CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

8.1 Conclusions

In this thesis, we have proposed a partitioned shortest path algorithm for solving time-dependent label-constrained shortest path problems (referred hereafter as the **exact** algorithm), along with four heuristic techniques to decrease the computational effort while maintaining good quality solutions. The results of our experiments using the heuristic methods exhibits that properly designed parameters can indeed decrease the computational time by (overall) 30%, and provide solutions that are competitive with that obtained for the exact algorithm (with the overall average quality being within 7.8% of optimality). Sometimes (27% in overall average), the heuristic methods yield optimal solutions.

Furthermore, we have provided a comparative analysis of the alternative heuristic methods for different parameter values. Toward this end, we evaluated the **computational time** and **the quality of solutions** for different parameter values, and then identified the best parameter choices for each method, providing a motivation for this choice. Based on these two factors, the ranks of the heuristic methods are as shown below:

Rank based on the computational time (starting from the best alternative)

- Heuristic Method (ii): Network Sectioning Technique,
- Heuristic Method (iii)-2: Level-Based Technique (Linear Relationship Function),
- Heuristic Method (iv): Ellipsoidal Region Technique,
- Heuristic Method (iii)-1: Level-Based Technique (Exponential Relationship Function), and
- Heuristic Method (i): Standard Base-Case.

Rank based on the solution quality (starting from the best alternative)

- Heuristic case (i),
- Heuristic Method (iii)-1: Level-Based Technique (Exponential Relationship Function),
- Heuristic case (iv): Ellipsoidal Region Technique
- Heuristic Method (iii)-2: Level-Based Technique (Linear Relationship Function), and
- Heuristic case (ii): Network Sectioning Technique.

In order to select the best method, one needs to consider a trade-off between these factors. By our judgement, we prescribe either method (i), method (ii)-1 (when a = 0.25), or method (iv) (when g = 1.25 and y = 0.75) as the best compromise between the solution quality and the computational time effort. Tables 19 to 21 present the detailed test

results obtained for method (i), method (iii)-1, and method (iv), respectively, versus the exact algorithm.

			Exact al	gorithm	Heuristic (i)						
Trip Type	Problem Class	Avg. CPU time (s/trip)	Avg. no. iterations, <i>l</i> (<i>t</i>)	Avg. % of mode strings used	Avg. CPU time (s/trip)	Avg. no. iterations, $l(t)$	Avg. % of mode strings used	Avg. % of heuristic methods that yielded opt. solns.	Avg. soln. quality		
Ι	1	52.718	315	wcw56%, wbw39%	51.903	323	wcw52%, wbw40%	24	1.085		
	2	39.267	229	wcw44%, wrw37%, wbw15%	37.157	220	wcw40%, wrw39%, wbw16%	28	1.090		
	3	27.190	149	wcw49%, wrw35%, wbw11%	23.841	145	wcw48%, wrw32%, wbw14%	29	1.012		
	4	42.081	251	wcw41%, wrw39%, wbw12%	39.883	268	wcw42%, wrw37%, wbw13%	27	1.034		
	5	40.497	219	wcw48%, wbw36%, wbrw14%	39.557	220	Wcw50%, wbw32%, wbrw13%	27	1.091		
	6	44.891	279	wcw55%, wbw44%	44.160	288	wcw53%, wbw44%	26	1.029		
	7	37.564	211	wcw38%, wrw38%, wbw14%, wbrw10%	37.549	214	wcw40%, wrw36%, wbw13%, wbrw10%	25	1.065		
	8	39.691	226	wcw42%, wrw28%, wbw19%, wbrw10%	31.178 32.167	219	wcw43%, wrw25%, wbw20%, wbrw11%	26	1.098		
	9	38.002	219	wcw43%, wrw30%, wbw15%, wbrw10%		236	wcw42%, wrw31%, wbw14%, wbrw11%	26	1.093		
	10	40.257	278	wcw38%, wbw29%, wrw18%, wbrw14%	36.037	288	wcw39%, wbw27%, wrw19%, wbrw14%	25	1.068		
II	11	26.583	158	wcw45%, wbw41%	22.180	160	wcw43%, wbw43%	27	1.034		
	12	29.106	262	wcw42%, wbw40%, wrw17%	21.718	259	wcw45%, wbw41%, wrw14%	27	1.048		
	13	43.097	294	wcw46%, wbw45%	41.289	288	wcw49%, wbw44%	26	1.055		
	14	49.027	287	wcw44%, wbw46%	36.371	290	wcw43%, wbw46%	26	1.092		
	15	40.097	271	wcw37%, wbw30%, wrw18%, wbrw13%	36.587	289	wcw37%, wbw29%, wrw18%, wbrw13%	25	1.094		
III	16	53.245	327	wcw54%, wbw40%	50.647	335	wcw56%, wbw41%	26	1.012		
	17	39.891	211	wcw43%, wrw36%, wbw17%	30.023	208	wcw40%, wrw37%, wbw17%	28	1.071		
	18	31.081 206 <i>wcw</i> 47%, <i>wrw</i> 40%, <i>wbw</i> 10%		wcw47%, wrw40%, wbw10%	23.207	214	wcw46%, wrw41%, wbw11%	26	1.034		
	19	40.992	224	wcw49%, wbw34%, wbrw15%	31.754	231	wcw50%, wbw34%, wbrw15%	28	1.070		
	20	41.037	188	wcw57%, wbw42%	29.274	195	wcw58%, wbw41%	26	1.013		
	21	38.510	222	wcw37%, wrw38%, wbw13%, wbrw12%	29.451	235	wcw36%, wrw36%, wbw13%, wbrw15%	25	1.033		
	22	38.159	225	wcw42%, wrw29%, wbw17%, wbrw11%	30.321	223	wcw44%, wrw29%, wbw11%, wbrw10%	27	1.090		
	23	40.197	282	wcw38%, wbw28%, wrw19%, wbrw14%	33.341	294	wcw40%, wbw27%, wrw18%, wbrw15%	25	1.081		
	39	Avg.= 241 0.703 s.			Avg.= 34.330 s.	245		Avg.= 26%	1.061		
STI		D=6.794	46		8.134	49		1.22	0.030		

