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Abstract

The listing of the northern long-eared bat (Myotis septentrionalis) as federally threatened under the Endangered
Species Act following severe population declines from white-nose syndrome presents considerable challenges to
natural resource managers. Because the northern long-eared bat is a forest habitat generalist, development of effective
conservation measures will depend on appropriate understanding of its habitat relationships at individual locations.
However, severely reduced population sizes make gathering data for such models difficult. As a result, historical data
may be essential in development of habitat models. To date, there has been little evaluation of how effective historical
bat presence data, such as data derived from mist-net captures, acoustic detection, and day-roost locations, may be in
developing habitat models, nor is it clear how models created using different data sources may differ. We explored this
issue by creating presence probability models for the northern long-eared bat on the Fernow Experimental Forest in
the central Appalachian Mountains of West Virginia using a historical, presence-only data set. Each presence data type
produced outputs that were dissimilar but that still corresponded with known traits of the northern long-eared bat or
are easily explained in the context of the particular data collection protocol. However, our results also highlight
potential limitations of individual data types. For example, models from mist-net capture data only showed high
probability of presence along the dendritic network of riparian areas, an obvious artifact of sampling methodology.
Development of ecological niche and presence models for northern long-eared bat populations could be highly
valuable for resource managers going forward with this species. We caution, however, that efforts to create such
models should consider the substantial limitations of models derived from historical data, and address model
assumptions.
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Introduction

Conservation interest has been increasing for the
northern long-eared bat (Myotis septentrionalis) as a
result of severe population declines from white-nose
syndrome (WNS) mortality and reduced recruitment of
surviving bats (Turner et al. 2011; Francl et al. 2012).
Because of these factors, the species has been listed as
federally threatened under the U.S. Endangered Species
Act (ESA 1973, as amended; U.S. Office of the Federal
Register 2015). Because of this, understanding of the
distribution and ecological niche characteristics of the
northern long-eared bat is a high priority for resource
managers in eastern North America. Activities such as
forest management, forest clearing, highway construc-
tion, and surface mining may directly affect bats by
removing or modifying day roosts and foraging habitat.
In these affected areas, models of day-roost habitats and
their distribution on the landscape are particularly
needed. Unfortunately, the once-common northern
long-eared bat has received relatively little study beyond
being linked to forested habitats, and in the core of its
range, most habitat relationships of the species are
unknown (Menzel et al. 2002; Owen et al. 2003; Ford et
al. 2006a, 2006b; Johnson et al. 2009; Silvis et al. 2012).

Although northern long-eared bats appear to still be
present across much of their range, reduced population
densities and the low amplitude of their echolocation
calls greatly decrease their probability of detection in
both mist-net and acoustic surveys (Coleman et al. 2014).
Occupancy modeling using data from repeated site visits
is a standard method to assess wildlife distribution and
habitat relationships (MacKenzie et al. 2002); however,
collecting new data for development of occupancy
models likely will be difficult in areas affected by WNS.
Historical capture and detection data that may be useful
in modeling are available in many areas, but several
considerations remain. For example, although there are
many historical bat data sets maintained by federal and
state agencies, universities, and natural-history muse-
ums, many contain presence-only data that are unsuit-
able for standard occupancy modeling because of the
lack of repeated site visits and absence data (MacKenzie
et al. 2002). Fortunately, models for and analysis of
presence-only data for ecological niche modeling using
tools such as maximum entropy or maximum likelihood
has become routine over the past decade (Baldwin 2009;
Royle et al. 2012; Merow et al. 2013). For cryptic species
that are difficult to document, such as bats, these
approaches have enabled researchers to extrapolate
from limited capture data or historical records to
potential, predicted distributions over wide landscapes
for basic biodiversity assessments (Hughes et al. 2010;

Moratelli et al. 2011; de Moraes et al. 2012; Pinto et al.
2013; Buckman-Sewald et al. 2014) or assess vulnerability
to climate change (Rebelo et al. 2010; Lee et al. 2012) and
WNS (Flory et al. 2012).

