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This thesis will be concerned with the comparison of results
obtained from the mathematicsl ani experimental selution of flat
mmxwwmmm\. The experimental solution
is talen from & thesis by John ¥, Flemer, alse for the degres of
Naster of Sclence in Architectural Engineering at Virginia Polyteche
nie Institute, Mathemstical solutions of the problem with both
pinmed and fixed edges will be worked out and the comparison made.

The method of difference equations as devaloped by Dr. H.
Marcus, translated into English and explained by Joseph A, Wise,
and the superpoeition principal as desoribed by D, L, Holl will be
used in thess solutions of the problem.

It 4= hoped that this thesis will be of use ia the investige-
tion of the problem of flat plates, This thesis is not meant to be
mMi@iW,h%Wmaf%mmaMﬂ%gwﬂ%
a more exact wolution of flat plates to be available for the use of
the designing engineer.
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The selution for moments, stresses, and deflections in flat
plates has been of interest to the engineer for many years. The
squation developed by Lagrange forms the basis Ior most of the
attenpts at the exact solution, but has not as yet been solved
for the general case. Iany solutions by approximations have been
worked out bul most of them are elther very involved and require
the use of higher mathematice, or are not accurate enough for the
use of the engineey,

Des H. Marcus gave us one solution by approximations that
uses difference equations. iis solution was based upon the analogy
of & morbrase and the plate, Two theorems that wake ihe analogy
mi.hhm: (a) m deflection of a membrane loaded with loads
proportionsl to those on & given plate may be coasidered as the
sun of the principsl moments of the actual plate. (b) A secend
membrase may be loaded with elastic weights proportionsl to these
moment suws and, subjected to appropriazte boundary conditions,
the deflection of the latter membrane will be properticnal te the
deflection of the plate under the given loading system,

In & paper by Joseph A, Wise, kir, Wise presents the solution
of Do, Maves velng W slastis Wb Nr, Wisw solves dn eeipls
problem of a square flat plate carrying a uniform load, and pimned
on all edges,

_ 5 .
A paper presented by ir. D. L. loll shows the solution of flat



plates by the method of the difference equations for flat plates
with various edge conditions. Iir, Holl uses the method of superw
position of deflections to solve for plates with edge conditione
other then pirred, In his paper Ur, loll worke several examples
of square plates supporting a center point load, and having edge
conditions variously fixed, pinned, or free.

This thesis will attempt to use the methods that are mentionad
above, and apply them to the specific flat plate that was used in

perinent, The article by Nr. Tise forms the basic reference
for the work dome in this thesis, The article by Mr, Holl was used
as reference for the soluiion of the plate with fixed edges,

mmgﬁmmummammmﬁm
mesh, alashie web has sn secuvecy that varies Joss than two and &
half percent from the more exscting solutions of Nadsi and Zstanave,
As the mesh size is decreased the accuracy increases, and a very
accurate solation meay be ohiained without laving the work besouse
too invelved to meke the selution practical for the engineer.

In this thesis a thirty six mesh web is used so that & come
parison of these results with the experimental results may be made.
in the experiment coscentrated loads were applied at various points
on the plate, and the effects of all of them were combined to give
the effect of a concentrated load. In the asalyiical solution a
undforn load, equivalent te the concentrated load is used,
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with sssple protiless of differest types are : Jtephen Tiuoshonkoy
Joseph A, ¥ise] and De Le 10115 The works of these men was found
#MWWWM:W&OM%W

s but from the tharee of them a considerable

of the subject may be obtained,

prosess of proving the ssalogies and deriving the difference equie
t«imw mmm;mmmmmmwmwmm
vary slhple in comparison with the rsthematice la some of the other
solutions of the flat plate., The simple nature of the mathematlcs
Lrvolved prompted Mr. ¥ise'to remark in his article; "The defleow

that are easily set up, and the sole methematical device :ecessary

the difference method is apparently quite accurate ecough for



in whieh he used & mesh width of one qQuarter of the length, said that
at the center of the plate was aboub four and one halfl percent less

than the exact value, By taking twice the nusber of subdivisions of
the length of plate he found that the error in the bending mosent was

The methed of difference equations may be applied to almost any
type of flat plate, under any type of loading, ur, Wise in bis
article said, "Téis paper will present the application of the metiod
for the case of square ard rectangular slabs freely supported at tie
four edges, although the methed can be generally applied to almost
any case of shape, supperting conditions, or loadlng.”

