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INTRODUCTION

An antenna that has important application at very
'high frequenciles consists of a slot or slots cut into a
conducting cylinder., For example, a longitudinal slot in
a vertical cylinder préduces a horizontally polarized
signal suitable for FM or television. The basic problem
of communicating to and from aipvceraft, satellites, and
submarines has stimulated research work into the theory
and application of slotted cylinder antennas. It 1s the
purpose of this paper to aid thils workK by describing the
field patterns produced by the slot antenna.

In 1950 Silver and Saunders developed general
expressions for the external field produced by a slot of
arbitrary shape, in the wall of an infinite circular
cylinder, on the assumption that the tangential electric
field in the slot is a prescribed function. In this case
it is assumed that the width of the zlot is very much
smaller than its length and that the excitation is a
cosine distribution along 1lts length and is uniform over

its width, which is

v c 77 2 -1<%Z<K1
o &a VoSBT ~BLPLP,

Where V 1s the excitation source, 2025.3 the slot angle, a

E¢ (a: ¢ ’Z) =

is the radius of ¢he cylinder antenna, 21 1s the slot
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length along the axlal axiz., DBub the result can only apply
to a slot antenna of a fixed dimension for a single
fraequency waich is unknown., Because the reiation between
the wave length at slot 2¢ and the wave length in the
radistion field N is wnimowm.

It would be more general to aszsume that the fisld in

B, (2,¢.8) = =L Cos 6(1-18)

24a
where 4 ia the phase shift constent defined by g = .:g.gf..,._,,
S

whare A\, ia wave langth at 8lost region. WHave length at

the slot reglon could be found in terms of the dimensions

of the ecylinder antenna and the wave length A, Therefore,
different radiation fields corvespond {or @ifferent values
of A,. But 3ilver and Jaunders did not introduce any method
to find the wave length at siot.

Another method wan suggested by Dr, €. A, Holt in 1950,
that the extemal f{ileld could be found by sssuring a
current distribubtion around the circumflerence, Dr. Holi
has treated the slot ag the loaded transmlgslon line, and |
the distributed paramebers of the =lot region cap be
found, from which the wave-iength slong the slot can be
determined. However, thils method of finding the radiation

ficld is restricted by the assumptlon of a cosinuscidal



current density distributicn about the circumference used
to find €he radlated power, while acfuanlly the current
density distribution is a series of sinusclidal functions.
This method is appllcable only for dlameter — wave length
ratio less than about 0.2%,

In this paper improvement is made in finding the
radiation field by assuming arelectric {field at the slot
by

E, (a,® .2)= ~§j¥5—~ Cos A(1 ~ IZI )

and then usigDr. Holt's method to find the wave length at
slot to get & . The radiation found by the comblnation
of these two methods is less restrictive than the above

two methods. Satlsfactory result is anticipated,

:i. Refv (2)’ seCo l



2. Introduction to the Fundamental Concepts

Maxwell's Equations: Assumne the time variation is a
sinusoid function; then

7 x E= U4B (1) U-Ba-o0 (3)

7 x Jwd+3 (2) VU-D=gq, (%)

Vector potentials:

for 4]
U
(wli

For a linear antenna energized at the center, carrying
a current I (z'), the magnetic vector potential is
(see Fig. 1)

1(z')e~dk lv-'!

A
7 - 71

az!

y,
! ]
“ I Ly

- - 2
where |7 - et = ﬁ/r2+ z' - 2rz!' cosd , A, 1is the
magnhetic potential in Z direction, k is the wave
i
nuwber of the free space, and given by k = w4/ ( 4¢€ )2,

In the far zone

|2 - B = v -2' cosb, :

e-Jkr I(Z,)ejkz'Cosﬂ . (5)

Be = e ), dz
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Fig. (1)

Linear antenna energized at the center

Same expression for the electric vector potential can he
made by duality between electrlc source and magnetic
source

. Jkz'Cogch

. K(Z')e az’t (6)

where K (2') is the magnetic current oriented in the Z-

poa i Jf
z k7T
directilon, and F, is the electric vector poftential in
Z-direction.
Construction of solution:
In a homogeneous source-freec lossless vegion, the

flelds satisfly
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-V E = Jwdid \VAR: IR
V:K ﬁ:dﬂ/éﬁ V'E:O

rxpressions for the flelds in terws of vector
potentlals can be obtained by expressing part of the
fleld in terms of ¥ and part in terus of A,
E =

“we

H =

it

"+ i:"
'+

o

where B and H' are due to electrie sources and &" ang "

o

ace due to magnetic sourceg. Then

Ee-Ux Fo_ bt  x\Uxi (7}
e VEV

B = x A g 1 x 7 xF (8)

i= Jw/“vv

o - 2
From the vector identity V xx A= (V-4) -V 4

and Maxwellls equations, Equations (7) and (9) becouwe

= £ = 1 i
e (Vwh - JWEF + L v (7-F) (10}

Jwu

Yar zone field (yadiation field):