Historical bat presence data may be grouped into
three general categories: physical capture, acoustic
detection, and known day-roost locations. Given the
varied life history and behavior of most species of bats,
data type may have a substantial impact on the output
and interpretation of distribution and niche models. To
date, there has been little discussion of the limitations of
individual data types, differences in bat distribution and
niche model outputs, or the impacts of combining
different data types (but see Barnhart and Gillam 2014),
although models combining multiple data types have
been created for some bat species (e.g., Weber and
Sparks 2013). Our objective in this study is to explore the
potential impacts of presence data type on development
of northern long-eared bat distribution and ecological
niche models at local to small landscape scales using
historical data sets similar to what many forest managers
may already possess. Our goal is not to generate detailed
habitat association and selection models for the northern
long-eared bat. For our case-study, we used a historical
data set from the Fernow Experimental Forest (FEF),
mostly collected as part of inventory and monitoring
work and observational study. The FEF is a small area for
which a relatively large and complete data set of acoustic
survey data, mist-net capture data, and both maternity-
colony and male day-roost data exist for the northern
long-eared bat (Ford et al. 2006b; Johnson et al. 2009,
2010, 2013). Herein, we compare presence-only model
results generated from physical capture, acoustic detec-
tion, and day-roost locations in a topographically
complex, forested landscape. On the basis of known
levels of intensity of collection for each data type, we
expected a priori that roost location and acoustic data
would provide more precise model estimates and
relationships consistent with habitat preferences noted
in other areas compared with capture data (Owen et al.
2003; Ford et al. 2005). Further, on the basis of capture
protocols, we expected that netting data would show a
bias toward streams.

Methods

We modeled the presence probability of northern
long-eared bats on the FEF, Tucker County, West Virginia
using a historical monitoring data set containing three
presence record data types: acoustic detection locations,
capture locations, and known roost locations (Table S1).
Between April 15 and November 15, 1999–2013,
northern long-eared bat presence on the FEF was
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recorded at 11 mist-net capture locations and 32
acoustic detector locations. Capture locations represent
multiple individual mist nets, but because of proximity
(nets within 30 m of one another), these data were
collapsed into a single value for each location. Similarly,
we collapsed all presence records across years at
individual acoustic sites into a single record for that site.
One hundred thirty-one day roosts were located by
tracking radiotagged bats (see Ford et al. 2005, 2006b;
Johnson et al. 2009, 2012 for specific capture, radio-
tracking, and acoustic detection details). These data were
collected by the U.S. Forest Service, Northern Research
Station, U.S. Geological Survey, Virginia Cooperative Fish
and Wildlife Research Unit, Virginia Tech Department of
Fish and Wildlife Conservation, and West Virginia
University Division of Forestry personnel in support of
active research, land management, and biodiversity
monitoring on the FEF.

The FEF is a 1,900-ha experimental forest maintained
by the U.S. Forest Service Northern Research Station for
long-term silvicultural and forest ecology research.
Located within the Unglaciated Allegheny Mountains
subsection of the Appalachian Plateau Physiographic
Province, the topography at the FEF is characterized by
steep slopes, broad ridge tops, narrow valleys, and high-
gradient streams. Elevations range from approximately
500 m to 1,200 m. The climate is cool and moist with
mean summer daily maximum temperature of 26.88C
and mean annual precipitation of 130 cm (Madarish et al.
2002). Upland forest cover primarily is a mixed meso-
phytic type consisting of sugar maple (Acer saccharum),
red maple (A. rubrum), northern red oak (Quercus rubra),
chestnut oak (Q. prinus), yellow poplar (Liriodendron
tulipifera), American beech (Fagus grandifolia), sweet
birch (Betula lenta), black cherry (Prunus serotina), and
basswood (Tilia americana; Figure 1). Overstories of

Figure 1. Forest habitat distribution and stream network on the Fernow Experimental Forest, West Virginia for deriving habitat
models for northern long-eared bats (Myotis septentrionalis). Inset shows location of Fernow Experimental Forest.
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eastern hemlock (Tsuga canadensis) and dense shrub
layers of rosebay rhododendron (Rhododendron maxi-
mum) dominate riparian areas. Higher elevations on the
eastern portion of the FEF contain northern hardwood
forest consisting of American beech, sugar maple, and
yellow birch (B. alleghaniensis; Madarish et al. 2002). Most
forests are mature, second growth (.80 y old); however,
numerous forest stands on the FEF are in younger age
classes or stands with lower stocking as a result of
ongoing or previous silvicultural research. Approximately
275 ha of the FEF have been subjected to prescribed
burning over the past decade. Underlain by the
Greenbrier Limestone formation, the FEF contains several
small and one large cave system. The large system, Big
Springs Cave, was a winter hibernacula for northern
long-eared bats, little brown bats (M. lucifugus), and the
endangered Indiana bat (M. sodalis) before the advent of
WNS (Ford et al. 2006b) in the winter of 2010–2011
(Johnson et al. 2013).

