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1.0 INTRODUCTION 
  

1.1 State of the Art 
  

Although the vast majority of physical systems are nonlinear, there 

exists no general method of analysis for such problems. Moreover, it is 

"the opinion of the great majority of workers in the field, that a 

general method of synthesis for nonlinear problems is impossible" [G-1]. 

Many techniques have been devised to handle particular nonlinear prob- 

lems or classes of problems; however, they usually suffer from being too 

specific and too approximate. 

Indeed, the control of a nonlinear plant in a noisy environment is 

an extremely complex problem. The powerful techniques of modern linear 

control theory do not generally apply to such problems. Traditionally, 

a unique controller is designed for each specific problem; hence a con- 

siderable amount of engineering is repeated each time a new problem 

arises. 

The existing techniques of nonlinear controi can be lumped loosely 

into two methodologies. First is the linearization approach. The 

nonlinear equations are expanded about some operating point via a 

Taylor series expansion. Linear control theory is then applied as 

though the approximate linear equations were exact. Linearization tech- 

niques are especially well-suited in stability analysis. For example, 

Oaks and Cook use a linearization method in the design of a controller 

for a nenlinear oscillator [0-1]. Unfortunately, many nonlinear systems 

are not amendable to linearizing, i.e. switching functions and other 

abrupt nonlinearities, tabular functions, and partially unknown or



ho
 

underspecified functions, to mention a few. 

The second general method is the adaptive controller approach. 

The motivation for this method is that a nonlinear plant can be thought 

of as a linear plant having unknown, time-varying parameters. The adap- 

tive controller first identifies these parameters and then formulates 

the control law. A wide variety of adaptive controllers have been devel- 

oped over the years. Several of the more recent designs will be dis- 

cussed later in this chapter. 

1.2 New Results 
  

This dissertation is concerned with the development of an adaptive 

state estimator that is capable of tracking rapidly changing plant con- 

figurations. As will be shown, nearly all nonlinear systems can be 

be approximated by a linear plant having a finite number of possible 

configurations. These plants are referred to as Swttched Linear Plants. 

For such nonlinear systems, the adaptive estimator to be developed will 

give very good performance and will offer significant implementation 

advantages over other existing estimators. In addition to its direct 

application as an estimator, the algorithm will be used in closed loop 

control applications. In this capacity the actual estimation is of 

secondary import to the adaptive identification capabilities of the 

method. 

Two adaptive estimators will be examined and applied in this dis- 

sertation. The first, a modification of the estimator introduced by 

Magill in 1965, is extended to nonlinear estimation in Chapter Three, 

and to nonlinear control in Chapter Four. The second method, developed



in Chapter Five, is based upon joint detection/estimation and approaches 

the accuracy of the unrealizable optimum adaptive estimator. The advant- 

ages and weaknesses of each method are analyzed, and it is found that a 

very accurate and reliable estimator can be formulated by combining the 

two methods. 

Chapter Two of this dissertation provides a review of modern and 

classical control theory, and estimation theory as they relate to the 

discussions and derivations in the later chapters. The "Parttttoned" 

Adaptive Estimator is analyzed in Chapter Three and modified for nonlin- 

ear estimation. Chapter Four develops an adaptive controller for non- 

linear systems. The Sliding Window Detector/Esttmator is developed in 

Chapter Five to track a rapidly switching linear plant. Chapter Six 

applies the previously developed algorithms to the closed loop control 

of a B737 aircraft in adverse weather conditions. The results and con- 

tributions of this dissertation are summarized in Chapter Seven. The 

remainder of the present chapter is devoted to a review of the various 

adaptive estimation methods that have been reported in the iiterature. 

1.3 Related Investigations and Applications 
  

The problem of estimating the state (position, velocity, etc.) of 

a system in a noisy environment was formulated and solved independently 

in the 1940s by Wiener [W-1] and Kolmogorov [K-1]. The estimator, 

referred to as the Wiener filter, is applicable to linear, continuous 

time, completely defined systems, and minimizes the mean square, steady 

State estimation error. Historically, the Wiener filter is widely 

acknowledged as being the first successful attempt to optimize the pro-



cess of extracting information from noisy measurements. It has been 

used extensively in a variety of applications. 

A second major advance in estimation theory came in 1961 with the 

work of Kalman and Bucy [K-2]. The well-known Kalman filter is the 

optimal estimator for linear systems in gaussian noise, in the sense 

that it minimizes the mean square estimation error at each point in time. 

The advent of high speed digital computers has led to wide scale usage 

of the Kalman filter. 

In the last decade, optimal filtering theory and its dual, optimal 

control theory, have been rigorously developed and extended to much 

broader classes of problems. One such class is that referred to as 

adaptive systems, which encompasses sytems that are capable of altering 

themselves in one way or another. A maneuvering target may be an example 

of an adaptive system. An adaptive estimator or adaptive controller has 

the ability to modify its behavior, depending upon the performance of 

the actual system. An excellent survey of different stochastic adaptive 

control methods was done in 1975 by Wittenmark [W-2]. Much of the term- 

inology to follow is taken from that work. 

Stochastic adaptive systems are those systems where the variations 

of the process parameters have been described by stochastic models and 

have been taken into account in the derivation of the estimation or con- 

trol algorithm. A stochastic adaptive controller can artificially be 

divided into two components, an estimator and a controller, the design 

of which may or may not be carried out independently. If the controller 

can be designed using variables for the unknown plant parameters, and 

if the controller remains optimal when the estimated plant parameters



are used in place of the design variables, then the controller is re- 

ferred to as a "Certainty Equivalence" controller. This condition is 

satisfied for nonadaptive linear plants in gaussian noise for quadratic 

cost functionals [W-2]. For adaptive plants, the "Certainty Equivalence" 

principle is not valid in general but has been successfully applied as 

an ad hoc suboptimal design method. A somewhat weaker requirement than 

the "Certainty Equivalence" principle was introduced in 1971 by Witsen- 

hausen and is known as the "Separation Principle" {W-3]. The principle 

is valid if it is possible to make a separation between the identifica- 

tion of the parameters in the process and the determination of the paranm- 

eters in the controller. Note that the requirement for optimality has 

been removed. Controllers designed on this principle are sometimes re- 

ferred to as being "cautious" because the parameters of the controller 

are often functions of the uncertainties of the identified plant parame- 

ters, as well as the parameters themselves [W-2]. 

A concept that has received recent attention is that of Dual control 

[T-1]. The basis of Dual control is that system identification and sys- 

tem control are, in general, conflicting processes. Identification is 

usually aided by using large variations in plant inputs to cause sizable 

transients in plant outputs, whereas good control usually requires small 

input and output fluctuations. By formulating a performance index that 

takes into account the probability distributions of future observations, 

a better overall controller can be designed. The drawback to this 

approach is the extreme complexity of the resulting equations. 

For purposes of classification, the methods of stochastic adaptive 

estimation developed by various investigators over the last decade will



be grouped into four categories. The first category will be referred 

to as "Partittoned Adaptive Estimators" [L-1]. The estimator discussed 

in Chapter Three is a member of this group. Techniques based upon 

approximating the unrealizable optimal estimator will comprise the sec- 

ond group. The detector/estimator developed in Chapter Five fits this 

classification. The third category will be referred to as bandwidth 

modulation filters. All other methods will be grouped together in the 

fourth category. The stochastic estimation techniques discussed in the 

following paragraphs are diagrammed in Figure 1.3.1. 

The adaptive estimation problem becomes more tractable when the 

unknown parameters are constrained to belong to a finite set. A plant 

identification problem of this type was investigated by Magill in 1965 

[M—-1]. Magill found that the optimal, minimum mean square error, state 

estimate is a weighted sum of elemental estimates derived from Kalman 

filters matched to the possible plant configurations. The weighting 

coefficients are nonlinear functions of the measurements, and the 

coefficient corresponding to the actual plant configuration approaches 

unity while the other coefficients approach zero. 

The method of computing the weighting coefficients was improved by 

Sims and Lainiotis [S-1] in 1969. A Bayesian derivation approach and 

usage of the measurement residual (rather than the measurement itself) 

resulted in a simplified recursive algorithm for the coefficients. Hil- 

born and Lainiotis [{H-1] further generalized the algorithm to include 

vector observations. 

Moose and Wang extended Magill's work to the identification of a 

randomly changing plant [M-2]. The plant configuration changes are
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modeled as a semi-Markov process [H-2], the statistics of which are in- 

corporated into a recursive algorithm for the calculation of the weight- 

ing coefficients. A modified version of this adaptive estimator is 

analyzed in detail in Chapter Three. See also[Z-1l]. 

Lainiotis formalized the finite parameter adaptive estimation 

problem in 1971 by stating and proving the "Partition Theorem" [L-1]. 

In addition to giving a recursive algorithm for calculating the weight- 

ing coefficients, the theorem also gives a formula for calculating the 

time-varying estimation error covariance matrix. 

Deshpande et al, in 1973, motivated the use of the partitioned 

adaptive estimator in closed loop applications [D-1]. It was shown that 

for unknown model parameters the separation principle does not generally 

hold, and the optimal stochastic controller is necessarily a nonlinear 

controller. The "Partitioned Adaptive Controller" was then derived by 

minimizing a cost functional. Although suboptimal in general, the con- 

troller has given very good performance in a number of different appli- 

cations [A-1]. Caglayan generalized the partitioning concept to adaptive 

systems influenced by non-gaussian statistics [C-1]. A summary of the _ 

partitioning method for stochastic adaptive estimation and control can 

be found in Lainiotis [L-2]. 

Athans et al applied the partitioned adaptive control method to the 

F~8c aircraft in 1975 as part of a National Aeronautics and Space Admin- 

istration program to examine modern control techniques [A-1]. The 

method, referred to as "Multiple Model Adaptive Control" by the investi- 

gators, was quite successful in controlling the aircraft in its various 

flight configurations. Several observations about the method were



pointed out. First, the identification portion of the method is very 

dependent on the regularity of the measurement residual behavior. Sec- 

ond, the weighting coefficients are not truly a posteriori probabilities. 

Rather, they should be interpreted as time sequences that have a reason- 

able physical interpretation. These observations are expanded upon in 

the following chapters and in reference [M-8]. 

A comparison of adaptive tracking filters for targets of variable 

maneuverability was carried out by Brown and Price in 1976 [B-1]. The 

target was characterized by a "Singer model" [S-2] having a low mode and 

a high mode of evasive accelerations. They found that the Partitioned 

adaptive estimator performed poorly because the weighting coefficients 

could not track the true hypothesis when it changed. This shortcoming 

was attributed to the weighting coefficients going to zero for those 

configurations not currently matched to the plant. An ad hoc method of 

adjusting the weights between measurements according to a Markov switch- 

ing relationship solved this problem and reliable tracking was achieved. 

A finite parameter adaptive plant that undergoes frequent changes 

in configuration is referred to as a "Switehed Linear Plant". The ina- 

bility of the Partitioned Adaptive Estimator to track rapid configura- 

tion changes is a major weakness of the method. Ad hoc methods, such 

as the previously described technique of Brown and Price, must be used 

to obtain satisfactory performance. These additions are usually specif- 

ic to one type of problem and often require trial and error tuning of 

various parameters. An example of this is shown in Chapter Three. 

A second approach used in tracking a switched linear plant involves 

direct simplification of the unrealizable optimal estimator for that



10 

plant. One of the earlier investigations of this type was that of Ack- 

erson and Fu in 1970 [A-2]. Their problem was to estimate the state of 

a plant in a randomly changing noise environment. The optimal estimator 

was found to be a weighted sum of an exponentially growing number of 

elemental estimators. They next developed a suboptimal algorithm by 

characterizing the state estimate as a gaussian distribution at each 

iteration rather than the actual weighted sum of gaussian distributions. 

The mean of the assumed distribution is the weighted sum of the elemen- 

tal estimates after one iteration. Similarly, the covariance of the 

distribution is approximated by a weighted sum of the elemental covari- 

ances after one iteration. After each iteration the elemental estima- 

tors are re-initialized with the above mean and covariance. The net 

effect is that the overall estimate will be taken predominantly from the 

elemental estimator currently matched to the plant. 

Sanyal and Shen investigated the problem of detecting the time of 

occurrence of impulses of unknown magnitudes [S-3]. Restricting the 

problem to only one impulse reduced the estimator complexity from an 

exponentially growing memory requirement to a linearly growing memory 

requirement. A Bayesian decision rule was applied to the weighting 

coefficients at each iteration to detect the impulse. One shortcoming 

of this technique is that the starting probabilities and Bayesian costs 

are often unknown. 

The optimal estimator for the general switched linear plant problem 

was rigorously formulated and solved by Fujishige and Sawaragi in 1974 

[F-1]. As before, the memory requirement of the estimator was found to 

increase exponentially with time. No attempt was made to simplify the



il 

estimator. Sawargi et al applied the optimal estimator to the problem 

of interrupted observations characterized by a Jump-Markov process [S-4]. 

Their solution, although mathematically rigerous, proved to be quite 

unwieldy. 

Willsky and Jones used a generalized likelihood ratio to detect 

failures modeled as jumps in state variables [W-4]. A finite "Data 

Window" was used to keep the memory requirements of the estimator at a 

manageable level. Upon detection of a failure, the state estimate and 

the covariance of the estimation error were readjusted. Chien and Adams 

used a sequential probability ratio test to detect system failures [C-1]. 

The method was successfully applied to the inertial measurement unit in 

the space shuttle vehicle. 

A less structured approach to adaptive estimation involves increas- 

ing the Kalman filter gains, the estimation error covariance or the sys- 

tem disturbance covariance to prevent divergence. These techniques are 

usually ad hoc in formulation and are often referred to as bandwidth 

modulation techniques because changing the Kalman gain changes the 

amount of high frequency noise that will be present in the estimate. 

For example, a larger Kalman gain makes a filter more responsive to 

plant changes at the expense of overall noisier performance. 

Jazwinski [J-1] prevented divergence due to modeling errors by 

incorporating an additional covariance term in the Kalman filter equa- 

tions. The additional term is adjusted sequentially by feeding back 

measurement residual information. Nahi and Schaeffer used a Neyman- 

Pearson decision rule to detect when the calculated estimation error 

covariances became inconsistent with the actual covariances [N-i]. A
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rational procedure was used to increase the estimation error covariance 

at the time of detection. 

McAulay and Denlinger used a generalized likelihood ratio to detect 

maneuvers in a target described by Singer's acceleration model [M-3]. 

The discriminant in the detection process is the measurement residual. 

They formulated a suboptimal recursive algorithm using a single Kalman 

filter that switches between a high bandwidth mode and a low bandwidth 

mode, depending on whether a maneuver has been detected. Gholson devel- 

oped an estimator for a maneuvering target that could be described by a 

semi-Markov process [G-1]. His analysis produced a filter, similar to 

a Kalman filter, but with an additional covariance term that maintained 

the filter gains at a level sufficient to track the maneuvers. 

Several other formulations of the stochastic adaptive problem have 

appeared in the literature. Pierce and Sworder used an optimal control 

formulation to derive a closed loop controller for the switched linear 

plant problem [P-1]. Their results appear to be of more theoretical 

than practical interest. Nahi and Knobbe derived the optimal linear 

estimator for the switched linear plant problem by augmenting the system 

to include all the possible configurations and then using the Orthogonal- 

Projection theorem to minimize the mean square estimation error [N-2]. 

Although interesting, their method is inferior to the previous nonlin- 

ear estimators. 

Additional comments on the above adaptive techniques will be made 

throughout the remainder of the dissertation.



2.0 FUNDAMENTAL BACKGROUND 

2.1 Introduction 
  

The purpose of this chapter is to review certain results of linear 

system theory and estimation theory that will be used in this disserta- 

tion. In addition, much of the notation used in the following chapters 

will be introduced here. Section 2.2 defines the basic linear control 

problem. State variable feedback is discussed in Section 2.3, and the 

optimal control formulation is reviewed in Section 2.4. The Kalman 

filter is analyzed in Section 2.5, with special emphasis given to the 

measurement residual characteristics. 

The above topics can be reviewed in greater detail in numerous 

excellent texts. Chen provides a very readable introduction to linear 

system theory [C-3]. Another good source is the text by Brogan [B-2]. 

Estimation theory is well covered by Meditch [M-4], Jazwinski [J-2] and 

Gelb [G-3]. The last text is especially recommended for its practical 

applications. 

2.2 The Basic Control Problem 
  

The state variable description of linear systems is at a high 

degree of development. An important advantage of this description is 

the reduction of the system differential equations to a single first 

order matrix equation, called the state equation. 

x = Ax + Bu 

z = Hx (2.2.1) 

where, 

x=nxl system state vector 

13
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x(k+1) = x(k) + Yuk) 

z(k+1) = Hx(k+1) (2.2.7) 

@=nxn state transition matrix 

Yrenxm input coefficient ma-rix 

measurement coefficient matrix wm il 4 ms 5 

2.3 State Variable Feedback 
  

The transient response of a linear system can be adjusted by the 

use of state variable feedback, i.e. 

u(k+l) = r(kt+l) + Fx(k+1) (2.3.1) 

where, . 

r(k+1) = m x 1 reference input 

u(kt1) = m x 1 total system input 

F m x n feedback gain matrix 

Substituting equation (2.3.1) into (2.2.5) and collecting terms gives 

x(kt1) = [6 + ¥F]x(k+1) + ¥r(k) (2.3.2) 

If the original system is controllable [C-3], then it is possible to 

find an F matrix such that [¢ + ¥F] has any desired set of eigenvalues. 

For multiple input systems F is non-unique. 

A method for determining F for a single input system is now given. 

Step 1. Find the characteristic equation of the original system, 

_ oN N-1 
l2I - A| =z + ay_12 +... t+ a,z + a: (2.3.3) 

This can be done directly by using Leverrier's algorithm [M-6] 

or indirectly by calculating the eigenvalues, his and multiply- 

ing out the expression
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u=mxl deterministic input vector 

z=rxl Measurement vector 

A=nxn system dynamics matrix 

B=nxm input coefficient matrix 

H=rxn measurement coefficient matrix 

The solution of the state equation is readily found by integrating 

(2.2.1). 
ft 

x(t) = exp(A(t-t)) x (t.) + I. exp (A(t-t))Bu(t)dt (2.2.2) 

O 

where 

2 3 
(At) + (At) exp(At) = I + At + ~~ 2! 3! + eo 2 @ 

and x(t) is the initial value of the state vector. 

In systems using a digital controller the sampled data version of 

2.2.1 is required. Holding the input constant between sample intervals 

reduces (2.2.3) to, 

t 
k+1 

x(ty 4) = exp (A(t, j-t,))x(t,) + I exp(A(t, ,)-7))dt Bu(k) 

k (2.2.4) 

Rewriting 2.2.4, 

x(k#1) = ox(k) + ¥u(k) (2.2.5) 

where, 

o = exp(A(t, )-t,)) 

el ] 
y= lf exp (A(t, ,,- 1) )dt/B (2.2.6) 

ty | 

The complete discrete time system description is,
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N 

I (z ~ i.) (2.3.4) 
i=l * 

Step 2. Construct the controllable canonical form for the original 

system using the characteristic equation of Step l. 

        

ie 1 0 tee o | To | 

0 0 1 see 0 

$ = : e 3 y = ° 
c s : Cc ® 

0 0 0 see 1 0 

-a -a ~a eee ~a La 
|p 9 06 nol, (2.3.5) 

Step 3. Compute the controllability matrices for the original system 

structure and the controllable structure. 

N-1 C, = (YOY pee OY] 

. _ : . N-1 
C, = [¥. : oY : oo ¥ (2.3.6) 

Step 4. Compute the transformation matrix P. 

P=c.c, (2.3.7) 
1°2 “— 

Step 5. For the desired closed loop poles, calculate the corresponding 

characteristic equation and controllable system structure. 

      

TO 1 0 ore QQ To] 

0 0 l wee 0 0 

eo =|: 2 ib Malt 
0 0 0 | 0 

—b -b, -b vee 1 
—_ t 2 Nel] (2.3.8)  
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Step 6. Equate the desired system's controllable structure to the orig- 

inal system's controllable structure with state variable feed- 

back, and solve for Fo: 

6, = [6 +¥ F } 
Cc ec 

        

2 

TO 1 0 -- oOo [| | 0 1 see 0 7 

0 0 Loo 69 0 0 wee 0 

0 0 O . 4 0 0 wee 1 

“BG By Bg ttt Bye} Fam 8g Fam 8g Eyre 
Lo tok “| 

f = a,47 bya (2.3.9) 

Step 7. Transform the feedback matrix from the controllability coordi- 

nate system to the original coordinate system. 

rere 
c 

2.4 Optimal Control Formulation 

As shown in Section 2.3, the feedback gain matrix, F, can be found 

by specifying the eigenvalues for the desired closed-loop system. An 

alternative means of determining F is via an optimal control formulation. 

This requires the specification of a quadratic cost functional to effect 

a trade-off between control effort and state variable performance. For 

example, the cost functional for the infinite time optimal regulator 

problem is given by, 

tal cK) Qx(k) + ul Ck) Ru(k) } (2.4.1) i=5 
k=0 i t

-
1
8
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where 

Q #F=nxn1 is a positive semi-definite matrix that penalizes 

non-zero state values. 

R =mxn is a positive definite matrix that penalizes 

large control efforts. 

Minimizing J subject to the system constraints, equation (2.2.5), leads 

to the following result for u(k). 

u(k) = Fx(k) (2.4.2) 

-1yT . 
F= (R+ yt py) PO 

where P is the solution of the steady state discrete Ricatti equation. 

P = (8-¥F)p(o-vF) + FiRF +0 (2.4.3) 

In using the optimal control formulation, the designer loses the 

freedom to specify the closed-loop eigenvalue locations, and hence, loses 

the ability to directly set the transient response. On the other hand, 

the designer gains the ability to adjust the control performance rela- 

tive to the control effort, indirectly controlling the transient 

response. For example, penalizing the state vector more and the control 

vector less will cause the system to respond faster. 