Tho case with which the provlen may be haudled, the sccuracy of
the method, and the pessibility of its use on almest aay type of
plate problen Justifies further work being dose on this subjects It
mant of the wethod, for use in the Ield of plate design.
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AY EXPLANATION OF THE THRORY OF Ti% DIFPERENCE BQUATION METHOD

The theory of the difference method as applied to plates depends
of the merbrane is proven analogous to the moment sum in the plate,
deflsction in the plate due to the origisal load,

It would probably be impossilble to load & meubrase with & vary-
Mumummmamxmm«rmmmmm
w&m%mmumm mmmmmmmu
comverted into equivalent concentrated loads at the intersections of
the wires. The end conditions, representing different conditions of
fixity or {reedom sequired from the supports, are deterained from the
theory of the action of elastic webs.

The deflections of the web under the varicus loading conditions
give the moments, stresses, and deflections of the plate. The deflecw
tions of the web are obtained directly from the solution of the
simltaseous linear difference equations, written for the web,



THE DERIVATION OF THE THEORY OF THY DIFFERENGE

EOLUTION OF FLAT PLATES

& list of the characters and syrbols that will be used in the
derivation of the theory will be given here for sasy reference to aid
in the understanding of the theory.

the modulus of elasticity of the material,
the thickness of the plate.
= the horisontal compenent of the stress in the wire.
= the woment-sum, a measure of the bending of the plate.
=:mmm,-mu.§%:
= the uniform load en the plate.
P',= the concentrated load at auy point X,v .
R = the tension in the wires,
S = the horisontal component of the menbrane surface stresses,
W=WMM‘WMMaﬁmaﬁwm\nm
to the original loading,
Z = the deflection of the wed at any point , due to the
elastic (w) loading.
T = the deflection of the plate at any point, due to original
loading.
" K = the ratis of Acto Ay .
A = the mesh width,
v = Polsson's, Ratie

ol O - TN
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the angle between the wire and the horimontal.
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The basie differestial equation for flat plates as derived

by lagrange is
4
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This equation is derived upen the principal essunptions, (a) that
the material is homogensous, isotropie, and perfectly elastie,
(b) that the plate is medium thick (a0t so thin %o act as & men-
brane, nor so thick that the distribution of stresses at the ends

preciably influences the results), (o) that the center of the
plate deflects only wp or dewn, and dows not rotate, (d) that all
flexure is within the elastie limit of the material.

m&mmmwmmmwmmhymﬂnq@
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1f we define & new function M asj

=l 2 z

e L R et et e (3)
the equation of the elastie surface becomes
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The funetion M iz & meamure of the bending of the plate,




in Pigure 1 & portiscn of the plate is represented, dx wide,

:pdxdv
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Vy dx Vxdvy
Pigure 1 - Stresses on the Element of Flate

dy long, and h thick, the notations S« ard Sy represent bending
moments normal te the faces of the prism, v, and vy represent
vertical shearing stresses, and bt ard tvwx represent torsional
stresses on the faces of the prism, All of these are in terms of
one unit of width of elemsut. It cau be shown that,

S = -N(%zﬁ +v§:,—i) ——————————— (5)
sve ~M(EEsr TI) (6)
txy = fN(l'V)%:%;—____—_-_—__—__(7)
v -N2(EE+LE) (8)
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1f wa now consider a thin plate or a mevbreve, and 1f it is
subjected to fiber stresses parallel to the surface only, it is
sed by the differential equation”

2w, w __ P
Viw Ax z.+ oo e g o il | iy Ay it b ity (|0)

where w is the deflection of the mesmbrane at any point x,y3 F is

the intensity of loading, and § is the horisental component of the
surface stresses. From the conditions of static equilibrium, & is
constant for the entire membrane. If § is made equal to unity,
Wmmmﬂmmﬁm (m) with equation (L) (mum for comparison)

M M
V M= ox* ?av"- N L R M plaade: i yalka @)

wmmmwmnmwma A werbrane loaded with the save
loading, P, and having & value of § » ), forms a roment diagren

for the elastic plate, Note that the "moment" in the above statew
ment is really the momsnte-sum function™, as defined before, It ean
also be shown that the following law is true: A mesbrane loaded with
Wawwlmng-amwxmu%mw&u%mt&nm
tion diagran of the elastic plate.

