a) a, = fsy(s)ds / fy(s)ds,
0 0

and
1 v *
(6.7b) A{v) = E’;Tsjﬁtgy éSY(S)®v<S)dS’

By construction the function obtained satisfies the boundary conditions.
To show that it also satisfies the transport equation it 1s necessary

to apply LEq. (5.23) of the previous section.



Chapter 3
INTRODUCTION TO THE TEMPERATURE DENSITY EQUATION
Section 1: Derivation of the Boltzmann Equation

The state of a gas containing N molecules enclosed in a
finite volume, V, can be represented by a probability density,
PN(Xl’XZ’ e xN;El,EZ, oo EN; t) where PN dxl,dXQ,
dxy dEl dig e dEN is the probability of finding molecule n in
the volume element dxn centered at the position Xn with a velocity
in the volume element dEn centered at the velocity En at time t with
n ranging from 1 to N. It will be assumed that the molecules do not
interact with the boundary of V except when they strike it. The

only restriction on the type of interaction at the boundary is that

the net flux of moclecules through the boundary is zero, i.e.,

+C0
(1.1) I JE +qa.P = 0,
g e 1 1N

where 5 is the boundary of V and dai is the area element of the i-th
coordinate. UNote that Maxwell's boundary condition with arbitrary
accommodation satisfies this restriction. It will also be assumed
that the molecules have no internal depgrees of freedom so that they

can be considered as essentially point masses. In this case

FN(X;E;L) = 0 for X £ V, 1 < i < N, because no molecules can escape
V (here X represents the 3N dimensional space Xy X Xp oo e X Xy
and £ the corresponding velocity space El X & . X EN).

. s

38
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Furthermore,
(1.2) s s P (X;E58)dXdE = 1,
v = N

since this expresses the certainty of finding all N molecules in the
volume V.

The one-~particle distribution function P%

I(xl;gl;t) is given by

- 1
. . = > (YT - T
(1.3) PN(xl,al,t) x—i :—g PN(“,W,t)d(X xl)d(_ gl),
1 7 "1
i.e., all coordinates except Xy and £, are integrated over. Conse-
quently, PN(xl;gl;t)dxldgl expresses the probability that molecule 1

is located in the volune element dxl centered at Xl with a velocity

in the velocity element dgl centered at £, at time t, independent

1
of the positions and the velocities of the other N-1 molecules.
Similarly, the two-particle distribution function, Pi(x],xg;gl,gq;t),
is given by

-x )

2 - . . — .::- A —
(1-14) PI\I(Klaxgualagzat) " J s P (X,_,,t)d(x Xl P

. "
X—Xl—X2 :—gl—gg

x d(s—gl—gg).

If N is very large the molecules will be constantly undergoing collisions
with each other. In addition, if we assume that the molecular inter-
sction has a finite range,o, and if it is assumed that the molecules

are in thermal equilibrium, then the velocities and positions of the

molecules will be uncorrelated.l8 Thus, the probability of finding



molecule 1 at Xy with velocity gl and simultaneously finding molecule

2 at position x, with velocity 52 will simply be the product of the

2

probability that molecule 1 has coordinates (xl,gl) independent of

the other molecules and the probability that molecule 2 has coordinates

(XQ,C?> independent of the other molecules, i.e.,
- 2 1 2
(1.5) Pyl sxs8 56,550) = Prlx 56,5007 ,58,50).

For a gas isolated from external forces and confined to the
volume, V, the state of the gas will be constant in time and thus
the total time derivative of PN(X;E;t) must be zero. This requirement

yields the Liocuville equation,

Py N N
(L.6) 557 * Bk sV P4 r Fpo- vV, Pp=0,
i=1 i=1 i

where Vj is the gradient with respect to the i~th spatial coordinates,

v is the gradient with respect to the i-th velocity coordinates and

&4
Fi is the force on the i-th molecule. It is assumed that the inter-

molecular force is repulsive, of finite ranpge, o, and is directed

along the line connecting the interacting molecules. In this case

we have,
N X=X,
(1.7a) F. = ¢ F(|x.-x.|) —,
1 . 7]
J=1 IXi—X. I
J#i !
where,

(1L.7v)  F(s) =0, s > g.



If we restrict our attention to rarefied gases it is
reasonable to assume that trinary collisions and higher order
collisions may be neglected, i.e., assume that only binary colli-
sions occur. Let Vig denote the volunme {x:lxi—x\<éu and Ixj—x!<%o}

and let Sij be the surface of Vi,. In the region, R = V-U Vii’
iy 1

[3

the Liouville equation reduces to,

since there are no intermolecular forces in this region. Integrating
(1.8) over all spacial coordinates except x, and over all velocity

coordinates except £., one obtains

1
apml
o . D - e
(1.9a) rraniis ;—x i_g gy ¢ VyPd(X-x Jd(z-g )
R RS |
N
+ 7 . 1( X-x. o, = .
§:0 ;—X i_; £ viPNd(Y xl)d(m gl) 0
J=c 1 - ;l
Thus,
aP#(xL;gl;t) 1
1N | . ~
(1.9b) Tt gy s v PLlx e 5t) - (N—l)é ;g )
12

o

2 . . }
><IN(xl,XE,El,F,E,t)da(xg)di N

xl,x2;,1,£2;t)

ot (11-1) { I(EZ'H)P

12

X du(xg)dgg = 0,

where the velocity integration is over all velocity spaée and the



surface integrals are over the sphere of radius o centered at Xy

with inward normal n. The first surface integral in Eq. (1.9b) is
due to the dependence of the range of integration in Eq. (1.9a) on

the'xl coordinates and the second surface integral is due to the

197}

application of Gause's theorem. Additional surface integrals arise
from the dependence of the integration range on the coordinates with
subscripts greater than 1 but these cancel each other. The integration
over the surface enclosing V is zero by Eg. (1.1).

Equation (1.9b) can be rewritten as,

BPl(x;E;t)

N Loy = (n
(1.10) ot b lest) = (H-1) f s

=0

)2 . .
X IN(Xa}(l’E:glst)(g"gl)

If we consider molecules such that (£-£.) - ﬁ > 0, these molecules are

1
just entering into a collision and, if N is very large, we may assume

that they are uncorrelated, just as in the case of a dense gas. This

is the molecular chaos assumption. Consequently,
(1.11)  P2lx,x 38,8 38) = Po(xE38)Po(n 58 58), (6= ) = 7 > 0.
o 2 l’-’ l) o) 3 k] o) 'l! ]4) bl l

This assumption cannot be made for molecules which have just interacted
because their trajectories are correlated by the collision. However,
inside the sphere of radius o we know that,

: dxl
(1.12a) E.o= —= , = — |




L3

dg
- L o - dg
(1.12b) Fo=ag > F=ar >
and thus,
;7
aP dx. )
N 1 o dx o 0 o
.12 — : + C9PS + T PC o4 T o =
(1.22¢) o=+ g« VP gt Yy v Vgl e VP =0
1L.€. »
>
ar;,
(1.12d)  —= (x,x38,4,38) = 0,

Thus, if the duration of the collision is taken to be 1 we have,

- 2 . . o 2 * *. 1) L
(1.13a) PN(x,xl,g,gl,t) = PN(X 2% 58 ,ul,t—r),
where,

(1.13b) (g~gl) - n < 0 and (5'—g'l) - f > 0.

% * '
Here the coordinates x »%q ,g‘,g'l are the coordinates of the molecules
before the collision and x,xl,g,gl the coordinates after the collision.

Since the molecules are uncorrelated before the collision we may write,

i

2 1, % 1,
(1.1h) - Polx,xp56,8,50) = Po(x 58" 50-1)P (%)

¥iplit-1).
Since the duration of a collision is very short and the region of
interaction is of the same order of magnitude as g, a very small

quantity, Bq. (1.14) reduces to,



2 . . —_ l.. . )l~-'.-
(1.15) PN<x,xl,a,gl,t> = PN(x,g',t)lN(xl,gl,t),

where £', gl' are related to ¢, 51 by energy and momentum conserva-—

>

tion. Thus, for N very large, we have,

ap§<x;e;t>

(1.16) g téEc vP§(x;g;t) =N s s
ey =0 (gm5)+ 00
1, 1 1 1
D e > . . - P cor bt v ert -
x UN\X’E’t)PN(X’El’t) Pulese )P et 5t)]

% l(g—gl)-ﬁ)da(xl)dgl.

Define f by f(x,£,t) = NPé(x;g;t). Then the equation for
f is,
£z . .
(1a7a) 2EEL b p U ue(e) = rrle(e)e(e) - ole)e(er )]
ot 1 1
x Vda(xl)dgl s
where,

(1.170) Vv = I(g—gl) © 0l

and the limits of integration are understood to be the same as in
Eq. (1.16).

Tquation (1.17) is the Boltzmann cquation for f, the particle
distribution function. Various moments of { give the macroscopic
physical properties of the gas. The number density of the gas is

given by,



2l

(1.18a) n(x) = ff(x,£)de,
the fluid velocity by,
(1.18v)  v(x) = srf(x,g)ede/n(x),

and the temperature of the gas by,

1 m
3 kn(x)

(1.18¢) T(x) = Sle-—v(x))r(x,e)dg,

here m is the mass of a molecule and k is Boltzmann's constant.
Before moving on a few of the properties of Eq. (1.17)
should be discussed; for a detailed discussion see Refs. 18 and 19.

Eq. (1.17a) is usually written in the form,

af . - :
(1.19) E)t + g V]" - Q(faf)a

2]

where Q(f,f) is the bilinear functional defined by,

(1.20)  Qlf,g) = 2 srir(e)nle ) - eleale’))

) + gle)rle 1

1 1

- f(g' )ele")}r v da(x, )dg

1 17751
It can be shown that,
(1.21)  ralr,r)¢(g)dg = 0,

if and only if ¢ has the property,

(1.22)  ¢lg) + oley) = o) + ole")),



i.e., if ¢ is a conserved quantity. Functions satisfying (1.21)
are called collision invariants because the average effect of
collisions leaves them unchanged. The collision invariant functions
2

are the set spanned by the five functions: l,gl,g2,g3,g .  The
function, 1, corresponds to conservation of particles, El’EQ and

. . _ 2
g3 correspond to conservation of momentum, and £ corresponds to

conservation of energy. Functions of the form,
2
(1.23)  qlg) = exp(a+beg+cg™),

where a and ¢ are constants and b is a constant vector have the

property,
(1.24)  alq(g),alg)) = 0.

Finally, if one defines the quantities,
(1.25) H =/ f 1n(f)ac,
(1.26) H, = fgif 1n(f)de,
and,
(1.27) H = fildx,

v

then one can prove Boltzmann's H theorem using the fact that,

(1.28)  srin(0)q(r,r)dg < oO.

The H theorem states that the quantity H always decreases with time

except when f is Maxwellian and then H remains constant.



o

Section 2: Derivation of the Temperature Density Egquation and the

Transverse Velocity Iquation.

