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A Comparison of Image Classification with Different Activation Func-
tions in Balanced and Imbalanced Datasets

Moqi Zhang

(ABSTRACT)

When the novel coronavirus (COVID-19) outbreak began to ring alarm bells worldwide,

rapid, efficient diagnosis was critical to the emergency response. The limited ability of

medical systems and the increasing number of daily cases pushed researchers to investigate

automated models. The use of deep neural networks to help doctors make the correct

diagnosis has dramatically reduced the pressure on the healthcare system. Promoting the

improvement of diagnosis networks depends not only on the network structure design but also

on the activation function performance. To identify an optimal activation function, this study

investigates the correlation between the activation function selection and image classification

performance in balanced or imbalanced datasets. Our analysis evaluates various network

architectures for both commonly used and novel datasets and presents a comprehensive

analysis of ten widely used activation functions. The experimental results show that the

swish and softplus functions enhance the classification ability of state-of-the-art networks.

Finally, this thesis distinguishes the neural networks using ten activation functions, analyzes

their pros and cons, and puts forward detailed suggestions on choosing appropriate activation

functions in future work.



A Comparison of Image Classification with Different Activation Func-
tions in Balanced and Imbalanced Datasets

Moqi Zhang

(GENERAL AUDIENCE ABSTRACT)

When the novel coronavirus (COVID-19) outbreak began to ring alarm bells worldwide, the

rapid, efficient diagnosis was critical to the emergency response. The manual diagnosis of

chest X-rays by radiologists is time and cost-consuming. Compared with traditional diag-

nostic technology, the artificial intelligence medical system can simultaneously analyze and

diagnose hundreds of medical images and speedily obtain high precision and high-efficiency

returns. As we all know, machines are brilliant in learning new things and never sleep.

Suppose machines can be used to replace human beings in some positions. In that case, it

can significantly relieve the pressure on the medical system and buy time for medical practi-

tioners to concentrate more on the research of new technologies. We need to know that the

critical decision unit of the intelligent diagnosis system is the activation function. Therefore,

this work provides an in-depth evaluation and comparison of the traditional and widely used

activation functions with the emerging activation functions, which helps to improve the ac-

curacy of the most advanced diagnostic model on the COVID-19 image dataset. Besides,

the results of this study also summarize the cons and pros of using various neural functions

and provide many suggestions for future work.
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Chapter 1

Introduction

In this thesis, we present a comparison of image classification with different activation func-

tions under balanced and imbalanced datasets. We use the commonly-used and class bal-

anced dataset CIFAR-10 and a stay up-to-date and imbalanced dataset COVID-19 Radio-

graphy Database. Chapter 2 gives a brief review of the relevant literature, while chapter 3

introduces the design of experiments in this work; moreover, the assumptions and results

had been illustrated in Chapter 4.

1.1 Motivation

“The COVID-19 pandemic, also known as the coronavirus pandemic, is an ongoing global

pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2)” [44]. Since the COVID-19 pandemic in 2019, our human

lives and work have been hugely affected. Nevertheless, to fight and prevent this pandemic,

artificial intelligence technology has stepped onto the world stage and plays a significant role

in various areas. There are many applications of AI in COID-19 disease, including early diag-

nosis and analysis of cases [22] [7] [2], predictions of mortality [5], and estimate the risks and

effects of such an epidemic [27] and so on. The development of vaccines, of course, is a top

priority. In this regard, we would like to thank all the frontline medical workers. COVID-19

is a difficult task and challenge for medical workers and many researchers in the AI field.

1
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All people of the world united to overcome the COVID-19. A series of research papers based

on computer vision technology has constantly been emerging since this pandemic, and many

traditional medical-related enterprises have introduced artificial intelligence talents.

In the field of early detection and diagnosis of coronavirus, medical imaging classification

is a hot research direction. The deep learning model builds an intelligent platform for

medical practitioners to make fast decisions on infected cases, enabling a timely response

to outbreaks. The find-trained models process images in milliseconds, whereas radiologists

may need minutes. Besides, due to the variety and uncertainty of coronavirus symptoms, the

radiologist’s diagnosis requires accumulated experience, but not all radiologists are experts.

Therefore, it is significant to develop a high accuracy, high efficiency, and reproducible model.

Nowadays, chest X-ray (CXR) and computed tomography (CT) scans are the most widely

used medical imaging diagnosis methods. I chose CXR as my dataset because the CXR is

more widespread, rapid, cheap, simple, and reliable.

Nowadays, many papers have already achieved noticeable results on CXR diagnosis, includ-

ing well-known COVID-net [41], COVID-ResNet [6], and COVIDX-Net [14]. It is generally

known that medical images are class unbalanced and coarse-grained labels. We can tackle

the imbalanced learning problem from three aspects: data level, algorithm level, and hybrid

level [19], but the undistinguished features of chest X-rays make it extremely difficult to

generate new data for the minority group, and the removal of data from majority groups

results in a lack of data for the entire dataset. Consequently, we might as well modify the

classification algorithms. Almost all investigations focus on the complexity of network ar-

chitectures; however, the cumbersome computation of networks will overfit the class with a

bigger dataset, which is inevitable.

In this work, the main goal is to find the correlation between the activation functions with

the balanced and imbalanced data, especially discern the outperforming activation functions
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on CXR.

1.2 Research Objectives

There are two research objectives in this study:

1. To assess the performance of neural networks with different activation functions.

2. To find the correlation between the selection of activation functions and the balanced

or imbalanced data.

3. To determine the outstanding activation function for unbalanced chest radiography.



Chapter 2

Review of Literature

2.1 Machine Learning and Deep Learning

Artificial intelligence is one of the most popular Computer Science branches and aims to

simulate human intelligence by machine. It makes machines perform tasks that a human

always performs. However, the difference is that AI does not have emotionality, but human

does. This research area was first raised by mathematician Alan Turing, who pointed out

that “Can machines think?”in the paper “Computing Machinery and Intelligence.” [40].To

achieve this proposal, the scientist gives the machine a set of instructions to learn from data

instead of hard-coding precise instructions, including every step it needs to do.

Machine learning is a method to realize artificial intelligence through experiential learning.

Because of the rapid development of computers in the past 20 years, machine learning has

made a breakthrough. It also has made significant achievements in computer vision and

natural language processing, ushering in a fresh round of artificial intelligence explosive

development. Deep learning is the key to these breakthroughs. As a result, deep learning

now pervades all fields, slowly affecting and changing human life, such as self-driving cars,

personal assistants (Alexa), and automatic translation.

Compared with traditional machine learning algorithms, which require manual extraction of

features, deep learning uses a computational model composed of multiple processing layers

4
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to extract features directly from data, reducing the workload of designing feature extractors

for each problem.

