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1.0 TINTRODUCTICN

1.1 State of the Art

Although the vast majority of physical systems are nonlinear, there
exists no general method of analysis for such problems. Moreover, it is
"the opinion of the great majority of workers in the field, that a
general method of synthesis for nonlinear problems is impossible" [G-1].
Many techniques have been devised to handle particular nonlinear prob-
lems or classes of problems; however, they usually suffer from being too
- specific and too approximate.

Indeed, the control of a nonlinear plant in a noisy environment is
an extremely complex problem. The powerful techniques of modern linear
control theory do not generally apply to such problems. Traditionally,
a unique controller is designed for each specific problem; hence a con-
siderable amount of engineering is repeated each time a new problem
arises.

The existing techniques of nonlinear control can be lumped loosely
into two methodologies. First is the linearization approach. The
nonlinear equations are expanded about some operating point via a
Taylor series expansion. Linear control theory is then applied as
though the approximate linear equations were exact. Linearization tech-
niques are especially well-suited in stability analysis. For example,
Oaks and Cook use a linearization method in the design of a controller
for a ncnlinear oscillator [0-1]. Unfortunately, many nonlinear systems
are not amendable to linearizing, i.e. switching functions and other

abrupt nonlinearities, tabular functions, and partially unknown or



underspecified functions, to mention a few.

The second general method is the adaptive controller approach.
The motivation for this method is that a nonlinear plant can be thought
of as a linear plant having unknown, time-varying parameters. The adap-
tive controller first identifies these parameters and then formulates
the control law. A wide variety of adaptive controllers have been devel-
oped over the years. Several of the more recent designs will be dis-

cussed later in this chapter.

1.2 New Results

This dissertation is concerned with the development of an adaptive
state estimator that is capable of tracking rapidly changing plant con-
figurations. As will be shown, nearly all nonlinear systems can be
be approximated by a linear plant having a finite number of possible
configurations. These plants are referred to as Switched Linear Plants.
For such nonlinear systems, the adaptive estimator to be developed will
give very good performance and will offer significant implementation
advantages over other existing estimators. In additiocn to its direct
application as an estimator, the algorithm will be used in closed loop
control applications. In this capacity the actual estimation is of
secondary import to the adaptive identification capabilities of the
method.

Two adaptive estimators will be examined and applied in this dis-
sertation. The first, a modification of the estimator introduced by
Magill in 1965, is extended to nonlinear estimation in Chapter Three,

and to nonlinear control in Chapter Four. The second method, developed



in Chapter Five, is based upon joint detection/estimation and approaches
the accuracy of the unrealizable optimum adaptive estimator. The advant-
ages and weaknesses of each method are analyzed, and it is found that a
very accurate and reliable estimator can be formulated by combining the
two methods.

Chapter Two of this dissertation provides a review of modern and
classical control theory, and estimation theory as they relate to the
discussions and derivations in the later chapters. The "Partitioned”
Adaptive Estimator is analyzed in Chapter Three and modified for nonlin-
ear estimation. Chapter Four develops an adaptive controller for non-
linear systems. The Sliding Window Detector/Estimator is developed in
Chapter Five to track a rapidly switching linear plant. Chapter Six
aprlies the previously developed algorithms to the closed loop control
of a B737 aircraft in adverse weather conditions. The results and con-
tributions of this dissertation are summarized in Chapter Seven. The
remainder of the present chapter is devoted to a review of the various

adaptive estimation methods that have been reported in the literature.

1.3 Related Investigations and Applications

The problem of estimating the state (position, velocity, etec.) of
a system in a noisy environment was formulated and solved independently
in the 1940s by Wiener [W-1] and Kolmogorov [K-1]. The estimator,
referred to as the Wiener filter, is applicable to linear, continuous
time, completely defined systems, and minimizes the mean square, steady
state estimation error. Historically, the Wiener filter is widely

acknowledged as being the first successful attempt to optimize the pro-



cess of extracting information from noisy measurements. It has been
used extensively in a variety of applicationms.

A second major advance in estimation theory came in 1961 with the
work of Kalman and Bucy [K-2]. The well-known Kalman filter is the
optimal estimator for linear systems in gaussian noise, in the sense
that it minimizes the mean square estimation error at each point in time.
The advent of high speed digital computers has led to wide scale usage
of the Kalman filter.

In the last decade, optimal filtering theory and its dual, optimal
control theory, have been rigorously developed and extended to much
broader classes of problems. One such class is that referred to as
adaptive systems, which encompasses sytems that are capable of altering
themselves in one way or another. A maneuvering target may be an example
of an adaptive system. An adaptive estimator or adaptive controller has
the ability to modify its behavior, depending upon the performance of
the actual system. An excellent survey of different stochastic adaptive
control methods was done in 1975 by Wittenmark [W-2]. Much of the term-
inclogy to follow is taken from that work.

Stochastic adaptive systems are those systems where the variations
of the process parameters have been described by stochastic models and
have been taken into account in the derivation of the estimation or con-
trol algorithm. A stochastic adaptive controller can artificially be
divided into two components, an estimator and a controller, the design

of which may or may not be carried out  independently. If the controller

can be designed using variables for the unknown plant parameters, and

if the controller remains optimal when the estimated plant parameters



are used in place of the design variables, then the controller is re-
ferred to as a "Certainty Equivalence'" controller. This condition is
satisfied for nonadaptive linear plants in gaussian noise for quadratic
cost functionals [W-2]. For adaptive plants, the "Certainty Equivalence"
principle is not valid in general but has been successfully applied as

an ad hoc suboptimal design method. A somewhat weaker requirement than
the "Certainty Equivalence" principle was introduced in 1971 by Witsen-
hausen and is known as the '"Separation Principle” [W-3]. The principle
is wvalid if it is possible to make a separation between the identifica-
tion of the parameters in the process and the determination of the param-
eters in the controller. Note that the requirement for optimality has
been removed. Controllers designed on this principle are sometimes re-
ferred to as being 'cautious' because the parameters of the controller
are often functions of the uncertainties of the identified plant parame-—
ters, as well as the parameters themselves [W-2].

A concept that has received recent attention is that of Dual control
[T-1]. The basis of Dual control is that system identification and sys-
tem control are, in general, conflicting processes. Identification is
usually aided by using large variations in plant inputs to cause sizable
transients in plant outputs, whereas good control usually requires small
input and output fluctuations. By formulating a performance index that
takes into account the probability distributions of future observatioms,
a better overall controller can be designed. The drawback to this
approach is the extreme complexity of the resulting equations.

For purposes of classification, the methods of stochastic adaptive

estimation developed by various investigators over the last decade will



be grouped into four categories. The first category will be referred
to as "Partitioned Adaptive Estimators” [L-1]. The estimator discussed
in Chapter Three is a member of this group. Techniques based upon
approximating the unrealizzble optimal estimator will comprise the sec-
ond group. The detector/estimator developed in Chapter Five fits this
classification. The third category will be referred to as bandwidth
modulation filters. All other methods will be grouped together in the
fourth category. The stochastic estimation techniques discussed in the
following paragraphs are diagrammed in Figure 1.3.1.

The adaptive estimation problem becomes more tractable when the
unknown parameters are constrained to belong to a finite set. A plant
identification problem of this type was investigated by Magill in 1965
[M~1]. Magill found that the optimal, minimum mean square error, state
estimate is a weighted sum of elemental estimates derived from Kalman
filters matched to the possible plant configurations. The weighting
coefficients are nonlinear functions of the measurements, and the
coefficient corresponding to the actual plant configuration approaches
unity while the other coefficients approach zero.

The method of computing the weighting coefficients was improved by
Sims and Lainiotis [S-1] in 1969. A Bayesian derivation approach and
usage of the measurement residual (rather than the measurement itself)
resulted in a simplified recursive algorithm for the coefficients. Hil-
born and Lainiotis [H-1] further generalized the algorithm to include
vector observations.

Moose and Wang extended Magill's work to the identification of a

randomly changing plant [M-2]. The plant configuration changes are



waTqold uoflewflsy 9aridepy OIISeyos01S o943 Jo siole3drisaau] pue saydeoaddy T ¢-T 2and1g

uosToyy

1o8ufTuag pue ABINYol

L

aqqouy pue Tyey

19339BYDS pue FYeN

19p10MS puB 2219Td

suimzer

swepy pue uary)
sauor pue AYSTIIM

—

90114 pue umoag
Te 319 sueyly

uefeide)

19430

L

—1 Ie 19 9SOOK
OEMZ
18eaeneg 24BIoH
o8TusTng [ SueM pue 3SOONR
- uayg pue (elueg L] [z-1] sTloture]
Te 19 apuedysaq
[T-1] staoture]
STIOTUTE] pue Suig
ng pue uOSIIND
- 1P PV TTT8eR
‘Mg *3dpg/xoaddy

_

AV d

NOILVHILSE HAILAVAV OILSVHOOLS




modeled as a semi-Markov process [H-2], the statistics of which are in-
corporated into a recursive algorithm for the calculation of the weight~
ing coefficients. A modified version of this adaptive estimator is
analyzed in detail in Chapter Three. See also[Z-1].

Lainiotis formalized the finite parameter adaptive estimation
problem in 1971 by stating and proving the "Partition Theorem" [L-1].

In addition to giving a recursive algorithm for calculating the weight-
ing coefficients, the theorem also gives a formula for calculating the
time-varying estimation error covariance matrix.

Deshpande et al, in 1973, motivated the use of the partitiomned
adaptive estimator in closed loop applications [D-1]. It was shown that
for unknown model parameters the separation principle does not generally
hold, and the optimal stochastic controller is necessarily a nonlinear
controller. The "Partitioned Adaptive Controller'" was then derived by
minimizing a cost functional. Although suboptimal in general, the con-
troller has given very good performance in a number of different appli-
cations [A-1l]. Caglayan generalized the partitioning concept to adaptive
systems influenced by non-gaussian statistics [C-1]. A summary of the
partitioning method for stochastic adaptive estimation and control can
be found in Lainiotis [L-2].

Athans et al applied the partitioned adaptive control method to the
F-8c aircraft in 1975 as part of a National Aeronautics and Space Admin-
istration program to examine modern control techniques [A-1l]. The
method, referred to as '"Multiple Model Adaptive Control" by the investi-
gators, was quite successful in controlling the aircraft in its various

flight configurations. Several observations about the method were



pointed out. First, the identification portion of the method is very
dependent on the regularity of the measurement residual behavior. Sec-
ond, the weighting coefficients are not truly a posteriori probabilities.
Rather, they should be interpreted as time sequences that have a reason-
able physical interpretation. These observations are expanded upon in
the following chapters and in reference [M-8].

A comparison of adaptive tracking filters for targets of wvariable
maneuverability was carried out by Brown and Price in 1976 [B-1]. The
target was characterized by a '"Singer model" [S~2] having a low mode and
a high mode of evasive accelerations. They found that the Partitioned
adaptive estimator performed poorly because the weighting coefficients
could not track the true hypothesis when it changed. This shortcoming
was attributed to the weighting coefficients going to zero for those
configurations not currently matched to the plant. An ad hoc method of
adjusting the weights between measurements according to a Markov switch-
ing relationship solved this problem and reliable tracking was achieved.

A finite parameter adaptive plant that undergoes frequent changes
in configuration is referred to as a ""Switched Linear Plant'”. The ina-
bility of the Partitioned Adaptive Estimator to track rapid configura-
tion changes is a major weakness of the method. Ad hoc methods, such
as the previously described technique of Brown and Price, must be used
to obtain satisfactory performance. These additions are usually specif-
ic to one type of problem and often require trial and error tuning of
various parameters. An example of this is shown in Chapter Three.

A second approach used in tracking a switched linear plant involves

direct simplification of the unrealizable optimal estimator for that
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plant. One of the earlier investigations of this type was that of Ack~
erson and Fu in 1970 [A-2]. Their problem was to estimate the state of
a plaﬁt in a randomly changing noise environment. The optimal estimator
was found to be a weighted sum of an exponentially growing number of
elemental estimators. They next developed a suboptimal algorithm by
characterizing the state estimate as a gaussian distribution at each
iteration rather than the actual weighted sum of gaussian distributionms.
The mean of the assumed distribution is the weighted sum of the elemen-
tal estimates after one iteration. Similarly, the covariance of the
distribution is approximated by a weighted sum of the elemental covari-
ances after one iteration. After each iteration the elemental estima-
tors are re-initialized with the above mean and covariance. The net
effect is that the overall estimate will be taken predominantly from the
elemental estimator currently matched to the plant.

Sanyal and Shen investigated the problem of detecting the time of
occurrence of impulses of unknown magnitudes [S-3]. Restricting the
problem to only one impulse reduced the estimator complexity from an
exponentially growing memory requirement to a linearly growing memory
requirement. A Bayesian decision rule was applied to the weighting
coefficients at each iteration to detect the impulse. One shortcoming
of this technique is that the starting probabilities and Bayesian costs
are often unknown.

The optimal estimator for the general switched linear plant problem
was rigorously formulated and solved by Fujishige and Sawaragi in 1974
[F-1]. As before, the memory requirement of the estimator was found to

increase exponentially with time. No attempt was made to simplify the
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estimator. Sawargi et al applied the optimal estimator to the problem
of interrupted observaticns characterized by a Jump-Markov process [S-4].
Their solution, although mathematically rigcrous, proved to be quite
unwieldy.

Willsky and Jones used a generalized likelihood ratio to detect
failures modeled as jumps in state variables [W-4]. A finite '"'Data
Window" was used to keep the memory requirements of the estimator at a
manageable level. Upon detection of a failure, the state estimate and
the covariance of the estimation error were readjusted. Chien and Adams
used a sequential probability ratio test to detect system failures [C-1].
The method was successfully applied to the inertial measurement unit in
the space shuttle wvehicle.

A less structured approach to adaptive estimation involves increas-
ing the Kalman filter gains, the estimation error covariance or the sys-
tem disturbance covariance to prevent divergence. These techniques are
usually ad hoc in formulation and are often referred to as bandwidth
modulation techniques because changing the Kalman gain changes the
amount of high frequency noise that will be present in the estimate.

For example, a larger Kalman gain makes a filter more responsive to
plant changes at the expense of overall noisier performance.

Jazwinski [J-1] prevented divergence due to modeling errors by
incorporating an additional covariance term in the Kalman filter equa-
tions. The additional term is adjusted sequentially by feeding back
measurement residual information. Nahi and Schaeffer used a Neyman-
Pearson decision rule to detect when the calculated estimation error

covariances became inconsistent with the actual covariances [N-1]. A
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rational procedure was used to increase the estimation error covariance
at the time of detection.

McAulay and Denlinger used a generalized likelihood ratio to detect
maneuvers inva target described by Singer's acceleration model [M-3].
The discriminant in the detection process is the measurement residual.
They formulated a subcptimal recursive algorithm using a single Kalman
filter that switches between a high bandwidth mode and a low bandwidth
mode, depending on whether a maneuver has been detected. Gholson devel-
oped an estimator for a maneuvering target that could be described by a
semi~Markov process [G-1]. His analysis produced a filter, similar to
a Kalman filter, but with an additional covariance term that maintained
the filter gains at a level sufficient to track the maneuvers.

Several other formulations of the stochastic adaptive problem have
appeared in the literature. Pierce and Sworder used an optimal control
formulation to derive a closed loop controller for the switched linear
plant problem [P-1]. Tﬁeir results appear to be of more theoretical
than practical interest. Nahi and Knobbe derived the optimal linear
estimator for the switched linear plant problem by augmenting the system
to include all the possible configurations and then using the Orthogonal-
Projection theorem to minimize the mean square estimation error [N-2].
Although interesting, their method is inferior to the previous nonlin-
ear estimators.

Additional comments on the above adaptive techniques will be made

throughout the remainder of the dissertationm.



2.0 FUNDAMENTAL BACKGROUND

2.1 Introduction

The purpose of this chapter is to review certain results of linear
system theory and estimation theory that will be used in this disserta-
tion. In addition, much of the notation used in the following chapters
will be introduced here. Section 2.2 defines the basic linear control
problem. State wvariable feedback is discussed in Section 2.3, and the
optimal control formulation is reviewed in Section 2.4. The Kalman
filter is analyzed in Section 2.5, with special emphasis given to the
measurement residual characteristics.

The above topics can be reviewed in greater detail in numerous
excellent texts. Chen provides a very readable introduction to linear
system theory {C-3]. Another good ;ource is the text by Brogan [B-2].
Estimation theory is well covered by Meditch [M-4], Jazwinski [J-2] and
Gelb [G-3]. The last text is especially recommended for its practical

applications.

2.2 The Basic Control Problem

The state variable description of linear systems is at a high
degree of development. An important advantage of this description is
the reduction of the system differential equations to a single first

order matrix equation, called the state equation.

X = Ax + Bu
z = Hx (2.2.1)
where,
x=nx1 system state vector

13
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x(k+1l) = ox(k) + Yu(k)

z(k+1) = Hx(k+l) (2.2.7)
nxn state transition matrix
nxm input coefficient ma~-rix
rXn measurement coefficient matrix

2.3 State Variable Feedback

The transient response of a linear system can be adjusted by the

use of state variable feedback, i.e.

u(k+l) = r(k+l) + Fx(k+l) (2.3.1)
where, .
r(k+l) = m x 1 reference input
u(k+l) = m x 1 total system input

F

m x n feedback gain matrix

Substituting equation (2.3.1) into (2.2.5) and collecting terms gives

If the

x(k+1) = [® + YF]x(k+l) + ¥Yr(k) (2.3.2)

original system is controllable [C-3], then it is possible to

find an F matrix such that [¢ + ¥YF] has any desired set of eigenvalues.

For multiple input systems F is non-unique.

A method for determining F for a single input system is now given.

Step 1.

Find the characteristic equation of the original system,

_ N N-1
21 - A| = 2" + ay-12 + ... +az+a. (2.3.3)

This can be done directly by using Leverrier's algorithm [M-6]
or indirectly by calculating the eigenvalues, Ai, and multiply-

ing out the expression
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u=mzx1l deterministic input vector
z=rxl1l measurement vector

A=nzxn system dynamics matrix
B=nxmn input coefficient matrix

H=r xn measurement coefficient matrix

The solution of the state equation is readily found by integrating

t
exp(A(t-t )) x (t) + jt exp(A(t-1))Bu(T)dr (2.2.2)
(o]

x(t)

where

@’ | a0’

exp(At) = I + At + X 31

+ ...

and x(to) is the initial value of the state vector.
In systems using a digital controller the sampled data version of
2.2.1 is required. Holding the input constant between sample intervals

reduces (2.2.3) to,

t
k+1
x(ty, ) = exp(A(t, -t ))x(r) + ft exp(A(t, . -1))dt (Bu(k)
k (2.2.4)
Rewriting 2.2.4,
x(k+l) = dx(k) + Yu(k) (2.2.5)
where,
® = exp(A(tk+l-tk))
Ber1 W
¥ = f exp(A(tk+l— T))dt !B (2.2.6)

. |

The complete discrete time system description is,



16

N
I (z - 1,) (2.3.4)
i=1 *

Step 2. Construct the controllable canonical form for the original

system using the characteristic equation of Step 1.

[0 1 0 o ] 0]
0 0 1 0 0
@ = : . 5 v = :
c L] : c L]
0 0 0 1 0
-a -a -a s -a __l_J
o 12 n-1| (2.3.5)

Step 3. Compute the controllability matrices for the original system

structure and the controllable structure.

C, o= [¥ 1oy} «ee oV L v
) _ . . N-1
C2 = [Wc . @cwc : @c WC] (2.3.6)
Step 4. Compute the transformation matrix P.
_ -1
P = ClC2 (2.3.7)

Step 5. For the desired closed loop poles, calculate the corresponding

characteristic equation and controllable system structure.

"o 1 0 eee 0] 0]
0 0 1 cee 0 0
@2 = . . > ‘Pz = .
0 0 0 cee 1 0
- -b, -b P | 1]
o 1 2 N-1] (2.3.8)
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Step 6. Equate the desired system's controllable structure to the orig-
inal system's controllable structure with state variable feed-
back, and solve for Fc'

o, = [cI)c + ‘I’CFC]

2
[0 1 0 - 0 | [0 1 o ]
0 0 1 e 0 0 0 0
0 0 0 eee 1 0 0 1
by by byt by f1ma, Tpmap vt Eyrayy
B 1L |
£.o=a,_ -b,_, (2.3.9)

Step 7. Transform the feedback matrix from the controllability coordi-
nate system to the original coordinate system.

F=rp1l
c

2.4 Optimal Control Formulation

As shown in Section 2.3, the feedback gain matrix, F, can be found
by specifying the eigenvalues for the desired closed-loop system. An
alternative means of determining F is via an optimal control formulation.
This requires the specification of a quadratic cost functiomal to effect
a trade~-off between control effort and state variable performance. For
example, the cost functional for the infinite time optimal regulator

problem is given by,

{x"(k)Qx(k) + ul(k)Ru(k)} (2.4.1)

=3
k=0

I o~1 8
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where
Q =nxn is a positive semi-definite matrix that penalizes
non-zero state values.
R =mxn is a positive definite matrix that penalizes

large control efforts.
Minimizing J subject to the system constraints, equation (2.2.5), leads
to the following result for u(k).

u(k) = Fx(k) (2.4.2)
F = (R + ‘PTP‘F)-]"YTPCD

where P is the solution of the steady state discrete Ricatti equation.

P = (8-YF) P(0-¥F) + F'RF + Q (2.4.3)
In using the optimal control formulation, the designer loses the
freedom to specify the élosed—loop eigenvalue locations, and hence, loses
the ability to directly set the transient response. On the other hand,
the designer gains the ability to adjust the control performance rela-
tive to the control effort, indirectly controlling the transient
response. For example, penalizing the state vector more and the control

vector less will cause the system to respond faster.