2.5 The Structure of the Kalman Filter 
  

The discrete time description of a linear system corrupted by noise 

is, 

x(k+1) = Ox(k) + Yu(k) + Iw(k) 

2(k+1) = Hx(k+l1) + v(k+1) (2.5.1) 

The definitions for the above quantities are given in (2.2.1) and 

(2.2.7), and
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w=pxl random disturbance input 

verxl measurement noise 

T=nxp disturbance coefficient matrix 

The general filtering problem is to obtain an estimate %(k+1) for 

x(k+1) given the measurements up to and including z(k+1). For linear 

systems having Gaussian distributed noise processes the optimal estima- 

tor is the well known Kalman filter [K-2][G-3][M-4][J-2]. The Kalman 

filter is optimal in the sense that it minimizes the mean square state 

estimation error, and for this reason it is alternately referred to as 

the mmse filter or the optimal linear filter. 

It is assumed that w and v are zero mean, white Gaussian random 

variables, and are therefore completely described by their covariance 

matrices Q and R, respectively. The structure of the Kalman filter is 

R(k+1L) = R(k+1L/k) + KCk+1) [2 (k+1) -H&(k+1/k) J (2.5.2) 

where 

R(k+1/k) = O&(k) + Yu(k) 

The time varying Kalman gain, K(k+l), is calculated as follows. 

M(k+1) = 6P(k)o? + ror? (2.5.3) 

= T T -1l K(k+1) = M(kt+1)H™ [HM(k+1)H™ + R] (2.5.4) 

P(k+1) = [I - K(k+1)H]M(k+1) (2.5.5) 

where, 

Q= E[w(k)w! (k) ] disturbance covariance 

R= E[v(k)v! (k) ] measurement noise covariance (2.5.6)
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The physical interpretations and dimensions of the above matrices are, 

&(k+1) =nxl filtered state estimate at time k+l 

&(k+1/k) =n x1 predicted state estimate at time k+l given meas- 

urements up to t = k 

K(k+t1) =nxr Kalman filter gain 

P(k) =nxn covariance of the filtered state estimation 

error 

M(k+1) =enxn covariance of the predicted state estimation 

error (2.5.7) 

A block diagram of the Kalman filter is given in Figure 2.5.1. 

Since the original work of Kalman and Bucy, the optimal linear 

filter has been derived through a variety of formulations. Notably, it 

has been shown that the optimal linear filter is isomorphic to the opti- 

mal linear regulator reviewed in Section 2.4 (for example see [G-3]). 

Hence, by a simple renaming of terms the optimal regulator derivation, 

via the Ricatti equation, is equally valid for the Kalman filter. A 

major implication of this ‘duality’ is that the Kalman filter, under fair- 

ly loose conditions, is stable. Rewriting equation (2.5.2) for u(k)=0, 

RCKAL) = [I-KCK+L)H] OR (Ck) + K(k+1)2(k+1) (2.5.8) 

This is a first order difference equation with the measurement sequence 

driving the filter dynamics. Stability implies that the eigenvalues of 

[I-K(k+1)H] are inside the unit circle. The inherent stability of the 

Kalman filter is an important ingredient in the operation of the adap- 

tive estimator analyzed in Chapter Three. 

Increasing the Kalman gain is equivalent to increasing the filter 

bandwidth. Referring to equation (2.5.8), if k = 0, then &(k+1)=68(k).
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That is, the estimate is not affected by the measurement, and hence, the 

bandwidth is zero. As K increases from zero, a larger portion of the 

noisy measurement is incorporated in the estimate, and the higher fre- 

quency fluctuations become visible. This corresponds to a higher fre- 

quency bandwidth. 

The Kalman filter performs two different functions. First, as 

already mentioned, is noise filtering. The second function is state 

reconstruction from a measurement vector having fewer elements than the 

number of states. For example, let R = 0 indicating no measurement 

noise, then 

K(kt1) = M(k+1) 8° (HM (k+1) 87) 77. (2.5.9) 

Substituting (2.5.9) into (2.5.5) gives 

P(k+1) = [I - M(kc+1) 8° famt(et1) a2] M41) (2.5.10) 

Post~multiplying by Ht, 

P(k+L)H- = M(ktl)B) - M(k+1) 82 [HM(k+1) 82] aM (+1) HE 

P(k+1) HE 0 (2.5.11) 

Now if H has full rank, P(k+1) = 0 indicating that once the z(k+1) 

measurement is processed the state is known exactly. This is intuitive- 

ly satisfying. On the other hand, if H does not have full rank, then 

P(kt+1) is simply the least-square-estimation-error associated with 

observing a reduced number of measurements. 

The Kalman filter has a predictor/corrector structure. First, 

the current filtered estimate is extrapolated to the next iteration, 

and then a correction term is added when the subsequent measurement is 

processed. The amount of correction is determined by subtracting the 

actual measurement from the predicted measurement, and multiplying by
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the Kalman gain, as shown in equation (2.5.2). The measurement residual 

(also called the ‘'innovation' [K-3] is defined as, 

Z(k+1) = z(kt1) - H&(k+1/k) (2.5.12) 

It is now shown that the measurement residual is a zero mean white 

gaussian random process. Substituting for z(k+1) using (2.5.1) and 

x(kt1/k) using (2.5.2) gives, 

2(k+1) H[Ox(k)+¥u(k)+Iw(k)] + v(k) - H[O8(k)+¥u(k) ] 

HO(x(k)-&(k)) + HIw(k) + v(k) (2.5.13) 

Taking the expected value of each side gives, 

E{2(k+1)} = HO(E{x(k)}-%(k)) + HTE{w(k)} + Ef{v(k)} 

= (2.5.14) 

Also, using (2.5.13), and defining ¥(k) = x(k)-&(k), 

7 il E{ 2% HOE(E(k)& 2 (k) }o™H! + BrE{w(k)w' (ke) }P oH? + Efvv!} 

T T + Hrorty? +R HOP (k) 0 "H 

H{oP(k)o! + ror7jH’ +R M 

E(2(k)2 7 (k)} = HM(kt+i)a’ +R (2.5.15) 

Comparing equations (2.5.15) and (2.5.4), it is seen that the measure- 

ment residual covariance is available from the Kalman filter equations. 

The whiteness of the measurement residual process is shown by 

substituting equation (2.5.13) into, 

E({2(k+N) 27 (k) } 

E{2Z(k+N) 2° (k)} = [HOX(k+N-1) + HIw(KHN-1) + v(k+N-1)] 

[HOk(k-1) + HEw(k-1) + v(k-1)]> (2.5.16)
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Because w and v are both white gaussian processes and are uncorrelated, 

Efw(k+N-L)w! (k-1)} = 0 

E{w(k+N-1)v' (k-1)} = 0 

Also, due to the optimality of the Kalman filter, the estimation error 

is uncorrelated with the noise sequences w and v. Moreover, the estima- 

tion error has an auto-correlation function (see [M-4]). 

E(k+N,k) = P(k)d(N) (2.5.17) 

Hence, 

Tt E{2 (+N) 2) (ke) } = HOE{E(K+N-1)%! (k-1) } 6 

= 0 (2.5.18) 

In the actual computations a better formula is used in place of 

equation (2.5.5). This equivalent formula is 

P(k+1) = [I-K(k+1)H]M(k+1) (I-K(k+1)H]7 + xrKt (2.5.19) 

Equation 2.5.19 is superior to equation (2.5.5) because it guarantees 

that P(k+1) remains symmetric despite accumulated computer round-off 

errors.



3.0 THE MODIFIED PARTITIONED ADAPTIVE ESTIMATOR 

3.1 Introduction 
  

The main result of this chapter is the development of an estimator 

for highly nonlinear systems based upon the structure of a stochastic 

adaptive estimator. In addition, a design method will be presented 

that will be applicable to a large class of nonlinear systems. The 

estimator has several key advantages over the other existing methods. 

First, the structure of the adaptive estimator is an arrangement of 

linear filters. This allows the off-line computation of a large per- 

centage of the filtering equations, thus reducing the on-line cycle 

time of the estimation algorithn. Furthermore, this structure takes 

advantage of the powerful methods of linear systems and linear estima- 

tion theory which are at a much higher level of development as compared 

to nonlinear estimation theory. Second, the estimator is readily inm- 

plemented in a parallel processing type of organization. This has ad- 

vantages in computational speed and estimator redundancy. 

The existing estimators for nonlinear systems can be grouped, 

loosely, into linearization methods and adaptive methods. The best 

known of the linearization methods is the Extended Kalman Filter (EKF) 

[G-3]. This algorithm requires that the nonlinear equations be ex- 

pressed in a Taylor series expansion with the expansion point being 

the last state estimate. The linear terms of the Taylor series form 

the bases for filtering equations that are similar to the Kalman filter- 

ing equations. If the nonlinear system is well specified, then the EXF 

can be very accurate. However, if the nonlinear system model is inexact, 

25
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then the EKF will diverge. The requirement for a precise model is a 

major disadvantage of this method. Another disadvantage of the EKF is 

the formidable amount of data processing that is required between meas- 

urements. he Taylor series terms must be re-evaluated at each itera- 

tion and, therefore, the filter equations must be solved on-line. 

A motivation for applying adaptive techniques to the nonlinear es- 

timation problem is that a nonlinear system can be thought of as a lin- 

ear system having unknown time varving parameters. If these parameters 

could be identified at each iteration, a linear estimator couid be con- 

structed that would give nearly optimal estimates. Several methods have 

been developed and applied successfully to plants having relatively small 

nonlinearities. That is, the usual trajectory of the state vector is 

such that the nature of the plant changes slowly with time. Many of 

these methods are based on the adaptive estimator structure introduced 

by Magill [M-1] and refined by Lainiotis et al, and will be referred to 

as "Partitioned Adaptive Estimators" or simply PAE's [L-2]. Moose and 

Wang developed an estimation algorithm for a linear plant undergoing 

random configuration changes that could be modeled as a semi~Markov 

process [M-2]. A major advantage of this method is that che designer 

can utilize more of the available a priori information regarding the 

plant behavior to develop a better estimator. This estimator will form 

the basis of the nonlinear estimation algorithm developed in this chap- 

ter. 

Athans et al applied an adaptive estimation technique to the non- 

linear flight dynamics of the F-8c aircraft. The estimator was part of 

an overall adaptive controller referred to as "Multiple Model Adaptive



Control" [A-l]. It consisted of a bank of Kalman filters, each matched 

to a specific flight condition. In addition, 2 learning section util- 

ized the measurement residual of each filter to identify the actual 

current plant configuration. The simulations that were conducted in- 

dicate that the method would track the aircraft configuration changes 

provided that sufficient time was spent in each configuration. Brown 

and Price applied the PAE method to a maneuverable target described by 

Singer's acceleration model [B-1]. They found that the estimator could 

not track the plant when it underwent relatively rapid maneuvers. 

The fact that the PAE algorithm cannot track a plant undergoing 

rapid configuration changes is not surprising because, as discussed in 

the sections to follow, the algorithm was not designed to do so. It is 

inherently an identification algorithm and works excellently in that 

type of problem, but poorly when required to track a rapidly changing 

plant. 

Section 3.2 analyzes the operation of a specific PAE algorithm 

based upon semi-Markovian plant modeling. This particular algorithm 

has features that enable it to be readily modified to track rapidly 

changing plant configurations. This modification is described in 

Section 3.3, and an example is given. The extension of this modified 

algorithm to the nonlinear estimation problem is straightforward and 

is done in Section 3.4, with a design example discussed in detail. The 

advantages and disadvantages of the method are discussed in Section 3.5.
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3.2 The Partitioned Adaptive Estimator with Semi-Markov Plant Modeling 

The structure of the Partitioned Adaptive Estimator is shown in 

Figure 3.2.1. First introduced by Magill [M-1], the estimator consists 

of a bank of Kaiman filters, called elemental estimators, each matched 

to a possible plant configuration. In addition, a learning or adaptive 

section transforms the set of elemental estimates, &, (kK), to an overall 

estimate, %(k). The identification problem is defined to be the joint 

problem of estimating the state and identifying the configuration of a 

lant that is in an unknown, but unchanging, configuration. Magill 

proved that the optimal estimate for the identification problem is a 

weighted sum of the elemental estimates. The time varying weighting 

coefficients, Ts5 perform the identification function of the algorithm. 

Several methods exist for calculating 1: The differences are primarily 

due to the extent of a priori information that is assumed about the 

plant, and how this information is assimilated into the calculations 

{[L-2][A-1] [M-2]. 

In operation the elemental estimators are all initialized with the 

same initial guess and uncertainty covariance matrix, and the weighting 

coefficients are initialized to reflect the a priori knowledge, if any, 

o£ the starting configuration. As the plant measurements are processed, 

the weighting coefficients become time varying a posteriori probabili- 

ties of the plant being in the respecrive configurations. Hawkes and 

Moore derived an upper bound for the estimation mean square error and 

proved that the PAE algorithm will converge exponentially to the mean 

Square error of a perfectly matched Kalman filter [H-3]. A major impli-~ 

cation of this result is that one of the weighting coefficients will
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Figure 3.2.1 The Partitioned Adaptive Estimator Structure
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approach unity, thus identifying the plant configuration. 

Moose extended the PAE algorithm to the switched linear plant prob- 

lem by incorporating a statistical description of the plant configura- 

tion changes into the computation of the weighting coefficients [M-2]. 

The net result is an identification algorithm that is sensitized to the 

possibility that a configuration change can occur. For completeness, 

the derivation of this method is synopsized here. 

Given a switched linear plant description, 

x(kt+1) = x(k) + ¥,u(k) + T wk) 

z(k+1) = Hx(kt+1) + v(k+1) 

oe{9) %, 0) 

¥ et, ¥5 ae 

Tet?) r, -T (3.2.1) 

The system matrices switch randomly amongst the M possible plant config- 

urations. 

The optimal estimate of the state at time k+l is 

S(k+1) = E[x(k+1)/2(k), z(kt1)], (3.2.2) 

R(k+1) = f x p[x(k+l) = x/R(k), z(kt1) ]dx. (3.2.3) 
—_O 

And using Ss, (k) to represent the yeh plant configuration at time k, 

N 

p[x(k+1)=x/%(k), z(kt1)} = 5 p[x(k+1)=x/2(k), z(k+t1), S$, (k+1) ]T, (k+1), 

i=1 

(3.2.4) 

where 

I, (k+1) = Prob. {s, (k+1) /2(k) , z(kt+1)}. (3.2.5) 

The well known result that &(k+1) is a weighted sum of the individual
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parameter-conditioned estimates is now forthcoming. From (3.2.2) with 

expression (3.2.4) used for the density function 

N 

RCkK+1) = =F &, CK+1) I, (k+l), (3.2.5) 
i=1 i i 

where 

&, (k+1) = E(x(k+1)/%(k), z(kt1), s, (kt) ]. (3.2.7) 

The key to (3.2.5) lies in the computation of I, (+1) since &, (et1) 

can be obtained by the standard Kalman filter algorithm for i= 1, 2, 

., N. By Bayes’ rule 

p[z(kt1)/s, (k+l), &(k) ] P{s, (k+l) /2(k) } 
I, (kt1) = , (3.2.8) 

p[z(kt1)/2(k) ] 

  

® 

for each i= 1, 2, ..., N. Since the denominator is not dependent on i, 

the normalizing can be done without calculating p[z(k+l1)/%(k)] through 

the relation 

I,(k+1l) for any k. (3.2.9) 

i=l * 

The probability density p{z(kt+1)/s, (k+l), &(k)] is approximately normally 

distributed and will be represented by a Gaussian density function whose 

mean and covariance are available from the parameter conditioned Kalman 

filter algorithm. Thus, separate filters are constructed, one for each 

linearized region S55 1=1, 2, ..., N. The th filter algorithm is 

iven by equations (3.2.10) to (3.2.13) below [M-4]. 

&, (etl) = 2, (k) + yuck) + K, (kt1) [z (kt1) - H, ,%, (x) - H¥,u(k)], 

(3.2.10) 

T T 
1 = M, (kth) oP. (k) a, + rary, (3.2.11)
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_ T T -1 > 
K, (ctl) = M, (ctl) H, [HM (kt+1)H, +R] 7, (3.2.12) 

P, (etl) = (I - K, (kt+1)H, JM, (k+l), (3.2.13) 

where Q = E[w(k)w" (k) ], R= E(v(k)v! (k)], and %, (0) and P, (0) are initial 

conditions given in terms of the gth model statistics. Using the abbre- 

viated notation that for each i= 1, 2, ..., N 

P[z(ktl)/s, (k+l), &(k)] = P (2Ckt1)) 5 (3.2.14) 

then, from (3.2.1) and (3.2.11) the Gaussian density mentioned above is 

1.T,,-1l. 
P, (2) = D, exp{- 32 V5 zh, (3.2.15) 

where v5 = HM, (+1) H; + R and D, is the appropriate normalizing con- 

stant for the density function. The time dependence of Z in (3.2.15) 

was dropped to simplify the expression. 

Finally, the numerator factor P{s, (k+1)/2(k) } in (3.2.8) can be ex- 

panded as follows: 

N 

P{s,(kt1)/&(k)} = aa P{s, (ktl)/s (k)}P{s_ (k)/R(k-1), 2(k)}, 

" (3.2.16) 

where the conditioning information &(k) in the second factor has been 

equated to (&(k-1), z(k)) and the conditioning on &(k) in the first fac- 

tor has been dropped because of its redundancy with s 6%) + Thus, the 

first factors of (3.2.16) represent the semi-Markov probabilities of the 

plant's transitions. The effect of these transition probabilities will 

be discussed subsequently in detail. The second factors of (3.2.16) 

are the probabilities Ts) calculated at the previous stage for m= 1,
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2, .--, N. 

To summarize, the adaptive estimator described above consists of a 

bank of filters and a separate algorithm which takes inputs from the 

filters to generate the time-varying probabilities T, Ck) 5 i=l, 2, 

N. Figure 3.2.2 illustrates the block diagram for the adaptive estima- 

tor. 

The computations for the probabilities T, (k) can be put into a 

more instructive recursive form as shown in (3.2.17). From this struc- 

ture the effect of the transition probabilities O54 = P{s, (k+l) /s (ic) } 

can be studied. 

                

iT, (k+1) | [p, (2(k+1)) fei, 8, ee Oy] | 

(ct) Po (2(k+1)) ° 81 859 tes Ogg || ly Ck) 

2 | Ord - ; 
: 5 | . : . 

yer | Py 20H) | Pa Bon eee Pras | Ev | 

(3.2.17) 

where p, (2(k+1)) = p[Z(kt+1)/s, (kt1)] and Chad is a normalizing constant 

calculated so that (myc) © is a probability set at each time k. 

For a Kalman filter perfectly matched to a plant the measurement 

residual Z(k+1) = z(k+1) - H[$&(k) + Tu(k)] is a white, zero-mean Gauss- 

ian random sequence with covariance V = H M(k+1)H? + R, see (3.2.11). 

Thus, the probability density function can be represented as the scalar- 

valued function of the m-vector Z(k+1) by 

T 
p(z) =D exp{- 3 vitst, (3.2.18)



34 

  

      

  

        
  

  

  

  

  

        
  

    

  
  

  

    
  

  

olleasurements _ 

(k+1) - 2 | Filter 1 &, (+1) 1, (k+1) 
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              a
 

    
    
    
      

  

Figure 3.2.2 Modified Partitioned Adaptive Estimator, 

Showing Semi-Markov Addition.
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-n li 
2 2 

where D = (2m) |v] t Note that V- is available from each separate 

filter algorithm, see (3.2.12). 

The parameters re represent the probability of the plant's chang- 

ing from configuration Ss, to configuration s, during a sample interval. 

These transition probabilities can be pre-computed exactly [H-2] if sta- 

tistical knowledge is known concerning the changes of configuration. 

Otherwise, the 845 may be adjusted to achieve the desired degree of fil- 

tering and speed of learning in an empirical manner as suggested by the 

following analysis. 

Equation (3.2.17) can be viewed as a discrete-time filter where the 

coefficients 85 provide the coupling from one time step to another. 

From (3.2.17) 

H, (k+l) = [c (k) Ip, (2(k#1)), (3.2.19) 
N 

kt 8. ,fl 
jer Jt J 

for i=1, 2, ..., N. In general, the time-varying probabilities I, (k) 

will lag the density values p, (2). The extent to which this is true is 

demonstrated by considering two limiting cases, corresponding to no a 

priori knowledge and to total a priori knowledge, respectively. Case 1: 

43 =a i.i = 1, 2, ..., N. From (3.2.19) 

= i > I, (+1) = [Chay yp, (201), (3.2.20) 

for i=i1, 2, ..., N. In other words, the raw density values are norm- 

alized to be the updated probabilities. Thus, (3.2.20) provides no ad- 

ditional "filtering" and the variations of the I, (k) will appear to be 

very noisy. At the same time, however, the response time for detecting 

changes in configuration will be minimal. Now consider a second extreme
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where the off-diagonal terms of the @-matrix are zero. 

1, i= j 
Case 2: ye} oe 

0, i# 3; i,j = 1, 2, ..., N. 

Again, from (3.2.19) 

T, (k+1) = [C, 17, Cs) Ip, (2Ck+1)), (3.2.21) 

for i=i1, 2, ..., N. In this case the 1, will tend to lag the indica- 

tions provided by the p, (2). As an extreme condition, with I, = 1 and 

T, = 0 for i #1 at some time, there is no response to the residual den- 

sities. This total filtering condition is intuitively satisfying based 

upon the assumption of total a priori knowledge. In practice, there is 

never total certainty about the plant configuration and if e.g. I, = 1 

with T, = 10°79 when a configuration change is made from S, to S5> then 

from (3.2.21) aq begins to increase (since P, > P;)- However, because 

q, was initially so small, a number of iterations is required before q, 

> Is thus indicating that a transition has, in fact, occurred. This 

delay is referred to as the learning time of the adaptive estimator. 

The two extreme cases just considered provide some insight into the 

learning mechanism; but, in general, the O44 values will be chosen be- 

tween these limiting cases. It has been found empirically that a useful 

form for the 6 matrix is to make the diagonal terms equal and close to 

unity and the off~diagonal terms equal and small. The off-diagonal 

terms, although small, are critical in determining the learning time. 

They act as an influence on the lower limits to which the probabilities 

can drop. This can be seen from (3.2.19) by assuming that the plant is 

holding in configuration s, (thus, P, > Py and I, = 1, and noting that
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P. 
Leg ph zg. «ef :_ 2S 

0..p. Li ip, 
43°34 J J Ps 

  

I, (ct1) 2 (3.2.22) 

where Ps is consistently small. Henceforth, I. will remain at this small 

value until the plant changes to a new configuration. 