2.2 Neural Networks

Neural network is a kind of artificial intelligence like machine learning technology that sim-

ulates the human brain neural network. The smallest unit in a neural network is a neuron

that mimics the neurons of the human brain to perform some complex tasks. Neural network

is mainly composed of three layers, the input layer, hidden layer, and output layer. However,

the way each neuron is connected plays an essential role in neural networks. Looking back

at the development of neural networks, we must start from the invention of the perceptron.

The perceptron was created by Frank Rosenblatt in 1958, and he used different weights on

connections and in order to address the linear prediction problem[32].

2.2.1 Deep Neural Networks

In recent years, inspired by the perceptron, the multilayer perceptron networks appeared

to solve complex nonlinear problems. Neural network is an extension based on perceptron,

and Deep Neural Networks(DNNs) can be regarded as a neural network with many hidden

layers, sometimes called multilayer perceptron networks. As shown in the figure 2.1, each

connection of the neuron has a weight, so the neuron’s output is equation 2.2( wi,j are

weights, and x1, x2 are the inputs for this neuron, b1, b2 are bias number, and h1, h2, h3

are hidden neurons, o1 is output neuron).

h1 = f (w1, 1 ∗ x1 + w1, 4 ∗ x2 + b1) (2.1)
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o1 = f (w2, 1 ∗ h1 + w2, 2 ∗ h2 + w2, 3 ∗ h3 + b2) (2.2)

Figure 2.1: Images showing difference in various scenes

The sum of weighted inputs is passed through function f� which is a nonlinear function

called the activation function. The essence of a neural network is to fit the real functional

relationship between features and targets through parameters and activation functions.

The training algorithm of neural networks is to adjust the weight to the best so that the

performance of the entire network can reach the best. Base on the standard Artificial Neural

Networks, as the name suggests, Deep Neural Networks are going deeper with an increasing

number of hidden layers and the number of neurons in every single layer. As long as we pro-
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vide enough amount of data, the DNNs can mimic the human brain to make many decisions,

and predictions [24]. Deep Neural Networks is currently the basis of many AI applications

and is used in various disciplines such as text recognition [23], speech recognition[34] and

face recognition [38], where DNNs can even surpass human accuracy. However, the superior

accuracy of DNNs comes at the cost of high computational complexity, so the rapid growth

of it in recent years can be attributed to the rapid development of the Graphics Processing

Unit(GPU) field.

2.2.2 Convolutional Neural Networks

Inspired by the human visual nervous system, Convolutional Neural Networks (CNNs) is

good at image processing and can be trained end-to-end, including feature extraction, object

detection, classification, and prediction. Image contains a tremendous amount of data, while

a 256*256 image contains 65536 parameters. First of all, CNNs reduce a considerable number

of parameters into a small number of parameters and then process them. Second, this kind

of network extracts the features of the image during the process of dimensionality reduction.

When the image is flipped, rotated, or changed in position, it can also effectively identify

similar images.

A typical CNN is composed of three layers: convolutional layers, pooling layers, and fully

connected layers. Convolutional layers capture the spatial and temporal dependencies in an

image (extract local features) and reduce its dimension, making it easier to be processed.

Simultaneously, convolution layers catch low-level features initially, including edges corners,

and then capture higher-level features (shapes and categories) when networks get deeper and

deeper. Pooling layers significantly reduce the amount of parameter and computation; it is a

form of non-linear down-sampling. It summarizes features extracted from the previous layer
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and ignores the useless information. Like traditional neural networks, fully connected layers

output the desired classification results.

Convolutional neural networks divide the image into regions and process only the pixels

within each region, rather than all pixels, during image processing, which can greatly reduce

the total number of parameters. Deep Convolutional Neural Networks is a state-of-the-

art image processing and speech recognition model and can differentiate images from one

to another. It has been proved that CNNs are more potent than traditional deep neural

networks, especially on reduced spectral variation in the input signal. Incorporated speaker

adaptation named fMLLR into CNNs shows significant improvements in word error rate

compares to common DNNs. Taken together, the advantages of image analysis using CNNs

constitute a powerful reason for the advancement of speech feature extraction. [34].

2.2.3 Recurrent Neural Networks

The layers are fully connected in the traditional neural network model, but the neurons in

every single layer do not share information with each other. Although this kind of neural

network already had some success in prediction, it is ineffective for some temporal problems

and ordered data. For example, if you want to predict the weather tomorrow, you usually

need to know the weather before because the weather can not change entirely independently.

Based on the traditional neural network, the Recurrent Neural Networks (RNNs) adds addi-

tional weights between neurons in each hidden layer to realize the internal circulation, which

is used to retain information and maintain internal states. In other words, RNNs remember

the data from previous states and apply it to the computation of the current output.

As early as the 1990s, Recurrent Neural Networks were used in a variety of fields, including

financial forecasting[10], music analysis[36], and stock-trend alerts[33]. In order to address
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temporal complexity problems, the architecture range of RNNs from fully connected recur-

rent networks to partially connected networks. The issue of vanishing gradients in standard

RNNs, nevertheless, makes them hard to train, which means that it is tough for Recur-

rent Neural Networks to remember long-term history[18]. Gradient vanishing or gradient

explosion refers to the fact that the gradient decreases or increases during calculation and

back-propagation, and after a certain period, the gradient will converge to zero (vanishing)

or diverge to infinity (explosion). Simply put, the problem with long-term dependency is

that as each time interval increases, standard RNNs lose their ability to connect to long-term

information. To overcome these problems, researchers have proposed several solutions, such

as Echo State Network, Leaky Units. One of the most successful and widely used solutions is

the gated RNN, designed by Sepp Hochreiter and Jürgen Schmidhuber in 1997, called Long

Short-Term Memory (LSTM) [17]. The reason why LSTM can solve the long-term depen-

dency problem is that it includes three gates to control the flow and loss of features. They

are forget gate, input gate, and output gate, respectively. RNNs learn long-term dependence

from the dataset; however, not all previous information needs to be remembered. LSTM

elaborately creates cell states process gates responsible for removing or adding elements to

cell states to decide if the information is pertinent.

Sometimes the prediction may need to be determined by the combination of previous and

subsequent inputs to be more accurate. Therefore, Bidirectional Recurrent Neural Networks

(BRNNs) are proposed [35]. Bidirectional networks train the model in both forward and

backward directions simultaneously, and every cell state is comprehensively determined by

past and future. Meanwhile, BRNNs theoretically provide a model computing by poste-

rior probabilities. Most of the time, bidirectional networks work better than unidirectional

networks on relation classification and speech translation [39].
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2.3 Activation Function

Whether it is the traditional neural network model or the state-of-the-art deep learning algo-

rithm, we can see that activation functions https://www.overleaf.com/project/603d9f13ab2a7637a3749cdc(AFs)

play a significant role. The so-called activation function is a function that runs on neurons

and is responsible for mapping input to output.