2.5 The Structure of the Kalman Filter

The discrete time description of a linear system corrupted by noise
is,
x(k+1l) = ox(k) + Yu(k) + T'w(k)
z(k+1l) = Hx(k+l) + v(k+l) (2.5.1)
The definitions for the above quantities are given in (2.2.1) and

(2.2.7), and
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w=px1l random disturbance input
v=rxl measurement noise
I'=nxp disturbance coefficient matrix

The general filtering problem is to obtain an estimate &(k+1) for
x(k+l) given the measurements up to and including z(k+1l). For linear
systems having Gaussian distributed noise processes the optimal estima-
tor is the well known Kalman filter [K-2][G-3][M-4][J-2]. The Kalman
filter is optimal in the sense that it minimizes the mean square state
estimation error, and for this reason it is alternately referred to as
the mmse filter or the optimal linear filter.

It is assumed that w and v are zero mean, white Gaussian random
variables, and are therefore completely described by their covariance
matrices Q and R, respectively. The structure of the Kalman filter is

&(k+1) = R(k+1/k) + K(k+1l) [z (k+1)-H&(k+1/k)] (2.5.2)
where
2(k+1/k) = o%(k) + Yu(k)

The time varying Kalman gain, K(k+l), is calculated as follows.

M(k+1) = ®P(k)&~ + rQrr (2.5.3)
- T T -1
K(k+1) = M(k+1)H [EM(k+1)H + R] (2.5.4)
P(k+l) = [I - K(k+1)H]M(k+1) (2.5.5)
where,
Q= E[W(k)wT(k)] disturbance covariance
R = E[V(k)VT(k)] measurement noise covariance (2.5.6)
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The physical interpretations and dimensions of the above matrices are,

#(k+1) =nx 1 filtered state estimate at time k+1

#(k+1/k) = n x 1 predicted state estimate at time k+1 given meas-
urements up to t = k

K(k+1) =n xr Kalman filter gain

P(k) =nxn covariance of the filtered state estimation
error

M(k+1) =nxn covariance of the predicted state estimation

error (2.5.7)
A block diagram of the Kalman filter is given in Figure 2.5.1.
Since the original work.of Kalman and Bucy, the optimal linear
filter has been derived through a variety of formulations. Notably, it
has been shown that the optimal linear filter is isomorphic to the opti-
mal linear regulator reviewed in Section 2.4 (for example see [G-3]).
Hence, by a simple renaming of terms the optimal regulator derivation,
via the Ricatti equation, is equally valid for the Kalman filter. A
major implication of this 'duality' is that the Kalman filter, under fair-
ly loose conditions, is stable. Rewriting equation (2.5.2) for u(k)=0,
&(k+1) = [I-K(k+1)H]®R(k) + K(k+1)z(k+1) (2.5.8)
This is a first order difference equation with the measurement sequence
driving the filter dynamics. Stability implies that the eigenvalues of
[I-K(k+1)H] are inside the unit circle. The inherent stability of the
Kalman filter is an important ingredient in the operation of the adap-
tive estimator analyzed in Chapter Three.
Increasing the Kalman gain is equivalent to increasing the filter

bandwidth. Referring to equation (2.5.8), if k = 0, then &(k+1)=3&(k).
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That is, the estimate is not affected by the measurement, and hence, the
bandwidth is zero. As K increases from zero, a larger portion of the
noigy measurement is incorporated in the estimate, and fhe higher fre-
quency fluctuations become visible. This corresponds to a higher fre-
quency bandwidth.

The Kalman filter performs two different functions. First, as
already mentioned, is noise filtering. The second function is state
reconstruction from a measurement vector having fewer elements than the
number of states. For example, let R = 0 indicating no measurement
noise, then

R(k+l) = M(k+L)H [HM(k+L)ET] L. (2.5.9)
Substituting (2.5.9) into (2.5.5) gives
P(k+l) = [T - M(k+L)HY [HM(k+1)HT ] HIM (k1) (2.5.10)
Post-multiplying by HT,

P(K+1)HT = M(K+1)HY - M(k+1)HY[HM(k+1)HT] TEM(k+1)HT

P(k+1)HT = 0 (2.5.11)
Now if H has full rank, P(k+l) = 0 indicating that once the z(k+1)
measurament is processed the state is known exactly. This is intuitive-
ly satisfying. On the other hand, if H does not have full rank, then
P(k+1l) is simply the least-square-estimation-error associated with
observing a reduced number of measurements.

The Kalman filter has a predictor/corrector structure. First,
the current filtered estimate is extrapolated to the next iteration,
and then a correction term is added when the subsequent measurement is

processed. The amount of correction is determined by subtracting the

actual measurement from the predicted measurement, and multiplying by
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the Kalman gain, as shown in equation (2.5.2). The measurement residual
(also called the 'innovation' [K-3] is defined as,

Z(k+1) = z(k+l) - HR(k+1/k) (2.5.12)
It is now shown that the measurement residual is a zero mean white
gaussian random process. Substituting for z(k+l) using (2.5.1) and
x(k+Ll/k) using (2.5.2) gives,

z(k+1) Hlox(k)+¥u(k)+Tw(k)] + v(k) - H[eg(k)+¥u(k)]

]

Ho(x(k)-%(k)) + HIw(k) + v(k) (2.5.13)
Taking the expected value of each side gives, |

E{z(k+1)}

HO(E{x(k)}-%(k)) + HTE{w(k)} + E{v(k)}
=0 (2.5.14)

Also, using (2.5.13), and defining %(k) = x(k)-%(k),
B

E{32 HOE{ % (k)% (k) }oTHT + HTE{w(k)w" (k) }TTH® + E{vv'}

HOP (K)o H® + HIQU H® + R

1]

H[oP(K)®~ + IQrr]HT + R

E(z(k)27(k)} = EM(k+1)HT + R (2.5.15)
Comparing equations (2.5.15) and (2.5.4), it is seen that the measure-
ment residual covariance is available from the Kalman filter equations.
The whiteness of the measurement residual process is shown by
substituting equation (2.5.13) into,
E{2(kH) 27 (k) }
E{Z(kHN) 2T (k)} = [HOR(kHN-1) + HIw(k+N-1) + v(k+N-1)]

[Ho%(k-1) + HTw(k-1) + v(k-1)]T (2.5.16)



24

Because w and v are both white gaussian processes and are uncorrelated,

0

E{w(kN-1)w . (k-1) }

E{w(k+N-1)v ™ (k=1) }

]

0
Also, due to the optimality of the Kalman filter, the estimation error
is uncorrelated with the noise sequences w and v. Moreover, the estima-
tion error has an auto-correlation function (see [M-4]).

Z(k+N,k) = P(k)S(W) (2.5.17)
Hence,
THT

E{Z (k+N) zT(k) } H@E{S&(k+N-—l)iT(k—l) 1o

=0 (2.5.18)
In the actual computations a better formula is used in place of
equation (2.5.5). This equivalent formula is
P(k+l) = [I-K(k+1)HIM(k+1) [I-K(k+1)H] T + KRK' (2.5.19)
Equation 2.5.19 is superior to equation (2.5.5) because it guarantees

that P(k+l) remains symmetric despite accumulated computer round-off

errors.



3.0 THE MODIFIED PARTITIONED ADAPTIVE ESTIMATOR

3.1 Introduction

The main result of this chapter is the development of an estimator
for highly nonlinear systems based upon the structure of a stochastic
adaptive estimator. In addition, a design method will be presented
that will be applicable to a large class of nonlinear systems. The
estimator has several key advantages over the other existing methods.
First, the structure of the adaptive estimator is an arrangement of
linear filters. This allows the off-line computation of a large per-
centage of the filtering equations, thus reducing the on-line cycle
time of the estimation algorithm. Furthermore, this structure takes
advantage of the powerful methods of linear systems and linear estima-
tion theory which are at a much higher level of development as compared
to nonlinear estimation theory. Second, the estimator is readily im-
plemented in a parallel processing type of organization. This has ad-
vantages in computational gpeed and estimator redundancy.

The existing estimators for ncnlinear systems can be grouped,
loosely, into linearization methods and adaptive methods. The best
known of the linearization methods is the Extended Kalman Filter (EKF)
[G=3]. This algorithm requires that the nonlinear equations be ex-
pressed in a Taylor series expansion with the expansion point being
the last state estimate. The linear terms of the Taylor series form
the bases for filtering equations that are similar to the Kalman filter-
ing equations. If the nonlinear system ié well specified, then the EXF

can be very accurate. However, if the nonlinear system model is inexact,
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then the EKF will diverge. The requirement for a precise model is a
major disadvantage of this method. Another disadvantage of the EKF is
the formidable amount of data processing that is required between meas-
urements. he Taylor series terms must be re-evaluated at each itera-
tion and, therefore, the filter equations must be solved on-line.

A motivation for applying adaptive techniques to the nonlinear es-
timation problem is that a nonlinear system can be thought of as a lin-
ear system having unknown time varying parameters. If these parameters
could be identified at each iteration, a linear estimator could be con-
structed that would give nearly optimal estimates. Several methods have
been developed and applied successfully to plants having relatively small
nonlinearities. That is, the usual trajectory of the state vector is
such that the nature of the plant changes slowly with time. Many of
these methods are based on the adaptive estimator structure introduced
by Magill [M-1] and refined by Lainiotis et al, and will be referred to
as "Partitioned Adaptive Estimators' or simply PAE's [L-2]. Moose and
Wang developed an estimation algorithm for a linear plant undergoing
random configuration changes that could be modeled as a semi-Markov
process [M=2]. A major advantage of this method is that the designer
can utilize more of the available a priori information regarding the
plant behavior to develop a better estimator. This estimator will form
the basis of the nonlinear estimation algorithm developed in this chap-
ter.

Athans et al applied an adaptive estimation technique to the noun-
linear flight dynamics of the F-8c aircraft. The estimator was part of

an overall adaptive controller referred to as "Multiple Model Adaptive



Control" [A-1]. It consisted of a bank of Kalman filters, each matched
to a specific flight condition. 1In addition, z learning sectioq util-
ized the measurement residual of each filter to identify the actual
current plant configuration. The simulations that were conducted in-
dicate that the method would track the aircraft configuration changes
provided that sufficient time was spent in each configuration. Brown
and Price applied the PAE method to a maneuverable target described by
Singer's acceleration model [B-1]. They found that the estimator could
not track the plant when it underwent relatively rapid maneuvers.

The fact that the PAE algorithm cannot track a plant undergoing
rapid configuration changes is not surprising because, as discussed in
the sections to follow, the algorithm was not designed to do so. It is
inherently an identification algorithm and works excellently in that
type of problem, but poorly when required to track a rapidly changing
plant.

Section 3.2 analyzes the operation of a specific PAE algorithm
based upon semi-Markovian plant modeling. This particular algorithm
has features that enable it to be readily modified to track rapidly
changing plant configurations. This modification is described in
Section 3.3, and an example is given. The extension of this modified
algorithm to the nonlinear estimation problem is straightforward and
is done in Section 3.4, with a design example discussed in detail. The

advantages and disadvantages of the method are discussed in Section 3.5.



28

3.2 The Partitioned Adaptive Estimator with Semi-Markov Plant Modeling

The structure of the Partitioned Adaptive Estimator is shown in
Figure 3.2.1. First introduced by Magill [M-1], the estimator consists
of a bank of Kalman filters, called elemental estimators, each matched
to a possible plant configuration. In addition, a learning or adaptive
section transforms the set of elemental estimates, ii(k), to an overall
estimate, ®%(k). The identification problem is defined to be the joint
problem of estimating the state and identifying the configuration of a
plant that is in an unknown, but unchanging, configuration. Magill
proved that the optimal estimate for the identification problem is a
weighted sum of the elemental estimates. The time varying weighting
coefficients, Tos perform the identification function of the algorithm.
Several methods exist for calculating LIg The differences are primarily
due to the extent of a priori information that is assumed about the
plant, and how this information is assimilated into the calculations
[L-2][A-1][M-2].

In operation the elemental estimators are all initialized with the
same initial guess and uncertainty covariance matrix, and the weighting
coefficients are initialized to reflect the a priori knowledge, if any,
of the starting configuration. As the plant measurements are processed,
the weighting coefficients become time varying a posceriori probabili-
ties of the plant being in the respecuive configurations. Hawkes and
Moore derived an upper bound for the estimation mean square error and
proved that the PAE algorithm will converge exponentially to the mean
square error of a perfectly matched Kalman filter [H-3]. A major impli-

catioun of this result is that one of the weighting coefficients will
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approach unity, thus identifying the plant configuration.

Moose extended the PAE algorithm to the switched linear plant prob-
lem by incorporating a statistical description of the plant configura-
tion changes into the computation of the weighting coefficients [M-2].
The net result is an identification algorithm that is sensitized to the
possibility that a configuration change can occur. For completeness,
the derivation of this method is synopsized here.

Given a switched linear plant description,

x(k+1l) = @ix(k) + Yiu(k) + Fiw(k)

z(k+1) = Hx(k+l) + v(k+1)

@ie{él @2 ...@m}

wis{wl Y, ...tvm}

Pie{Pl P2 ...Pm} (3.2.1)

The system matrices switch randomly amongst the M possible plant config-
urations.
The optimal estimate of the state at time k+1 is
2(k+1) = E[x(k+1)/&(k), z(k+1)], (3.2.2)

(k+1) = [ x plx(k+l) = x/&(k), z(k+l)]dx. (3.2.3)

-l0

And using si(k) to represent the ith plant configuration at time k,

N
pIx(k+l)=x/2(k), z(k+1l)] = £ p[x(k+l)=x/%(k), z(k+l), si(k+l)]ﬂi(k+l),
i=1
(3.2.4)
where

Hi(k+l) = Prob. {si(k+l)/i(k), z(k+1)}. (3.2.5)

The well known result that %(k+1l) is a weighted sum of the individual
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parameter-conditioned estimates is now forthcoming. From (3.2.2) with

expression (3.2.4) used for the density function

N
2(k+1) = I %, (k+DL)I, (k+1), (3.2.5)
j=1 1 i
where
ii(k+l) = Elx(k+1)/%(k), z(k+1), si(k+l)]. (3.2.7)

The key to (3.2.5) lies in the computation of Hi(k+1) since ii(k+l)
can be obtained by the standard Kalman filter algorithm for i = 1, 2,
., N. By Bayes' rule
plz(k+l) /s, (k+l), (k)] P{s, (k+1)/&(k)}

I, (ktl) = ’ (3.2.8)
plz(k+l)/&(k)]

.

for each i =1, 2, ..., N. Since the denominator is not dependent on i,
the normalizing can be done without calculating p[z(k+1l)/%(k)] through
the relation
g Hi(k+l) for any k. (3.2.9)
i=1
The probability density p[z(k+l)/si(k+l), %(k)] is approximately normally
distributed and will be represented by a Gaussian density function whose
mean and covariance are available from the parameter conditioned Kalman
filter algorithm. Thus, separate filters are constructed, one for each

linearized region 853 i=1, 2, ..., N. The ith filter algorithm is

given by equations (3.2.10) to (3.2.13) below [M=4].

xi(k+1) = @iﬁi(k) + wiu(k) + Ki(k+1)[z(k+1) - Hiéiﬁi(k) - HiWiu(k)],
(3.2.10)

_ T T
Mi(k+l) = @iPi(k)fbi + FiQPi, (3.2.11)
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_ T T -1
Ki(k+1) = Mi(k+l)Hi[HiMi(k+l)Hi + R] ~, (3.2.12)
Pi(k+1) = [I - Ki(k+l)Hi]Mi(k+l), (3.2.13)

where Q = E[w(k)wT(k)], R = E[v(k)vT(k)], and 21(0) and Pi(O) are initial
conditions given in terms of the ith model statistics. Using the abbre-

viated notation that for each i =1, 2, ..., N
P[z(k+l)/si(k+l), g(k)] = Pi(Z(k+l)); (3.2.14)
then, from (3.2.1) and (3.2.11) the Gaussian. density mentioned above is
P, (2) = D, exp{- 32V, 2}, (3.2.15)

where Vi = HiMi(k+l)H§ + R and Di is the appropriate normalizing con-
stant for the density function. The time dependence of % in (3.2.15)
was dropped to simplify the expression.
Finally, the numerator factor P{si(k+l)/ﬁ(k)} in (3.2.8) can be ex-
panded as follows:
N
P{si(k+l)/ﬁ(k)} = 51 P{si(k+l)/sm(k)}P{sm(k)/ﬁ(k—l), z(k)},

. (3.2.16)
where the conditioning information (k) in the second factor has been
equated to (&%(k-1), z(k)) and the conditioning on %(k) in the first fac-
tor has been dropped because of its redundancy with sm(k). Thus, the
first factors of (3.2.16) represent the semi-Markov probabilities of the
plant's transitions. The effect of these transition probabilities will

be discussed subsequently in detail. The second factors of (3.2.16)

are the probabilities Hm(k) calculated at the previous stage for m = 1,
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2, ..., N.

To summarize, the adaptive estimator described above consists of a
bank of filters and a separate algorithm which takes inputs from the
filters to generate the time-varying probabilities Hi(k); i=1, 2,
N. Figure 3.2.2 illustrates the block diagram for the adaptive estima-
tor.

The computations for the probabilities Hi(k) can be put into a
more instructive recursive form as shown in (3.2.17). From this struc-
ture the effect of the transition probabilities eji = P{si(k+l)/sj(k)}

can be studied.

_ - — - e -
I, (k+1) Py (2(k+1)) 817 9y1 - Oy nl(k)
0

i
2(k+l) pZ(Z(k+l)) 612 922 .o eNZ HZ(k)
. =Crt1 . . .

0 .

LHN(k+1 PG |8y By --v Oyl | Ty (B

(3.2.17)
where pi(Z(k+l)) = p[E(k+l)/si(k+l)] and Ck+l is a normalizing constant

calculated so that {Hi(k)} N is a probability set at each time k.
i=1

For a Kalman filter perfectly matched to a plant the measurement
residual 2(k+l) = z(k+l) - H[6&(k) + Tu(k)] is a white, zero-mean Gauss-
ian random sequence with covariance V = H M(k+l)HT + R, see (3.2.11).
Thus, the probability density function can be represented as the scalar-

valued function of the m-vector Z(k+l) by

T

p(2) = D expl- %z v iz, (3.2.18)
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Showing Semi-Markov Addition.
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S N
2 2

where D = (2m) |v| . Note that V

is available from each separate
filter algorithm, see (3.2.12).

The parametefs eji represent the probability of the plant's chang-
ing from configuration si to configuration sj during a sample interval.
These transition probabilities can be pre-computed exactly [H-2] if sta-
tistical knowledge is known concerning the changes of configuratiom.
Otherwise, the eij may be adjusted to achieve the desired degree of fil-
tering and speed of learning in an empirical manner as suggested by the
following analysis.

Equation (3.2.17) can be viewed as a discrete-time filter where the
coefficients eij provide the coupling from one time step to another.
From (3.2.17)

N

L 6.0
ji

I, (k+1) = [C
i jop 313

1 () 1p, (2(k+1)), (3.2.19)

for i =1, 2, ..., N. In general, the time-varying probabilities Hi(k)
will lag the density wvalues pi(Z). The extent to which this is true is
demonstrated by considering two limiting cases, corresponding to no a

priori knowledge and to total a priori knowledge, respectively. Case 1:

8. =1 i,j=1, 2, ..., N. From (3.2.19)
_ 1, .,
Hi(k+l) = [Ck+l N]pi(z(k+l)), (3.2.20)

for i =1, 2, ..., N. 1In other words, the raw density values are norm-
alized to be the updated probabilities. Thus, (3.2.20) provides no ad-
ditional "filtering" and the variations of the Hi(k) will appear to be

very noisy. At the same time, however, the response time for detecting

changes in configuration will be minimal. Now consider a second extreme
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where the off-diagonal terms of the 6-matrix are zero.
1, 1 = j

Case 2: ei. = Gi. =

J J 0, i #3; 1,5 =1, 2, ..., N.
Again, from (3.2.19)

= 301
I{i(k+l) [ck+lni(k)]pi(z(,c+1)), (3.2.21)

fori=1, 2, ..., N. In this case the Hi will tend to lag the indica-
tions provided by the pi(i). As an extreme condition, with Hl = 1 and
Hi = 0 for i # 1 at some time, there is no response to the residual den-
sities. This total filtering condition is intuitively satisfying based
upon the assumption of total a priori knowledge. In practice, there is
never total certainty about the plant configuration and if e.g. Hi =1

-30

with I, = 10 when a configuration change is made from sy to sj, then

3

from (3.2.21) Hj begins to increase (since pj > pi). However, because
Hj was initially so small, a number of iterations is required before Hj
> Hi’ thus indicating that a transition has, in fact, occurred. This
delay is referred to as the learning time of the adaptive estimator.

The two extreme cases just considered provide some insight into the
learning mechanism; but, in general, the Bij values will be chosen be-
tween these limiting cases. It has been found empirically that a useful
form for the 6 matrix is to make the diagonal terms equal and close to
unity and the off~diagonal terms equal and small. The off-diagonal
terms, although small, are critical in determining the learning time.
They act as an influence on the lower limits to which the probabilities
can drop. This can be seen from (3.2.19) by assuming that the plant is

holding in configuration sj (thus, p, > P; and Hj = 1, and noting that

3



P.
1 i
8..p, = 9,, — (3.2.22)
8,.p. ip,’

Hi(k+l) =

where pi is consistently small. Henceforth, Hi will remain at this small
value until the plant changes to a new configuration.

When choosing the eij parameters, a compromise must be made between
estimator responsiveness and noise immunity. The smaller the off-diagon-

al terms, the longer the learning time, but the less likelihood of false

identification.

A program was written to quantitatively examine the effect of the

semi-Markov matrix on learning time. The results are summarized below.