Due to the complicated nature of the collision operator, Q,
model equations are studied in which the collision integral is
replaced by a more tractable expression. We will study one of the
simplest of these model equations, the BGK model, in which the

collision operator is replaced by J(f) where,
(2.1)  J(r) = v(fx;85t) - T{x36;t)).

Here the constant parameter, v, is the collision frequency and

f(x;£3t) is a Maxwellian satisfying,

(2.2)  r(f(x:8;t) - flx;5;t)U(g)ag = o,

where, - -
1

(2.3)  u(e) = | 5,
t2
53
g?
.

An f satisfying (2.2) will give, at any point in space and any

instant in time, the same density, fluid velocity and temperature

as . This model term,J(f), has the advantage of relative simplicity

as well as retaining many of the important properties of the collision
18 .

operator, Q(f,f). It can be shown that J has the same collision

invariants as  and that Iq. (1.28) remains valid with Q replaced by



n8

J and thus, solutions to the model equation will obey an H theorem.
We will consider time-independent problems with plane symmetry,

allowing Eq. (1.19) to be cast in the form,
(2.h) £ -vr(x38) = v(f(x;8)-r(x38)),

where Q(f,f) has been replaced by J(f). FEquation (2.4) may appear
simple. liowever, the requirement that f satisfy (2.2) introduces
complications. To further simplify the equation we will assume
that to zeroeth order the state of the pas can be described by a

Maxwellian, fO(E), and to first order f is given by,

(2.5)  rx38) = fO(E)(l+h(X;E)),

o]
so that terms of order (foh)L may be neglccted.

Let

(=032

(2.6) £ (g) = —Q—HPT‘
MkT

0" 20

exp(- 5}¥ (£-v )7,
)

where n. is the density, T

0 the temperature and V

0 0 the fluid velocity
. . . 18
corresponding to fo(g). Also define the inner product,

(2.7y  (p,a) = ffo(a)p(a)q(a)da-

2l

Define the dimensionless velocity, C, by

Lo /oom
(2.8) ¢= v KT, (E‘Vo)'

- 24 .
(2.9) fodg = nOH 3/2 exp(-CT)dcC.



Note that the basis vectors,

__ =1/2
(2.10a) ey = 1, s
(2.10b) e, = (~§Jl/gc., 1 <i< 3,
1 n 1 —_ -
0
o) 5]
(2.10¢) e, = (222(c2- ),
L 3n 2
0
satisfy

(2.11) (e.,e.) = &. ..
1] 1]

Equation (2.2),

One easily verifies that f given by (2.12) gives the same density,
fluid velocity and temperature as , to first order, by using the
orthogonality of the e, . For example, the density corresponding to

fis given by,

I

(2.13) f(x;£)dg = f{n l/ze £ (g) z(1+h(x;g),e.)e.}dg,
0 00 1= 1771
h 1/2 1/2
= i:i(l+h(X;g),oi)nO (eo,oi) = ny, (l+h(X;E),eO)

ffo(g)(1+h(x;g)>dg.



But the last term on the r.h.s. is the density given by f, to
first order.
It is easily shown that with J({) given by Egqs. (2.1) and

(2.12), the collision invariants remain invariant, i.e., that
(2.1h)  ra(f)elglag = 0,

if ¢(£) is a collision invariant function. We have,
i

(2.15)  rd(f)¢lg)dg = fv{fo(g) z(1+h(x;g),ej)ei—f(g)}¢(g)dg.
i=1 '

To first order we obtain,

L
(2.16)  sa(£)ele)de =v{ E(l+h,e. )le ,9)-(1+h,0)},

i=1
and thus, by Eq. (2.16), Eq. (2.14) is satisfied for the collision
invariant functions, because the collision invariants span the same
subspace as the e, -
Finally, to show that the solutions will obey an H theorem

one must prove that,
(2.17)  sin(r)J(r)dg < O.
To first order we have,

(2.18)  fin(r)J(f)dg = fln(fo(1+h))foﬂLdg,

4, .
where h 1is given by,

l
(2.19) n = 3(nh,e.)e. - h.
. 1 1
i=1



Equation (2.18) can be expanded as follows,

4

(2.20) fin(£)J(f)dg = (ln(fo),ht) + (1n{l+h),h ),

where the inner product given by Eq. (2.7) has been used. Since
fO is a Maxwellian, ln(fo) is a linear combination of the collision

. . . L . . .
invariants which are orthogoanl to h . Taking this into account and

expanding 1ln(l+h) to first order one has,

o

(2.21)  An()a(r)ac = (n,n) = (hnS).

But the term on the far r.h.s. of [g. (2.21) is zero to first order
and consequently BEq. (2.17) is obtained.

If we consider only problems with plane symmetry, upon
substituting Eq. (2.12) into Eq. (2.4) and simplifying we obtain
the linearized BGK eqﬁation,

i

t -
(2.22) ¢ &(X—,ﬂ?—)= v{ =(hix',g),e.)e, - hix',g)}.
1 9X i=1 i’ i

For time-independent problems with plane symmetry, if VOl is the

component of the fluid velocity in the x' direction, then VOl: 0.
If not, any spatial variations of the distribution function along
the x' axis would propagate along the x' axis contradicting the

hypothesis of time-independence.

Let

m )1/2

2k10

'
Xy

(2.232) x =

then,



3 m \1/2 3 .
(2.230) =5 = “(2kTO ax

and Eq. (2.22) can be written as,

L
(2.2h) .28 = s(h,e e, - h,
1ax o1 i1

where C is given by Eq. (2.8). Multiplying Eq. (2.24) by fo and

integrating over velocity space we see that,

0 -
(2.25) gg(cl,h) = 0.

Define

(2.26a) h =h - (e,,h)e

l)
then,

(2.26b) (H;el) = 0.

Furthermore, using (2.25), we see that h satisfies (2.24) and thus,

w.l.0.g., we may assume,

(2.27) (h,el) = 0.

We introduce a second inner product and basis vectors,

[ae)

(2.28) (p,q)o = [pq exp(-C —C?)dCOng,

aS]

H—l/2

bl

(2.292a) 0o =



[

_-1/2, 2. 2
(2.29b) 9, = 10 (02+03-1),

_o2yl/2, .
(2.29¢) ;= (H) C,» 1e{2,3},

and observe,

(2.30) (¢i,¢j)2 =6, .,

(2.318)  (4gse;),

n, i0 1 P
: - (B1,y1/2
(2.31b) - (4g,e;), = <3n0) il
_ o y1/2
(2.31c) <¢2,ei)2 = (”o) 00
- dn1/e
(2.314) (¢3,ei)2 = (no) e

Let Y = Cl and take the (2) inner product of Iiq. (2.24) with ¢0 and

¢l to obtain,
3 _ .

(2.32) wu 5;'(h,¢0>2 = (h,eo)(eo,¢o)2 + (h’eh)(eh’¢o)2 - (h,¢o)2,

and

a = a3
(2.33) w5y (), = (hedlegsn )y + (hhe)(es0,), = (hhe) ),

Note that,

/}1——- +o o
(2.3ha)  (h,e,) = —ﬁ~'_i exp(-u")(h,¢,) du,
= /rT—+w
(2.3%0) (e = /2 50 e inag), + G - Dtnas),.

-0



If we define,

N
W
1
o
~
’_l
"
=
~
I

= (h,04) 5

(2.35b) wg(x,u> = (h,¢l>2,

(2.35¢)  ¥(x,u) = ,

then, using Eqs. (2.35), (2.33) and (2.32), wec obtain the following

equation for V¥,

+oco
(2.36) w B 4y = q(u) 1T (2)(x,s) exp(-s7)as,

where Qr.is the transpose of Q and

-1/4 /%”2‘%) .
/5 :

Equation (2.36) is the temperature-density equation and

(2.37)  Q(u) =1

contains all information necessary to determine the perturbations
in the temperature and density.

Note that,

v -3/
(2.38) I(Qrw)2 exp(Clg)dCl =1 j/th exp(—Cz)dC,

and using (2.9) we see that,

T 2 b
(2.39) r(q w>2 exp(—c1 )dcl = T An,

where,



(2.40) n(x) = nO + An(x).

Similarly the perturbation in the temperature, AT, can be found by

considering,

m o] - )
(2.41)  £(Q%)_ exp(~c.?)ac. = /; 3 axp(2c®) (P 2ynac.

1 1

PO o

1
AT is given by,

-3/2 2

(2.42) AT = T Flco- -g-)h exp(-c”)dc,

0 3

and thus,

3/h
Ty o 2 _ I 3
(2.43)  r(qQ i)lexp(—cl )dcl T //; AT.

Thus the perturbations in the temperature and density are given by
T

the components of QY integrated over the velocity variable with

the appropriate weight function.

Now take the (2) inner product of Bq. (2.24) with 5o

ie{2,3}, to obtain,

: Y
P L
(2.4h) pg;(h,¢i)2 = j=i(h,ej)(ej,¢i)2 - (h,¢i)2
(e ) (Y2 ne . = <X f ¢ Vexp(-u<)dp-(h,¢, )
AT - Whds /s ot Pl-uJdp=th, ¢, /5-

Thus, if ¢ is a solution to (2.L4) with i e {2,3} then y must satisfy,

400
(2.45) Uﬁ&%éiﬂl + Plx,u) = L fw(x,s)exp(—sz)ds,
J9X /]:[— o

the transverse velocity equation. The solutions to Eq. (2.45) will



N

give the perturbations in the components of the fluid velocity in
the transverse directions.

The perturbation of the fluid velocity in the x direction
is obtained by multiplying Eq. (2.24) by fo and integrating over
velocity space to obtain Eq. (2.25).

Thus, the solutions to Egs. (2.37), (2.45) and (2.25) yield
the macroscopic quantities of interest; the fluid velocity, the

temperature and the density. of the gas.



Chapter 4

THE TEMPERATURE-DENSITY EXPANSION

Section 1: Tull-Range

The equation of interest, the temperature-density equation,

is given by Eq. (3.2.36),

+lX)
(1.1) N—%—}’;ﬂ + y(x,p) = Qly) fQT(S)W(X,S)eXPFSg)dS,
with,
1/h /% (U2— “lf;) 1
(1.2)  Qlu) =1 <

Multiplying Eq. (1.1) by QT(U)U"l and defining =(x,u) by,
~ T
(l'3) :(Xau) = Q (U)\;}(XSU))

leads to the following equation for =(x,p):

(1) 2ELGu) -t

X X)) =0,

where we have defined K—l by,

+o0
(1.5) K ls(x,y) = —3— [= (o) =F () r5 (¢, 5) expl-s7)as],
and F is given by,
_ T
(1.6)  F(p) = q (alu).

57
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Recalling Egs. (3.2.39) and (3.2.43) we see that,

+co

(1.7) S

—_ 00

2
El(x,u)exp(—u )du a AT(X),

i.e., the integral of 7. over u with the weight function, exp(—pz),

.’;l
is proportional to the perturbation in the temperature and,
+ o

(1.8) IEZ(x,u)exp(—ug)du o an(x),

i.e., the integral of %, over y with the weight function, exp(—ug),
is proportional to the density. Consequently, it is physically
reasonable to seek solutions to Eg. (1.h) which are differentiable
w.r.t. X and p-integrable w.r.t. p with the weight function exp(—uz)
for each x. Define the I(p,n) norm by,

n +

(920 el = €2 sln00 Pantu M7,

i=l e

with,
(1.9b) do(n) = exp(—u2)du-

Define the Banach space, X;(DR) by,
i

(1.10) X R) = {f:||f[|I(p’n)<m}.