The sum of the second derivative of equation (3) with respect
to x, and 7 times the mmmuuum respect to y gives,

Q_M. e
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Alse, the sum of the second derivative of equation (3) with respeoct
to ¥, and o tises the second derivative with respect to x gives,

22—
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The sum of the second derivatives with respect to x and y of

equations (5) and (6) gives, -

s
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%Sy [ ¥ty
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V:Sy =

And 4 we define

~TMy=

' M
~Thr= (199 355,

and combine them with the previous equations we get

2 b
V Sx= - TTx

ViSy==Ty pom e — (2)

Vztxy == TTxy

Jl

from these last equations we can derive the law: The membrane



carrying loads defined by equations (11) and having 8 ¢ 1, forms
& moment diagram for the Sxs Svy 8nd tyv moments of the elastie
plate.

mmm&w and v, can be obtained from a simple
transforsation of equations (8) axd (9)

2

v« = =Nz V'y= 2l

i vl - 2M

From the preceding resulis, it can be seen that the complete
solution of the plate is dependent upen the two differential equations

z|Z

vV:M=-P ',‘ ?z'S‘:-;

In plstes Shat Are fresdy supperted A% the edges &n wiyledding
supports, ¥ and Mare zero at these edges, and therefore, the first
differentisl equation suffices to determine M for the plate, such plates
are called "Statically Determinate”. 1f a plate has its edges restrained
both equations are necessary for iis selution, and it is called
"Statieally Indeterminate®, In lhe case of the statically deterainate
phm,ﬁuﬁdxumabhmfmt&mnntzmmt
disgram, but thls is not true of the staticslly indetersinate plates,

The solution of the plate has been made dependent upon the
solution ol the mewbrane, and now the membrane will be replsced by the
elastic web,
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The elastic web is shown in Figure (2), and is composed of
twy sete of perfectly elastic wires crossing at right angles. The
mesh width 1s uniform in each dirvectiony; M\in the dirvection of the
x axis, and Ayin the direction of the y axis, The nodes or interw
section points of the web are designated as shown in the figure.
The loading of the plate is replaced by equivalent concentrated
loads at the nodal points, The separate wires have direct tensile
stresses R R ,Ro and R, respectively for the wires rumning from
k to 1,1,m and ne The anglesw, and w, deaignate the angles that
wires R, and R, malke with the x axis, andw, and w, designate the
acgles wires H,, and R, make with the y axis,

Flgure 2. The Klastic meb with Reetangulsy Neshes
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From conditions of static equilibrium at k& in the three
directions, the following equations sre obiteined:

Bieoswe 1, Cosw, = 0

HmooSug R, C08w,m

P+ (Resing~ R einw) + (R slng~ R, sinwy =0
Call the horisontal compongnts of the stresses in the wires rumilng
in the x and y direetions X, and I respectively, Then the following

Rioos w; = 008 o =H x

Emposwy,= Ret08w,<H,
Substitating in the previous squation we get,

Bdtange- tanw,) + H{tanw,=- tanw,) = Px -
The difference eperator is defined as (Awk)x=w, = w, , or
the second difference of w. 18 (A'w)x = = P A= (W o) = ( wew,)
By this definition we can getj .

Mtan wo=wy =W, = {(Awg ),

Avtanwn=w, -~ wm = (Awg )y

AF(W‘“&W fanw) = ﬁ*_e - ) - (wy - )= {AI*K)X
MWbanwye tana) = (wy=m) - (me =wy) = (Swe)y

Then substituting in the previcus equation,

B + B (S mdy = = 2 e

Ve now relats this to the membrane by noting that from the definition

for & given on page 10. !
Hy = Mix 3 dly= Axfy

Alsey Pu= PxAxAy

ind consequently,
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8 (st FbBhripy - 7 =S ()
If Hy=Hy=Hy oOPSe=5y=8
S b xS S L S s (2)
e . L R AL Ll L (3)

Ax Ay S

If Ax=2Ay=2 we obtain in the simple formula,

2 2
(A W)y + (A*Wiv = =B = — Rk

This can also be written,

3
4WK‘(W£+W1+WM"'W'|)=AHP!:?_SEK —————————— (‘4)

This is the basie egquation used in the solutien of square plates,
freely supported at the edges.