Example 3-1

Verification that off-diagonal terms being zero will cause Hi to

approach zero for all but one probability. Given,

1072

8 =1; p(z) = 1073 for all k; 1(0) =

-5

1
J

10

Wl Wl W=

r

—

Table 3.2.1a gives Hi(k) for the three configurations. As expected, Hl

rapidly approaches unity whereas HZ and H3 become asymptotically small,
with H3 approaching zero faster.

Example 3-2

Verification that non-zero off-diagonal terms will lead to steady

state values for II. Given,

98 .01 .0i 1072

6= 1.00 .98 .01|; p(z) = 10 °| for all k; I(0) =

.01 .01 .98 107°

Wl Wl Wl

[
[
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Table 3.2.1 Time-Varying Weighting Coefficients
For Different Semi-Markov Matrices

(a) 6 = I; weights approach zero.

Time Hl II2 II3
1 3.333E-01 3.333E-01 3.333E-01
2 9.083E-01 9.083E-02 9.083E-04
3 9.901E-01 9.901E-03 9.901E-17
4 9.990E-01 9.990E-04 9.990E-10
5 9.999E-01 9.999E-05 9.999E-13
6 1.000E 00 1.000E-05 1.000E-15
7 1.000E 00 1.000E-06 1.000E-18
8 1.000E 00 1.000E-07 1.000E-21
9 1.000E 00 1.000E-08 1.000E-24
10 1.000E QO 1.000E-09 1.000E-27
11 1.000E 00 1.000E-10 1.000E-30
12 1.000E 00 1.000E-11 1.000E-33
13 1.000E 00 1.000E-12 1.000E-36
14 1.000E 00 1.000E-13 1.000E-39
15 1.000E 00 1.000E-14 1.000E-42
16 1.000E 00 1.000E-15 1.000E-45
17 1.000E 00 1.000E~16 1.000E-48
18 1.000E 00 1.000E-17 1.000E-51
19 1.000E 00 1.000E~-18 1.000E-54
20 1.000E 00 1.000E~-19 1.000E-57
21 1.000E 00 1.000E-20 1.000E-60
22 1.000E 00 1.000E-21 1.000E-63
23 1.000E 00 1.000E-22 1.000E-66
24 1.000E 00 1.000E~-23 1.000E-69
25 1.000E 00 1.000E-24 1.000E-72

(b) Off-diagonal eij = ,01; weights have lower bounds.

Time I I I

1 - 2 3
1 3.333E-01 3.333E-01 3.333E-01
2 9.083E-01 9.083E~-02 9.083E-04
3 9.891E-01 1.089E-02 1.208E-05
4 9.979E-01 2.117E-03 1.031E-05
5 9.988E-01 1.231E-03 1.022E-05
6 9.988E-01 1.142E-03 1.021E-05
7 9.989E-01 1.133E-03 1.021E-05
8 9.989E-01 1.133E-03 1.021E-05
9 9.989E-01 1.132E-03 1.021E-05
10 9.989E-01 1.132E-03 1.021E-05
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Table 3.2.1b verifies equation (3.2.22), i.e. I, reaches a steady state

=

value of

T, = 6.,0,(2)/p (2) = (.01)(1073y /1072 = 1073

Example 3-3

Verification that learning time depends on off-diagonal entries.

Given,
.998  .001  .001 —10‘2_ 10"20-
o = 1.001 .998 .00L|; p(2) = |1073]; m(o) = | 1
.001  .001 .998 1073 10720
Table 3.2.2a shows that 9 iterations are-;eq;;red for Hi—to ;;ange from
10-20 to approximately unity.. For
s 10710 19710]
o = (10710 1. 10710
10710 10710 g,

16 iterations are required as shown in Table 3.2.2b. For a greater diff-
erence in probability density values, the learning time decreases, as
shown in Table 3.2.2c.

The PAE algorithm with the additional semi-Markov ingredient has
been shown to give good tracking performance for plants having configu-
ration changes that occur at a rate that is low when compared to the
actual plant dynamics [M-2][M-5]. A large number of physical situations
fall in this category. For example, an aircraft undergoing a change in
dynamics due to, say, a change in altitude. However, for plants having
rapid configuration changes, the method will give poor results. This is

the subject of the next section.
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Semi-Markov Matrices and Different p(Z).

Table 3.2.2 Time-Varying Weighting Coefficients for Different

() Off-diagonal 8, = .00L; pl(z) = [107% 1073 1073

Time Ill II2 II3

T 1.000E-20 1.000E 00 1.000E-20

2 9.911E-03 9.891E-01 9.911E-04

3 9.911E-02 8.991E-01 1.811E-03

4  5.258E-01 4.727E-01 1.478E-03

5  9.171E-01 8.247E~02 4.319E~04

6  9.908E-01 9.009E~03 1.549E~04

7 9.989E-01 1.008E~03 1.166E~04

8  9.997E-01 2.011E-04 1.119E-04

9  9.998E-01 1.203E-04 1.114E-04

10 9.998E-01 1.122E-04 1.113E-04

11 9.998E~01 1.114E-04 1.113E-04

12 9.998E-01 1.113E-04 1.113E-04

(b) 0Off-diagonal eij = lO-lO; pT(i) of Part (a).

Time T, T, T,

1 1. 000E-20 1. 000E 00 T.000E-20

2 1.000E-09 1.000E 00 1.000E-10

3 1.100E-08 1.000E 00 2.000E-10

4 1.110E-07 1.000E 00 3.000E-10

5 1.111E-06 1.000E 00 4.000E-10

6 1.111E-05 1.000E 00 5.000E-10

7 1.111E-04 9.999E-01 5.999E-10

8 1.110E-03 9.989E-01 6.992E-10

9 1.099E-02 9.890E-01 7.913E-10

10 1.000E-01 9.000E-01 8.111E-10

11 5.263E-01 4.737E-01 4.795E-10

12 9.174E-01 8.257E-02 1.010E-10

13 9.911E-01 8.920E-03 2.172E-11

14 9.991E-01 8.992E-04 1.227E-11

15 9.999E-01 8.999E-05 1.124E-11

16 1.000E 00 9.000E-06 1.112E-11

17 1.000E 00 9.000E~07 1.111E-11

(¢) 6 of Part (b); pi(3) = [107% 1072 10
Time I, T, T,

1 T.000E-20 T.000E 00 1.000E-20

2 1.000E-07 1.000E 00 1.000E-10

3 1.001E-04 9.999E-01 2.000E-10

4 9.099E-02 9.090E-01 2.727E-10

5 9.901E-01 9.891E-03 4.056E~12

6 1.00E 00 9.990E-06 1.051E-13

7 1.000E 00 9.990E-09 1.001E-13

8 1.000E 00 1.009E~11 1.001E-13
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3.3 Modified PAE Algorithm

Incorporating the semi-Markov statistics into the weighting coeffi-
cient calculations prevents the weights from going to zero. This is
necessary if the estimator is to track a plant that will undergo config-
uration changes. However, the following analysis of the filter operation
reveals that more is required if the estimator is to track a plant that
has configuration changes occurring at a rate comparable to its own dy-
namics.

As previously discussed, the PAE algorithm consists of a bank of
Kalman filters operating in parallel on the measurement data. The Kal-
man filters have a predictor/corrector structure. First, the future
state is predicted from the current estimate and a model of the plant
dynamics. Second, a correction is added to this predicted value when
the noisy measurement is received. The amount of correction is deter-

mined by multiplying the measurement residual by the Kalman gain, i.e.
2(k+1) = ¢iﬁ(k) + Ki(k+l)[z(k+l) - Hi¢ii(k)] (3.3.1)
where K is given by equation (3.2.12). Regrouping gives
2(k+1) = (I - KiHi)¢iﬁ(k) + Kiz(k+l). (3.3.2)

When the Kalman filter is initialized, K is large and more measurement
data is incorporated into the estimates. Consequently, the estimator

converges fairly quickly to the actual plant state. The eigenvalues of
(I-KH) can be shown to lie inside the unit circle, thus the Kalman fil-

tering algorithm is inherently stable. See Chapter Two.
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As the Kalman gains decrease, all the filters except the one
matched to the plant will diverge. Eventually, the gains will reach
steady state, and the diverging filters will stabilize around respective
levels. The differences between these levels and the actual plant state

are referred to as bias errors. Rewriting equation (3.2.2),
Ri(k+l) = ¢ixi(k) + Kizi(k+l)

where,

Zi(k+1) = z(k+1l) - Hi¢iﬁi(k) (3.3.3)

At first Zi is relatively small because all the filters have converged
to the measurement sequence. The estimate, ﬁi, propagates mainly
according to ¢i. 1f ¢i is not the same as the plant, ii diverges and
Zi increases. However, Kizi acts as a correcting term on %, i.e. if %
is diverging positively with respect to the plant, then the measurements
on the plant will be less than those predicted by the filter, Zy 41 <
Hi¢iﬁi(k+l), and thus Z will be negative. Eventually, Z will be suffi-
ciently large so that the correction at each iteration just offsets the
additional error introduced by the mismatched dynamics, and an equili-
brium bias error is attained. (Leondes and Pearson derived an upper
bound for this bias error due to mismatch [L-3].)

At this point one filter is tracking the plant and the others are
biased off the plant. The weighting coefficients indicate this by their
values; nearly unity for the tracking filter, and approximately zero

for the other filters. Now suppose a configuration change occurs. One

of the other filters is now matched to the plant, but is also giving
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bad estimates due to its initial bias error. Moreover, because the Kal-
man gain is at a small steady state value, a large number of iteratiomns
will be required before the bias error is subtracted away. Eventually,
however, the newly matched Kalman filter will converge to the plant and
start tracking it with small error. This is due to the fact that the
Kalman filter is stable, as mentioned earlier.

The convergence time depends on the steady state value of Ki' A
larger value will lead to quicker convergence. From equatioms (3.2.11),
(3.2.12) and (3.2.13) it is seen that the gain can be artificially in-
creased by increasing the value of Q used in the system description.

The drawback to doing this is that the state estimate will always con-
tain more of the noisy measurement.

A better approach is to detect when a configuration change occurs
and then re~initialize the error covariance matrices to appropriately
large values, and the weighting coefficients to the equal uncertainty
condition. All the filters will then quickly converge to the measure-
ments and the proper filter will begin tracking the plant. Shortly,
the Kalman gains will decrease to their steady state values, so that
only during the re-initialization period will large noise levels be
present in the estimate. The adaptive estimator as constructed contains
all that is needed to detect plant configuration changes. The key ob-
servation is that, when a transition occurs, the measurement residual
values for the previously tracking filter will steadily increase. Thus,
monitoring a filtered version of the measurement residual probabilities,
i.e. the weighting coefficient for the tracking filter, will be suffi-

cient to identify a transition. To summarize, Hi of the tracking
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filter will be monitored. When Hi falls below a predetermined threshold,
all the filters will be re-~initialized. After a brief convergence time,
Hj of the newly tracking filter will be approximately unity. At this
time, Hj will be monitored to detect a second configuration change.

An example will illustrate the operation of the filter both with
and without the gain re-initialization mechanism.
Example 3-4

The plant will switch randomly among the three configurations:

X, 0 1 _xf 0 0 u 0
;¢ = + + w (3.3.43)
X -30 -1}|x 1 -63.2 1 1
2 2] L=
'xl" 0 1 Txl" 0 0] [u 0
Syt + + + w (3.3.4b)
X, 0 -1 XZ 1 0] 1 1
Txl’ 0 17 [x, 0 0 [[u 0
SB: = + + w (3.3.4¢)
X -30 -1]|x 1 63.2 1 1
L2 — 2 -

Where 'u' is a deterministic input, and 'w' is a random disturbance in-

put. Notice that configurations s, and s

1 3 differ only in their input

coefficient matrix.

An adaptive estimator using three Kalman filters was constructed
according to the previous discussions. A computer simulation was per-
formed under various conditions with the following results.

Referring to Figure 3.3.1, the plant is initially in configuration
1, with x(0) = -4.8. Noisy measurements are taken on both position and
velocity; the noise covariance is 1.0 for both position and velocity;

and the input is a step of 12.0. At time t = 1.05 seconds (15 itera-
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tions), the plant switches to configuration 2.

Figure 3.3.la shows the actual plant position as a function of time,
and the three Kalman filter position estimates. Filter 1 tracks the
plant very well during the time the plant is in configuration 1. When
the plant switches, filter 1 starts to diverge and filter 2 starts to
converge. However, filter 2 is not providing good estimates until t =
3 secs.

Table 3.3.1 is a table of the filter weighting coefficients, Hi’
corresponding to a semi-Markov matrix

.996 .002 .002
8 = |.002 .996 .002].
.002 .996 .996

Initially, I, quickly approaches unity, whereas HZ becomes very small

1
(II2 is set to zero whenever the exponent would otherwise cause under-

flow). After the switch, I, increases steadily until at time t = 1.4

2
secs., H2 is unity. Hence the learning time is about .35 seconds.
Table 3.3.2 corresponds to
1 1 1
6 =1/3 |1 1 1}.
1 1 1
It was shown earlier that for this choice of semi-Markov matrix,
the weights will follow the measurement residual probabilities, noise
and all. 1Indeed, at iterations 7 and 8, because of the large noise
present, Hl is erroneously low.

Figure 3.3.1b shows the overall estimate corresponding to the

weights in Table 3.3.1.
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From the previous results it is seen that after a plant transition
there is a relatively long convergence time (not to be confused with
learning time) before the filter matched to the new configuration begins
tracking the plant. Performance will be improved if the convergence
time is decreased by detecting the configuration change and reinitializ-
ing the Kalman filter gains.

The previous example was run again with the addition of the above
switch detection logic. The following improved results were obtained.
See Figure 3.3.2 and Table 3.3.3. Figure 3.3.2a is identical to Figure
3.3.1b up until t = 1.4 seconds, at which time the switch detection log-
ic detects a transition. The filters are then reinitialized and Kalman
filter 2 begins tracking the plant. It was found that increasing the
off diagonal entries in the semi-Markov matrix decreased the learning
time, thus reducing the large spike at t = 1.4 seconds. See Figure 3.3.
2b. Table 3.3.3 gives the weighting coefficients corresponding to
Figure 3.3.2a. The arrow at t= 1.4 seconds indicates the reinitializ-
ing of the filters; i.e. all the weights are made equal.

3.4 Nonlinear Estimation Using the Modified PAE Algorithm

A nonlinear system can be approximated in different regions by
corresponding linear systems. Moreover, a set of linear systems can be
assembled to satisfactorily approximate the nonlinear system over its
entire operational range. Now, as the state of the nonlinear plant
moves through the state space, it will continuously move from a region
closely approximated by one linear model to another region closely ap-
proximated by a second linear model. If Kalman filters were matched to

the various linear approximations, the filter matched to the region that
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the plant is currently in will provide better estimates than the other
Kalman filters. This motivates the use of the adaptive estimator struc-
ture discussed in Section 3.3 for nonlinear systems.
A general nonlinear plant model is given by

x = F(x,u) (3.4.1)
where x is a vector of plant states and u is the vector of inputs. The
actual nonlinearities implied by the function f in (3.4.1) are assumed
to be known in some form, typically as curve-fitted information from
tabulated data or a combination of tabulated data and analytical ex-
pressions. From the nonlinear data, linear models are developed by ex~-
panding (3.4.1) in the neighborhoods of a preselected set of points (xi,
ui)’ i=1, 2, ..., N which represent the "centers" of a set of regions

which forms a partition set for the complete configuration space, i.e.

the space of points (x,u). Using a Taylor series expansion, the set of
linear approximations becomes

X = Aix + Biu + Ci fori=1, 2, ..., N, (3.4.2)

_ af _of _
where Ai = (xi,ui), B, = au(xi,ui) and Ci = f(xi,ui). The expressions

3x i

given in (3.4.2) are used to approximate the plant dynamics for (x,u)
in Si defined by

$; = {(x,u): ||x - xill < ay, Hu - ui[I < by}, (3.4.3)
where a; and bi are chosen from an eigenvalue sensitivity analysis to
insure that each approximating linearization (3.4.2) is within an accept-
able tolerance. The actual partition regions {Ri}, i=1,2, ..., N
are related to the spherical regions {Si} in (3.4.3) in the sense that

Ug R, = U§ S., but that the regions R, are taken to be mutually dis-
i=1"1 i=1"1 i
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joint. In practice, it is not necessary to consider the distinction be-
tween Ri and Si'

From the set of linear approximations (3.4.2) equivalent discrete-
time models are formulated. Thus, the set of approximations becomes

x(k+l) = @i(T)x(k) + wi(T)u(k) + ei(T), . (3.4.4)
for 1 = 1, z,T..., N and where ¢ (T) = exp {A;T}, ¥, (T) = j’o ¢, (t)B.dt
and ei(r) = fo @i(t)cidt. These equations (3.4.4) are equivalent to
those of (3.4.2) at the sample times provided that the inputs u(t) are
held constant during the (uniform) sample intervals, i.e. when u(t) =
u(kT) for kT < t < kT + T. This is a reasonable assumption when digital
control is to be used.

Since the design must consider the system's random disturbances,
discrete noise processes will be incorporated into the approximating
linear models. To do this the equations (3.4.4) are used in addition to
an assumed measurement model which itself has been linearized about the
points (xi,ui) as was done to obtain equations (3.4.2). The complete

set of linearized models is given by

x(k+1l) = <I>ix(k) + wiu(k) + ei + w(k) (3.4.5)

z(k) = Hix(k) + v(k) (3.4.6)
for (x(k), u(k)) in region Si and for 1 = 1, 2, ..., N. The vectors
w(k) and v(k) represent the effective plant disturbance and measurement
noise, respectively.

The basic scheme for partitioning the nonlinear plant assumes a

reasonably accurate nonlinear model. From this nonlinear model, varia-

tions of the open-loop eigenvalues are precomputed off line by calculat-



54

ing the eigenvalues for a multitude of linearized conditions. Once the
key parameters are isolated, i.e. those to which the plant eigenvalues
are most sensitive, eigenvalue variations are then plotted versus these
parameters. Linear regions are then specified according to allowable
tolerances in eigenvalue locationm.

The present approach, while certainly not limited to low-order
plants, is most easily comprehended by developing a simple prototype
example. To this end, consider the simple nonlinear oscillator [0-1]

44y o=, (3.4.7)
where u represents the system input containing both deterministic and
stochastic terms, and y represents a scalar position variable.

A state model for (3.4.7) is given by

kl = x, (3.4.8)

%, = x, - x> + u(t) (3.4.9)
2 2 1 e

zy =% + vy (3.4.10)
z, = X, + 2 (3.4.11)

Equations (3.4.10) and (3.4.11) are the measured variables with vy and

v, representing additive noise. If X1 is used as an expansion point,

2

the linearized system becomes

0 1 0 o u
x = 5 x + 3 (3.4.12)

—3x10 -1 1 leo 1.

Clearly, the linearized system dynamics depend on the value of the pa-

rameter X" By establishing an operating range for the system, say

Ix < 6, the open-loop system eigenvalues vary as shown in Fig. 3.4.1.

1!
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Figure 3.4.1 Variation in System Eigenvalues for the Design Example
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Note that x = 6 represents a significant restoring force, corresponding
to a linear spring constant of 108. Motivated by the open-loop eigen-
value variation, i.e. roughly equal eigenvalue variation, two intervals
were taken; viz.
S, = {a: 0 < a < 15} (3.4.13)
and
Sl = {a: 15 < a < 108}, (3.4.14)

where o is the effective spring constant. With this partition three
filters are effectively used, two differing only in the input matrix as
a result of different bias offsets. The points of expansion for 82 and
Sl and S3 were o = 0 and a = 30, respectively.

Figure 3.4.2 illustrates the three linear approximations to the
cubic nonlinear term. It is seen that the lines intersect at approxi-
mately x = 2.2, which verifies the boundary determined via eigenvalue

< vV5).

variation (i.e. for regiomn Sys |xl|
Inherent in the Kalman filter algorithm is the tendency of the fil-

ter gains to become small as time progresses. This occurs under conti-

tions of large measurement noise versus small system noise. For known

linear plants and their associated Kalman filters, this is usually not

a problem. But for nonlinear plants, or for linear plants with unknown

parameters, it is impossible to identically match the filter dynamics to

those of the plant and a tendency toward divergence can be expected.

The gains become small, little new measurement information in incorpo-

rated into the estimate and the filter values diverge from the actual

plant values. A common practice is to artificially increase the inten-

sity of the plant disturbance, Q, thus insuring that the filter gains
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stay reasonably large. Usually, this is a trial and error process. A
noteworthy exception is the bandwidth modulation technique developed by
Jazwinski [J-1]. His method uses an additional covariance term that is
adjusted sequentially by feeding back measurement residual information.
A more direct method has been devised specifically for the PAE al-
gorithm. From Figure 3.4.2 one can quickly tabulate the error in x be-
tween the exact equation and the approximation for an arbitrary number
of points in a given region. The average error for each region can then
be calculated, i.e. the average error in regions s, and s, is .44, and

1 3

in region S, is 1.0. These errors are upper limits on the estimation
accuracy in the various regions. In addition, the modeling error values
aid in deciding how much additionmal Q should be added to the filiter
equations to maintain desired tracking performance. For example, the-
predicted error covariance equation, (3.2.11), can be augmented as,

M, (k) = §.P, (K)o,  + T.Qr," + Q. (3.4.15)
where P is the error covariance, Q the system disturbance covariance and
Qm the additional modeling error covariance. The magnitude of Qm is
given approximately by the mean square value of error in x, i.e. for

regions s, and S3» Q = .3, and for region Sy» Q = 1.5. The relatively

1

large value in region s, reflects the gross approximation in that regiomn.

2
The modified PAE algorithm of this chapter was carried out on the

previous nonlinear oscillator example for various levels of noise. The
plant was simulated using the Jump-Matrix technique [V-2]. The state
variable description of the oscillator is given in 3.4.8 and 3.4.9.