. 2
We seek solutions to Eq. (1.4), EX(“), such that EX(U) € Xp(ﬂ?), p>1.

For convenience the dependence of

{1}

on x will be dropped and the

identification,

(1.11)

= , will be made.

- Hl(p) [ 'Hl(p’?)
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It is clear from Eqs. (1.4), (1.5), (2.1.1a), (2.1.1b),
(2.3.1) and (2.3.2) that the one-speed and multigroup neutron

transport equations are very similar to the temperature-density

equation. Furthermore, the transport operator and the temperature-

density operator have similar properties, i.e., in the case of
conservative neutron transport, the transport operator is non-
invertible as is the temperature-density operator.

-1 .
The zero-root linear manifold of K is spanned by,

(1.12)  {Flu)vgs F(u)vl, uF(u)vO, uF‘(u)vl}

where,

1
(1.13a) Vo T ) 5
and

0
(1.13b) vy = .

To see this we first note the form of K_I from Eq. (1.5),

+-o0

kte = %mu)_m) r£(s)do(s)].

Suppose that fl satisfies,
(1.14) (K7, ) () = 0,

then,

(1.15) T (u) o Flulv, ve R



Similarly if f_. satisfies,

2
(1.16) (Kl = o,
then,
(1.17) K—l(K_lfg)(u) = 0,

and hence, by.(l.lh) and (1.15),
v(l.lB) (K_lfe)(u) a Flplu, v e IR.
But Eq. (1.18) implies that,

(1.19)  £,(u) o Flulu (u),

where vy is of the form,

(u) = pk, + k

2
7 ‘9> kl,k e R .

(1.20) .

U1
Assume that,

(1.21) (K )() =0, n>3
and that
(L.22) (K
Then, by Eqs. (1.18), (1.19) we have,

-n+2

(1.23) (K fn)(u) a F(u)ul(u),

and thus,



o1

-n+3

(pL.24) (K fn)(u) a Flu)u,(u),

2
where,

K. ¢ H?e.

2
(1L.25) u2(u) = wk, +uk kg, Ky

2

Operating on both sides of Eq. (1.24) with K—2 and employing

Egs. (1.19) and (1.16) we obtain,

(o]

+ <
n+l . R

- 2
(1.26) K £ oo r(u)kg, k,

Thus, by Eq. (1.21), we must have
(1.21) KWK, = o,

but,

(1.28) K "[u Fludk,] # 0.

Thus we are led to a contradiction by the original assumptions,
Egs. (1.21) and (1.22), and hence the entire zero-root linear manifold
is spanned by functions»of the form of fl and f2 of Egqs. (1.15) and
(1.19).

We approach the temperature density equation in the same way

as the conservative neutron transport equation and define the

operator, Sﬁl, by,

(1.29) 5™ = kb ir,

from which we obtain,



+oo
(1.31a) A(z) =1 + 2z f I:EZ) do(s),
oz
(1.31v)  t(z) = T7ig >
=1 - 2
(1.31c) t T (z) = Triz
and,

(1.31d) (tt_l)<z) = 7.

In order to apply the Plemelj formulas to integrals which

will appear later in the text, such as Fg. (1.52), we restrict the

. . . . 2
class of functions to be considered to those functions in Xn(
t

R)
obeying a Holder condition. 1In particular we will work in the space

H Q(H?) where,

1Y

(1.32) HP(IR) = {f: Sf(s)exp(-sz/p)eLp(IR,ds)nHBa(LR),p>l}.
Here,

(1.33) Lp(Y,f(y)dy) = a:(flg(y)IPf(y)dy)l/p<w},
Y

(1.34) Ho (1IR) = {f:
o]

)] <ol

and



b3

| £(x)-(£(x,)|

(1.35) |[f[|a = sup
xl#x2 ]xl—x

xl,xzeﬂi

2l

Note that the Holder norm, |

]a’ is actually only a semi-norm.
In section 2 it will be shown that Hpg(ﬂ?) is a dense subset of
ng(ﬂﬁ) and the results of this section will be extended to the
entire Banach space, XPE(IR).

We wish to apply the identity,

in order to obtain the full-range expansion (here T' is a contour
surrounding the spectrum of S). To apply this identity we must
first establish that S is a bounded operator. From Eqs. (1.30),

(1.31) and the definition of |

II(p) we have,

(1.31) szl ) = S HEl ) * CollEl () o

where,

(1.38a) C, = sup lt~1(u)]<m R

1 velR
™ 1 1
(1.38b) C? = sup |( It (s)F(s)dg(S)A_ (—i))i‘ lsup ll—i; ‘<m ,
T 1,je{1,2) e Y uelR :

9]
. P
and hence S is bounded on Ap (m).

To compute the resolvent operator we solve the following for g,

(1.39) (z1-8)f(p) = glyu),



6%

i.e.,
1 P(0) -1,y -]
(1.50) (2=t (w))e(n) = T 47 (-1) 747 () (s )a0(s) = gl

Solving for f we find that,

+ 00
-1 -1 -1 F(y) ) 1 s
-8 = - * -
(1.51) (21-8) Te(u) = (z-t7" () Helu) + o (M-1)+ 5o e ey
+oo
x Fls) | -1 1 se(s)
1-is do(s)) 1+iz t(z)-5 do(s))
Define the operator Tl by,
1 F(s)
l', — s S 1S3 .
(1.h2) T, A(-1)+ Tviz ! 57e(a) 1-is do(s)
Then we have,
1 1ol Flu) o -1 1 " sals)
} T_aYT+,, = _+ WS g AAH) e T d SgZ\S s
(1.43)  (2I-8) "glyw) = (2=t ()T Haln) + Toiu i Ofot(z)_§10( )}

Now we wish to put T1 into a more familiar form. To this end we

note that,

(1.40) SE N

Using the above and Fq. (1.31a) one finds,

+
i T F(s)

1+iz / (s-t(z))(1-is

(1.45) T = A(—i) + %»(A(t(z>>—1> -

1 j do(s).

Using the partial fraction decomposition,



1 1 _ 1+#iz  i(l+iz)

(1.46) s-t(z) 1-is  s-t{z) l-is >

and Eq. (1.3la) we have,
. i i .
(1.57) 1wy o= A(-) + 2 (A(s(2))-1) - %ng—(A(t(z))—I) - (A(-i)-T)
= A(t(z)).

Thus, substituting Eq. (1.47) into Bq. (1.43) and noting that,

-1 -1 _ 1-diw 1
(1.48) (z—t "(w)) " = o, t{z)-u >

we have,
(1h9)  (z1-8) s u) = B cnz(n) + T 0N (w(2))
+o0
sZ(s)
X _i t{z)-s do(s)},

which is a convenient form of the resolvent operator.
To determine the spectrum of S, o(3), we examine the points
- -1 . .. - . R
where (zI-S) "% fails to be analytic in z. A 1(t(z)) is analytic in

the complex z plane except along the curve, C = {z:z = %{i+exp(i@)),

.
0 <06 < 2N}, and det A(t(z)) has a double zero at z=i where,’

(1.50) Lim A7(t(2));, = - (£(2))%8, /(10 (£(2))"]),
z+i
and,
1 1
(L.51) B = 5

1
N

This double zero accounts for the only cigenvalues of S. The spectrum
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of S consists of the points {z=p/(1l-inp), peIlR}. Therefore the entire

spectrum of 8 consists of the circle C.
‘ 2

Let C be enclosed by the contour I'' = U{l, UT ,UT..}
ST A A &

where the contours are as in I'igure 1. If I'' is collapsed around

Fl‘ is a
1 HJ

n oM

the spectrum of the resolvent operator then F“ =
‘ J

circular contour about t_l(u) with the points where the contour

ro

intersects C deleted. T, = U Fij is a circle about z=i with two
J=1

points deleted and T = ', consists of two concentric circles

enclosing the spectrum with the arcs contained in the circles, FU
and Fi’ deleted.
In evaluating the contour integral on the 1l.h.s. of Eq. (1.36)

it is convenient to make the following designations,

“+co ﬂ:(h)
(1.52) N(z) = f -Z_%~ do(s),
and,
+ + -1+
(1.53) M (p) = iim M(pxie) = AT ()™ ), v e R.
£->0
£>0
Let z' = t(z} and consider the integral about TU of (ZI—S)_lE.
Using BEq. (1.49) we obtain,
1 . -1 1 l-iz')” .
(15h) s (al-o)Meaz = e s HEEL rasn)
11 2101 Z'~U
I‘u t(ru)

# F(u) (1=t 7 (2N dzt = 2(u) + P) 5 06 () ().



Employing the same change of variable and integrating over T we have,

+o0 - +
PIM Sfi—m (s) ds,

- 1 o —l: - 1
(1-5)) Eﬁz £<ZI_U) u(U)dZ 2Hi‘(“)

where P denotes the Cauchy principal value. Applying the Plemelj

formulas to Eq. (1.52) we find,
- + PR g
(L.56a) N (p) =N (u) = enius(ylexp(-p), u e IR.

Using Eq. (1.53) this can be cast in the form,

+ +

%) = 2T ()-0T ) O G ()

(1.56Db) enipz(p)expl(-u

+

P =TGR T G- ().

N[+

"Noting that,
- -+ o
(1.56¢) A () = A (n) = ~2NipF(u)exp(—p ),

by applying the Plemelj formulas to Lq. (1.3la) we arrive at the result,

(1.560)  E(w) = - 5 FG)Or G’ () + ZRUD LG (0)) ()" (1))

Employing the result of Eqs. (1.54) and (1.55) we have,

2
1 -1 CX] 1, - + 1 - +
(1.57) == 5 (21-8)""z(az = R0 Lot ) 2 G- (1)
2Mi u Ja 2ni
rar
u
+o0 - +
1 M (s)-M (3)
+ 3.
T PO P L SRS
We are left with the integral over Fi' -Returning to Iq. (1.49) we

note that,
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) (1+iz)'l
(1.58) 1im m

z~1i

= _.i,
and hence the first term on the r.h.s. of Eq. (1.49) is analytic

in a neighborhood of z=i. Thus we have

P 1 Fy) AT (8 (2))IN(k(2))
£ (zI-8) "5(p)dz = i / — G T
i i

L
eni

(1.59) dz.

In a neighborhood of z=i, N(t(z))(l+iz)_l is analytic as is
(z—u(l+iz))-l. The behaviour of A*l(t(z)), z=i, is given by

Eq. (1.50). Using elementary means the residue can be evaluated to

yield
1 -] +oo 5 +oo
(1.60) Eﬁ;-f (2I-8) "=(u)dz = F(u)B{srs"s(s)do(s) +p fs&(s)do(s)}.
Fl —_— —C0
Define 0y by
+co o_i
(1.61) p,(2) = B f5° "z(s)do(s).