It may be noted that if the wesh widihs are decreased lndefinitely
equation (13) in the limit becomes the basle equation of the mesbrave,

Aw  *w _ _»
dx* dv* S

For rectangular plates, whose ratio of longer side to the shorter
side is

Ax _
ZY_K

equation (13) beconmes
2
(AZWK)x + KZ(A2WK)Y = — Px.ls,f

or in the expanded form
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2wk (1+H®) = (W +wg) = R(Wim+ Wa) = P ‘252- R P At A

Thie 1s the basic equation for freely supported vectangular plates,
To deternine the deflections the same equations are used,

only the load p, becomes the "elastic load” -":’}— « The value of

8 pan be wade unity, and then the values of w will nuweriecally

equel the momenbtesum &t the corresponding pointe, The wvalues of

S will be numerically equal to the values of % at the corvesponding

points, lote that in applying equations (1) and (15) in finding

deflsctions, w is replaced by %, Having the values of M and ¥ we

can find the stress-moments, torsions and shears directly from them,
Loading our web now with the elastic weight p, m w, and taling

& equal to nmw; using equation (13),

Z:-2Zx+Z Zm—-22«+2Z | | [A2 -
= Zz: & 4 B8 Ay E "= E(AZZK);(* 'ﬁ(AZK)Y:'WK“MK "“(' G)

Wie now evaluate the various partial derivatives necessary for

deternining the stress-monsnts, torsions and stears,

g_) L 22 _ (AZidy )
oxx 2 Ax Ax

(32) - Ehim . (AZ )y
Yk 2 Ay Ay

L Vg ot SO URE e

dZ\ _ Zm-2Zk+Zn _ | (a2
(aﬁ;)‘ N = 7 (826

(a‘z ),(zo+zn)'~(‘zp424) _ (@*Z )y
3)(31\( ] 4’3; 2Y 2)(21’




Substituting these values in equations (5), we get,

2°Z 2 =04 il

LAE Z\_ 2Zx-2m-Zn., 2Zx—2:-Zs
Sy= (3Y"+V3x" ® Aty i 2%

2" +29)—(Z o+Z
tXst(l—v)é_’EZ‘ = ('-—7)[(ZP 4;);“(Y ) Ll

dw _ | ;

Ve = 577 g (We-wo)
- o . A

Ny = e itk (Wn"Wm)

substitubing the values of T and M for g and w, we get,

A

N Sx = (ng—yi"fl)"'?/'K(fo‘?m'—?n) W

2
2Sv = H(2%~Sm=Sn)+ 7 (25— - %)
1 -
Tt = FR[(Eer va)-(So+ )] AL e 3

2):{2)( =% Ml— M" i

2 Ax Ay =|’{('V|h‘Mm)



The value of 7 that is used in the above formulss influences the
resulting values Lo a considerable extent, For concrete, at the

usual values of working stresses, 7 is spproximately 0.20, However,
as the stresses approach the ultimate, » decreases lor concreis in
tension® and as the most unfsvoreble case would be 7 equal ‘e sere,
mtvﬁmwthanm%mmmm
ing stressss, #te., in pletes approsching & conditiss of wupture. In
deternining the value of working atress to be used in the plate, if v
is taken as mero, no notice need be taken of the fact that the
stresses in the plate increase toward the ultimate strength of the
materials, the moments do not change proportionatsly to the loads,
because the stresses will have been calculated upon the basis of the
most unfavorable condition of the plate, If a value of 7 = 0.20 is
used, thé weriing stress may be Salun leks convervatively to allew for
the loss rapid increase of stresses that oocur as the loads increase,
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A list of the characters and sysbols that will be used in
working the problems will be given here for easy reference to ald
ia the understarding of the problem.