We fit presence probability models for each presence
data type and the combination of all data using the
presence-only maximum-likelihood method of Royle et
al. (2012) using R (R Development Core Team 2014) with
package maxlike (Royle et al. 2012). We created a priori
models using combinations of physiographic and forest
type predictor variables on the basis of the existing
literature and previous research on or in proximity to the
FEF (Ford et al. 2005; Johnson et al. 2010, 2013; Table S2).
Physiographic predictors we selected were elevation (m),
topographic exposure index (TEI; Odom and McNab
2000), slope degree, distance to stream (m), and aspect
(northeast, northwest, southeast, southwest; Figure S1);
these variables were indicated by Schirmacher et al.
(2007) and Johnson et al. (2010) to be important
determinants of bat activity in Appalachian landscapes,
and by Menzel et al. (2002) and Johnson et al. (2009) as
important determinants of roost locations. All terrain
variables were derived from U.S. Geological Survey 1 arc-
second (30-m resolution) digital elevation models (Gesch
et al. 2002; Gesch 2007) using the spatial analyst toolbox
within ArcGIS (Version 10.2.2, Environmental Systems
Research Institute, Redlands, CA). Topographic exposure
was derived by subtracting the average elevation of the
area within a 1-km radius surrounding a pixel from the
elevation of the pixel. Relatively high TEI values indicate
that sites were exposed peaks or ridges, whereas low or
negative values indicate that sites were sheltered
landforms such as coves, lower slopes, and stream
corridors (Evans et al. 2014; Ford et al. 2015). Ford et al.
(2005) and Owen et al. (2003) indicated that divisions
among riparian and upland forests locally on the FEF
were important predictors of bat occurrence and bat
foraging habitat selection. Distance from streams often is
considered important in studies of the sympatric Indiana
bat, and previously has been found to have an influence
on roosting, distribution, and activity of northern long-
eared bats (Owen et al. 2003, Ford et al. 2005,
Schirmacher et al. 2007, Johnson et al. 2013).

Because predictors of roosting and foraging habitats
often are similar (Menzel et al. 2002; Owen et al. 2003;
Ford et al. 2005; Johnson et al. 2009, 2013), we created a

single candidate model set to assess acoustic and roost
location data. Our candidate model set for capture data
consisted of only single variables because of the limited
sample size. Variable combinations that we explored
tested hypotheses that occurrence was driven only by
forest type, only by physiographic variables, distance to
water features (streams) while accounting for related
physiographic variables, and the combination of physio-
graphic and forest type. We specifically included an
interaction between elevation and TEI to account for the
differential effects of sheltering, exposure, and cold air
drainage over elevational gradients. Because we had a
forest type that was relatively unique to this study area in
comparison with other studies (i.e., hemlock forest), we
made some specific models around this forest type.
Although hemlock distribution is somewhat correlated
with streams, actual presence is limited, and hemlock
occurs in absence of streams under some relatively
common conditions at the site. Therefore, we regarded
the potential correlation between stream presence and
hemlock as discontinuous and negligible in this study.

For ease of model fitting and interpretation, we
centered and scaled our continuous physiographic
predictors. Forest type was divided into three categories:
upland hardwood (uplhw), northern hardwood (norhw),
and eastern hemlock (hemlock). We extracted predictor
variables from raster data with 30-m cell resolution.
Specific variables relative to the FEF such as forest type
and stream network were provided by U.S. Forest
Service, Northern Research Station databases (Schuler
et al. 2006; Adams et al. 2010). We compared models
using Akaike’s information criterion corrected for small
sample size (AICc), the difference between the model
with the lowest AICc and the AICc of the ith model (Di),
and Akaike’s weights (wi; Burnham and Anderson 2002).
We dropped models that did not converge from the
candidate set. Because our goal was to show limitations
and implications of data type rather than provide
detailed models of habitat association and selection,
we did not model average or evaluate model predictive
accuracy. Additionally, we note that model averaging is
not recommended in all cases (Cade 2015).