Table 19: Detailed Results for Heuristic (i): Standard Base-Case ($\mathbf{b}_i = 1 \forall i$).

			Exact al	gorithm	Heuristic (iii)-1						
Trip Type	Problem Class	Avg. CPU time (s/trip)	Avg. no. iterations, <i>l</i> (<i>t</i>)	Avg. % of mode strings used	Avg. CPU time (s/trip)	Avg. no. iterations, <i>l</i> (<i>t</i>)	Avg. % of mode strings used	Avg. % of heuristic methods that yielded opt. solns.	Avg. soln. quality		
Ι	1	52.718	315	wcw56%, wbw39%	44.903	4.903 328 wcw55%, wbw41% 2		21	1.087		
	2	39.267	229	wcw44%, wrw37%, wbw15%	32.208	239	wcw43%, wrw37%, wbw16%	22	1.091		
	3	27.190	149	wcw49%, wrw35%, wbw11%	20.781	157	wcw46%, wrw33%, wbw15%	25	1.055		
	4	42.081	251	wcw41%, wrw39%, wbw12%	33.837	249	wcw42%, wrw38%, wbw12%	24	1.049		
	5	40.497	219	wcw48%, wbw36%, wbrw14%	29.469	231	wcw48%, wbw34%, wbrw16%	24	1.094		
	6	44.891	279	wcw55%, wbw44%	34.495	265	wcw55%, wbw45%	25	1.038		
	7	37.564	211	wcw38%, wrw38%, wbw14%, wbrw10%	29.340	224	wcw38%, wrw38%, wbw14%, wbrw10%	23	1.071		
	8	39.691	226	wcw42%, wrw28%, wbw19%, wbrw10%	33.686	231	wcw43%, wrw25%, wbw19%, wbrw12%	22	1.098		
	9	38.002	219	wcw43%, wrw30%, wbw15%, wbrw10%	31.216	217	wcw44%, wrw31%, wbw12%, wbrw11%	24	1.096		
	10	40.257	278	wcw38%, wbw29%, wrw18%, wbrw14%	33.316	284	wcw39%, wbw27%, wrw18%, wbrw14%	24	1.058		
II	11	26.583	158	wcw45%, wbw41%	15.707	167	wcw42%, wbw43%	27	1.052		
	12	29.106	262	wcw42%, wbw40%, wrw17%	18.214	254	wcw45%, wbw41%, wrw14%	23	1.050		
	13	43.097	294	wcw46%, wbw45%	35.207	289	wcw50%, wbw45%	24	1.084		
	14	49.027	287	wcw44%, wbw46%	41.617	294	wcw44%, wbw48%	25	1.056		
	15	40.097	271	wcw37%, wbw30%, wrw18%, wbrw13%	30.547	269	wcw38%, wbw28%, wrw18%, wbrw13%	26	1.099		
III	16	53.245	327	wcw54%, wbw40%	43.129	321	wcw55%, wbw41%	22	1.069		
	17	39.891	211	<i>wcw</i> 43%, <i>wrw</i> 36%, <i>wbw</i> 17%	29.143	217	<i>wcw</i> 40%, <i>wrw</i> 36%, <i>wbw</i> 18%	21	1.081		
	18	31.081	206	wcw47%, wrw40%, wbw10%	21.634	212	wcw46%, wrw41%, wbw11%	24	1.045		
	19	40.992	224	wcw49%, wbw34%, wbrw15%	30.818	235	wcw51%, wbw35%, wbrw14%	23	1.019		
	20	41.037	188	wcw57%, wbw42%	29.951	199	wcw58%, wbw40%	26	1.018		
	21	38.510	222	wcw37%, wrw38%, wbw13%, wbrw12%	26.474	215	<i>wcw37</i> %, <i>wrw3</i> 6%, <i>wbw</i> 13%, <i>wbrw</i> 14%	24	1.015		
	22	38.159	225	wcw42%, wrw29%, wbw17%, wbrw11%	25.129	236	wcw45%, wrw28%, wbw10%, wbrw11%	22	1.092		
	23	40.197	282	wcw38%, wbw28%, wrw19%, wbrw14%	25.155	286	wcw40%, wbw26%, wrw18%, wbrw16%	27	1.086		
		Avg.= 39.703 s.	241		Avg.= 30.260 s.	244		Avg.= 24%	1.065		
	S	ГD=6.794	46		7.327	44		1.72	0.027		