When choosing the 945 parameters, a compromise must be made between 

estimator responsiveness and noise immunity. The smaller the off-diagon- 

al terms, the longer the learning time, but the less likelihood of false 

identification. 

A program was written to quantitatively examine the effect of the 

semi-Markov matrix on learning time. The results are summarized below. 

Example 3-1 

Verification that off-diagonal terms being zero will cause ql, to 

approach zero for all but one probability. Given, 

-2 1 
10 3 

~ -3 1 
9 = I; p (2, ) = 110 for all k; 1(Q) = 5 

-5 1 
10 3 

Table 3.2.la gives 1, (k) for the three configurations. As expected, Ty 

rapidly approaches unity whereas IL, and I, become asymptotically small, 

with q, approaching zero faster. 

Example 3-2 

Verification that non-zero off-diagonal terms will lead to steady 

state values for II. Given, 

"98 Ol =. OL 1072 4 

@=|.01 .98 01]; p(2,) = 10-2] for all k; 1(0) = + 

.Ol .O1 .98 107> 5
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Table 3.2.1 Time-Varying Weighting Coefficients 
For Different Semi-Markov Matrices 

  

  

(a) 8 = I; weights approach zero. 

Time Ty q, I, 

1 3.333E-01 3.333E-01 3.333E-01 
2 9.083E-01 9.083E-02 9.083E-04 
3 9.901E-01 9.901E-03 9.901E-17 
4 9.990E-01 9.990E-04 9.990E-10 
5 9.999E-01 9.999E-05 9.999E-13 
6 1.000E 00 1.000E-05 1.000E-15 
7 1.000E 00 1.000E-06 1.000E-18 
8 1.000E 00 1.000E-07 1.000E-21 
9 1L.Q00E 00 1.000E-08 1.000E-24 

10 1.000E 00 1.000E-09 1.000E-27 
il 1.000E 00 1.000E-10 1.000E-30 
12 1.000E 00 1.000E-11 1.000E-33 

13 1.000E 00 1.000E-12 1.000E-36 
14 1.000E 00 1.000E-13 1.000E-39 
15 1.000E 00 1.000E-14 1.000E-42 
16 1.000E 00 1.000E-15 1.000E-45 
17 1.000E 00 1.000E-16 1.000E-48 
18 1.000E 00 1.000E-17 1.000E-51 
19 1.000E 00 1.000E-18 1.000E-54 
20 1.000E 00 1.000E-19 1.000E-57 
21 1.000E 00 1.000E-20 1.000E-60 
22 1.000E 00 1.000E-21 1.000E-63 
23 1.000E 00 1.000E~22 1.000E-66 
24 1.000E 00 1.000E~23 1.000E-69 
25 1.000E 00 1.000E-24 1.000E-72 

(b) Off-diagonal 845 = .01; weights have lower bounds. 

Time Ty I, I, 

1 3.333E-01 3.333E-01 3.333E-01 
2 9.083E-01 9.083E-02 9.083E-04 
3 9.891E-01 1.089E-02 1.208E-05 
4 9.979E-0O1 2.117E-03 1.031E-05 
5 9.988E-01 1.231E-03 1.022E-05 
6 9.988E-01 1.142E-03 1.021E-05 
7 9.989E-01 1.133E-03 1.021E-05 
8 9.989E-01 1.133E-03 1.021E-05 
9 9.989E-01 1.132E-03 1.021E-05 

10 9.989E-01 1.132E-03 1.021E-05
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Table 3.2.1b verifies equation (3.2.22), i.e. 1, reaches a steady state 

value of 

-3 Ty * 8,5Py(2)/p,(2) = (.01) (107°) /107* = 10 

Example 3-3 

Verification that learning time depends on off-diagonal entries. 

Given, 

998 .001 .001 10°? 10 27° 

@= 1.001 .998 .001/; p(z) = |10°°|; m(o) = | 1 

.001 .001 .998 10°? 107 2° 

Table 3.2.2a shows that 9 iterations are required for TL to change from 

10°29 to approximately unity. For 

1 1019 49°49 

a= i101 4 10°19 

109 ig t?® 3 

16 iterations are required as shown in Table 3.2.2b. For a greater diff- 

erence in probability density values, the learning time decreases, as 

shown in Table 3.2.2c. 

The PAE algorithm with the additional semi-Markov ingredient has 

been shown to give good tracking performance for plants having configu- 

ration changes that occur at a rate that is low when compared to the 

actual plant dynamics [M-2][M-5]. A large number of physical situations 

fall in this category. For example, an aircraft undergoing a change in 

dynamics due to, say, a change in altitude. However, for plants having 

rapid configuration changes, the method will give poor results. This is 

the subject of the next section.
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Semi~Markoy Matrices and Different p(Z). 

Table 3.2.2 Time-Varying Weighting Coefficients for Different 

  

  

  

  

  

  

  

  

(a) Off-diagonal 6,, = .001; oi(z) = [107 1072 107°}. 
Time iy I, I, 

1 1.000E-20 1.000E 00 1.000E-20 

2 9.911E-03 9.891E-01 9.911E-04 

3 9.911E-02 8.991E-01 1.811E-03 
4 5.258E-01 4,.727E-O01 1.478E-03 

5 9.171E-01 8.247E~-02 4.319E~-04 

6 9.908E-01 9.009E-03 1.549E-04 

7 9.989E-01 1.008E-03 1.166E-04 
8 9.997E-01 2.O01L1LE-04 1.119E-04 

9 9.998E-O1 1. 203E-04 1.114E-04 
10 9.998E-01 1.122E-04 1.113E-04 

11 9.998E-01 1.114E-04 1.113E-04 

12 9.998E-01 1.113E-04 1.113E-04 

(b) Off-diagonal Fe = 10°19, pt (z) of Part (a). 

Time Ty I, I, 

1 1.000E-20 1.000E 00 1.000E-20 

2 1.000E-09 1.000E 00 1.000E-10 

3 1.100E-08 1.000E 00 2.000E-10 
4 1.110QE-07 1.000E 00 3.Q000E-10 

5 1.111E-06 1.000E 00 4.000E-10 

6 1.111E-05 1.000E 00 5. 000E-10 
7 1.111E-04 9.999E-0O1 5.999E-10 
8 -1.,1LLOE-03 9.989E-01 6.992E-10 

9 1.099E-02 9.890E-01 7.913E-10 
10 1.000E-01 9.000E-01 8.111E-10 

11 5.263E-01 4.737E-01 4,.795E-10 
12 9.174E-01 8.257E-02 1.010E-10 

13 9.91L1LE-01 8.920E-03 2.172E-11 

14 9.991E-01 8.992E-04 1.227E-11 
15 9.999E-01 8.999E-05 1.124E-11 

16 1.000E 00 9.000E-06 1.112E-11 

17 1.000E 00 9.000E-07 L.1LLLE-11 

{c) 6 of Part (b); p (2) = [1072 107° 107°}. 
Time I, I, ny 

1 1.000E-20 1.000E 00 1.000E~-20 

2 1.000E-07 1.000E 00 1.000E-10 
3 1.001E~-04 9.999E-0O1 2.Q00E-10 

4 9.099E-02 9.090E-01 2.727E-10 

5 9.901E~-01 9.891E-03 4.056E-12 
6 1.00E 00 9.990E-06 1.051LE-13 

7 1.Q00E 00 9.990E-09 1.001LE-13 

8 1.000E 00 1.009E=-11 1.001E-13 
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3.3 Modified PAE Algorithm 
  

Incorporating the semi-Markov statistics into the weighting coeffi- 

cient calculations prevents the weights from going to zero. This is 

necessary if the estimator is to track a plant that will undergo config- 

uration changes. However, the following analysis of the filter operation 

reveals that more is required if the estimator is to track a plant that 

has configuration changes occurring at a rate comparable to its own dy- 

namics. 

As previously discussed, the PAE algorithm consists of a bank of 

Kalman filters operating in parallel on the measurement data. The Kal- 

man filters have a predictor/corrector structure. First, the future 

State is predicted from the current estimate and a model of the plant 

dynamics. Second, a correction is added to this predicted value when 

the noisy measurement is received. The amount of correction is deter- 

mined by multiplying the measurement residual by the Kalman gain, i.e. 

&(k+1) = >, 8k) + K, (k+1) [z(k+1) - H, o, 20x) J (3.3.1) 

where K is given by equation (3.2.12). Regrouping gives 

&(k+1) = (1 - KH, )o,2(%) + K,z(kt1). (3.3.2) 

When the Kalman filter is initialized, K is large and more measurement 

data is incorporated into the estimates. Consequently, the estimator 

converges fairly quickly to the actual plant state. The eigenvalues of 

(I-KH) can be shown to lie inside the unit circle, thus the Kalman fil- 

tering algorithm is inherently stable. See Chapter Two.
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As the Kalman gains decrease, all the filters except the one 

matched to the plant will diverge. Eventually, the gains will reach 

steady state, and the diverging filters will stabilize around respective 

levels. The differences between these levels and the actual plant state 

are referred to as bias errors. Rewriting equation (3.2.2), 

&, (k+l) = 9%, (k) + K, 2, (k+l) 

where, 

Z, (ct1) = z(k+tl) - H, $,%, (k) (3.3.3) 

At first Z. is relatively small because all the filters have converged 

to the measurement sequence. The estimate, &s> propagates mainly 

according to d5- If , is not the same as the plant, R, diverges and 

Ze increases. However, K,Z, acts as a correcting term on &, i.e. if & 
ivi 

is diverging positively with respect to the plant, then the measurements 

on the plant will be less than those predicted by the filter, Za < 

Hi $,%, (etl), and thus 2 will be negative. Eventually, Z will be suffi- 

ciently large so that the correction at each iteration just offsets the 

additional error introduced by the mismatched dynamics, and an equili- 

brium bias error is attained. (Leondes and Pearson derived an upper 

bound for this bias error due to mismatch [L-3].) 

At this point one filter is tracking the plant and the others are 

biased off the plant. The weighting coefficients indicate this by their 

values; nearly unity for the tracking filter, and approximately zero 

for the cther filters. Now suppose a configuration change occurs. One 

of the other filters is now matched to the plant, but is also giving
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bad estimates due to its initial bias error. Moreover, because the Kal- 

man gain is at a small steady state value, a large number of iterations 

will be required before the bias error is subtracted away. Eventually, 

however, the newly matched Kalman filter will converge to the plant and 

Start tracking it with small error. This is due to the fact that the 

Kalman filter is stable, as mentioned earlier. 

The convergence time depends on the steady state value of K- A 

larger value will lead to quicker convergence. From equations (3.2.11), 

(3.2.12) and (3.2.13) it is seen that the gain can be artificially in- 

creased by increasing the value of Q used in the system description. 

The drawback to doing this is that the state estimate will always con- 

tain more of the noisy measurement. 

A better approach is to detect when a configuration change occurs 

and then re-initialize the error covariance matrices to appropriately 

large values, and the weighting coefficients to the equal uncertainty 

condition. All the filters will then quickly converge to the measure- 

ments and the proper filter will begin tracking the plant. Shortly, 

the Kalman gains will decrease to their steady state values, so that 

only during the re-initialization period will large noise levels be 

present in the estimate. The adaptive estimator as constructed contains 

all that is needed to detect plant configuration changes. The key ob- 

servation is that, when a transition occurs, the measurement residual 

values for the previously tracking filter will steadily increase. Thus, 

monitoring a filtered version of the measurement residual probabilities, 

i.e. the weighting coefficient for the tracking filter, will be suffi- 

cient to identify a transition. To summarize, I, of the tracking
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filter will be monitored. When q, falls below a predetermined threshold, 

all the filters will be re~initialized. After a brief convergence time, 

q of the newly tracking filter will be approximately unity. At this 

time, Ht will be monitored to detect a second configuration change. 

An example will illustrate the operation of the filter both with 

and without the gain re-initialization mechanism. 

Example 3-4 

The plant will switch randomly among the three configurations: 

x 0 1 x4 0 0 u 0 
s,: = + + w (3.3.4a) 

Xo =30  -11 |x, 1 -63.2}{ 1 1 
a 

Ky 0 1 x4 ) 0 u 0 
S,: + + + W (3.3.4b) 

X> 0 -1||x, 1 0 1 1   

oS
 

©
 

& ©
 

-
 

x 0 1l| |x 

s.: ' = 1 + + Ww (3.3.4c) 

x -30 -li|x 63.2 1 1 
| 2 — 2 — 

t Where 'u' is a deterministic input, and 'w' is a random disturbance in- 

  
put. Notice that configurations Sy and $4 differ only in their input 

coefficient matrix. 

An adaptive estimator using three Kalman filters was constructed 

according to the previous discussions. A computer simulation was per- 

formed under various conditions with the following results. 

Referring to Figure 3.3.1, the plant is initially in configuration 

1, with x(o) = -4.8. Noisy measurements are taken on both position and 

velocity; the noise covariance is 1.0 for both position and velocity; 

and the input is a step of 12.0. At time t = 1.05 seconds (15 itera-
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tions), the plant switches to configuration 2. 

Figure 3.3.la shows the actual plant position as a function of time, 

and the three Kalman filter position estimates. Filter 1 tracks the 

plant very well during the time the plant is in configuration 1. When 

the plant switches, filter 1 starts to diverge and filter 2 starts to 

converge. However, filter 2 is not providing good estimates until t = 

3 secs. 

Table 3.3.1 is a table of the filter weighting coefficients, Ts 

corresponding to a semi-Markov matrix 

996 002 .002 

8 = |.002 996 002 

002 996 996 

Initially, Il, quickly approaches unity, whereas Ty becomes very small 
1 

(IL, is set to zero whenever the exponent would otherwise cause under- 

flow). After the switch, Il, increases steadily until at time t = 1.4 
2 

secs., qt, is unity. Hence the learning time is about .35 seconds. 

Table 3.3.2 corresponds to 

lL i 1 

§8=1/3 jl 1 Qf. 

1 ?2I it 

It was shown earlier that for this choice of semi-Markov matrix, 

the weights will follow the measurement residual probabilities, noise 

and all. Indeed, at iterations 7 and 8, because of the large noise 

present, I, is erroneously low. 

Figure 3.3.1b shows the overall estimate corresponding to the 

weights in Table 3.3.1.
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From the previous results it is seen that after a plant transition 

there is a relatively long convergence time (not to be confused with 

learning time) before the filter matched to the new configuration begins 

tracking the plant. Performance will be improved if the convergence 

time is decreased by detecting the configuration change and reinitializ- 

ing the Kalman filter gains. 

The previous example was run again with the addition of the above 

switch detection logic. The following improved results were obtained. 

See Figure 3.3.2 and Table 3.3.3. Figure 3.3.2a is identical to Figure 

3.3.1b up until t = 1.4 seconds, at which time the switch detection log- 

ic detects a transition. The filters are then reinitialized and Kalman 

filter 2 begins tracking the plant. It was found that increasing the 

off diagonal entries in the semi-Markov matrix decreased the learning 

time, thus reducing the large spike at t =~ 1.4 seconds. See Figure 3.3. 

2b. Table 3.3.3 gives the weighting coefficients corresponding to 

Figure 3.3.2a. The arrow at t= 1.4 seconds indicates the reinitializ- 

ing of the filters; i.e. all the weights are made equal. 

3.4 Nonlinear Estimation Using the Modified PAE Algorithm 
  

A nonlinear system can be approximated in different regions by 

corresponding linear systems. Moreover, a set of linear systems can be 

assembled to satisfactorily approximate the nonlinear system over its 

entire operational range. Now, as the state of the nonlinear plant 

moves through the state space, it will continuously move from a region 

closely approximated by one linear model to another region closely ap- 

proximated by a second linear model. If Kalman filters were matched to 

the various linear approximations, the filter matched to the region that
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the plant is currently in will provide better estimates than the other 

Kalman filters. This motivates the use of the adaptive estimator struc- 

ture discussed in Section 3.3 for nonlinear systems. 

A general nonlinear plant model is given by 

x = F(x,u) (3.4.1) 

where x is a vector of plant states and u is the vector of inputs. The 

actual nonlinearities implied by the function f in (3.4.1) are assumed 

to be known in some form, typically as curve-fitted information from 

tabulated data or a combination of tabulated data and analytical ex- 

pressions. From the nonlinear data, linear models are developed by ex- 

panding (3.4.1) in the neighborhoods of a preselected set of points (x;; 

u,)> i=l, 2, ..., N which represent the "centers" of a set of regions 

which forms a partition set for the complete configuration space, i.e. 

the space of points (x,u). Using a Taylor series expansion, the set of 

linear approximations becomes 

x= A.x+B.u+C, for i=l, 2, ..., N, (3.4.2) i i i 

af _ of _ 
(x,,U,), B, = ACE re, and C; = f(x,,u,)- The expressions where A, = 

i ox’ iL 

given in (3.4.2) are used to approximate the plant dynamics for (x,u) 

in Si defined by 

S, = ((x,u): [|x - x1 < aj, [lu - u, || < bjt, (3.4.3) 

where a, and by are chosen from an eigenvalue sensitivity analysis to 

insure that each approximating linearization (3.4.2) is within an accept- 

able tolerance. The actual partition regions {R,}, i=l, 2, ..., N 

are related to the spherical regions {s,} in (3.4.3) in the sense that 

uN R, = oS S., but that the regions R, are taken to be mutually dis- 
i=li 1=1lii i
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joint. In practice, it is not necessary to consider the distinction be- 

tween Ry and Si. 

From the set of linear approximations (3.4.2) equivalent discrete- 

time models are formulated. Thus, the set of approximations becomes 

x(k+1) = d(T) x(k) + v, (T)utk) + 9, (7), : (3.4.4) 

for i=l, ay ee N and where 6,(T) = exp {A,T}, 9,(T) = J ®,(t)B dt 

and 6, (T) = I, o(e)C,dt. These equations (3.4.4) are equivalent to 

those of (3.4.2) at the sample times provided that the inputs u(t) are 

held constant during the (uniform) sample intervals, i.e. when u(t) = 

u(kT) for kT < t < kI + T. This is a reasonable assumption when digital 

control is to be used. 

Since the design must consider the system's random disturbances, 

discrete noise processes will be incorporated into the approximating 

linear models. To do this the equations (3.4.4) are used in addition to 

an assumed measurement model which itself has been linearized about the 

points (x, ,u,) as was done to obtain equations (3.4.2). The complete 

set of linearized models is given by 

x(k+1) = o x(k) + v, uk) + 8, + w(k) (3.4.5) 

z(k) = H, x(k) + v(k) (3.4.6) 

for (x(k), u(k)) in region Ss. and for i= 1, 2, ..., N. The vectors 

w(k) and v(k) represent the effective plant disturbance and measurement 

noise, respectively. 

The basic scheme for partitioning the nonlinear plant assumes a 

reasonably accurate nonlinear model. From this nonlinear model, varia- 

tions of the open-loop eigenvalues are precomputed off line by calculat-
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ing the eigenvalues for a multitude of linearized conditions. Once the 

key parameters are isolated, i.e. those to which the plant eigenvalues 

are most sensitive, eigenvalue variations are then plotted versus these 

parameters. Linear regions are then specified according to allowable 

tolerances in eigenvalue location. 

The present approach, while certainly not limited to low-order 

plants, is most easily comprehended by developing a simple prototype 

example. To this end, consider the simple nonlinear oscillator [0-1] 

yryrt y> =u, (3.4.7) 

where u represents the system input containing both deterministic and 

stochastic terms, and y represents a scalar position variable. 

A state model for (3.4.7) is given by 

x = Xo (3.4.8) 

k= x, - x? + u(t) (3.4.9) 
2 2 1 — 

Zz, = Xy + vy (3.4.10) 

Zy = Xo + Vo (3.4.11) 

Equations (3.4.10) and (3.4.11) are the measured variables with Vi and 

Vv, representing additive noise. If x is used as an expansion point, 
2 10 

the linearized system becomes 

x = 9 x + 4 (3.4.12) 

Clearly, the linearized system dynamics depend on the value of the pa- 

rameter X19: By establishing an operating range for the system, say 

|x, | < 6, the open-loop system eigenvalues vary as shown in Fig. 3.4.1.
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Figure 3.4.1 Variation in System Eigenvalues for the Design Example
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Note that x, = 6 represents a significant restoring force, corresponding 

to a linear spring constant of 108. Motivated by the open-loop eigen- 

value variation, i.e. roughly equal eigenvalue variation, two intervals 

were taken; viz. 

S, = fa: O<a < 15} (3.4.13) 

and 

sy ={a: 15 <a < 108}, (3.4.14) 

where a is the effective spring constant. With this partition three 

filters are effectively used, two differing only in the input matrix as 

a result of different bias offsets. The points of expansion for S, and 
2 

51 and S. were a = 0 and a = 30, respectively. 

Figure 3.4.2 illustrates the three linear approximations to the 

cubic nonlinear term. It is seen that the lines intersect at approxi- 

mately x = 2.2, which verifies the boundary determined via eigenvalue 

< 75). variation (i.e. for region S55 |x, | 

Inherent in the Kalman filter algorithm is the tendency of the fil- 

ter gains to become small as time progresses. This occurs under conti- 

tions of large measurement noise versus small system noise. For known 

linear plants and their associated Kalman filters, this is usually not 

a problem. But for nonlinear plants, or for linear plants with unknown 

parameters, it is impossible to identically match the filter dynamics to 

those of the plant and a tendency toward divergence can be expected. 

The gains become small, little new measurement information in incorpo- 

rated into the estimate and the filter values diverge from the actual 

plant values. A common practice is to artificially increase the inten- 

sity of the plant disturbance, Q, thus insuring that the filter gains
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stay reasonably large. Usually, this is a trial and error process. A 

noteworthy exception is the bandwidth modulation technique developed by 

Jazwinski [J-1]. His method uses an additional covariance term that is 

adjusted sequentially by feeding back measurement residual information. 

A more direct method has been devised specifically for the PAE al- 

gorithm. From Figure 3.4.2 one can quickly tabulate the error in x be- 

tween the exact equation and the approximation for an arbitrary number 

of points in a given region. The average error for each region can then 

be calculated, i.e. the average error in regions s, and s, is .44, and 
1 3 

in region So is 1.0. These errors are upper limits on the estimation 

accuracy in the various regions. In addition, the modeling error values 

aid in deciding how much additional Q should be added to the filter 

equations to maintain desired tracking performance. For example, the- 

predicted error covariance equation, (3.2.11), can be augmented as, 

M.(kt1) = ¢.P.(k)o.2 + r.or.7 + Q (3.4.15) 
L ii i ivi ™ 

where P is the error covariance, Q the system disturbance covariance and 

Qa the additional modeling error covariance. The magnitude of Qa is 

given approximately by the mean square value of error in x, i.e. for 

regions s, and $3, Q = .3, and for region So> Q= 1.5. The relatively 
1 

large value in region s, reflects the gross approximation in that region. 
2 

The modified PAE algorithm of this chapter was carried out on the 

previous nonlinear oscillator example for various levels of noise. The 

plant was simulated using the Jump-Matrix technique [V-2]. The state 

variable description of the oscillator is given in 3.4.8 and 3.4.9. 