Defining x, = x 3, the Jump-Matrix description of the oscillator

3 1

becomes
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_xl—l 0 1 o {T?{; —xl— 1 o o Of[x]

Y e T T Y B 0 10 oflx,

Xy o o o o x5 ’ Xy (> o0 o o Xy

u| o 0o o olul+ i+ Lo o o Llu]-
(3.4.16)

These equations were executed at a sufficiently fast rate to keep the
cubic term nearly constant from iteration to iteration, thus insuring an
accurate nonlinear plant simulation.
The plant input, input disturbance covariance, measurement noise
covariance and semi-Markov matrix are
.996 .002 .002
u=12; Q = 4; R = ; 6 = ].002 .996 .002 (3.4.17)
.002 .002 .996
Figure 3.4.3 shows the PAE algorithm tracking the plant very well over
all three regions. The noisy regions near times t = .75 and t = 1.5
are due to the re-initialization of the Kalman filters when the nonlin-
ear plant moves into a different region. Table 3.4.1 gives the weight-
ing coefficient values at each iteration. The times that the estimator
is re-initialized are shown by arrows. Notice that the weighting coef-
ficients are then assigned equal probability values.

3.5 Summary

The nonlinear oscillator example studied in this chapter is a
formidable estimation problem because of the rapid oscillations from
one region to another. It has been shown that the PAE algorithm with

switch detection can track the oscillator quite well. For less extreme
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nonlinear systems the tracking should be even better. In fact, if the
plant time constants are larger than the convergence times of the fil-
ters, then the switch detection part of the estimation algorithm can be
deleted with little loss in overall tracking accuracy. It should be
pointed out, however, that this nonlinear estimation technique is not
intended to compete with the current methods in terms of accuracy.
Rather, it is a fairly straightforward approach with significant advant-
ages in implementation that can be applied to a large class of nonlinear
equations.

This method of nonlinear estimation is readily implemented in a
parallel processing arrangement. FEach Kalman filter can act simultane-
ously on the measurement data (rather than consecutively, as was done in
the simulations). A supervisory computer would then weight the individ-
ual processor outputs (state estimates) to derive the best nonlinear
estimate. Inherent in this implementation is the ease of adding system
redundancy in the form of additional parallel processors. Greater
accuracy is attainable by partitioning the plant into a larger density
of linear approximations. And if the parallel processing implementation
is used, this increase in accuracy will not significantly add to compu-
tation time. Each Kalman filter, being linear, also allows off-line
precalculation of Kalman gains, thus eliminating much of the on-line
computational burden.

Several disadvantages, however, subtract from the general utility
of this method. First, the switch detection performance is quite sensi-
tive to the threshold value. 1If the filters are re-initialized too

often, then the resulting estimate will be unacceptably noisy. On the
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other hand, a threshold value that is too low will allow too much
divergence. Unfortunately, the only sure way to achieve a satisfactory
threshold value is by trial and error. A value that works well for omne
problem may be unsatisfactory for another.

A second disadvantage is the noise that is present in the estimate
during re-initialization. This degradation is due to the inherent
inability of the method to track rapid configuration changes. 1In

Chapter Five an estimator will be developed to remedy this problem.



4.0 STOCHASTIC NONLINEAR CONTROL

4.1 Introduction

This chapter applies the modified PAE algorithm of Chapter Three to
the stochastic nonlinear control problem. A major portion is devoted to
the development of a design procedure for a specific type of problem
referred to as set-point control. This procedure will be applied to the
nonlinear oscillator introduced in Chapter Three. Referring to the
terminology of Chapter One, the nonlinear controller to be developed is
an adaptive controller. Use is made of the Separation-Principle to
subdivide the identification and the control aspects of the design. 1In
addition, the controller is "cautious" in that the feeédback gains depend
on the degree of uncertainty in the state estimates. Before discussing
the advantages of the controller, a brief description of the hierarchy
of control problems and a summary of existing stochastic nonlinear con-
trollers is presented.

The methods of deterministic linear control are by far the most
completely developed of all the control problems. Given the plant dy-
namics, the problem is to determine the feedback gains that will give
the plant the desired closed loop performance. The feedback gains can
be found using classical, modern or optimal techniques. The separation
principle allows the state variable feedback to be determined, assuming
that all the states are available, even though a state reconstructor
(observer) might be required.

Stochastic linear control theory is also very well developed, in

the context of the linear-quadratic-Gaussian, LQG, problem. That is,

64



a linear plant having Gaussian distributed random processes with the
performance index expressed as a quadratic cost functional. The separa-
tion principle, which holds under these restric;ions, allows a Kalman .
filter observer to be designed independently of the feedback gains.

There are no general methods for designing a controller for a
deterministic nonlinear problem. Describing functions have been applied
successfully to a class of problems, primarily relay type switching
functions. The method of input matching [J-3] is effective for controll-
ing plants that can be described using a generalized input/output model.
For most problems, however, the usual approach is to linearize the func-
tion around some operating point and then apply linear control theory.
This method works well if the state of the plant remains in a neighbor-
hood of t?e operating point. But, poor performance and possible insta-
bility may result if the state is not so contained. Oaks and Cook [0-1]
developed a design method for driving a nonlinear plant from one operat-
ing point to another. Their method required the determination of regiomns
of stability around the desired and intermediate operating points by
solving Liapunov stability equations. By overlapping these regiomns,
optimal trajectories were determined to connect the initial, intermedi-
ate and final points. Although elegant, the computational burden of
their method, even for low order problems, is excessive.

The stochastic nonlinear control problem has all the difficulties
of the deterministic problem plus the complication of random system dis-
turbances and measurement noise. The separation principle is not, in
general, valid for this problem. There are basically tweo approaches of

stochastic nonlinear control. The first method imposes the separation
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principle, valid or not, and then employs a nonlinear observer such as
the EKF, to reconstruct the state vector for feedback purposes. If a
single feedback matrix is designed to give suitable performance for all
plant conditions, the controller is said to be "Robust" [D-2]. Alter-
.nately, a set of feedback gain matrices can be calculated based upon
different linearizations of the nonlinear plant. These gains can then
be scheduled according to the state estimates to give more precise con-
trol in the different regions. Gain scheduling is probably the most
widely used method.

A second approach is to use adaptive ;echniques to learn key
parameters in the plant and formulate the control law accordingly.
These nonlinear adaptive control methods are motivated by the observa-
tion that a nonlinear plant can be thought of as a linear plant having
unknown, time-varying parameters. The adaptive app;oach has several
advantages over the linearization approach. First, the plant descrip-
tion is often difficult to ascertain. The linearization of a nonlinear
plant as required by the EKF and by the feedback calculations cannot be
carried out effectively unless the plant equations are accurately known.
On the other hand, the adaptive method is quite tolerant of plant model
inaccuracies. Second, gain scheduling per se does not take into account
uncertainties in the state estimates. Using an inappropriate gain
because of noise in the estimate could very possibly cause an unstable
situation. Adaptive controllers can be designed to reduce this possi-
bility.

The motivation for using the PAE algorithm in closed loop control

is attributed to Deshpande et al [D-1]. It was shown that for unknown
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model parameters the separation principle does not gemnerally hold, and
that the optimal stochastic controller necessarily has a nonlinear struc-
ture. The "Partitioned Adaptive Controller'", PAC, was then motivated

by arguments centered around minimizing a cost functional. Similar
approaches to the adaptive control problem were investigated by Saridis
and Dao [S-5], and Stein and Saridis [S-6]. Athans et al successfully
applied an equivalent technique, called "Multiple Model Adaptive Control"
to the F-8C aircraft [A-1].

The shortcomings of the PAC formulation are the same as those of
the PAE algorithm discussed in Chapter Three. The main problem being
the inability to track, hence control, a plant undergoing rapid configu-
ration changes. However, the modified PAE algorithm with semi-Markov
plant modeling and gain re-initialization eliminates this problem.

In this chapter a modified PAC controller based upon the results
of Chapter Three will be applied to the stochastic nonlinear control
problem. Section 4.2 describes the basic structure of the modified PAC
controller. A specific control problem, set-point control, is solved
in Section 4.3. The nonlinear oscillator considered by Oaks and Cook
is used as a design example. Section 4.4 gives the results of several
simulations of the modified PAC controller. The advantages and disad-
vantages of this method of stochastic nonlinear control are discussed

in Section 4.5.

4.2 The Modified PAC Controller

The structure of the modified PAC algorithm is shown in Figure

4,2.1. A bank of Kalman filters operates in parallel and independently
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on the noisy plant measurements, z. Each filter produces an estimator,
21, for the state conditioned on the plant being matched to that partic-
ular linearized model, S;- Unlike the PAE algorithm, however, a weighted
sum state estimate is not calculated. Instead, each estimate is multi-
plied by feedback gains, Fi’ which are particular to each linearized
model. The overall state variable feedback is then calculated as a
weighted sum of the elemental state variable feedbacks, u,. The weight-
ing coefficients, Hi’ are calculated in exactly the same manner as they
were for the PAE algorithm. Thus, they are nonlinear functions of the
measurements. In addition to the individual feedback gains, each model
will in general have a different linearization constant as seen in
equa;ion (3.4.2). Depending on the control function to be implemented,
these biases may have to be eliminated by subtracting the off-set values,
Hi' For uniform steady state performance, the actual input, r, may
require different scale factors, Gi’ for the different linearized models.
The net plant input is a weighted sum of all three inputs; actual scaled
input, input off-sets and feedback inputs.

This structure is intuitively satisfying. As long as the nconlinear
plant is in one particular region, the filter matched to that region and
the feedback gains for the corresponding linear approximation are being
used in a straightforward state variable feedback control scheme. When
the plant moves to another region, then the weighting coefficients will
automatically update to identify the best matched Kalman filter.

Because of the digital computer in the feedback loop, the control-
ler has a sampled data control structure. Moreover, the measurements

themselves may be available only at discrete times, such as a radar
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signal. The continuous time linearization models must therefore be con-
verted to discrete time models. From the discrete time models, the
required sampled data feedback gains can be determined. A variety of
techniques can be used to obtain the feedback gains. Classical criteria
for the transient response, such as rise-time, overshoot, etc. can be
specified, thus locating the closed-loop eigenvalues. In general, each
linearized region could have a different desired performance, and
therefore different eigenvalues. For larger order systems an optimal
contrql formulation is much more versatile. Both techniques are

reviewed in Chapter Two.

4.3 Set Point Control

An important class of tracking problems consists of those problems
in which the reference variables remain constant over periods of time
which are long relative to desired response times. For such systems it
is customary to call the constant reference variable the set-point for
the system. The specific application of this section is that of set-
point control of nonlinear stochastic systems by which is meant the
design of a suitable controller for the nonlinear plant so that the
controlled output responds to step reference inputs in a desired manner.
The two classical considefations for such a response are the transient
and steady-state behavior. To the extent that these concepts carry
over to nonlinear stochastic control systems, the purpose of the present
design will be to achieve 'zero' steady-state error and a prespecified
rise—time for the controlled response. Of course, the actual error will

never be identically zero because of the disturbance process which is



71

driving the system in a random fashion.

Once the configuration regions have been established, following
the linearization procedure described in Chapter Three, the next step in
the controller design is to construct a set of feedback gains. It is
desirable to maintain a uniform closed~loop system transient response.
This is accomplished by computing the individual feedback gains Fi; 1=
1, 2, ..., N to give the same closed-loop eigenvalues.

In order to complete the controller design, it is necessary to com-
pensate for the offset terms given by the matrices ei in (3.4.5). 1In
addition, designing for a classical type-l response generally requires
the inclusion of input gains Gi as shown in Figure 4.2.1, i.e. the
reference input must be weighted differently for each region to achieve
a zero average steady-state error to step commands. For example, let
the continuous time plant description in region s; be .

X = Aix + Biu + Ci

u
Aix + [BiCi][l]

~ u
AiX + Bi[l] (4.3.1)

The discrete time equivalent is

u

12][1]
If u = Fix(k+l) + Gir + Hi’ then the closed loop system is

x(k+1l) = @ix(k) + [WilW (4.3.2)

Gir + Hi
x(k+1) = [@i + WilFi]x(l) + [Wilwiz]

1

If the reference input, r, is held constant at a value T and if the
closed loop system is stable, then x will reach a steady state value

given by
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x = [(I—@i—W.

ss 11717 ¥41 1657, + [(@=0y =¥ FO¥,  JH; + [(I-0,-¥, F ¥

i2]
(4.3.4)
The unknown scale factor, Gi’ and offset correction, Hi’ can be solved
for the zero steady state error case, Xeg = ro. The result is
-1

Gi = [(I-@i—WilFi)Wil] H Hi = Gi[(I—Qi—WilFi)Wiz] (4.3.5)
The modified PAC algorithm will be applied to the nonlinear oscilla-

tor of Chapter Three. It is desired to achieve set-point control of

F+y+yS=u (4.3.6)

so that the closed loop performance matches that of the linear, criti-
cally damped system,
¥ + 20y + 100y = u (4.3.7)

This corresponds to a double pole at s = =10, which in turn yields a

rise time of approximately 0.4 seconds. 1In addition, it is desired to

have classical type-l steady state performance, i.e. zero tracking error
for step inputs. The following steps outline the design procedure.

Step 1. Decide on the operational limits of the state variables
associated with the nonlinearities. As in Chapter Three, it is
assumed that -6 < x < 6. Later this range will be extended to
-8 < x < 8.

Step 2. Decide on the number of linear approximations required to rep-
resent the nonlinear differential equation. The number and
selection of linear approximations depends primarily on two
requirements. From an estimation point of view the Taylor
series expansion points should be chosen close enough to in-
sure good accuracy. From a closed loop viewpoint it is neces-

sary that the feedback gains calculated from the linear approx-
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imation give suitable closed loop behavior over the range of
the approximation. Moreover, in set-point control it is neces-
sary that each region sufficiently overlap the adjacent regions
so that the actual steady state of the nonlinear plant, using
the feedbacks of an intermediate region, will also lie in the
desired region. This requirement insures the controller's
ability to drive the state from region to region, and is simi-
lar to the overlapping regions of stability constraint dis-
cussed in [0-1]. Fortunately, the control requirements are
usually satisfied if the linearization regions are chosen
solely for estimation accuracy. The three linearized systems
of Chapter Three will be used in this design example and are
repeated below.

X 0 1 lx 0 0 u 0

[75]
]
'—l
+
+
]

X, -30 -1 X, 1 -63.2 1 1

EXN 0o 1Ifx 0 O0f[u [0
S2 1 I,l‘[ + + L
X, 0 -1 Lf 1 0ff 1 1

il

i

Xy 8] 1 Xy 0 0 u u—]
S3 = + + w

x| 230 -1k, (1 e3.2][1 1]

Step 3. Discretize the continuous time linear models, for a
sample time of .07 seconds.

xl‘* .929  .066][x; L0024 - .142][u .0024
S = + { + w

X%_ 1-1.979 .863} X, .066 -3.96 | |1] .066

k+1



ES 1.  .068][x.] .0024  0.][ u .0024
1 VL
52 = —l + + w
%] 0. .932 X, | .063 0.]1 .068
k+1 k
x| .979  .066 F;l .0024  + .142][ u L0024
33 = + + w
| 1.979  .863 B .066 +3.96 1 .066
k+1 k

Step 4. Using the SVF method outlined in Section 3.2, calcu-
late the sampled data feedback gains for each region. First,

the desired continuous time poles s = =10, =10, transform into

the discrete time poles z .5, .5. The feedback gains are then

F. = [-24.2 -11.2]

i
[}

[-53.6 -12.0]

o]
[]

[-24.2 -11.2] (4.3.10)
Step 5. Calculate the required input scaling factors and off-
sets for each region to achieve zero steady state error, using

equation (4.3.5).

Gl = 54.5 Hl = 63.2
G2 = 53.6 H, = 0.0
G3 = 54.5 H3 = -63.2 (4.3.11)

Step 6. Decide on the semi-Markov matrix entries. The
approach taken will be to obtain a balance between noise
immunity and estimator responsiveness. This will be done
empirically. An analytical derivation of the entries, as done
in reference [M-5], is not possible because the Markov transi-
tions between regions and the holding times are very dependent

on both the reference input and on the disturbance inputs.
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After trying several different matrices, the following semi-
Markov matrix was chosen.
.996 .002 .002
8 = |.002 . 996 .002
.002 .002 .996
The results of Steps Four and Five aré summarized in Table

4.3.1.

4.4 Simulations

In this section several simulation results are presented on the
set-point control of the nonlinear oscillator. A nonlinear integration
routine was used for the plant [V-2]. Otherwise, the simulation follows
the adaptive estimation and control algorithms discussed in the previous
sections and in Chapter Threé. Figure 4.4.1 provides a plot of the
oscillator response to a reference step of 4 units, the amplitude 4
insuring a strongly nonlinear response. Note the nonlinear effect of
the oscillation period's dependence on the amplitude. Several closed-
loop simulations were made with the three design regions and associated
parameters given in Table 4.3.1. The three regions in Figure 4.4.1 are
dependent only on position; regions Sl’ 82 and S3 are -6 to -2.2, =2.2
to 2.2 and 2.2 to 6, respectively. Figure 4.4.2 illustrates both the
closed-loop system response to a reference input step of 4 units ampli-
tude, and the relative tracking behavior of the three filters. Note
that the proper filter for region 3 maintains a close track on the plant

T

trajectory. The initial plant state was taken to be [-4.8 01", the

input covariance Q = 1, the measurement noise covariance R and semi-
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Table 4.3.1 Design Parameters for

the Set-Point Control Example

discrete time Fi offset feedforward

feedback gains correction Hi gains Gi
Region - 1 ~24.2, =11.2 63.2 54.5
Region - 2 -53.6, -12.0 0 53.6
Region - 3 -24,2, -11.2 -63.2 54.5

.
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Markov matrix are
.996  .002 .ooz‘{
R = 8 = [.002 .996 .002
0 3 J
.002 .002 .996 (4.4.1)
For convenience, this form of will be denoted as
8 = {diagonal .996, off-diagonal .002}
The actual position response closely follows the design goal of a rise
time of 0.4 seconds.

The effect of increasing the measurement noise if presented in
Figure 4.4.3. Only R has been changed over the conditions of Figure
4.4.2., A high degree of settling is seen even with large measurement
errors present.

In Figure 4.4.4 the initial set-point is again R = 4, but after
2.8 seconds the set-point is changed to -3. For this simulation

Q = 4; R = diagonal {3 10}; 6 = {diagonal .99, off-diagonal .005}.
Here the semi-Markov matrix has been modified to be more semnsitive to
configuration changes. It is interesting to follow the plant weighting
coefficients shown in Figure 4.4.4b. Initially, filter 1 provides good
estimates because the plant position begins at -4.8. In response to
the set-point of 4, the position increases through region S, and into

2

region S At 2.8 seconds the set-point switches to -3 and after a

3°

learning time of approximately 0.8 seconds region S, is recognized.

1
The overshoot at this time (Figure 4.4.4a) is due to the learning time
of the controller. It is seen that the weighting coefficient for filter

3 is dominant until about t = 3.7 seconds, indicating that the control-

ler is using the feedback and input gains based on regions 83, when in
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Figure 4.4.3 Closed-Loop Step Response with Varying Amounts of

Measurement Noise
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actuality the plant is moving through region S, and into region S

2 1

This excessive compensation causes the overshoot. The learning time

can be reduced by increasing the off-diagonal entries of the semi-Markov
matrix. However, this makes the controller more susceptible to noise,
as discussed earlier. Figure 4.4.4b is a plot of plant velocity versus
time. It is seen that the velocity does in fact approach zero when the
position settles out to the input value.

The question arises as to how effective will the control be when
the set-point is between reglons. For example, an input of u = 2.0
attempts to drive the plant between regions S2 and 83, so that neither
filter 2 nor 3 will be giving good estimates. The result, Figure 4.4.5a,
shows both poor transient response and steady state response, i.e., the
position settles out to x = 1.3.

Better performance between regions can be achieved by altering the
linear approximation method in one or more regions. The original method
calls for a Taylor series expansion at the center of a region (a slope
approximation). A different approach is to use a chord approximatiomn.

For example, the cubic nonlinearity in region S, was originally modeled

2
as a line having zero slope. It was determined graphically that a

chord having a slope of 2.5 gives less overall modeling error throughout
the region. Rematching filter 2 to this new linear approximation gives
the improved results shown in Figure 4.4.5b. The plant position settles
out faster to a reasonably close value of x = 1.8.

Attempting to drive the plant outside the design range gives under-

standably poorer results. Figure 4.4.6 shows the position response to a
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(a) Original Taylor Series Approximation.
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(b) Chord Approximation.

Figure 4.4.5 Set-Point Control for u = 2.0 Using Different

Approximations in Region Sz.
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set=-point u = 0.

1 2 3 4 time

Figure 4.4.6 Set-Point Outside the Design Range.
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control input of u = 9. It is seen that the plant position oscillates
around x = 7.0. The operational range of the controller can be extended
by adding more Kalman filters matched to larger values of x. A five-
region controller was constructed and simulated for the position range

of -8 to 8. The two added linear approximations are given below.

X 0 1] [x 0 0 u 0
Sl o< 1 + + w

X, -108  -1] %, 1 ~-432 1 1

x; o 1if[x 0 o[[u] " [o

SS = + + w (4-4.2)

X -108 -1]|x 1 +432)| 1 1

2 2
The three original regions are now SZ’ 53 and 34' (This increased posi-

tion range represents a doubling of the forces involved.) Figure
4.4.7a shows how the plant position follows an input of u = 8 changing
to u = -=4. The corresponding five weighting coefficients are plotted
in Figure 4.4.7b. (To avoid confusion, only the coefficients of
filters 2 and 5 are shown connected.) Again, the learning time lag is
responsible for the overshoot at t = 3.15 seconds.

