
Jumping Connections: A Graph-Theoretic Model

for Recommender Systems

Batul J. Mirza

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Science and Applications

Naren Ramakrishnan, Chair
Benjamin J. Keller
Calvin J. Ribbens

February 8, 2001
Blacksburg, Virginia

Keywords: Recommender Systems, Collaborative Filtering, Random Graphs
Copyright 2001, Batul J. Mirza

Jumping Connections: A Graph-Theoretic Model for Recommender Systems

Batul J. Mirza

ABSTRACT

Recommender systems have become paramount to customize information access and reduce
information overload. They serve multiple uses, ranging from suggesting products and ar-
tifacts (to consumers), to bringing people together by the connections induced by (similar)
reactions to products and services. This thesis presents a graph-theoretic model that casts
recommendation as a process of ‘jumping connections’ in a graph. In addition to empha-
sizing the social network aspect, this viewpoint provides a novel evaluation criterion for
recommender systems. Algorithms for recommender systems are distinguished not in terms
of predicted ratings of services/artifacts, but in terms of the combinations of people and ar-
tifacts that they bring together. We present an algorithmic framework drawn from random
graph theory and outline an analysis for one particular form of jump called a ‘hammock.’
Experimental results on two datasets collected over the Internet demonstrate the validity of
this approach.

Acknowledgments

I would like to thank my advisor, Dr. Naren Ramakrishnan, for not only giving me the
opportunity to conduct research in the field of recommender systems, but also for his extreme
patience with me during the entire process. I sincerely thank him for his assistance, guidance,
and valuable motivation.

I would also like to thank other people who have played a significant part in bringing about
this thesis. Dr. Ben Keller provided me with numerous suggestions and ideas that helped
me accomplish my work. Dr. Lenwood Heath identified important shortcomings of random
graph models that are expressed in Section 3.4. I thank Dr. Calvin Ribbens and Dr. Srinidhi
Varadarajan who helped provide me with access to the Cluster Computing Lab, a division
of the Laboratory for Advanced Scientific Computing and Applications (LASCA). I also
thank the computer science department at Virginia Tech for providing the services I used to
conduct my experiments. Particular mention must be made of Alex Verstak who went out of
his way to help me complete the final phase of my experiments. Acknowledgements are also
due to the Compaq Equipment Corporation, which provided the EachMovie dataset and the
University of Minnesota, which provided the MovieLens dataset used in my experiments.

Special thanks to my parents, sister, and brother for their love, encouragement, and prayers.
Finally, I would like to thank my husband, Farooq, without whose invaluable help, constant
support, endless patience, and understanding, my thesis would have been unachievable.

iii

Contents

1 Introduction 1

1.1 Problem Outline . 1

1.2 Reader’s Guide . 2

2 Background 3

2.1 E-Commerce Applications . 5

2.2 Recommender Systems Dichotomies . 6

2.2.1 Content-Based Design . 6

2.2.2 Collaborative Filtering Systems . 7

2.2.3 Hybrid Systems . 8

2.3 Review of Some Specific Projects . 9

2.4 Other Technologies . 11

2.4.1 Data Mining . 11

2.4.2 Clustering . 12

2.4.3 Link Analysis . 12

2.4.4 Small-World Networks . 13

2.5 Putting it All Together: Personalization . 15

2.6 Limitations of Existing Approaches . 16

3 A Model of Jumping Connections 18

3.1 The JC Construction . 19

3.2 The Many Ways of Jumping . 23

iv

3.2.1 Two-Step Linear Paths . 23

3.2.2 Hammocks . 24

3.2.3 Attribute-Value Based Techniques . 25

3.2.4 Sites Based on Social Network Navigation 25

3.2.5 Exploiting Global Structure . 25

3.2.6 Probabilistic Dyadic Models . 26

3.2.7 Generality of the JC Model . 26

3.3 Approach . 26

3.3.1 Modeling the Social Network Graph 28

3.3.2 Modeling the Recommender Graph 29

3.4 Caveats with the NSW Equations . 31

4 Experimental Results 32

4.1 Preliminary Investigation . 32

4.2 Outline of Setup . 34

4.2.1 MovieLens . 34

4.2.2 EachMovie . 37

4.3 Discussion of Results . 41

5 Concluding Remarks 44

A Pseudocode for Experiments 58

v

List of Figures

2.1 Generation of a small-world network by random rewiring from a regular wreath
network. Figure adapted from [WS98]. 14

2.2 Average path length and clustering coefficient versus the rewiring probability
p (from [WS98]). All measurements are scaled w.r.t. the values at p = 0. . . 14

3.1 A bipartite graph of people and movies. 20

3.2 Social network graph for the recommender dataset shown in Fig. 3.1 21

3.3 Recommender graph obtained by rendering the social network graph with
bidirectional edges and reattaching the movies. 22

3.4 Illustration of the skip jump. 22

3.5 The JC construction produces a half bow-tie graph Gr. 23

3.6 Illustration of a sequence of hammock jumps, with a hammock width w = 4. . 24

4.1 Hits-buffs structure of the (reordered) MovieLens dataset. 33

4.2 Effect of the hammock width on the number of components in the Gr graph
induced from the MovieLens dataset. 35

4.3 Effect of the hammock width on the number of people in the largest compo-
nents in the Gr graph (MovieLens). 35

4.4 Effect of the hammock width on the number of movies in the largest compo-
nents in the Gr graph (MovieLens). 36

4.5 Comparison of the lpp measure (MovieLens) from actual computations and
from the formulas. 36

4.6 Comparison of the lr measure (MovieLens) from actual computations and
from the formulas. 37

vi

4.7 Calibrating the value of ε in the synthetic model of EachMovie produces
datasets with required specifications on minimum rating κ. 38

4.8 Comparison of the lpp measure (EachMovie) from actual computations and
from the formulas for varying values of κ. 39

4.9 Comparison of the lr measure (EachMovie) from actual computations and
from the formulas for minimum rating constraint κ = 1 (left) and minimum
rating constraint κ = 15 (right). 40

4.10 Two graphs that satisfy the degree distribution given in Table. 4.2. For sim-
plicity, only the people nodes are shown. 40

4.11 Cumulative frequency distribution (of degrees) as a function of the degree for
(left) MovieLens and (right) EachMovie datasets, for hammock widths from
1 to 30. 42

4.12 Logarithm of the cumulative frequency distribution (of degrees) as a func-
tion of the degree for (left) MovieLens and (right) EachMovie datasets, for
hammock widths from 1 to 30. 42

5.1 A stratified view of the MovieLens dataset demonstrates hits-buffs structures
at all rating levels. 45

5.2 Effect of two rewiring models on the characteristic path length, starting from
a regular wreath network. 46

vii

List of Tables

2.1 Categorization of recommender systems applications. 4

2.2 Input matrices for content-based design (left) and for collaborative design
(right). 8

3.1 Summary of the symbols used in the JC model. 19

4.1 Some statistics for the EachMovie and MovieLens datasets. 32

4.2 Joint degree distribution for the largest component of the recommender graph
(EachMovie) when κ = 1, w = 25. Only the non-zero entries are shown. . . . 40

viii

Chapter 1

Introduction

Recommender systems [RV97] constitute one of the fastest growing segments of the Internet
economy today. They help reduce information overload and provide customized information
access for targeted domains. Building and deploying recommender systems has thus matured
into a fertile business activity, with benefits in retaining customers and enhancing revenues.
Elements of the recommender landscape include search engines, handcrafted content indices,
personalized shopping agents on e-commerce sites, and news-on-demand services. The scope
of such ‘personalization’ thus extends to many different forms of information content and
delivery, not just web pages. The underlying algorithms and techniques, in turn, range from
simple keyword matching of consumer profiles, ‘collaborative filtering,’ to more sophisticated
forms of data mining, such as clustering web server logs.

1.1 Problem Outline

Historically, recommender systems have been studied in domains that focus on harness-
ing distributed information resources, information aggregation, social schemes for decision
making, and user interfaces. Indicative of this multidisciplinary foci, current research on
recommender systems can be sliced in several different ways. The four main dichotomies
are: (i) how is a recommender system modeled? (i.e., how are recommendations actually
made?), (ii) how is a recommender system targeted (i.e., at what level is the information
tailored?), (iii) how is a recommender system built (is it a ‘public transportation’ system or
a ‘hot-rod’? [Ram00, RS97]), (iv) how is a recommender system maintained (online versus
offline designs).

Such dichotomies typically reflect the philosophies of the underlying domains, the proposers,
and their parent communities (we will cover one such dichotomy in detail in Chapter 2).
A recurring theme among many of these viewpoints is that recommendation is implicitly
cast as a task of learning mappings (from people to recommended artifacts, for example)

1

2

or of filling in entries to missing cells in a matrix (of consumer preferences, for example).
Such simplifications miss many important aspects of a recommender system such as (i) its
role as an indirect way of bringing people together, (ii) its ‘signature pattern’ of making
‘connections,’ (iii) the explainability of its recommendations, and (iv) the mathematical
models of the social networks in which the recommendations are delivered. In parallel, the
undue emphasis on the predictive capability of a recommender system (of future ratings)
has limited the exploration of novel evaluation criteria for recommender system algorithms.

This thesis proposes a graph-theoretic model of a recommender system as a process of ‘jump-
ing connections’ in a bipartite graph of people versus artifacts. This model is inspired by all
of the above limitations and, in addition, provides a novel approach to experimental algorith-
mics. Algorithms for recommendation can be characterized by (i) the kinds of connections
they ‘jump,’ and (ii) the number of entities they serve to bring together by such ‘jumps.’
We will make these notions formal in Chapter 3 but an intuitive example of a jump can be
had from real life.

Assume that Linus would like to get a recommendation for a certain movie M . One way to
obtain a rating for this item would be to find somebody (say, Lucy) who has indeed seen this
movie and who could serve as the rating provider. For example, perhaps Linus and Lucy are
known to have similar tastes and preferences. A recommender system would then assume
that Linus can be reached from Lucy in a single ‘jump’; this would then serve as the bridge
by which Lucy’s rating of M could be transformed into a recommendation for Linus.

It is our thesis that all recommender systems obey this model and differ in only the nature
of their jumps. We will show how seemingly dissimilar recommender algorithms in the
literature are really special cases of this general setting. By casting recommendation as a
process of making connections (perhaps in sophisticated ways), algorithms can be viewed
as mechanisms for bringing people (and movies) together (into a connected component).
Thus, two algorithms can be distinguished based on the jumps they posit and the kinds
(and number) of nodes that are brought together. From the viewpoint of a recommender
system designer, the jumps should be as ‘expressive’ as possible and should bring together
as many cohesive subgroups of nodes as possible. How these two conflicting goals can be
consolidated is another contribution of this thesis; we develop an algorithmic framework in
which to conduct such studies.

1.2 Reader’s Guide

Chapter 2 surveys current research and motivates the need for a new approach to analyz-
ing algorithms for recommender systems. Chapter 3 introduces the ‘jumping connections’
framework and develops a mathematical model based on random graph theory. Chapter 4
provides experimental results for one particular way of ‘jumping’ on two application datasets.
Issues related to interpretation of results from our model are also presented here. Finally,
Chapter 5 identifies various opportunities for future research.

Chapter 2

Background

The increase in the amount of information available through online resources (such as web
pages and email) has greatly exacerbated the problem of information overload. This has
fueled an extensive ongoing research effort in recommender systems, which select subsets
of information to be presented from a typically larger set of possibilities. Recommender
systems can be defined as systems that help reduce information overload by filtering out
information which may be otherwise inapplicable to an individual or a group of individuals.
They are realized by algorithms that model preferences (of people) and use such models to
predict ratings (of products, services) or provide recommendations.

A typical recommender system could answer questions such as:

• What movie should I go see this weekend?

• Which web pages are most related to my query?

• Which is the most popular restaurant in Washington D.C.?

• Which people have similar reading interests in medieval art history?

Typically, the most common way to obtain recommendations of artifacts is by ‘word of
mouth,’ i.e., to solicit them from friends with similar tastes, or to depend on articles about
the artifacts written by well-known critics or experts. Such strategies are mirrored in the
current landscape of recommender systems. Amazon.com uses ratings and profiles to pre-
cisely tailor the content provided at its web pages (for example, “Since you liked Sense and
Sensibility, you might also be interested in Pride and Prejudice too”). ‘Expert sites’ such as
epinions.com provide a conduit for critics and judges to voice their reactions. In the general
case, people provide ratings and evaluations as inputs to an automated system, which then
aggregates and directs them to appropriate recipients [RV97]. Recommender systems thus
help bring people together by modeling commonalities of interests.

3

4

Table 2.1: Categorization of recommender systems applications.

Provide Provide Example Applications
Recommendations for Recommendations of and Systems

People (Other) People Match-Making Services
(e.g. Yenta [Fon96])

People Artifacts E-commerce Applications,
Recreation (e.g., Jester [Gol])

Artifacts People Identifying Experts
(e.g. Referral Web [Kau])

Artifacts (Other) Artifacts Feature-Based Retrieval
(e.g. Art Paintings Selection [Koh])

Most recommender systems are web-based since data abounds in the Internet environment.
In fact, operating recommender systems offline is more challenging due to the associated
problems of data gathering and collection in a ‘bricks and mortar’ setting. Furthermore, the
web has become the preferred source of information (over resources such as libraries, ency-
clopedia, and televisions). Data such as the keywords of a person’s query, click-stream data
(actions of the user during browsing, i.e. the links (s)he follows and the amount of time spent
on each page), purchase data, assessments provided for products in the form of ratings, and
bookmarks could be useful in gleaning information about the person’s interests and back-
ground. For example, the Siteseer system [RP97] uses the event of saving a web page into a
bookmark folder as a measure of user preference. Systems such as WebWatcher [AFJM95]
use link navigation information to gather information about user interests. Recommender
systems exploit such data from the web and automatically provide recommendations for
entities such as movies, books, web pages, or restaurants [Tri]. Besides the above men-
tioned forms of data, e-commerce sites track dynamic information indicating how recently
the customer bought a product from the site, how frequently the customer purchases, and
how much the e-commerce site profits from the customer’s purchases (monetary data). Sites
that exploit these three categories of information are said to employ RFM data [DR99].

A broad categorization of recommender systems applications is provided in Table 2.1. The
input descriptions involve features (of artifacts), preferences, and experiences (of people).
The output recommendations involve identifying specific artifacts or particular users. This
categorization is intended to be neither exhaustive nor mutually exclusive. Applications
involving recommendations of artifacts to people will be used to motivate the ideas presented
in this thesis.