E = the modulus of elasticity of the maverisl.

f = the fider stresses in the plate at the points indicated,
n e mmm»rm'mm.
L
N
P

= the length of a side of the plate,

= & constant factor, equal to £,

the bending moment in the plate, in the x divection,

Sy = the bending moment in the plate, in the y direction.

the deflection of the web due to the originel load,

 the deflection of the web due to the elastic load,

& values dakem fres the problew of the plaed slste, snd

used in the problem of the fixed plate,

¥ = tie deflection of the plate,

Yo = the deflection taken from the problem of the pimed plate,
and used in the problem of the fixed plate.

¥ = the superimposed dellections,

the length of the web,

7 = Polsson's Ratio,

£
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A SQUARE PLATE SIMPLY SUPPORIED ON ALL EDCES AND SUPPORTING A

URIFORY LOAD o

L= 1}3 iﬂn . A | .
A= % = 2,3333 in. 2 4| 5| & 2f
W Selililily 8qe in, e >

; | 2| 4 5| 4] 2
P = hae 1%;/'@5 in, ' l & ol |
Polsson's Hatio = .3

A Al Al A

H = ﬁ&ﬁ,hﬁ? Ane 1k, < L i

Figure 3, The Plate and Web

Applying equation (1h) to esch point 1 through 6 respectively

we getj Bquation (1h) 48 4w~ (wz+w4+vwm+w.\)="’—sa—z
Pedat (1) lw, - 2, ol e 8

" (2 cw + I Wy - W, ;-pai

" (D) 2w, + lwy s wp2t

ol ¢ - 2o + lwy =29y mp A

* (5 - Wy D4+ lWse Wem p A°

(6 - lwsthw e p A°

These equatione selved simultaneously giveg
w, = 0,951922 p A* = 002642 pL*
w: = 103848 pa'= 0,038996 pL”
w3 = 1.530460 pA*= 0,042735 pL”
wa = 220999 p A= 0,059028 pr°
ws = 2,306183 5 2*~ 0,065071 p1°
we = 2,598153 p *= 0,072135 p1.”



Loading the plate with these Elastic Loads, aud again applying
equation (1L) to each point 1 through & respectively, we gety

Potat (1) Ls, - 28,

"

(2) =8, + lf,= 83 =%y

(3
(k)
(5)
(8)

- 2%, + lims

- 28,

+ 5‘«“5‘

= WA = 0,0007348 pr*
= w,2*= 0,0010832 pL?
-~ %5 = WA = 0,0011871 ot
Wkt = 0,0006397 pit

1]

g5t = woat= 0,0020032 pL

These equations solved simultaneously givej
0.001309 p1* = 17,893

LA
B2
3

i

o =

#gs <

S =

0.001883 pr’
0.002110 pr*
0.003230 pr*
0.003547 pr*
0.00L0l8 pr*

1

—
-

-~
-

]

29,898
34,0l
50,179
57,230
65,313

mwl&nmm%ﬁmamw%, and isj

5
52
L3
Ta

S5
Se

0,052 in,
0,087 in,
04099 in,
041L6 in,
04167 4n,
04190 in.
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The axial moments a8 arrived at from equations (15} svej

Equations (18) are,

¥,

"

i

&Y =

e =

2
2 S = (2% ¥o-%0) + v R(2 5k ~Tm-%n)

2
Sy = K(25k-Fm=Ta) + ¥ (2%k=¥s - o)

1,081 +
Lhk3 +
1,716 +
1,523 +
1,99 +
2,430 +
2,590 +
2,774 +
2,969 +

3zl
533
L33
598
457
729
83
77
691

]

1,408 ia, 1b.
1,976 in. 1be
2,199 in. 1b,
2,121 in. 1b.
2,451 in. 1b,
3,159 in, 1b,
35k22 ins b,
3,551 4n, 1bs
3,860 in. 1b,