The semi-Markov matrix entries balance the controllers ability to
follow configuration changes, with its noise filtering ability. The
abcove examples used off-diagonal elements of .002 and .005. It was
experimentally determined that these values gave good overall perform-
ance. To illustrate the effect of larger off-diagonal entries, Figure
4.4.8 is a repeat of Figure 4.4.5b, but with a semi-Markov matrix of

8 = {diagonal .8, off-diagomnal .1}

The plant is clearly out of control. The algorithm is responding too
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Figure 4.4.8 Set-Point Control for & = {diagonal .8, off-diagomal .l1}.
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much to the noise in the system with the result that the feedback and

input gains are constantly being taken from different regionms.

4.5 Summary

A method of nonlinear stochastic control, applicable to a large
class of problems, and having significant advantages in implementation
has been presented. The method is based on partitioning the nonlinear
problem into regions where basic linear control techniques and standard
Kalman filtering theory can be applied. The manner in which the nonlin-
ear plant's state vector moves through the set of regions (called the
configuration space) and the probable holding time spent in each region
are incorporated into the controller. This information is used in con-
junction with the plant measurements to learn which region the plant is
in so that the proper control can be applied.

The structure of the controller is a bank of Kalman filters each
matched to a region of the configuration space. The filter estimates
are multipled by corresponding feedback gains (different regions require
different gains) and the overall state variable feedback to the plant is
computed as a weighted sum of the individual feedback values.

The number of regions used in the formulation of the controller
depends on the design criteria and on the nature of the nonlinear system
itself. For example, a larger operational range or better accuracy will
require more regions. The type and magnitude of the nonlinearity will
also influence the number of regions. It is necessary that the adjacent
regions overlap in order to drive the plant from one region to another;

however, this last requirement is usually satisfied if the number of
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regions is chosen solely to give reasonably good accuracy.

Each Kalman filter operates independently on the current measurement
thus making this controller amendable to pérallel processing. In addi-
tion, the filter gains can be precomputed and stored in tabular format
(unlike most nonlinear filters, such as the EKF [G-3]). These two
advantages yield a very low execution time for the implemented controller.

The modified PAC algorithm has several disadvantages. First, the
PAE cannot, nor was it developed to, compete with the EKF in terms of
accuracy. The estimation portion of the control algorithm is, therefore,
similarly limited. Second, when the set-~point is between the linearized
regions, i.e. both approximations are equally bad, the error between
the set-point and the actual plant steady state can be unacceptable., If
real time computational comnstraints prevent adding more linearized fil-
ters to reduce this error, then a different method of control may have

to be used.



5.0 THE DETECTION OF PLANT CONFIGURATION CHANGES

5.1 Introduction

The PAE algorithm described in Chapter Three performs satisfactorily
for plants having a low frequency of configuration changes. However,
when the changes occur at a rate comparable to the actual plant dynamics,
the estimator can lose track. For cases of this type, the method was
applied successfully only after an ad hoc switch detection mechanism was
implemented to re-initialize the bank of Kalman filters after each con-
figuration change.

In this chapter an algorithm will be developed to track a rapidly
changing switched linear plant. First, the optimal estimator will be
derived. This estimator will consist of a set of time-invariant linear
Kalman filters. Unfortunately, the numbér of filters in the set will
increase linearly with time, which makes the algorithm unrealizable for
all but trivial problems. Next, a practical approximation to the opti-
mal estimator will be developed based on the idea of joint estimation
and detection. A constant number of filters will use the N most recent
measurements to detect the plant configuration and to estimate the plant
state. Various implementation considerations will be examined to improve
estimation accuracy and to prevent divergence. Three examples will be
given to clarify the operation of the algorithm. In additiomn, the track-
ing performance will be compared to the PAE algorithm of Chapter Three,
and to a perfectly matched, unrealizable Kalman filter.

A variety of other interesting problems similar to the switched

plant problem have been studied in the literature. Ackerson and Fu [A-1]

90
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formulated an estimator for a system influenced by randomly changing
noise statistics. The optimal estimate was found to be a weighted sum
of estimates taken from an exponentially growing number of filters.
McAulay and Denlinger [M-1] employed statistical decision theory to
detect maneuvers in a target tracking problem. Their formulation suc-
cessfully merged estimation theory with a generalized likelihood ratio
test to obtain a practical adaptive tracker. The problem of detecting
system component failures, modeled as jumps in certain state variables,
was solved by Willsky and Jones [W-1]. Again, the optimum estimator
proved to be a growing bank of matched filters. A "finite data window"
in conjunction with a generalized likelihood ratio test was used to over-
N .
come the infinite memory problem. Additional discussion on these and

other techniques is found in Chapter One.

5.2 The Optimal Estimator for the Switched Linear Plant

Consider a linear system described by the discrete time state equa-
tions,

X4l <I>(k+l)xk + ‘{f'(k+l)uk + I‘(k+l)wk

Zyl = H(k+l)xk+l + Vitl (5.2.1)

The optimal estimator for this system is simply a matched filter (Kalman
filter), generalized to include the time-varying transition and coeffi-
cient matrices. The above system is deterministic in the sense that the
system matrices are known functions of time.

A second class of systems is that set whose system matrices are

probabilistic functions of time. A frequently encountered example in
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this class is the switched linear plant problem with the state variable

description,
Ky = DyEe 7O+ Qpwy
2t~ B T Vi
where,
@is{¢l, By eees @m}
wis{wl, vz, cees wm}
Pie{rl, rz, cees rm} (5.2.2)

The system matrices switch randomly among the elements of the above three
finite sets. A probabilistic law governing the switching may or may not

be given. For convenience, the elements are regrouped as,

s; = (04, ¥4, TY)

(5.2.3)
where the 3-tuples will be referred to as configurations, and the set,

S, of 3-tuples, the configuration space.

S = {si, i=1, m}

It is desired to comstruct a state estimator for the switched lin-
ear plant problem. First, it is noted that if the configuration changes
and the times they occur are known exactly, then the problem reduces to
the time varying linear system of equation (5.2.1), and the estimator
structure is known immediately. Now consider a switched linear plaant
where the times of the configuration changes are not known in advance.
For now, assume that the initial configuration of the plant is given.

At some later time the plant configuration may change to another of the
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M possible configurations. In addition, it is assumed that the configu-
ration change can occur only at discrete points in time, and that only
one change will occur. This last assumption will be removed later in
the chapter.

At each iteration the plant can change in any of M-1 directioms.
Accounting for the possibility that no change is made during the N time
intervals, the total number of possible paths is (N){(M-1) + 1. This is
illustrated in Fig. 5.2.1, for a plant having M=3 configurations over an
interval of N=15 iterations. The plant is initially in sl, and at each

succeeding iteration a configuration change to s, can occur, as illus-

2
trated by a positive sloped line branching off at that iteration. Like-

wise a configuration change to s, is shown as a negative sloped line.

3
Once a change occurs, however, the plant remains in the new configura-
tion. This is illustrated by moving continually along the positive or
negative sloped line for the remaining time after the change. No con-
figuration change at a time interval is signified by moving horizontally
along the time axis.

A branch is defined to be a time history of possible plant config-

urations over N time intervals.

Bj = {s(k): k = 1l,n; where s(k) € S} (5.2.4)

For example, the double line on Fig. 5.2.1 is the graphical representa-

tion of a branch defined by,

8.S.S,S~S,SA}

595952525255575)

B7 = {sls S.,S,S.§ s

171717171 2

In this case, the plant is in Sy for six time intervals. At the seventh
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iteration a configuration change is made to s,, and the remaining nine

intervals are spent in s If the plant did indeed follow this configu-

9
ration history, then after 15 iterations the plant state would be given
by B7.
A TREE, initialized at time k, is defined to be the set of all
branches,

T(k) = {Bj; J=1, (N)(M-1) + 1}. (5.2.5)

The TREE in Fig. 5.2.1 has 31 branches, numbered consecutively from the
top branch down.

Given a probabilistic description governing the configuration
changes, a minimum mean square error, mmse, state estimator cam be
derived using Bayes'rule. Let Zk be a sequence of measurements on the

state vector taken at the first k iterations. The conditional mean of

the state vector at time K can be expressed as
& = L{xp(xk=x/2k)dx. (5.2.6)

The probability distribution can be expanded using Bayes' rule as
follows.

B
(x /7 ) - p(Xk)Zk) _ (N) (M-]-)+l p(xk’Zk)BJ)
PP p(Z,) 5 2 p(Z)
J 71

L p(x,/2,,B )P (2, ,B 1) /p(Z))

Bs

I p(x/2,,B)p(B;/Z)) (5.2.7)
J



96

Substituting (5.2.7) into (5.2.6) gives,

% = J;;XdXBZ p(x, =x/2, ,B)p(B;/Z))
J

Taking X inside the summation and interchanging the operations of inte-
gration and summation, the conditional mean becomes

ﬁ‘k = Z fxXp(xk=x/zk’BJ)P(BJ/Zk)dx

8;

[

Lo@;/n) [ o lymx/ty,B ) dx
J

The integral on the right is the mean of the state vector, conditioned

on the ob§erved measurements, Z , and on the branch B It is the opti-

k J*

mal estimate (minimum mean square error) of the state given that BJ is

the configuration history of the plant. Denoting this integral by

ﬁk(BJ), the unconditional optimal estimate is,

& = 1% (B)p(B,/Z) (5.2.8)

By

Using Bayes' rule, the a posteriori probability can be expressed as,
p(B;/2,) = p(2,/B)P(B)/p(Z)) (5.2.9)

The probability distribution function governing the configuration

changes, p(B is assumed to be known. The conditional measurement

J)’

density function, p(Zk/BJ), can be expanded by representing the sequence

Zk by z i.e.

k* Zg-1°

p(Z, /By = plz,2, (/B = p(z, /2 ;> Bpo(Z /By (5.2.10)
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where z, is the measurement at time k. It is readily shown in the deri-

vation of the Kalman filter (see Chapter 2) that,
p(z, /2, _,B) = NG, P7(x)) (5.2.11)
k' Tk-1""J k’ Tz e

J . . J .
where uk is the predicted measurement, and Pz(k) is the measurement

residual covariance, given by,
J_ oarad J
W = BIOW (%, (B) + ¥ (0u_;]
Pl(k) = HPI(k/k-DH' + R

The notation @J(kLAFJ(k) or TJ(k) specifies the matrix ¢, T or V¥,

according to the configuration BJ at time k. Superscript J is chosen to

differentiate between @i(k) which was previously defined to be configu-
ration i at time k. Pi(k/k-l) is the predicted state estimation error

covariance conditioned on B, which was shown in Chapter Two to be

Pi(k/k—l) - @J(k)Pi(k-l)¢J(k)T + el w)T

J

The measurement residual at time k is given by, Z = Zp T My

k

Hence, the value obtained from evaluating the measurement residual

density function at Z, equals the value obtained from evaluating the

k

measurement density function at z i.e.

k’

Py (2,/B) =1p (z2,/Z, .,B). (5.2.12)
z/BJ k'"J 2/2,_1,B; K k-1’77

The conditioning on Z is not required on the measurement residual

k-1

density function since, given Branch B it does not depend explicitly

J)

on the past history, Now,
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- ANy pd -k LT,.J -1, _ J
Pays (arny LD [P, (0 |1 %exp (4527 (P, () " "2] = N(O,P} (k)
(5.2.13)
Substituting (5.2.12) into (5.2.10) gives,
p(Z, /By) = pz/BJ(zk/BJ)p(Zk_l/BJ) (5.2.14)

The form of the optimal state estimate is found by substituting

(5.2.12) into (5.2.10), (5.2.10) into (5.2.9), and (5.2.9) into (5.2.8).

e T p(;k)§:ﬁk(BJ)P(Z/BJ)P(BJ>p(zk_l/BJ) (5.2.15)
BJ

where the probability density function's subscripts have been removed

for simplicity. Thus, for the switched linear plant problem, the opti-
mal estimate is a weighted sum of the conditional estimates that are ob-
tained from filters matched to all possible branches of the configuration
tree. Ehe weighting coefficients are found recursively. First, p(Zk/BJ)
is found in equation (5.2.14) by multiplying p(Zk_l/BJ), from the last
iteration, by p(zk/BJ) of equation (5.2.13). The coefficients are then
computed in equation (5.2.0) by multiplying p(Zk/BJ) by the a priori

branch probabilities, p(BJ), and normalizing. This last step makes the

actual calculation of p(Zk) unnecessary.

5.3 Sliding Window Detector/Estimator, SWDE

The estimator derived in the previous section is optimal in the
sense that it minimizes the mean square estimation error in the presence
of uncertainty regarding the plant configuration. This uncertainty is
manifested by the incorporation of a governing probability distribution

function into the plant description. There are, however, several
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reasons that make this method impractical. First, a probabilistic
description governing the configuration changes might not be known.
Second, only single configuration changes are allowed. And; third, the
order of the estimator grows linearly with time. This limits the real
time applicability of the algorithm because of constraints on available
computer storage and processing speed.

A different approach to tracking a switched linear plant is based
upon the detection of configuration changes. The distinction between
pure estimation theory and signal detection theory is rather arbitrary.
Both strive to extract information from noisy environments. One tangi-
ble difference is that the detection process is a choice between a
finite number of hypotheses, whereas the estimation process can have a
continuum of possible outcomes. In addition, detection algorithms often
require less information about the system than do estimation algorithms.
For example, a Neyman-Pearson [V-1] algorithm does not require a priori
probabilities for the various hypotheses. 1In this section, a detector
will be constructed that will determine when a configuration change
occurs and what the new configuration is. This information will then be
used to formulate a state estimate for the plant. The algorithm will
not require a priori knowledge of configuration changes. In additiom,
after a change has been detected, the algorithm can be re-initialized to
detect a second change. Thus multiple changes can be tracked.

The joint detection/estimation problem can be solved by growing
trees of predetermined size at each iteration similar to the tree in
Section 5.2. Now, however, as time progresses, the size of the trees

will be kept constant by pruning the branches at each iteration according
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to a decision rule. A second difference between this section and Section
5.2 is the method.by which the estimate is determined.

Assume that the configuration prior to time k is known. At time k
the plant can change to another of the M possible configurations. Start-
ing at t=k, measurements are taken at each iteration for N iterations.

At t=k+N-1 a decision is made regarding what changes, if any, occurred at
t=k. The number of measurements used in making a decision will, hence-
forth, be referred to as the window width, N.

All of the information required in the detection/estimation process
is available in a tree T(k) initiated at t=k. The branches of T(k)
correspond to all the possible configuration histories of the plant from
t=k to t=k+N-1l. Associated with each branch are two types of information.
First, a state estimate is propagated along each branch. Every branch
shares the same initial state estimate called the seed estimate. The
estimate along any given branch is the optimum estimate provided that
the plant followed the configuration history defined by that branch.
Since all configuration histories are accounted for, the optimum estimate
is always available somewhere in the tree. Second, probability informa-
tion is propagated along each branch. In Section 5.2, these probabili-
ties were used in conjunction with the a priori branch probabilities to
compute the weighting coefficients for the optimal estimator. Now they
will be used in the detection of configuration changes.

At time t=k+N-1 a decision is made as to what configuration change,
if any, occurred at t=k. The null hypothesis, Ho’ is that no change was
made at t=k. The Hi hypothesis corresponds to a change to configuration

S; at t=k. Thus, the null hypothesis encompasses all changes that could
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occur between t=k+l and t=k+N-1l, including the possible outcome that no
change is made during the N iterations. For example, Figure 5.3.1la
shows a tree having a window width of n=6. At the sixth iteration a
decision is made and one of the eleven branches is chosen. If Bl (Bll)
is chosen, then the hypothesis HZ(HB) is accepted. On the other hand,
if B2 through BlO is chosen, then Ho is accepted.

Depending upon the decision outcome at t=k+N-1l, one of two courses
of action will be taken. First, if Ho is accepted, then the state esti-
mate at t=k+N-1 is taken from the branch corresponding to no configura-

tion changes, i.e. branch B, in Figure 5.3.la, and the configuration tree

6
is propagated forward one iteration. The size of the tree is kept con-
stant, however, by disregarding the branches corresponding to configura-
tion changes at t=k. This can be done because the decision at t=k+N-1
has eliminated these possibdlities. A test is then carried out at

t=k+N for a configuration change that may have occurred at t=k+l. This
forward propagation of the configuration tree continues with each itera-
tion. Because the decision process always uses the N most recent meas-
urements, the algorithm is referred to as a sliding window detector/esti-
mator (SWDE). Figure 5.3.1b shows the propagation of the tree in Figure
5.3.1a over several iteratioms.

The second course of action is taken when Hi is accepted. The state
estimate at t=k+N-1 is now taken from the branch corresponding to a change
to s at t=k. For example, in Figure 5.3.la, if H2 is accepted, then the
state estimate is taken from branch B,. In addition, a new configuration

1

tree is grown with s, as the initial configuration, and with the estimate

2

at t=k+N-1 being used as the new seed estimate. The search for a second
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Fig. 5.3.1 The Decision Regions, HO, H, and H,.
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configuration change can now commence.

This method of joint detection/estimation insures that the state
estimate for the plant is taken from the optimum filter, except during
the lag time between a configuration change and detection. Figure 5.3.2
illustrates the operation of SWDE over several configuration changes.

For clarity, a small window width was chosen.

5.4 Implementation

It is assumed that the estimator knows the initial plant configura-
tion and that steady state filtering has been achieved. This allows the
use of the steady state values of Kalman gain and measurement residual
covariance. If these assumptions are not justifiable, then an initiali-
zation algorithm, discussed later in the chapter, can be used to bring
the system to these conditions.

A Kalman filter will be matched to each branch of the configuration
tree. The information available from these filters is used not only in
obtaining the state estimate, but also in calculating the probabilities
required in the detection algorithm. The required filter matrices can
be found by solving the steady state discrete time Riccati equation for
each configuration. The solution will depend on the noise matrices Q
and R, as well as the system matrices &, I' and H.

Ordinarily, when a configuration change occurs in the plant, the
corresponding matched filter undergoes a transient period in which the
filter gains and error covariance matrices change from the steady state
values associated with the initial configuration to the steady state

values associated with the new configuration. The settling time for this
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transient is usually fairly short; therefore, in the implementation of
the detector the transient will be ignored. That is, when a configura-
tion change occurs along a branch, the associated matched filter matrices
will switch immediately to their new steady state values. This precludes
the calculation and storing of the filter matrices for the various tran-
sient situations.

The detection algorithm requires a relative measure of likelihood
for the various branches. 1In Section 5.2, the set of weighting coeffi~
cients was such a measure. However, in the current problem a probability
distribution, p(BJ), governing the configuration changes is not availa-
ble, and hence the weighting coefficients cannot be computed. See
equation (5.2.9). A more appropriate measure, that does not require a
priori branch information, is the conditional measurement sequence
probability.

Recall that ZN was defined as a sequence of N measurements. This
definition is now extended by defining
ZN(k) to be a sequence of N measurements z;, 2z, .;s Zpi9s *++5 Zyin_1"

The probability of the measurement sequence conditioned omn branch B_ is

J

P(ZN/BJ). Expanding ZN(k) = { ZN_l(k)}, the probability becomes,

2 tk-1"

P(Zy(K)/B}) = Pz 15 Zy_ 1(K)/BY) (5.4.1)

= (2 1/ %1 ()5 BD(Z, () /B))

(5.4.2)

Repeating the expansion for ZN_l(k), ZN—Z(k)’ etc., the probability is

reduced to factored form,
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P(Zg(K)/By) = plzgy 1/ 1(K),BP(zyy »/2 ,(k),B)) ...

... p(z /Zl(k),BJ)p(zk/BJ). (5.4.3)

k+1

Now consider a configuration tree initiated at time k and having a
window length of N. Iteration k is common to all branches and the state
estimate at time k 1s referred to as the seed estimate. As the measure-
ments are processed, a state estimate is propagated along each branch of
the tree. 1In addition, equation (5.4.3) is used to calculate the condi-
tional probability of obtaining the measurement sequence, ZN(k), for each
branch.

Using the same reasoning that resulted in equation (5.2.12), each
factor of equation (5.4.3) can be replaced with an equivalent measurement
residual density function, such that the values obtained by equating are

identical, .
PZy iy /By) = Py 1/BPP (B »/Bp) -
.o p(2k+l/BJ)p(2k/BJ) (5.4.4)

where

5 _ J,.
p(zi/BJ) = N(O,Pz(l)) (5.4.5)

and Pg(k) is the measurement residual covariance at time i, for the
filter matched to BJ. Equation (5.4.4) is evaluated for all (N)(M-1)+1
branches and the resulting probabilities are referred to as the relative

branch probabilities at time N+k-1. Similarly, the relative branch

probabilities at time N+k are, with respect to time tk+l’



107

p(ZN(k+l)/BJ) = p(2N+k/BJ) e p(2k+2/BJ)p(2k+l/BJ) (5.4.6)
Comparing (5.4.6) to (5.4.3), it is seen that,

p(ZN(k+l)/BJ) = P(2N+k/BJ)P(ZN(k)/BJ)/p(ik/BJ) (5.4.7)

Hence the relative branch probability at time k+N is computed from the
relative branch probability at time k by multiplying by the probability
of the k+N measurement residual and dividing by the probability of the
measurement residual at time k.

The relative branch probabilities are used directly in the decision
making process. Referring to Figure 5.3.1b, the number of branches at
each iteration is a constant given by (N) (M-1)+1. A vertical line drawn
at each iteration identifies the branches that are tested at that itera-
tion. The discrete distances above or below the centerline, defined by
the intersections of branches and vertical lines, are referred to as
levels. The number of levels equals the window width, N. A configura-
tion change is thus detected when any level N branch has a relative
probability greater than any other relative branch probability terminat-
ing on the same vertical line.