5

2.1 E-Commerce Applications

Recommender systems benefit both customers as well as sellers in e-commerce applications.
They minimize the amount of information that customers need to process before they find
the artifact they are looking for. For the seller, recommender systems aid in:

1. Improving cross-sell: Cross-selling implies offering additional related products to a
customer when he/she shows interest in purchasing a product [SKR99, DR99]. “Did
you know we have a hat and glove set that matches this jacket for only $69.95?” is
an example of cross-selling. At sites such as amazon.com, barnesandnoble.com, and
cdnow.com, if a customer selects any product X, the site also recommends a set of
other related products that were purchased by customers who bought product X in
the past.

2. Improving up-sell: Up-selling means recommending a similar but more expensive prod-
uct package to the customer. An example of up-selling is offering a suggestion such as
“Would you like to purchase the limited edition version of the accompanying software
for just $5.95 extra?” As another example, if the customer is looking for 32 MB RAM,
offer him 64 MB at a discount.

3. Turning browsers into buyers: Recommender systems help e-commerce systems to
hold the attention of new and occasional visitors at specific site(s) [SKR99]. Typical
information, such as best sellers and recommendations by experts, can be provided for
such customers to engage their attention. Personalized email notification on arrival of
products desired by customers is another commonly used method of inviting customers
back to the e-commerce site.

4. Providing targeted assortments of products: Recommender systems can break the
generic content mold and offer personal service based on the depth of knowledge and
understanding of the tastes and preferences of each customer [DR99]. For example,
a fan of Sheryl Crow would be presented with a new release by this artist or artists
that other customers with similar tastes have rated highly, while a Latin music fan
would receive an entirely different experience with recommendations for the new Ricky
Martin or Enrique Iglesias CDs.

5. Providing personalized ads: Related to point 4 above is the technique of tailoring web
advertisements to the individual customer. Recommender systems enable sites, by
tracking generalized patterns of customer behavior, to make good guesses over time
about the kinds of ads a customer would welcome, indirectly enhancing possibilities of
additional profits.

The above two aspects are sometimes jointly referred to as personalization. Personal-
ization is the process of targeting web content by customizing information access to

6

meet a user’s needs and preferences. Its scope is broader than e-commerce, as discussed
in section 2.5.

6. Providing gift recommendations: Amazon.com, Yahoo! Shopping, Theman.com, Mondera.
com are examples of e-commerce sites that have incorporated ‘gift recommenders’ to
aid customers in finding a perfect gift for a third party [DR99]. These sites conduct
extensive modeling of the recipient to match profiles and preferences.

7. Enhancing loyalty of customers: The concept of loyalty here refers to making customers
revisit the e-commerce site in an effort to retain their business [SKR99]. Personaliza-
tion leads to loyalty; if a customer uses an e-commerce site that remembers enough
contextual information about her, she is more likely to revisit the site in the future.
This also has implications for the privacy of the users of recommender systems.

2.2 Recommender Systems Dichotomies

Various dichotomies have been proposed that classify recommender systems according to
the philosophies of the underlying domains, the proposers, and their parent communities.
A commonly accepted classification distinguishes between content-based and collaborative
recommender systems [AT99, ATar, RV97].

2.2.1 Content-Based Design

Content-based recommender systems model the content (features) of an artifact and recom-
mend artifacts by querying a database of artifact features against the preferences of the user
[KB96]. They have been applied in several domains, from recommending movies [AKK98]
and books [MR00] to recommending web sites [PMB96]. Content-based recommendation
has its roots in database modeling [FLM98] and information filtering [CBS92].

The simplest form of such information filtering is through keyword matching. One of the
earliest information filtering systems was called ‘selective dissemination of information’ (SDI)
[HK70]. SDI was designed as an automatic way of alerting scientists of new documents
published in their areas of interest. Users can create a profile of keywords that describes
their fields of interest; when new publications matching a profile appear, the system informs
the user instantly.

Belkin and Croft [BC92] describe information filtering systems to be designed for unstruc-
tured or semistructured data, where filtering is based on user profiles, representing the user’s
long-term interests. They also show that information filtering and information retrieval (IR)
are almost identical at an abstract level. IR, in general, is the process of searching for and
extracting specific information from amongst a collection of information items [SM83]. IR

7

uses queries as specifications of information needs, and is concerned with single uses of the
system whereas information filtering employs user profiles to satisfy long-term goals of the
users. While retrieval denotes ‘finding’ the most relevant data, filtering carries a connota-
tion of ‘removing’ data that is irrelevant for the user. Software such as Letizia [Lie95] works
in concert with browsers, inferring user preferences from their browsing behavior, using a
strategy that is midway between information filtering and information retrieval.

Since content-based filtering involves parsing (for descriptive features), it works best with
text-based documents, and has found limited success in domains such as sound, images, and
video. In keyword matching, the context of the search phrase has to be taken into account,
as well. Polysemy (the situation when words have multiple meanings) and synonymy (when
different words have the same meaning) of words further increase the difficulty of identifying
relevant selections. Dimensionality reduction techniques such as ‘latent semantic indexing’
(LSI) have been empirically shown [Fol90] to overcome such problems.

2.2.2 Collaborative Filtering Systems

While information filtering depends only on an individual’s preferences, collaborative filter-
ing considers preferences of other (similar) people. (In information filtering, an individual
only ‘collaborates with himself’ to gradually improve his profile [Tur].) First introduced by
Goldberg et al. [GNOT92], collaborative filtering today forms the core underlying technology
for many recommender systems [AWWY99]. It involves:

• Accumulating preferences (or profiles) of people and recording their behavior (e.g. for
a movie recommender system, explicit ratings given by people for different movies can
be recorded)

• Selecting a number of ‘neighbors’ for each person. Neighbors of a person are other
people whose ratings/experiences are similar to this person’s.

• Based on the behavior of these neighbors, predicting future behavior of the person (e.g.
the system would recommend the movie ‘Erin Brochovich’ to a person, because many
of his neighbors gave high ratings to this movie).

Collaborative filtering can be done using either explicit or implicit ratings. Explicit ratings
are directly provided by users to declare preferences, while implicit ratings are gleaned (often
secretively) by observing a person’s behavior, such as browsing patterns. Collaborative filter-
ing techniques have also been used for unconventional applications, such as in the PYTHIA
recommender system for selecting solvers for partial differential equations (PDEs) [Ram99].
Algorithms are recommended for newly presented problems based on their performances on
‘similar’ problem instances [RG99a].

8

Table 2.2: Input matrices for content-based design (left) and for collaborative design (right).

Feature 1 · · · Feature n

Artifact 1 f11 · · · f1n
· · · · · · · · · · · ·

Artifact m fm1 · · · fmn

Artifact 1 · · · Artifact m

Person 1 r11 · · · r1m
· · · · · · · · · · · ·

Person k rk1 · · · rkm

There are various endemic problems with collaborative filtering:

• Cold Start: The cold start problem has also been called the day one problem [ME95],
due to the fact that on the first day of its service, the system has no available data to
begin to make recommendations. Collaborative filtering also gives poor performance
for new items, i.e., items that have not yet been rated by any person. As the number of
people gets larger, the number of multidimensional comparisons over all combinations
seriously affects the scalability as well.

• Banana Problem [Bur99]: Recommender systems that exploit associations among cus-
tomer purchases are particularly sensitive to the frequency of ratings for specific items.
For example, since bananas are frequently purchased by customers in many grocery
stores, a recommender system using market basket data to infer preferences will always
recommend bananas. A converse problem is that of recommending a product that is
bought much less frequently and only one at a time (e.g., automobiles) [Bur99]. Sim-
ilarly, there might be a user with unusual preferences for whom there will not be any
similar users and which could lead to poor recommendations.

• Effusivity and Subjectivity in Ratings: Ratings of similar users are typically combined to
make recommendations in collaborative filtering, but users often use entirely different
ranges of ratings to express identical preferences. One user may be more effusive in his
ratings than another, although they rate objects in the same order. Techniques that
preserve relative and ordinal sequences are often used to identify significant variations
in rating patterns [FISS98, AWWY99].

2.2.3 Hybrid Systems

A consequence of both content-based and collaborative filtering is that one ends up with
recommendations that are very similar to what was recommended previously, since the pref-
erences are based on profiles of a person or obtained from people with similar ratings. The
input matrices for content-based and collaborative designs are shown in Table 2.2. In content-
based designs, each artifact is described as a vector of feature values (numeric or symbolic).
For collaborative designs, ratings of artifacts are provided by each person. Both designs do

9

not provide for serendipitous recommendations, in the way of ‘new finds.’ In social life, we
do not seek to interact with only those who are similar to ourselves. Rather, we will often
enjoy the recommendations given by people who are different from ourselves, in exploring a
new area of interest.

Collaborative filtering is useful when there are enough other users in the system with over-
lapping preferences. Content-based filtering is appropriate when a new user or a new object
is added to the system. Notice that the features employed by content-based filtering are typ-
ically orthogonal, whereas the profiles (of people) captured by collaborative filtering might
have redundancy. This is one of the primary reasons dimensionality reduction techniques
have found some success in collaborative filtering.

Hybrid recommender systems bring the advantages of different recommendation technologies
together in order to improve accuracy of the predicted ratings. Approaches that harness both
these approaches include the GroupLens ‘filterbot agents’ [SKB+98], the Research Assistant
Agent Project [DIT98], and the CLEVER search engine [Cen] that uses link analysis to model
collaborative recommendations. Attempts at a hybrid movie recommender system [BHC98]
showed an improved performance (in terms of accuracy of retrieval of relevant selections)
over pure content and collaborative approaches.

In practice, hybrid systems which provide both group as well as individual recommendations,
are most prevalent. Such systems employ user profiles built by content analysis to make good
recommendations even if there are no similar users and they can also filter out objects the user
may have disliked in the past. At the same time, by making collaborative recommendations,
they can combine other users’ experiences using content-based filtering.

2.3 Review of Some Specific Projects

This section describes five recommender system algorithms. GroupLens and LikeMinds
are well-established algorithms and power some web sites operating publicly. Firefly was
purchased by the Microsoft Corporation in 1998 and has been out of the news since then.
The fourth algorithm presented here is relatively new, published in August 1999. The above
four are all collaborative filtering algorithms. The last algorithm discussed here is a hybrid
recommender system — Fab.

GroupLens

The GroupLens system [RIS+94] was first used in a world wide trial for Usenet (online
collection of newsgroups) in 1996 where a total of 250 volunteers rated over 20, 000 news
articles. Miller et al. [MRK97] provide a detailed summary of the results of the trial.
The large number of users and news postings in Usenet provide a rich source of data and

10

a challenge for real-time implementation. Collaborative filtering in an Usenet application
is different from issues in other domains such as movies or music because the item (news
articles) volume is much larger and their lifetime is very short [KMM+97].

The basic idea was to allow readers to rate articles using special servers called ‘better bit
bureaus’ (BBBs). BBBs measured correlation coefficients, using a Pearson algorithm to
describe the extent of agreement between two users on their ratings. Ratings are then
predicted for a particular user i of a new (unrated) artifact (article) j by computing a
weighted average of all ratings for article j from users who are in agreement with i. While
the Usenet research trial is now over, the GroupLens idea is now applied in MovieLens, which
recommends movies at the publicly operating site http://movielens.umn.edu.

Firefly

Evolving from Ringo [SM95] and HOMR (Helpful Online Music Recomendation Service),
Firefly lets a web site make intelligent recommendations about books, music, or movies, that
users might like depending on their stated tastes. Firefly’s algorithm is now used on sites
like BarnesandNoble.com. The idea is very similar to the GroupLens algorithm, except a
weighted average is calculated of only the ratings of those users whose coefficients are greater
than some threshold [Sha94]. Ringo had become available to the public in 1994 and after its
huge success, was subsequently disbanded, having been acquired by Microsoft.

LikeMinds

Macromedia LikeMinds goal was to offer fast, accurate personalization in real-time [Lik].
The LikeMinds personalization server is a web-based system that accumulates a database of
consumer product preferences, then uses simple L2 and Mahalanobis distances to measure
‘closeness’ between users (in terms of ratings) [Gre]. A demonstration site called Movie Critic
asks users to initially rate 12 movies to receive recommendations (accessible at http://www.
moviecritic.com).

‘Intelligent Recommendation Algorithm’

Aggarwal et al. [AWWY99] illustrate an interesting graph-based approach to collaborative
filtering, used in the Intelligent Recommendation Algorithm (IRA) project at IBM Research.
The paper also describes experiments that were conducted to compare the accuracy, speed
and scalability of the LikeMinds, Firefly and the IRA algorithms using synthetic data.

The algorithm extends the basic ideas presented above in several important directions. First,
it addresses sparsity of ratings by not requiring a direct link (commonality of ratings) between
the consumer (of recommendations) and the supplier (who has rated the artifact of interest).

11

Instead, the bipartite graph of users and artifacts is traversed to determine an appropriate
user, whose ratings are then propagated back (via a sequence of nodes) to the consumer. To
address effusivity of ratings, such propagation is allowed to introduce linear transformations
of ratings to achieve matching of individual values.

The twin notions of horting and predictability [AWWY99] effectively provide these extensions.
A user X is said to hort user Y if there are ‘enough’ items that X and Y have rated in
common. This commonality constraint is tunable either as an absolute measure or as a
fraction of the items rated by X (in the latter case, horting would not be a symmetric
relation). Predictability is then defined in a reverse manner: Y predicts X if X horts Y and
there exists a linear transformation (within some tunable bounds) that can map Y’s ratings
to (predictions for) X.

Thus, IRA is different from approaches such as GroupLens, Firefly and LikeMinds in which
predictions are computed by taking a weighted average of the ratings of only immediate
neighbors. In IRA, the opinions of the users who have not rated the item in question are
also considered while producing predictions, thus making the notion of predictability more
general than ‘closeness.’

Fab

Fab [BS97], a part of the Stanford University digital library project, is an agent-based hybrid
filtering system for recommending web pages. User profiles are maintained using content-
based filtering and comparison of these profiles to determine similarity between users is done
collaboratively. Fab consists of three main components: collection agents, selection agents
and a central router. The collection agents find and send web pages based on the ‘current
topic’ profiles, which they maintain, to the central router. The router forwards these pages
to the selection agents, which use a particular user’s profile to select web pages to present
to him. The user is then required to rate the page and his ratings are used to update the
selection agent’s user profiles and the collection agent’s topic profiles.

2.4 Other Technologies

This section describes research in related areas; namely data mining, clustering, link analysis,
and small-world networks.

2.4.1 Data Mining

Data mining, sometimes referred to as knowledge discovery in databases (KDD), has been
defined as ‘the nontrivial extraction of implicit, previously unknown, and potentially useful

12

information from data’ [CCH91]. Organizations can use such information for competitive
business advantage, e.g. for e-commerce, user profiling, and web personalization. Goals
common to all data-mining applications are the detection, interpretation, and prediction
of qualitative or quantitative patterns in data [RG99a]. Data mining techniques [Han96],
including association rule mining and data clustering, have had significant impact on the
design of recommender systems. For example, association rule mining has been used to make
recommendations by exploring association between people, associations between objects, and
between the two [Lin00]. It can also be used to develop top-N recommendations of products
[SKKR00a]. Similarly, clustering methods can be used to group ‘similar’ people into clusters
in order to provide typical recommendations [UF98, KM99], described in detail below.