Results

Our best supported model predicting presence from
acoustic detection data contained TEI, slope, distance
from stream, and aspect (Table 1). Imprecise parameter
estimates indicate that although this was the best
supported model, it has poor fit and therefore little
explanatory power (Table 2; Figure 2). The best
supported model predicting presence from capture
locations contained distance from stream and indicated
that probability of presence decreases with distance
from stream (Tables 3 and 4; Figure 3). The best
supported model predicting presence from roost loca-
tions included forest type, elevation, TEI, slope, distance
from stream, and the interaction of TEI with elevation.
This model indicates that roost presence probability
increases with distance from stream and is greater in
upland hardwood and eastern hemlock forest than in
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northern hardwood forest types, and decreases with TEI,
slope, and the interaction of TEI and elevation (Tables 5
and 6; Figure 4). The best supported model predicting
presence for the combined data contained elevation, TEI,
slope, and the interaction of TEI and elevation, with
presence probability increasing with elevation (Tables 7
and 8; Figure 5).

Discussion

The number of locations that we used to create our
acoustic and capture models would be unacceptably
small to construct habitat models over a broader
landscape. However, the amount of data available in
our case study far exceeds the per-area density that
could be expected in most historical presence data sets
from general bat fauna survey work. In many cases,
historical data are collected for site-specific regulatory
clearance purposes and their use in distribution and
habitat selection models may not be robust because of
sample distribution (e.g., netting near streams) and
intensity. Most historical data sets containing monitoring
data also likely do not contain all three presence data
types that we used. Nonetheless, we suspect that many
forest land managers will be interested in attempting to

create distribution models using local site data to
address state and federal regulatory concerns resulting
from the recent listing of this species as federally
threatened. Managers may be tempted to combine data
types, but this should be carefully considered. Theoret-
ically, combining data will provide maximal information
about where northern long-eared bats occur. However,
models created using pooled data may mask trends
relative to specific aspects of northern long-eared bat
foraging and day-roosting ecology, and undoubtedly
may violate modeling assumptions. In our study, we
found that combining all of our data types yielded
results similar to those produced using roost data
exclusively. This is unsurprising given the preponderance
of roost locations in the data set, but it highlights the
importance of evaluating data attributes when combin-
ing data types relative to the specific desired output and
desired management application. Combining data types
in this study violated several important assumptions of
the method that we used (such as point independence

Table 2. Parameter summary for best supported model
predicting northern long-eared bat (Myotis septentrionalis)
presence from acoustic detection data on the Fernow
Experimental Forest, West Virginia. Data were collected from
1999 through 2013. Model parameters are topographic
exposure index (TEI), slope degree (slope), distance from
stream in meters (dist. from stream), and aspect (northeast,
southeast, southwest).

Parameter Estimate SE Z P-value

(Intercept) 295 400 0.737 0.46

TEI �324 475 �0.683 0.49

Slope �327 495 �0.66 0.51

Dist. from stream 513 779 0.658 0.51

Northeast 879 1,370 0.641 0.52

Southeast 159 286 0.556 0.58

Southwest �395 567 �0.696 0.49

Table 1. Ranking of models used to predict northern long-eared bat (Myotis septentrionalis) presence from acoustic detection data
on the Fernow Experimental Forest, West Virginia. Data were collected from 1999 through 2013. Model parameters are given as well
as number of parameters (K), Akaike’s information criteria corrected for small sample size (AICc), difference in AICc value between top
model and ith model (Di), and model support (wi). Model parameters included topographic exposure index (TEI), slope degree
(slope), distance from stream in meters (dist. from stream), aspect (northeast, northwest, southeast, southwest), elevation in meters
(elevation), and forest type (eastern hemlock ¼ hemlock, upland hardwood ¼ uplhw).