Defining x, = x 3 the Jump-Matrix description of the oscillator 
3 1 

becomes
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| 1 oOo Of x 1 0 0 ffx, 

Ky) “LoL A fxn) 0 1 0  0|\x, 

Ky ; 0 0 0{|x, =lo)? 0 0 0 X, 

ja | 0 0 Oflu t+ + Lo 0 o tly],- 

(3.4.16) 

These equations were executed at a sufficiently fast rate to keep the 

cubic term nearly constant from iteration to iteration, thus insuring an 

accurate nonlinear plant simulation. 

The plant input, input disturbance covariance, measurement noise 

covariance and semi-Markov matrix are 

.996 -002 .002 

u= 12; Q= 4; R= 3; 8 = |.002 996 .002 (3.4.17) 

002 -002 996 

Figure 3.4.3 shows the PAE algorithm tracking the plant very well over 

all three regions. The noisy regions near times t = .75 and t = 1.5 

are due to the re-initialization of the Kalman filters when the nonlin- 

ear plant moves into a different region. Table 3.4.1 gives the weight- 

ing coefficient values at each iteration. The times that the estimator 

is re~initialized are shown by arrows. Notice that the weighting coef- 

ficients are then assigned equal probability values. 

3.5 Summary 

The nonlinear oscillator example studied in this chapter is a 

formidable estimation problem because of the rapid oscillations from 

one region to another. It has been shown that the PAE algorithm with 

switch detection can track the oscillator quite well. For less extreme
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Figure 3.4.3 Actual Nonlinear Plant Position and the Modified 
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nonlinear systems the tracking should be even better. [In fact, if the 

plant time constants are larger than the convergence times of the fil- 

ters, then the switch detection part of the estimation algorithm can be 

deleted with little loss in overall tracking accuracy. It should be 

pointed out, however, that this nonlinear estimation technique is not 

intended to compete with the current methods in terms of accuracy. 

Rather, it is a fairly straightforward approach with significant advant- 

ages in implementation that can be applied to a large class of nonlinear 

equations. 

This method of nonlinear estimation is readily implemented in a 

parallel processing arrangement. Each Kalman filter can act simultane- 

ously on the measurement data (rather than consecutively, as was done in 

the simulations). A supervisory computer would then weight the individ- 

ual processor outputs (state estimates) to derive the best nonlinear 

estimate. Inherent in this implementation is the ease of adding system 

redundancy in the form of additional paraliel processors. Greater 

accuracy is attainable by partitioning the plant into a larger density 

of linear approximations. And if the parallel processing implementation 

is used, this increase in accuracy will not significantly add to compu-- 

tation time. Each Kalman filter, being linear, also allows off-line 

precalculation of Kalman gains, thus eliminating much of the on-line 

computational burden. 

Several disadvantages, however, subtract from the general utility 

of this method. First, the switch detection performance is quite sensi- 

tive to the threshold value. If the filters are re-initialized too 

often, then the resulting estimate will be unacceptably noisy. On the
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other hand, a threshold value that is too low will allow too much 

divergence. Unfortunately, the only sure way to achieve a satisfactory 

threshold value is by trial and error. A value that works well for one 

problem may be unsatisfactory for another. 

A second disadvantage is the noise that is present in the estimate 

during re-initialization. This degradation is due to the inherent 

inability of the method to track rapid configuration changes. In 

Chapter Five an estimator will be developed to remedy this problem.



4.0 STOCHASTIC NONLINEAR CONTROL 

4.1 Introduction 
  

This chapter applies the modified PAE algorithm of Chapter Three to 

the stochastic nonlinear control problem. A major portion is devoted to 

the development of a design procedure for a specific type of problem 

referred to as set~point control. This procedure will be applied to the 

nonlinear oscillator introduced in Chapter Three. Referring to the 

terminology of Chapter One, the nonlinear controller to be developed is 

an adaptive controller. Use is made of the Separation-Principle to 

subdivide the identification and the control aspects of the design. In 

addition, the controller is "cautious" in that the feedback gains depend 

on the degree of uncertainty in the state estimates. Before discussing 

the advantages of the controller, a brief description of the hierarchy 

of control problems and a summary of existing stochastic nonlinear con- 

trollers is presented. 

The methods of deterministic linear control are by far the most 

completely developed of all the control problems. Given the plant dy- 

namics, the problem is to determine the feedback gains that will give 

the plant the desired closed loop performance. The feedback gains can 

be found using classical, modern or optimal techniques. The separation 

principle allows the state variable feedback to be determined, assuming 

that all the states are available, even though a state reconstructor 

(observer) might be required. 

Stochastic linear control theory is also very well developed, in 

the context of the linear-quadratic-Gaussian, LQG, problem. That is, 
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a linear plant having Gaussian distributed random processes with the 

performance index expressed as a quadratic cost functional. The separa- 

tion principle, which holds under these restrictions, allows a Kalman 

filter observer to be designed independently of the feedback gains. 

There are no general methods for designing a controller for a 

deterministic nonlinear problem. Describing functions have been applied 

successfully to a class of problems, primarily relay type switching 

functions. The method of input matching [J-3] is effective for controll- 

ing plants that can be described using a generalized input/output model. 

For most problems, however, the usual approach is to linearize the func- 

tion around some operating point and then apply linear control theory. 

This method works well if the state of the plant remains in a neighbor- 

hood of the operating point. But, poor performance and possible insta- 

bility may result if the state is not so contained. Oaks and Cook [0-1] 

developed a design method for driving a nonlinear plant from one operat- 

ing point to another. Their method required the determination of regions 

of stability around the desired and intermediate operating points by 

solving Liapunov stability equations. By overlapping these regions, 

optimal trajectories were determined to connect the initial, intermedi- 

ate and final points. Although elegant, the computational burden of 

their method, even for low order problems, is excessive. 

The stochastic nonlinear control problem has all the difficulties 

of the deterministic problem plus the complication of random system dis- 

turbances and measurement noise. The separation principle is not, in 

general, valid for this problem. There are basically two approaches of 

stochastic nonlinear control. The first method imposes the separation
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principle, valid or not, and then employs a nonlinear observer such as 

the EKF, to reconstruct the state vector for feedback purposes. If a 

single feedback matrix is designed to give suitable performance for all 

plant conditions, the controller is said to be "Robust" [D-2]. Alter- 

‘nately, a set of feedback gain matrices can be calculated based upon 

different linearizations of the nonlinear plant. These gains can then 

be scheduled according to the state estimates to give more precise con-~ 

trol in the different regions. Gain scheduling is probably the most 

widely used method. 

A second approach is to use adaptive techniques to learn key 

parameters in the plant and formulate the control law accordingly. 

These nonlinear adaptive control methods are motivated by the observa- 

tion that a nonlinear plant can be thought of as a linear plant having 

unknown, time-varying parameters. The adaptive approach has several 

advantages over the linearization approach. First, the plant descrip- 

tion is often difficult to ascertain. The linearization of a nonlinear 

plant as required by the EKF and by the feedback calculations cannot be 

carried out effectively unless the plant equations are accurately known. 

On the other hand, the adaptive method is quite tolerant of plant model 

inaccuracies. Second, gain scheduling per se does not take into account 

uncertainties in the state estimates. Using an inappropriate gain 

because of noise in the estimate could very possibly cause an unstable 

situation. Adaptive controllers can be designed to reduce this possi- 

bility. 

The motivation for using the PAE algorithm in closed loop control 

is attributed to Deshpande et al [D-l]. It was shown that for unknown
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model parameters the separation principle does not generally hold, and 

that the optimal stochastic controller necessarily has a nonlinear struc- 

ture. The "Partitioned Adaptive Controller", PAC, was then motivated 

by arguments centered around minimizing a cost functional. Similar 

approaches to the adaptive control problem were investigated by Saridis 

and Dao [S-5], and Stein and Saridis [S-6]. Athans et al successfully 

applied an equivalent technique, called "Multiple Model Adaptive Control" 

to the F-8C aircraft [A-1]. 

The shortcomings of the PAC formulation are the same as those of 

the PAE algorithm discussed in Chapter Three. The main problem being 

the inability to track, hence control, a plant undergoing rapid configu- 

ration changes. However, the modified PAE algorithm with semi-Markov 

plant modeling and gain re-initialization eliminates this problem. 

In this chapter a modified PAC controller based upon the results 

of Chapter Three will be applied to the stochastic nonlinear control 

problem. Section 4.2 describes the basic structure of the modified PAC 

controller. A specific control problem, set-point control, is solved 

in Section 4.3. The nonlinear oscillator considered by Oaks and Cook 

is used as a design example. Section 4.4 gives the results of several 

simulations of the modified PAC controller. The advantages and disad- 

vantages of this method of stochastic nonlinear control are discussed 

in Section 4.5. 

4.2 The Modified PAC Controller 
  

The structure of the modified PAC algorithm is shown in Figure 

4.2.1. A bank of Kalman filters operates in parallel and independently
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on the noisy plant measurements, z. Each filter produces an estimator, 

Rss for the state conditioned on the plant being matched to that partic- 

ular linearized model, S.. Unlike the PAE algorithm, however, a weighted 

Sum state estimate is not calculated. Instead, each estimate is multi- 

plied by feedback gains, Fi which are particular to each linearized 

model. The overall state variable feedback is then calculated as a 

weighted sum of the elemental state variable feedbacks, u,- The weight- 

ing coefficients, Is are calculated in exactly the same manner as they 

were for the PAE algorithm. Thus, they are nonlinear functions of the 

measurements. In addition to the individual feedback gains, each model 

will in general have a different linearization constant as seen in 

equation (3.4.2). Depending on the control function to be implemented, 

these biases may have to be eliminated by subtracting the off-set values, 

H,. For uniform steady state performance, the actual input, r, may 

require different scale factors, G,; for the different linearized models. 

The net plant input is a weighted sum of all three inputs; actual scaled 

input, input off-sets and feedback inputs. 

This structure is intuitively satisfying. As long as the nonlinear 

plant is in one particular region, the filter matched to that region and 

the feedback gains for the corresponding linear approximation are being 

used in a straightforward state variable feedback control scheme. When 

the plant moves to another region, then the weighting coefficients will 

automatically update to identify the best matched Kalman filter. 

Because of the digital computer in the feedback loop, the control- 

ler has a sampled data control structure. Moreover, the measurements 

themselves may be available only at discrete times, such as a radar
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signal. The continuous time linearization models must therefore be con- 

verted to discrete time models. From the discrete time models, the 

required sampled data feedback gains can be determined. A variety of 

techniques can be used to obtain the feedback gains. Classical criteria 

for the transient response, such as rise-time, overshoot, etc. can be 

specified, thus locating the closed-loop eigenvalues. In general, each 

linearized region could have a different desired performance, and 

therefore different eigenvalues. For larger order systems an optimal 

control formulation is much more versatile. Both techniques are 

reviewed in Chapter Two. 

4.3 Set Point Control 
  

An important class of tracking problems consists of those problems 

in which the reference variables remain constant over periods of time 

which are long relative to desired response times. For such systems it 

is customary to call the constant reference variable the set-point for 

the system. The specific application of this section is that of set- 

point control of nonlinear stochastic systems by which is meant the 

design of a suitable controller for the nonlinear plant so that the 

controlled output responds to step reference inputs in a desired manner. 

The two classical considerations for such a response are the transient 

and steady-state behavior. To the extent that these concepts carry 

over to nonlinear stochastic control systems, the purpose of the present 

design will be to achieve 'zero' steady-state error and a prespecified 

rise-time for the controlled response. Of course, the actual error will 

never be identically zero because of the disturbance process which is
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driving the system in a random fashion. 

Once the configuration regions have been established, following 

the linearization procedure described in Chapter Three, the next step in 

the controller design is to construct a set of feedback gains. It is 

desirable to maintain a uniform closed-loop system transient response. 

This is accomplished by computing the individual feedback gains Fi3 1 = 

1, 2, ..., N to give the same closed-loop eigenvalues. 

In order to complete the controller design, it is necessary to com- 

pensate for the offset terms given by the matrices 8. in (3.4.5). In 

addition, designing for a classical type-l response generally requires 

the inclusion of input gains G, as shown in Figure 4.2.1, i.e. the 

reference input must be weighted differently for each region to achieve 

a zero average steady-state error to step commands. For example, let 

the continuous time plant description in region S; be . 

x A,x + Bu + C; 

u 
A,X + [B,C,1[,] 

~ -u 
A,x + Bi] (4.3.1) 

The discrete time equivalent is 

u 
i1*i2) ty] 

If u = Fx(k+1) + Gr + Hs then the closed loop system is 

x(k+l) = >, x(k) + [¥ (4.3.2) 

Gt + Hy 

x(kt1) = [¢, + ¥ 5 Fy lx) + [Ysa % 40) 

1 

If the reference input, r, is held constant at a value ty: and if the 

closed loop system is stable, then x will reach a steady state value 

given by
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x, = [(I-9,-¥ IGpr, + Pree 8 Fe TH, + Pe 8 PY] 
(4.3.4) 

i? ia 

The unknown scale factor, Gy: and offset correction, Hj» can be solved 

for the zero steady state error case, X55 7 T° The result is 

G.= [(1-8,-¥, FY.) H, = G,[(1-0,-¥,,F)¥ 49] (4.3.5) 

The modified PAC algorithm will be applied to the nonlinear oscilla- 

tor of Chapter Three. It is desired to achieve set-point control of 

j+yty su (4.3.6) 

so that the closed loop performance matches that of the linear, criti- 

cally damped systen, 

y + 20y + 100y = u (4.3.7) 

This corresponds to a double pole at s = -10, which in turn yields a 

rise time of approximately 0.4 seconds. In addition, it is desired to 

have classical type-l steady state performance, i.e. zero tracking error 

for step inputs. The following steps outline the design procedure. 

Step 1. Decide on the operational limits of the state variables 

associated with the nonlinearities. As in Chapter Three, it is 

assumed that -6 < x < 6. Later this range will be extended to 

-8 <x < 8. 

Step 2. Decide on the number of linear approximations required to rep- 

resent the nonlinear differential equation. The number and 

selection of linear approximations depends primarily on two 

requirements. From an estimation point of view the Taylor 

series expansion points should be chosen close enough to in- 

sure good accuracy. From a closed loop viewpoint it is neces- 

sary that the feedback gains calculated from the linear approx-



73 

imation give suitable closed loop behavior over the range of 

the approximation. Moreover, in set-point control it is neces- 

sary that each region sufficiently overlap the adjacent regions 

so that the actual steady state of the nonlinear plant, using 

the feedbacks of an intermediate region, will also lie in the 

desired region. This requirement insures the controller's 

ability to drive the state from region to region, and is simi- 

lar to the overlapping regions of stability constraint dis- 

cussed in [0-1]. Fortunately, the control requirements are 

usually satisfied if the linearization regions are chosen 

solely for estimation accuracy. The three linearized systems 

of Chapter Three will be used in this design example and are 

repeated below. 

  

sc | 0 1] [x 0 0 u 0 
Sy 1 = 1 + + W 

Xo ~30 -1 Ly 1 -63.2 1 1 

hee —t 

[— —T 
xy 0 1 fa 0 0 u [ 0 

So = + + Ww 

x 0 -iil lx Ll 0 1 a 
2 2 

Le al L 

TT x 0 L| ix 0 0 u u 

53 1 = 1 + + Ww 

ie -30 -1| |x, 1 63.2}; 1 1 
_   

Step 3. Discretize the continuous time linear models, for a 

sample time of .07 seconds. 

x, | 929.066] |x, 0024 - .142]} fu -0024 
Sy = + + Ww 

| [=1.979  .863| |x, .066 -3.96 | jl) 066 

ktL k



  

lx 1. .068[ |x .0024 O.]f u 0024 
1 pi} 1 

55 = | + + Ww 

2 0. 932 Xo 0638 O.;|.1 .068 

k+1 k 

[x .979 .066| [x 0024 + .142])[u 0024 
L 1 

53 = + + W 

Xo 1.979 - 863 Xo .066 +3.96 1 .066 

kL k 

Step 4. Using the SVF method outlined in Section 3.2, calcu- 

late the sampled data feedback gains for each region. First, 

the desired continuous time poles s = -10, -10, transform into 

the discrete time poles z -5, .5. The feedback gains are then 

F, = [-24.2 -11.2] 
1 

Fy = [-53.6 -12.0] 

Fy = [-24.2 -11.2] (4.3.10) 

Step 5. Calculate the required input scaling factors and off- 

sets for each region to achieve zero steady state error, using 

equation (4.3.5). 

G, = 54.5 Hy = 63.2 

Gy = 53.6 Ho = 0.0 

Gy = 54.5 H. = -63.2 (4.3.11) 

Step 6. Decide on the semi-Markov matrix entries. The 

approach taken will be to obtain a balance between noise 

immunity and estimator responsiveness. This will be done 

empirically. An analytical derivation of the entries, as done 

in reference [M-5], is not possible because the Markov transi- 

tions between regions and the holding times are very dependent 

on both the reference input and on the disturbance inputs.
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After trying several different matrices, the following semi- 

Markov matrix was chosen. 

. 996 002 .002 

8 = |.002 .996 .002 

002 002 996 

The results of Steps Four and Five are summarized in Table 

4.3.1. 

4.4 Simulations 
  

In this section several simulation results are presented on the 

set-point control of the nonlinear oscillator. A nonlinear integration 

routine was used for the plant [V-2]. Otherwise, the simulation follows 

the adaptive estimation and control algorithms discussed in the previous 

sections and in Chapter Three. Figure 4.4.1 provides a plot of the 

oscillator response to a reference step of 4 units, the amplitude 4 

insuring a strongly nonlinear response. Note the nonlinear effect of 

the oscillation period's dependence on the amplitude. Several closed- 

loop simulations were made with the three design regions and associated 

parameters given in Table 4.3.1. The three regions in Figure 4.4.1 are 

W? So and S. are -6 to -2.2, -2.2 

to 2.2 and 2.2 to 6, respectively. Figure 4.4.2 illustrates both the 

dependent only on position; regions S$ 

closed-loop system response to a reference input step of 4 units ampli- 

tude, and the relative tracking behavior of the three filters. Note 

that the proper filter for region 3 maintains a close track on the plant 

trajectory. The initial plant state was taken to be [-4.8 ot, the 

input covariance Q = 1, the measurement noise covariance R and semi-
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Table 4.3.1 Design Parameters for the Set-Point Control Example 

  

discrete time EF, offset feedforward 
feedback gains correction A, gains CG. 

Region - 1 -24.2, -11.2 63.2 54.5 

Region - 2 -53.6, -12.0 0 53.6 

Region - 3 24.2, -11.2 ~63.2 54.5 
e        
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Markov matrix are 

.996 002 ml 

R= @ = |.002 . 996 -002 | 
0 3 | 

002 002 996 (4.4.1) 

For convenience, this form of will be denoted as 

8 = {diagonal .996, off-diagonal .002} 

The actual position response closely follows the design goal of a rise 

time of 0.4 seconds. 

The effect of increasing the measurement noise if presented in 

Figure 4.4.3. Only R has been changed over the conditions of Figure 

4.4.2. A high degree of settling is seen even with large measurement 

errors present. 

In Figure 4.4.4 the initial set-point is again R = 4, but after 

| 2.8 seconds the set-point is changed to -3. For this simulation 

Q= 4; R= diagonal {3 10}; 9 = {diagonal .99, off-diagonal .005}. 

Here the semi-Markov matrix has been modified to be more sensitive to 

configuration changes. It is interesting to follow the plant weighting 

coefficients shown in Figure 4.4.4b. Initially, filter 1 provides good 

estimates because the plant position begins at -4.8. In response to 

the set-point of 4, the position increases through region Ss. and into 

region S3- At 2.8 seconds the set-point switches to -3 and after a 

learning time of approximately 0.8 seconds region S, is recognized. 
1 

The overshoot at this time (Figure 4.4.4a) is due to the learning time 

of the controller. It is seen that the weighting coefficient for filter 

3 is dominant until about t = 3.7 seconds, indicating that the control- 

ler is using the feedback and input gains based on regions S43, when in
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Figure 4.4.3 Closed-Loop Step Response with Varying Amounts of 

Measurement Noise
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Figure 4.4.4 (a) Position Response to Set~Point Changes; 
(b) Corresponding Time-Varying Probabilities Ty i=1, 2, 3 and 

Velocity Response.
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actuality the plant is moving through region S, and into region § 
2 1° 

This excessive compensation causes the overshoot. The learning time 

can be reduced by increasing the off-diagonal entries of the semi-Markov 

Matrix. However, this makes the controller more susceptible to noise, 

as discussed earlier. Figure 4.4.4b is a plot of plant velocity versus 

time. It is seen that the velocity does in fact approach zero when the 

position settles out to the input value. 

The question arises as to how effective will the control be when 

the set-point is between regions. For example, an input of u = 2.0 

attempts to drive the plant between regions So and S35 so that neither 

filter 2 nor 3 will be giving good estimates. The result, Figure 4.4.5a, 

shows both poor transient response and steady state response, i.e., the 

position settles out to x = 1.3. 

Better performance between regions can be achieved by altering the 

linear approximation method in one or more regions. The original method 

calls for a Taylor series expansion at the center of a region (a slope 

approximation). A different approach is to use a chord approximation. 

For example, the cubic nonlinearity in region S, was originally modeled 
2 

as a line having zero slope. It was determined graphically that a 

chord having a slope of 2.5 gives less overall modeling error throughout 

the region. Rematching filter 2 to this new linear approximation gives 

the improved results shown in Figure 4.4.5b. The plant position settles 

out faster to a reasonably close value of x = 1.8. 

Attempting to drive the plant outside the design range gives under- 

standably poorer results. Figure 4.4.6 shows the position response to a
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(a) 

  
Figure 4.4.5 Set-Point Control for u 

Original Taylor Series Approximation. 