Many factors influence the selection of the window width, N. A
wider window gives a smaller value of probability of error for detection,
but can give poorer estimation results. In addition, hardware con-
straints will impose an upper limit on window width. First, comnsider
estimator performance during a configuration change. Prior to the
change, the estimate is taken from a filter perfectly matched to the

plant, and is therefore optimum. When the change occurs, the estimate
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is still taken from the above same filter until N iterations have
passed. At this time the configuration change is detected, and a new
matched filter is used for the estimates. Before detection occurs, the
estimate is diverging from the true state trajectory. Hence, a wider
window will lead to more divergence in the period immediately following
a configuration change.

On the other hand, N must be chosen wide enough to insure the detec-
tion of configuration changes, as well as the rejection of false alarms.
A false alarm occurs when a configuration change is detected when, in
fact, none occurred. This is undesirable because, during the N itera-
tions following a false alarm, the estimator cannot detect a true con-
figuration change. Moreover, the estimates will be taken from the wrong
filter for at least N iterations. After this interval the estimator may
or may not be able to recover. A miss occurs when a configuration
change is not detected after N iterations have passed. This type of
error is more serious for the estimator because the optimum state
estimate is irretrievably lost. When a miss occurs, the estimator will
operate erratically and may have to be reinitialized, as discussed
later in the chapter.

The false alarm and the miss probabilities are dependent upon the
degree of overlap of the measurement distributions along the various
tree branches. This, in turn, is determined by the values of system
disturbance and measurement noise, and by how rapidly the branches
diverge from one another. This is illustrated in Figure 5.4.1. A
larger degree of divergence with moderate noise is shown in 5.4.1a. The

dashed lines represent the standard deviations of the measurements. If
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(a) Fast, with moderate noise.

(b) Slow, with high noise.

Fig. 5.4.1 Branch divergence.
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the plant is actually following branch Bz, then at the fifth iteration
the measurement will be, on the average, very distant from branches Bl

and B the respective probability density wvalues will be very small,

3;
allowing rapid detection. In contrast, Figure 5.4.1b depicts slowly
diverging branches in a highly noisy environment. It is seen that a
larger number of measurements are needed to discriminate between the
branches.

The rate at which the various branches diverge is governed by
several factors. First, if the sample time is long with respect to the
dynamics of the system, the amount of divergence between iterations will
be greater. Second, strong inputs usually cause rapid divergence.
Third, the dynamics of the different configurations may cause the state
trajectories to cross one another. When this occurs, the measurement
residuals can become misleadingly small, thus raising the prospect of a
false alarm.

The dependence of detection on input makes an analytical derivation
of probability of false alarm very difficult. An alternative method of
determining window width is to run a simulation for several hundred it-
erations without any configuration changes. Start with a window width
large enough to give no false alarms, and decrease the width until false
alarms just start to occur, then increase the width a couple of itera-

tions. Repeat this procedure for several monte carlo simulations, and

use the worst case (largest value) window width.
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5.5 Weighted Sum Estimation

The method by which the SWDE algorithm determines the state estimate |
will be optimum at all times except for the intervals following configu-
ration changes. During these intervals, equal to the window width N, the
estimate will diverge until SWDE detects the change. If the configura-
tion changes occur infrequently, then the overall tracking will nearly
always be optimum. However, i1f the configuration changes occur at a
high frequency, the overall performance will be seriously degraded by
numerous divergence intervals.

The amount of divergence can be substantially reduced by computing
the estimate as a weighted sum of the individual branch estimates at
each time. The weighting coefficients are simply the relative probabil-
ities for the various branches normalized so that the sum of all the rel-

atiwve probabilities is unity. Thus,

BE % (B)p(Z (k) /B)) (5.5.1)

. J
x L p (2 (k) /B
BJ

where p(ZN(k)/BJ) is given in equatiom (5.4.4).

In this manner the estimate is always composed of percentages of
all the branch estimates, with the most likely branch being dominant.
The drawback to this method is that the estimate is no longer optimum at
those times when no configuration change is occurring. Furthermore, the
overall estimate will be noisier because the weighting coefficients are

directly affected by the measurement noise.
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5.6 Initialization Algorithm

In many cases involving a switched plant problem, the initial
configuration is not known. Moreover, an accurate initial value of the
state vector is seldom available. Thus, the SWDE algorithm in its pres-
ent form cannot be utilized. Even for well-defined problems where the
algorithm can be used, there is always the possibility that a miss will
cause the estimator to lose track of the plant's state. When this hap-
pens, the algorithm must be re-initialized.

The PAE algorithm of Chapter Three can be used to solve both the
identification and the re-initialization problems. In this algorithm,
time-varying weighting coefficients are calculated for each of the plant
configurations. As the plant measurements are processed, the weight
associated with the actual plant configuration will approach unity and
the other weights will go to zero. In addition, an optimal state esti-
mate is available at each iteration. After a number of iterations the
PAE algorithm will reach steady state. At this time, the Kalman filter
matrices will be at their constant steady state values and the state
estimate will be taken principally from the filter matched to the actu-
al plant configuration.

Configuration identification and steady state determination in the
PAE algorithm is accomplished by monitoring the weighting coefficients
and the error covariance matrices. In the implementation, the weighting
coefficients are compared to a threshold probability value. If a weight
exceeds the threshold, then the configuration corresponding to that
weight is identified as being the actual plant configuration. Steady

state can be determined by comparing the current error covariance matrix
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with the covariance at the preceding iteration. If the norm of the dif-
ference is less than a given tolerance, then steady state has been
achieved. Alternately, if the filter matrices have been precomputed off-
line, then steady state is determined by simply counting the number of
iterations. The latter method is used in the examples.

Once steady state filtering and plant identification have been
achieved, the SWDE algorithm developed in this chapter can be used to
track a randomly switching plant. If, for whatever reason, the SWDE
algorithm diverges from the actual plant state, then the PAE algorithm
should again be executed.

Divergence can be readily detected by monitoring the measurement
residual. The measurement residual of a perfectly matched filter is a
zero mean, white gaussian random variable [G~1]. When divergence
occurs, the residual will lose these attributes. A variety of statisti-
cal tests can be employed to determine divergence, the simplest being a
test for a non-zero mean. However, the problem is complicated by the
normal operation of the SWDE algorithm, which produces a diverging
estimate for a number of iterations, equal to the window width N, after
each configuration change. This problem is resolved by calculating the
mean over several adjacent intervals, each containing N iterations. If
all the mean values are greater than a given tolerance, then divergence
is assumed and the PAE algorithm is executed. If a weighted sum estimate
is used, then the number of intervals over which the mean is calculated
can be reduced. In the following examples, two intervals were sufficient
to detect estimator divergence. Appendix B contains a flowchart dia-

gramming the computer program implemented to accomplish the above tasks.
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5.7 Optimal Delayed Estimation

A method exists to eliminate entirely the divergence that occurs in
the interval immediately following a configuration change. During this
interval, which is equal to the window width N, the configuration tree
is grown but the configuration change is not detected until N iterations
after it occurred. In the real time estimation problem considered in
the previous sections, the estimate is available shortly after the cur-
rent measurement has been processed. However, if an estimation delay
equal to the window width can be tolerated, then a delayed estimate can
be constructed that will be optimal at all iteratioms.

The implementation of this featufe requires only slightly more com-
puter storage and virtually no additional processing time. Recall, that
when the configuration tree is grown, the state estimates are calculated
at each iteration for every branch. If these estimates are stored, then
at the time the configuration change is detected, the algorithm can re-
trace the optimal state estimate trajectory. "

The advantage of delayed estimation over weighted sum estimation is
that the former method eliminates the divergence intervals without sacri-

ficing estimator performance elsewhere.

5.8 Simulations

The algorithms developed in this chapter were verified by extensive
off-line simulation on a digital computer. Three different plant models
are considered in this section. Example One is the switched linear plant
that was examined in Chapter Three. Example Two 1is a plant that has a

parameter that can take on one of several possible values. The third
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example applies the SWDE algorithm to the nonlinear oscillator of Chap-

ter Three.

Example 5-1:

Given X = A;x + Byu + C,w
z=Hx +v
where,
o0 1 0 0 0
7050 4] T Lesal T

0 1 0 0 0
A = B = C =
3 -30 -1 3 1 63.2 3 1
1 0 3 0
H = R = Q=4
0 1 0 3

The plant is simulated for an input of U = 4.0, an initial position
of -4.5 and an initial velocity of 0. Unknown to the estimator, the
plant changes configuration approximately every two seconds. A window
width of N=7 was found to be sufficient to suppress false alarms. The
digital simulation requires the discretization of the continuous time
system, and the solution of the steady state Kalman filter equations.
The results of these two preliminary steps, for a sample time of T=.07

seconds, are given below.



116

.929 .oeﬂ 0024 - .142 .0024
d. = v = T, =
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1.0 .068 .0024 0. .0024]
o} = Y = T =
2 lo.o .932] 2 |.068 o, 2 |.o68 |
.929  .066 L0024 - .142 .0024
[0} = v = T =
3 |-1.98  .se3] 3 |.o66  3.96 3 Loss
2.8x1073  1.5x10"% 5.4x107%  2.6x1072
F,F. = ' ,F. = _ )
I3 11521074 8.2x1072|7 % |2.6x10"%  8.0x1072
1 -1.5%107% 95 ~2.6x10"2
1.-1 ..3.-1 - IX 2.-1 y 0%
-1.5x10 .92 -2.6x10 .92

The determinants of the covariance matrices are 1.09 and 1.15, respec-
tively.
Figure 5.8.1 shows the ability of the estimator to track the rapid-

ly changing plant. The first configuration change, from s, to s,, occurs

1
at t = 1.05 seconds. During the next 5 iterations the estimator is
giving poor estimates because it has not yet detected a configuration
chaage. At t = 1.40 seconds, detection occurs and the estimator resumes
accurate tracking. Similar results occur at times t = 3.15, 5.25 and
6.65 seconds, when the other changes occur. The time history of the
plant configuration is $185535,8. Figure 5.8.2 compares the velocity
estimate with the actual velocity.

The estimation accuracy at times between the configuration changes

equals that of a matched Kalman filter and is optimum in that sense. On
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the other hand, for the N iterations after a configuration change the
divergence can be substantial, as can be seen in Figure 5.8.1. If the
configuration changes have a low frequency of occurrence, then the
occasional divergence spikes are of minor importance. However, for fre-
quently occurring configuration changes, the divergence intervals sub-
stantially degrade the overall performance.

Two methods exist to reduce and even to eliminate the divergence
intervals. The delayed estimate of Section 5.7 can be used if a time
delay equal to the window width can be tolerated. This estimate is
shown in Figure 5.8.3. Assuming that the estimator stays on track, the
only difference between the delayed estimate and the unrealizable opti-
mum estimate is the small error introduced by ignoring the transient
interval when the Kalman filter matrices change between steady state
values. Table 5.8.1 compares the actual position, optimum position
estimate and optimal delayed position estimate during the interval
following the first configuration change. It is seen that the maximum
percentage difference is approximately two percent.

The weighted sum estimate of Section 5.5 will significantly reduce
the divergence interval at the expense of making the overall estimator
performance somewhat noisier. For example, the previous plant is shown
in Figure 5.8.4a,b for an input, input disturbance covariance, and a

measurement noise covariance of,

[
[}
N
L
1
=~
w
I

The configuration history of the plant is 5332513253, with the changes

occurring at times 1.05, 2.45, 3.85, 5.25 and 6.65 seconds.
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-6.0 . ———— 3actual
sol -==—=——— weighted sum
——e—-1@— conventional

- P

T 1h 2.1 2.8 3.5 4.2 4.3 75% T

(a) Comparison of Weighted Sum Estimate and Conventional SWDE Estimate.

v estimate [
-8.0} vy e measurement L
-10.0 —t—X % =

7 1.4 2.1 2.8 3.5 4.2 4.9 5.6 6.3
(b) Weighted Sum Estimate Compared to Noisy Position Measurement.

Fig. 5.8.4 Comparison of SWDE Estimates for Example 5-1.



Table 5.8.1 Comparison of Actual Position
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With The Optimum Estimate and The SWDE Delayed Estimate

Time X-Actual X~-Optimum X~Delayed
1.05 -3.345 -3.283 ~3.283
1.12 -3.653 -3.600 -3.600
1.19 -3.916 -3.894 -3.992
1.26 -44138 -4.121 -4.172
1.33 -4.335 -4.335 -4.403
1.40 ~4.454 -4.,488 -4,519
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For this noisier condition the required window width was determined to be
N=9. Figure 5.8.4a compares the weighted sum estimate with the actual
plant position. The dashed lines indicate the divergence that was elimi-
nated. The weighted sum estimate is compared to the position measurement
in Figure 5.8.4b.

It is instructive to contrast the performance of the PAE estimator
of Chapter Three with the above results. Recall that the PAE estimator
operates satisfactorily for a slowly switching plant but loses track for
a higher frequency of configuration changes. This is verified in Figures
5.8.5a,b. In 5.8.5a the PAE estimate of the plant position is highly
unreliable after the first configuration change occurs. Figure 5.8.5b
shows the erratic behavior of the Kalman filter weighting coefficients.

The operation of the estimator is better understood by looking at
the probabilities associated with the various branches at each iteration.
Figure 5.8.6 gives probability data before, during and after a configura-
tion change. In order to use a window width of five iterations (for
graphical reasons) the measurement noise is reduced to about a third of
its previous level. The circles represent the termination points of the
branches at each iteration. The enclosed number is the log of the rela-
tive probability for the branch. (Zero indicates a probability less than

10-40

.) Since every branch is 5 iterations long, the probability is the
product of four measurement residual density values, which are printed
alongside the branch. The actual branch followed by the plant is shown
by a dashed line. It is seen that a configuration change from sy to s,

occurs at the tenth iteration. The measurement residual probabilities

along the dashed branch are indeed higher than those along the other
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10.0

actual
~8.0 ~———= PAE estimate

‘-10- s ke hes o 'Y <7

£33 d X - *}; L e S 'H(
.7 1.4 2.1 2.8 3.5 4.2 4.9 5.6 6.3 t

(a) Actual Position Compared to Position Estimate of the PAE Algorithm.

A .
Probability
i
i configuration 83
X — configuration Sl
+——— configuration 52
s s 8 s s
3 2
1.0¢
‘\
\
0.0 L=
.7

(b) Weighting Coefficients Versus Configuration Sequence.

Fig. 5.8.5 Estimation Performance of the PAE Algorithm of Chap. 3.
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branches.

A decision is made at each iteration regarding possible configura-
tion changes. At iteratiomns 11, 12 and 13 thé dashed branch is identified
as the correct branch because the relative probability is largest for
this branch. However, no configuration change is detected because the
relative probabilities at the fifth level are not maximum. For example,

at iteration 12, the fifth level probabilities are 10‘2 for s, and 0.0

for s,, whereas the current configuration, s has a relative probability

1 3°
of 10-10. At iteration 14 the estimator decides that the plant changed

to configuration Sy at iteration 10. The state estimate is then taken

from the dashed branch, a new tree is grown from this estimate, and the
algorithm is ready to detect another configuration change.
The weighted sum estimation method can also be examined using Fig-

ure 5.8.6. At iteration 11 the 9 branch estimates are labeled xl.to xg.

The weighted sum estimate at this time is calculated as

107%%% 410782 410782 +10" 6

1 2 3

6 2,410 7% +10" 1583 =40

i4+lO 5 6 %5 8

%(11) =

6

%(11) = (10-62 +10°%% + 10'7&6)/2.1 x 10~

4 %z (5.8.1)

In the normal mode of operation, SWDE would use x_. exclusively for

5
the estimate at iteration 1ll. The weighted sum estimator produces a
better estimate at iteration 11 by incorporating a percentage of the op-
timal estimate, X, even though the configuration change has not yet been

detected. The weighted sum estimate becomes increasingly more accurate

as detection time nears because the natural divergence of the branches



results in a larger relative probability for the correct branch. Unfor-
tunately, the weighted sum estimate is noisier than the SWDE estimate at
all times other than the intervals following configuration changes. For
example, at iteration 10 the SWDE estimate is optimum whereas the weight-
ed sum estimate is corrupted by percentages of the other branch estimates.

The next experiment illustrates the divergence detection capability
of the initialization algorithm described in Section 5.6. The plant of
Example 5-1 is intentionally put through rapid configuration changes to
cause the SWDE algecrithm to lose track. The noise covariance, input,
input disturbance covariance and configuration history are

1 0

[of
1}
[N
O
1]
o~
e
]
~~
[}
w
[0
N
0
'.—l
[0
w
p g

0 10
The window width is 9 iteratioms. The plant remains in configuration 8;
for only 5 iterations. Figure 5.8.7 compares the actual plant position
with the PAE estimate (of Chapter 3) and with the weighted sum estimate
without the initialization algorithm. The PAE estimate is virtually
useless after the first configuration change at time t = 1.75 seconds.
The weighted sum estimate is accurate until the changes at t = 2.52 and
t = 2.87 occur. These changes cause the weighted sum estimate to
diverge.

Figure 5.8.8a shows the improvement in the weighted sum estimate
when the initialization algorithm is implemented. Divergence is detect-
ed at t = 3.71 seconds, an interval of 1.2 seconds (approximately two
window widths) after the onset of the quick configuration changes. At

this time, the tracking algorithm is turned off and the PAE algorithm is

initialized to re-identify the plant configuration. During the next 15
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0.0
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=
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.7 1.4 2.1 2.8 3.5 4.2 4.9 5.6 t

Actual plant position compared to SWDE estimate.

G e o -

(b)

L T T ™ T T — $ e
.7 1.4 2.1 2.8 3.5 4.2 4.9 5.6

SWDE estimate compared to noisy measurement.

Fig. 5.8.8 Performance Improvement by Using the Initialization

Algorithm to Detect Divergence.
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iterations the plant estimate is given by the PAE algorithm. At t=4.76
seconds, the tracking algorithm is turned back on and the weighted sum
estimate is again used. The overall tracking ability of this arrange-
ment is very good. Incidentally, the estimation error around t=5.8
seconds is attributable to the inherently noisy weighted sum algorithm.
Figure 5.8.8b compares the overall position estimate to the actual posi-

tion measurement.

Example 5-2:

Consider the second order linear system

=
]

-8.x - 20.Xx + u + w
1 1 .

z, = xXx+v zZ, = X + Vv (5.8.2)

z 1 0 (; v

=
[

N
[\
[ 3]

The restoring force factor, Bi, and the damping factor, a;, are

random variables that can switch between the following possible wvalues.

o 1 1.5 .67

8 1 2 .5

Discretizing the three possible state variable equations for a sample
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time of .5 seconds gives,
.91 .303 ©.845  .239] .95 .358
o, = ¢, 0, =
-.303  .303 -.477  .129] -.179  .474

.0902 L0774] .100
r.,¥y . = T ¥ = r.,y. =
1 1303 222} 939 373 358

et

The corresponding steady state Kalman filter matrices are,

— — oo

2.67x10"2 7.38x107° 9.61x10"> 4.56x10° 6.26x10"2 2.00x10
F = ,F = _ _ ’F = _ _
L 11.84x1073 9.85x1072| " 2 |1.14x107° 6.22x1072| 3 5.01310 3 1.41x10

B -1 - B -1 - B -1 -
g | 2-43x100-1.86x107 | 2.48x107 -1.14x26] _ | 2.3¢x107 -5.01x10
S -3 _q3F1® -3 -1 317 -3 =

-1.84x10° > 9.02x10 -1.14x103 9.38x10 -5.01x107 8.59x10

with determinants 4.56, 4.31 and 4.97, respectively.

The plant simulation uses the following values,

22 O 6
u= 12 Q=1 R = x =
0 1 1

A window width of N=9 was found to give adequate false alarm suppression.
The configuration history, unknown to the SWDE algorithm is S5 87 S3 S,
Sy Sy Figure 5.8.9 compares the actual position to the position esti-
mates of the weighted sum algorithm and of the PAE algorithm. As in
Example 5-1, the weighted sum algorithm gives better performance. The
weighted sum estimate is plotted against the actual measurement in

Figure 5.8.10a, and against the conventional SWDE estimate in 5.8.10b.

In the latter plot the conventional estimate is seen to be less noisy
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— L
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15.0
11.0F
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‘(a) Weighted Sum Estimate Plotted Against the Noisy Position Measurement.

27.0 F

24.0

21.0
18.0

15.0

12.0

3.0 --——— SWDE estimate
U r actual position

0.0 ' . L — ' ‘ + — —

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 t

(b) SWDE Estimate Without Weighted Sum Algorithm, Plotted Against the
Actual Plant Position.
Fig. 5.8.10 Comparison of SWDE Estimates for Example 4-2.
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than the weighted sum estimate. However, the divergence intervals make
the conventional estimate undesirable.

The previous examples have shown that the SWDE algorithm in con-
junction with the initialization algorithm gives excellent tracking when
the dynamics of the various plant configurations are known exactly. The
next experiment will show the ability of the SWDE algorithm to track a
plant whose configurations are not known exactly. Specifically, the
plant will be the nonlinear oscillator of Chapter Three, and the config-
urations will be the linearized plant approximatioﬁs derived in that
chapter. Thus, the configuration changes are a result of the state
trajectory moving from one configuration's region of applicability to

that of another configuration's.

Example 5-3:

The nonlinear plant is given by,

rF x4+ s utw

z=Hx + v (5.8.3)

The three configurations are the same as those in Example 5-1. The
noise covariance, input and input disturbance covariance are:
1 0

0 10

Figure 5.8.1la compares the weighted sum estimate to the actual plant
position. For contrast, the position tracking of the PAE estimator of
Chapter Three is shown in 5.8.11b. The weighted estimate tracks the

position better than the PAE estimate, except perhaps when the plant
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11 Position Estimates for Nomlinear Plant of Example 5-3.
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Against the Noisy Measurement.