Table 20: Detailed Results for Heuristic (iii)-1: Level-Based Technique Using an

Exponential Decay Function.

			Exact a	lgorithm	Heuristic (iv)					
Trip Type	Problem Class	Avg. CPU time (s/trip)	Avg. no. iterations, <i>l</i> (<i>t</i>)	Avg. % of mode strings used	Avg. CPU time (s/trip)	Avg. no. iterations, $l(t)$	Avg. % of mode strings used	Avg. % of heuristic methods that yielded opt. solns.	Avg. soln. quality	
Ι	1	52.718	315	wcw56%, wbw39%	27.541 321 wcw54%, wbw40% 26		26	1.092		
	2	39.267	229	wcw44%, wrw37%, wbw15%	25.941	223	wcw43%, wrw37%, wbw16%	22	1.041	
	3	27.190	149	wcw49%, wrw35%, wbw11%	22.947	140	wcw49%, wrw31%, wbw14%	19	1.045	
	4 42.081 25		251	wcw41%, wrw39%, wbw12%	36.028	258	wcw44%, wrw36%, wbw12%	21	1.053	
	5	40.497	219	wcw48%, wbw36%, wbrw14%	30.948	216	wcw51%, wbw32%, wbrw12%	22	1.047	
	6	44.891	279	wcw55%, wbw44%	28.371	288	wcw53%, wbw45%	24	1.084	
	7	37.564	211	wcw38%, wrw38%, wbw14%, wbrw10%	23.907	215	wcw41%, wrw35%, wbw13%, wbrw10%	25	1.050	
	8	39.691	226	wcw42%, wrw28%, wbw19%, wbrw10%	26.483 22.496	220	wcw45%, wrw24%, wbw20%, wbrw10%	26	1.083	
	9	38.002	219	wcw43%, wrw30%, wbw15%, wbrw10%		230	wcw43%, wrw31%, wbw14%, wbrw10%	24	1.064	
	10	40.257	278	wcw38%, wbw29%, wrw18%, wbrw14%	26.496	281	wcw40%, wbw27%, wrw18%, wbrw14%	25	1.065	
II	11	26.583	158	wcw45%, wbw41%	20.049	159	wcw45%, wbw43%	21	1.176	
	12	29.106	262	wcw42%, wbw40%, wrw17%	20.567	259	wcw46%, wbw41%, wrw13%	23	1.134	
	13	43.097	294	wcw46%, wbw45%	31.284	293	wcw50%, wbw45%	23	1.050	
	14	49.027	287	wcw44%, wbw46%	38.948	288	wcw45%, wbw46%	22	1.055	
	15	40.097	271	wcw37%, wbw30%, wrw18%, wbrw13%	29.134	283	wcw38%, wbw29%, wrw17%, wbrw13%	23	1.057	
III	16	53.245	327	wcw54%, wbw40%	25.989	332	wcw57%, wbw42%	24	1.102	
	17	39.891	211	wcw43%, wrw36%, wbw17%	23.567	210	wcw42%, wrw37%, wbw17%	22	1.031	
	18	31.081	206	wcw47%, wrw40%, wbw10%	26.456	212	wcw47%, wrw41%, wbw11%	24	1.070	
	19	40.992	224	wcw49%, wbw34%, wbrw15%	23.456	230	<i>wcw</i> 51%, <i>wbw</i> 34%, <i>wbrw</i> 15%	23	1.066	
	20	<u>20</u> 41.037 188 wcw57%,		wcw57%, wbw42%	27.784	195	wcw59%, wbw40%	24	1.100	
	21	38.510	222	wcw37%, wrw38%, wbw13%, wbrw12%	23.147	226	wcw38%, wrw35%, wbw13%, wbrw14%	25	1.025	
	22	38.159	225	<i>wcw</i> 42%, <i>wrw</i> 29%, <i>wbw</i> 17%, <i>wbrw</i> 11%	22.567	224	wcw45%, wrw28%, wbw10%, wbrw10%	23	1.066	
	23	40.197	282	wcw38%, wbw28%, wrw19%, wbrw14%	22.469	291	wcw42%, wbw26%, wrw18%, wbrw14%	24	1.060	
		Avg.= 39.70 3 s.	241		Avg.= 26.373 s.	243		Avg = 23%	1.070	
	S	TD=6.794	46		4.646	49		1.68	0.034	