  

y 
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v 

3 4 time 

(b) Chord Approximation. 

= 2.0 Using Different 

Approximations in Region So:
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Ax 

set-point u = 0. 

    
1 2 3 4 time 

Figure 4.4.6 Set-Point Outside the Design Range.
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control input of u= 9. It is seen that the plant position oscillates 

around x = 7.0. The operational range of the controller can be extended 

by adding more Kalman filters matched to larger values of x. A five- 

region controller was constructed and simulated for the position range 

of -8 to 8. The two added linear approximations are given below. 

x 0 1{;x 0 0 u 0 

Sy 1) 1 + + W 
x -108 -li| |x 1 ~432 1 1 

2 2 

xy 0 1 xy 0 0 u 0 
Ss = + + W (4.4.2) 

Xo -108 -l Xo 1 +432 1 1 

The three original regions are now S S., and Sy (This increased posi-~ 
2° ~3 

tion range represents a doubling of the forces involved.) Figure 

4.4,.7a shows how the plant position follows an input of u = 8 changing 

to u = -4. The corresponding five weighting coefficients are plotted 

in Figure 4.4.7b. (To avoid confusion, only the coefficients of 

filters 2 and 5 are shown connected.) Again, the learning time lag is 

responsible for the overshoot at t = 3.15 seconds. 

The semi-Markov matrix entries balance the controllers ability to 

follow configuration changes, with its noise filtering ability. The 

above examples used off-diagonal elements of .002 and .005. It was 

experimentally determined that these values gave good overall perform- 

ance. To illustrate the effect of larger off-diagonal entries, Figure 

4.4.8 is a repeat of Figure 4.4.5b, but with a semi-Markov matrix of 

9 = {diagonal .8, off-diagonal .1} 

The plant is clearly out of control. The algorithm is responding too
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Figure 4.4.7 Set~-Point Control for Extended Design Range.
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1.05 2.10 3.15 time 

Figure 4.4.8 Set-Point Control for @ = {diagonal .8, off-diagonal .1}.
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much to the noise in the system with the result that the feedback and 

input gains are constantly being taken from different regions. 

4.5 Summary 

A method of nonlinear stochastic control, applicable to a large 

class of problems, and having significant advantages in implementation 

has been presented. The method is based on partitioning the nonlinear 

problem into regions where basic linear control techniques and standard 

Kalman filtering theory can be applied. The manner in which the nonlin- 

ear plant's state vector moves through the set of regions (called the 

configuration space) and the probable holding time spent in each region 

are incorporated into the controller. This information is used in con- 

junction with the plant measurements to learn which region the plant is 

in so that the proper control can be applied. 

The structure of the controller is a bank of Kalman filters each 

matched to a region of the configuration space. The filter estimates 

are multipled by corresponding feedback gains (different regions require 

different gains) and the overall state variable feedback to the plant is 

computed as a weighted sum of the individual feedback values. 

The number of regions used in the formulation of the controller 

depends on the design criteria and on the nature of the nonlinear system 

itself. For example, a larger operational range or better accuracy will 

require more regions. The type and magnitude of the nonlinearity will 

also influence the number of regions. It is necessary that the adjacent 

regions overlap in order to drive the plant from one region to another; 

however, this last requirement is usually satisfied if the number of
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regions is chosen solely to give reasonably good accuracy. 

Each Kalman filter operates independently on the current measurement 

thus making this controller amendable to parallel processing. In addi- 

tion, the filter gains can be precomputed and stored in tabular format 

(unlike most nonlinear filters, such as the EKF [G-3]). These two 

advantages yield a very low execution time for the implemented controller. 

The modified PAC algorithm has several disadvantages. First, the 

PAE cannot, nor was it developed to, compete with the EKF in terms of 

accuracy. The estimation portion of the control algorithm is, therefore, 

Similarly limited. Second, when the set-point is between the linearized 

regions, i.e. both approximations are equally bad, the error between 

the set-point and the actual plant steady state can be unacceptable. If 

real time computational constraints prevent adding more linearized fil- 

ters to reduce this error, then a different method of control may have 

to be used.



5.0 THE DETECTION OF PLANT CONFIGURATION CHANGES 

5.1 Introduction 
  

The PAE algorithm described in Chapter Three performs satisfactorily 

for plants having a low frequency of configuration changes. However, 

when the changes occur at a rate comparable to the actual plant dynamics, 

the estimator can lose track. For cases of this type, the method was 

applied successfully only after an ad hoc switch detection mechanism was 

implemented to re-initialize the bank of Kalman filters after each con- 

figuration change. 

In this chapter an algorithm will be developed to track a rapidly 

changing switched linear plant. First, the optimal estimator will be 

derived. This estimator will consist of a set of time-invariant linear 

Kalman filters. Unfortunately, the number of filters in the set will 

increase linearly with time, which makes the algorithm unrealizable for 

all but trivial problems. Next, a practical approximation to the opti- 

mal estimator will be developed based on the idea of joint estimation 

and detection. A constant number of filters will use the N most recent 

measurements to detect the plant configuration and to estimate the plant 

state. Various implementation considerations will be examined to improve 

estimation accuracy and to prevent divergence. Three examples will be 

given to clarify the operation of the algorithm. In addition, the track- 

ing performance will be compared to the PAE algorithm of Chapter Three, 

and to a perfectly matched, unrealizable Kalman filter. 

A variety of other interesting problems similar to the switched 

plant problem have been studied in the literature. Ackerson and Fu [A-1] 

90
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formulated an estimator for a system influenced by randomly changing 

noise statistics. The optimal estimate was found to be a weighted sum 

of estimates taken from an exponentially growing number of filters. 

McAulay and Denlinger [M-1] employed statistical decision theory to 

detect maneuvers in a target tracking problem. Their formulation suc- 

cessfully merged estimation theory with a generalized likelihood ratio 

test to obtain a practical adaptive tracker. The problem of detecting 

system component failures, modeled as jumps in certain state variables, 

was solved by Willsky and Jones [W-1]. Again, the optimum estimator 

proved to be a growing bank of matched filters. A "finite data window" 

in conjunction with a generalized likelihood ratio test was used to over- 
‘ 

come the infinite memory problem. Additional discussion on these and 

other techniques is found in Chapter One. 

5.2 The Optimal Estimator for the Switched Linear Plant 
  

Consider a linear system described by the discrete time state equa- 

tions, 

X41 = o(k+1) x, + ¥ (k+l) ua, + P(k+1)w, 

= H(kt1)x (5.2.1) Zed itl 7 Vet 

The optimal estimator for this system is simply a matched filter (Kalman 

filter), generalized to include the time-varving transition and coeffi- 

cient matrices. The above system is deterministic in the sense that the 

system matrices are known functions of time. 

A second class of systems is that set whose system matrices are 

probabilistic functions of time. A frequently encountered example in
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this class is the switched linear plant problem with the state variable 

description, 

ay 7 UH, + Cp, + QM, 

Zhe ~ By FOV 
where, 

oe{%,, Boy veer 2) 

¥,et¥, » Vos tees Ya 

Pett, Pos sees r (5.2.2) 

The system matrices switch randomly among the elements of the above three 

finite sets. A probabilistic law governing the switching may or may not 

be given. For convenience, the elements are regrouped as, 

s, = (¢,5 ¥., T.) (5.2.3) 

where the 3-tuples will be referred to as configurations, and the set, 

S, of 3-tuples, the configuration space. 

Ss = {S55 i=1, m} 

It is desired to construct a state estimator for the switched lin- 

ear plant problem. First, it is noted that if the configuration changes 

and the times they occur are known exactly, then the problem reduces to 

the time varying linear system of equation (5.2.1), and the estimator 

structure is known immediately. Now consider a switched linear plant 

where the times of the configuration changes are not known in advance. 

For now, assume that the initial configuration of the plant is given. 

At some later time the plant configuration may change to another of the
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M possible configurations. In addition, it is assumed that the configu- 

ration change can occur only at discrete points in time, and that only 

one change will occur. This last assumption will be removed later in 

the chapter. 

At each iteration the plant can change in any of M-1 directions. 

Accounting for the possibility that no change is made during the N time 

intervals, the total number of possible paths is (N)(M-1) + 1. This is 

illustrated in Fig. 5.2.1, for a plant having M=3 configurations over an 

interval of N=15 iterations. The plant is initially in Sy> and at each 

succeeding iteration a configuration change to s, can occur, as illus- 
2 

trated by a positive sloped line branching off at that iteration. Like- 

wise a configuration change to s, is shown as a negative sloped line. 
3 

Once a change occurs, however, the plant remains in the new configura- 

tion. This is illustrated by moving continually along the positive or 

negative sloped line for the remaining time after the change. No con- 

figuration change at a time interval is signified by moving horizontally 

along the time axis. 

A branch is defined to be a time history of possible plant config- 

urations over N time intervals. 

B, = {s(k): k = 1,n; where s(k) ¢ S} (5.2.4) 

For example, the double line on Fig. 5.2.1 is the graphical representa- 

tion of a branch defined by, 

S,S,S,S,8.S.q} $93 9898980505052 BL = {s,s S.S,S,S Ss 
7 Piiidl 2 

In this case, the plant is in s, for six time intervals. At the seventh 
1
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iteration a configuration change is made to s,, and the remaining nine 
ha 

intervals are spent in s If the plant did indeed follow this configu- 9° 

ration history, then after 15 iterations the plant state would be given 

by BL. 

A TREE, initialized at time k, is defined to be the set of all 

branches, 

T(k) = {B53 J=1, (N)(M-1) + 1}. (5.2.5) 

The TREE in Fig. 5.2.1 has 31 branches, numbered consecutively from the 

top branch down. 

Given a probabilistic description governing the configuration 

changes, a minimum mean square error, mmse, state estimator can be 

derived using Bayes'rule. Let Zi be a sequence of measurements on the 

State vector taken at the first k iterations. The conditional mean of 

the state vector at time K can be expressed as 

x = [ xp (x,=x/Z, dx. (5.2.6) 

The probability distribution can be expanded using Bayes' rule as 

follows. 

p(xqo2,) CN) EL) 41 px, .2,,53,) 
p(x, /2,.) = ae = Seon ee 

1 

Y p(x, /Z, 535) P(Z, Bz) /p(Z,) 
By 

) p(x,/Z, ,B5)p(B5/Z,) (5.2.7) 
B J
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Substituting (5.2.7) into (5.2.6) gives, 

= {,xax] p(x, =x/Z, ,B,)p(B,/Z,) 
J 

Taking x inside the summation and interchanging the operations of inte- 

gration and summation, the conditional mean becomes 

) [ xp (x, =x/Z, ,B5)p(B5/Z,) dx 

By 
* 

ul 2 PCB s/2,) LP %/ Ay 5B) dx 

J 

The integral on the right is the mean of the state vector, conditioned 

on the observed measurements, Ze and on the branch By. It is the opti-~ 

mal estimate (minimum mean square error) of the state given that By is 

the configuration history of the plant. Denoting this integral by 

% (By) » the unconditional optimal estimate is, 

  

t= 2B) PB,/2,) (5.2.8) 

J     
  

Using Bayes' rule, the a posteriori probability can be expressed as, 

p(B,/Z,) = p(Z,/B,)P(B,)/p(Z,) (5.2.9) 

The probability distribution function governing the configuration 

changes, p(B)» is assumed to be known. The conditional measurement 

density function, p(Z,/B,); can be expanded by representing the sequence 

Z Z, by Zo 219 ie. 
k 

p(Z,/B5) = p(z,,2Z,_,/B,) = p(2,/Z,_,, B,)p(Z,_,/B,;) (5.2.10)



97 

where zy is the measurement at time k. It is readily shown in the deri- 

vation of the Kalman filter (see Chapter 2) that, 

p(z,/Z, .,B.) = NC, PY CK)) (5.2.11) 
kK “k-1’?° I k? “2 

J, . J . 
where Hy is the predicted measurement, and P fk) is the measurement 

residual covariance, given by, 

J. 
pg J 

Uy H[® (k)X,_ GBy) + ¥ (kK)u, 4] 

PU(k) = HPU(k/k-1)H +R 

The notation 07 («),. 27 Ck) or ¥ 5 Cx) specifies the matrix ¢, [ or ¥, 

according to the configuration By at time k. Superscript J is chosen to 

differentiate between 95 Cx) which was previously defined to be configu- 

ration i at time k. PY (k/k-1) is the predicted state estimation error 

covariance conditioned on B, which was shown in Chapter Two to be 

PY (k/k-1) = 67 (k) PY (k-1) 67 (ke) 7 + ri cKyart (ey? 

J 
The measurement residual at time k is given by, Z, = Zh - Uy 

k 

Hence, the value obtained from evaluating the measurement restdual 

density function at 2, equals the value obtained from evaluating the 
k 

measurement density function at z i.e. k? 

/B 3 (2, /Z,_1>B5)- (5.2.12) ) =p 
212) 1 9B, Ps/3_@ I k 

The conditioning on Z is not required on the measurement residual 
k-1 

density function since, given Branch B it does not depend explicitly J’ 

on the past history, Now,
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_ Ni oJ —s Let J -l., _ J Paya (z/a,) ~ 120 [Po (ik) |] “exp [2° (P)(k)) 2] = N(O,P* (k)) 

(5.2.13) 

Substituting (5.2.12) into (5.2.10) gives, 

p(Z,/B,) = 5/8 (2,,/B ,) ena! By (5.2.14) 

The form of the optimal state estimate is found by substituting 

(5.2.12) into (5.2.10), (5.2.10) into (5.2.9), and (5.2.9) into (5.2.8). 

HF BET (Bp PC2/BS) PCBS)? 1/BD (5.2.15) 

where the probability density function's subscripts have been removed 

for simplicity. Thus, for the switched linear plant problem, the opti- 

mal estimate is a weighted sum of the conditional estimates that are ob- 

tained from filters matched to all possible branches of the configuration 

tree. The weighting coefficients are found recursively. First, p(Z,/B ,) 

is found in equation (5.2.14) by multiplying p(Z,_,/B,). from the last 

iteration, by p(2,/B 5) of equation (5.2.13). The coefficients are then 

computed in equation (5.2.0) by multiplying p(Z, /B 5) by the a priori 

branch probabilities, p(B,); and normalizing. This last step makes the 

actual calculation of p(Z,) unnecessary. 

5.3 Sliding Window Detector/Estimator, SWDE 

The estimator derived in the previous section is optimal in the 

sense that it minimizes the mean square estimation error in the presence 

of uncertainty regarding the plant configuration. This uncertainty is 

manifested by the incorporation of a governing probability distribution 

function into the plant description. There are, however, several
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reasons that make this method impractical. First, a probabilistic 

description governing the configuration changes might not be known. 

Second, only single configuration changes are allowed. And, third, the 

order of the estimator grows linearly with time. This limits the real 

time applicability of the algorithm because of constraints on available 

computer storage and processing speed. 

A different approach to tracking a switched linear plant is based 

upon the detection of configuration changes. The distinction between 

pure estimation theory and signal detection theory is rather arbitrary. 

Both strive to extract information from noisy environments. One tangi- 

ble difference is that the detection process is a choice between a 

finite number of hypotheses, whereas the estimation process can have a 

continuum of possible outcomes. In addition, detection algorithms often 

require less information about the system than do estimation algorithms. 

For example, a Neyman~-Pearson [V-1] algorithm does not require a priori 

probabilities for the various hypotheses. In this section, a detector 

will be constructed that will determine when a configuration change 

occurs and what the new configuration is. This information will then be 

used to formulate a state estimate for the plant. The algorithm will 

not require a priori knowledge of configuration changes. In addition, 

after a change has been detected, the algorithm can be re-initialized to 

detect a second change. Thus multiple changes can be tracked. 

The joint detection/estimation problem can be solved by growing 

trees of predetermined size at each iteration similar to the tree in 

Section 5.2. Now, however, as time progresses, the size of the trees 

will be kept constant by pruning the branches at each iteration according
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to a decision rule. A second difference between this section and Section 

5.2 is the method by which the estimate is determined. 

Assume that the configuration prior to time k is known. At time k 

the plant can change to another of the M possible configurations. Start- 

ing at t=k, measurements are taken at each iteration for N iterations. 

At t=ktN-1l a decision is made regarding what changes, if any, occurred at 

t=k. The number of measurements used in making a decision will, hence- 

forth, be referred to as the window width, N. 

All of the information required in the detection/estimation process 

is available in a tree T(k) initiated at t=k. The branches of T(k) 

correspond to all the possible configuration histories of the plant from 

t=k to t=k+N-1. Associated with each branch are two types of information. 

First, a state estimate is propagated along each branch. Every branch 

shares the same initial state estimate called the seed estimate. The 

estimate along any given branch is the optimum estimate provided that 

the plant followed the configuration history defined by that branch. 

Since all configuration histories are accounted for, the optimum estimate 

is always available somewhere in the tree. Second, probability informa- 

tion is propagated along each branch. In Section 5.2, these probabili- 

ties were used in conjunction with the a priori branch probabilities to 

compute the weighting coefficients for the optimal estimator. Now they 

will be used in the detection of configuration changes. 

At time t=k+N~1l a decision is made as to what configuration change, 

if any, occurred at t=k. The null hypothesis, Ho: is that no change was 

made at t=k. The Hy hypothesis corresponds to a change to configuration 

S; at t=k. Thus, the null hypothesis encompasses all changes that could
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occur between t=k+tl and t=k+N-1, including the possible outcome that no 

change is made during the N iterations. For example, Figure 5.3.1la 

shows a tree having a window width of n=6. At the sixth iteration a 

decision is made and one of the eleven branches is chosen. If By (By) 

is chosen, then the hypothesis H, (H3) is accepted. On the other hand, 

if B, through B 2 9 is chosen, then A, is accepted. 
1 

Depending upon the decision outcome at t=k+N-1, one of two courses 

of action will be taken. First, if H is accepted, then the state esti- 

mate at t=k+N~-1l is taken from the branch corresponding to no configura- 

tion changes, i.e. branch Be in Figure 5.3.la, and the configuration tree 

is propagated forward one iteration. The size of the tree is kept con- 

stant, however, by disregarding the branches corresponding to configura- 

tion changes at t=k. This can be done because the decision at t=k+N-1 

has eliminated these possibilities. A test is then carried out at 

t=k+N for a configuration change that may have occurred at t=kt+tl. This 

forward propagation of the configuration tree continues with each itera- 

tion. Because the decision process always uses the N most recent meas-~- 

urements, the algorithm is referred to as a sliding window detector/esti- 

mator (SWDE). Figure 5.3.1b shows the propagation of the tree in Figure 

5.3.la over several iterations. 

The second course of action is taken when H, is accepted. The state 

estimate at t=k+N-1 is now taken from the branch corresponding to a change 

to Ss. at t=k. For example, in Figure 5.3.la, if Hy is accepted, then the 

State estimate is taken from branch B,. In addition, a new configuration 
1 

tree is grown with s, as the initial configuration, and with the estimate 
2 

at t=k+N-1 being used as the new seed estimate. The search for a second
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~ 237 
H (N) (M-1) +1 3 By 

(a) Branch B4 Lies in Decision Region Ho 

  

A   
(b) Time Propagation of the Decision Regions. 

Fig. 5.3.1 The Decision Regions, Ho» Ho and H
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configuration change can now commence. 

This method of joint detection/estimation insures that the state 

estimate for the plant is taken from the optimum filter, except during 

the lag time between a configuration change and detection. Figure 5.3.2 

illustrates the operation of SWDE over several configuration changes. 

For clarity, a small window width was chosen. 

5.4 Implementation 
  

It is assumed that the estimator knows the initial plant configura- 

tion and that steady state filtering has been achieved. This allows the 

use of the steady state values of Kalman gain and measurement residual 

covariance. If these assumptions are not justifiable, then an initiali- 

zation algorithm, discussed later in the chapter, can be used to bring 

the system to these conditions. 

A Kalman filter will be matched to each branch of the configuration 

tree. The information available from these filters is used not only in 

obtaining the state estimate, but also in calculating the probabilities 

required in the detection algorithm. The required filter matrices can 

be found by solving the steady state discrete time Riccati equation for 

each configuration. The solution will depend on the noise matrices Q 

and R, as well as the system matrices $, IT and H. 

Ordinarily, when a configuration change occurs in the plant, the 

corresponding matched filter undergoes a transient period in which the 

filter gains and error covariance matrices change from the steady state 

values associated with the initial configuration to the steady state 

values associated with the new configuration. The settling time for this
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transient is usually fairly short; therefore, in the implementation of 

the detector the transient will be ignored. That is, when a configura- 

tion change occurs along a branch, the associated matched filter matrices 

will switch immediately to their new steady state values. This precludes 

the calculation and storing of the filter matrices for the various tran- 

Sient situations. 

The detection algorithm requires a relative measure of likelihood 

for the various branches. In Section 5.2, the set of weighting coeffi- 

cients was such a measure. However, in the current problem a probability 

distribution, p(B,), governing the configuration changes is not availa- 

ble, and hence the weighting coefficients cannot be computed. See 

equation (5.2.9). A more appropriate measure, that does not require a 

priori branch information, is the conditional measurement sequence 

probability. 

Recall that Zu was defined as a sequence of N measurements. This 

definition is now extended by defining 

Z. (Kk) to be a sequence of N measurements Zi Za? Zegge cts Zany: 

The probability of the measurement sequence conditioned on branch By is 

P(Z,./B 5). Expanding 2. (k) = {z Zy (kK), the probability becomes, 
ntk-1’ 

P(Z. (kK) /B5) = plz ys 2y_y CK) /B 5) (5.4.1) 

= plz 1/2Zy_1(k), By)P(Zy_ (k)/B,) 
(5.4.2) 

Repeating the expansion for Zy_7 6k) Zo 6K) » etc., the probability is 

reduced to factored form,
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P(Z(K)/B5) = pl2y 4/253 Ck) By) Pp (2, o/Zy 5 (k) BS) -.- 

ae p(z, ,/Z,(k) By) p(z,/B5). (5.4.3) 

Now consider a configuration tree initiated at time k and having a 

window length of N. Iteration k is common to all branches and the state 

estimate at time k is referred to as the seed estimate. As the measure- 

ments are processed, a state estimate is propagated along each branch of 

the tree. In addition, equation (5.4.3) is used to calculate the condi- 

tional probability of obtaining the measurement sequence, Z(K) » for each 

branch. 