2.4.2 Clustering

Several clustering techniques including K-means clustering have been used in conjunction
with collaborative filtering [UF98]. In most cases, clustering has been viewed as an approach
to combat the problems of new users and new objects in the system [Lee00]. The K-means
clustering technique was first described by MacQueen [Mac67], and uses a centroid-based
distance metric to assign nodes (users as well as artifacts) to clusters. Breese et al. [BHK98]
describe the use of bayesian classification in collaborative filtering, which has been used in the
Do-I-Care collaborative web agent [ASP97]. Bayesian classification assumes that for every
classifiable object, there exists a set of attributes that allow the computation of probabilities
that the object belongs to each of a known set of clusters. METIS [Kar] and kMETIS
[KK95], developed at the Univ. Minnesota, use multilevel graph partitioning and have been
explored in recommender systems research.

Clustering that reveals genres and rating patterns appears to be the immediate benefit of
this mode of analysis in recommender systems [Lep]. However, some studies show that the
quality of prediction is not significantly improved by clustering [Lep]. Results from experi-
ments conducted by O’Conner and Herlocker [OH99], show that although clustering greatly
increases scalability (distances to only neighbors within a cluster need be computed for mak-
ing recommendations), it does not improve accuracy of the recommendations. However, their
results show that generating clusters using the kMETIS graph partitioning algorithm pro-
duces predictions which are much more accurate than those generated by random clustering
or by clustering based on movie genres (in the case of a movie recommender system).

2.4.3 Link Analysis

Link analysis begins with data that can be modeled as a network and attempts to infer useful
knowledge from the nodes and links of the network. Data is represented as a graph, with
nodes representing entities in the domain, and edges representing relationships between the
entities. Link analysis has been used to extract information in many areas such as in web

13

search engines [Kle98], in exploration of associations among criminals [Ric98], and in the
field of medicine [SS98]. One of the earliest uses of link analysis in recommender systems is
described in [SW93].

ReferralWeb [KSS97], a recommender system applying ‘referral chaining,’ a form of link
analysis, uses the co-occurrence of names in any of the documents available on the web, to
detect the existence of direct relationships between people and thus indirectly form social
networks. The underlying assumption is that people with similar interests swarm in the
same circles to discover collaborators [Pay98].

Jon Klienberg [Kle98] uses his HITS (Hyperlink-Induced Topic Search) link analysis algo-
rithm, to introduce the notion of two types of web sites: hubs and authorities. A good hub
links to many authorities and a good authority will be linked to by many hubs. Starting with
a specific search query, HITS performs a text-based search to seed an initial set of results.
An iterative relaxation algorithm then assings hub and authority weights using a matrix
power iteration. Empirical results show that remarkably authoritative results are obtained
for search queries. The CLEVER search engine [CDRK+99] is built primarily on top of the
basic algorithm described above. The Google search engine [BP98b] also makes use of the
web’s link structure in addition to the anchor text, though in a limited way. The offline
characteristic of Google, as opposed to the topic-induced search of CLEVER, is one of the
main reasons for the commercial success of the former. Use of link analysis thus promises
improvement in the performance of recommender systems.

2.4.4 Small-World Networks

The exploration of link analysis in social structures has led to several new avenues of research,
most notably ‘small-world networks.’ Small-world networks refer to highly clustered but
relatively sparse networks with small average length. The reader may be familiar with the
folklore notion of six degrees of separation separating any two people in our universe i.e.,
the phenomenon where a person can discover a link to any other random person through
a chain of atmost six acquaintances. A small-world network is sufficiently clustered so
that most second neighbors of a node X are also neighbors of X (a typical ratio would
be 80%). On the other hand, the average distance between any two nodes in the graph
is comparable to the low characteristic path length of a random graph. Until recently, a
mathematical characterization of such small-world networks has proven elusive. Watts and
Strogatz, in their 1998 pioneering work [WS98] described a graph generation model for
small-world networks.

They use a regular ‘wreath’ network with n nodes, and k edges per node (to its nearest
neighbors) as a starting point for the design. A small fraction of the edges are then ran-
domly rewired to arbitrary points on the network. A full rewiring (probability p = 1) leads
to a completely random graph, while p = 0 corresponds to the (original) wreath as shown
in Figure 2.1. The starting point in the figure is a regular wreath topology of 12 nodes with

14

p = 1p= 0

Increasing randomness

Random NetworkSmall-World NetworkRegular Network

Figure 2.1: Generation of a small-world network by random rewiring from a regular wreath
network. Figure adapted from [WS98].

10
-4

10
-3

10
-2

10
-1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability p

Average Length
Average Clustering Coefficient

Figure 2.2: Average path length and clustering coefficient versus the rewiring probability p
(from [WS98]). All measurements are scaled w.r.t. the values at p = 0.

15

every node connected to its four nearest neighbors. This structure has a high characteristic
path length (O(n)) and high clustering coefficient. The average length is the mean of the
shortest path lengths over all pairs of nodes. The clustering coefficient is determined by first
computing the local neighborhood of every node. The number of edges in this neighbor-
hood as a fraction of the total possible number of edges denotes the ‘cliquishness’ of this
neighborhood. This factor is averaged over all nodes to determine the clustering coefficient.
The other extreme is a random network with a low characteristic path length and almost no
clustering. The small-world network, an interpolation between the two, has the low char-
acteristic path length (of a random network), and retains the high clustering coefficient (of
the wreath). Measuring properties such as average length and clustering coefficient in the
region 0 ≤ p ≤ 1 produces surprising results (see Fig. 2.2).

As shown in Fig. 2.2, only a very small fraction of edges need to be rewired to bring the length
down to random graph limits, and yet the clustering coefficient is high. On closer inspection,
it is easy to see why this should be true. Even for small values of p (e.g., 0.1), the result of
introducing edges between distantly separated nodes reduces not only the distance between
these nodes but also the distances between the neighbors of those nodes, and so on (these
reduced paths between distant nodes are officially known as shortcuts). The introduction of
these edges further leads to a rapid decrease in the average length of the network, but the
clustering coefficient remains almost unchanged. Thus, small-world networks fall in between
regular and random networks, having the small average lengths of random networks but high
clustering coefficients akin to regular networks.

While the Watts-Strogatz model describes how small-world networks can be formed, it does
not explain how people are adept at actually finding short paths through such networks in a
decentralized fashion. Kleinberg in [Kle99] addresses precisely this issue and proves that this
is not possible in the family of one-dimensional Watts-Strogatz networks (the wreaths above,
formally rings). Embedding the notion of random rewiring in a two-dimensional lattice leads
to one unique model for which such decentralization is effective.

The small-world network concept has implications for a variety of domains. Watts and
Strogatz [WS98] simulate the ‘wildfire’ like spread of an infectious disease in a small-world
network. Adamic [Ada99] shows that the world wide web is a small-world network too and
suggests that search engines capable of exploiting this fact can be more effective in hyperlink
modeling, crawling, and finding authoritative sources.

2.5 Putting it All Together: Personalization

Consolidation of many of the above ideas underlies the creation of personalization solutions
on the Internet. One of the problems with web sites is that they tend to be too feature-rich.
A user may probably use only a small fraction the functionality of an application on the
web. If however, the entire set of users is considered, then there is definitely someone who

16

needs each of these features. Software that configures itself to individual needs entails the
scope of personalization. Personalization refers to the automatic adjustment of information
content, structure, and presentation to individual users. It can be described as any action
that makes the web experience of a user personalized to the user’s taste [MCS00].

Recommender systems provide personalization by resolving the conflict between having too
much information and a clean interface. Well developed personalization reminds a user
about important dates like birthdays of friends and family and recommends gifts according
to their age and profile. It can improve the success of the web site and increase the return
on marketing investment by providing one-to-one marketing [PR97]. Recommender systems
have been classified as non-personalized, ephemeral, and persistent depending on the degree
of personalization provided [SKRar].

Personalization is not limited to e-commerce. It has been used to personalize e-mails and
online newspapers. For example, Anatagonomy [KSK97], a personalized newspaper on the
web, learns user profiles using both implicit and explicit ratings to create personalized news-
paper pages. Depending on which news articles have high scores, noticeable and large screen
spaces are allotted to them. Similarly, an engine to generate TV guides as HTML web pages
personalized for the viewing of individual users has also been proposed [SC00]. Other sites
such as Yahoo! provide a My Yahoo! page [MPR00] to personalize its content and layout.
CNN’s mycnn.com allows users to tailor newsfeeds by specifying criteria on sources and top-
ics. Anupam et al. [ABFK99] give a proposal to build a personalization service that allows
users to create personalized pages that integrate information from more than one web site.
Ramakrishnan [Ram00] describes a programmatic framework to design a personalization
system around a specific collection of web sites.

2.6 Limitations of Existing Approaches

A main limitation of current research efforts in recommender systems is that they do not
provide systematic mechanisms to evaluate the efficiency and effectiveness of different rec-
ommender system algorithms. Traditional information retrieval evaluation metrics such as
precision and recall are not suited here since satisfaction with a product/service cannot be
modeled functionally without a human element. In an attempt to shy away from the HCI
aspects of recommender systems research, existing evaluation metrics treat recommendation
as a classification or function approximation problem.

The paper by Breese et al. [BHK98], one of the most widely cited in the recommender systems
literature, is typical. The authors present various algorithms for recommender systems and
(later) apply the standard cross-validation procedure of dividing the original dataset into two
parts — a training set and a test set. The training set serves as the collaborative filtering
database and is used to predict the ratings of the users in the test set. The predictions are
then compared to the original test set data to obtain absolute errors in predictions of ratings.

17

Thus, recommendation often is cast as a task of function approximation or learning mappings
[AWWY99, BP98a, BHC98, GRGP00, GSK+99, HKBR99, HSRF95, KFV00, KMM+97,
PHLG00, SKKR00b, SM95, SN99, SKKR00a, SKR99, THA+97]. Even approaches that
focus on clustering (e.g. [UF98]) view it primarily as a pre-processing step for functional
modeling or as a technique to ensure scalability. Such simplifications miss many desirable
properties of the recommendation process, namely:

• The social view of a recommender system as an indirect way of bringing
people together. Social network theory [WF94] refers to a recommendation system
of people versus artifacts as an affiliation network and distinguishes between a pri-
mary mode (e.g., people) and a secondary mode (e.g., movies), where a mode refers
to a ‘distinct set of entities on which structural variables are measured [WF94].’ The
purpose of the secondary mode is viewed as serving to bring entities of the primary
mode together (i.e., it isn’t treated as a first-class mode).

• Emphasis on the connections used in making the recommendations, not just
on the (predicted) rating for the artifact. In many situations, users would like
to request recommendations purely based on local and global constraints on the nature
of the specific connections explored. Functional modeling techniques are inadequate
since they embed the task of learning a mapping from people to predicted values of
artifacts in a general-purpose learning system such as neural networks and bayesian
classification [BHK98]. A notable exception is the work by Hofmann and Puzicha
[HP99] that concentrates on functional modeling using a restricted set of ‘connection
structures.’ Closely related to this aspect is

• The ability of the recommender system to explain the choices and selections
made for the user (in terms and constructs that are natural to the user/application
domain). It is nearly impossible to convince the user of the quality of a recommendation
obtained by black-box techniques such as neural networks.

• The mathematical models of social networks in which recommendations
are usually delivered. In a recommender system, the rating patterns of people
on artifacts induce an implicit social network and influence the connectivities in this
network. Little study has been done to understand how such rating patterns influence
recommendations and how they can be advantageously exploited.

This thesis proceeds to address these issues in the next chapters.

Chapter 3

A Model of Jumping Connections

To address the issues identified in the previous chapter, we develop a novel way to charac-
terize algorithms for recommender systems. Algorithms will be distinguished, not in terms
of (predicted) ratings of services/artifacts, but in terms of the combinations of people and
artifacts that they bring together. If two algorithms work in qualitatively different ways but,
for any given input graph, bring together exactly the same set of nodes, they are consid-
ered equivalent. This distinction emphasizes the central role of a recommender system as a
mechanism for bridging entities in a social network. We refer to this approach of studying
algorithms as ‘jumping connections’ (JC). Notice that the JC framework does not emphasize
how the recommendation is actually made and effected (e.g., is the rating squashed? linearly
transformed?). Almost all prior research in recommender systems has focused on the pre-
diction aspect, with implicit assumptions of connection-jumping in the design of the system.
By restricting its scope to exclude the actual aspect of making ratings and predictions, the
JC framework provides a systematic and rigorous way to study recommender systems.

Of course, the choice of ‘how to jump connections’ will be driven by the (often conflicting)
desire to reach almost every node in the graph (i.e., recommend every product for somebody,
recommend some product for everybody) and the strength of the jumps enjoyed when two
nodes are brought together. It should be emphasized that JC does not imply that algorithms
only exploit local structure of the social network. Any mechanism — local or global — could
be used to jump connections.

Notice also that when an algorithm ‘brings together’ person X and artifact Y , it could
imply either a positive recommendation or a negative one. Such differences are, again, not
captured by our framework unless the mechanism for making connections restricts its jumps,
for instance, to only those artifacts for which ratings satisfy some threshold. In other words,
thresholds for making recommendations could be abstracted into the mechanism for jumping.

18

19

Table 3.1: Summary of the symbols used in the JC model.

Symbol Meaning
R Recommender dataset
P Set of all people in R
NP Number of people in R
M Set of all movies in R
NM Number of movies in R
E Set of all edges in R
AR Adjacency matrix of R
J Jump function
Gs Social network graph
AGs Adjacency matrix of Gs

Gr Recommender graph
AGr Adjacency matrix of Gr

w Hammock width
κ Minimum rating constraint
lpp Shortest path length in Gs

lr Shortest path length in Gr

lpm Shortest path length from
people to movies in Gr

JC satisfies all four issues outlined in the previous chapter. It is based on the social-network
model, and thus, emphasizes connections rather than prediction. The nature of connections
jumped also aids in explaining the recommendations. The graph-theoretic nature of JC
allows the inclusion of mathematical models (e.g., random graphs) of social networks in
which recommender systems are designed.

3.1 The JC Construction

Before developing the model of jumping connections, we define some terminology and no-
tation that will be useful. Furthermore, we specifically develop our theory using a movie
recommender system as an application domain. This choice was primarily driven by the
availability of public-domain datasets for validation purposes. It does not restrict the range
of applicability of JC and is introduced here only for ease of presentation. Table. 3.1 sum-
marizes the various symbols and notations that will be used in this thesis.