From the equation f=YSwe may get the surface stresses which ave;

x,
£,
£y

fx, -

4
ix4
fxy
fys
ixe

fy, =

33’4"-‘

=

ﬁe =

33,720 psi
L3352 psi

52,776 pei
50,90k psi
58,02l pai
75,816 psi
82,128 psi
85,22l pei
92,640 psi

Y
\ ? 3
4 5
6 o

Plgure 4

The Points at which these Iiresses
apply



A SQUARE FLAT PLATE SUPPORTING A UNIFORH LOAD, AMD HAVING FIXED EDGES
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Flgare 5 The Mate and Web
In the solution of this problem the deflection of the plate
subjected enly to moments along the edges, of sufficient megnitude
to prevest the edges from rotating when subjected to & undform load,
1 upon the deflection of the plate ceused by the uniform

is superlupose
load, The solution will be similar to the previous sclution, exceph
that the first elastic web for the correction will be loaded with zere
loads and the resulis in terns of the boundary nomsnts amm through
the Tollowing wark. The bowndsry peints 8, by and ¢ will also be ine
eluded, avd values found for them.
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The first step will be to apply equation (1) to each peint
1 through 6 respectively, ¥e geij
Polnt (1) Lw, 2w,

(4) 2w,

(%)
{8)

wiw, = O

(2) wwaliw, = w, »w, =w, < 0O
(3) 20, + Wy, « w~W,ew, = O
+ iy 2wg = 0

- Wy w2w,lprg W= O

dws  +lw = 0

These squations solved slLmultansously sim

w, = 0.63u62
W, = 0.26923
w, = 0.,19231
W = 0,25000
ws = 0.23077
we= 0.23077

Wo+ 0426923 wo+ 0,09616 w.
Wo+ 0.53846 w,+ 0,19231 w,
Wo+ 0438462 w,+ 0.,42308 w. -
Wa+ 0.,50000 wo+ 0,25000 w
W+ 0.L615L w, + 0,30769 ic
wotr 0.L4615L w, + 0,30769 w,

Loading the plate with these elastic loads, and applying equation
(14) %o each point 1 through 6 respectively we getj

Polnt (1) bLa, -2, = 0.63462w, + 0.26923w,+ 0,09616w.
# (2) -8+ L. 8, -8, =0,26023w, + 0,530L6w,+ 0.19231w,
v (3) 28+ sy - s =0.19200wa + 0,38462w, + 0.L2300w.
(k) . e2m  + lm, 28 = 0425000wa + 0,50000w, + 0,25000w,
. (5) - By =284+ IS5 « Bg= 0,23077wWa+ O0.L4615kwy+ 0.30769w.
" (6)

it hg= 0.2307wWa+ 0.4615kw, + 0,30769w.
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These equations solved simltaseously gives
8, = 0,35688 w. + 0.39618 w,+ 0,19859 w. |
By = 0.396L5 wa + 0.65828 w, + 0,3L921 w,
85 = 0.,39719 wa + 0690822 w, + 0.LL30S w,
Bq = 0,56250 wo + 1,00000 w, + 0,56250 w,
85 = 0.60355 wa + 1,09172 wy, + 0,65089 w,
Sc = 0.6612h wo + 1.20710 we + 0,72781 w.

Apply equatien (1h) to points a, b, and ¢ on the boundary, we get;
Polnt (8) = 8. + h‘& - Hp - = Wa
# (b)) = g =~8q + gy «%. «%:= W

" (“} - By w28, thgc w23= wc

th%é&ﬂm%mwmkwmumﬂwm, Bay Bpy aod B
mﬁ&mﬁ%m, and we have lefty
Point (8) = 8c =8 = Wa

" (b)) w8 =8z= W

[}
»

» (#) - By = 83

Substituting in the values of %,, 8,, and 8, from equation (19) we get
Folnt (8) B« = = 1,35608 wa = 0.396L5 w, = 0.19859 w.
* () 8p = =0,396L5 wa = 1.65628 w, - 0,301 we ———(20)
# o) By= =0.39719 wao - 0.60822 wo ~ 144305 w.

From the solutlon for the planed plate we see that the s values at
points 1, 2, and 3 are;
Polnt (1) S0 = 17,893  or 3,286 A°

" (2) mea= 29,898 ar S

" (3) s.s= 30k or  6,25317




In working with afixed condition at the boundary we must assume
that the plate is continuous over the rigid support, and then that
the deflections are symmetricsl about the suppert, If we assume
this to be true we may say that the deflections %oy 8,, s and Boy
are eQual 1o 8o 5 =lor y and =foy respectively.

Ye may now say that

Zor= (Zewz )22 = 3,206 A7
Ssho1 2*
6,253 X

Zor = ‘Zp »Zz}i— 2

 Z03= (2r = 23)x2

[}

Then from equations (19), (20), and {21) we have all of the
conditions necessary to find the momentesun at the boundary.