In neural networks, each neuron in the hidden layer accepts the neuron’s output value in the

upper layer as the input value of its own and passes an output value to the next layer. The

input layer directly transfers the attribute input value to the hidden layer. In a multilayer

neural network, there is a functional relationship between the output of the upper neurons

and the input of the lower neurons, which is called the activation functions. In the equation,

we used character f to represent an activation function. In the network without AFs, the

relationship between the input and output of the hidden layer is linear, so its fitting ability

is very limited. Therefore, to model complex real-world problems, the concept of AFs needs

to be invoked. Besides the benefits discussed earlier, it also helps networks to limit the

output of the neuron to a certain range as required. If the output value is not defined within

a specific range, it can become huge, especially in a deep neural network with millions of

parameters, leading to excessive computation.

2.3.1 Sigmoid

Sigmoid function is the most commonly used nonlinear activation function, which has the

exponential shape closest to biological neurons. It compresses a real number in the range of

0 to 1. When the input number is large, the result is close to 1. Otherwise, when input is

a large negative number, the result will reach zero. This function gives a good explanation

of the extent to which neurons are activated when stimulated: 0 represents no activation at
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Name Activation functions Derivative function Equation number

Sigmoid f(x) = 1
1+e−x y = e−x

(1+e−x)2
1

ReLU f(x) = max (0, x) f’(x) =


0 for x < 0

1 for x ≥ 0

2

LeakyReLU f(x) = max (0.01x, x) f ′(x) =


0.01 for x < 0

1 for x ≥ 0

3

ELU f(x) =


α(exp(x)–1) for x ≤ 0

x for x > 0

f ′(x) =


f(x) + α for x ≤ 0

1 for x > 0

4

GELU f(x) = 0.5x(1 + tanh(
√

2
π
(x+ 0.044715x3))) f ′(x) = 0.5tanh(0.0356774x3 + 0.797885x) +

(0.0535161x3 + 0.398942x)sech2(0.0356774x3 + 0.797885x) + 0.5 5

PReLU f(x) =


aix for x < 0

x for x ≥ 0

f ′(x) =


ai for x < 0

1 for x ≥ 0

6

Softplus f(x) = ln(1 + ex) f ′(x) = 1
1+e−x 7

Tanh f(x) = ex−e−x

ex+e−x f ′(x) = 1− ( e
x−e−x

ex+e−x )
2 8

Siren f(x) = sin(x) f ′(x) = cos(x) 9

Swish f(x) = x
1+e−x

x(1+e−x)+(1+e−x−x)
(1+e−x)2

10

Table 2.1: Activation Function Table
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all; for full activation. However, the output of the activation function should be symmetric

to zero so that the gradient does not move in a particular direction during gradient descent.

This activation function, furthermore, is rarely seen in deep learning in recent years because

Sigmoid function is likely to lead to gradient vanishing or exploding problems.

During back-propagation, we need to take the derivative of the S-type activation function.

In the figure 2.2, the derivative of Sigmoid is always less than 0.25; if we update weights by

multiplying their gradient, these parameters will persistently decrease, causing the gradient

vanishing problem.
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Figure 2.2: Sigmoid Activation Function

2.3.2 Tanh

Tanh is also known as Hyperbolic Tangent Function, is an alternative to the sigmoid function.

From the figure 2.3, it is obvious that Hyperbolic Tangent Function shares a similar trend

with Sigmoid. However, Tanh is almost always preferable to using sigmoid because Tanh is

a zero-centered activation function that helps in centering the data by bringing mean close

to 0. Moreover, the derivative of Hyperbolic Tangent Function is larger than Sigmoid, so it
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converges dramatically faster during gradient descent.
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Figure 2.3: Tanh Activation Function

2.3.3 ReLU Family

The rectified linear activation function (ReLU) is the most common function used for hidden

layers, especially in Convolutional Neural Networks, and introduced by this paper [11]. This

function replaces Sigmoid and Tanh and takes the throne as the default activation function

in Deep Learning. In a nutshell, ReLU is a piecewise linear function, i.e. equation 2 in table

2.1. In most cases, it can suffer from vanishing gradients problems and often achieves better

performance. It is worth noting; however, Malay Haldar mentioned a problem of ReLU

in paper [12], when there is abnormal input, the ReLU unit may produce large gradients

during the process of back-propagation. These outliers could permanently shut down the

ReLU activation function, killing the neurons. Obviously, the reason of Dying ReLU is that

when the input is negative, the output of ReLU is always zero.

Leaky Relu (LReLU) [25], Exponential Linear Units (ELU) [4] and Parametric Rectified

Linear Unit (PReLU) [13] have been developed to address this problem to a certain extent.
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From the figure 2.4, all of them modified the negative part of ReLU function slightly.
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Figure 2.4: ReLU Families Activation Function

Leaky Relu (LReLU)

As shown in the table 2.1, Leaky Relu (LReLU) modified the equation of ReLU by making

the coefficient of leakage.
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Exponential Linear Units (ELU)

Nevertheless, ELU combines the idea from sigmoid and ReLU, the positive part same as

ReLU, and the negative part same as sigmoid. It refers to the concept of regularization,

which pushes the mean value of the function to zero so that the neural network has fewer

iterations, faster learning speed, and higher accuracy.

Parametric Rectified Linear Unit (PReLU)

As shown in the table 2.1, the expression of PReLU is consistent with that of LReLU.

However, the parameter α is fixed in the former and learnable in the latter. In other words,

the slope value learns through backward propagation, which is flexible and variable.

Gaussian Error Linerar Units(GELU)

GELU is a combination of dropout, zone-out, and rectifying neurons, and it has been proved

that it surpasses the accuracy of the rest of the version of the ReLU family [15]. According to

equation 5 in table 2.1, When the input x decreases, the input will have a higher probability

of being dropout so that the activation transformation will be randomly dependent on the

input. The plot of it shown in the figure 2.4g. It is a probabilistic representation of neuron

input, which is more in line with the natural way of nerve activation intuitively.