Definition 3.1 A recommender dataset R is a bipartite graph G(P ∪M,E) where P is the
set of all people, M is the set of all movies, and E contains edges between elements of P
and elements of M (Fig. 3.1). Recall the definition of a mode as a ‘distinct set of entities

20

m4

p1

p2

p3

p4

p5

m3

m2

m1

Figure 3.1: A bipartite graph of people and movies.

on which structural variables are measured [WF94].’ Thus, R can be viewed as a two-mode
(people and movies) network. E could indicate ratings, viewings, preferences, experiences,
or constraints on movie recommendations. Assuming |P | = NP , |M | = NM , the bipartite
graph of people and movies represented by R is then given by the (NP +NM)× (NP +NM)
adjacency matrix:

AR =

[
0 R
RT 0

]

In this thesis, we assume that the entries in AR are either 0 or 1, though in the general case,
they could be arbitrary numeric values corresponding to quantitative and/or qualitative
information about ratings and preferences.

One can view M as a secondary mode in the bipartite graph or affiliation network and
attempt to understand the influence of M on the connectivity among members in P . We
thus arrive at our second definition.

Definition 3.2 A jump is a function J : R 	→ S, S ⊆ P×P that takes as input a recommender
dataset R and returns a set of (unordered) pairs of elements of P . Intuitively, this means
that the two nodes described in a given pair can be reached from one another, by a single
jump. Notice that this definition does not prescribe how the mapping should be performed,
or whether it should use all the information present in R. We also make the simplifying
assumption that jumps can be composed in the following sense: if node B can be reached
from A in one jump, and C can be reached from B in one jump, then C is reachable from
A in two jumps.

21

p1 p2

p3

p4p5

Figure 3.2: Social network graph for the recommender dataset shown in Fig. 3.1

Since the only edges in R go between two modes (people and movies), the simplest jump is
the skip, which connects two members in P if they have at least one movie in common. We
refer to graphs induced in this manner (by using various jump functions) as social network
graphs. Fig. 3.2 shows the social recommender graph induced from the example in Fig. 3.1
using a skip jump.

Definition 3.3 The social network graph of a recommender dataset R induced by a given
jump J is a unipartite undirected graph Gs(P,Es), where the edges are given by Es = J (R).
Notice that the induced graph could be disconnected based on the strictness of the jump
function. The adjacency matrix AGs corresponding to Gs is of size NP × NP with entries
from {0, 1}. In addition, since Gs is undirected:

AGs
T = AGs

The recommender system viewpoint is to qualify the paths (and path lengths) needed to
make a recommendation of a particular movie for a particular person. To model this, we
view the unipartite social network of people as a directed graph and reattach movies (seen
by each person) such that every movie is a sink (reinforcing its role as a secondary mode).
Shortest path algorithms through this graph can then be used to provide the basis for
recommendations. We refer to a graph induced in this fashion as a recommender graph
(Fig. 3.3). Since the outdegree of every movie node is fixed at zero, paths through the graph
run from people to movies (through more people, if necessary).

Definition 3.4 The recommender graph of a recommender dataset R induced by a given
jump function J is a directed graph Gr(P ∪M,Esd ∪ Emd), where Esd is an ordered set of
pairs, listing every pair from Es (of the social network graph induced by J on R) in both
directions, and Emd is an ordered set of pairs, listing every pair from E in the direction
pointing to the movie mode. The (NP +NM)× (NP +NM) adjacency matrix for Gr provided
by this construction is thus:

AGr =

[
AGs R
0 0

]

Figure 3.4 illustrates the process of generating the social network and recommender graphs
for our example recommender dataset using the skip jump function.

22

p4

m1

m2

m3

m4

p2

p3

p1

p5

Figure 3.3: Recommender graph obtained by rendering the social network graph with bidi-
rectional edges and reattaching the movies.

p2

p3

p4p5

p1

J

m1

m2

m4

p1

p2

p3

p4

p5

m3

(c)

(b)

(a)

m1

m2

m3

m4

p2

p3

p4

p1

p5

Figure 3.4: Illustration of the skip jump.

23

p4

p2p1

p3

p5

m1

m2

m4

m3

Figure 3.5: The JC construction produces a half bow-tie graph Gr.

Assuming that the jump construction does not cause Gr to be disconnected, the portion of Gr

containing only people is its strongest component: every person is connected to every other
person. The movies constitute vertices which can be reached from the strongest component,
but from which it is not possible to reach the strongest component (or any other node, for
that matter). Thus, Gr can be viewed as a ‘half bow-tie,’ (see Fig. 3.5) as contrasted to
the full bow-tie nature of the web [BKM+99]. The circular portion in the figure depicts the
strongly connected directed component derived from Gs. Links out of this portion of the
graph (people) go to sinks (movies).

3.2 The Many Ways of Jumping

For a given bipartite graph, there are many ways of inducing the social network graph and
the recommender graph. The simplest and most common has been illustrated in Fig. 3.4.
Note that this idea now provides a systematic way to characterize recommender systems
algorithms in the literature. In this section, we do just that — we outline the nature of
connections used by different algorithms to induce the two secondary graphs. In turn, this
will help us understand the kinds of nodes (and graph subparts) that will be brought together.

3.2.1 Two-Step Linear Paths

Variations of the skip can be observed in the LikeMinds [Lik], GroupLens [KMM+97], and
Firefly [SM95] algorithms. All of these algorithms assume there is an edge between two
people (in the social network graph) based on the extent of agreement between the ratings
of the people on the common movies. GroupLens and Firefly use correlation coefficients

24

Figure 3.6: Illustration of a sequence of hammock jumps, with a hammock width w = 4.

and LikeMinds uses vector-norms, reminiscent of early information retrieval research. In the
recommender graph, all three algorithms require a path (from a person to a movie) to not in-
volve more than one intermediate person, hence the phrase two-step. In addition, two people
could be brought together if they have even one artifact in common, thus forming a linear
path between the two people. Notice that there are other differences between the algorithms
based on how exactly a rating is computed for a given movie, but the JC framework does
not distinguish between these aspects.

3.2.2 Hammocks

The hammock jump [Kel00] brings two people together in Gs if they have at least w (called
hammock width) artifacts in common in R. Formally, a pair (p1, p2) is in J (R) iff the
(p1, p2)th entry of AR×AR ≥ w. Thus a hammock jump with w = 1 corresponds to the skip
jump. The idea of ‘horting’ [AWWY99] can be viewed as employing the hammock jump.
First, it posits that two people are connected in the social network graph, only if they have
seen w movies together (see Fig. 3.6) and have similar ratings (achieved by characterizing
a linear transformation) for these w movies. Thus in implementations of this jump, only
those sequences of hammocks are allowed, whose ratings satisfy an agreement criterion. In
addition, this criterion is defined in a undirectional manner, so even the social network graph
is directed (the jump function, in this case, would produce ordered pairs of nodes from P).
Paths in the social network graph would, thus, correspond to ‘sequences of hammocks’ in
the original bipartite graph. In the recommender graph, no constraints are imposed on the
number of intermediate nodes needed to reach a movie from a particular person. This is one
of the ways the technique addresses sparsity of connections. In one implementation of this
algorithm in the IBM Recommendation Engine, a limit on the maximum length is imposed,
assuming that a majority of the nodes are reachable within this constraint.

25

3.2.3 Attribute-Value Based Techniques

Attribute-value techniques such as neural networks and bayesian classification have been used
in recommender systems [BHK98]. The underlying theme is that recommendation is cast
as a learning problem. These approaches conduct no direct modeling relevant to the social
network graph. The recommender graphs induced consist only of a functional mapping from
people to movies. It is thus difficult to characterize the kinds of connections these algorithms
jump, since they are heavily dependent on the original topology of the network. For example,
if people in certain age groups rate certain movies in a similar manner, a neural network
can be expected to capture this pattern (given sufficient data), and hence will connect two
people if they fall in the same age group. In other words, inducing connections for the social
network graph is implicit (and captured by the similarity of activations for certain inputs),
but making recommendations (using a recommender graph) is explicit in the neural network
topology.

3.2.4 Sites Based on Social Network Navigation

Although not directly relevant to recommender systems, we wish to point out an analogy of
JC to a particular design involving web pages. A surprising number of web sites base their
design on a social metaphor of navigating links through a multi-mode network to identify
information. The Internet Movie Database at http://www.imdb.com while providing basic
search facilities, models the network connecting actors, actress, movies, directors, songs etc.
Users are able to systematically jump connections to find answers to queries such as ‘Which
was the movie that first introduced the lead actor in Titanic?’ Another well known example is
the DBLP bibliography web site (http://www.informatik.uni-trier.de/∼ley/db/) that
models the network of authors, papers, major computer science journals, and conferences.
These can be subsumed in the JC framework by including types of links in the bipartite
graph and restricting jumps to concentrate on predefined combinations involving types.

3.2.5 Exploiting Global Structure

All of the above algorithms jump connections based on local properties, such as commonality
of ratings and agreement of ratings among neighboring nodes. No effort is made to jump
connections by taking into account the global nature of connections. Techniques such as
Latent Semantic Indexing [Fol90] achieve precisely this effect, by rendering the bipartite
graph as a matrix, performing a principal component analysis, and dropping lower order
terms. This practice is typically justified as either (i) removing noise, (ii) reducing the
effective dimension (rank) to make computations tractable, or (iii) addressing information
retrieval problems such as synonymy. Nevertheless, two people who have not seen any movie
in common could be brought together by being clustered into the same principal component.

26

The exact nature of jumps is difficult to characterize since this practice is sensitive to the
actual distribution of principal components and the number of terms dropped. A very recent
study [JL00] promises to shed some light in this area, by arriving at a general formulation
of matrix computations in information retrieval.

3.2.6 Probabilistic Dyadic Models

Finally, we look at the model proposed by Hofmann, et al. [HP99] which is interesting for
two reasons. First, there is no explicit modeling of a social network graph, akin to other
attribute-value techniques discussed above. To make jumps, the authors use an intermediate
mode (besides people and movies) which is intended to capture a latent variable that has
an effect on ratings and recommendations. A recommendation of a movie for a person
is made if an expectation-maximization (EM) applied to this three-mode graph implies a
strong dependence between the two nodes. The second point is that it allows the designer
to explicitly incorporate prior information about the latent variables in the EM algorithm.
This means that different portions of the graph can support different forms of jumps. In this
sense, this is a unique model.

3.2.7 Generality of the JC Model

It is worth investigating if JC covers all possible designs for recommender systems. At
first glance, content-based designs look like they cannot be subsumed under this model;
but realize that one can model the features (of artifacts) as a new mode and connect the
presence/absence of features to the existence of edges in the starting graph (recommender
dataset R). Thus, information filtering can also be abstracted in this framework. This brings
us to the issue of how one can design new algorithms with this abstraction. The common
aspect among all the above algorithms is best expressed in terms of an anti-condition: ‘Al-
gorithms in JC never bring together nodes from disconnected components of R.’ We state
this without proof, but it is easy to see why it is true in algorithms such as GroupLens and
Horting. Proving this property for algorithms such as LSI is beyond the scope of this thesis,
but could help in the acceptance of this model.

3.3 Approach

The most immediate implication of jumping for recommender systems is the reduction in the
length of the path used to route a recommendation. In the 1980s, this problem of reducing the
number of intermediaries was referred to as information routing1. In this thesis, we restrict

1Information filtering branched off this trend [BC92], with its emphasis on removing information.

27

our attention to the (undirected) hammock jump. Recall that the hammock jump models
the ‘strength’ of recommendations, i.e., if more people agree with you, the recommendation
you get through them should be stronger. Other motivations for selecting the hammock
derive from the experimental context in which recommender systems are usually designed.
Typically, people are convinced to rate at least κ objects, in order to avail of a recommen-
dation service. In many commercial sites and systems, the value of κ is hardwired and they
enforce this constraint strictly. The reason is economic viability — people are notorious for
free-riding on recommendations [AZ97], without providing any input/feedback to the system.
Free-riding is a serious issue for the feasibility of a recommender system. Several options
have been studied to address it; providing incentives, hiring full-time raters, subscription
sites, and membership revocation are popular commercial solutions. The hammock is the
most natural jump to investigate the effect of κ on recommender system algorithms, since
connectivity is based on commonality of ratings. We thus arrive at the following working
question:

(*) Given a recommender dataset R, what is the relationship between the ham-
mock width w and the average length of the path used to route recommendations?

Intuitively, this problem helps us connect the metrics of ‘how much data to collect’ (κ, which
in turn affects the possible hammock width w) and ‘how small a length is desired’ (for routing
recommendations). We address this problem by adopting random graph models of the jump-
induced graphs Gs and Gr and using generating functions to calculate properties such as
the average path length. This provides a systematic and rigorous basis for characterizing
recommender system algorithms.

Our formal mathematical framework is adapted from the work of Newman, Strogatz, and
Watts (NSW) [NSW00] which provides a random graph model for datasets with pre-specified
degree distributions. This will allow us to incorporate prior knowledge about rating patterns
into the analysis. The basic idea in random graph theory is to describe properties of a
given family of graphs in terms of characteristics of the probability distribution from which
the graphs are drawn. Besides the NSW model, there are several models popular in the
literature, most notably the Erdös-Rényi [ER59] and the Aiello-Chung-Lu [ACL00] models.
However, the NSW model is the only model that characterizes the family of graphs in
terms of the degree distributions of the vertices of the graph. The Erdös-Rényi model’s
assumptions dictate a Poisson distribution of degrees and the Aiello-Chung-Lu model is
motivated by a power-law distribution. As we will show later in the thesis, graphs induced
by the hammock jump depict a variety of degree distributions, thus rendering the NSWmodel
most appropriate for our purposes. From the original bipartite graph, R = G(P ∪M,E),
we develop two models, one for the social network graph Gs and one for the recommender
graph Gr.