Yoint (8) . 0&% Wa + | %‘hW Wy + 019859 we = = ﬁgm ]z
" (B) 0.396U5 wa + 125828 w, + OJSMLwe = = 5,49 A
" (8) O0.39M9wa + 0.69822w, + 024305 w - é,aﬁ A®

"

These equations sclved simltaneously givej
wa = =1,546.22 X"
w, = =3,100.29)°
We = =3,603.30 2



Sl fa AT L B TG Y o - S RO ) Bt e L) S s K

If these valuus are now substituted into eguations (17) we will
get the superimposed 3 values which arej

8, = =2,512,9) = -13,60

B. = = 500,290" = ~ 2,158

8 = =LA JAN = - 24,206

B4 = = 6,0L2,90)° = « 32,900

s = = GTISIBN = = 36,567

Bc = = Tyhl6 73X = - 10,5h3

From these % values wo may gel the superinposed
51 == 0,0398 in,
Thi= = 040625 in,
%= = 0,070k in,
Ty = 0,0988 in,
o= = 0.2065 in,
To= = 0.1161 4n,

How if' we superimpose these deflegtions upon the deilections for the
plate with the pinned edges we will have the deflection for the plate

Sa = 0,052 in. 5, = 0,0122 in.
B = 00&@? &a. ?7_ = Qm iﬁﬂ
Saa = 0,099 in, By F 040286 in.

Sos = 9:1256 in.
?os' 4 ﬁhl.é? in.
go‘ = Q‘.m i,n.

b4
i

i

ge = 0;9?19 inﬂ



by the sams method as in the previous problem. The moments may be
found by aquations (10), and srey

Bx,= =~ U62 ine b,
Sya= =1,539 in. 1b,
8x,= = 92T in. 1b,
Byy = =3,001 in. 1bs
Sx, = =1,002 in, 1b,
Byc = =3,608 in. 1b,
Sx,= 8y, = - 02 in, b,
8xp= + U9L ia. 1b,
By.= + 79 in. b
8y3 = = 53 in, 1b,
824 = 87,= + 1,262 in, b,
8xs =+ 14687 in. 1b.
Bys=+ 1,683 in. Ibs
Sx. = Byg=+ 1,860 in. 1b,




i RN < TR ST A BN 1 s i i S e

From these moments we may {ind the stresses in the plate by

using £="%° which arej

fxo= = 11,080 pai

fya= = 36,936 pai

fx,= - 22,248 psi AY

fyv= = ThyiBl poi

fc= w 25,968 pul A L !

fiye= = 86,592 pal
fx,= £y, = = 1,960 pei a b c

fx,= + 11,056 ped ) ! .

fy= + 1,896 pei

fr;= +10,920pst \ Al s

fyy;= = 1,272 psi k y
fxa=fyy= + 30,200 pei ¥l y

Ixs= + 3&9,&% pal
fys= + 10,392 pei
fre=fye= Mz,%ﬁé psi

Flgue 6 To Illustrate at Which
Pointe These Values Are Valid






THE EXPERIMENTAL STHESSES IN A FLAY FLATE
Talsen from the thesls “PUE BFFECT OF FLOOR SLARS WITH BPANDRELS ON
BRIICAL LOADE® by Johm ¥, Flener'

THE MOMENT TH COLUMMS DUS 70 %

The plate that was need in the exporiment was a stecl plate
twanty eight inches sguare, snd one halfl inch thick, This plate
w8 walded to four steel colums,; one inch in diameter and ten inches
loag, plsced fourteen inches on genters, Between the columns beams,
two inches by one half inch, were wolded to the plate and colwms,
The columns had & pinned condition at thelr base. The model was
constructad in this mermer to slmlate 8 bay in an ordinary bullde
ing frese.

am
~
e e e e e — ‘l‘\ pog e —
| Wi a4 i 2
| Il
I I
| | =
It il =
: e e
|
‘II {l: .
I
SRR L3 W
. (
I - I
N
l f i
L 14" b L2
i v
i 28" ) AbS 10"
: .—' e 10%" ¥
=~:
! s
—| i =2§
; w