Using the same reasoning that resulted in equation (5.2.12), each 

factor of equation (5.4.3) can be replaced with an equivalent measurement 

residual density function, such that the values obtained by equating are 

identical, . 

PC2y (ey /Bs) = PCy sy /By)PCAy yp o/By) ++. 

eee p(Z, ,/B 5) Pp (2, /B 5) (5.4.4) 

where 

- _ Jo. 
p(2, /B 5) = N(0,P) (i) (5.4.5) 

and PS (k) is the measurement residual covariance at time i, for the 

filter matched to Be Equation (5.4.4) is evaluated for all (N) (M-1)+1 

branches and the resulting probabilities are referred to as the relative 

branch probabilities at time Ntk-1. Similarly, the relative branch 

probabilities at time N+k are, with respect to time CeL?
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P(Zy(K+1)/B 5) = (Zu, /Bs) +++ PCE, 45/Bs)P(2,4,/B,) (5.4.6) 

Comparing (5.4.6) to (5.4.3), it is seen that, 

p(Z. (k+1) /B 5) = P(Z. 4, /B 5) P(Zy(k)/B 5) /p (2, /By) (5.4.7) 

Hence the relative branch probability at time k+N is computed from the 

relative branch probability at time k by multiplying by the probability 

of the k+N measurement residual and dividing by the probability of the 

measurement residual at time k. 

The relative branch probabilities are used directly in the decision 

making process. Referring to Figure 5.3.1b, the number of branches at 

each iteration is a constant given by (N)(M-1)+1. A vertical line drawn 

at each iteration identifies the branches that are tested at that itera- 

tion. The discrete distances above or below the centerline, defined by 

the intersections of branches and vertical lines, are referred to as 

levels. The number of levels equals the window width, N. A configura- 

tion change is thus detected when any level N branch has a relative 

probability greater than any other relative branch probability terminat- 

ing on the same vertical line. 

Many factors influence the selection of the window width, N. A 

wider window gives a smaller value of probability of error for detection, 

but can give poorer estimation results. In addition, hardware con- 

straints will impose an upper limit on window width. First, consider 

estimator performance during a configuration change. Prior to the 

change, the estimate is taken from a filter perfectly matched to the 

plant, and is therefore optimum. When the change occurs, the estimate
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is still taken from the above same filter until N iterations have 

passed. At this time the configuration change is detected, and a new 

matched filter is used for the estimates. Before detection occurs, the 

estimate is diverging from the true state trajectory. Hence, a wider 

window will lead to more divergence in the period immediately following 

a configuration change. 

On the other hand, N must be chosen wide enough to insure the detec- 

tion of configuration changes, as well as the rejection of false alarms. 

A false alarm occurs when a configuration change is detected when, in 

fact, none occurred. This is undesirable because, during the N itera-~ 

tions following a false alarm, the estimator cannot detect a true con- 

figuration change. Moreover, the estimates will be taken from the wrong 

filter for at least N iterations. After this interval the estimator may 

or may not be able to recover. A miss occurs when a configuration 

change is not detected after N iterations have passed. This type of 

error is more serious for the estimator because the optimum state 

estimate is irretrievably lost. When a miss occurs, the estimator will 

operate erratically and may have to be reinitialized, as discussed 

later in the chapter. 

The false aiarm and the miss probabilities are dependent upon the 

degree of overlap of the measurement distributions along the various 

tree branches. This, in turn, is determined by the values of system 

disturbance and measurement noise, and by how rapidly the branches 

diverge from one another. This is illustrated in Figure 5.4.1. A 

larger degree of divergence with moderate noise is shown in 5.4.la. The 

dashed lines represent the standard deviations of the measurements. If
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(a) Fast, with moderate noise. 

  

  

(b) Slow, with high noise. 

Fig. 5.4.1 Branch divergence.
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the plant is actually following branch Bos then at the fifth iteration 

the measurement will be, on the average, very distant from branches By 

and B the respective probability density values will be very small, 3? 

allowing rapid detection. In contrast, Figure 5.4.1b depicts slowly 

diverging branches in a highly noisy environment. It is seen that a 

larger number of measurements are needed to discriminate between the 

branches. 

The rate at which the various branches diverge is governed by 

several factors. First, if the sample time is long with respect to the 

dynamics of the system, the amount of divergence between iterations will 

be greater. Second, strong inputs usually cause rapid divergence. 

Third, the dynamics of the different configurations may cause the state 

trajectories to cross one another. When this occurs, the measurement 

residuals can become misleadingly small, thus raising the prospect of a 

false alarm. 

The dependence of detection on input makes an analytical derivation 

of probability of false alarm very difficult. An alternative method of 

determining window width is to run a simulation for several hundred it- 

erations without any configuration changes. Start with a window width 

large enough to give no false alarms, and decrease the width until false 

alarms just start to occur, then increase the width a couple of itera- 

tions. Repeat this procedure for several monte carlo simulations, and 

use the worst case (largest value) window width.
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5.5 Weighted Sum Estimation 
  

The method by which the SWDE algorithm determines the state estimate | 

will be optimum at all times except for the intervals following configu- 

ration changes. During these intervals, equal to the window width N, the 

estimate will diverge until SWDE detects the change. If the configura- 

tion changes occur infrequently, then the overall tracking will nearly 

always be optimum. However, if the configuration changes occur at a 

high frequency, the overall performance will be seriously degraded by 

Numerous divergence intervals. 

The amount of divergence can be substantially reduced by computing 

the estimate as a weighted sum of the individual branch estimates at 

each time. The weighting coefficients are simply the relative probabil- 

ities for the various branches normalized so that the sum of all the rel- 

ative probabilities is unity. Thus, 

: &, (Bs) p(Zy(k) /B 5) (5.5.1) 
. od 
*k Y, p(Z(k) /B 5 

By 

  

where p(Z, (k) /B 5) is given in equation (5.4.4). 

In this manner the estimate is always composed of percentages of 

all the branch estimates, with the most likely branch being dominant. 

The drawback to this method is that the estimate is no longer optimum at 

those times when no configuration change is occurring. Furthermore, the 

overall estimate will be noisier because the weighting coefficients are 

directly affected by the measurement noise.
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5.6 Initialization Algorithm 
  

In many cases involving a switched plant problem, the initial 

configuration is not known. Moreover, an accurate initial value of the 

state vector is seldom available. Thus, the SWDE algorithm in its pres- 

ent form cannot be utilized. Even for well-defined problems where the 

algorithm can be used, there is always the possibility that a miss will 

cause the estimator to lose track of the plant's state. When this hap- 

pens, the algorithm must be re-initialized. 

The PAE algorithm of Chapter Three can be used to solve both the 

identification and the re-initialization problems. In this algorithn, 

time-varying weighting coefficients are calculated for each of the plant 

configurations. As the plant measurements are processed, the weight 

associated with the actual plant configuration will approach unity and 

the other weights will go to zero. In addition, an optimal state esti- 

mate is available at each iteration. After a number of iterations the 

PAE algorithm will reach steady state. At this time, the Kalman filter 

matrices will be at their constant steady state values and the state 

estimate will be taken principally from the filter matched to the actu- 

al plant configuration. 

Configuration identification and steady state determination in the 

PAE algorithm is accomplished by monitoring the weighting coefficients 

and the error covariance matrices. In the implementation, the weighting 

coefficients are compared to a threshold probability value. If a weight 

exceeds the threshold, then the configuration corresponding to that 

weight is identified as being the actual plant configuration. Steady 

state can be determined by comparing the current error covariance matrix
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with the covariance at the preceding iteration. If the norm of the dif- 

ference is less than a given tolerance, then steady state has been 

achieved. Alternately, if the filter matrices have been precomputed off- 

line, then steady state is determined by simply counting the number of 

iterations. The latter method is used in the examples. 

Once steady state filtering and plant identification have been 

achieved, the SWDE algorithm developed in this chapter can be used to 

track a randomly switching plant. If, for whatever reason, the SWDE 

algorithm diverges from the actual plant state, then the PAE algorithm 

Should again be executed. 

Divergence can be readily detected by monitoring the measurement 

residual. The measurement residual of a perfectly matched filter is a 

zero mean, white gaussian random variable [G-l]. When divergence 

occurs, the residual will lose these attributes. A variety of statisti- 

cal tests can be employed to determine divergence, the simplest being a 

test for a non-zero mean. However, the problem is complicated by the 

normal operation of the SWDE algorithm, which produces a diverging 

estimate for a number of iterations, equal to the window width N, after 

each configuration change. This problem is resolved by calculating the 

mean over several adjacent intervals, each containing N iterations. If 

all the mean values are greater than a given tolerance, then divergence 

is assumed and the PAE algorithm is executed. If a weighted sum estimate 

is used, then the number of intervals over which the mean is calculated 

can be reduced. In the following examples, two intervals were sufficient 

to detect estimator divergence. Appendix B contains a flowchart dia- 

gramming the computer program implemented to accomplish the above tasks.
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5.7 Optimal Delayed Estimation 
  

A method exists to eliminate entirely the divergence that occurs in 

the interval immediately following a configuration change. During this 

interval, which is equal to the window width N, the configuration tree 

is grown but the configuration change is not detected until N iterations 

after it occurred. In the real time estimation problem considered in 

the previous sections, the estimate is available shortly after the cur- 

rent measurement has been processed. However, if an estimation delay 

equal to the window width can be tolerated, then a delayed estimate can 

be constructed that will be optimal at all iterations. 

The implementation of this feature requires only slightly more com- 
a 

puter storage and virtually no additional processing time. Recall, that 

when the configuration tree is grown, the state estimates are calculated 

at each iteration for every branch. If these estimates are stored, then 

at the time the configuration change is detected, the algorithm can re- 

trace the optimal state estimate trajectory. 

The advantage of delayed estimation over weighted sum estimation is 

that the former method eliminates the divergence intervals without sacri- 

ficing estimator performance elsewhere. 

5.8 Simulations 
  

The algorithms developed in this chapter were verified by extensive 

off-line simulation on a digital computer. Three different plant models 

are considered in this section. Example One is the switched linear plant 

that was examined in Chapter Three. Example Two is a plant that has a 

parameter that can take on one of several possible values. The third
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example applies the SWDE algorithm to the nonlinear oscillator of Chap- 

ter Three. 

Example 5-1: 

Given x = A,X + Byu + Cw 

zZ2= Hxtv 

where, 

0 1 0 0 0 

“L" fisg al Ea -e3.2f 2 Li 

— fo 1 [o oO 0 
A. = B = Cc, = 

2 lo -1 2 i 0 2 1 

0 1 0 0 0 

A, = B= C, = 
3 -30 -1 3 1 63.2 3 1 

1 0 3 0 
H= R = Q = 4 

0 1 Q 3 

The plant is simulated for an input of U = 4.0, an initial position 

of -4.5 and an initial velocity of 0. Unknown to the estimator, the 

plant changes configuration approximately every two seconds. A window 

width of N=7 was found to be sufficient to suppress false alarms. The 

digital simulation requires the discretization of the continuous time 

system, and the solution of the steady state Kalman filter equations. 

The results of these two preliminary steps, for a sample time of T=.07 

seconds, are given below.
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3! =[P.] ” ~4 3 [P.] — -?2 

~1.5x10 92 ~2.6x10 92 

The determinants of the covariance matrices are 1.09 and 1.15, respec- 

tively. 

Figure 5.8.1 shows the ability of the estimator to track the rapid- 

ly changing plant. The first configuration change, from s_ to Sy, occurs 
1 

at t = 1.05 seconds. During the next 5 iterations the estimator is 

giving poor estimates because it has not yet detected a configuration 

change. At t = 1.40 seconds, detection occurs and the estimator resumes 

accurate tracking. Similar results occur at times t = 3.15, 5.25 and 

6.65 seconds, when the other changes occur. The time history of the 

plant configuration is $1 $5838581° Figure 5.8.2 compares the velocity 

estimate with the actual velocity. 

The estimation accuracy at times between the configuration changes 

equals that of a matched Kalman filter and is optimum in that sense. On
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the other hand, for the N iterations after a configuration change the 

divergence can be substantial, as can be seen in Figure 5.8.1. If the 

configuration changes have a low frequency of occurrence, then the 

occasional divergence spikes are of minor importance. However, for fre- 

quently occurring configuration changes, the divergence intervals sub- 

stantially degrade the overall performance. 

Two methods exist to reduce and even to eliminate the divergence 

intervals. The delayed estimate of Section 5.7 can be used if a time 

delay equal to the window width can be tolerated. This estimate is 

shown in Figure 5.8.3. Assuming that the estimator stays on track, the 

only difference between the delayed estimate and the unrealizable opti- 

mum estimate is the small error introduced by ignoring the transient 

interval when the Kalman filter matrices change between steady state 

values. Table 5.8.1 compares the actual position, optimum position 

estimate and optimal delayed position estimate during the interval 

following the first configuration change. It is seen that the maximum 

percentage difference is approximately two percent. 

The weighted sum estimate of Section 5.5 will significantly reduce 

the divergence interval at the expense of making the overall estimator 

performance somewhat noisier. For example, the previous plant is shown 

in Figure 5.8.4a,b for an input, input disturbance covariance, and a 

measurement noise covariance of, 

c |} Nm 

ae
) i >
 re
 N 

The configuration history of the plant is $4558)55535 with the changes 

occurring at times 1.05, 2.45, 3.85, 5.25 and 6.65 seconds.
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~------- weighted sum 
——*-——-—— conventional   hn 

> 
a 

a ae t 

Comparison of Weighted Sum Estimate and Conventional SWDE Estimate. 

J 

—
 

er 

estimate 

measurement   R od 

i ns 0 a a a A 

Weighted Sum Estimate Compared to Noisy Position Measurement. 

Fig. 5.8.4 Comparison of SWDE Estimates for Example 5-1.



  

Table 5.8.1 Comparison of Actual Position 

122 

With The Optimum Estimate and The SWDE Delayed Estimate 

  

  

Time X-Actual X-Optimum X-Delayed 

1.05 -3.345 -3.283 ~3.283 

1.12 ~3.653 -3.600 -3.600 

1.19 -3.916 -3.894 -3.992 

1.26 ~4 4138 -4.121 -4.172 

1.33 -4.335 -4.335 -4.403 

1.40 4.454 -4.488 -4.519       
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For this noisier condition the required window width was determined to be 

N=9. Figure 5.8.4a compares the weighted sum estimate with the actual 

plant position. The dashed lines indicate the divergence that was elimi- 

nated. The weighted sum estimate is compared to the position measurement 

in Figure 5.8.4b. 

It is instructive to contrast the performance of the PAE estimator 

of Chapter Three with the above results. Recall that the PAE estimator 

operates satisfactorily for a slowly switching plant but loses track for 

a higher frequency of configuration changes. This is verified in Figures 

5.8.5a,b. In 5.8.5a the PAE estimate of the plant position is highly 

unreliable after the first configuration change occurs. Figure 5.8.5b 

shows the erratic behavior of the Kalman filter weighting coefficients. 

The operation of the estimator is better understood by looking at 

the probabilities associated with the various branches at each iteration. 

Figure 5.8.6 gives probability data before, during and after a configura- 

tion change. In order to use a window width of five iterations (for 

graphical reasons) the measurement noise is reduced to about a third of 

its previous level. The circles represent the termination points of the 

branches at each iteration. The enclosed number is the log of the rela- 

tive probability for the branch. (Zero indicates a probability less than 

19740 
.) Since every branch is 5 iterations long, the probability is the 

product of four measurement residual density values, which are printed 

alongside the branch. The actual branch followed by the plant is shown 

by a dashed line. It is seen that a configuration change from S4 to s, 

occurs at the tenth iteration. The measurement residual probabilities 

along the dashed branch are indeed higher than those along the other
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(b) Weighting Coefficients Versus Configuration Sequence. 

Fig. 5.8.5 Estimation Performance of the PAE Algorithm of Chap. 3.
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branches. 

A decision is made at each iteration regarding possible configura- 

tion changes. At iterations 11, 12 and 13 the dashed branch is identified 

as the correct branch because the relative probability is largest for 

this branch. However, no configuration change is detected because the 

relative probabilities at the fifth level are not maximum. For example, 

at iteration 12, the fifth level probabilities are 10°° for s, and 0.0 
2 

for Sy> whereas the current configuration, s has a relative probability 

10 

3? 

of 10. At iteration 14 the estimator decides that the plant changed 

to configuration S. at iteration 10. The state estimate is then taken 

from the dashed branch, a new tree is grown from this estimate, and the 

algorithm is ready to detect another configuration change. 

The weighted sum estimation method can also be examined using Fig- 

ure 5.8.6. At iteration 11 the 9 branch estimates are labeled x. to x,. 

  

1 f° %q 
The weighted sum estimate at this time is calculated as 

10789 4197189 41078 41075 410782410772. +1071 8a 4107408 1 2 3 4 5 6 7 8 
R(11) = ~40 ~i8 =3 =6 =F ~i8 =40 10-19 + 10748 + 1078 + 1078 + 107’ + 1071? + 10 

. 65 ~6, -7, ~6 R(11) = (10°°R, + 10°°&, + 1078.) /2.1 x LO (5.8.1) 

In the normal mode of operation, SWDE would use Xs exclusively for 

the estimate at iteration ll. The weighted sum estimator produces a 

better estimate at iteration ll by incorporating a percentage of the op- 

timal estimate, X,3 even though the configuration change has not yet been 

detected. The weighted sum estimate becomes increasingly more accurate 

as detection time nears because the natural divergence of the branches



results in a larger relative probability for the correct branch. Unfor- 

tunately, the weighted sum estimate is noisier than the SWDE estimate at 

all times other than the intervals following configuration changes. For 

example, at iteration 10 the SWDE estimate is optimum whereas the weight- 

ed sum estimate is corrupted by percentages of the other branch estimates. 

The next experiment illustrates the divergence detection capability 

of the initialization algorithm described in Section 5.6. The plant of 

Example 5-1 is intentionally put through rapid configuration changes to 

cause the SWDE algorithm to lose track. The noise covariance, input, 

input disturbance covariance and configuration history are 

Cc
 ul No
 

yo
) it I>
 

od
 it ~
 ~ 

Ww 
0 10 

The window width is 9 iterations. The plant remains in configuration 8) 

for only 5 iterations. Figure 5.8.7 compares the actual plant position 

with the PAE estimate (of Chapter 3) and with the weighted sum estimate 

without the initialization algorithm. The PAE estimate is virtually 

useless after the first configuration change at time t = 1.75 seconds. 

The weighted sum estimate is accurate until the changes at t = 2.52 and 

t = 2.87 occur. These changes cause the weighted sum estimate to 

diverge. 

Figure 5.8.8a shows the improvement in the weighted sum estimate 

when the initialization algorithm is implemented. Divergence is detect- 

ed at t = 3.71 seconds, an interval of 1.2 seconds (approximately two 

window widths) after the onset of the quick configuration changes. At 

this time, the tracking algorithm is turned off and the PAE algorithm is 

initialized to re-identify the plant configuration. During the next 15
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(b) SWDE estimate compared to noisy measurement. 

Fig. 5.8.8 Performance Improvement by Using the Initialization 
Algorithm to Detect Divergence.
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iterations the plant estimate is given by the PAE algorithm. At t=4.76 

seconds, the tracking algorithm is turned back on and the weighted sum 

estimate is again used. The overall tracking ability of this arrange- 

ment is very good. Incidentally, the estimation error around t=5.8 

seconds is attributable to the inherently noisy weighted sum algorithm. 

Figure 5.8.8b compares the overall position estimate to the actual posi- 

tion measurement. 

Example 5-2: 

Consider the second order linear system 

¥=-8.x - 2a.xtut+w 
L 1 ‘ 

z, =x + vy Zo = X + V5 (5.8.2) 

In state variable notation, 

xy 0 1 x 0 | 

= + u + W 
Xo “BS ~2a, Xo 1 1 

The restoring force factor, Bi and the damping factor, a,, are 

random variables that can switch between the following possible values. 

oO 1 1.5 67 

8 1 2 PS) 

Discretizing the three possible state variable equations for a sample
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time of .5 seconds gives, 

91.303 845 «239 95.358 
b. = 6. = d. = 

I |-+.303 © .303 2 {-.477..129 3 f-.179 474 

"0902 “0774 "106 
rv os r.,¥. = r.,¥. = 

I 1 | 1303 2002 | 239 3° 3 | 358 

The corresponding steady state Kalman filter matrices are, 

      

2.67x10- 7.38x107> 9.61x107> 4.56x10 > 6.26x10°° 2.00x10 
F.= »F = ,f = _ _ 

1 1. 84x107° 9.85x10°7|° 7 |1.14x107? 6.22x1077| >? |5.01x107? 1.41x10 
L_. Lae 

7 ~1 ~ a —] ~ r —1 - _y | 243x107 -1.84x107 | | 2048x106 -1.14x10 7) _, | 2.34x10 > -5. 01x16 
a —3 1? i= —3 —1 3? > —3 -1.84x10 > 9.02x16 -1.14x107 9.38x10 |-5.01x10” 8. 59x10 

with determinants 4.56, 4.31 and 4.97, respectively. 

The plant simulation uses the following values, 

22 0 6 
u = 12 Q=l1 R= x = 

0 1 1 

A window width of N=9 was found to give adequate false alarm suppression. 

The configuration history, unknown to the SWDE algorithm is $3 S$, 83 8 

$1 So: Figure 5.8.9 compares the actual position to the position esti- 

mates of the weighted sum algorithm and of the PAE algorithm. As in 

Example 5-1, the weighted sum algorithm gives better performance. The 

weighted sum estimate is plotted against the actual measurement in 

Figure 5.8.10a, and against the conventional SWDE estimate in 5.8.10b. 

In the latter plot the conventional estimate is seen to be less noisy
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31.0 

    1 oO
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‘(a) Weighted Sum Estimate Plotted Against the Noisy Position Measurement. 

27.0 r 

24.0 

21.0 

18.0 

15.0 

12.0 

  

----- SWDE estimate 
3.0 1 es 

actual position     0.0 , * poet + t 4 . ’ a 

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 t 

(b) SWDE Estimate Without Weighted Sum Algorithm, Plotted Against the 
Actual Plant Position. 

Fig. 5.8.10 Comparison of SWDE Estimates for Example 4-2.
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than the weighted sum estimate. However, the divergence intervals make 

the conventional estimate undesirable. 