Model K Likelihood AICc Di wi

TEI þ slope þ dist. from stream þ northeast þ southeast þ southwest 7 �307.255 633.18 0.00 0.90

Elevation 3 TEI þ slope 5 �313.427 639.16 5.98 0.04

Hemlock 2 �317.589 639.59 6.41 0.04

Uplhw þ hemlock 3 �317.145 641.15 7.97 0.02

Uplhw þ hemlock þ elevation 3 TEI þ slope 7 �312.729 644.13 10.95 0.00

Elevation 3 TEI þ slope þ dist. from stream þ northeast þ southeast þ southwest 9 �310.086 646.35 13.18 0.00

Uplhw þ hemlock þ elevation 3 TEI þ slope þ dist. from stream þ southeast þ southwest 10 �308.163 646.80 13.62 0.00

Uplhw þ hemlock þ elevation 3 TEI þ slope þ dist. from stream 8 �312.8 647.86 14.68 0.00

Global model 11 �311.015 657.23 24.05 0.00

Null model 1 �338.095 678.32 45.15 0.00

Table 3. Ranking of models used to predict northern long-
eared bat (Myotis septentrionalis) presence from capture data
on the Fernow Experimental Forest, West Virginia. Data were
collected from 1999 through 2013. Model parameters are given
as well as number of parameters (K), Akaike’s information
criteria corrected for small sample size (AICc), difference in AICc

value between top model and ith model (Di), and model
support (wi). Model parameters included topographic exposure
index (TEI), slope degree (slope), distance from stream in
meters (dist. from stream), elevation in meters (elevation), and
forest type (eastern hemlock ¼ hemlock, upland hardwood ¼
uplhw).

Parameter K Likelihood AICc Di wi

Dist. from stream 2 �106.208 216.83 0.00 0.53

Hemlock 2 �107.502 219.42 2.59 0.14

TEI 2 �107.571 219.56 2.73 0.13

Elevation 2 �107.874 220.16 3.33 0.10

Uplhw 2 �108.49 221.39 4.57 0.05

Slope 2 �108.796 222.01 5.18 0.04

Null 1 �116.22 234.57 17.75 0.00

Global 11 �99.9721 235.14 18.32 0.00
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and equal and constant detection probability), as it also
would have with other widely used modeling methods
such as maximum entropy. Therefore, it is crucial to
clearly define the desired objective of any predictive
model early in the development process, whether that
would be a landscape suitability metric for roosting or a

small-scale model of likely foraging habitats in a project
area slated for active management. Models created using
pooled data types should be regarded at the outset as
exploratory (although still potentially informative at the
local scale) unless the chosen modeling method deals
with violations of assumptions and differences in data
type directly. However, historical data may be used in
conjunction with post-WNS presence records to guide
current and future sampling efforts and validate models
created from post-WNS survey records.

Our best supported models predicting northern long-
eared bat presence differed substantially among our
presence data types. As a result, our predicted presence
maps for the FEF differed with little overall consensus in
patterns of where northern long-eared bats likely occur.
On the basis of research conducted at the FEF and
published literature, all of our best supported models

Figure 2. The best supported model of predicted probability of presence of northern long-eared bats (Myotis septentrionalis) on the
Fernow Experimental Forest, West Virginia, derived from presence-only acoustic detection locations. Data were collected from 1999
through 2013. Inset shows location of Fernow Experimental Forest.

Table 4. Parameter summary for best supported model
predicting northern long-eared bat (Myotis septentrionalis)
presence from capture locations on the Fernow Experimental
Forest, West Virginia. Data were collected from 1999 through
2013. Model parameter is distance from stream in meters (dist.
from stream).

Parameter Estimate SE z P-value

Intercept �11.44 202.30 �0.06 0.95

Dist. from stream �1.22 0.61 �1.98 0.05
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correspond with known traits of the northern long-eared
bat or are easily explained in the context of the particular
data collection protocol involved. The predicted overall
high likelihood of northern long-eared bat presence
generated from the acoustic data corresponds with the
generally widespread detection of the species; however,
the model fit poorly and therefore offers little insight into
habitat associations. Nonetheless, the best supported
acoustic location model differed from the best support-
ed roost location model. Differences in the best
supported model set for these two data sets highlights
the effect that different types of presence data could
have on habitat management. The importance of
distance from stream in our capture-based model clearly
is an artifact of capture methodology associated with
mist netting. At the FEF, capture efforts occurred to
support research involving radiotracking northern long-

eared bats and Indiana bats. As a result, capture
locations were biased toward known congregation
points or where deployment of mist nets was effective,
in this case, small ponds and first- to second-order
streams.