28

3.3.1 Modeling the Social Network Graph

Recall that the social network graph Gs(P,Es) is undirected and Es is induced by a jump
function J on R. Our analysis below is drawn from [NSW00] and we will use the same
notation to be consistent. We can write a generating function G0(x) for the probability
distribution of the vertex degrees in Gs:

G0(x) =
∞∑
k=0

pkx
k (3.1)

where pk is the probability that a randomly chosen vertex in Gs has degree k, so that:

G0(1) =
∞∑
k=0

pk = 1. (3.2)

Notice that for a randomly chosen vertex in this graph, G0(x) also gives us the distribution
of the immediate neighbors of that vertex. Thus, the average number of first neighbors of a
given node is the average degree z:

z =
∑
k

kpk = G
′
0(1) (3.3)

This is one of the main advantages of using generating functions. Statistical properties of
sequences (such as vertex degrees) can be expressed in terms of derivatives of the generating
function. Let us compute the distribution of the second neighbors of a randomly chosen
vertex. We achieve this by first characterizing the random process involved and expressing
it in mathematical notation. We start at a randomly chosen vertex, follow the edges at this
vertex to reach its k nearest neighbors, and from each of these vertices, choose edges to
arrive at the second nearest neighbor (taking care to ensure that we don’t use the edge that
we originally came along). A given vertex has degree k with probability pk. If we arrived at
this vertex using one of the k edges, we have k − 1 choices of outgoing edges. We thus, get
the generating function of outgoing edges leaving a vertex reached by following a randomly
chosen edge:

G1(x) =

∑
k kpkx

k−1∑
k kpk

(3.4)

The numerator can be interpreted as follows; there are kpk ways of arriving at a vertex which
has k − 1 outgoing edges. The denominator is designed to normalize the distribution. This
expression can be simplified as:

G1(x) =
G

′
0(x)

G
′
0(1)

=
G

′
0(x)

z
(3.5)

We can then compose the G0 function over G1 to obtain the distribution of second neighbors
of a randomly chosen vertex:

G0(G1(x)) =
∑
k

pk[G1(x)]
k (3.6)

29

Differentiating this new generating function and evaluating it at x = 1 produces the average
number of second neighbors:

z2 =
∑
k

kpk
1

z

∑
k

k(k − 1)pk (3.7)

= G
′
0(1)G

′
1(1)

Similarly, the distribution of third neighbors is G0(G1(G1(x))). The average number of third
neighbors will then be given by:

z3 = G
′
0(1)G

′
1(1)G

′
1(1) (3.8)

and so on. In the general case, the average number of nodes at a distance m is given by:

zm =
(
z2
z1

)m−1

z1 (3.9)

Newman, Strogatz, and Watts [NSW00] illustrate how we can use this expression to estimate
the average length lpp of shortest paths (in the graph Gs). In one step, we can reach z1 = z
vertices. In two steps, we can reach z1 + z2 vertices. In lpp steps, we could reach all the
vertices NP (number of people) of the graph Gs, if:

1 +
lpp∑
m=1

zm = NP (3.10)

where the constant 1 counts the vertex under consideration. Unfolding this expression, we
get: (

z2
z1

)lpp

=
(NP − 1)(z2 − z1) + z21

z21
(3.11)

or

lpp =
log[(NP − 1)(z2 − z1) + z21]− log[z21]

log[z2/z1]
(3.12)

This formula will be our primary means of characterizing the distances between pairs of
people in Gs, induced by a jump function J . Notice that since our empirical evaluation will
proceed with actual datasets (from which measurements of pk could be made), calculation
of z1 and z2 is simplified considerably, by casting pk as the fraction of vertices in the graph
having degree k.

3.3.2 Modeling the Recommender Graph

Recall that the recommender graph Gr(P ∪M,Esd ∪Emd) is directed, and hence the gener-
ating function for vertex degrees should capture both indegrees and outdegrees:

G(x, y) =
j=∞,k=∞∑
j=0,k=0

pjkx
jyk (3.13)

30

where pjk is the probability that a randomly chosen vertex has indegree j and outdegree k.
From the JC construction, we know that movie vertices have outdegree 0 (the converse is
not true, vertices with outdegree 0 could be people nodes ‘stranded’ as a result of a severe
jump constraint). Notice also that by using the joint distribution pij , independence of the
indegree and outdegree distributions is not implied. We will show in the next chapter that
this feature is very useful. In addition, the average number of edges entering (or leaving) a
vertex is zero. Thus: ∑

jk

(j − k)pjk =
∑
jk

(k − j)pjk = 0 (3.14)

If we forget the directed nature of the graph, the average degree z is given by:

z =
∂G

∂x

∣∣∣∣∣
x=1,y=1

(3.15)

=
∑

jpjk (3.16)

=
∑

kpjk (3.17)

=
∂G

∂y

∣∣∣∣∣
x=1,y=1

(3.18)

where Eq. 3.17 is obtained by using Eq. 3.14. In addition to counterparts of the generating
functions G0(x) and G1(x) for the outdegrees in Gr, we can obtain generating functions
F0(x) and F1(x) for the indegrees, as well. Newman, Strogatz, and Watts [NSW00] state
that these are given by:

F0(x) = G(x, 1) (3.19)

G0(y) = G(1, y) (3.20)

F1(x) =
1

z

∂G

∂y

∣∣∣∣∣
y=1

(3.21)

G1(y) =
1

z

∂G

∂x

∣∣∣∣∣
x=1

(3.22)

We thus obtain new expressions for z1 and z2:

z1 = G
′
0(1)

=
∑
jk

kpjk (3.23)

z2 = G
′
0(1)G

′
1(1)

=
∑
jk

jkpjk (3.24)

The average path length lr can be calculated as before:

lr =
log[(NP +NM − 1)(z2 − z1) + z21]− log[z21]

log[z2/z1]
(3.25)

31

where NP + NM denotes the size of the recommender graph Gr (again, assuming that the
graph is one giant component), with NM denoting the number of movies. Notice that lr
includes paths from people to movies, as well as paths from people to people. The average
length of only movies from people lpm can be expressed as:

lpm =
(lr(NP (NP − 1) +NPNM)− lppNP (NP − 1))

NPNM
(3.26)

3.4 Caveats with the NSW Equations

There are various problems with using the above formulas in a realistic setting [Hea01].
First, unlike most results in random graph theory, the formulas do not come up with any
guarantees and/or confidence levels. Second, all the equations above are obtained over the
ensemble of random graphs that have the given degree distribution, and hence assume that
all such graphs are equally likely. The specificity of the JC construction implies that the Gs

and Gr graphs are poor candidates to serve as a ‘typical’ random instance of a graph.

In addition, the equations utilizing NP and NM assume that all nodes are reachable from
any starting vertex (i.e., the graph is one giant component). This will not be satisfied for
very strict jumping constraints. In such cases, Newman, Strogatz, and Watts suggest the
substitution of these values with measurements taken from the largest component of the
graph. Expressing the size of the components of the graph using generating functions is
also suggested [NSW00]. However, the complexity of jumps such as the hammock can make
estimation of the cluster sizes extremely difficult, if not impossible (in the NSW model). We
leave this issue to future research.

Finally, the NSW model is fundamentally more complicated than traditional models of ran-
dom graphs. It has a potentially infinite set of parameters (pk), doesn’t address the possibility
of multiple edges, loops and, by not fixing the size of the graph, assumes that the same de-
gree distribution sequence applies for all graphs, of all sizes. These observations hint that
we cannot hope for more than a qualitative indication of the dependence of the average path
length on the jump constraints. In the next chapter, we describe how well these formulas
perform on two real-world datasets.

Chapter 4

Experimental Results

We devote this chapter to an investigation of two actual datasets from the movies domain;
namely the EachMovie dataset, collected by the Digital Equipment Corporation (DEC)
Systems Research Center, and the MovieLens [RK] dataset developed at the Univ. of Min-
nesota. Both these datasets were collected by asking people to log on to a website and rate
some movies. The time spent rating movies was paid off by procuring predictions of ratings
for other movies not yet seen, which the recommendation engines calculated based on the
submitted ratings and some other statistical information.

The datasets contain some basic demographic information about the people (age, gender,
etc) as well the movies (title, genre, release date, etc). Associated with each person and
movie are unique ids. The rating information (on a predefined numeric scale) is provided as
a set of 3−tuples: the person id, the movie id, and the rating given for that movie by that
person. Some statistics for both the datasets are provided in Table 4.1. Notice that only a
small number of actual ratings are available (as a fraction of all possible combinations), and
yet the bipartite graphs of people versus movies are connected, in both cases.

4.1 Preliminary Investigation

Upon closer inspection of EachMovie and MovieLens, it can be realized that both these
datasets exhibit what we can refer to as a hits-buffs structure. Specifically, there are some

Table 4.1: Some statistics for the EachMovie and MovieLens datasets.

Dataset Number of people Number of movies Sparsity Connected?
MovieLens 943 1,682 93.70% Yes
EachMovie 61,265 1,623 97.63% Yes

32

33

MOVIES

PE
O

PL
E

Figure 4.1: Hits-buffs structure of the (reordered) MovieLens dataset.

people (the buffs) who see (and rate) almost all movies and there are some movies (the hits)
that are seen by nearly all people. Assume that people are ordered according to a buff index
b: A person with buff index 1 has seen the most number of movies, and so on. For example,
in the EachMovie dataset, the person with buff index 1 has seen 1, 455 movies from the total
of 1, 623. These 1, 455 movies have, in turn, been seen by 61, 249 other people. Thus, within
two steps, a total of 62, 705 nodes in the graph can be walked; with other choices of the
intermediate ‘buff’ node, the entire graph can be shown to be connected in, at the most, two
steps. The MovieLens dataset satisfies a similar property.

Furthermore, the relationship between the buff index b and the number of movies seen by
the buff P (b) follows a power-law distribution:

P (b) ∝ b−β

A similar trend can be observed for the hits1. This feature of both datasets appears to
have gone unnoticed by prior recommender systems research (including the designers and
collectors of both datasets). We show how such structures can be exploited advantageously

to achieve compelling recommendations. To better demonstrate the structure, we reorder
the people and movie ids, so that the relative positioning of the ids denotes the extent of a
person being a buff, or a movie being a hit. For example, person id 1 refers to the person
with buff index 1 and movie id 1 refers to the movie with hit index 1. Figure 4.1 illustrates
the hits-buffs structure of the MovieLens dataset.

1Graphs with such power-law distributions can thus also form small-worlds [ASBS00], as evidenced by
the short length between any two people in both MovieLens and EachMovie.

34

4.2 Outline of Setup

We describe our experimental setup below. The goal of our experiments was to investigate
the effect of the hammock width w on the average characteristic path lengths of the induced
Gs and Gr graphs for the above datasets. The pseudocode for these experiments is provided
in Appendix A. Both the datasets were sanitized by first removing the rating information;
in other words, we explored a purely connection-oriented jump. For various values of the
hammock width w, we formed the social network and recommender graphs and calculated
their degree distributions (for the largest component, when the graphs were disconnected).
Using parallel implementations of Djikstra’s and Floyd’s algorithms, we computed the av-
erage path length for (the largest component of) both the secondary graphs and compared
the results with the predictions of the equations from Chapter 3.

4.2.1 MovieLens

Fig. 4.2 describes the number of components in Gr as a result of imposing increasingly strict
hammock jump constraints. Up to about w = 17 the graph remains in one piece and rapidly
disintegrates after this threshold point. The high value of this threshold for transition is
not surprising, since the designers of MovieLens insisted that every participant rate at least
κ = 20 movies! As observed from our experiment results, after the threshold point and up
to w = 28, there is still only one giant component with the separated people nodes stranded
as islands (Fig. 4.3). Specifically, the degree distributions of the MovieLens social network
graphs for w > 17 show us that the disconnected people nodes which are not part of the
giant component do not form any other connected components and are left by themselves.
We say that a jump shatters a set of nodes if the vertices not part of the giant component
do not have any edges. This aspect of the formation of a giant component is, of course, well
known from random graph theory [Bol85]. Since the JC construction views the movies as
a secondary mode, we can ensure that only the strictest hammock jumps shatters the NM

movie nodes. Fig. 4.4 demonstrates that the movie nodes are not stranded as a result of
hammock constraints up to w = 29.

We then compared the lengths lpp (Fig. 4.5) and lr (Fig. 4.6) using both actual computations
and the formula predictions. The increase in length up to the threshold point is understand-
able, since with links being removed from the giant component, paths of greater length have
to be traversed to reach other nodes. After the threshold, the relative stability of the length
indicates that the only edges being lost are those that are associated with the stranded peo-
ple nodes. Notice also that the values of the lengths lie between 1 and 2, emphasizing the
role of the hits-buffs structure. While the formulas capture the qualitative behavior of the
effect of the hammock width, it is obvious from Fig. 4.5 that they postulate significantly less
clustering than is actually observed. A possible explanation is given later in the chapter.

35

0 5 10 15 20 25 30
0

50

100

150

200

250

Hammock width w

N
um

be
r

of
 c

om
po

ne
nt

s

Figure 4.2: Effect of the hammock width on the number of components in the Gr graph
induced from the MovieLens dataset.

0 5 10 15 20 25 30
700

750

800

850

900

950

Hammock width w

N
um

be
r

of
 p

eo
pl

e
in

 la
rg

es
t c

om
po

ne
nt

Figure 4.3: Effect of the hammock width on the number of people in the largest components
in the Gr graph (MovieLens).

36

0 5 10 15 20 25 30
1500

1520

1540

1560

1580

1600

1620

1640

1660

1680

1700

Hammock width w

N
um

be
r

of
 m

ov
ie

s
in

 la
rg

es
t c

om
po

ne
nt

Figure 4.4: Effect of the hammock width on the number of movies in the largest components
in the Gr graph (MovieLens).

0 5 10 15 20 25 30
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Hammock width w

A
ve

ra
ge

 l pp
 le

ng
th

Length from actual experiments
Length from formulas

Figure 4.5: Comparison of the lpp measure (MovieLens) from actual computations and from
the formulas.

37

0 5 10 15 20 25 30
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Hammock width w

A
ve

ra
ge

 l r le
ng

th Length from actual experiments
Length from formulas

Figure 4.6: Comparison of the lr measure (MovieLens) from actual computations and from
the formulas.

Finally, we present comparisons of the lr measurements and formula estimations (Fig. 4.6). In
this case, there is substantially better agreement between the two values, as well as tracking
of the qualitative change. Once again, the formulas assume significantly less clustering than
real data. In other words, the higher values of lengths from the actual measurements indicate
that there is some source of clustering, not captured by the degree distribution alone (which
is used as input to the formulas).

4.2.2 EachMovie

The evaluation of the EachMovie data was more tricky owing to inconsistencies in data
collection. For example, the dataset was collected in two phases, with entirely different
rating instructions and scales in the two situations, and contained duplicate ratings. We
concentrated on the portion of the data collected in 1997 and created a synthetic dataset that
has the same characteristics as this reduced dataset. Specifically, we created a 500 person,
75 movie dataset such that the person with buff id b has seen the first �75b−ε� movies (recall
that the movies are also ordered according to their hit id). An ε = 0.7 produces a dataset
with a minimum rating of 1 movie (95.5% sparse), while ε = 0.27 produces a minimum
rating of 15 movies (with sparsity 76.63%). The choice of ε thus provides a systematic
way to analyze the effect of the minimum rating constraint κ (see Fig. 4.7). In addition, for
each (person,movie) edge of these synthetic graphs, we generate a uniform (discrete) random
variate in [0, 10] and rewire the movie ‘endpoint’ of the edge if this variate is < 2. This device

38

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
10

0

10
1

10
2

Epsilon

K
ap

pa

Figure 4.7: Calibrating the value of ε in the synthetic model of EachMovie produces datasets
with required specifications on minimum rating κ.

models deviations from a strict hits-buffs distribution. We generated 15 such graphs and
ensured that they were connected (sometimes a few bits were manually turned on to ensure
connectedness). These served as the starting points for our analysis. For each of these 15
graphs, we varied the hammock width w from 1 to 25 and repeated the length calculations
(using both formulas and actual measurements) for the social network and recommender
graphs.