The previous examples have shown that the SWDE algorithm in con- 

junction with the initialization algorithm gives excellent tracking when 

the dynamics of the various plant configurations are known exactly. The 

next experiment will show the ability of the SWDE algorithm to track a 

plant whose configurations are not known exactly. Specifically, the 

plant will be the nonlinear oscillator of Chapter Three, and the config- 

urations will be the linearized plant approximations derived in that 

chapter. Thus, the configuration changes are a result of the state 

trajectory moving from one configuration's region of applicability to 

that of another configuration's. 

Example 5-3: 

The nonlinear plant is given by, 

xtxt x? =utw 

z= Hx+v (5.8.3) 

The three configurations are the same as those in Example 5-1. The 

noise covariance, input and input disturbance covariance are: 

1 0 

O 10 

Figure 5.8.lla compares the weighted sum estimate to the actual plant 

position. For contrast, the position tracking of the PAE estimator of 

Chapter Three is shown in 5.8.1lb. The weighted estimate tracks the 

position better than the PAE estimate, except perhaps when the plant
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Fig. 5.8.11 Position Estimates for Nonlinear Plant of Example 5-3.
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position has settled out. Both estimates are about equal at this time. 

Using the SWDE algorithm without the weighted sum estimation gives the 

result shown in Figure 5.8.l2aa. The divergence intervals around times 

t = .35, .9, 1.4, 2.8 and 3.85 significantly degrade the tracking per- 

formance. The only improvement is in the settled out region where the 

estimates are less noisy than the weighted sum estimates. Figure 5.8.12b 

compares the weighted sum estimate with the actual position measurement. 

5.9 Summary 

The SWDE algorithm in conjunction with the initialization algorithm 

provides excellent tracking performance for a switched linear plant. In 

cases where the configuration changes occur frequently with respect to 

the window width, tracking can be improved by altering the SWDE algorithm 

to produce a weighted sum estimate. The disadvantage of the weighted 

sum estimate is that it is inherently noisier during those intervals 

when configuration changes are not occurring. 

The SWDE algorithm also performs quite well in tracking a nonlinear 

plant. In this case the weighted sum estimate usually gives better 

tracking performance. The threshold level of the initialization algo- 

rithm should be set higher when tracking nonlinear plants. This is to 

avoid re-initializing the algorithm due to the natural biases that will 

be present because of modeling mismatch.



6.0 ADAPTIVE CONTROL OF THE B737 AIRCRAFT 

6.1 Introduction 
  

In recent years there has been a steady increase in the complexity 

and sophistication of aircraft designs. With this complexity follows 

the need for added sophistication in controller design. Typically, the 

equations of motion of an aircraft are linearized about some nominal 

flight condition so that feedback and cross-control gains may be deter- 

mined to satisfy flying quality criteria [M-10]. For some conventicnal 

aircraft these gains are often adequate for the entire flight envelope 

and are thus held constant throughout the flight. The control technique 

reported in this chapter is directed toward aircraft with nonlinear aero- 

dynamics that are not satisfactorily controlled by constant feedback 

gains. An additional benefit of this method will be the reduction of 

control difficulties encountered during the landing and take-off phases 

of flight which oftentimes are critical to the safety of the passengers. 

This chapter applies the modified PAC algorithm of Chapter Four to 

the longitudinal dynamics of the B737 aircraft. The motivation for 

applying adaptive control to the B737 aircraft is due to the NASA "Term 

inal Configured Vehicle", TCV, program. One goal of this program is to 

study control methods that will enable quicker and safer landing 

approaches in adverse weather conditions. The results given in this 

chapter indicate that the modified PAC algorithm will help accomplish 

this goal. 

Section 6.2 describes the longitudinal dynamics of the B737 air- 

craft. The need for adaptive control is shown in the flight simulation 

138
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results of Section 6.3. The model-following design method is used in 

Section 6.4 to obtain the feedback and input gains required to meet the 

control objectives. Section 6.5 analyzes the nonlinear measurements that 

are available to the controller. The simulation of the B/737 aircraft is 

described and the closed-loop response results are given in Section 6.6. 

The method and results are summarized in Section 6.7. 

6.2 The Equations of Motion 
  

This section describes the longitudinal perturbation equations of 

the B737 aircraft. The three input controls that are available to the 

controller are the elevator, stabilizer rate and throttle rate. The 

differential equations relating these inputs to the delivered thrust and 

stabilizer position and the earth reference variables required to monitor 

the aircraft's position will be used with the equations of motion to ob- 

tain an overall state variable description for the system. 

The longitudinal equations of motion for an aircraft are, after 

simplification, [H-4][R-1][E-1] 

m(u + Wo -mg@ cosdo + f ox +f 
Tx 

tl miw - U6® -mg@ sindo + f 2 +f (6.2.1) 
Tz 

tyy q= a, + my 

where 

US = steady state inertial speed, x-direction 

Wy = steady state inertial speed, z-direction 

8 = steady state pitch angle
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u = speed perturbation, x-direction 

w = speed perturbation, z-direction 

§ = pitch angle perturbation 

q = pitch rate perturbation 

££ ,f = Aerodynamic Force perturbations 
ax az 

fox? fas = thrust perturbations 

mn mr = perturbation in pitching moment due to Aerodynamic 

forces and thrust. 

m, g, Llyy = mass, gravity and moment of inertia around the 

y-axis. 

Assumptions: 

(1) All lateral variables have very small values (i.e. yaw, roll, 

sideslip and their rates). 

(2) Pitch angle is small. 

(3) The above equations are linearizations of the nonlinear equa- 

3 8 » tions of motion around US: W 5 
Oo 

(4) The perturbations in the angles are small so that cos 6 = l, 

sin 0 = 6. 

The aerodynamic forces and moments involved are the lift and drag forces 

and the pitching moment; the effects of thrust are described separately 

by the terms with subscript T. These forces and moments can be expressed 

as follows: 

L = C, Cu, a, 4, q, de, és)qs 

D= Cy(u, ay a, q, de, és)qS 

T = C,(a, a, a, 9)qS
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e, S, T)qSe (6.2.2) Ss
 I 

x o-
~ £ - 

where 

a = angle of attack perturbation 

S = effective aerodynamic surface area 

p = atmospheric density 

dynamic pressure Oo |
 it 

ve = airspeed 

¢ = mean aerodynamic wing chord 

6e, 6s, 6T = perturbations in elevator, stabilizer and thrust 

C C,. = nonlinear lift coefficients 
C Tt’? “M L? D? C 

Linearizing the aerodynamic and thrust forces, and regrouping the 

small perturbation variables into state variable format, the following 

equation is established with respect to the stability axis coordinate 

system [H-4][R-1][E-1]: 

x = Ax + Br + Cw (6.2.3) 
Pp Pp Pp p 

where 

T T 
x = {u a 8 > | q ] 

ri = [Se 6T ss]. 
P 

w= [u oO q_] 

4]
 

0g
 

ag
 

g
q
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24 
(6.2.4) 

34 

23 (6.2.5) 
33 

(6.2.6) 

and, u_ = gust perturbation in x-inertial speed 

o = gust perturbation in angle of attack 

qe = gust perturbation in pitch rate 

x, = state vector for equations of motion 

x = input vector for equations of motion 

W = gust input vector for equations of motion 

A = system coefficient matrix 

B = input coefficient matrix 

C = gust input coefficient matrix 

The coefficients in the state equation are nonlinear functions of 

several different parameters, such as the aircraft weight, altitude, fiap
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setting, center of gravity, etc., and their calculation, even for just 

one flight condition is quite involved. Fortunately, this problem was 

circumvented by taking advantage of the extensive literature and analysis 

routines available for the B737 aircraft at NASA/LRC. 

The "TCVA Trim Data Validation" program and the accompanying state 

variable matrix generation program were used extensively to obtain the 

A, B and C matrices for several hundred different flight conditions. 

For example, see Figure 6.2.1. (Appendix B contains information outlin- 

ing the use of these programs.) From an analysis of these linearized 

models, ten were selected that represented a variety of flight conditions 

from 10,000 feet to sea level. See Figure 6.2.2. 

The thrust will be modeled as having a first order time-lag with 

respect to the throttle, and the throttle rate will be the actual control 

input. The stabilizer rate will also be available as a control input. 

The elevator response time is assumed to be instantaneous. Thus, 

6T = -.56T + .56th (6.2.7) 

6th = Tih 

$s = 4x 
Ss 

é6e =r 
e 

where, 

6th = throttle perturbation 

= throttle rate input Hh 

Hl 

th 

r= stabilizer rate input 

te = elevator perturbation input. 

In order to locate the aircraft with respect to the earth reference
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frame, two additional state variables are required. These variables are 

the altitude loss (sink) perturbation and the closing position perturba- 

tion given by 

  

  

Z~-Z 
> = = oO. ~ -caj - Zz ( U, ) u( siny,) + a(cosy ) + 6( cosy |) 

. 6.2.8 ok (6.2.8) 
x = ( uv, ) = u(cosy ,) + a(siny |) + 8(-siny ) 

where, 

z = sink perturbation 

x = closing position perturbation 

Z = altitude 

Z = nominal altitude 

X = x-position of aircraft in earth coordinate system 

x 
Oo 

ul nominal x-position 

Y ° Steady state flight path angle, oe ~ a). 

Incorporating equations (6.2.7) and (6.2.8) into equation (6.2.3) gives, 

  

x =Ax +Br + Cw (6.2.9) 
a aa aa P 

where 

T_.T T 
x, = IX, 6T 6th 6S] 

r Ts [r re r+]. 
a e th 

A 1 Be 0 Bs 

0 | - 5 0 
A, = ! (6.2.10) 

0 ! 0 0 0 

I 
{ 
I
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1.9 

= .042 

0. ~.152 -082 

-.756 

~1.07 

-.047 

-.310 

~.142 

-097 

2.51 

QO. Q. 1. 

-.19 -.529 

 
 

0. 0. ~=.047 

~1.2 

-082 

-. 756 

~1.07 

- 12,047 

-.042 

-.434 

-.31 

~.142 

0. 

Figure 6.2.3 Augmented System Matrices
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Table 6.3.1 Longitudinal Eigenvalue Variation 

For The Ten Flight Conditions 

  

REGION ALTITUDE SHORT MODE PHUGOID 

1 200 ~.654+J1.03 -.0142J.150 

2 1500 ~.91+J1.04 ~.014+3.088 

3 2500 -.75+J1.30 ~.009+J.140 

4 3500 ~.962J1.40 -.010+J.070 

5 4500 -1.01+J1.50 -.009+J .056 

6 6000 -.87+J1.60 -.008+J.110 

7 7000 ~.85+J1.33 - .006+J.100 

8 8000 -.85+J1.44 ~ .006+J3.095 

9 9000 -.86+J1.70 ~.003+J.095 

10 10000 - .944+51.90 -.004+J.085
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0 0.6060 
Bo = 

0 1 90 

oo 

where, 

x, = augmented state vector 

rr augmented input vector 

A, = augmented system coefficient matrix 

Bo = augmented input coefficient matrix 

B, = first column of B, corresponds to elevator 

Be = second column of B, corresponds to thrust 

B = third column of B, corresponds to stabilizer. 

For example, the overall system's state equation corresponding to Figure 

6.2.1 is shown in Figure 6.2.3. For clarification, the relationship be- 

tween various angles and velocity vectors is shown in Figure 6.2.4. 

6.3 The Need for Adaptive Control 
  

The ten flight conditions listed in the preceding section are now 

analyzed and simulated. Table 6.3.1 shows the longitudinal eigenvalue 

variation as the aircraft goes from region to region. The short period 

mode and the phogoid mode eigenvalues vary approximately 100% and 200%, 

respectively. 

The typical open-loop response of the B737 given a step elevator 

command is shown in Figure 6.3.1. For this particular example it is 

seen that the short mode has a pericd of 3 seconds, and the phugoid has
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a period of 2 minutes. For different flight conditions the response of 

the aircraft varies. Figure 6.3.2 shows that the angle of attack response 

varies considerably in magnitude, frequency and damping in the different 

regions. 

The need for an adaptive controller can be seen in Figures 6.3.3, 

6.3.4 and 6.3.5. In Figure 6.3.3 the feedback gains were computed to 

give the linear model in Region 1 short-period poles at S§ = -3. Applying 

these gains when the aircraft is in the other regions results in either 

a prolonged oscillation or instability. Similar unacceptable performance 

results when the gains calculated for Region 5 or Region 10 are used for 

all regions. See Figures 6.3.4 and 6.3.5, respectively. In addition, 

even if each region was correctly compensated, there is still a need for 

region dependent input scaling, as can be seen in Figure 6.3.6a,b,c, 

which gives the elevator response required to capture and follow a con- 

Stant sink rate glideslope in different regions and shows the increased 

efficiency of the elevator at high velocities. Figure 6.3.6c is obvi- 

ously unrealizable. 

6.4 Closed-Loop Design Via Model Following 
  

The control objectives are as follows. First, the aircraft should 

follow a predetermined glideslope. Second, the response of the aircraft 

should be as uniform as possible in the various flight configurations. 

It was decided that these objectives could best be achieved through the 

methods of model following [T-2] [W-5] [M-9] [A-3]. 

Model following is an application of optimal regulator theory which 

is summarized in Chapter Two. The desired goal is to determine feedback
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i 

8. La degrees 

Region 10 

6. | 

4. 

T Region 5 

Region 1 

2. a 

QO. 

-2. > 

' t — —} — >> 

2. 4. 6. 8. 10. 

Time in Seconds 

a el 

elevator input is a 15 degree pulse of .8 second duration.   
Figure 6.3.2 Angle of attack, a, response for different 

flight conditions.
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1° 4 ae 204 
fy degrees 

so | 4o | a, _, ~ 
Y 1 2 4 seconds 

(a) Region 10 (10,000 ft., 250 knots) 

60 20 

  

40 | _ - np — je t + 7 —_ 

\/ 1 2 4 seconds 

| (b) Region 5 (4,500 ft., 165 knots)     20 

  0 L = > 
1 2 4 6 seconds 

  

(c) Region 1 (200 ft., 125 knots)     
Figure 6.3.6 Closed loop elevator response required 

“to capture a-20 ft/sec sink rate glide- 
slope in the different regions.
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gains and input gains that will cause a given system to have a response 

identical to a given model. The requirements that a system and model 

must satisfy in order that the problem be solvable are rigorously formu- 

lated and solved in reference [M-9]. Model following has found wide 

usage in the area of aircraft simulation. Specifically, it has been use- 

ful as a method of altering the response of an aircraft to emulate the 

response of a second aircraft [T-2][A-3]. The application of model 

following to the problem of trajectory following as done in this chapter 

further illustrates the utility of this method of design. 

An excellent summary of the model-following method is given in 

reference [A-3] and is repeated in Appendix C. A block diagram of a 

closed-loop model-following system is shown in Figure 6.4.1. 

The purpose of the model in this application is to produce the 

glideslope that the B737 aircraft will be required to follow. The glide- 

slope is defined by the initial altitude, initial distance, initial 

velocity and landing velocity of the aircraft. It is desired to have a 

linear decrease in altitude with time and a linear decrease in velocity 

from the initial velocity to the final landing velocity. From the ini- 

tial conditions then, 

Vave = (Uy + U,)/2 (6.4.1) 

T= X_/U 
oO avg 

A. = (Up - U,)/T 

U, = Zi/T
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a
 i initial velocity, x-direction 

U, = final velocity, x-direction 

U = average velocity 
avg 

U, = sink velocity, z-direction 

x = initial distance from landing point 

A,. = x-acceleration 

T = expected time interval till landing. 

A state model producing the desired glideslope is, 

x= AXa x 69) = Xo (6.4.2) 

where, 

    le
 oO oO Oo oO 1
 

mo 
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The variables have been normalized to conform to the dimensionless 

State variables, in the state equations for the B737 aircraft, i.e. 

equation (6.2.8). The stabilizer position, S$, has been included as a 

State having a constant value of zero. This allows nonzero stabilizer 

perturbations to be penalized in the subsequent solution of the model- 

following equations (see Appendix C). The state variables of the air- 

craft to be matched to the model are the x-position, the sink position 

and the stabilizer perturbation. Referring to Appendix C, this requires 

mH
 i oO oO oO
 oO ° HH
 

° oO
 

ro
 

on
 

oO
 

oO
 

oO
 

fo)
 

ro
 

© oO be
 

H = /1 #0 0 0 a0 QO. (6.4.3) 

Errors in these three state variables are weighted relative to control 

effort by the adjustment of the Q and R matrices in the cost functional. 

By trial and error the following matrices were found to give good glide- 

slope following with acceptable control effort: 

10 oO 0 1 0 0 

g=|0 10 Oo R=|0 1 0 (6.4.4) 

0 oOo 10 0 0 l 

The combined feedback/input gain matrices for the various flight config- 

urations were found using a model-following computer program given in
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reference [A-3]. For example, the gain matrix corresponding to config- 

uration 1 is given in Figure 6.4.2. 

6.5 Nonlinear Measurement Model 
  

The modified PAC algorithm requires a linear measurement matrix for 

each of the Kalman filters. However, several of the measurements that 

are available to the controller are nonlinear functions of the state 

variables. In this section a prefilter is developed to eliminate these 

nonlinearities. (See also references [H-4], [J-4].) 

The measurements are available from two sources, on-board sensors 

and MLS (Microwave Landing System) data. The measurements considered 

and the associated sources of the measurements are listed below. 

Z(1) pitch angle (gyro) 

Z(2) = pitch rate (gyro) 

Z(3) = slant range (MLS) 

Z(4) = elevation angle (MLS) 

Z(5) = altitude (barometric) 

Z(6) = altitude rise rate (barometric) 

Z(7) = acceleration along z. (body-mounted accelerometer) 
5 

Z(8) = true airspeed (air data computer) 

Z(9) = acceleration along Xe (body-mounted accelerometer) (6.5.1) 

The relationships between the measurements and the state variables are: 

Z(1) = 8, + K, x4) + v(1) 

Z(2) = K, x(3) + v(2) 

Z2(3) = [(Z-U,x(5))* + (X,-U x(6)-U,0)4 + v(3)



- .28 

3.24 

-1.36 

-5.18 

- .741 

-2.43 

-5.18   }- .932 

Figure 6.4.2 Gain Matrix for Configuration $ 
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0043 
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1.50 

1.80   
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Z(4) = (Kj) tan" [(Z,-U,x(5)) /(X,-U,x(6)-U,¢) J + v(4) 

Z(5) Z - UjxO) + v(5) 

Z(6) -[U x(5) + Z1v(6) 

Z(7) = U, F(1) tanx( 2) + EEC (2) -(3) (14x(1) te08x(4) -cosx(2)) ]+v(7) 

U,(i+«(1)) 

2(8) = cosx(2) 
v(8) 

Z(9) = U [x(1)+(1+x(1) )x(3) tanx(2)+x(2) sinx(2)-x(3)sinx(4) ] + v(9) 

where, 

x = [u O q 8 Zz x T th sj? 

Ky = 57.29578 deg/rad 

Zo = “Ujsiny , 

and vi = [v(l1) v(2) cee v(9)]2 are noise quantities. (6.5.2) 

The standard deviations of the noise elements are given in Table 6.5.1. 

It is seen that v(6) and v(8) are multiplicative noise factors. These 

noise factors can be approximated by additive noise terms as shown below. 

This step is required in the implementation of the linear Kalman filter 

equations. 

v(8) = (1 + Eg) Eg = 02 

v'(8) = €, Uavg 

v(6) = (1 + €,) Eg = +05 

v'(6) =e, U (6.5.3) 
6 ~Z
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where Uavg and Uz are given by equation 6.4.1. 

After making several small angle approximations and substituting 

equation 6.5.3 into 6.5.2, the measurement equations become: 

Z(1) through Z(5) = same as equations (6.5.2) 

R zZ(6) -[Ux(5) + Z01 + v'(6) 

Z(7) R U[x(2) - x(3)] + v(7) 

Z(8) = ujat + x(1)) + v'(8) 

Z(9) = Ux(2) + v(9) (6.5.4) 

A prefilter is now constructed to give a second set of measurements that 

are linear combinations of the states. Although approximate, these equa- 

tions give very good results for small values of noise [J-4][H-4]. 

  

2(1) = [Z(1) - 8 ]/kd = x(4) + v(1) 

z(2) = Z(2)/kd = x(3) + v(2) 

2(3) = [X, - Ujt - Z(3)cos(Z(4)/kd) ]/U, = x(6) + v'(3) 

2(4) = [Z - 2(3)sin(Z(4)/kd) ]/U, = x(5) + v'(4) (6.5.5) 

z(5) = [Z, - 2(5)]/U, = x(5) + . 

2(6) = [U,sin(@, - a.) - 2(6)]/U, = x(5) +2 
0 

2(7) = 2(7)/U, - e BU = x(2) - x(3) + 7 

2(8) = 2(8)/U, - 1 = x(1) + v1 (8) 
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v(9) 

U 
oO 

  

z(9) = 2(9)/U., = x(1) + (6.5.5) 

The prefiltered measurements are thus linearly related to the state var- 

lables by the measurement coefficient matrix, H, as shown in Figure 

6.5.1. 

The noise terms v'(3) and v'(4) represent equivalent errors in the 

x-distance and altitude variables, respectively, and are derivable from 

the slant range and elevation angle errors. For example, let the slant 

range plus error be R + dR, and the elevation angle plus error be € + dé. 

Then, 

Z+dz= (R + dR)sin(& + dé) 

= (R + dR) [sinécosdé + cosEsindé] 

= (R + dR) [sing + décosé] 

=~ Rsin€ + dRsiné + (Reos&) dé 

Thus, 

v'(4) = dz = (sin&)dR + (Reosé&)dé. 

Similarly, 

v'(3) = dx = (cos&)dR - (Rsin&)dé (6.5.6) 

Using nominal values for R and &, and the standard deviations of d& and 

dR given in Table 6.5.1, the standard deviations v'(3) and v'(4) can be 

found. 

The actual measurement noise was simulated using the covariances 

given in Table 6.5.1. The covariance matrix of the prefiltered noise 

terms given in equations 6.5.5 and 6.5.6 is shown in Figure 6.5.2. This 

matrix represents the prefiltered noise covariances and was used in the
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TO 0 0 1.0 O 0 0 0 0 7 

0 0 1.0 0 0 0 0 0 0 

0 0 0 0 0 1.0 0 0 0 

0 0 0 0 1.0 0 0 0 0 

= | 0 0 0 0 1.0 0 0 0 (0 

0 1.0 0 -1.0 0 0 0 0 0 

- 31 -.756 0 0 0 0 -.042 0  .097 

1 0 0 0 0 0 0 0 0 

[= .047 .082 0 -.152 0 0 1.9 0 0 

Figure 6.5.1 Prefiltered Measurement Coefficient Matrix, H 
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solution of the Kalman filter equations. 