Softplus

Softplus is a much smoother version of ReLU activation function, which might give us un-

expected results when the outputs of neurons need to be smoother and more continuous. It

is worth trying to use novel AFs in this study.
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2.3.4 Swish

The advent of ReLU function and its variants is a breakthrough in the history of deep

learning, but the invention of Swish by Prajit Ramachandran in 2017, has enabled a state-of-

the-art performance of image recognition and machine translation on [30]. Swish and ReLU

share a similar trend, and the equation of Swish is equation 10 in table 2.1. It has a series of

advantages, including unsaturated, smooth, and non-monotonic properties. Figure 2.5 shows

that the output decreases first, then increases, which means the swish activation function

does not have continually positive or negative derivatives, avoids Dying ReLU problem when

gradient nears to zero. Meanwhile, It does not change suddenly at a certain point, It does

not change suddenly at a certain point, making it easier to converge during training.
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Figure 2.5: Swish Activation Function

2.3.5 Siren

Stanford University researchers introduce sinusoidal representation networks (SIRENs) as a

method to represent signals in a paper in 2020 [37]. Since the ReLU network is piecewise

linear and its second derivative is zero everywhere, it is impossible to describe the higher

derivative of the natural signal. However, the sinusoid function has a continuous deriva-
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tive. It is obvious from the figure 2.6 that the cosine curve is the shifted form of the sine

curve. Meanwhile, The first derivative and the second derivative are both shifted sinusoids.

The researchers evaluate the performance of SIRENs against other classical algorithms; the

SIRENs not only converge rapidly during the training but also show more details. The per-

formance of signal representation has been enhanced significantly, so I implement the siren

activation function on traditional artificial intelligence problems.

-6 -4 -2 0 2 4 6

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

S
ire

n(
x)

Siren

(a) y = Siren(x)

-6 -4 -2 0 2 4 6

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

S
ire

n 
D

er
iv

at
iv

e(
x)

Derivative of Siren Function

(b) y = Siren′(x)

Figure 2.6: Siren Activation Function

2.4 Related Work

Admittedly, many published papers demonstrate comparative analyses of trend, perfor-

mance, and efficiency of activation function applications in all aspects. Nevertheless, few

precedents investigate research on activation function in imbalanced datasets, which got me

interested.

From the literature of state-of-the-art image classification architectures, most of them still

using ReLU as the AFs. To enhance the generalization ability of classifer, researches refers

to dropout, regularization, normalization. Despite the fact that these neural networks have

shown colossal achievement in computer vision success, we can still improve their perfor-
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mance by replacing the AFs. In paper [26], the author compared trends in recent AFs appli-

cations and pointed out that it is worth observing if there would be improved performance

results on outperforming architectures with state-of-the-art functions. Tomasz Szanda eval-

uated the time cost and accuracy of 11 commonly used Functions in image classification and

concluded that AFs depend on the dataset and the position in networks, but no ultimate

decision for choicest AFs [1]. Both of them [31] [48] shows that the alternatives of ReLU

function play a crucial role in helping to optimize the models further.
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Experimental Implementation

3.1 Data Sets

In this article, we chose two datasets. The first is the classic CIFAR-10 dataset [42], the

number of samples is perfectly balanced between each class, and every category has 6000

images. The second is COVID-19 RADIOGRAPHY DATABASE [28], which has a severe

class imbalance problem.

3.1.1 CIFAR-10

Unlike traditional gray color MNIST Database(Modified National Institute of Standards and

Technology Database) [45] and Fashion-MNIST dataset[46], the CIFAR-10 dataset in figure

3.1 consists of 60,000 color images spread over ten classes [42]. CIFAR (Canadian Institute

For Advanced Research) collected and organized CIFAR-10 and CIFAR-100 for complex-

ity machine learning problems and a benchmark for state-of-the-art image recognition and

classification algorithms. As their name, CIFAR-100 consists of 60,000 color images spread

over hundred classes. Recently, CIFAR-10 has become one of the most traditional image

classification datasets and has also significantly contributed to deep learning.

19
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(a) CIFAR-10 (b) CIFAR-100

Figure 3.1: CIFAR Databases

3.1.2 COVID-19 RADIOGRAPHY DATABASE

Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute res-

piratory syndrome coronavirus 2 (SARS-CoV-2) [43]. On December 31, 2019, the World

Health Organization (WHO) was informed of a case of pneumonia caused by an unknown

microorganism in Wuhan, Hubei Province, China. WHO subsequently announced that they

had detected a novel coronavirus in samples from this group of patients. Then the epidemic

escalated and quickly spread around the world. With the rapid increase in the number of

cases, there is an increasing need for AI techniques to help doctors, such as the detection and

classification of chest X-rays, the analysis of CT scans, and the prediction and analysis of the

vaccination progression. Especially in countries with large populations, such as China and

India, the ratio of doctors to patients is far from sufficient. Therefore, medical researchers

quickly established a real-time update COVID-19 database, enabling more researchers to
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(a) Normal (b) COVID

(c) Lung Opacity (d) Viral Pneumonia

Figure 3.2: COVID-19 RADIOGRAPHY DATABASE
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take part in this challenge.

The latest COVID-19 Radiography Database (Kaggle) consists of chest X-rays of 3616

COVID-19 positive images, 10192 normal images, 6012 Lung Opacity images and 1345 viral

pneumonia images[28][29][3]. This dataset got the winner of COVID-19 dataset award by

the Kaggle community, and it only has 261 COVID-19 chest X-rays in the first release but

updated to 3616 after the second update.

Because of the rapid spread of COVID-19, clinicians worldwide face a challenge relying on

laboratory tests to confirm COVID-19 cases is time-consuming and may delay diagnosis and

treatment. The diagnosis by X-ray must be made with the help of a specialist doctor. As

you can see in the figure 3.2 below, it is impossible for someone who is not in a medical

major to tell the difference in X-ray images between the Normal and COVID-19 patients.

Therefore, using deep learning to train an artificial intelligence classifier can dramatically

speed up diagnosis and reduce the workload of specialist doctors.

3.2 Neural Networks Setup

In the section 2.2, we provide a brief description about neural networks. There are many

variants of Neural Networks, such as Back Propagation Neural Networks, Convolutional

Neural Networks(CNNs), and Long Short-term Memory Networks (LSTM). Three sets of

experiments are designed on different neural network structures with varying datasets to

analyze the performance of different activation functions.
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Figure 3.3: DNN Architecture

3.2.1 CIFAR-10 DNN Setup

However, only by understanding the original of the classics can we better understand the

more powerful modern variant. The classic neural network, which is the most fundamental

neural network, is called multilayer perceptron networks (MLP). In order to better evaluate

the effect of different activation functions on image classification, we adapted a fixed num-

ber of layers DNN model to get a benchmark for the proposed solution on the CIFAR-10

dataset.This step aims to get a basic understanding of the effects of different activation func-

tions, not to achieve the highest accuracy. We have shown the architecture of the network in

the figure 3.3; it had one input layer with 3072 input units (CIFAR-10 has 32 by 32 images

with RGB three-channel), two hidden layers of 512 units and 256 units, respectively, and one

output layer with ten output units (CIFAR-10 has ten classes). And it used Adam optimizer

with learning rates 0.001, 0.0001, and 0.00001 for 50 epochs in the training step.
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3.2.2 CIFAR-10 CNN setup

Figure 3.4: CNN Architecture

According to the 2.2.2, convolutional neural networks extract local features from images with

fewer parameters than MLP. We adapted a seven-layered convolution neural network followed

by a flatten layer as a benchmark for CIFAR-10 classification, created by Abhijeet Kumar

[21]. The architecture of our network is summarized in Figure 3.4; a maximum pooling

performed after every two convolutional layers to reduce the dimension of data. Like the

DNN in the previous section, we use the same number of 50 epochs and Adam optimizer

with learning rates 0.001, 0.0001, 0.00001 to compare performance. Our loss function of

choice is cross-entropy.