Like the MovieLens experiment, the formulas for EachMovie predict shorter lpp lengths (and
consequently, lesser clustering) than observed from actual experiments. Fig. 4.8 depicts the
L∞ metric for the discrepancies between the measured and actual length values for 25 values
of the hammock width w, for each of the 15 graphs.

Notice the relatively linear growth of the discrepancy as κ increases. In the considered κ
range, the hammock constraints shatter the graph into many small components, so the for-
mulas are applied over ever-decreasing values of n, rendering them ineffective. For example,
for κ = 15, a hammock width w = 25 shatters the graph into 53 components. Since the
hammock width w was varied in [1, 25] over a range of [1, 15] for κ, we have reason to believe
the this graph will taper off when extrapolated to higher values of κ. While this experiment
does not provide any new insight, it hints at a fairly bounded growth in the L∞ discrepancies
for lpp lengths.

The comparisons for the lr lengths tell a different story (see Fig. 4.9). At low values of κ, the
lr length calculated from formulas is highly erroneous for even medium values of hammock

39

0 5 10 15
0.25

0.3

0.35

0.4

0.45

0.5

Kappa

L_
in

f N
or

m
 o

f D
iff

er
en

ce
s

in
 P

P
_L

en
gt

hs

Figure 4.8: Comparison of the lpp measure (EachMovie) from actual computations and from
the formulas for varying values of κ.

width w (Fig. 4.9, left) whereas we see the standard ‘less clustering credit’ picture for high
values (≥ 12) of κ (Fig. 4.9, right). In particular, for κ = 1, w = 25, the formulas predict an
average lr length of 4.24! This is counter-intuitive given that the largest component for this
shattering itself consists of only 4 people nodes (and 71 movie nodes).

This problem arises because the NSWmodel does not prohibit a multiplicity of edges between
a pair of nodes. Let us look at this situation more closely. For κ = 1, w = 25, the largest
component has the degree distribution given in Table. 4.2. Notice that the nodes with
outdegree 0 are obviously the movie nodes and the nodes with non-zero outdegree are the
people nodes. Thus, two of the people are connected to two people (each), and two of the
people are connected to three people (each). A graph that satisfies this property is shown in
the left of Fig. 4.10. The origin of the value of 4.24 can be traced back, rather to the NSW
model’s postulation of the unlikely ‘culprit’ graph shown in the right of Fig. 4.10. Notice that
this graph satisfies the exact same distribution but by allowing multiple edges, many movie
nodes would be counted more than once, and with greater (ever increasing) path lengths.
One cycle between two people can thus effect two extra hops in the length calculations,
rendering the estimates inaccurate. As observed from our results, as κ increases, the largest
component increases in size. For example, when κ = 15 and w = 25, the largest component
has 53 people whereas for kappa = 1 and w = 25, there are only 4 people in the largest
component. With increase in largest component size for higher values of κ, the proportion
of such pathological graphs decreases; hence the observed (qualitative) agreement between
actual and predicted values.

40

0 5 10 15 20 25
1

1.5

2

2.5

3

3.5

4

4.5

Hammock width w

A
ve

ra
ge

 l r le
ng

th
Length from actual experiments
Length from formulas

0 5 10 15 20 25
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Hammock width w

A
ve

ra
ge

 l r le
ng

th

Length from actual experiments
Length from formulas

Figure 4.9: Comparison of the lr measure (EachMovie) from actual computations and from
the formulas for minimum rating constraint κ = 1 (left) and minimum rating constraint
κ = 15 (right).

Table 4.2: Joint degree distribution for the largest component of the recommender graph
(EachMovie) when κ = 1, w = 25. Only the non-zero entries are shown.

kappa = 1 w Size of largest component
1 0 23
2 0 16
3 0 13
4 0 19
2 31 1
2 65 1
3 37 1
3 47 1

Figure 4.10: Two graphs that satisfy the degree distribution given in Table. 4.2. For sim-
plicity, only the people nodes are shown.

41

4.3 Discussion of Results

We can make several preliminary observations from the results so far:

1. As Newman, Strogatz, and Watts point out [NSW00], the random graph model defined
by degree distributions makes strong qualitative predictions of actual lengths, using
only local information about the number of first and second nearest neighbors (z1 and
z2 from Chapter 3). We have shown that this holds true even for graphs induced by
hammock jumps.

2. For sufficiently large values of κ, the relationship between hammock width w and
average lpp length follows two distinct phases: (i) In the first regime, there is a steady
increase of lpp up to a threshold < κ, where only edges are lost. (ii) In the second phase,
nodes are shattered but without much effect on the average lpp values. This two-phase
phenomenon can thus serve as a crucial calibration mechanism for connecting the
number of people to be brought together by a recommender system and the average
lpp length. For example, one can define a parametric study such as discussed here for
a new domain and proceed to first demarcate the phases. Choices of hammock width
w can then be made, depending on the feasibility of realizing an appropriate κ (in
real-life) and any desired constraints on lpp.

3. The average lr lengths are within the range [1, 2] in both predicted results and actual
measurements, highlighting that the hits-buffs structure is captured in the NSWmodel.
Caution has to be exercised whenever the graph size n gets small, as Fig. 4.10 shows.
In our case, this happens when the shattering constraint of hammock width w falls
above the limits posed by the minimum rating constraint κ. Of course, this behavior
will also be observed for other forms of ‘strict jumps.’

4. Both lpp and lr lengths postulate consistently less clustering than observed in the real
data. We attempt to address this below. The typical random graph model has a
Poisson distribution of edges [Bol85], whereas, as seen earlier, real datasets depict a
power-law distribution [FFF99, CD00]. The power-law feature is sometimes described
as ‘scale-free’ or ‘scale-invariant’ since a single parameter (the exponent of the law)
captures the size of the system at all stages in its cycle (the x-axis of the law). A
log-log plot of values would thus produce a straight line, an effect not achievable by
traditional random graph models. Barabási and Albert [BA99] provide two sufficient
conditions for this property: growth and preferential attachment. Growth refers to the
ability of the system to dynamically add nodes; thus random graph models that fix
the number of nodes are unable to ‘expand.’ Preferential attachment refers to the
phenomenon that nodes that have high degrees have a greater propensity of being
linked to, by new nodes. In our case, a movie that is adjudged well by most people is
likely to become a hit when additional people are introduced. Barabási refers to this
as a ‘rich get richer’ effect.

42

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

Degree d

P
[D

 >
=

 d
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

Degree d

P
[D

 >
=

 d
]

Figure 4.11: Cumulative frequency distribution (of degrees) as a function of the degree for
(left) MovieLens and (right) EachMovie datasets, for hammock widths from 1 to 30.

0 100 200 300 400 500 600 700 800 900 1000
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Degree d

lo
g(

P
[D

 >
=

d]
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Degree d

lo
g(

P
[D

 >
=

 d
]

Figure 4.12: Logarithm of the cumulative frequency distribution (of degrees) as a function of
the degree for (left) MovieLens and (right) EachMovie datasets, for hammock widths from
1 to 30.

43

To characterize the possible causes in our domain, we consider the distribution of
degrees in the social network graphs Gs of both MovieLens and (the actual) EachMovie
datasets (see Fig. 4.11). In the figure, top to bottom indicates increasing hammock
widths. For the entire range of the hammock width w, both datasets do not follow a
strict power law. For low values of w, there is a small and steadily increasing power-
law regime, followed by an exponential cutoff. For higher values of w, the graph
‘falls’ progressively earlier and the CDF resembles a gaussian or exponential decay,
with no power-law behavior. This is evident if the logarithm of the CDF is plotted,
as in Fig. 4.12 where top to bottom indicates increasing hammock widths. Notice
the significant cusp in the left side of both graphs, depicting the qualitative change
in behavior. These two extremes of deviations from power-law behavior (at low and
high values of w) are referred to as (resp.) broad-scale and single-scale in [ASBS00] to
distinguish them from the scale-free behavior of power-laws.

The authors of [ASBS00] also show that aging and capacity can cause such deviations
from a pure power-law. Aging refers to the fact that after a certain point in time,
nodes stop accumulating edges. Capacity refers to resource-bounded environments
where cost and economics prevent the hits from becoming arbitrarily greater hits. They
demonstrate these observations for environments such as airports (capacity limitations
on runways), and natural networks (aging caused by people dying).

In our domain, recall that the Gs graphs model the connectivities among people, and
are hence indirect observations from an underlying bipartite graph. One possible ex-
planation for the deviations of the connectivities in Gs from from power-law behavior
is suggested in a study done by Robalino and Gibney [RG99b]. The paper models the
impact of movie demand on the social network underlying a ‘word of mouth’ recom-
mendation. The two new factors introduced here are expectation and homogeneity (of
the social network). The authors suggest that “some movies might end up having low
demand, depending on the initial agents expectations and their propagation through
the social network.” Furthermore, they assume that negative information (ratings)
obtained early in a movie’s lifetime can have substantial effect in a “homogeneous”
network (one where individuals trust each others opinions strongly than in other net-
works). At this point, we are unable to accept or reject this observation due to lack of
information about the social dynamics in which the data was collected in MovieLens
and EachMovie.

However, such an effect might not still model the shift in the emphasis from a broad-
scale behavior to a single-scale behavior as w increases. Fortunately, this is easy to
explain algorithmically from the JC construction. For higher values of w, the degree
distributions resemble more and more a typical random graph (for smaller values of
n), which has a connectivity characterized by a fast decaying tail (such as a Pois-
son). Insisting on greater values of w leads to higher and higher decays, such that for
sufficiently large w (relative to κ), no power-law regime is visible [ASBS00].

Chapter 5

Concluding Remarks

This research makes two key contributions:

1. We have shown how algorithms for recommender systems can be characterized as
jumping connections in a bipartite graph (or affiliation network). This view enables
a new methodology to conduct experimental analysis and comparison of algorithms.
Using this approach, algorithms can be distinguished by the pairs of nodes that are
brought together.

2. We have demonstrated the application of the JC framework to a particular form of jump
— the hammock. The two-phase phenomenon observed for the induced social network
graph allows us to connect the minimum rating constraint κ (the approximate point at
which the phase transition appears), the hammock width w (a factor parameterizing
the jump), the size of the largest component (the number of people connected by the
jump), and the average lpp length (minimization of which is desirable).

The eventual success of the proposed methodologies relies on the expressiveness of the rep-
resentations supplied to the recommender system builder and his/her ability to reason effec-
tively with such representations. We have shown how our graph-theoretic model can help
view recommendation as a process of making connections in a graph. Ideally, a recommender
system builder will fix one or more of the variables among κ, w, average lpp length, and the
types and numbers of nodes brought together by the jump. An analysis for a particular
degree distribution will help make estimates for other parameters.

In future, this work can be extended in several directions:

1. Our emphasis on experimental algorithmics has focused on a single jump with multiple
parameterizations (of hammock width w). The JC framework can be explored to obtain
strong theoretical results about the efficacies of qualitatively different jumps, such as
outlined in Section 3.2. Many of the jumps presented there, besides the hammock,

44

45

Ratings

200
400

600
800

1000

0

500

1000

1500

2000
1

2

3

4

5

MOVIES
PEOPLE

R
A

T
IN

G
S

Figure 5.1: A stratified view of the MovieLens dataset demonstrates hits-buffs structures at
all rating levels.

are of intrinsic commercial and economic value. Microsoft’s E-Commerce Server 2000
series now provides algorithms for collaborative filtering. The recent interest in mixture
models and latent variables [HCM+00, HP99] coupled with the relational nature of
their induced representations is a strong indicator for the applicability of JC in these
situations. Inference of connections in these networks is usually very difficult; an
algorithm (jump) that makes similar connections with significantly less overhead will
be preferable to the complexity of using Bayesian/dependency networks for inference.
In addition, ratings information can be included in the analysis of jumps. Fig. 5.1
shows the ratings information present in the MovieLens dataset. As can be seen, the
hits-buffs structure gets stratified into multiple layers and can be used advantageously
both within a ratings layer and across layers.

2. The formulas presented in this thesis for lpp and lpm are derived from the parameters of
the induced Gs and Gr graphs. One possible direction of work is to cast these variables
in terms of parameters of the original bipartite graph (dataset) R. However, the NSW
model is very difficult to analyze, for all but the simplest forms of jumps. Recently,
Aiello et al. [ACL00] have introduced a random graph model for massive graphs that
is modeled after power-laws. Unlike the NSW model and like traditional random graph
models, their model has only two parameters (the intercept and slope of the power-law
plotted on a log-log scale). Estimations of graph properties such as diameter have very
recently [Lu00] been initiated for this new model and it appears to be a promising
candidate for application to recommender systems.

46

Small−World network model
Hits−Buffs rewiring model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

4

6

8

10

12

14

16

18

Probability (p)

A
ve

ra
ge

 L
en

gt
h

Figure 5.2: Effect of two rewiring models on the characteristic path length, starting from a
regular wreath network.

3. The existence of ratings structures such as the hits-buffs distribution and our ability
to exploit them (to minimize factors such as the average length) is very crucial to the
success of recommender systems. An interesting question is how much of the hits-buffs
structure should be present in a dataset? to provide high quality recommendations.
The answer to this question has implications for the currently arcane process of data
acquisition. Typically, movies (the secondary mode) are partitioned into two sets: (i) a
hot set, that almost everybody is required to rate (to increase commonality of ratings)
[AWWY99, GRGP00], and (ii) a cold set that is used to ensure adequate coverage
[AWWY99]. A more detailed understanding of the hits-buffs structure would provide
new methodologies to address this dichotomy.

To study this question, we conducted a Watts-Strogatz analysis with a rewiring model
that preferentially rewires to some nodes with greater probability. Thus, nodes that
are hits or buffs have a greater propensity of being linked to. Fig. 5.2 shows the results
for the average length in a one-mode graph. In the small α range, the results from a
preferential rewiring are virtually indistinguishable from a random rewiring, so both
of them serve to bring the length down to nearly identical limits. In the large α range,
the effect of the hits-buffs structure is evident in the reduced length. It is thus unclear
what a ‘base structure’ should be to explore the role of hits-buffs in length reduction.
Recent research on the modeling of dynamic systems shows that power-laws such as
hits-buffs are crucial [CD00] to ensure robustness; more work needs to be done to
delineate connections to data collection and desired metrics in recommender systems.