Table 21: Detailed Results for Heuristic (iv): Ellipsoidal Region Technique.

In order to verify that the **anomalies** for both the travel times exceeding the threshold T and the infeasible O-D paths are comparable for the exact and the prescribed heuristic methods, we record the % of trips that yield such anomalies in Table 22. The results reveal that the anomalies for the prescribed heuristic methods (i), (iii)-1, and (iv), do not significantly differ from the anomalies for the exact algorithm. Hence, for our test network, the results from the heuristics are comparable to that from the exact algorithm.

Trip	Problem	Total no.	Travel Time > T				No Feasible O-D Paths			
Туре	Class	of trips	Exact	Method	Method	Method	Exact	Method	Method	Method
			Algorithm	(i)	(iii)-1	(iv)	Algorithm	(i)	(iii)-1	(iv)
Ι	1	379	5	6	6	6	0	0.61	1.35	1.39
	2	316	3	3	4	5	0	0	0	0
	3	208	3	4	4	4	0	0	0	0
	4	284	4	3	4	4	0	0	1.29	1.23
	5	311	4	5	5	6	0	0	0	0.54
	6	298	4	5	5	5	0	0	1.12	1.10
	7	293	3	4	4	5	0	0	0	0
	8	176	4	5	5	5	0	0	0	0
	9	185	4	4	5	5	0	0	0	0
	10	108	4	4	4	5	0	0	0	0.43
II	11	217	3	4	4	4	0	0	0	0
	12	226	3	3	3	4	0	0	0	0
	13	220	4	3	4	4	0	0	1.30	1.35
	14	153	5	4	5	5	0	0	1.33	1.39
	15	135	4	5	5	5	0	0	0	0.37
III	16	149	5	5	5	6	0	0.63	1.36	1.41
	17	217	4	4	4	5	0	0	0	0
	18	117	3	4	4	4	0	0	0	0
	19	113	4	3	4	4	0	0	0	0.48
	20	104	4	4	4	5	0	0	0	0.52
	21	131	4	3	4	4	0	0	0	0
	22	95	4	4	5	5	0	0	0	0
	23	81	4	5	4	5	0	0	0	0
		Average	3.87	4.09	4.39	4.78	0	0.05	0.34	0.44
		STD	0.63	0.85	0.66	0.67	0	0.18	0.58	0.56

Table 22: % of trips that yield anomalies (either the travel time >T or no feasible O-D path found).

This thesis has demonstrated that **time-dependent travel times** as well as **label constraints** can be well incorporated within shortest path problems on networks. These considerations address shortest problems that arise in most realistic situations where travel

times/link costs are functions of time, and where a certain admissible string of travel modes needs to be considered while selecting the shortest route.

8.2 Recommendations for Future Research

In order to improve the applicability of the proposed time-dependent labelconstrained shortest path procedure, especially in the context of time-dependent travel time, a real time technology and implementation needs to be composed using either exact or heuristic methods. This can facilitate the feedback of dynamic traffic information for all travelers more effectively as required within TRANSIMS. A more detailed study of the computational performance of the proposed algorithm and the heuristic methods can be conducted by varying the network size (in terms of the total number of nodes and links/arcs in the network), as well as the network density and structure. A relationship between the efficiency of the different methods and the size and structure of the network can be derived in order to prescribe a particular scheme for a given type of network. Another scope for future research is the development of more effective heuristic techniques that could adaptively identify routes that avoid traffic congestion/bottleneck. The presently proposed heuristic techniques are all based on some Euclidean geometrical or physical locations of the starting node and the terminal node within the planar network region. These methods do not exploit any available information on potential bottlenecks or high speed corridors, or effective transport modes (e.g. a high quality metro system) that might exist within the network region. We have provided some insights into this

phenomenon and its incorporation within the algorithmic procedure for the case of method (iv) (Ellipsoidal Region Technique modified by including an inherent freeway system). Some further analysis along these lines would be greatly beneficial for use within TRANSIMS.