OTIRLTE g - ORI ZI (1 Vg CSRINENNR SR B G RIS TS oy 9 A ey

The plate between the columns was then divided into six
seotions in each direction, or isto thirty six ssall squares in
alle At the intersection of the squares SR - 4 strain geges, and
strain rosettes wore sttached. The location of the gages and roseties
are shown in Pigure 8 . At points “e" & OR « 4 strain gage was placed
oo the bottom side of the beam. At points "a", "b*, "o¥, and ¥d" strain
rosettes were attached to the top of the plate, At points Wi, »gw, #3w,
niwy ngn, and 6" steain rosettes were attached to the botion of the
plates A1l of the strains were oblained from these pages, and converted
into stresses 1o give the stress curves which are Piguresllandl5 ,

NN DD

\ ? 3

e o

for the loading, the plate was redivided between the colwmn® into
four seotions 1n each directlion, or into sixteen squares in 211, The
Mmm@mmmswmmmammmmmw.aﬁm
mmmmmmmmnm, This type of gang loading was
~ done throughout with the exception of the center point load which was
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by iteelf, The loading was done in this manner, loaded in corveaponde
ing opposits points on the plate, to prevent the plate from lifting
one of the columns off the base when 1% wes loaded in one quadrant,
aud thus producing undesirable stresses in the plate.

The loading grid, and the points of application are shown in
FPigure 9 . loads of five thousand five hundred pounds were placed at
points 1 end 21, 2 and 20, 3 and 19, L and 18, 5 and 17, 6 and 16,
7 and 15, 8 and 14, 9 and 13, and 10 and 12 simidltaneously, and a
single load of five thousand five hundred pounds was placed at point
11, From each of these groups of loads the strain wag recorded, and
fw%m-m%dumifw&mmmwﬁw%wﬁw

Y mmntmwmmwmmmmafw
mmmm From these strains the stresses wers obtained, and
the results are shown M‘wlxﬁm,ﬁ.

f'zjw

$ .5 8
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9 10) " " 13 L.

) 15 16 7 18

e Ql 20 2 Wi

Figure 9 The Loading Orid
mmmmmauﬁwﬁuammmammxmy
directions for the uniform load were used, -
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CONCLUSTON
A COMPARISON OF THE THEORETICAL AND EXPERIMENTAL HESULTS

At the end of the theoretical solutions and the experimental
anslysis of the flat plate the stress curves are drawn, The stresses
ware caleulated for the x and y directions in order that a quick and
qualitative comparison might be made, The stress curves were drawn
as carefully as possible, but inmccuracies occurred because of the
large web mesh sise, drawings, and the large variations in the
noments. Therefore we do not have axact results, but the ones we
have are accurate enough Lo compare and draw conclusions Irom,

From the curves for the experimental analysis, rigureslland 15,
we can see tial the spandrel offers a considerable amount of torsional
restraint to the slab, This restraint would be increased if the
spandrels were contioned, or other bays were added, The spandrels
will have a tendency to incrsase the positive bending roment at
the corners due to the torsion in themy; but at the same time the
ones framing perpendicular to these would decrease the moment at
the corners by reslsting the tendency Yo deflect. The columns would
offer further resistance to the rotation at the corners, but this
would be slizht in comparison with the resistance the spandrels

offer.

mmmm«m;nmmmmmmm
to both -of the mm mlutim, uadmhohnmthm The
maximum positive stresses at ihe ¢enter of the plate may be seen

bl T e e o

o



i3
to vary from 92.06 ksi for the pinned plate, to 5.k ksi for the

model, and to Lli.B kel for the fixed plate, The maximun negative
stresses on the spandrels vary from 0 ksl for the pianed plate,
to - 35.7 ksi for the model, and to ~86.6 ksi for the fixed plate,
is can be seen the experimental results fall about halfway between
the other two cases,.

The resistance that the spandrel offers to the plate varies
from a sero value at the columns to a maximum value at the center,
From the work jJust completed in this thesis it seems possible that
in a building frace consisting of beams axd slabs that a certain
portion of the design moment could be eliminated by the addition of
a negative moment,

xrwmhmmmumwmmmnm
mtmmwmmtn-mmwwmwmum
third, and this value of one third of the maximm pesitive moment,
placed at the edge of the aslab in the middle as a negative bending
moment. |
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