Combining Eqs. (1.60), (1.57) and using Eq. (1.61) we have,

+

(21-8)22(u)dz = a(p)aly) + p()p 5 22080 go0q)

1
(1-62) &3 L, 5=

—00

+ F(u)(p (E)+upl(§)),

0
where we have made use of the definitions,

(1.63)  ALn) = =W )+,

and,
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(1.630)  A(u) = %ﬁﬁl exp(1?).
Note that,
(1.6) W) - 1) = TG - T TG
= 5 (ATEN™ - TN TH o W)
+ 2 TG TR THr G - v,

where we have made use of the definitions, Egs. (1.52) and (1.53).

Define

(1.652)  AZ() = 5 ((A7GN™ = (TN ™,
(1.650) A (w) =5 (7)™ + (TG T,

Making use of these definitions and applying the Plemelj formulas
one obtains from Egs. (1.63b) and (1.64),

2 Feo '
(1.66)  at) = =D 5=()p s SEe) g(0) + 2 ()z(n).

-8 -
Q0

The results of this section are summarized in the following theorem.
Theorem 1. Every function EgHé(ﬂi) can be expanded in the following

eigenfunction expansion,
=) = Flu) (o

where,

and,



2 tooo
a(v) =2 wz(v) + R e 288 (),

Section 2: Ixtension of the Full-Range Expansion to Xg(Hﬁ)

The results of Theorem 1 are valid for functions contained
in Hi(IR). However this restriction is without a physical basis.
Furthermore, Hi(ﬂ?) is not a Banach space, a fact which will inter-
fere with the development of a functional calculus for S. Here the
results of section 1 will be extended to XE(IR), a more physically
reasonable space and a space which i3 more easily dealt with mathe-
matically.

The first matter at hand is to show that Hi(IR) is a dense

2 ,
subset of Xp(m). Recall definition (1.32),

HP(JR) = {f':(sf(s)exp'(—sz/p)) € Lp(IR,ds) nnau(m)}.

We prove the following lemma.
Lemma 2. HP(JR) is dense in XP(JR).

Proof: Tt is well known that if (sg(s)) e Lp(H{,ds) then there exists
a sequence {sgi} £ Héa(ﬂ?) such that {sgi} + s¢ in the Lp norm,

If £ ¢ XP(DR) then (sf(s)exp(—sg/p)) £ Lp(ﬂ?,ds) and thus

. 2
there exists a sequence {sgi} £ Hoa(HQ) such that {sgi} + sf(s)exp(-s/p)
in L_ norm.
P
2
Let yi(s) = uj(s)exp(+s”/p), Lthen {yj} € HP(H{) and
) o]

{Syi(s)exp(—sg/p)} + sr(s)exp(-s“/p) in Lp norm, i.e.,

Hf—yiHI(p,l> > 0 for i - .
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Thus HP(IR) is dense in Xp(ﬂ%) in the I(p,1) norm.

By lemma 2 HP(IR) is dense in Xp(IR) and thus we conclude
that HS(HR) is dense in Xi(ﬂi) in the I(p) norm.

It will be convenient to define the following operators, T

and T, such that,

+o0
(2.12) (1)) = A(IAG) + P} P s L go(s),
2 too
(2.10)  (32) () = 2T (w)s(e) + aZ(n) SR o 25 o

For £ ¢ XE(IR) we will show that A € Xi(IR) where,

(2.3a) i;(m) = {r:]|r]] 1,

I1(p,n) <

and
n +e |sf,(s)|p‘
(2.30) | |t]] = (1 — ao(e))/P.
I1(p,n) i=1 —w |5%+1]

Again we will make the identification,

l11(p,2) * |

III(p)’

in order to simplify notation.



We will prove that T is a bounded operator from Xg(ﬂﬁ) to

i;(ﬂ%). Using Eq. (2.1b) we observe

i _ : 12 + o -
@0 18|y <l El gy + I A2 a0ls) gy,

+ -
A (u) and A_(u) are bounded in the finite plane and their behavior for

large y is discussed in Appendix II. Here we quote the results of

Appendix II on the limiting behavior of these functions for large p;

(2.5a)  sup !Ai(u)j.l _—
i,je{1,2} d

and

(2.5b)  sup nf(u)ijp > W exp(—p) ]

i,je{1,2}

Using Eq. (2.%5a) one finds that the first term on the r.h.s. of
Eq. (2.4) is bounded by '

2 |p
1 é I'Elll(,)
u +l t

(2.6)  |[z'=

lirgpye ok

where k] is a constant. Using Eq. (2.5b) we find that the second

term on the r.h.s. of Eq. (2.4) is bounded by,

‘ - exp(ue) o sz(s) _Eg_ P
(2.7) | |a"(w) P s do(s)]|II( )< k,sup
- 3] e y=s P welR |1 +1

< exp(-u) |1,

where k2 is a constant and f is given by

+co -
(2.8) r=p g Sils)

do(s).



Here it is necessary to introduce the following theorem.

27

Theorem 2. If f ¢ Lp(ﬂi,ds), p > 1, and if g is given by,
+co
fls
glu) =P Js ( )ds,
o STH

then g ¢ Lp(ﬂ?, ds) and,

Hellp <M el

where Mp is a constant depending only on p.

Using Theorem 2 and Eq. (2.8) we obtain
(2.9 [1ell, < m [1sl Iy,

and hence

2 +co
- exp(p”) sz(s) - - -
(2.10) |60 SRR P o 22 aola) |y < gl el

where K3 is a constant depending only on p. Combining Egs.(2.10),

(2.6) and (2.4) we obtain
(2.11) HTEHII(})) iMHEH]—(p)

where M is a constant depending only on p. Thus T is a bounded

(1

~2
operator from Xi(IR) to XP(IR). Hence for every = ¢ Xg(IR) there
exists an A ¢ ii(IR) where A is given by Eq. (2.2).

Turning our attention to T, miven by Bq. (2.1a), we note that

the limiting behavior of A(y), for large y, is given by
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. o

(2.12) sup IA{U)i.| > U
i,je{l,2} J

Again the details are given in Appendix II. Using Eq. (2.12) we find,
(2.13) [Pl ly < kA0

where k, is a constant. The principal value integral in Eq. (2.1a)
can be bounded by applying the same reasoning as was used to bound

the principal value term in Eq. (2.1b) with the result,

+m(<A( )
(2.14) [P fi;_‘i—

00

dc(S)] |I(p) < kg‘ IA\ |11(p)’

for some constant, k., depending on p. Using these results we find,

(2.15) ]|TA|EI(p) E_M||A||11(p)’

~ 2
and thus T is a bounded operator from Xi(ﬂ?) to Xp(IR).

Finally we must prove that the operator, T', given by

(2.16) T'= = Flu)lp (E)+upl(5)]

0

is a bounded operator from Hi(IR) to Xg(IR). Clearly T' is bounded if

(2.17) sup sup |[p_(5)]_[ < ||5-’| )
ie{0,1} je{l,2} = =3 (p,1)

We have,
+co

(2.18) |{pi(5)]jl < Jf

-—00

sz—lzj(s)exp(—32)|ds.

. - . .. 2k .
Applying Holder's inequality we obtain,



too 40 . .
(2.19) |[pi(5)]j[ 5_( flsEj(s)!Pdo(s))l/P( flsl‘éxp[-(l— %032]|qu
+oo 1-1i 1, 2 1/
= ( sls" Texp[-(1- ;JS']|qu) qJ!EJlII(p,l)'

00

Hence there exist constants, ki’ ie{0,1}, such that,

(2.20)  [[F(wog () |11y < %lHEN 15
and,
(2.20)  JJurGo (D) < &l

T' defined by Eq. (2.16) is a bounded operator from Xi(IR) to

2
X AIR).
p( )
is a

193]

state as a theorem.

Theorem 3. 'The domain of S may be

the identity,

2(y) = F(u)[po(z)+uol(a>] +
with,

@v(u) = A(v)eXp(v )6(v—u) +
and,

Av) =2 (0)E() +aZ ()P

holds for each = ¢ Xi(IR).

Since T', T, T are all bounded operators and since Hi(ﬂ?)

dense subset of XE(HR) we obtain the desired extension which we

extended to Xg(IR), p > 1, and

+oo
f¢v(u)A(v)do(v),

-0

F(u)p —%~ >

o}
vo)

)l/q



Section 3: The Half-Range Expansion

The half-range expansion is generally of more physical
interest than the full-range expansion and can be obtained by
employing the methods of the previous sections. In section 2 the
full-range expansion,

+o -
(31) 200, = Pl oglz)tuey ()] + 1 & () (Teg)(v)ao(v),

-—CO

was obtained where,

z(x,u) given by,

+oo

(s )] + @v(u)(TE

( Pyt

(3.3)  =(x,1)= F(u)I )+ (p=x) () e Vag(v),

PotEg 0

is a solution to the temperature-density equation, (1.h), provided

that (u) is given for y e IR. For half-range problems Z_(u) is

=0 0
+
given only for p ¢ IR . But, as in the case of neutron transport,
an additional boundary condition must be met, i.e.,
(3.4)  1im 2(x,u) constant.

X-»co

In order to satisfy (3.L4) we see from Eq. (3.3) that

(3.5a) (Tz ) (v) = 0, v < 0,

and



Thus, for half-range problems, we seek an expansion of the form,
+o

(3.6) 2(0,u) = Flu)v + f ®v(u)A(v)do(v),
where v ¢ IR2. Functions of the form given by Eq. (3.6) are clearly
a subset of the functions expandable by the full-range expansion,
(3.1).

Note that boundary conditions (3.5a) and (3.5b) and expansions
(3.1) and (3.6) are similar to the equations encountered in the case

of neutron transport in section 2 of Chapter 2. We proceed as in

+ 2 2 +
the neutron transport case and define the operator P :Xp(ﬂ?) > Xp(ﬁ% )

by,

(3.7) (P £)(w) = £(u), u > O.

Define E:Xi(ﬂ?+) > Xi(IR) by,

2

+ +
(3.8a) PP’z =7p'z, = xp(IR),

{1

(3.8b) (kP’z) = o,

Py
vand,

(3.8¢) (zI~S)—l(EP+E)(u) analytic in z for Re z < O.

If an E exists which satisfies the above conditions and if =(0,yu)

ig given by
+
(3.9)  =(0,u) = EP (0,p),

then #(x,p) given by Eq. (3.3) will satisfy boundary condition (3.5b)
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by (3.8b) and boundary condition (3.5a) by (3.8c). If =(0,u) is
given for yu ¢ IR+, the usual half-range boundary condition, then
2(0,u) is given by Eq. (3.9) for y ¢ IR. In other words specifying
2(0,pu) for u e ®RY with the additional requirement (3.4) is equiva-
lent to specifying =(0,n) for p e IR.