We discarded the last two dropout layers from the original model. Dropout refers to the

random deletion of units from the network at a specific dropout rate during the training

step. It is a regularization strategy used to tackle overfitting problems and prevent complex
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co-adaptations on the training data [16]. It has been proved that dropout consistently helps

networks achieve lower error and better performance than the networks without dropout in

[16]. Nevertheless, it is not popular in convolutional neural networks. Christian Garbin and

Xingquan Zhu compared the model training speed and prediction accuracy of networks with

or without dropout layers and concluded that adding dropout reduced accuracy significantly

[8], so we need to be careful about adding the dropout layer to networks.

3.2.3 COVID-19 CNN setup

Figure 3.5: Alexnet Architecture

The application of deep learning in medical imaging analysis is a milestone in the develop-

ment of medicine. Although artificial intelligence cannot wholly replace doctors’ diagnoses,

it can be used as an auxiliary diagnosis system to relieve the heavy workload of doctors.

Unlike the typical image datasets, the grayscale values in the COVID-19 radiography images
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are almost identical, and it is challenging for even a professional radiologist to tell the dif-

ference between pneumonia and coronavirus. Because the tiny features on radiography are

indistinguishable by the naked eye.

The application of deep learning in coronavirus diagnosis has become a hot area of research

in the past year. Thousands of research groups are working around the clock to improve the

accuracy of neural networks. Almost all researchers focus on the complexity of neural network

models[2], data augmentation approaches, and the attention theory in image classification

and segmentation [9]. Despite the fact that these approaches have achieved significant success

in the end-to-end diagnosis on medical imaging, specially COVID-Net created by Linda

Wang, Alexander Wong from the University of Waterloo [41], It still would be desirable

to compare the activation functions further and, perhaps, achieve the same or even better

results using simpler neural networks.

In the field of image classification, AlexNet can be said to be the cornerstone of network

structure. Deep learning has been silent for a long time before this. Since AlexNet was born

and won the ImageNet Competition in 2012, CNN has become deeper and deeper, more and

more complex [20].

In this study, the AlexNet is our proposed baseline CNN, and the architecture of it is

presented in figure 3.5. It has a total of 8 layers, the first 5 layers are convolutional layer,

the back 3 layers are fully connection layer, the last fully connected layer output is passed

to the N path Softmax layer, corresponding to the distribution of the number of class labels.

We used the pre-trained VGG model to prevent occasionality, adding three more trainable

dense layers as a controlled experiment. Due to limited computational power, the VGG

model parameters are pre-trained and set non-trainable in this work, and also because the

activation function in the pre-trained Keras model is ReLU. According to the univariance
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principle, we only train the activation functions at the outermost three fully connected layers

during the backpropagation. Moreover, considering the complexity of the model, VGG has

more than 14714688 parameters, which requires much time for training and high demand on

GPU performance.

Training Hyper Parameters Four Classes

This experiment is built based on the following experimental parameters in the table 3.2.

Input Size Optimizer Learning Rate Batch Size Epochs
Parameter 224*224*3 Adam 0.0001/0.00001 32 30

224*224*3 RMSprop 0.0001/0.00001 32 30

Table 3.1: Training Hyper Parameters Four Classes

Training Hyper Parameters Two Classes

Many papers have yielded notable results in CXR diagnosis, including well-known COVID-

NET [41], COVID-RESNET[6], and COVID-NET[14]. Most of them were tested on binary

classification or 3 class classification problems. Therefore, to make a comprehensive com-

parison between different activation functions, I also test them on binary classification and

compare the performance with the previous research. This experiment is built based on the

following experimental parameters in the table 3.2.

Input Size Optimizer Learning Rate Batch Size Epochs
Parameter 224*224*3 Adam 0.00001 32 30

224*224*3 RMSprop 0.00001 32 30

Table 3.2: Training Hyper Parameters Two Classes
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Data Augmentation

Deep neural networks perform well in many tasks, but these networks typically require large

amounts of data to avoid over-fitting. In most cases, however, it can be challenging to obtain

adequate data, such as medical image analysis. Data augmentation makes minor changes to

an existing dataset to increase the amount of data, including flips, transformations, rotations.

Our experiment with the following augmentation types in table 3.3

Rescale Shear Range Zoom Range Horizontal Flip Validation Split
Parameters 1 / 255 0.2 0.2 True 0.25

Table 3.3: Data Augmentation
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Results and Analysis

4.1 Evaluation Criteria

Evaluating machine learning algorithms is a cornerstone of any project. Therefore, to assess

the performance of the proposed deep learning classifier under different activation functions,

we first trained different network models on the classical and balanced data sets CIFAR-10

and compared the accuracy of the models and the time cost when the models reached the

best accuracy.

To test whether the selection of activation functions has a distinguished effect on the unbal-

anced and low contrast grayscale dataset, we used the most basic image classification model,

AlexNet, as a benchmark.

As the name implies, image classification is a classification problem; The goal is to classify

different images into different categories to achieve the minimum classification error. In

machine learning, the confusion matrix 4.1 presents a method of performance visualization.

We plot the confusion matrix of COVID-19 experiments for every activation function. It

is a table with two rows and two columns, comprising false positives, false negatives, true

positives and true negatives. For a better and more in-depth comparison, our experiment

on the COVID-19 dataset used the following four key indicators, including accuracy 4.1,

precision 4.2, recall 4.3, F1-score 4.4 and specificity 4.5, which could be calculated using the

29



30 CHAPTER 4. RESULTS AND ANALYSIS

components of the confusion matrix.

Actual Class
P N

Predicted
Class

P TP FP
N FN TN

Table 4.1: Confusion Matrix

Accuracy =
TP + TN

TP + FP + TN + FN
(4.1)

Precision =
TP

TP + FP
(4.2)

Recall(Sensitivity) =
TP

TP + FN
(4.3)

F1− Score =
2·Precision·Recall

Precision+Recall
(4.4)

Specificity =
TN

TN + FP
(4.5)

Where, TP, FP, TN and FN represent True Positive, False Positive, True Negative and False

Negative, respectively.