47

4. We also plan to design an interactive graphical tool that allows the exploration of
recommendation spaces. The user can be given an opportunity to define a jump and
basic parameters of the graph. The system can then help estimate properties such as
the average length, clustering coefficient, and the size of components induced by the
jump. A more interesting question arises by inverting this process: given a collection
of nodes that the user would like to bring together, what are the jumps that make
this possible? We refer to this scenario as ‘inverse personalization.’ This is currently
being used in a variety of web sites that do targeted marketing of products. For each
product or set of products, a niche is identified that ensures that the products are the
only examples satisfying all the desired characteristics. In our formulation, niches are
defined by new ways of jumping.

5. Jumping connections also has implications for the privacy aspects of recommender
systems. In many contexts (committee voting habits, for instance), the bipartite graph
R is not directly observable; thus one of the modes is ‘hidden.’ However, people would
be comfortable divulging information pertaining to the social network graph Gs induced
by the skip jump (i.e., neighbors with whom they have at least one aspect in common).
In some cases, this could be implicitly observed. The goal here is to get estimates (of lpp,
for instance) for other forms of jumps using such information (that appear deceptively
harmless to provide). The validity of such estimates would have to be qualified using
notions from random graph theory, in turn leading to a better understanding of the
privacy implications of modeling connections.

Bibliography

[ABFK99] V. Anupam, Y. Breitbart, J. Freire, and B. Kumar. “Personalizing the Web
using Site Descriptions”. In Proceedings of the Tenth International Workshop
on Database & Expert Systems Aplications, pages 732–738, 1999.

[ACL00] W. Aiello, F. Chung, and L. Lu. “A Random Graph Model for Massive Graphs”.
In Proceedings of the ACM Symposium on Theory of Computing (STOC’2000),
pages 171–180. ACM Press, 2000.

[Ada99] L. Adamic. “The Small World Web”. URL: http://www.parc.xerox.com/
istl/groups/iea/www/smallworldpaper.html, 1999.

[AFJM95] R. Armstrong, D. Frietag, T. Joachims, and T. Mitchell. “WebWatcher: A
Learning Apprentice for the World Wide Web”. In Proceedings of the 1995
AAAI Spring Symposium of Information Gathing from Heterogeneous, Dis-
tributed Environments, Stanford, CA, pages 6–12. AAAI Press, 1995.

[AKK98] J. Alspector, A. Kolcz, and N. Karunanithi. “Comparing Feature-Based and
Clique-Based User Models for Movie Selection”. In Proceedings of the Third
ACM Conference on Digital Libraries, pages 11–18. ACM Press, 1998.

[ASBS00] L.N. Amaral, A. Scala, M. Bathelemy, and H.E. Stanley. “Classes of Behavior
of Small-World Networks”. Proceedings of the National Academy of Science,
USA, Vol. 97:pp. 11149–11152, 2000.

[ASP97] M. Ackerman, B. Starr, and M. Pazzani. “The Do-I-Care Agent: Effective Social
Discovery and Filtering on the Web”. In Proceedings of RIAO’97 (Computer-
Assisted Information Searching on the Internet), pages 17–31, 1997.

[AT99] G. Adomavicius and A. Tuzhilin. “User Profiling in Personalization Applica-
tions Through Rule Discovery and Validation”. In KDD’99, Proceedings of the
Fifth ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pages 377–381. ACM Press, 1999.

[ATar] G. Adomavicius and A. Tuzhilin. “Expert-Driven Validation of Rule-Based
User Models in Personalization Applications”. Data Mining and Knowledge
Discovery, Vol. 5, 2001 (to appear).

48

49

[AWWY99] C. Aggarwal, J. Wolf, K. Wu, and P. Yu. “Horting Hatches an Egg: A New
Graph-Theoretic Approach to Collaborative Filtering”. In KDD’99, Proceedings
of the Fifth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 201–212. ACM Press, 1999.

[AZ97] C. Avery and R. Zeckhauser. “Recommender Systems for Evaluating Computer
Messages”. Communications of the ACM, Vol. 40(3):pp. 88–89, March 1997.

[BA99] A.-L. Barabási and R. Albert. “Emergence of Scaling in Random Networks”.
Science, Vol. 286:pp. 509–512, October 1999.

[BC92] N. Belkin and B. Croft. “Information Filtering and Information Retrieval: Two
Sides of the Same Coin?”. Communications of the ACM, Vol. 35(12):pp. 29–38,
December 1992.

[BHC98] C. Basu, H. Hirsh, and W. Cohen. “Recommendation as Classification: Using
Social and Content-Based Information in Recommendation”. In Proceedings of
the Fifteeth National Conference on Artifical Intelligence, pages 714–720. AAAI
Press, 1998.

[BHK98] J. Breese, D. Heckerman, and C. Kadie. “Empirical Analysis of Predictive
Algorithms for Collaborative Filtering”. In Proceedings of the Fourteenth An-
nual Conference on Uncertainty in Artificial Intelligence, pages 43–52. Morgan
Kaufmann, 1998.

[BKM+99] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener. “Graph Structure in the Web”. In Proceedings of
the Ninth International World Wide Web Conference, 1999.

[Bol85] B. Bollabas. “Random Graphs”. Academic, London, 1985.

[BP98a] D. Billsus and M. Pazzani. “Learning Collaborative Information Filters”. In
Proceedings of the Fifteenth International Conference on Machine Learning,
pages 46–53. Morgan Kaufmann, 1998.

[BP98b] S. Brin and L. Page. “The Anatomy of a Large-Scale Hypertextual Web Search
Engine”. In Proceedings of the Seventh International World Wide Web Confer-
ence, pages 107–117. Elsevier Science, 1998.

[BS97] M. Balabanovic and Y. Shoham. “Fab: Content-Based, Collaborative Recom-
mendation”. Communications of the ACM, Vol. 40(3):pp. 66–72, March 1997.

[Bur99] R. Burke. “Integrating Knowledge-Based and Collaborative Filtering Recom-
mender Systems”. In Proceedings of the Workshop on Artificial Intelligence for
Electronic Commerce, pages 69–72. AAAI Press, 1999.

50

[CBS92] J. Callen, C. Bruce, and H. Stephen. “The INQUERY Retrieval System”.
In Proceedings of the Third International Conference on Database and Expert
Systems Applications, pages 78–83, 1992.

[CCH91] Y. Cai, N. Cercone, and J. Han. “Attribute-Oriented Induction in Relational
Databases”. In G. Piatetsky-Shapiro and W. Frawley, editors, “Knowledge
Discovery in Databases”, pages 213–228. AAAI Press/MIT Press, 1st edition,
1991.

[CD00] J.M. Carlson and J. Doyle. “Highly Optimized Tolerance: A Mechanism for
Power Laws in Designed Systems”. Technical report, California Institute of
Technology, 2000.

[CDRK+99] S. Chakrabarti, B.E. Dom, S. Ravi Kumar, P. Raghavan, S. Rajagopalan,
A. Tomkins, D. Gibson, and J. Klienberg. “Mining the Web’s Link Structure”.
IEEE Computer, Vol. 32(8):pp. 60–67, August 1999.

[Cen] IBM Almaden Research Center. “The CLEVER Project”. URL: http://www.
almaden.ibm.com/cs/k53/clever.html.

[CLR90] T. Cormen, C. Leiserson, and R. Rivest. “Introduction to Algorithms”. MIT
Press, 1990.

[DIT98] J. Delgado, N. Ishii, and U. Tomoki. “Intelligent Collaborative Information
Retrieval”. In Proceedings of the Sixth Ibero-American Conference on AI, 1998.

[DR99] R. Driskill and J. Riedl. “Recommender Systems for E-Commerce: Challenges
and Opportunities”. In Proceedings of the Workshop on Artificial Intelligence
for Electronic Commerce, pages 73–76. AAAI Press, 1999.

[ER59] P. Erdös and A. Renýi. “On Random Graphs”. Publicationes Mathematicae,
Vol. 6:pp. 290–297, 1959.

[FFF99] M. Faloutsos, P. Faloutsos, and C. Faloutsos. “On Power-Law Relationships of
the Internet Topology”. In Proceedings of the ACM SIGCOM Conference on
Applications, Technologies, Architectures, and Protocols for Computer Commu-
nication, pages 251–262. ACM Press, 1999.

[FISS98] Y. Fruend, R. Iyer, R. Schapire, and Y. Singer. “An Efficient Boosting Algo-
rithm for Combining Preferences”. In Proceedings of the Fifteenth International
Conference on Machine Learning, pages 170–178. Morgan Kaufmann, 1998.

[FLM98] D. Florescu, A. Levy, and A. Mendelzon. “Database Techniques for the World-
Wide Web: A Survey”. SIGMOD Record, Vol. 27(3):pp. 59–74, September
1998.

51

[Fol90] P. Foltz. “Using Latent Semantic Indexing for Information Filtering”. In Pro-
ceedings of the ACM Conference on Office Information Systems, pages 40–47.
ACM Press, 1990.

[Fon96] L. Foner. “A Multi-Agent Referral System for Matchmaking”. In Proceedings of
the First International Conference on the Practical Applications of Intellignet
Agent Technology, pages 245–261, 1996.

[GNOT92] D. Goldberg, D. Nichols, B. Oki, and D. Terry. “Using Collaborative Filtering to
Weave an Information Tapestry”. Communications of the ACM, Vol. 35(12):pp.
61–70, December 1992.

[Gol] K. Goldberg. “Jester: The On-Line Joke Recommender”. URL: http://
shadow.ieor.berkeley.edu/humor.

[Gre] D. Greening. “Building Consumer Trust with Accurate Product Recommen-
dations”. URL: http://ebusiness.macromedia.com/software/likeminds/
whitepapers/building consumer%20 trust%20.pdf.

[GRGP00] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. “Eigentaste: A Constant
Time Collaborative Filtering Algorithm”. Technical Report M00/41, Electronic
Research Laboratory, University of Berkeley, August 2000.

[GSK+99] N. Good, J. Scafer, J. Konstan, A. Borchers, B. Sarwar, J. Herlocker, and
J. Riedl. “Combining Collaborative Filtering with Personal Agents for Better
Recommendations”. In Proceedings of the Sixteenth National Conference on
Artifical Intelligence, pages 439–446. AAAI Press, 1999.

[Han96] J. Han. “Data Mining Techniques”. In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, page 545. ACM Press, 1996.

[HCM+00] D. Heckerman, D.M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie.
“Dependency Networks for Inference, Collaborative Filtering, and Data Visu-
alization”. Journal of Machine Learning Research, Vol. 1:pp. 49–75, 2000.

[Hea01] L. Heath. Personal Communication, 2001.

[HK70] E. Housman and E. Kaskela. “State of the Art in Selective Dissemination
of Information”. In Proceedings of the IEEE Transaction on Engineering and
Writing Speech, pages 78–83, 1970.

[HKBR99] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl. “An Algorithmic Frame-
work for Performing Collaborative Filtering”. In Proceedings of the Twenty
Second Annual International ACM SIGIR Conference, pages 230–237. ACM
Press, 1999.

52

[HP99] T. Hofmann and J. Puzicha. “Latent Class Models for Collaborative Filter-
ing”. In Proceedings of the 16th International Joint Conference on Artificial
intelligence (IJCAI’99). IJCAI Press, 1999.

[HSRF95] W. Hill, L. Stead, M. Rosenstein, and G. Furnas. “Recommending and Evalu-
ating Choices in a Virtual Community of Use”. In Proceedings of the CHI’95-
Human Factors in Computing Systems, pages 194–201. ACM Press, 1995.

[JL00] F. Jiang and M.L. Littman. “Approximate Dimension Equalization in Vector-
Based Information Retrieval”. In Proceedings of the Seventeenth International
Conference on Machine Learning. Morgan Kaufmann, 2000.

[Kar] G. Karypis. “Family of Multilevel Partioning Algorithms”. URL: http://
www-users.cs.umn.edu/∼karypis/metis/metis.html.

[Kau] H. Kautz. “ReferralWeb”. URL: http://www.cs.washington.edu/homes/
kautz/referralweb/.

[KB96] B. Krulwich and C. Burkey. “Learning User Information Interests Through
Extraction of Semantically Significant Phrases”. In Proceedings of the AAAI
Spring Symposium on Machine Learning in Information Access, pages 110–112.
AAAI Press, 1996.

[Kel00] B. Keller. Personal Communication, 2000.

[KFV00] B. Kitts, D. Freed, and M. Vrieze. “Cross-Sell: A Fast Promotion-Tunable
Customer-Item Recommendation Method Based on Conditional Independent
Probabilities”. In Proceedings of the Sixth International Conference on Knowl-
edge Discovery and Data Mining, pages 437–446. ACM Press, 2000.

[KK95] G. Karypis and V. Kumar. “A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs”. Technical Report 95-035, Computer Science
Department, University of Minnesota, 1995.

[Kle98] J. Kleinberg. “Authoritative Sources in a Hyperlinked Environment”. In Pro-
ceedings of the Ninth ACM-SIAM Symposium on Discrete Algorithms, pages
668–677. ACM Press, 1998.

[Kle99] J. Kleinberg. “The Small-World Phenomenon: An Algorithmic Perspective”.
Technical Report 99-1776, Cornell Computer Science, October 1999.

[KM99] A. Kohrs and B. Merialdo. “Clustering for Collaborative Filtering Applica-
tions”. In Proceedings of Computational Intelligence for Modelling, Control
and Automation. IOS Press, 1999.

53

[KMM+97] J. Konstan, B. Miller, D. Maltz, J. Herlocker, L. Gordan, and J. Riedl. “Grou-
pLens: Applying Collaborative Filtering to Usenet News”. Communications of
the ACM, Vol. 40(3):pp. 77–87, March 1997.

[Koh] A. Kohrs. “Active Web Museum Login”. URL: http://abyss.eurecom.fr:
1111/AWM/login.html.

[KSK97] T. Kamba, H. Sakagami, and Y. Koseki. “ANATAGONOMY: A Personal-
ized Newspaper on the World Wide Web”. International Journal of Human-
Computer Studies, Vol. 46(6):pp. 789–803, 1997.

[KSS97] H. Kautz, B. Selman, and M. Shah. “ReferralWeb: Combining Social Networks
and Collaborative Filtering”. Communications of the ACM, Vol. 40(3):pp. 63–
65, March 1997.

[Lee00] W. Lee. “Online Clustering for Collaborative Filtering”. Technical Report
TRA8/00, National University of Singapore, 2000.

[Lep] D. Leppik. “Genre-Based Partitions for a Movie Recommender”. URL: http://
www-users.cs.umn.edu/∼leppik/genre partitions.html.

[Lie95] H. Lieberman. “Letizia: An Agent that Assists Web Browsing”. In Proceedings
of the Fourteenth International Joint Conference on Artifical Intelligence, pages
924–929, 1995.

[Lik] Macromedia LikeMinds. “Macromedia LikeMinds Personalization and Perfor-
mance”. URL: http://ebusiness.macromedia.com/software/likeminds/

whitepapers/lm white 3rd.pdf.