We observe that E given by

(3.10)  (EP'z)(n) =

“ sH (8)2(s)

dols
S—1 O'( )a u < 0,

satisfies properties (3.8a), (3.8b) and (3.8¢c). In Eq. (3.10) we

have used,
(3.11)  alz) = 5 (2)) 7 (a),

where H(z) is analytic in ¢ N\ JR and is given by,

w _ T .
(3.12) H(z) = I + zH(z)s E—éféiigl-do(s).
0

Since H is of such importance to the half-range development

we list a few of its properties:

o T
(3.132)  H(w) = T + ullyu)s L(—”—g—(ﬂ do(s), ue W,
O el
(3.13p)  sr¥(s)uls)do(s) = I,
0
and
T H (5)F(s) .
(3.13¢) W (Walu) = T+uPr == do(s), ne IR .



Since the half-range expansion we desire is given by the

+
full-range expansion of EP = we use the results of Theorem 3 to

obtain,

(310) 50 = F()ay(EF* 2 eno (1972)) + o (WA(DA0(y),

where,

(3.15) 4G = 2 (IEF 2N () + 3 (ERT) P TR D8] 4

v v—3

-00

+
and = ¢ Xi(ﬁi). Define the operator, Py > by,

po+(5) = o (EP z).

(3.16) 0

Using Egs. (3.13a) and (3.13b) we find

(3.17) po+(5)‘= BH, ésHT(S)E(S)dg(s),
where,
(3.18) K, = fsiF(s)H(s)dg(s).

Combining Eqs. (3.14), (3.16) and using (3.8b) the half-range
expansion takes the form,
+o0

(=) + so (Ao (V).

(3.19) 2(p) = F(u)po

Let us define M and N by,

(3.20a) M(z) = A_l(

z)N(z),

and,



&0

(3.200) N

Then, using the results of section 1, we have,

e Alu) expl 2) +
- Alu 1 =
(3.21) _i o (A(v)do(v) = 5= . (M (p) - M (u))
L e ()M (s)

+ F(u) o P__i 5o ds
By Eq. (1.55) we have,

1 1, + 1 +o ) (s) M (5)
(3.22) 5T i(zI—o) (EP =) (p)dz = EEE-P(U)P_i —o; s

In fact, we can decompose this contour integral into two integrals.

- +
Let I' be the -part of ' for which Re z < O and T be the contribution

from the remainder of I'. Then,

0OM(s)-M (s)
1 .'l'\+r~ 5 o= 1 v - -
(3.232) 573 ?‘(ZE-S) (BP ) (u)dz = 5= F(u)P_i -
and,
o M (s)-M (s)
P P B T e e
(3.230)  Z= £+(Zl"s) (P 2)(w)dz = 55 I(“)Pé 5-q as-

According to Eq. (3.8c) the integrand of the contour integral on the

l.h.s. of Eq. (3.23a) is analytic for z in the region of integration

and thus the integral is zero yieldinp,

0 M (s)-M" (s)
(3.24) PTEl F(u)P s o ds = 0.

—00



joced
—

From the above and Eq. (3.21) we have,

+oo 2
(3.25) 1 o (walvias(y) = 2L 2L o) )
L = M) (s)
+ Flu) ==~ P f ds
211 S
0
Defining A+ by,
20 MT(V)=M (V)
+ _exp(vT) ~ ~
(3.26) A (v) = > 5T ,

and inserting into Egs. (3.25) and (3.19) we obtain the half-range
expansion,

oo

(3.27)  =(p) = F(u)po+(5) v ¢v(u)A+(v)da(v).
0

-+
Using the decomposition of M -M ,

- - - - +
2D 3 ) T ),

- 4+
(3.28) W’ =27 5 (@ T

we have,

(3.29)  at(v) = 2T(W)E(v) + AT (v

: . s . + .
In order to obtain a more explicit expression for A we consider

the term,
+00 v|~3+:, - 0 . - - .
(3.30) p s 2L M) ooy oop p SElE) gy o s8R E)(es) g0
. V-5 0 -5 vts
I vE:) d5(s) - f dols) f dolt) s}'(iZH(s) tH(tZ:(t)
O S O O AV e S



Making use of the partial fraction decomposition,
st
(3.31)

( t

V

_ t
(vts)(t+s) ~ t-v ‘t+s

Eq.

v+s)’

changing the orders of integration and applying the transpose of
(3.132) one finds

+ooc ( EP+
(3.32) Pr=

:)(S)

-1 T -
dols) = BT (v) py SEL8)E() 4 (o)
V-5 V-8
. 0
Substituting Eq. (3.32) into (3.2a) we have,
-1 2 £ T
+ + - T D sH (s)z(s
(3.33)  AT(v) = A (W) + A7 (WE (V) ex*i” L ps i_; () 4g(s)
0
The results of this section are summarized in the following theorem.
Theorem 4 Lach = ¢ Xg(ﬂi+) can be expanded in the following
eigenfunction expansion,
- + +, 5.
2(y) = F(u)po (2) + so_ (WA (v)dolv),
oV
where,

1
+

A (v)E(v) + A (v)H
and,

@v(u)

i
o

Section b

A () exp(u2) 6 (vmp) + Flp)p ——

v—u
Development of the Functional Calculus for

Q

D .
In previous sections we have obtained expansions for functions



. 2 2 +, . . .
in XP(IR) and Xp(DR ) in terms of the eigenfunctions of the operator,

S, where S is related to K by,

(b,1) K~ =8 + iT.

If X is an element of the point spectrum of S with eigenvector n
then a simple calculation shows that n is also an eigenvector of

K1 with eigenvalue (A—l+i), i.e.,

-1 1+iX
(h.2) K 'n==""=n
A
A similar relation holds when A is an element of the continuous
spectrum of S, a fact which will be proven in the remainder of this
section.
In order to find how the eigenvectors of S and K—l are related
it is convenient to subtract off the finite dimensional subspace

corresponding to the discrete spectrum and deal with the rest of

the Banach space separately. Let
2 2 .
(4.3)  Y(IR) = {£eX(IR):p,(f) = 0, 1e{0,1}}.
b ¢ i
Clearly any function g ¢ X;(H%) can be decomposed by

() glu) = Fludlog(e)+ue (g)] + alu),

where q ¢ Yi(na).

Defline P(w):Yi(IR) > Yi(ﬂ?) by,

(h.52)  Pw)f(u) = o ((IF)(v)dolv),

-0



that is,

" ua(v)
AGOAG)+FR ()P S l)\)_—\) do(v), u < w,
(b.5b)  P(w)fly) = -
F(]J) i y_é%j—)'do(\))a H o> W,

where A is defined by
(b.5e)  Alv) = (T£)(v).

The family of operators, P(w) for w ¢ IR, forms a part of the spectral
family of projections for the operator S and is essential to the
development of this section. In order to procve that these operators

are a part of the spectral family the following lemmas are introduced.

Lemma 3. P{w) is a continuous function of w in the strong operator

topology, i.e.,

- _ 2
(4.6) iig+ ]|P(W+e)f—P(w)f[]I(p) =0, fe Y (IR), we R.

Proof: Define fl and f2 such that

(h.7)  Plw+e)f-P(w)f = . + F



wt+e =g
(h.9)  £,(u) = F(u)ps
w

Clearly the norm of fl can be made as small as desired and the

contribution due to f. is given by,

2 .
2  tow wtevh, (v)
- i py1/p
(4.10) ||f2|]I(p) E‘(i:iMl _i du|P£ — do(V) ")
2  wte
< Gy s g (Wexp(-v) Pant?,
i=l v

where Ml and M2 are constants determined by simple estimates and the

application of Theorem 2. By the above we have

-0

(.11) dim () gy + HEol ) = 05

and thus, by Eq. (4.7), P(w) is continuous in the strong operator

topology.

Lemma 4. TFor f ¢ Yi(IR):

(i) P(w,)P(w,)f = P(A)f where ) = inf {5, }5

...1(

(ii) st = [ t v)@v(u)(@f)(v)do(v);

Proof: (i) P(w)f =/ 6 (0)(T0)(v)dolv) = (), & e Yo(R). Then



&0

(Tg)(n) =
0 s W > w
Thus,
w2 . A
P(w,)P(w )L = P(wz)g = [T o (u)(Te)(v)dolv) = f¢’v(u)(Tf)(v)do(\))

= P(X)f, X = 1nf{w1,w2}.

(ii) sf = f (zI-s)’lsfdz = f (s-z1+z1)(z1-s)'l

fdz
rt r!
+oo )
= f 2(21-8)"Yfdz = s t_]'(\))@\)(u)(’l“f)(\))dc(v).
T! oo

(iii) P{w)ST = [ ¢t (v)@v(u)(@f)(v)do(v).

i
0
-
(=4
=
N
—
3¢
h
g
<
~—
o))
Q
~~
<
—

I

SP(w)f Se, g € Yg(ﬂ%).

Expressing the expansion coefficient of g, Tg, in terms of the

expansion coefficient of f as in the proof of part (i) we obtain,

v)Qv(u)(%f)(v)dc(v),

(9]
Lemma 5. Sf(u) = [ t 1(w)d[P(w)f](u), f e Y;(DR), where the integral

is defined in the weak sense.



&7

+o0
Proof: Define U(w) such that, U(w) = ng(p)P(w)f(u)dc(u),

- 00

where gT(u) is an element of the dual of Yi(ﬂ%). Now,

W W + oo

T ~ (1) (v)

UG = S (E0asly) + 1 g (TGP £ R dolv)do(n)
Y - vt gT(v)F(_vl_ 5
= S GurG(To)(u)dolu) + /P = p(Tr) (w)do(v)daly),
and thus,
T + oo 7 2
Ut(w) = [g GAln)+e 1 g (WIF(Y) 2= dolv) Je™ (T1) (w).
Now,
+c0 l +oc0 1 T + T
FT U (waw = 7 dolu)eT (W le (AP f do(v)e (VIF(y) 2= ]

x (T£)(w) = S dol(w)g (w)(SF)(w).

-0

Using the above and the definition of U we have

400 4o . 400
o Hetnalen £l (ndolu) = £ gt (w)(8E) (w)dolw),
and thus,

+w

(st)(u) = 1t

which yields the result,



+o0
S =1t

-—O0

1
(w)a[P(w)].
Let us write f ¢ Xi(ﬂ?) in the form,

(h.12) f=1f +7f.,

where

(b.13a) £ (u) = £lp) - F(u)[oo(f)ﬂml(f)},

(4.13b) fg(u) F(U)[po(f)+upl(f)}-

From Eq. (L4.3) we see that £ e Yi(ﬂ%). By Theorem 3 and Eq. (4.5a)

we have,

(Lb.1ka) 1im P(w)fi =0,
W0

1 ) 1 =

(L.1kp) 1im P(w)fl fl.

These facts and the preceding lemmas lead to Theorem 5.

Theorem 5. (i) The family of projections, P(w), is a generalized
resolution of the identity on Yi(ﬂ%);

(ii) for f ¢ YE(B?),

GG = s (ED Vs

(1i1) KMR(W) = 0 and K[OG ] = Fly).

Proof': (i) The proof follows from lemmas 3 and 4 and the fact

2
that P(w) = I on Yp(IR).