However, our experiments on COVID-19 RADIOGRAPHY DATABASE is a multiclass clas-

sification problem. The table 4.1 and equations 4.1 to 4.4 is focus on the binary classification.

Same as the binary classification confusion matrix, the addition of matrix row data is the

number of actual classes, the addition of column data is the number of predicted classes.
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The correctly classified samples, which are those whose predicted labels are consistent with

the actual labels, are arranged diagonally from the upper left corner of the table to the lower

right corner. Therefore, we could extend the standard confusion matrix for the multiclass

problem, and table 4.2 is for the Normal patient class.

Actual Class
Normal COVID Lung Opacity Viral Pneumonia

Predicted
Class

Normal TP FP FP FP
COVID FN TN TN TN

Lung Opacity FN TN TN TN
Viral Pneumonia FN TN TN TN

Table 4.2: Confusion Matrix for class Normal

4.2 Experimental results

This section is broken down into three parts. The first and second part records the per-

formance of the base DNN and CNN model for the CIFAR-10 database under different

activation functions. The last part shows the AlexNet multi-level classification results for

chest X-ray images.

4.2.1 CIFAR-10 DNN Experimental results

In the table 4.3, we show the best accuracy of the model under different training parameters

and the number of epochs that reached the best accuracy.

As can be seen from the table, it is obvious that the activation function has a significant

influence on the accuracy of training data. However, under different learning rates, the

performance of the activation function tends to be stable. In other words, no matter how

the learning rate changes, the power of an excellent activation function is still outstanding.
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Figure 4.1: DNN Validation Accuracy with Learning Rate 0.001

Among all tested classifiers, except for the classifier using Siren, the accuracy of the model

using ELU, PReLU, and Softplus are the highest, which are 56.95%, 56.24%, and 56.19%,

respectively, while the performance of the model using Sigmoid is the worst. The version of

the activation function SIREN, however, is quite extraordinary. During the training process

under a small learning rate (0.00001), the accuracy of other classifiers improves slowly, while

Siren can achieve remarkable accuracy expeditiously. On the other hand, in the training

process with a higher learning rate, no matter the number of training iterations how to

increase, the correctness of the Siren model remains at about 10% and never converges.

Because of the shortcoming of the DNN model structure, it is difficult to process complex

spatial information, leading to overfitting. Indeed, according to the figure 4.1, we can observe

that the validation accuracy curve for all test cases under a learning rate of 0.001 increases

rapidly from Epoch 0 to Epoch 10, then stabilizes or drops off slightly. The accuracy curve

of the ELU model is outstanding in the figure above.
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Activation
Functions

Learning Rate
0.001 0.0001 0.00001

Accuracies Convergence
Epochs Accuracies Convergence

Epochs Accuracies Convergence
Epochs

Sigmoid 52.02 10/50 48.80 48/50 37.24 46/50
ReLU 55.96 11/50 55.71 32/50 48.80 47/50

LeakyReLU 56.10 10/50 55.99 41/50 48.72 37/50
ELU 56.95 10/50 55.63 36/50 47.06 50/50
GELU 56.13 9/50 56.13 27/50 48.77 49/50
PReLU 56.24 10/50 55.69 25/50 48.82 47/50
Softplus 56.19 9/50 54.30 27/50 45.81 47/50
Tanh 50.53 11/50 51.84 28/50 43.96 50/50
Siren 10.63 8/50 19.40 31/50 54.81 9/50
Swish 55.99 10/50 56.02 33/50 47.64 49/50

Table 4.3: DNN accuracy Table

4.2.2 CIFAR-10 CNN Experimental results

The comparison of CNN with different activation functions is demonstrated in the table 4.4; it

is observed that the CNN model with GELU and PReLU outperforms the other comparative

cases when the learning rate is 0.001, and its accuracy achieved 81.97% and 82.28%. PReLU,

it should be noted, reached the best performance faster than GELU. Equally unsurprisingly,

the sigmoid in the rank of the worst performers of the experiments and Siren only show

its power when the learning rate is 0.00001. Nevertheless, different from the inference of

the DNN experiment, the CNN model with Swish activation function is not affected by the

learning rate, and its accuracy is always around 82%.

In the figure 4.2, A rapid increase of accuracy curve can be observed from epoch 0 to epoch 5

for various learning rates and different choices of activation functions. Moreover, the stability

of the swish activation function Once again proving in these plots of training accuracy.

From the foregoing, we can draw the conclusion that when the learning rate range of the

training model is uncertain, the Swish activation function should be selected, and the PReLU
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(a) Learning Rate 0.001 (b) Learning Rate 0.0001

(c) Learning Rate 0.00001

Figure 4.2: CNN Validation Accuracy
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Activation
Functions

Learning Rate
0.001 0.0001 0.00001

Accuracies Convergence
Epochs Accuracies Convergence

Epochs Accuracies Convergence
Epochs

Sigmoid 78.58 27/50 75.28 41/50 62.84 42/50
ReLU 81.74 47/50 75.31 29/50 61.52 46/50

LeakyReLU 81.86 36/50 76.10 39/50 61.74 47/50
ELU 81.55 49/50 77.80 30/50 64.90 45/50
GELU 81.97 49/50 76.69 33/50 64.04 50/50
PReLU 82.28 43/50 75.71 43/50 62.05 50/50
Softplus 81.29 29/50 77.34 43/50 64.31 49/50
Tanh 77.68 40/50 75.59 44/50 60.69 46/50
Siren 10.79 8/50 31.44 1/50 78.36 28/50
Swish 81.67 48/50 81.99 46/50 81.95 49/50

Table 4.4: CNN accuracy Table

activation function is the best choice to obtain the best performance in a short time. Inter-

estingly, the ReLU has been long used for activation function in neural networks but show

nothing advantage in this experiment, no matter in terms of speed, stability, or accuracy.

4.2.3 COVID-19 CNN Experimental results

COVID-19 Radiography Database is unbalanced, so we intend to compare the performance

of the activation function in various ways, including accuracy, precision, recall, and F1-score,

and confusion matrix.

Accuracy

The following table gives the best performance of the base model and pre-trained VGG model

along with the four combinations of different hyper-parameters on chest X-ray dataset. In

order to evaluate the performance of the model with ten various activation functions, we

modified the optimizer and learning rate.
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The observation of the table 4.5 demonstrates that it is tricky to find out the relationship

between classification accuracy and activation functions under different optimizers and learn-

ing rates because of class imbalance. Nevertheless, for base model, Softplus accomplished

objective results(91.13%) under all experimental conditions, while Swish achieved the best

accuracy of 90.94% (RMSprop) and 90.09%(Adam) at the learning rate is 0.00001. Inter-

estingly, all members of the ReLU family were able to achieve more than 90% accuracy as

long as the learning rate or the optimizer were adjusted during the training, but their results

were not consistent. Meanwhile, as we expected, the Sigmoid, Siren, and Tanh were not as

good as the rest of the activation functions.