The presence model created using roost locations
probably is the most useful model relative to habitats
that could be affected or modified by management
activities on the FEF. In part, this is due to the larger
number of sample locations relative to our other data
sources, but also because these data are less biased
relative to sampling protocol (e.g., intentional sampling
near easy access areas). It is important to note, however,
that bias induced by the roost selection preferences of
tracked bats reduces generalizability of this model and
others created using similar data. For example, social
roost selection, whereby bats select roosts within

Figure 3. The best supported model of predicted probability of presence of northern long-eared bats (Myotis septentrionalis) on the
Fernow Experimental Forest, West Virginia derived from presence-only capture locations. Data were collected from 1999 through
2013. Inset shows location of Fernow Experimental Forest.
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individual colony areas (Johnson et al. 2012, Silvis et al.
2014), could introduce a substantial amount of bias into
this model. Although the presence model created from
roosting locations produces a map that corresponds
accurately to our observed data, it predicted low overall
likelihood of northern long-eared bat presence across
the FEF.

We observed low precision for some of our model
parameters (i.e., large standard errors relative to param-
eter estimates) across our models and data types due to
the small sample sizes of the data sets we used. This
likely also contributed to differences in our model
predictions, and highlights potential issues in creation
of local landscape distribution models using data from
historical records. In many cases, historical data are
collected for monitoring purposes and their use in
distribution and habitat selection models may not be
robust because of sample distribution (e.g., netting near
streams) and intensity. When parameter precision is low,
it is difficult to assign certainty even to parameter sign;
for individual parameters, this may result in improper
assessment effects such that a believed positive effect
may in fact be a negative effect. Poor parameter
precision within models also can reduce the interpret-
ability of entire models, as effects may be synergistic.

Because our primary objective was to explore the
potential impacts of presence data type on development
of northern long-eared bat distribution and ecological
niche models at local to small landscape scales using
historical data sets rather than to objectively compare
performances of individual data types, we did not
compare the relative performances of the different data
types under equal sampling conditions using rarefaction
or other resampling methods. We believe that the
proportion of data in each class in our data set generally
is representative of the historical records kept by many
state and federal agencies. Thus, our approach provides
a reasonable summary of what results may be expected.

Applied conservation-directed uses of ecological niche
and distribution modeling have been limited relative to
bats, but these approaches have been shown to have
great utility in bat conservation. For example, Roscioni et
al. (2013) and Santos et al. (2013) assessed potential
mortality risks to bats from current and planned wind-
energy developments. Weber and Sparks (2013) delin-
eated potential summer habitat through maximum
entropy modeling for the endangered Indiana bat across
eight states in the eastern United States using a
combination of mist-net records, acoustic recordings,
and documented day roosts. The work of Weber and
Sparks (2013) was highly beneficial for showing regions
of low predicted probability of Indiana bat presence over
large areas within the species’ distribution. For example,
despite limitations relative to understanding the impor-
tance of topographic complexity and forestry type, they
found low probability of presence where forests are
highly fragmented in parts of the agricultural Midwest or
where the climate is too cold and wet, such as in much of
the northern Appalachians and Adirondack mountains.
Barnhart and Gillam (2014) compared model results
derived separately from acoustic recordings and physical
capture for several species throughout North Dakota and
found highly discordant results for the northern long-
eared bat. This was attributed to the clumpy nature of
the distribution of the forest-obligate northern long-
eared bat in a largely nonforested state and differential
detection probability between acoustics and mist
netting. At more local scales using a maximum-likelihood
approach on state forests in Indiana, Pauli (2014) also
showed that presence maps developed from acoustic
sampling and those developed from day-roost locations
also were dissimilar for the northern long-eared bat.
However, at local scales, presence data types could be
combined to produce plausible simulations of the
impact of forest management activities on overall
northern long-eared bat habitat suitability.