6.6 B737 Simulation and Results 
  

The simulation of the B737 is accomplished by initializing the air- 

craft at some altitude, x-position and x-velocity, and then controlling 

it to follow a glideslope corresponding to a linearly decreasing altitude 

and a linearly decreasing velocity. A model system that produces this 

glideslope is given in equation (6.4.2). As the aircraft altitude 

decreases the appropriate linearized model is switched in according to 

the schedule of configurations given in Figure 6.2.2. In this manner a 

very good approximation to the actual nonlinear aircraft response can be 

achieved. 

The times of the configuration changes, as well as the configura- 

tions themselves, are, of course, unknown to the controller. The ton- 

troller will consist of three filters matched to configurations s s 
1’ 5 

and Sig? respectively. The feedback and input gains required for each 

of these configurations to follow the glideslope are precalculated using 

the model-following method discussed in Section 6.4. The modified PAC 

of Chapter Four is then employed to adaptively learn the most appropriate 

aircraft configurations (of s s, and S30) and to apply the correspond- 
1’? °5 

ing control gains. 

For example, Figure 6.6.1 gives the initial conditions, wind dis- 

turbance covariance, initial state uncertainty and semi-Markov matrix for 

a 6-degree glideslope. The wind disturbance is assumed to be a zero- 

mean, white gaussian process. Correlated wind can be accommodated by 

increasing the dimensions of the system to include the necessary extra
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Glideslope Parameters 

Un = 400 ft/sec 

Uy = 200 ft/sec 

X = 50,000 ft 
Oo 

Z = 10,200 ft 
Oo 

_— -4 -3 -5 -5 
P(O) = diagonal {4.0x10 2.5x10 3x10 5x10 

5x10°2 6x02 3x107> 3x10? 1x10} 

. -5 -5 “5 
Q = diagonal {1x10 1x10 1x10 ~} 

~99 .005 .005 

SM = |.005 99 -005 

.005 .005 99 

Figure 6.6.1 Glideslope Simulation Parameters
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state variables. However, this was not done in this example. 

The aircraft simulation and modified PAC algorithm were carried out 

on a high speed digital computer. Figures 6.6.2 and 6.6.3 show the 

accuracy of the resulting gliideslope. The weighting coefficients are 

shown in Figure 6.6.4. It is seen that they accurately follow the 

changing aircraft dynamics. 

6.7 Summary 

A major goal of the NASA Terminal configured vehicle (TCV) project 

is the automatic control of aircraft in the vicinity of the terminal dur- 

ing adverse weather conditions. During the landing approach, wind shear 

and gusts can excite the various dynamic modes of the aircraft, such as 

the Dutch roll and the phogoid oscillation, which, if not effectively 

compensated for, could lead to a less than optimum, if not disastrous, 

flight termination. Several factors combine to make effective compensa- 

tion a difficult problem. The dynamics of the aircraft are nonlinear, 

time-varying and are only approximately known. In addition, many aero- 

dynamic coefficients are given in tabular form, and some are only esti- 

mated. Measurement errors on the output variables, state variable esti- 

mation errors and random input modeling errors further complicate the 

problem. 

The modified PAC algorithm has been shown to be successful in con- 

trolling the longitudinal dynamics of the B737 aircraft. It was demon- 

strated that the changes in aircraft dynamics due to altitude and velo- 

city variations, flap extension, landing gear position, etc., could be 

identified, thus allowing the proper feedback to be applied to give
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overall uniform performance. This was shown by controlling the aircraft 

down a pre-determined glideslope. This required compensating for the 

phugoid oscillation, as well as the short period mode oscillation, by 

calculating feedback and input gains using a model-following approach. 

Again, the ability to determine the changing dynamics allowed for uniform 

control all along the glideslope. 

The set of possible configurations can be arrived at in several 

different ways. If a reasonably accurate mathematical model exists for 

the nonlinear system (as in the case for the B737 aircraft), the equa- 

tions can be linearized at a sufficient number of points in the state 

space [Z-1L][M-8], and these linear approximations will then comprise the 

configuration set. On the other hand, if no mathematical model exists, 

one needs (only) to experimentally determine a set of reduced order lin- 

ear systems that satisfactorily describe the nonlinear plant. The order 

of these approximations will be determined by the accuracy required, but, 

even though no approximation will be exactly matched to the plant, the 

adaptive controller will find the best match. 

Several implementation advantages exist because the controller uses 

Standard Kalman filters. First, the Kalman filter is reliable and wide~ 

ly used, as contrasted with the existing nonlinear filtering techniques. 

Second, the filter gains and covariances can be precomputed and stored 

off-line, for considerable savings in on-line computational time. 

Finally, the structure of the controller makes it amendable to a 

parailel processing implementation. This has advantages in on-line 

execution time, as well as a potential for redundancy.



7.0 CONCLUSIONS 

The primary contributions of this dissertation are, first, the 

extension of an adaptive identification algorithm to nonlinear estima- 

tion and control problems, and, second, the development of a nearly 

optimum estimator for the switched linear plant problem. The stochastic 

nonlinear controller developed in Chapters Three and Four eliminates a 

large portion of the computational burden and performance difficulties 

associated with current methods. In addition, it has several implemen-~ 

tation advantages which are summarized in the following paragraphs. 

The adaptive identification algorithm introduced by Magill [M-1], 

refined by Lainiotis et al [L-2], and referred to as the Partitioned 

Adaptive Estimator (PAE), has found wide usage over the last decade. 

However, the application of the algorithm to plants having frequent 

configuration changes has achieved only limited success. Brown and 

Price attributed the inability of the PAE algorithm to track a maneuver- 

ing target, to the weighting coefficients becoming zero [B-1]. As 

shown in Chapter Three, this is only partly correct. Moose eliminated 

the problem of the weights going to zero by incorporating a semi-Marko- 

vian plant model into the estimator structure {[M-2]. The net result is 

an identification algorithm that is sensitized to the possibility that 

configuration changes can occur. At this point, the PAE algorithm with 

the semi~Markov addition is capable of tracking slowly changing plants. 

However, as shown in Chapter Three, another problem with the PAE algo- 

rithm is that the Kalman gains become asymptotically small, which 

results in a rather long lag time between when a configuration change 

177
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occurs and when the newly matched filter begins tracking the plant. 

The PAE algorithm was modified in Chapter Three to significantly reduce 

this lag time by re-~initializing the Kalman gains when a configuration 

change occurs. The addition of the re-initialization mechanism enables 

the PAE to track rapidly changing plant configurations. 

The nonlinear estimation problem was "solved" using the above modi- 

fied PAE algorithm. First, the nonlinear equations are partitioned 

into a finite set of linear approximations, such that the operation of 

the nonlinear plant is given, approximately, by a time sequence of the 

linear models. The modified PAE algorithm then regards the nonlinear 

plant to be simply a switched linear plant. 

The PAE algorithm has several advantages over existing nonlinear 

estimation methods. First, the bank of filters can be implemented 

using a parallel processing structure. This structure readily accepts 

system redundancy and system failure models in the form of additional 

elemental estimators. Second, the elemental estimators, being linear, 

allow a large portion of the filter computations to be done off-line. 

Third, the modified PAE algorithm is quite flexible in regards to the 

nature of the nonlinear plant. The linear approximations can be made 

just as readily from tabular data, discontinuous nonlinearities and 

even underspecified functions. Other methods, such as the EKF, 

normally require an accurate nonlinear description. 

The main disadvantage of the modified PAE algorithm is its in- 

accuracy. It is not meant to compete in this respect with, say, the 

EKF. Accuracy can be improved by increasing the density of linear 

approximations. However, this will also increase the learning time and
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thus decrease the responsiveness of the estimator. A second disadvant- 

age is the required tuning of the re-initialization mechanism. As point- 

ed out in Chapter Three, this must be done empirically for each problem. 

The modified PAE algorithm was extended to the stochastic nonlinear 

control problem in Chapter Four. A major advantage of this method, 

referred to as the modified PAC algorithm, is that the well developed 

methods of linear systems theory can be applied to calculate the feed- 

back gains. Either a classical eigenvalue specification or an optimal 

control formulation can be used for this purpose. The set-point control 

example in Chapter Four and the B737 slideslope tracking application of 

Chapter Six show the utility of the modified, PAC algorithm. 

The problem of detecting configuration changes led to the develop- 

ment of the Sliding Window Detector/Estimator, SWDE, algorithm. The 

performance of this technique approaches the accuracy of the unrealiz- 

able optimum estimator for the switched linear plant problem. Previous 

attempts in this direction have all led to sub-optimal filters that are 

unnecessarily approximate. (For example see [A-2].) The SWDE algorithm 

utilizes steady state gains and a finite measurement window to minimize 

the computational burden while maximizing tracking performance. The 

three examples in Chapter Five illustrate the capabilities of this 

algorithm. 

A disadvantage of the SWDE algorithm is the possibility of its 

losing track of the plant state. When this occurs, the algorithm must 

be re-initialized. It was shown in Chapter Five that the modified PAE 

algorithm together with the SWDE algorithm results in an estimator that 

is both accurate and reliable. It is felt that this combined structure
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significantly extends the state of the art in adaptive estimation and 

merits further application in the tracking of maneuverable targets.
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APPENDIX A — SWDE ALGORITHM 

A-l Flowchart of The Basic Algorithm 
  

The basic SWDE algorithm is illustrated by the flowchart in Figure 

A.1l.1. The four steps of the algorithm are: grow the configuration 

TREE, propagate the tree one iteration, test for a configuration change 

and compute the state estimate. SWDE is invoked when each measurement 

is received, and requires the following input data: 

> State transition matrices for all S.: 

r Input coefficient matrices for all Si. 

H Measurement coefficient matrix. 

F Kalman gain steady state matrices. 

ZCOV Measurement residual covariance inverse. 

DET Determinants of ZCOV. 

UL Input vector at time k. 

zy Measurement vector at time K. 

XF iy State estimate at time k-l. 

XW Set of branch estimates at time k-l. 

PRBW) 4 Set of relative probabilities at k-l. 

PROLD The seed probability value at k-N. 

LKF The last detected configuration. 

IGROW Iteration count since last detection. 

NKF The number of configurations; same as M. 

NW The window width; same as N. 

The algorithm for detecting a configuration change is shown by the 

DETECT flowchart in Figure A.1.2. Basically, the relative probabilities 
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are examined and, if the maximum probability belongs to a branch cor- 

responding to a configuration change NW iterations past, then the algo- 

rithm detects the change and initiates the growing of a new TREE. 

Updating the TREE one iteration is shown in the PROPAGATE flowchart, 

Figure A.1.3. The state estimates of each branch are updated using the 

Kalman filter equations, and the relative probabilities are updated by 

multiplying by the new measurement residual probability value and divid- 

ing by the old seed probability. 

A-2 Initialization and Re-Start Algorithm 

The SWDE algorithm is initialized by executing the modified PAE 

algorithm, as discussed in Section 5.6. This is illustrated by the 

TRACK flowchart in Figure A.2.1. With IPAE = 0 initially, the PAE 

algorithm is executed until the filter gains reach steady state and one 

of the weighting coefficients, I. , exceeds a given threshold. The SWDE 

algorithm is then continually executed. If divergence ever occurs, the 

measurement residual will acquire a non-zero value. This is detected 

by comparing a residual average, 2 ave? to a threshold value. [If 2 ave 

exceeds the threshold for three window lengths, the TRACK algorithm is 

re-started. 

A-3 Weighted-Sum Estimation Modification 
  

As discussed in Section 5.5, estimation performance can often be 

improved by using a weighted~sum of the branch estimates at every itera- 

tion. The modification required to implement this estimate is to re- 

place the final block of the SWDE flowchart in Figure A.1.1 with the
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following block. 

| 
) XW(J) *PRBW(J) 

B J 

) PRBW(J) 

By 

  X¥F = 

      

where the summation is over all NW (NKR-1) + 1 branches.
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Figure A.1.3 PROPAGATE Flowchart 
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No 
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Figure A.2.1 TRACK Algorithm Flowchart



APPENDIX B - THE "TCVA - 737 TRIM DATA VALIDATION" PROGRAM 

B-1 Description 
  

By specifying the desired steady state flight conditions, the pro- 

gram will determine whether the aircraft can be trimmed. If successful, 

the required trim settings will be printed out. In addition, the state 

variable (perturbation) matrices will be printed in the body, stability 

and wind axes systems; and the aircraft eigenvalues and eigenvectors for 

the specified flight condition will be listed. 

B~2 Use 

Specify Units 

(1) VEAIC (Equivalent air speed) knots 

(2) WEIGHT lbs. 

(3) ALT (Altitude) feet 

(4) GEAR (0 = up; 1 = down) 

(5) FLAPS (0 to 40 degrees) degrees 

(6) C.G. (Center of gravity, .1 to .3) 

(7) GAMMA (Flight path angle) degrees 

(8) PHIDEG (Roll, banking angle) degrees 

If the B737 can be trimmed for the above conditions, the program will 

print out: 

"Aircraft trimmed T" 

If the B737 cannot be trimmed, the following output is not valid, and 

the program will print out: 

"Aircraft trimmed F" 
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B-3 Output 

Page 1 and 3: 

(1) ALPDEG 

(2) BETADEG 

(3) DELS 

(4) DELE 

(5) DELA 

(6) DELR 

(7) Tl, T2 

(8) VTB 
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The trim settings: 

a, angle of attack 

8, angle of sideslip 

stabilizer 

elevator 

aileron 

rudder 

engine thrust 

true air speed 

degrees 

degrees 

degrees 

degrees 

degrees 

degrees 

lbs. 

feet/sec. 

As a verification, the state derivatives are printed out; they should be 

very small values 

Page 2 and 3: 

Page 4: A, B matrices (Body axis). 

Page 5: Eigenvalues and eigenvectors. 

All the lift and drag coefficients. 

Page 6: A, B matrices (stability axis). 

Page 7: A, B matrices (wind axis). 

B-4 Example 

The following parameters were used: 

(a) weight = 

(b) weight 

(c) weight 

70,000 

80 ,000 

90,000 

C.G. = .3 

C.G. = .25 

C.G. = .15 

For each of these cases one hundred runs were made for various flight 

conditions, as shown in Table B.4.1. The ten flight conditions' state 

equation matrices used in the B737 simulation in Chapter 6 are given in 

Table B.4.2.



Table B.4.1 Flight Conditions Used in the Trim Data Validation Program 

  

  

  

  

  

  

  

  

  

      

Total 

Number of 

Flight Banking Landing | Runs at 
Altitude Velocity Page Angle| Angle Gear this 

ALT VEAIC FLAPS GAMMA PHIDEG GEAR Altitude 

200 125 40 0 0 1 6 

135 -3 

-6 

1,500 125 40 0 0 1 18 

135 -3 15 

-6 30 

2,500 145 30 0 0 0 18 

40 -3 15 

-6 30 

3,500 155 30 0 0 0 18 

40 -3 15 

-6 30 

4,500 165 30 0 0 QO 18 

40 -3 15 

-6 30 

6,000 175 25 QO 0 0 6 

30 =3 

-6 

7,000 185 15 0 0 0 6 

25 ~3 

-6 

8,000 200 0 0 0 0 6 

10 -3 

-6 

9,000 225 0 0 0 0 3 

-3 

~6 

10,000 250 0 0 0 0 3 

-3 

-6             
  

Total runs for given weight and center of gravity - 102 
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APPENDIX C - SUMMARY OF THE MODEL-FOLLOWING PROBLEM 

The following description and solution outline of the time-invariant, 

asymptotic, explicit (model-in-the-system) model-following problem is 

taken from the documentation of ORACLS [A~3]. 

C-l1 Continuous Model-Following Problem 

For the continuous case, the state and output equations are given as 

x(t) = Ax(t) + Bu(t) 

y(t) = Hx(t) 

where x(0) = Xo is given, and the constant matrices A, B and H are of 

dimension n xn, n xr (r <n), andmxn (m<n), respectively. The 

control function u(t) is required to minimize 

t 

t= lim f+ [e'(t)oe(t) + u(t')Ru(t) Jat 
ti, 0 

where 

e(t) = y(t) - ¥ st) 

Yn6t) = Am)? 

and 

x(t) = Ae att) 

where x 69) = x is given. The constant matrices qa and Ay have dimen- 

sion m x & (m < &) and 2 x &, respectively. Also, Q = Q' > 0 and R = R' 

> 0. The optimization of the performance index causes the output y(t) 

of the state to track the output ¥ ft) of a prescribed model. After sub- 

stituting e(t) into the performance index, the model-following problem 
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can be transformed into choosing u(t) to minimize 

t 

3= limf * [x'(t)OxCt) + ul (e)Ru(t) Jade 
the 0 

with 

X(t) = Ak&(t) + But) 

where 

. A 0 
A = 

0 A 
m 

. B 
B = 

0 

' ut 5 _ H'QH H Qa 

_ ' ’ Ha QH Cm QA 

and 

x 
& = 

x 
m 

This transformed problem can be solved directly using optimal linear reg- 

ulator theory. If the (A,B) pair is stabilizable and the (A,D) pair 

(with D'D = 0) is detectable, the solution exists and is given by 

u(t) = -Fk&(t) = FL x(t) - Fio%_ St) 

Computationally, it is inefficient to work with the composite (A,B) sys- 

tem directly. If the steady-state Riccati equation is formed and A, B 

and 0 are substituted, it readily follows (Ref. 29) that



= ~1 ' 

Pu 7 ROB Pay 

with Pa = Pad > 0 satisfying 

' - ~lis ' = PJjA + A'P,, - PL,BR 3B'P,, + H'QH = 0 

and 

Pio R “B Pi2 

with Pio satisfying 

_ ? = t Pion n + (A BF 4) Pio H Qa 

The computation of (Faye 

(1) Evaluate the feedback gain F 

Fi) thus separates into two parts: 

11 02 the state x by solving a reduced- 

order optimal regulator problem of the form 

k(t) = Ax(t) + Bv(t) 

y(t) = Hx(t) 

t 

min lim [ 1 [y'(t)Qy(t) + e'copne' ce }aed 

v(t) ty 0 

leading to 

v(t) = ~Fi4x(e) 

(2) Using F from step (1), compute the feedforward gain F on the 
il 12 

model x from the linear equations 

PA + (A ~ BF t 

i2 m LW P 
= ! 

12 a CH 

—_ ' 

RFig = B Pio
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C-2 Discrete Model~Following Problem 

For the discrete case, the state and output equations are given as 

x(itl) = Ax(i) + Bu(i) 

y(i) = Hx(i) 

with A, B and H as previously defined. The control sequence u(i) 

(i = 0, 1, ..., N-1) is required to minimize 

N-1 
J= lim ) [e'(itl)Qe(itl) + u'’(i)Ru(i)] 

Noo i=Q 

where 

e(i) = y(i) - Ane, 

yh) = Ham 61) 

x fit) = A X(t) 

with Q, R, Ha and AL as previously defined. As in the continuous case, 

the discrete model-following problem can be solved in terms of an 

(A,B,0,R8) optimal regulator formulation, but a simplified computational 

algorithm also exists (Ref. 150: 

(1) Compute a feedback gain Pui on the state x by solving the reduced- 

order optimal regulator problem 

x(itl) = Ax(i) + Bv(i) 

y(i) = Hx(i) 

N-1 

min 2lim y [y' (itl) QyCitl) + vom 

v(i) (Neo i=0
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leading to 

v(i) = FL yx(D 

(2) Using (P Fup from step (1), compute a feedforward gain Flo on 
11’ 

the model state x from the linear equations, 

= ~ q — ' 

Pig = (A~ BFL) PLA, 7 FH, 

' = R! (B Pi + R)F, > B Pan 

The complete optimal model-following control law is then given by 

u(i) = “Fy x) - Pi o%, 6h):
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STOCHASTIC ADAPTIVE ESTIMATION WITH APPLICATIONS 

TO NONLINEAR CONTROL 

by 

Philip Edward Zwicke 

(ABSTRACT) 

This dissertation is concerned with the development of two adaptive 

state estimators that are capable of tracking linear plants that undergo 

rapid configuration changes. The first is a modification of the Parti- 

tioned Adaptive Estimator, PAE, first introduced by Magill in 1965, 

improved and named by Lainiotis, and used in a number of applications, 

primarily aerospace. The PAE algorithm was derived for the problem of 

identifying which, of N, configurations that a linear plant is in; the 

key assumption being that the configuration is unknown but unchanging. 

There are two main difficulties in extending the PAE algorithm to the 

problem of estimating the state of a linear plant that can undergo con- 

figuration changes (the switched-linear plant problem). These two 

difficulties are addressed and solved in this dissertation. The result 

is called the modified PAE algorithm. 

The second adaptive estimator developed in this dissertation is 

the "Sliding Window Detector/Estimator™ or SWDE algorithm. Unlike the 

modified PAE algorithm whose basic structure is designed to solve a 

different problem, the SWDE algorithm is designed specifically for the 

switched-linear plant problem. It uses a joint detection/estimation 

approach to give a very close approximation to the unrealizable optimum



switched-linear estimator. 

The advantages and disadvantages of the two adaptive estimators 

are discussed, and it is found that a very reliable and accurate esti- 

mator can be constructed by combining both algorithms. Several differ- 

ent examples are given to clarify the operation of the estimator. 

A second contribution of this dissertation is in the application 

of the above estimators to the nonlinear estimation problem. The mo- 

tivation for this approach is that a nonlinear plant can be approximated 

by a sequence of linear approximations, or configurations. Thus, an 

estimator that works for a switched-linear plant can perform as a sub- 

optimum nonlinear estimator. In addition, a stochastic nonlinear con- 

troller can be constructed using the nonlinear estimator as the observ- 

er. This approach has several significant implementation and design 

advantages which are discussed in the dissertation and illustrated by 

two examples, a set-point control example and a trajectory-following 

aircraft example. 

The above examples and algorithms were fully verified by extensive 

computer simulation. The implementation advantages afforded by these 

methods make them practical in a wide variety of applications.