(ii) By Lemma 5 we have,

+0
(8£)(w) = 1 7 (w)=SlpGa) £ln) Taw
Consider,
1. "1 dro 1,. ™ 1 d
STFf - 5 —— —[P(w)flaw = 8 [f- f —— —[P(w)sflaw],
o t—l(w) dw o t—l(’w) dw

where we have used part (iii) of lemma L4 to obtain the r.h.s. of

the equation. Using lemma 5 we have,

40 +co +o0
-1 1 -1 1 d -1
5 f - f—=——Ad[P(w)f] =5 "[f- 5 ——— == {P(w) st (V)

-1 -1 dw
- 1 (W) - 1 (W) —00
« =3p(v)rlaviav)
dv )

By part (i) of lemma L4 the r.h.s. of the above is,

+o0 W
ol 1 4 -1,y d _
38 {f_;{ t_l(w) T {{w t (v)d\) [P(v)fldvldw] =
1 +oo 1 1 1 +o0
§Tf- o (T (W [P(w)r]yaw] = 87 [0 salp(w)r]].
- 1 (W) W —00
Thus we have
l +o0 l +o0 l
s = g( - i)a[p(w)f]l = s ;dmw)f] - if,

where we have used definition (1.31c) to write

m_l
£ 7 ()

-1 =

= [+

By Eq. (1.29) we have
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or, using (4.5a),

+oo
Klr = 72 () (Te)(v)do(v).
AVAERY]

(iii) The proof follows by a direct calculation.

+
For f ¢ Xi(ﬂ% ) one can express Ef in the form,

(h.15) Ef = Efl + Ef2

where,

"
)
=
Se”
1
e
=
©
=
L]

(4.16a) fl(u)

and

(4.16b) fg(u) F(u)pO(Ef).

Then Efl € Yi(ﬂ?) and the previous results can be used. Note that

0

(ha7)  BO(B) () = g S (21-8) TN (EE ) (W)dz-s o (3) (TES

1 )(v)do(v).
r' W

1

Using the above and the properties of E we have,

1

(4.18)  Pw)(EL) () = £ & () (TEE) (was(v),

O = =

where



9L

!

(4L.19)  w' = sup{0,w},

(4.20) P(w)Ef. = 0, w < O.
Now we are in position to solve Eq. (1.h4).
Section 5: Solutions to Boundary Value Problems in Kinetic Theory

We seek solutions to the system,

(5.18) (5o + K )E0x,) = 0
(5.10)  2(0,u) = g (u),
-1 2
where K = is given by Eg. (1.5) and Eo(u) £ Xp(ﬂ%) is given. The
solution is given by
+oo i x/
(5.2)  =(x,u) = Fludlog(gg)+lu-x)p (201 + s @V(u)(TEO)(\))e— Vao(v).

Clearly (5.2) satisfies the boundary condition (5.1b) since the r.h.s.

of Eq. (5.2) reduces to the full-range expansion of E, when x = 0.

To show that Z(x,pn) given by (5.2) satisfies (5.1a) we first note that
)

(5.3) (52 + KRG [y (2 )+(umx)p, (5,)] = 0,

by part (iii) of Theorem 5. And thus we must show that,

+o00

) s e () (e Vag(v) = o
Y

8 -
(5.14) (5;4-}{

0

Let EX be defined by



(5.5) 2,0 = £ o,z Maalv),
then

too ~
(5.6) £ (u) = _i o (e )(v)da(v),
where

(5.7)  (F2)(v) = (T2 )(v)e ™Y,

. . 2 . ..
Assuming E € Xp(H?) we then have, using part (ii) of Theorem 5,

+c0
(5:8) (K200 = ro ()=, ) (Waolv),
and hence,
_L+00 ~ / +o0 1 . /
(5.9)- K~ _i @v(u)(TEO)(\))e_x Vao(v) = _i = <b\)(u)(TEO)(v)e—x Vag(v).

And thus Eq. (5.4) is verified.

]

. + o + . .
'or half-range problems = (u) € XP(IR ) is given and

(5.10)  =(0,u) = = (u), 1 > O.

The additional constraint,

(5.11) lim =(x,u) - constant,

X0
is also applied. In this case the solution is of the form,

+ it +
")+ 1o it (e

0

(5.12) S(x,u) = Flu)p do(v),

0
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where A+ is the half-range expansion coefficient of E+ as in

Theorem 4. As in the full-range case the r.h.s. of Eq. (5.12)reduces
to the half-range expansion of E+ when x = 0. Thus boundary condi-
tion (5.10) is satisfied. Since x ¢ IR+, Z(x,u) given by (5.12)
satisfies (5.11). Verification that Z(x,u) is a solution to (5.la)

is obtained in the same way as the full-range case.



Chapter 5
THE TEMPERATURE-JUMP PROBLEM AND RELATED PROBLEMS IN KINETIC THEORY
Section 1: Introduction to the Temperature-Jump Problem

The Temperature-Jump problem is defined by a half-space of
gas bounded by a wall at a uniform temperature, TO. It is found
that the temperéture of the gas near the wall differs from the
temperature of the wall. This is due to a layer of gas called the
transition region or Knudsen layer.  For a discussion of this
phenomenon see Ref. 26. The thickness of the transition region is
only a few mean free paths and the temperature gradient just beyond
this region is constant. TFigure 2 illustrates the qualitative
behavior of the temperature near the wall. The temperature jump is
defined to be the apparent temperature of the gas at the wall,
extrapolated from the linear portion of the temperature curve Just

beyond the transition region, and T the wall temperature. Thus if

O’

we define 1 by
(1.1)  1(x) = m(x) - 1

where T(x) is the temperature of the gas and T' (x) is given by,

0

(1.2) T'O(X) = TO(1+K‘X),

where K'TO is the asymptotic temperature gradient, then the temperature

jump is t(w). Of course, we must stretch the local coordinate in the

94
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Knudsen layer in order to consider it a half-space.
The method of solution proceeds as follows. Denote by
bf'O(O,g) the Maxwellian corresponding to the wall temperature and

expand the distribution function about f’o(x,g) given by,

(=2 3/2 m

i “exp(- Zp
2MKT " 2KT' |

(1.3) f'o(x;a) =n'y (g~uo)2),

where,

(1.4) o', = no<1+Kvx)‘1.

Note that the pressure, n'OT'O, is constant.

To first order the distribution function, f'(x;g), will be

given by,

(1.5)  10e) = 00 (xse) (1en(x;e)).

Note that f’O(x;g) can be expressed, to first order, as,
(1.6) £ (x38) = fo(g)[1+K'x(c2—5/2)+h(x;g)],

where c is given by (3.2.8) and fo(g) is given by (3.2.6).

Substituting (1.6) into (1.5) yields,

(1.7) ' 05E) = £(e) [ne x(e=5/2)+n(x36) ],

If h'(x,£) is taken to be the deviation of f'(x,g) from f (g), i.e.,

0

(1.8)  n'(x,£) = w'x(c®=5/2)+h(x,£),

then it follows from (3.2.22) that
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oh'(x'3-E) _
El vy ! = v[iz

(1.9) (h'(x'58),e,)e,

1 1

- h'(x"5¢)].

O™ F

Proceeding as in section 2 of Chapter 3 the above can be transformed

into,

)
(1.10) y =+ xplce™=5/2) = 3 (h,e.)e, - h,
3 . _
i=0
with,
(1.11a) (h,el) = 0,
and
m
=
(1.11b) K Sp o VK-
: 0
Note that,
2 .
(1-12) (u(c _S/Z)sel) = Oa 0 i 1 iha

and thus, using (1.10), we see that h" defined by,
g 2 _
(1.13)  n"(x3g) = hixsg) + kulc™=5/2),

satisfies (3.2.24) and (3.2.25).

Let

(1.1ka) wl(x,u) = (h",9,.)

0’2 °

(1.240)  wo(u) = (0" ),

and

(1.1ke)  ylx,p) =



Then ¥ will satisfy (3.2.36).
It fo(g) is the Maxwellian corresponding to the wall tempera-
ture then the general boundary condition on the distribution function,

f'(x,a),‘is,
(1.15) f'(O;gl,ag,g3) = afo(g) + (l—u)f'O(O;—gl,g2,53), g, > 0.

Here o ¢ [0,1] is the accommodation coefficient. If g = 1 then the
distribution function is equal to the wall Maxwellian and the mole-
cules perfectly accommodate to the wall. 1If o = 0O then the molecules
are specularly reflected from the wall. Values of o between O and 1
correspond to mixtures of perfect accommodation and specular
reflection.

Substituting Eq. (1.5) into (1.15) we obtain the boundary

condition on h,

(1.16a) f (&)[1+h(o;£l,€2,€3)] = af

0 () + (1—a>fo(£>[l+h(0;—£l,£2,£3)],

0

E. > 0,
or,

(1.16b) h(o;al,ig,EB) = (1-a)h(0;-£ ), E. > 0.

g
E2,3 l

1’ 3

Assuming that the molecules perfectly accommodate to the wall,

o = 1, we must have,
(1.17a) n(0;8) =0, &

and thus,



(1.17b)  h"(038) = kulco=5/2), u > O.

Recalling Eq. (3.2.35) this boundary condition, in terms of ¥(0O,u),

is,
ve/3

(1.18) vy(o,u) = KHB/hUQ(u) , u > 0.
-1

Thus we wish to find solutions to Eq. (3.2.36), i.e.,

) +oo

(1.19) ugﬂigiﬁ— + vix,u) = Qlu) s Q7 (s)¥(x,s)do(s),

subject to the boundary condition given by Eq. (1.18). From this
we can determine the temperature jump, t(=), where 1(x) is given

by Eq. (1.1).

Section 2: Solution to the Temperature-Jump Problem with Complete

Accommodation.

It is convenient to define Z(x,p) as in Lq. (4.1.3).
Equation (1.19) with boundary condition (1.18) expressed in terms

of #(x,u)are as follows:

(2-1) E(‘O,U) = UF(U)Va p > 0,

where,
V3/2
)
(2.2) v =xr’" ,
-1
and

(2.3) @iﬁ%;ﬁl, + K—lE(x,u) = 0.
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Furthermore, the additional boundary condition is needed,
(2.4)  1im (x,u) » £lu).

X-+0
The boundary condition, (2.4), is necessary because we are calculating
a perturbation from an initial distribution whose temperature de?ends
linearly on x. Thus the perturbed distribution, which is the product
of the initial distribution and 1 + h, where h is the perturbation,
will have a linear dependence on x, for large x, if h is independent
of x for large x. We know that the temperature dependence in the
Chapman-Enskog region, i.e. x » o, is linear and thus to match this
region with the Knudsen layer we must apply the boundary condition,
(2.4).

Let P+ be defined as in Eq. (4.3.7). Boundary condition (2.1)

can be written as,
+
(2.6) P z(0,u) = uFlu)v.