Conclusion

Northern long-eared bat numbers are continuing to
decline across WNS-affected areas. For many local

Table 5. Ranking of models used to predict northern long-
eared bat (Myotis septentrionalis) presence from roost location
data on the Fernow Experimental Forest, West Virginia. Data
were collected from 1999 through 2013. Model parameters are
given as well as number of parameters (K), Akaike’s information
criteria corrected for small sample size (AICc), difference in AICc

value between top model and ith model (Di), and model
support (wi). Model parameters included topographic exposure
index (TEI), slope degree (slope), distance from stream in
meters (dist. from stream), aspect (northeast, southeast,
southwest), elevation in meters (elevation), and forest type
(eastern hemlock ¼ hemlock, upland hardwood ¼ uplhw).

Parameter Estimate SE z P-value

(Intercept) �4.20 2.43 �1.72 0.08

Uplhw 2.24 1.47 1.52 0.13

Hemlock 0.73 1.62 0.45 0.65

Elevation 0.77 0.47 1.63 0.10

TEI �1.08 0.44 �2.47 0.01

Slope �0.30 0.14 �2.11 0.04

Dist. from stream 0.25 0.14 1.82 0.07

Elevation 3 TEI �1.24 0.27 �4.67 0.00

Table 6. Parameter summary for best supported model
predicting northern long-eared bat (Myotis septentrionalis)
presence from roost locations on the Fernow Experimental
Forest, West Virginia. Data were collected from 1999 through
2013. Model parameters are topographic exposure index (TEI),
slope degree (slope), distance from stream in meters (dist. from
stream), elevation in meters (elevation), and forest type (eastern
hemlock ¼ hemlock, upland hardwood ¼ uplhw).

Parameter Estimate SE z P-value

(Intercept) �4.20 2.43 �1.72 0.08

Uplhw 2.24 1.47 1.52 0.13

Hemlock 0.73 1.62 0.45 0.65

Elevation 0.77 0.47 1.63 0.10

TEI �1.08 0.44 �2.47 0.01

Slope �0.30 0.14 �2.11 0.04

Dist. from stream 0.25 0.14 1.82 0.07

Elevation 3 TEI �1.24 0.27 �4.67 0.00
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Figure 4. The best supported model of predicted probability of presence of northern long-eared bats (Myotis septentrionalis) on the
Fernow Experimental Forest, West Virginia, derived from presence-only roost locations. Data were collected from 1999 through
2013. Inset shows location of Fernow Experimental Forest.

Table 7. Ranking of models used to predict northern long-eared bat (Myotis septentrionalis) presence from the combined acoustic,
capture, and roost location data on the Fernow Experimental Forest, West Virginia. Data were collected from 1999 through 2013.
Model parameters are given as well as number of parameters (K), Akaike’s information criteria corrected for small sample size (AICc),
difference in AICc value between top model and ith model (Di), and model support (wi). Model parameters included topographic
exposure index (TEI), slope degree (slope), distance from stream in meters (dist. from stream), aspect (northeast, southeast,
southwest), elevation in meters (elevation), and forest type (eastern hemlock ¼ hemlock, upland hardwood ¼ uplhw).

Model K Likelihood AICc Di wi

Elevation 3 TEI þ slope 5 �1,536.45 3,083.25 0.00 0.37

Uplhw þ hemlock þ elevation 3 TEI þ slope þ dist. from stream 8 �1,533.4 3,083.66 0.41 0.30

Uplhw þ hemlock þ elevation 3 TEI þ slope 7 �1,534.56 3,083.79 0.54 0.28

Elevation 3 land form index þ slope þ dist. from stream þ northeast þ southeast þ southwest 9 �1,534.19 3,087.48 4.23 0.04

Uplhw þ hemlock þ elevation 3 TEI þ slope þ dist. from stream þ southeast þ southwest 10 �1,535.37 3,092.09 8.84 0.00

Global model 11 �1,534.43 3,092.49 9.24 0.00

TEI þ slope þ dist. from stream þ northeast þ southeast þ southwest 7 �1,549.33 3,113.33 30.07 0.00