Similarly, compared to the results of Alexnet, the pre-trained VGG improved the classifica-

tion accuracy under adam optimizer, but the softplus function still expressed its outstanding

working ability and reached the best performance 91.55% in this study on CXR images. Si-

multaneity, except for Sigmoid and Siren functions, the accuracy achieved above 90% in all

cases, and PReLU and Swish also stand out in the transfer learning model with 91.32% and

91.41% accuracy. The use of Adam optimizer resulted in the highest possible accuracy with

the pre-trained model, but not with the Alexnet.

Generally, in transfer learning [47], the researchers combine transferring features, and fine-

tuning will generalize surprisingly better results than the model without fine-tuning, even

better than the fully trained model on the original dataset. We froze the weights of the

pre-trained model in this work and then only fine-tuned the outer fully connected layers.

Even so, it still improved the accuracy.

Multiple studies have shown that neural networks, especially convolutional neural networks,

can accurately detect the presence of COVID-19 from CXR. However, due to the lack of

a COVID-19 public dataset, model training and test results in previous studies have been

affected by biases. But in March of this year, a team of researchers from the University of
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Qatar in Doha and elsewhere, working with doctors, updated a database of 21,165 chest X-

ray images of COVID-19-positive cases and radiography of Normal, Opaque Lung and viral

pneumonia. Therefore, this study used this dataset and made a comparative analysis with

the previous works. As aforementioned, Since most published research focused on binary

classification, we set experiments only with COVID-19 and Normal categories.

The table 4.6 illustrates the performance comparison of different activation functions in

COVID-19 RADIOGRAPHY. Interestingly, Gelu and Swish won out in this experiment,

achieving 98.12% and 98.70% accuracy, respectively. The particular reason for this is that

Gelu is similar to the Swish function; the only difference between them is that a constant

factor scales GELU’s input. Likewise, the most widely used activation function, ReLU, did

not show its power in this case. The best scores of training and validation accuracy were

achieved for Swish and GeLU activation function, and the worst case is resulted by the

Sigmoid function.

Alexnet VGG(pre-trained)
Adam Rmsprop Adam Rmsprop

Learning Rate 0.0001 0.00001 0.0001 0.00001 0.0001 0.00001 0.0001 0.00001
Sigmoid 0.8995 0.8872 0.8768 0.8697 - 0.8886 - 0.8858
ReLU 0.9061 0.8815 0.8848 0.8679 - 0.9014 - 0.9056

LeakyReLU 0.8797 0.8924 0.9089 0.8990 - 0.9075 - 0.9094
ELU 0.8759 0.8839 0.8768 0.9033 - 0.9099 - 0.9066

GELU 0.8749 0.8977 0.8957 0.9028 - 0.9122 - 0.9094
PReLU 0.8726 0.9037 0.8999 0.8943 - 0.9132 - 0.8996
Softplus 0.9051 0.9084 0.9032 0.9113 - 0.9155 - 0.9108

Tanh 0.8754 0.8855 0.8655 0.8858 - 0.9009 - 0.9014
Siren 0.8433 0.8961 0.7697 0.8664 - 0.8924 - 0.8895
Swish 0.8646 0.9009 0.8849 0.9094 - 0.9141 - 0.8990

Table 4.5: Test Accuracy COVID-19 Four Classes
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Network Optimizer Learning Rate Activation Functions

Sigmoid ReLU Leaky
ReLU ELU GELU PReLU Softplus Tanh Siren Swish

Alexnet Adam 0.00001 0.9588 0.9761 0.9725 0.9790 0.9812 0.9703 0.9667 0.9696 0.9609 0.9870
Rmsprop 0.00001 0.9711 0.9653 0.9747 0.9616 0.9783 0.9667 0.9703 0.9725 0.9747 0.9747

Table 4.6: Test Accuracy COVID-19 Binary Classes

Precision, Recall, F1-Score and Specificity

Precision is the percentage of the predicted positive samples that are truly positive, reflecting

the correct prediction rate of a category. The precision of the Lung Opacity category has

poor performance, while viral pneumonia and COVID are able to hit the 100% in some cases.

In general, those with smaller samples had the worst class precision, but it is puzzling that

the number of viral pneumonia was only a quarter of Lung Opacity.

The recall is the ability of the model to recognize the actual positive, that is, how many the

actual positives the model predicts it as positive. The F1-score is a balance between recall

and precision. Specificity indicates that the model can correctly identify patients without

the disease. In COVID-19 diagnosis, it refers to the percentage of non-COVID-19 subjects

that are correctly classified as uninfected cases.

However, for the multi-class classification problem; we need to pay attention to different

evaluation parameters for each category. For the classification of Normal, we should try to

make it as accurate as possible; that is to say, we want the healthy patients predicted by the

model to be indeed healthy. As long as there is even a slight risk of the infection, we want

to capture and diagnose it. Unlike the Normal class, the value of recall is more crucial for

Covid, Lung Opacity, and Viral Pneumonia. In other words, we are able to capture all the

actual positives and predict them as positives.
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Four Classes Accuracy, however, is generally used to evaluate the global classification

ability, which cannot comprehensively assess the performance of a model. It is essential to

note that the tables 4.9, 4.10, 4.11, 4.12, demonstrate the detailed comparison of precision,

recall, F1-score, and weight average accuracy for four-class classification and Ṫhe Softplus

always performs well in weight average accuracy, but not in precision, recall, F1-score.

To my surprise, with the adam optimizer and a learning rate of 0.0001, tanh function got

the results we was hoping for, even though its accuracy was unimpressive. Its precision of

Normal is 95%, and the recall for the rest categories are 91%, 94%, 92%, respectively.

For classifiers that only diagnose COVID-19 X-rays, ReLU and Softplus have their distin-

guished advantages. ReLU achieved 93% precision for Normal and 95% for COVID, while

softplus obtained 93%, 94%.

Binary Classes As aforementioned, since the freshest published studies focused on binary

classification, we conducted experiments on COVID-19 and Normal to analyze the activation

function comprehensively, and the results are included in the table. In this work, we present

only one set of evaluation parameters with the best accuracy, as shown in the table 4.7.

Unsurprisingly, the SoftPlus and Swish function were the winners, achieving 99% precision

(sensitivity); This positively suggests that if the model predicts a normal patient, then there

is a 99 percent chance that the actual label is normal, significantly reduces the probability

of misdiagnosis.