The solution to Eq. (2.3) is of the form,

0

) + So (u)A+(v)e
oV

(2.7)  z0ou) = Flude, (5 “Mag(y),

+
according to (4.5.12). A is given by Theorem U,

T
-1 2, = sH (s)z (s)
(2.8)  A"(v) = 2T W)z () + aZ(RT (v) ZR gy O ao(e),
- - \Y 0 v-S
and
(2.9) = () = uFlu)v.



Z(x,u) given
r.h.s. of Egqg.
when x = 0.

(2.10) 1im

X->0

100

by (2.7) satisfies boundary condition {(2.1) since the
(2.7) reduces to the half-range expansion of uF(u)v

It satisfies boundary condition (2.4) since

+

2(x,p) = F(u)po

(uFludv).

Uniqueness is guaranteed by Ref. 28.

Using

(2.11) po+(

the definitions, (4.3.17) and (L4.3.18), we have,

T
pF(u)v) = BH M, v,

It can be shown that,

(2.12) B =
and
(2.13) H

and thus,

(2.1h) po+(

By Eqgs

(2.15) lim

Koo

Accord

pFlulv) = v.

. (2.10) and (2.1Lk) we have

(x,u) = Flu)v.

ing to Eq. (1.8) the perturbation of the distribution

is h' given by

(2.16) h' =

ex(cZ-5/2) + n,
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vhere h is given by Eq. (1.13),
" 2
(2.17) h =h" - ku(c™=5/2).

Designate the perturbation to the temperature due to h by AT, due
to h' by AT' and due to h" by AT". AT" can be written as,
+oco

y2/3 fEl(x,u)dG(u),

(2.18)  AT"(x) = Ton‘3/’*

using Eq. (3.2.43) and the definition of Z. AT is given by,

322

(2.19) AT = T 3

F(c®=3/2) [h"=kp(c®=5/2) Jdolc) = aT",

where Egs. (3.2.42) and (2.18) have been used. Thus, the perturbation

to TO’ AT', will be given by

-3/22 ., 2

(2.20)  AT'(x) = AT(x) + kxT.I F(c?o5/2)(cP=3/2)dalc)

0 3

+

- s

0 S El(x,u)do(u) + T kx.

0

Consequently the temperature jump is given by,

(2.21) (=) = T «.
0]
Section 3: Treatment of the Temperature-Jump Problem with Arbitrary

Accommodation.

For the case of arbitrary accommodation the boundary condition on h
is given by Eq. (1.16b). Using Eq. (1.13) this translates into the

following boundary condition on h'";
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(3.1) h“(O;al,gg,g ) = (1-a)h”(0;—51,£2,€3) + (2—a)mn(c2—5/2),

3 &y

In terms of % we use Egs. (3.2.35), (L.1.3), (2.2) and the above to
write,
(3.2)  =2(0,u) = (1-a)=(0,-p) + (2=a)pF{u)v, u > O.

2

Define S:XE(IR) - XP(IR) by

(3.3) (ef)(p) = £(-p),
and let

(3.4) = (u) = =(0,p).

0
Then boundary condition (3.2) can be written in the form,

(3.5)  (P'E) (1) = (1-a)(PT85 ) (4) + (2~a)uF(n)v.

0

>

For half-range problems it has been shown that the additional boundary

condition given by Eq. (2.4) can be satisfied if

(3.6)  zy(u) = (EF"z ) ().

In fact, this additional boundary condition is satisfied if and
only if (3.6) holds. The proof of this is identical to the proof
in Appendix III for the neutron transport equation except that Ref.

is needed for uniqueness.

Substituting (3.6) into (3.5) we obtain,

(3.7) (P+EO)(u) = (2=a)uF(p)v + (1-a) [P SE][P =),

28

0.
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an integral equation for the surface density, (P+EO)(U).

‘Tt should be noted that the original boundary condition, (3.5),
is difficult to use in half-space problems since P+EO, which is
usually a completely known function, is given in terms of a known
function and the unknown function, P+SEO. The approach used to
overcome this difficulty in other problems with this boundary

29 has been to expand both sides of Eq. (3.5) using the

condition
full-range expansion and obtain rather complicated integral equa-
tions for the expansion cpefficients. No papers have appeared in

the literature to guarantee that these integral equations possess
solutions or that the numerical techniques applied to them will
converge. With our approach the surface density is obtained directly
and in a comparatively simple form. We also claim that solutions to
(3.7) exist for at least all but finitely many values of a ¢ [0,1].

To prove that Eq. (3.7) has a solution we need the following

theorem which we state without proof

Theorem 6.30 Let <M,t> be a measure space and H = LQ(M,dT). Then
a bounded linear operator, C, from H to H is Hilbert-Schmidt if and
only if there is a function

o]
K e L°(MxM, dr x drt)

with

Moreover,

11e] 2 = slK(x,y) | Par (x)de(y).
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With this theorem we are able to prove

2 +

2( 2(IR ), defined by

2 rY) > x

Theorem 7. The operator, C:X

(cf) () = (PTSEF)(u)

is compact.

+
Proof: Using Eq. (4.3.10) the action of C on f € Xg(ﬂi ) is given by,

(cr)(p) = ? F()H()sH (s)

ey f(s)do(s).

(@)

Define the T measure by

2
dt(s) = s exp(—se)ds,

then,
el = 1 |er(s)]%do(s),
1(2) 0
or,
- 2
(’f|l1(2) = é lf(S)l dt(s).

Thus the action of C on f is also given by

(e o]

P HGOH (5)

(ce)(u) = é oy e f(s)dt(s).
Define the matrix norm, ll.‘]M’ by
2
el = sup : |

jef1,2y i=1 Y
where Gi‘ is the ij-th element of the matrix G. Using Theorem 6 we

can show that C is compact if
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e PGOEGE (8) 2 |

é é ||+ S(Z+U) (IM dt(p)dr(s)
- T 2 e

= 7 S rtBGI (8)] ], — 7 do(w)do(s) < =.
00 (s+u)

Since [u/(u+s)]2 is well behaved and since I and H are bounded by
polynomials the above condition is satisfied. As C is a compact

2(

+ 2 +y . .
5 IR ) to XO(IR ) its spectrum consists of at most

cperator from X
a countable number of points. The only possible accumulation point
in its spectrum is zero which corresponds to a = «». Thus there are

at most finitely many values of o ¢ [0,1] for which the operator,
+
(3.8) €' = =t [I-(1-)P'sE],
2-a
is non-invertible. And hence the solution to Eq. (3.7) is given by

(3.9 (P'5)w) = (¢)ThEG)v,

for all but at most a finite number of values of o ¢ [O,i].

We have been unable to find a satisfactory upper bound on |[C[],

however, we know that
(3.120)  |jc|| > 1,
since,

(3.11) CF(u)vl = F(u)vl, v, e BT

To see that F(u)vl is an eigenvector of C we substitute F(U)Vl for

f into the definition of C given in Theorem 7,
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(3.12)  CFlu)v, = F(u)H(u) s H

Using the properties of H given in Egs. (4.3.13a) and (4.3.13b) we
obtain (3.11). Thus, if there is a solution to the temperature-jump
problem with @ = 0 it is not unique. This leads us to conjecture
that the Neumann-Liouville series converges for 0 < a < 1.
Proceeding with the solution of the problem one would solve
the integral equation for the surface density numerically. Once the
surface density is obtained the method of solution proceeds exactly
as in the case of complete accommodation. This, however, is beyond

the scope of this work.

Section 4: Treatment of the Transverse Velocity Equation with

Arbitrary Accommodation

The form of the transverse velocity equation is similar to
that of the temperature-density equation although simpler. The
transverse velocity equation is given by Eq. (3.2.45), i.e.,

20 (x,u) ’

s bGu) = == S b(x,s)do(s).

T oo

(L.1) wu

The appropriate space to search for solutions to Eq. (h.1) is

X;(H{), p > 1 (see Ref. 16). Since the elements of ¥ and ¢ are
appropriate inner products of the perturbation, h, with certain basis
vectors (see Egs. (3.2.35a), (3.2.35b), (3.2.4L) and (3.2.45)) the

boundary condition for arbitrary accommodation takes the same form in
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the transverse velocity case as in the temperature-density case, i.e.,
+ +
(L.2)  (Py)(u) = (1-a)(P sSyp)(p) + (2-a)ku.
+ +
Here P :XIl)(IR) > X;(m ) and s:x}l)(m) > X;L)(IR) are defined by,

(4.3) (P o)) = wlu), u > O,

(L) (sp)(p) = w(-n),

and k is a constant. Boundary condition (4.2) can be derived in
analogy with boundary condition (3.5) or consult Ref. 31. Equation
(4.1) along with boundary condition (4.2) and the additional
requirement,
(L.5)  1im ¢(x,u) » f£lu),
X0
3 1] " > 1" 31

define Kramer's problem (or "slip-flow'" problem).

As in the case of the temperature-density equation, Eq. (4.5)

is satisfied if and only if,

(4.6)  p(0,u) = (EP ) (y).

. 16

Here E is given by,

(4:8)  (Ef)(y) =

where X and y are as in Ref. 16. Thus, boundary conditions (4.2) and

(4.5) can be combined as,
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(5.9) (PTy) () = (1-a)[PTSEIP Y] (u) + (2-a)ku,

an integral equation for the surface density, P+w. CercignaniBl

has dealt with Kramer's problem with arbitrary accommodation but

with a different. approach. Rather than-deriving an integral equation

for the surface density his approach was to expand both sides of

Eq. (4.2) using the full-range expansion.of ¥ and employ boundary

condition (k.5) ﬁo obtain an integral equation for the expansion

coefficients. Hé then proved that the integral equation could be

solved by a Neumann-Liouville series for O < o < 1. The integral

equation that we have obtained, Eq. (4.9), can aiso be shown to have

a convergent Neumann-Liouville series, however, we shall omit the proof.
The solution to Kramer's problem is obtained by first calculating

the surface density using Eq. (L4.9) and numerical procedures. Once the

surface density is obtained the solution follows by applying the

methods of Ref. 16.



Appendix T

Section 1: The Diagonal Expansion of the Determinant of the Multi-

Group Dispersion Matrix

If A is an N x N matrix denote by Aij the (N-1) x (N-1)
matrix formed by deleting the i-th row and the j-th column of A.
It will be convenient to label the rows and columns of Aij with the
same indices as the corresponding rows and columns of A. ‘Thus the
matrix, Aij’ will have its i—th>row and j-th column missing. Keeping
in mind this convention we define (Aij)kﬂ t0 be the matrix formed by
deleting the i-th and k-th rows of A and the j-th and f£-th columns

of A. The element in the i-th row and j-th column of A will be

given by aij' If the matrix A is perturbed by adding a factor, €,

to the element, a, . » the resulting matrix will be called A(en)
n’“n
and a matrix with many such perturbations will be labeled A<€1’€2""€n)’
It is trivially verified that
| 1+
(1.1)  det(A(e.)) = det(a) + (-1) e det(A, ., )
1 1 i,J
11
We wish to show by induction that,
n ikj
(1.2) det(A(El,eg,...en))= det (A) + k=§i (-1) ekdet(Aikjk),

to first order in €. Assume that the Ei are all of the same order

€ )) is given, to first

of magﬁitude, e, and that det(A(el,eg,... N

109
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order, by Eq. (1.2). Then,

(1.3) det(A(e. ,e

172" "Tn+l
N i 2
Py Mhar, detlepeae )y o)
2=1 n+l
' i i — . o 0 .
where a in+1 is the (1n+l,2) th element of A(gl,sg, €n+1) and

the r.h.s. of Eq. (1.3) is simply the cofactor expansion of

. " . .