Fig. 5.8.12 Nonlinear Estimation Using the SWDE Algorithm
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position has settled out. Both estimates are about equal at this time.
Using the SWDE algorithm without the weighted sum estimation gives the
result shown in Figure 5.8.12aa. The divergence intervals around times

t = .35, .9, 1.4, 2.8 and 3.85 significantly degrade the tracking per-
formance. The only improvement is in the settled out region where the
estimates are less noisy than the weighted sum estimates. Figure 5.8.12b

compares the weighted sum estimate with the actual position measurement.

5.9 Summary

The SWDE algorithm in conjunction with the initialization algorithm
provides excellent tracking performance for a switched linear plant. In
cases where the configuration changes occur frequently with respect to
the window width, tracking can be improved by altering the SWDE algorithm
to produce a weighted sum estimate. The disadvantage of the weighted
sum estimate is that it is inhegently noisier during those intervals
when configuration changes are not occurring.

The SWDE algorithm also performs quite well in tracking a nonlinear
plant. 1In this case the weighted sum estimate usually gives better
tracking performance. The threshold level of the initialization algo-
rithm should be set higher when tracking nonlinear plants. This is to

avoid re-initializing the algorithm due to the natural biases that will

be present because of modeling mismatch.



6.0 ADAPTIVE CONTROL OF THE B737 AIRCRAFT

6.1 Introduction

In recent years there has been a steady increase in the complexity
and sophistication of aircraft designs. With this complexity follows
the need for added sophistication in controller design. Typically, the
equations of motion of an aircraft are linearized about some nominal
flight condition so that feedback and cross-control gains may be deter-
mined to satisfy flying quality criteria [M-10]. For some conventional
aircraft these gains are often adequate for the entire flight envelope
and are thus held constant throughout the flight. The control technique
reported in this chapter is directed toward aircraft with nonlinear aero-
dynamics that are not satisfactorily comntrolled by constant feedback
gains. An additional benefit of this method will be the reduction of
control difficulties encountered during the landing and take-off phases
of flight which oftentimes are critical to the safety of the passengers.

This chapter applies the modified PAC algorithm of Chapter Four to
the longitudinal dynamics of the B737 aircraft. The motivation for
applying adaptive control to the B737 aircraft is due to the NASA "Term-
inal Configured Vehicle'", TCV, program. One goal of this program is to
study control methods that will enable quicker and safer landing
approaches in adverse weather conditions. The results given in this
chapter indicate that the modified PAC algorithm will help accomplish
this goal.

Section 6.2 describes the longitudinal dynamics of the B737 air-

craft. The need for adaptive control is shown in the flight simulation

138
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results of Section 6.3. The model-following design method is used in
Section 6.4 to obtain the feedback and input gains required to meet the
control objectives. Section 6.5 analyzes the nonlinear measurements that
are available to the controller. The simulation of the B737 aircraft is
described and the closed~loop response results are given in Section 6.6.

The method and results are summarized in Section 6.7.

6.2 The Equations of Motion

This section describes the longitudinal perturbation equations of
the B737 aircraft. The three input controls that are available to the
controller are the elevator, stabilizer rate and throttle rate. The
differential equations relating these inputs to the delivered thrust and
stabilizer position and the earth reference variables required to monitor
the aircraft's position will be used with the equations of motion to ob-
tain an overall state variable description for the system.

The longitudinal equations of motion for an aircraft are, after

simplification, [H-4][R-1][E-1]

m(u + qu) -mgf cosbo + fax + f

Tx

m(w - qu) -mgd sinfo + faZ + f (6.2.1)

Tz

Iyy q = m, + mT

where
Uo = steady state inertial speed, x-direction
Wo = gteady state inertial speed, z-directiomn
8 = steady state pitch angle



Assumptions:

(1)

(2)
(3)

(4)
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u = speed perturbation, x-direction
w = speed perturbation, z-direction
6 = pitch angle perturbation
q = pitch rate perturbation

£ , £ = Aerodynamic Force perturbations

ax az

fo, sz = thrust perturbations

ma, mT = perturbation in pitching moment due to Aerodynamic
forces and thrust.

m, g, Iyy = mass, gravity and moment of inertia around the

y—-axis.

All lateral variables have very small values (i.e. yaw, roll,
sideslip and their rates).

Pitch angle is small.

The above equations are linearizations of the nonlinear equa-

, 6 .

tions of motion around Uo’ W o

o)

The perturbations in the angles are small so that cos 6 = 1,

sin 6 = 8.

The aerodynamic forces and moments involved are the 1lift and drag forces

and the pitching moment; the effects of thrust are described separately

by the terms with subscript T. These forces and moments can be expressed

as follows:

L= CL(u, o, &, q, de, SS)ES
D = CD(u, o, &, q, Ge, Ss)aé
T = CT(u, Gy &’ Q)ES



where

@

Al

(o4
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Cy(u, 5 , 4, e, s, T)asc

]
X
o
<

angle of attack perturbation

effective aerodynamic surface area

atmospheric density

dynamic pressure
= airspeed

= mean aerodynamic wing chord

(6.2.2)

Se, &8s, 8T = perturbations in elevator, stabilizer and thrust

)

s CD’ CT’ C,, = nonlinear lift coefficients

M

Linearizing the aerodynamic and thrust forces, and regrouping the

small perturbation variables into state variable format, the following

equation is established with respect to the stability axis coordinate

system [H-4][R-1][E-1]:

where

’Uxt—i

el

o 3

[u

[

x = Ax_+ Br_ + Cw
P p P p

o q G]T
e 8T 63]T
o q_]

(6.2.3)
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—~
11 %12
321 %22
A=
331 %32
L0 0
[0
b
B = 21
P31
L0
—
‘11
€21
Cc = c
31
L0
and, u_ = gust perturbation in x~-iner
ag = gust perturbation in angle
qg = gust perturbation in pitch
xp = gtate vector for equations
rp = input vector for equatiomns
wp = gust input vector for equat

A = system coefficient matrix

o~}
]

input coefficient matrix

O
]

gust input coefficient matri

1 0

tial speed
of attack
rate

of motion
of motion

ions of motion

X

(6.2.4)

(6.2.5)

(6.2.6)

The coefficients in the state equation are nonlinear functiomns of

several different parameters, such as the aircraft weight, altitude, flap
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setting, center of gravity, etc., and their calculation, even for just
one flight condition is quite involved. Fortunately, this problem was
circumvented by taking advantage of the extensive literature and analysis
routines available for the B737 aircraft at NASA/LRC.

The "TCVA Trim Data Validation" program and the accompanying state
variable matrix generation program were used extensively to obtain the
A, B and C matrices for several hundred different flight conditioms.
For example, see Figure 6.2.1. (Appendix B contains information outlin-
ing the use of these programs.) From an analysis of these linearized
models, ten were selected that represented a variety of flight conditions
from 10,000 feet to sea level. See Figure 6.2.2.

The thrust will be modeled as having a first order time-lag with
respect to the throttle, and the throttle rate will be the actual control
input. The stabilizer rate will also be available as a control input.

The elevator response time is assumed to be instantaneous. Thus,

6T = -.56T + .58th (6.2.7)
§th = rgh
§s = 1
S
Se = r
e

where,

dth = throttle perturbation

rfh = throttle rate input
re = stabilizer rate input
re = elevator perturbation input.

In order to locate the aircraft with respect to the earth reference
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frame, two additional state variables are required. These variables are
the altitude loss (sink) perturbation and the closing position perturba-

tion given by

YA
.=— S = — -
z ( Uo ) u( sinyo) + a(cosyo) + 8¢ cosyo)
L] .2.8
.z (6.2.8)
x = ( Uo ) = u(cosvo) + a(51nY0) + 6(-31nyo)
where,
z = sink perturbation
x = closing position perturbation
Z = altitude

Zo = nominal altitude

X = x-position of aircraft in earth coordinate system

i
]

nominal x-position

<
fl

steady state flight path angle, 80 - .

Incorporating equations (6.2.7) and (6.2.8) into equation (6.2.3) gives,

x =Ax +Br +Cw (6.2.9)
a a“a aa P
where
T _..T T
x, = [xp 8T Sth &S]
T T [t r: r-]T
a e th s
A { By 0 B§
0 E - .5 0
Aa= | (6.2.10)
0o 1 0 0 0
|
0 i o0 0 0|
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Q. 0. 1.9

-.152

.082
-.756
-1.07 -

-.047
-.310
-.142

.097
2.51
0.

0.

-.042

.

1.

-.529

.

1.

0.

9

0.

0. 0.

~=.047

-1.2

0.

.

-.042
-.434

-.756

-1.07

-.31
-.142

0.

0.

0.

0.

Figure 6.2.3 Augmented System Matrices
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Table 6.3.1 Longitudinal Eigenvalue Variation

For The Ten Flight Conditions

REGION ALTITUDE SHORT MODE PHUGOID
1 200 -.65+J1.03 | -.OlAiJ.lSO
2 1500 -.91+J1.04 -.014%+J3.088
3 2500 -.75£31.30 ~.009+J.140
4 3500 -.96+J1.40 - =.010£J.070
5 4500 -1.01+£J1.50 -.009+£J3.056
6 6000 -.87£J1.60 -.008+J.110
7 7000 -.85+J1.33 -.006+3.100
8 8000 -.85+£J1.44 -.006+J.095

9 9000 -.86+J1.70 -.003£J.095

10 10000 -.94£J1.90 -.004£J3.085
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B 0 0]
e
0 0 0
Ba =
0 10
0 o 1
where,
x, = augmented state vector
r, = augmented input vector
Aa = augmented system coefficient matrix
Ba = augmented input coefficient matrix
Be = first column of B, corresponds to elevator
BT = second column of B, corresponds to thrust
BS = third column of B, corresponds to stabilizer.

For example, the overall system's state equation corresponding to Figure
6.2.1 is shown in Figure 6.2.3. For clarification, the relationship be-

tween various angles and velocity vectors is shown in Figure 6.2.4.

6.3 The Need for Adaptive Control

The ten flight conditions listed in the preceding section are now
analyzed and simulated. Table 6.3.1 shows the longitudinal eigenvalue
variation as the aircraft goes from region to region. The short period
mode and the phogoid mode eigenvalues vary approximately 1007 and 2007,
respectively.

The typical open-loop response of the B737 given a step elevator
command is shown in Figure 6.3.1. For this particular example it is

seen that the short mode has a pericd of 3 seconds, and the phugoid has
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a period of 2 minutes. For different flight conditions the response of
the aircraft varies. Figure 6.3.2 shows that the angle of attack response
varies considerably in magnitude, frequency and damping in the different
regions.

The need for an adaptive controller can be seen in Figures 6.3.3,
6.3.4 and 6.3.5. 1In Figure 6.3.3 the feedback gains were computed to
give the linear model in Region 1 short-period poles at S = =3. Applying
these gains when the aircraft is in the other regions results in either
a prolonged oscillation or instability. Similar unacceptable performance
results when the gains calculated for Region 5 or Region 10 are used for
all regions. See Figures 6.3.4 and 6.3.5, respectively. 1In addition,
even if each region was correctly compensated, there is still a need for
region dependent input scaling, as can be seen in Figure 6.3.6a,b,c,
which gives the elevator response required to capture and follow a con-
stant sink rate glideslope in different regions and shows the increased
efficiency of the elevator at high velocities. Figure 6.3.6c is obvi-

ously unrealizable.

6.4 Closed-Loop Design Via Model Following

The control objectives are as follows. First, the aircraft should
follow a predetermined glideslope. Second, the response of the aircraft
should be as uniform as possible in the various flight configuratioms.
It was decided that these objectives could best be achieved through the
methods of model following [T-2][W-5][M-9][A-3].

Model following is an application of optimal regulator theory which

is summarized in Chapter Two. The desired goal is to determine feedback
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K
+ o degrees
Region 10
T
T Region 5
Region 1
t + t = ‘— >
2 4. 6. 8. 10.
Time in Seconds
elevator input is a iS degree pulse of .8 second duration.

Figure 6.3.2 Angle of attack, o, response for different

fiight conditionms.
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100 4 Se A 203
degrees
80 | 40 J_ . NS . -
\// 1 2 4 seconds
(a) Region 10 (10,000 ft., 250 knots)
60 | 20 ~{1’
40 - m -
-t B 3 kg
1 2 4 seconds
(b) Region 5 (4,500 ft., 165 knots)
20 'H
0 Az/f“\___ -
1 4 6 seconds
(¢) Region 1 (200 ft., 125 knots)
-20
-40 |

Figure 6.3.6 Closed loop elevator response required

“to capture a 20 ft/sec sink rate glide-
slope in the different regioms.
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gains and input gains that will cause a given system to have a response
identical to a given model. The requirements that a system and model
must satisfy in order that the problem be solvable are rigorously formu-
lated and solved in reference [M-9]. Model following has found wide
usage in the area of aircraft simulation. Specifically, it has been use-
ful as a method of altering the response of an aircraft to emulate the
response of a second aircraft [T-2][A~3]. The application of model
following to the problem of trajectory following as done in this chapter
further illustrates the utility of this method of design.

An excellent summary of the model-following method is given in
reference [A~3] and is repeated in Appendix C. A block diagram of a
closed-loop model-following system is shown in Figure 6.4.1.

The purpose of the model in this application is to produce the
glideslope that the B737 aircraft will be required to follow. The glide-
slope is defined by the initial altitude, initial distance, initial
velocity and landing velocity of the aircraft. It is desired to have a
linear decrease in altitude with time and a linear decrease in velocity
from the initial velocity to the final landing velocity. From the ini-

tial conditions then,

Uavg = (UO + Uf)/2 (6.4.1)

T=X/U
o' "avg

AX = (Uf - Uo)/T

Uz = ZO/T
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U = dinitial velocity, x=-direction

Uf = final velocity, x-direction

U = average velocity
avg
Uz = sink velocity, z-direction
Xo = initial distance from landing point
AX = x-acceleration

T = expected time interval till laanding.

A state model producing the desired glideslope is,

x = A X x (0) = x
N m mo

where,

o
o
o
o
o

=)

mo

(6.4.2)
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The variables have been normalized to conform to the dimensionless
state variables, in the state equations for the B737 aircraft, i.e.
equation (6.2.8). The stabilizer position, S, has been included as a
state having a constant value of zero. This allows nonzero stabilizer
perturbations to be penalized in the subsequent solution of the model-
following equations (see Appendix C). The state variables of the air-
craft to be matched to the model are the x-position, the sink position

and the stabilizer perturbation. Referring to Appendix C, this requires

fan]
]
o
o
o
o
o
=
o
o
o

o
o
o
o
o
o
o
(@)
[

H =11 0 0 0 O 0. (6.4.3)

Errors in these three state variables are weighted relative to control
effort by the adjustment of the Q and R matrices in the cost functiomal.
By trial and error the following matrices were found to give good glide-

slope following with acceptable control effort:

10 0 0 1 0 0
Q=0 10 o0 R=10 1 0 (6.4.4)
0o 0 10 0 0 1

The combined feedback/input gain matrices for the various flight config-

urations were found using a model-following computer program given in
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reference [A-3]. For example, the gain matrix corresponding to config-

uration 1 is given in Figure 6.4.2.

6.5 Nonlinear Measurement Model

The modified PAC algorithm requires a linear measurement matrix for
each of the Kalman filters. However, several of the measurements that
are available to the controller are nonlinear functions of the state
variables. In this section a prefilter is developed to eliminate these
nonlinearities. (See also references [H-4], [J-4].)

The measurements are available from two sources, on-board sensors
and MLS (Microwave Landing System) data. The measurements considered
and the associated sources of the measurements are listed below.

Z(1) = pitch angle (gyro)

Z(2) = pitch rate (gyro)

Z(3) = slant range (MLS)

Z(4) = elevation angle (MLS)

Z(5) = altitude (barometric)

Z(6) = altitude rise rate (barometric)

Z(7) = acceleration along z_. (body-mounted accelerometer)

5

Z(8) = true airspeed (air data computer)

Z(9) acceleration along X (body-mounted accelerometer) (6.5.1)

The relationships between the measurements and the state variables are:
Z(1) = 60 + Kax(A) + v(1)
Z(2) = Rax(B) + v(2)

2(3) = [(zO—on(S))Z + (XO-UOX(E»)-UOt)Z]Li + v(3)
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2(4) = (R tan '[(2 ~0_x(5))/ (X ~U_x(6)-U_£) ] + v(4)

Z(5) Zo - UOX(5) + v(5)

Z(6)

—[Uoé(s) + 2O]v(6)

2(7) = Uo[%(1)tanx(2)+é%§§£%%%§(2)—x(3)(l+x(l)+cosx(4)—cosx(2))]+v(7)

Uo(l+x(l))

z(8) = cosx(2)

v(8)

Z(9) = Uo[i(l)+(l+x(l))x(3)tanx(2)+i(2)sinx(2)—x(3)sinx(4)] + v(9)

where,
xaT = [u o q 8 z x T th S]T
Ky = 57.29578 deg/rad
ZO = —UosinYo
and VT = [{v(1) v(2) see v(9)]T are noise quantities. (6.5.2)

The standard deviations of the noise elements are given in Table 6.5.1.
It is seen that v(6) and v(8) are multiplicative noise factors. These
noise factors can be approximated by additive noise terms as shown below.
This step is required in the implementation of the linear Kalman filter

equations.

v(8) = (1 +¢ep) cg = -02
v'(8) = eg Uavg

v(6) = (1 + ey eg = 05

v'(6) = ¢, U, (6.5.3)
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where Uavg and Uz are given by equation 6.4.1.
After making several small angle approximations and substituting

equation 6.5.3 into 6.5.2, the measurement equations become:

Z(1l) through Z(5) = same as equations (6.5.2)

R

Z(6) —[Uoi(S) + 201 + v'(6)

Z(7)

R

U_[x(2) = x(3)] + v(7)
Z(8) = Uo(l + x(1)) + v'(8)
z(9) = Uoé(l) + v(9) (6.5.4)

A prefilter is now constructed to give a second set of measurements that
are linear combinations of the states. Although approximate, these equa-

tions give very good results for small values of noise [J-4][H-4].

2(1) = [2(1) - 8 1/kd = x(4) + v(1)
2(2) = 2(2)/kd = x(3) + v(2)
z(3) = [X - Ut - z(3)cos(2(4)/kd)]/uo = x(6) + v'(3)
z(4) = [2_ - 2(3)sin(Z(4)/kd)1/U_ = x(5) + v'(4) (6.5.5)
z(5) = [z, - 2(5)1/U_ = x(5) + Véi)
2(6) = [Usin(d_ - a) - 2(6)1/U_ = x(5) + L&
o
z(7) = z(N)/U - e;: BU = x(2) - x(3) +VI(J_Z)
2(8) = 2(8)/U_ - 1 = x(1) + V'U(8)
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2(9) = 2(9)/U = x(1) +"—L(]9l (6.5.5)

o
The prefiltered measurements are thus linearly related to the state var-
iables by the measurement coefficient matrix, H, as shown in Figure
6.5.1.

The noise terms v'(3) and v'(4) represent equivalent errors in the
x-distance and altitude variables, respectively, and are derivable from
the slant range and elevation angle errors. For example, let the slant

range plus error be R + dR, and the elevation angle plus error be & + d&.

Then,
Z +dz = (R + dR)sin(§ + dg)
= (R + dR) [sin&cosdf + cos&sindg]
= (R + dR) [sing + dgcosg]
~ Rsing + dRsing + (Rcosg)dg
Thus,
v'(4) = dz = (sin&)dR + (Rcosg)dE&.
Similarly,
v'(3) = dx = (cos&)dR - (Rsing)dg (6.5.6)

Using nominal values for R and &, and the standard deviations of d& and
dR given in Table 6.5.1, the standard deviations v'(3) and v'(4) can be
found.

The actual measurement noise was simulated using the covariances
given in Table 6.5.1. The covariance matrix of the prefiltered noise
terms given in equations 6.5.5 and 6.5.6 is shown in Figure 6.5.2. This

matrix represents the prefiltered noise covariances and was used in the
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o 0 0 1.0 0 0 0 o 0 ]
0 0 1.0 0 0 0 0 0 0
o 0 0 0 0 1.0 0 0 0
0 0 0 0 1.0 0 0 0 0
= | 0 0 0 0 1.0 0 0 0 0
0 1.0 0 -1.0 0 0 0 0 0
- .31 - .75 0 0 0 0 -.042 0  .097
1 0 0 0 0 0 0 0 0
- .047 .082 0 -.152 0 0o 1.9 0 0

Figure 6.5.1 Prefiltered Measurement Coefficient Matrix, H
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solution of the Kalman filter equations.

6.6 B737 Simulation and Results

The simulation of the B737 is accomplished by initializing the air-
craft at some altitude, x-position and x-velocity, and then controlling
it to follow a glideslope corresponding to a linearly decreasing altitude
and a linearly decreasing velocity. A model system that produces this
glideslope is given in equation (6.4.2). As the aircraft altitude
decreases the appropriate linearized model is switched in according to
the schedule of configurations given in Figure 6.2.2. 1In this manner a
very good approximation to the actual nonlinear aircraft response can be
achieved.

The times of the configuration changes, as well as the configura-
tions themselves, are, of course, unknown to the controller. The ton-
troller will consist of three filters matched to configurations $15 Sg
and $10° respectively. The feedback and input gains required for each
of these configurations to follow the glideslope are precalculated using
the model-following method discussed in Section 6.4. The modified PAC
of Chapter Four is then employed to adaptively learn the most appropriate
aircraft configurations (of s

s. and slo) and to apply the correspond-

1’ 75

ing control gains.