Uplhw þ hemlock 3 �1,554.34 3,114.82 31.57 0.00

Hemlock 2 �1,556.95 3,117.96 34.71 0.00

Null model 1 �1,658.78 3,319.58 236.33 0.00
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landscapes and even some regions, little is known about
the specific habitat or distribution of this species.
Currently, developing ecological niche models to inform
managers and regulators about northern long-eared bat
foraging and day-roosting habitat suitability is a priority.
Similarly, for conservation-oriented landscapes such as
state and federal property, documentation of known
habitat will be critical for balancing the conservation
needs of multiple competing objectives and even
competing endangered species (e.g., northern long-
eared bat vs. Indiana bat habitat management). If
historical data are used to model presence, it will be
imperative to use data appropriately through consider-
ation of spatial scale and the aspect of bat ecology
represented by the historical data, determination of
whether project objectives are amenable to combining
presence data types, and whether this violates assump-
tions of the selected modeling approach. Because of

Table 8. Parameter summary for best supported model
predicting northern long-eared bat (Myotis septentrionalis)
presence from combined acoustic, capture, and roost location
data on the Fernow Experimental Forest, West Virginia. Data
were collected from 1999 through 2013. Model parameters are
topographic exposure index (TEI), slope degree (slope), and
elevation in meters (elevation).

Parameter Estimate SE z P-value

(Intercept) �4.09 6.17 �0.66 0.51

Elevation 0.34 0.32 1.06 0.29

TEI �0.60 0.29 �2.08 0.04

Slope �0.30 0.09 �3.12 0.00

Elevation 3 TEI �0.53 0.12 �4.45 0.00

Figure 5. The best supported model of predicted probability of presence of northern bats (Myotis septentrionalis) on the Fernow
Experimental Forest, West Virginia, derived from a combined data set including acoustic detection, capture, and roost locations.
Data were collected from 1999 through 2013. Inset shows location of Fernow Experimental Forest.
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declines in northern long-eared bats as a result of WNS,
the ability to gather presence data in post-WNS
environments will likely remain limited for the foresee-
able future. As such, our results provide valuable
understanding of the limitations of historical data, as
well as how presence data type may yield substantially
different models of northern long-eared bat presence
within an individual landscape. Finally, recent advances
have been made in modeling occupancy with imperfect
detection from single site visits (Lele et al. 2012); we
encourage the application and exploration of these
models for historical bat presence–absence data sets.

Supplemental Material

Please note: The Journal of Fish and Wildlife Management
is not responsible for the content or functionality of any
supplemental material. Queries should be directed to the
corresponding author.

Table S1. Roost, acoustic, and capture record loca-
tions for northern long-eared bats (Myotis septentrionalis)
on the Fernow Experimental Forest, West Virginia.
Locations are provided by type, in Universal Transverse
Mercator coordinates, NAD1983, zone 17N. Data were
collected from 1999 through 2013.

Found at DOI: http://dx.doi.org/10.3996/012015-
JFWM-004S1 (5.35 KB CSV).

Table S2. A priori model set used to predict
occurrence of northern long-eared bats (Myotis septen-
trionalis) on the Fernow Experimental Forest, West
Virginia,. Data were collected from 1999 through 2013.

Found at DOI: http://dx.doi.org/10.3996/012015-
JFWM-004S2 (906 BYTE CSV).

Figure S1. Geospatial data used to build models of
northern long-eared bat (Myotis septentrionalis) occur-
rence on the Fernow Experimental Forest, West Virginia.
Layer foresttype.tif provides forest type classification at
30-m resolution. (304 KB TIF). Forest types are as follows:
1 ¼ red maple– red oak, 2 ¼ red maple–basswood, 3 ¼
hemlock, 4¼ chestnut oak–red oak, 5¼ beech, 6¼ sugar
maple beech. Layer elevation.tif provides elevation
values in meters above sea level, 30-m resolution.(1.92
MB TIF). Layer TEI.tif provides topographic exposure
index (TEI) values derived from 30-m resolution elevation
data. (304 KB TIF). Topographic exposure was derived by
subtracting the average elevation of the area within a
1,000-m radius surrounding a pixel from the elevation of
the pixel. Layer slope.tif provides slope in degrees
derived from 30-m resolution elevation data. (304 KB
TIF). Layer streamdist.tif provides linear distance from
streams in meters. (304 KB TIF). Layer aspect.tif provides
aspect derived from 30-m resolution elevation data. (304
KB TIF). Aspect is divided categorically into four
categories: 1 ¼ northeast, 2 ¼ southeast, 3 ¼ southwest,
4 ¼ northwest.

Found at DOI: http://dx.doi.org/10.3996/012015-
JFWM-004S3.
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