A(El’EQ""€n+l)' Let a i3 be the (i,j)-th element of A(El,sg,...en).
Then,
(1.1) (Al )) () PR ) )
1. det(Ale. se.5+.-€ = g -1 det(Ale. yens e ese ). R

1°72 n+l n+l 1°72 n 1n+lJn+l

N i £
+
+omats (A1) Maet(alegsepniie ), L)
=1 n+1 i n+1

Here we have used the fact that

). = Ale, e 50006 ), .
1n+l£ 1° 2 n 1n+12

(1.5) Ale

1°80°  Eniy

The second term on the r.h.s. of Eq. (1.4) is simply det(A(gl,gg,... N

and thus, using the assumption, Eq. (1.2), we have

i J
+19n+l
(1.6)  det(Ale, enyenee ) = (-1) " e .det(A. . )
1°-2 n+l n+l ln+lJn+l
n 1kjk
+ det(A) + 1 (-1) gkdet(A. i),
k=1 : k" k

where we have used,



det(A(e. ,¢ yE ) ) = ¢

(1.7) €t IELTERRTT

. i det(A, . )y
1n+lJn+l n+l 1n+1Jn+l

to first order in e. This yields the result,

(1.8) det(A(el,gg,...gn+l)) = det(A)
n+l i, +]
+ 1 (-1) kT €x det(Ai ).
k=1 xJk

Hence Eq. (1.2) is verified.
Suppose that the perturbation matrix is B, the elements of
B being of order ¢. Then, using Eq. (1.8), we have,

(1.9) det{Aa+B) = det(A) + 3 (—1)i+jbi.det(Aij),
ij ‘

where bij is the (i,j)-th element of B. By definition

.
(1.10) (-1)*"Ydet(ar. ) = ¢,
1] Jl

where e is the (i,j)-th element of AZ . Substituting Eq. (1.10)

¥

into Eq. (1.9) we have,
(1.11)  det(A+B) = det(A) + Tr(BAZ )s

to first order in e.
A(z) is given by,
1 H 1,-1
(1.12)  alz) = 5C¢ 7 z-22- f plzI-pyz ) "du.
-1

Define,



1r2

+1
(1.13)  G(z) = f u(ZI—uE_l)—ldp.
-1

Then the elements of G will be given by,

(1.1h) gi,(z) =0, 1 # ],

(2

and
+1
(1.15) g..(z) = 5 —E— ay,
ii 1 z—u/cii

where the non-zero elements of § are given by 045

we have,

(1.16) @, (2) == 7 oulur H—+ . )ay =

11 Z o

To order 2—2 we have,
2
(1.17) G(z) = 32 I,

and, substituting into Eq. (1.12), we have,

_ o _ _l
(1.18) Alz) = zC 12—22- 2y 22 1 !

3 + 0(z

Using the expansion, Eq. (1.11), with

(1.19a) A = 3C "5-2%
and
(1.19b) B = - g-z”gz'l,

).

For large z
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we have,

(1.20)  det{a(z)) = - ®)) + 0(z" ),

W
N
=
N
™
—

where we have used,

(1.21) det(zc'lz-zz)

1}
(&
T

for the critical case, and

T
12—22)

(1.22) A () = (507 B
C C

Note that Eq. (1.20) is equivalent to

=

(1.23) det(Aa(z)) = - Z_QTr(Z—lAC(m)) + 0(z ),

wir

since § is diagonal. Thus the two expressions may be used inter-

changeably.
Section 2: Direct Product Representation of Az(w).

Following Ref. 15 we introduce the null vectors ¢ and £

where,
(2.1)  AMe)s =0

and

(2.3) AT(w) = a

c 15 &

N s
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and
(2.k4) Ac(m)'= b IE  b,LE - szg R

i.e., the transpose of the cofactor matrices have columns propor-
tional to the null vectors. Here the proporticnality constants

< i < N. Taking the transpose of Eq. (2.4)

are a, and b, with 1
i i

and equating to Eq. (2.3) we have,

. AT
< b, (££)
(2.9) a8 ast . . aye = R
- b (25)T
o
AT
bN(zg)
i.e.,

(2.6) aze = ()b,

or

(2.7) &= (z8), f :

1
The above implies that a is proportional to zé and thus, using

(2.3), we have,
(2.8)  al(=) « £(zD)".

Let the constant of proportionality be k,
(2.9) AZ(w) = ke (5g

and let the normalization of £ and é be given by,



(2.10) £%¢ = 3/2.

Then k is determined by,

(2.11)  Tr(AL(=)z)

The final result is,

N
|._J
n
—
=
8
S—"
i
win
3
=
=
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Appendix II

Denote by A the dispersion matrix for the temperature-~density
equation. The solutions of the temperature-density equation depend
on a knowledge of the limiting behavior of A(y) for large y. The

dispersion matrix is given by Eq. (4.1.31a), i.e.,

400 +oo

Using,
+o0
(3) ;r F(s)do(s) = 1,
we have,
(4) - A(z) = f === T(s)do(s).
5-72

Making use of the Plemelj formulas we obtain,

A(n) =P S —2—F(s)ao(s) * iHuF(u)cxp(—uz).

Define C and D by,



+co
(6a) € =P s —"—F(s)do(s)
and
(6b) D = iHuF(u)exp(—ug).

Using Eq. (I.1.11) we have, for large u,

det(C) * Tr(DCi) + O(unexp(—Epg)),

i

(7) det(Ai(u)) = dét(CfD)

where n is a positive integer. Since we are dealing with 2 x 2

matrices we have,

8) (15t - det(C) oLy det (D) n L,

+

det(n) det(A%)

and thus,

1 1
" — )
det(p ) det(p)

and
(o) (™ + (a7 = o et (o) (2 ¢ — )
det(n ) det(a)
+ D'ldet(D)( = — - 1 )
det(p ) det(n”)

+
Expressing det(A (p)) as the r.h.s. of Eq. (7) we obtain,
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-1
1 1 Tr{DC 2
(11a) - — = -2 a—g%@—l + 0(u"exp(-2u%)),
det(A )  det(A”)
and
1 1 2 ! 2
(11v) + = Torray * o0 exp(-2u%)),

aet(2™) det(A™)

where n and n' are integer constants. Substituting Eqs. (1la) and

(11b) into Egs. (9) and (10) we find,

(122) (A7) = ()W) + pexp(—n),

for large p, and
+,-1 -\-1 2
(12p) (A7) () + (A7) (w) » w5,
for large p. In the above we have made use of the following,
9

(13a) sup di' > usexp(—ua),
i,je{1,2} 7

(13Db) det(D) - ugexp(—Zuz)a

-1
(13c) sup di' > u3,
i,je{l,2} ™Y
(13d) sup e, b, ue

. . ij
i,je{l,2) Y
and

(13e)  det(C) >y,
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where dij is the (i,j )-th element of D, djj_l is the (i,j)-th
-1 -1 . PR ‘—l
element of D, and c . = is the (i,j)-th element of C .

[

From Bq. (5) we easily obtain

+ 2

(1) )+ )T s T

The results are summarized in the following lemma.

+ -
Lemma 6. The limiting behavior of A , X and A, for large u, is

given by:

(15a)  sup (At(u)).. ST
iaj ‘

(15b) sup (A (p)).. ~ Ugexp(—uz),
1,

and

(15¢)  sup (A(u))., » wu
i,



Appendix ITI

The solution to the homogeneous neutron transport equation,
for the conservative case, is unique provided ¥(0,u) is specified
for pe[-1,1]. Such problems are known as full-range problems.

The half-range case is when ¥(0O,pu) is specified for ue(0,1] and
the additional requirement,
(1) 1im v(x,p) » L{u),
X300
is specified. Since the solution is given by (see Chapter 2,

Section 6),

+1
(2) o) = ag+ Sy ) ¢ £ Al (e Y

-1

Eq. (1) implies that

(32) a, =0

and
(3p)  A(v) = 0, vel[-1,0].

Specifying ¥(0O,u) on [0,1] with the additional requirement given
by Eq. (1} is equivalent to specifying ¥(O,n) for pel[-1,1]. To

establish this we prove

Theorem 8. Let § ¢ Xp(ﬂ?) then ¢ is expandable in the form,

4o

1 1
plu) = E'ao - §'alu + i A(v)¢v(u)dv.
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The conditions

and
A(v) = 0, vel[-1,0]
are satisfied iff

o = EPy

+
where the operators L and P are defined in Chapter

121

Proof: (i) By construction of L

+
p = EP Y =>a. = 0, A(v) = 0, vel-1,0].

1

(ii) Assume that

{a; = 0, A(v) = 0, ve[-1,0]} 0 = Py

Then there exists a by € XP(HR) such that

(), # Py,

and

o]

[«



+1 o_j
(6a) ai(w) = -3 [ s "y(s)ds,
-1
~ +l
(6b)  (Tp)(v) = N(i) _i sb(s)e (s)ds = A(v).

Thus Wl given by

(1) Wl(x,u) = a (wl) + f ¢v(u)(Twl)(v)e—X/vdv

is a solution to the system,
(8a) v(o,u) = vy (w)s >0,

(8b) 1im ¥(x,u) - bdd,

K>

(8¢c) A yxly = 0,
ox

where Knl is the transport operator. But Y, given by,

o

(EP+¢1) + é ¢V(u)(fEP+wl)(v)e

-x/v

(9) W2(X,u) = dv,

%0
is also a solution to this system, where we have employed the half-range

expansion. But the system given by Fgs. (8a), (8b) and (8c) is

known to have a uniquelT solution and thus,
+
(10) Y, =¥_=> y_ = EP vy -

This contradicts the original assumption and hence the proof.



Figure 1: Contours Used in Evaluating the Contour Integral of
the Resolvent of S. '
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Temperature

Distance from wall

Figure 2: Temperature Profile of a Gas Very Near a Wall at
Constant Temperature.
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FUNCTIONAL ANALYTIC TREATMENT OF LINEAR TRANSPORT EQUATIONS
IN KINETIC THEORY AND NEUTRON TRANSPORT THLEORY
by

William Lyle Cameron

(ABSTRACT)

The temperature-density equation of Kinetic Theory and the
conservative neutron transport equation are studied. In both cases
a modified version of the Larsen-Habetler resolvent integration
technique is applied to obtain full-range and half-range expansions.
For the neutron transport equation the method applied is seen to have
notational advantages over previous approaches. In the case of the
temperature-density equation this development extends previous results
by enlarging the class of expandable functions and has the added
advantage of rigor and simplicity. As a natural extension of the
Kinetic Theory results, an integral equation for the surface density
is derived for half-space problems involving the boundary condition

of arbitrary accommodation.