[Lin00] W. Lin. “Association Rule Mining for Collaborative Recommender Systems”.
PhD thesis, Worchester Polytechnic Institute, 2000.

[Lu00] L. Lu. “The Diameter of Random Massive Graphs”. In Proceedings of the
Twelth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
912–921. ACM/SIAM Press, 2000.

[Mac67] J. MacQueen. “Some Methods for Classification and Analysis of Multivariate
Observations”. In Proceedings of the Fifth Berkeley Symposium on Mathemat-
ical Statistics and Probability, pages 281–297. University of California Press,
1967.

[MCS00] B. Mobasher, R. Cooley, and J. Srivastava. “Automatic Personalization Based
on Web Usage Mining”. Communications of the ACM, Vol. 43(8):pp. 142–151,
August 2000.

54

[ME95] D. Maltz and K. Ehrlich. “Pointing the Way: Active Collaborative Filtering”.
In Proceedings of the Conference on Human Factors in Computing Systems
(CHI95). ACM Press, 1995.

[MPR00] U. Manber, A. Patel, and J. Robison. “The Business of Personalization: Ex-
perience with Personalization of Yahoo!”. Communications of the ACM, Vol.
43(8):pp. 35–39, September 2000.

[MR00] R. Mooney and L. Roy. “Content-Based Book Recommending Using Learning
for Text Categorization ”. In Proceedings of the Fifth ACM conference on Digital
Libraries, pages 195–204. ACM Press, 2000.

[MRK97] B. Miller, J. Riedl, and J. Konstan. “Experiences with GroupLens: Making
Usenet Useful Again”. In Proceedings of the 1997 Usenix Winter Technical
Conference, pages 219–231, 1997.

[NSW00] M. Newman, S. Strogatz, and D. Watts. “Random Graphs with Arbitrary
Degree Distribution and their Applications”. Technical Report 0007042, Santa
Fe Institute, 2000.

[OH99] M. O’Conner and J. Herlocker. “Clustering Items for Collaborative Filtering”.
In Proceedings of the ACM SIGIR Workshop on Recommender Systems, 1999.

[Pay98] D. Payton. “Discovering Collaborators by Analyzing Trails through an In-
formation Space”. In Proceedings of the AAAI Fall Symopsium on Artificial
Intelligence and Link Analysis, pages 84–87. AAAI Press, 1998.

[PHLG00] D. Pennock, E. Horvitz, S. Lawrence, and C. Giles. “Collaborative Filtering
by Personality Diagnosis: A Hybrid Memory- and Model-Based Approach”. In
Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence,
pages 473–480. Morgan Kaufmann, 2000.

[PMB96] M. Pazzani, J. Muramatsu, and D. Billsus. “Syskill & Webert: Identifying
Interesting Web Sites”. In Proceedings of the Thirteeth National Conference on
Artifical Intelligence, pages 54–61. AAAI Press, 1996.

[PR97] D. Peppers and M. Rogers. “The One to One Future: Building Relationships
One Customer at a Time”. Bantam Doubleday Dell Publishing, 1997.

[Ram99] N. Ramakrishnan. “Experiences with an Algorithm Recommender System”. In
P. Baudisch, editor, “Proceedings of the CHI’99 Workshop on Interacting with
Recommender Systems”. ACM SIGCHI Press, 1999.

[Ram00] N. Ramakrishnan. “PIPE: Web Personalization by Partial Evaluation”. IEEE
Internet Computing, Vol. 4(6):pp. 21–31, Nov/Dec 2000.

55

[RG99a] N. Ramakrishnan and A. Grama. “Data Mining: From Serendipity to Science”.
IEEE Computer, Vol. 32(8):pp. 34–37, August 1999.

[RG99b] D. Robalino and M. Gibney. “A Model of the Impact on Movie Demand of
Social Networks and Word of Mouth Recommendation”. URL: http://www.
metaculture.net/Searches/movies, 1999.

[Ric98] L. Richard. “Automatic Information Extraction from Documents: A Tool for
Intelligence and Law Enforcement Analysts”. In Proceedings of the AAAI Fall
Symopsium on Artificial Intelligence and Link Analysis, pages 63–67. AAAI
Press, 1998.

[RIS+94] P. Resnick, N. Iacovou, M. Sushak, P. Bergstrom, and J. Riedl. “GroupLens:
An Open Architecture for Collaborative Filtering of Netnews”. In Proceedings of
the 1994 Computer Supported Collaborative Work Conference, pages 175–186.
ACM Press, 1994.

[RK] J. Riedl and J. Konstan. “GroupLens Research”. URL: http://www.cs.umn.
edu/Research/GroupLens/.

[RP97] J. Rucker and M. Polanco. “Siteseer: Personalized Navigation for the Web”.
Communications of the ACM, Vol. 40(3):pp. 73–76, March 1997.

[RS97] D. Rus and D. Subramanian. “Customizing Information Capture and Access”.
ACM Transactions on Information Systems, Vol. 15(1):pp. 67–101, 1997.

[RV97] P. Resnick and H. Varian. “Recommender Systems”. Communications of the
ACM, Vol. 40(3):pp. 56–58, March 1997.

[SC00] B. Smyth and P. Cotter. “Enabling Technologies: A Personalized Television
Listings Service”. Communications of the ACM, Vol. 43(8):pp. 107–111, August
2000.

[Sha94] U. Shardanand. “Social Information Filtering for Music Recommendation”.
PhD thesis, Massachusetts Institute of Technology, 1994.

[SKB+98] B. Sarwar, J. Konstan, A. Borchers, J. Herlocker, B. Miller, and J. Riedl. “Us-
ing Filtering Agents to Improve Prediction Quality in the GroupLens Research
Collaborative Filtering System”. In Proceedings of ACM Conference on Com-
puter Supported Cooperative Work, Sharing Information and Creating Meaning,
pages 345–354. ACM Press, 1998.

[SKKR00a] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. “Analysis of Recommendation
Algorithms for E-Commerce”. In Proceedings of the Second ACM Conference
on Electronic Commerce, pages 158–167. ACM Press, 2000.

56

[SKKR00b] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. “Application of Dimensionality
Reduction in Recommender System – A Case Study”. Technical Report CS-
TR 00-043, Computer Science and Engineering Dept., University of Minnesota,
July 2000.

[SKR99] J. Schafer, J. Konstan, and J. Riedl. “Recommender Systems in E-Commerce”.
In Proceedings of the ACM Conference on Electronic Commerce, pages 158–166.
ACM Press, 1999.

[SKRar] J. Schafer, J. Konstan, and J. Riedl. “Electronic Commerce Recommender
Applications”. Journal of Data Mining and Knowledge Discovery, 2001 (to
appear).

[SM83] G. Salton and M. McGill. “Introduction to Modern Information Retrieval”.
McGraw-Hill, New York, 1983.

[SM95] U. Shardanand and P. Maes. “Social Information Filtering: Algorithms for
Automating ‘Word of Mouth’”. In Proceedings of CHI’95 – Human Factors in
Computing Systems, pages 210–217. ACM Press, 1995.

[SN99] I. Soboroff and C. Nicholas. “Combining Content and Collaboration in Text
Filtering”. In Proceedings of the IJCAI’99 Workshop on Machine Learning in
Information FIltering, pages 86–91, 1999.

[SS98] D. Swanson and N. Smalheiser. “Link Analysis of MedLine Titles as an Aid to
Scientific Discovery”. In Proceedings of the AAAI Fall Symopsium on Artificial
Intelligence and Link Analysis, pages 94–97. AAAI Press, 1998.

[SW93] M.F. Schwartz and D.C.M. Wood. “Discovering Shared Interests Using Graph
Analysis”. Communications of the ACM, Vol. 36(8):pp. 78–89, August 1993.

[THA+97] L. Terveen, W. Hill, B. Amento, D. McDonald, and J. Creter. “PHOAKS:
A System for Sharing Recommendations”. Communications of the ACM, Vol.
40(3):pp. 59–62, March 1997.

[Tri] Tripsmith. “Welcome to Trabble”. URL: http://www.trabble.com/.

[Tur] D. Turnbull. “Augmenting Information Seeking on the World Wide Web Using
Collaborative Filtering Techniques”. URL: http://donturn.fis.utoronto.
ca/research/augmentis.html/.

[UF98] L. Ungar and D. Foster. “Clustering Methods for Collaborative Filtering”.
In Proceedings of the Workshop on Recommendation Systems at the Fifteenth
National Conference on Artificical Intelligence, pages 112–125. AAAI Press,
1998.

57

[WF94] S. Wasserman and K. Faust. “Social Network Analysis: Methods and Applica-
tions”. Cambridge University Press, New York, 1994.

[WS98] D. Watts and S. Strogatz. “Collective Dynamics of ‘Small-World’ Networks”.
Nature, Vol. 393(6):pp. 440–442, June 1998.

Appendix A

Pseudocode for Experiments

Given below is a skeleton of the procedures used to conduct our experiments. Statements
enclosed in /* and */ are comments. We start with the adjacency matrix of people and
movies AR, and then generate the Gs and the Gr graphs (GENERATE-GRAPHS), for
various values of hammock width w. The largest connected component of people, LC, in
the Gs graph is determined. The largest component in the Gr graph is then obtained by
attaching the movies to the nodes in LC and rendering the original edges bidirectional (this
procedure is described in Chapter 3). The length of the two largest components is calculated.
To determine the actual lengths of the Gs and Gr graphs (ACTUAL-LENGTHS), we used
Floyd’s and Djikstra’s algorithms [CLR90]. To determine the estimates of these lengths
by the NSW model, the average degree distributions of both Gs and Gr are determined
and used as input to the formulas described in Chapter 3 (FORMULA-LENGTHS-Gs and
FORMULA-LENGTHS-Gr respectively).

The MovieLens and the artificial EachMovie (GENERATE-DATASET) adjacency matrices
are represented by MR and ER respectively. SimilarlyMGs, MGr and EGs, EGr represent the
adjacency matrices of the social network and the recommender graphs for the MovieLens
and EachMovie datasets respectively.

procedure MAIN ()

begin

/* MovieLens experiments */

NP ← 943; NM ← 1623;

MR ← MovieLens dataset adjacency matrix of size (NP +NM) ∗ (NP +NM);

for hammock width w ← 1 to 30 do

(MGs,MGr) ← GENERATE-GRAPHS (MR, NP , NM , w);

58

59

lppexp ← ACTUAL-LENGTHS (MGs);

lppform ← FORMULA-LENGTHS-Gs (MGs);

lrexp ← ACTUAL-LENGTHS (MGr);

lrform ← FORMULA-LENGTHS-Gr (MGr);

end for

/* EachMovie experiments */

for minimum rating constraint kappa← 1 to 15 do

NP ← 500; NM ← 75;

ε = LOOKUP (kappa);

ER ← GENERATE-DATASET (NP , NM , ε);

for hammock width w ← 1 to 25 do

(EGs, EGr) ← GENERATE-GRAPHS (ER, NP , NM , w);

lppexp ← ACTUAL-LENGTHS (EGs);

lppform ← FORMULA-LENGTHS-Gs (EGs);

lrexp ← ACTUAL-LENGTHS (EGr);

lrform ← FORMULA-LENGTHS-Gr (EGr);

end for

end for

end begin

procedure GENERATE-GRAPHS (AR, NP , NM , w)

begin

A2
R ← AR ∗ AR;

/* Entries in A2
R give us the number of paths of length 2 between two nodes */

for rows i← 1 to NP +NM do

for columns j ← 1 to NP +NM do

if i ≤ NP then

if j ≤ NP then

if A2
R[i][j]≥ w and i �= j then

60

AGs[i][j]← 1;

AGr[i][j]← 1;

else

AGs[i][j]← 0;

AGr[i][j]← 0;

end if

else

AGr[i][j]← AR[i][j];

end if

else

AGr[i][j]← 0;

end if

end for

end for

LC ← LARGEST-COMPONENT (AGs);

for rows i← 1 to NP do

if person i is not in LC then

for columns j ← 1 to NP +NM do

if j ≤ NP then

AGs[i][j]← 0;

AGr[i][j]← 0;

else

AGr[i][j]← 0;

end if

end for

end if

end for

return (AGs, AGr);

61

end begin

procedure ACTUAL-LENGTHS (AG)

begin

Calculate length of graph AG using Floyd/Djikstra algorithms;

return length;

end begin

procedure FORMULA-LENGTHS-Gs (AGs)

begin

Find z1 using Equation 3.3;

Find z2 using Equation 3.7;

Find length using Equation 3.12;

return length;

end begin

procedure FORMULA-LENGTHS-Gr (AGr)

begin

Find z1 using Equation 3.23;

Find z2 using Equation 3.24;

Find length using Equation 3.25;

return length;

end begin

procedure GENERATE-DATASET (NP , NM , ε)

begin

for rows i← 1 to NP

for columns j ← 1 to NM do

if j ≤ NM ∗ i−ε

ER[i][j]← 1;

62

else

ER[i][j]← 0;

end if

end for

end for

/* Randomly rewire some movie endpoints */

for rows i← 1 to NP

for columns j ← 1 to NM do

if ER[i][j] = 1 then

Generate a random number r1 between 1 and 10;

if r1 < 2 then

Generate another random number r2 between 1 and 75;

ER[i][j] = 0;

ER[i][r2] = 1;

end if

end if

end for

end for

Ensure ER is connected (if needed, change some edges manually);

return ER;

end begin

procedure LARGEST-COMPONENT (AGs)

begin

Find the largest connected component of people LC;

return LC;

end begin

procedure LOOKUP (k)

63

begin

epsilon[1] = 0.7; epsilon[2] = 0.6; epsilon[3] = 0.55;

epsilon[4] = 0.5; epsilon[5] = 0.45; epsilon[6] = 0.42;

epsilon[7] = 0.4; epsilon[8] = 0.38; epsilon[9] = 0.36;

epsilon[10] = 0.34; epsilon[11] = 0.32; epsilon[12] = 0.3;

epsilon[13] = 0.29; epsilon[14] = 0.28; epsilon[15] = 0.27;

return epsilon[k];

end begin

Vita

Batul J. Mirza was born in 1977 in Hyderabad, India. She jumped around from one school
to another within different states in India till finally her parents settled down in Kuwait.
However Mr. Saddam Hussein had other plans for her and she landed right back in Hyder-
abad for another two years. Fate got her back to Kuwait and she completed her high school
from Carmel School, Kuwait, in 1994 and obtained a Bachelor of Science degree in Computer
Science in 1997 from Kuwait American Center of Education, an affiliate of Bharathiar Uni-
veristy, Coimbatore, India. She joined Virginia Polytechnic Institute and State University
in Spring 1999 and will complete her Master of Science degree in Computer Science and
Applications in the Spring of 2001.

64