For example, Figure 6.6.1 gives the initial conditions, wind dis-
turbance covariance, initial state uncertainty and semi-Markov matrix for
a 6-degree glideslope. The wind disturbance is assumed to be a zero-
mean, white gaussian process. Correlated wind can be accommodated by

increasing the dimensions of the system to include the necessary extra
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Glideslope Parameters

Uo = 400 ft/sec
Uf = 200 ft/sec
X = 50,000 ft
Q

Z = 10,200 ft
o]

P(0) = diagomal {4.0x10™% 2.5x1072 3x107° 5x107°
51077 6x107%  3x107°  3x10™°  1x107°}

Q = diagonal {lxlO-5 1x107° lxlO-S}

.99 .005 .005

SM = |.005 .99 .005

.005 .005 .99

Figure 6.6.1 Glideslope Simulation Parameters
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state variables. However, this was not done in this example.

The aircraft simulation and modified PAC algorithm were carried out
on a high speed digital computer. Figures 6.6.2 and 6.6.3 show the
accuracy of the resulting giideslope. The weighting coefficients are
shown in Figure 6.6.4. It is seen that they accurately follow the

changing aircraft dynamics.

6.7 Summary

A major goal of the NASA Terminal configured vehicle (TCV) project
is the automatic control of aircraft in the vicinity of the terminal dur-
ing adverse weather conditions. During the landing approach, wind shear
and gusts can excite the various dynamic modes of the aircraft, such as
the Dutch roll and the phogoid oscillation, which, if not effectively
compensated for, could lead to a less than optimum, if not disastrous,
flight termination. Several factors combine to make effective compensa-
tion a difficult problem. The dynamics of the aircraft are nonlinear,
time-varying and are only approximately known. In addition, many aero-
dynamic coefficients are given in tabular form, and some are only esti-
mated. Measurement errors on the output variables, state variable esti-
mation errors and random input modeling errors further complicate the
problem.

The modified PAC algorithm has been shown to be successful in con-
trolling the longitudinal dynamics of the B737 aircraft. It was demon-
strated that the changes in aircraft dynamics due to altitude and velo-
city variations, flap extension, landing gear position, etc., could be

identified, thus allowing the proper feedback to be applied to give
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overall uniform performance. This was shown by controlling the aircraft
down a pre-determined glideslope. This required compensating for the
phugoid oscillation, as well as the short period mode oscillation, by
calculating feedback and input gains using a model-following approach.
Again, the ability to determine the changing dynamics allowed for uniform
control all along the glideslope.

The set of possible configurations can be arrived at in several
different ways. If a reasonably accurate mathematical model exists for
the nonlinear system (as in the case for the B737 aircraft), the equa-
tions can be linearized at a sufficient number of points in the state
space [Z-1][M-8], and these linear approximations will then comprise the
configuration set. On the other hand, if no mathematical model exists,
one needs (only) to experimentally determine a set of reduced order lin-
ear systems that satisfactorily describe the nonlinear plant. The order
of these approximations will be determined by the accuracy required, but,
even though no approximation will be exactly matched to the plant, the
adaptive controller will find the best match.

Several implementation advantages exist because the controller uses
standard Kalman filters. First, the Kalman filter is reliable and wide-
ly used, as contrasted with the existing nonlinear filtering techniques.
Second, the filter gains and covariances can be precomputed and stored
off-line, for considerable savings in on-line computational time.

Finally, the structure of the controller makes it amendable to a
parallel processing implementation. This has advantages in on-line

execution time, as well as a potential for redundancy.



7.0 CONCLUSIONS

The primary contributions of this dissertation are, first, the
extension of an adaptive identification algorithm to nonlinear estima-
tion and control problems, and, second, the development of a nearly
optimum estimator for the switched linear plant problem. The stochastic
nonlinear controller developed in Chapters Three and Four eliminates a
large portion of the computational burden and performance difficulties
associated with current methods. In addition, it has several implemen-
tation advantages which are summarized in the following paragraphs.

The adaptive identification algorithm introduced by Magill [M-1],
refined by Lainiotis et al [L-2], and referred to as the Partitioned
Adaptive Estimator (PAE), has found wide usage over the last decade.
However, the application of the algorithm to plants having frequent
configuration changes has achieved only limited success. Brown and
Price attributed the inability of the PAE algorithm to track a maneuver-
ing target, to the weighting coefficients becoming zero [B-1]. As
shown in Chapter Three, this is only partly correct. Moose eliminated
the problem of the weights going to zero by incorporating a semi-Marko-
vian plant model into the estimator structure [M-2]. The net result is
an identification algorithm that is sensitized to the possibility that
configuration changes can occur. At this point, the PAE algorithm with
the semi-Markov addition is capable of tracking slowly changing plants.
However, as shown in Chapter Three, another problem with the PAE algo-
rithm is that the Kalman gains become asymptotically small, which

results in a rather long lag time between when a configuration change
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occurs and when the newly matched filter begins tracking the plant.

The PAE algorithm was modified in Chapter Three to significantly reduce
this lag time by re-initializing the Kalman gains when a configuration
change occurs. The addition of the re-initialization mechanism enables
the PAE to track rapidly changing plant configuratioms.

The nonlinear estimation problem was '"'solved'" using the above modi-
fied PAE algorithm. First, the nonlinear equations are partitioned
into a finite set of linear approximations, such that the operation of
the nonlinear plant is given, approximately, by a time sequence of the
linear models. The modified PAE algorithm then regards the nonlinear
plant to be simply a switched linear plant.

The PAE algorithm has several advantages over existing nonlinear
estimation methods. First, the bank of filters can be implemented
using a parallel processing structure. This structure readily accepts
system redundancy and system fallure models in the form of additional
elemental estimators. Second, the elemental estimators, being linear,
allow a large portion of the filter computations to be done off-line.
Third, the modified PAE algorithm is quite flexible in regards to the
nature of the nonlinear plant. The linear approximations can be made
just as readily from tabular data, discontinuous nonlinearities and
even underspecified functions. Other methods, such as the EKF,
normally require an accurate nonlinear description.

The main disadvantage of the modified PAE algorithm is its in-
accuracy. It is not meant to compete in this respect with, say, the
EKF. Accuracy can be improved by increasing the density of linear

approximations. However, this will also increase the learning time and
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thus decrease the responsiveness of the estimator. A second disadvant-
age is the required tuning of the re-initialization mechanism. As point-
ed out in Chapter-Three, this must be done empirically for each problem.

The modified PAE algorithm was extended to the stochastic nonlinear
control problem in Chapter Four. A major advantage of this method,
referred to as the modified PAC algorithm, is that the well developed
methods of linear systems theory can be applied to calculate the feed-
back gains. Either a classical eigenvalue specification or an optimal
control formulation can be used for this purpose. The set-point control
example in Chapter Four and the B737 slideslope tracking application of
Chapter Six show the utility of the modified PAC algorithm.

The problem of detecting configuration changes led to the develop-
ment of the Sliding Window Detector/Estimatgr, SWDE, algorithm. The
performance of this technique approaches the accuracy of the unrealiz-
able optimum estimator for the switched linear plant problem. Previous
attempts in this direction have all led to sub-optimal filters that are
unnecessarily approximate. (For example see [A-2].) The SWDE algorithm
utilizes steady state gains and a finite measurement window to minimize
the computational burden while maximizing tracking performance. The
three examples in Chapter Five illustrate the capabilities of this
algorithm.

A disadvantage of the SWDE algorithm is the possibility of its
losing track of the plant state. When this occurs, the algorithm must
be re-initialized. It was shown in Chapter Five that the modified PAE
algorithm together with the SWDE algorithm results in an estimator that

is both accurate and reliable. It is felt that this combined structure
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significantly extends the state of the art in adaptive estimation and

merits further application in the tracking of maneuverable targets.
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APPENDIX A - SWDE ALGORITHM

A-1 Flowchart of The Basic Algorithm

The basic SWDE algorithm is illustrated by the flowchart in Figure
A.1.1. The four steps of the algorithm are: grow the configuration
TREE, propagate the tree one iteration, test for a configuration change
and compute the state estimate. SWDE is invoked when each measurement
is received, and requires the following input data:

o] State transition matrices for all s,.

i
T Input coefficient matrices for all s -
H Measurement coefficient matrix.
F Kalman gain steady state matrices.
ZCoV Measurement residual covariance inverse.
DET Determinants of ZCOV.
Uk Input vector at time k.
zy Measurement vector at time K.
XFk—l State estimate at time k-1.
ka-l Set of branch estimates at time k-1.
PRBWk—l Set of relative probabilities at k-1.
PROLD The seed probability wvalue at k-N.
LKF The last detected configuration.
IGROW Iteration count since last detection.
NKF The number of configurations; same as M.
NW The window width; same as N.

The algorithm for detecting a configuration change is shown by the

DETECT flowchart in Figure A.1.2. Basically, the relative probabilities
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No

Yes

W(l) = XF ¥NKF
XWENW-1)=XF for LKF
PRBW(1) = 1. ¥NKF

PROLD = 1.

Propagate tree
one iteration

(See PROPAGATE)

IGROW = IGROW + 1

No

Yes

TEST Tree for
possible config-
uration change

(See DETECT)

XF = X estimate for
detected config

Figure A.1.1 SWDE Algorithm Flowchart
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PRMAX = 0.
KF =0, ITW=1

KF = KF+1

IW = IW+ 1

Yes
PRBW(IW) <PRMAX ‘

for KF
L =KF
W =1Iw

Yes

Figure A.1.2 DETECT Flowchart
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are examined and, if the maximum probability belongs to a branch cor-
responding to a configuration change NW iterations past, then the algo-
rithm detects the change and initiates the growing of a new TREE.
Updating the TREE one iteration is shown in the PROPAGATE flowchart,
Figure A.1l.3. The state estimates of each branch are updated using the
Kalman filter equations, and the relative probabilities are updated by
multiplying by the new measurement residual probability value and divid-

ing by the old seed probability.

A-2 Initjalization and Re-Start Algorithm

The SWDE algorithm is initialized by exeéuting the modified PAE
algorithm, as discussed in Section 5.6. This is illustrated by the
TRACK flowchart in Figure A.2.1. With IPAE = 0 initially, the PAE
algorithm is executed until the filter gains reach steady stateiggg one
of the weighting coefficients, Hi’ exceeds a given threshold. The SWDE
algorithm is then continually executed. If divergence ever occurs, the
measurement residual will acquire a non-zero value. This is detected
by comparing a residual average, zavg’ to a threshold value. If Eavg

exceeds the threshold for three window lengths, the TRACK algorithm is

re~started.

A-3 Weighted-Sum Estimation Modification

As discussed in Section 5.5, estimation performance can often be
improved by using a weighted—-sum of the branch estimates at every itera-
tion. The modification required to implement this estimate is to re-

place the final block of the SWDE flowchart in Figure A.l1.1 with the
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following block.

|

Y XW(J)*PRBW(J)

B;

XF =

) PRBW(J)

Bs

|

where the summation is over all NW(NKR;l) + 1 branches.
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KF =0
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KF = KF+1
IW = NW
- 3
KF = LKF Yes
v # NW >
?
NO

XP = ¢(KF)*(IW-1) + I‘(KF)*UK
ZRES = ZK - B*XP
XW(IW) = XP + F(KF)*ZRES

PROB = PDF(ZRES, COV(KF), DET(KF))
evaluates the measurement residual pdf

PRBW(IW) = PROB*PRBW(IW-1)/PROLD(NW)

[
W = IW-1

No

A
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PROLD(IW) = PROLD(IW-1) ¥IW
PROLD(1) = PROB for LKF
All PRBW(1l) = PRBL(NMW) for LKF

All XW(1) = XW(NW) for LKF

O

Figure A.1.3 PROPAGATE Flowchart
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Figure A.2.1 TRACK Algorithm Flowchart



APPENDIX B - THE "TCVA - 737 TRIM DATA VALIDATION' PROGRAM

B-1 Description

By specifying the desired steady state flight conditions, the pro-
gram will determine whether the aircraft can be trimmed. If successful,
the required trim settings will be printed out. In addition, the state
variable (perturbation) matrices will be printed in the body, stability
and wind axes systems; and the aircraft eigenvalues and eigenvectors for

the specified flight condition will be listed.

B-2 Use
Specify Units
(1) VEAIC (Equivalent air speed) kaots
(2) WEIGHT 1bs.
(3) ALT (Altitude) feet

(4) GEAR (0 = up; 1 = down)
(5) FLAPS (0 to 40 degrees) degrees
(6) C.G. (Center of gravity, .1 to .3)
(7) GAMMA (Flight path angle) degrees
(8) PHIDEG (Roll, banking angle) degrees
If the B737 can be trimmed for the above conditions, the program will
print out:
"Aircraft trimmed T"
If the B737 cannot be trimmed, the following output is not valid, and
the program will print out:

"Aircraft trimmed F"
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B~3 Output

Page 1 and 3: The trim settings:

(1) ALPDEG a, anglé of attack degrees
(2) BETADEG B8, angle of sideslip degrees
(3) DELS stabilizer degrees
(4) DELE elevator degrees
(5) DELA aileron degrees
(6) DELR rudder degrees
(7) T1, T2 engine thrust 1bs.

(8) VTB true air speed feet/sec.

As a verification, the state derivatives are printed out; they should be
very small values.

Page 2 and 3: All the 1lift and drag coefficients.

Page 4: A, B matrices (Body axis).
Page 5: Eigenvalues and eigenvectors.
Page 6: A, B matrices (stability axis).

Page 7: A, B matrices (wind axis).

B-4 Example

The following parameters were used:

(a) weight = 70,000 C.G. = .3
(b) weight = 80,000 C.G. = .25
(¢) weight = 90,000 C.G. = .15

For each of these cases one hundred runs were made for various flight
conditions, as shown in Table B.4.1. The ten flight conditions' state
equation matrices used in the B737 simulation in Chapter 6 are given in

Table B.4.2.



Table B.4.1 Flight Conditions Used in the Trim Data Validation Program

Total
Number of
Flight Banking | Landing| Runs at
Altitude Velocity Page Angle| Angle Gear this
ALT VEAIC FLAPS . GAMMA PHIDEG GEAR Altitude
200 125 40 0 0 1 6
135 -3
-6
1,500 125 40 0 0 1 18
135 -3 15
-6 30
2,500 145 30 0 0 0 18
40 -3 15
-6 30
3,500 155 30 0 0 0 18
40 -3 15
-6 30
4,500 165 30 0 0 0 18
40 -3 15
-6 30
6,000 175 25 0 0 0 6
30 -3
-6
7,000 185 15 0 0 0 6
25 -3
-6
8,000 200 0 0 0 0 6
10 -3
-6
9,000 225 0 0 0 0 3
-3
-6
10,000 250 0 0 0 0 3
-3
-6

Total runs for given weight and center of gravity - 102
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-.678
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1.0
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1.
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-.928

127

.105

.093

Table 3.4.2 The Ten Configurations

f‘ 2
-.042
-1.20
L 0
[ o
-.05
-1.47

]

.051
-1.59

-.056
-1.9

11
o

-.058

-2.16

-.058
-2.26

0
-.042
-.19

0

1.68

011

.053
0

1.58

-.021

-.107
0

1.42
.006
.035

1.31
.022
.126

-.119

1.06
-.035
-.225

.923
-.059
-.418

.318

-.038

-.295
0
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0]
.097
2.51

8
.109
3.38

0

Used in Chapter 6

-.047
-.310
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.063
-1.34
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0.

.060
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-1.80

.066
-.936
-2.08

047
-.871
-3.0

.036
-.956
-3.66

a.

REGION

-.042
-.434
0.

-.041
-.475
a.

-.04
-.485

0.
-.038
-.528

S

0.]
-.037 5




APPENDIX C - SUMMARY OF THE MODEL-FOLLOWING PROBLEM
The following description and solution outline of the time-invariant,
asymptotic, explicit (model-in-the-system) model-following problem is

taken from the documentation of ORACLS [A-3].

C-1 Continuous Model-Following Problem

For the continuous case, the state and output equations are given as

%(t) = Ax(t) + Bu(t)
y(t) = Hx(t)

where x(0) = XO is given, and the constant matrices A, B and H are of
dimension n xn, n x r (r <n), and m x n (m < n), respectively. The

control function u(t) is required to minimize

t
J= lim [ T [e'(t)0e(t) + u(t')Ru(t)]dt

tyoe 0
where
e(t) = y(t) -y (£
yp(e) = H x (&)
and
km(t) = A x (t)

where xm(O) = x; is given. The constant matrices Hm and Am have dimen-
sionm x £ (m < &) and 2 x &, respectively. Also, Q = Q' >0 and R = R'
> 0. The optimization of the performance index causes the output y(t)

of the state to track the output ym(t) of a prescribed model. After sub-

stituting e(t) into the performance index, the model-following problem

197
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can be transformed into choosing u(t) to minimize

t
3= lim[ 1 [&'(£)3%(t) + u'(£)Ru(t)]dt

tl—m 0
with
%(t) = Ax(t) + Bu(t)
where
. A 0
A =
0 A
m
. B
B =
0
1 !
Q ) H'QH H QHm
- ' 1
Hm QH Hm QHm
and
X
5’{ =
X
m

This transformed problem can be solved directly using optimal linear reg-
ulator theory. If the (A,B) pair is stabilizable and the (A,D) pair

(with D'D = Q) is detectable, the solution exists and is given by
u(t) = -Fx(t) = -Fllx(t) - Flzxm(t)

Computationally, it is inefficient to work with the composite (K,ﬁ) sys~
tem directly. If the steady-state Riccati equation is formed and A, B

and Q are substituted, it readily follows (Ref. 29) that



—3 _l '
Flua =R BPy
with Pll = Pll' > 0 satisfying
' - =1, J =
PllA + A Pll PllBR B Pll + H'QH 0
and
= -1 1
F12 R "B Plz
with P12 satisfying
- ' = !
P.,A + (A~ BF )P, = H'QH_

The computation of (F FlZ) thus separates into two parts:

11°

(1) Evaluate the feedback gain F,. on the state x by solving a reduced-

11

order optimal regulator problem of the form
x(t) = Ax(t) + Bv(t)
y(t) = Hx(t)

t
min lim f 1 [y"(£)Qy(t) + v'(t)Rv'(t)]dt%
v(t) tl+oo 0

leading to

v(t) = —Fllx(t)

(2) Using F from step (1), compute the feedforward gain F on the

11 12

model X from the linear equations

- 1 = !
PlZAm + (A BFll) Pl2 H QHm

= n!
RF12 =B Plz
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C-2 Discrete Model-Following Problem

For the discrete case, the state and output equations are given as

x(i+l) = Ax(i) + Bu(di)

y(i) = Hx(1)

with A, B and H as previously defined. The control sequence u(i)
(i=0,1, ..., N-1) is required to minimize
N-1
J=1lim ) [e'(i+1)Qe(i+l) + u'(i)Ru(i)]

N i=Q

where

e(i) = y(i) - v, (1)
Ym(i) = mem(i)
xm(i+l) = Amxm(i)

with Q, R, Hm and Am as previously defined. As in the continuous case,
the discrete model-following problem can be solved in terms of an
(A,B,3,R) optimal regulator formulation, but a simplified computational
algorithm also exists (Ref. 150:

(1) Compute a feedback gain Fll on the state x by solving the reduced-

order optimal regulator problem

x(i+l) = Ax(i) + Bv(i)
y(1) = Hx(1)
N-1

min 4lim ) [y'(i+1)Qy(i+l) + v'(i)Rv(i)]
v(i) (N>~ i=0
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leading to

v(i) = —Fllx(i)

(2) Using (P Fll) from step (1), compute a feedforward gain F12 on

11°

the model state X from the linear equatioms,

= - 1 — ]
Pip = (A= BF )'PoA — HIQH)

(B'P,.B + R)F12 = B'P

11 1280

The complete optimal model-~following control law is then given by

u(i) = —Fllx(i) - Flzxm(i).
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STOCHASTIC ADAPTIVE ESTIMATION WITH APPLICATIONS

TO NONLINEAR CONTROL

by

Philip Edward Zwicke

(ABSTRACT)

This dissertation is concerned with the development of two adaptive
state estimators that are capable of tracking linear plants that undergo
rapid configuration changes. The first is a modification of the Parti-
tioned Adaptive Estimator, PAE, first introduced by Magill in 1965,
improved and named by Lainiotis, and used in a number of applications,
primarily aerospace. The PAE algorithm was derived for the problem of
identifying which, of N, configurations that a linear plant is in; the
key assumptiocn being that the configuration is unknown but unchanging.
There are two main difficulties in extending the PAE algorithm to the
problem of estimating the state of a linear plant that can undergo con-
figuration changes (the switched-linear plant problem). These two
difficulties are addressed and solved in this dissertation. The result
is called the modified PAE algorithm.

The second adaptive estimator developed in this dissertation is
the "Sliding Window Detector/Estimator' or SWDE algorithm. Unlike the
modified PAE algorithm whose basic structure is designed to solve a
different problem, the SWDE algorithm is designed specifically for the
switched-linear plant problem. It uses a joint detection/estimation

approach to give a very close approximation to the unrealizable optimum



switched-linear estimator.

The advantages and disadvantages of the two adaptive estimators
are discussed, and it is found that a very reiiable and accurate esti-
mator can be constructed by combining both algorithms. Several differ-
ent examples are given to clarify the operation of the estimator.

A second contribution of this dissertation is in the application
of the above estimators to the nonlinear estimation problem. The mo-
tivation for this approach is that a nonlinear plant can be approximated
by a sequence of linear approximations, or configuratioms. Thus, an
estimator that works for a switched-linear plant can perform as a sub-
optimum nonlinear estimator. In addition, a stochastic nonlinear con-
troller can be constructed using the nonlinear estimator as the observ-
er. This approach has several significant implementation and design
advantages which are discussed in the dissertation and illustrated by
two examples, a set-point control example and a trajectory-following
aircraft example.

The above examples and algorithms were fully verified by extensive
computer simulation. The implementation advantages afforded by these

methods make them practical in a wide variety of applicationms.