Contrastive Analysis with Recent Studies

Due to the limitation in GPU capabilities, we did not test on the fine-tuned transfer learning

models and more complex learning models(VGG, DenseNet). Nevertheless, according to the
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Network Alexnet
Optimizer Adam

Evaluation parameters Precision Recall F1-Score Specificity
Patient
Status COVID-19 Normal COVID-19 Normal COVID-19 Normal COVID-19 Normal

Activation Functions

Sigmoid 0.90 0.98 0.95 0.96 0.92 0.97 0.96 0.95
ReLU 0.99 0.97 0.91 1.00 0.95 0.98 1.00 0.91
Leaky
ReLU 0.95 0.98 0.94 0.98 0.95 0.98 0.98 0.94

ELU 0.97 0.98 0.95 0.99 0.96 0.99 0.99 0.95
GELU 0.99 0.98 0.94 1.00 0.96 0.99 1.00 0.94
PReLU 0.95 0.98 0.93 0.98 0.94 0.98 0.98 0.94
Softplus 0.92 0.99 0.96 0.97 0.94 0.98 0.97 0.96

Tanh 0.95 0.97 0.93 0.98 0.94 0.98 0.98 0.93
Siren 0.92 0.98 0.93 0.97 0.93 0.97 0.97 0.93
Swish 0.99 0.99 0.96 1.00 0.97 0.99 1.00 0.96

Table 4.7: Performance COVID-19 Adam Binary Classes

result in table 4.8

An essential aspect of the results is that even when we use the most traditional neural network

rather than the most state-of-the-art model, the network shows much stronger performance

with Swish function. To sum up everything that has been stated so far, if we replace the

activation function, the model can be significantly improved.

Classifier Optimizer Number of Parameters Activation Functions Accuracy Patient
Status Precision Recall F1-score Specificity

VGG19 [14] SGD 138 million ReLU 0.90 COVID-19 0.83 1.00 0.91 -
Normal 1.00 0.80 0.89 -

DenseNet201 [14] SGD 27.2 million ReLU 0.90 COVID-19 0.83 1.00 0.91 -
Normal 1.00 0.80 0.89 -

This Work
(Alexnet) Adam 61 million Swish 0.9870 COVID-19 0.99 0.96 0.97 1.00

Normal 0.99 1.00 0.99 0.96

Table 4.8: Contrastive Analysis with Recent Studies

Confusion Matrix

The confusion matrixes in most of experiments are presented in the Appendix for your

reference. During training, we obtain the history of train and validation accuracy, which

in this case, is only an indicator of network convergence. Reflects the overall performance

from experimental hyperparameter tuning regarding training and validation accuracy is also
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presented in the Appendix.
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Chapter 5

Conclusion and Discussion

The complementation of artificial intelligence and medical imaging is a trend of moderniza-

tion. It has to be said that the COVID epidemic in 2019 pushed the rapid development of

this area in recent years. Medical image diagnoses, as fast as possible, can reduce the cost

of treatment, reduce the workload of medical staff, and buy time for patients.

In this work, we have successfully evaluated the performance of the model with different

activation functions in various aspects. We proposed two models for the balanced dataset,

CIFAR-10, and two models for the imbalanced dataset, COVID-19 Radiography Database

(Kaggle).

Notwithstanding, we cannot draw a clear conclusion about the correlation between the effect

of the activation function and the imbalance of data. In all the cases covered in our research,

the sigmoid is the worst function, and Siren is extremely sensitive to the learning rate, while

Swish function is stable and is not affected by the learning rate most of the time.

The experimental results show that the chest X-ray classification accuracy reaches 91.55% on

the softplus function, and the maximum accuracy is 91.44% on the Swish function. Despite

that, the research on softplus is rarely found in the previous literature, so in future work,

we could verify that this function is superior to other activation functions in chest X-Ray

analysis.

This work illustrates that the comparative performance of neural networks with different
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activation functions in image classification, especially on the highly imbalanced dataset. The

conclusion can be drawn that the Swish function model has a venerable image classification

result in general, while the model using Softplus function has a more prominent performance

in chest X-ray image classification.

We could start with the Swish function for future work, then move on to alternatives to the

ReLU functions (PReLU, GELU) if it does not give satisfactory results, but start with both

Softplus and Swish for coronavirus classifier.

In future research, the data augmentation of X-ray images can be further studied. In recently

published papers, the data augmentation is not always good for accuracy and sometimes

hurts the performance of the model. My assumption is that because the x-rays are gray,

low-contrast images and COVID-19 confirmed radiographs showed ground-glass opacity with

occasional patchy, peripheral, and bilateral regional consolidation. Meanwhile, the differ-

ences between these varieties of Chest X-ray are so subtle that they are hard to tell with

the naked eye, and conventional data augmentation might not help. In the future, we can

use the GaN model to enhance the data, or we can determine data enhancement methods

suitable for medical images.

In addition, because of the update of the COVID-19 database, more and more data are

available for model training, and the COVID-19 classifiers in the recent studies have been

very effective, fast, and accurate. We can conclude that researchers can add more medical

images of various pneumonia infections to these databases to generate a comprehensive X-ray

classifier.

In this work, compared with ten different activation functions, it is found that the Swish

function has the characteristics of strong stability and high accuracy. However, we only

draw this conclusion in the classification of images. In future studies, the performance of
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these activation functions can be compared in areas such as speech recognition and image

segmentation.
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Appendix A

Confusion Matrix

A.1 Confusion Matrix RMSprop 0.0001

(a) ELU (b) GELU

Figure A.1: COVID-19 RADIOGRAPHY Confusion Matrix RMSprop 0.0001
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A.1. CONFUSION MATRIX RMSPROP 0.0001 51

(c) LeakyReLU (d) PReLU

(e) ReLU (f) Sigmoid

Figure A.1: COVID-19 RADIOGRAPHY Confusion Matrix RMSprop 0.0001
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A.2 Confusion Matrix RMSprop 0.00001



A.2. CONFUSION MATRIX RMSPROP 0.00001 53

(g) Siren (h) Softplus

(i) Swish (j) Tanh

Figure A.1: COVID-19 RADIOGRAPHY Confusion Matrix RMSprop 0.0001
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(a) ELU (b) GELU

(c) LeakyReLU (d) PReLU

Figure A.2: COVID-19 RADIOGRAPHY Confusion Matrix RMSprop 0.00001



A.2. CONFUSION MATRIX RMSPROP 0.00001 55

(e) ReLU (f) Sigmoid

(g) Siren (h) Softplus

Figure A.2: COVID-19 RADIOGRAPHY Confusion Matrix RMSprop 0.00001
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(i) Swish (j) Tanh

Figure A.2: COVID-19 RADIOGRAPHY Confusion Matrix RMSprop 0.00001
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