The cistant fleld of an electric current elsuent
consists essentlally of ocutward travelinp plane waves,
The same 1s teue of a magnetlc current element by duallty.
Hence, the radiation zone must be characterized by

Ey = 7Hy BEy=—qig (12)

gince the field ls a superposition of the fields froo wmany
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current elements by evaluating the partial H-field due %o
electric source J, according to H' = UXA, and retaining
only the dominant terms (r'l variation), It can be

*
showm that

1]

HY = (Uxl)
HY = (Qxh) 4
with E' given by Eq. (11). Similarly, for the partial E -

Jkhg
- Jk#y

L

field due to M, in the radiation zone

i

EY = - (UxF),
with H" given by Eq. (11). The total field is the sum of

- JkFy
JKF,

]

these partial flelds, or

EY + B =~ Jud A - juFy (12)
Eg = BEY + E'Y = - Juu A + JkFp (13)

in the radiation zone, with H given by Eq. (11)

By

fi

The wave function:
Equations (9) and (10) show how to construct the
general solutions to the field equations in homogeneous

regions once the general soclutions o the scalar Helmholtz

equation are obtained. Use is made of the method

¥Ref. 1, sec. 13, chap. 3.
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'separation of variables'!. General solutlons to the
Helmholtz equation can be constructed in certain coordi-
nate systems., In this case, the cylindrical coordinate
system 1s used,

The scalar Helmholtz equation in cylindrical coordi-

nates is

> >f | DY, A _
Y (faaf) I (14)

where ¢ is the fleld function. Let the solutions be

the form
Y =R(C)2(P)2Z(Z) (15)

Using the method of separation-of-variables yields

d a4 R 2 2| R=0
r oJ P '(ld(o) + [(kp(o) n}
2
-—%g;—-—‘* 112@ = Q
2
A
dZe +k§Z==O

2 and these together with n are separation

where k2 = X% + k
constants. The & and Z2 squations are harmonic equations,
giving rise to harmonic functions, denoted by h(ng) anc

h(kz,z). The R equation is Bessel's equabtion of order n,
denoted by Bn(kpx’), Commonly used solutions to Bessel's

equation ave
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B (k0 )3 (6,0 ). Ny (0 ), B 0,0 ).

1) (k0 )
Any two of the functions are linecarly independent solu-
tlons; soO Bn(ké,F ) is, in general, a linear combination
of any two of them. According to Eq. (15) the solutions
to the Helmholtz equation become.
Prp ok, = Bk, 0 oln, & )alk,,2)
where ¢Sis the elementary wave function.

Iinear cowblnations of the elementary wave functions
are also solutlons to tne Heiwholtz equation., Possible
valves of n and ¥ ¢ , ocr n and k, can be summed to get the
desired solution, (but not ke and ky for they are interrel-

ated), For example,

¢ = Z ;Cn,k( (/kg S0,k
7 Ke

=) ) G, Bolice , € )uln, #)alky,%)
n A

is a solution to the Ielmholtz equation, where Cp i are
constants. It is also possiblie to infegrate over the
separation variable. The possiblie solutions to thne
Helmholtz equation are

¢ = LJ fn(ch)Bn(ke ; ?)l1(n,¢)h(kz,z) dk,

L A,



18

¢ - ngn(k€ JBy(ke , €)(n, @ )alig,2) dx,
/A ff
where the integrations are over any contour in the complex

plane and f,(k,) and g,(ke ) are functions to be deter-
mined from boundary conditions. If ¢ is single valued,
it is necessary that ¢ (@) = ¢ ( & +<7). This means
that h(n,@) must be periodic in ¢, in which case n nust
be an integer. In this condition, we choose 9% . Thus,
the n sunmations of Egs. (24) and (25) are usually Fourier
series of @ . As h(k,Z) is a harmonic solution to a

Jk,z is taken

harmonlc function, a possible solution of e
in this case.

Considering the various solutlon to Besselts
equation, it is apparent that Hr(le) (ke,€ ) ave the only
solutions which vanish for largef if k e 1s complex.
They represent outward-traveling waves if Ik, 1s real.
Therefore, 1f there are no sources at infinity, the Bp
(k¢ € ) must be ngg)(lce,e ) if @#—>oois to be included.

Hence the elementary wave function becomes

) i jk_Z
¢ = ir(lg)(ke, P)e3n¢ ev’z
ke ,n,¥%,
and tane general solution to the Helmholfz equation becomes

5 v Z
4/:2 edn® J{ fn(lcz)lilgg)(ke , € )ejAz ik, (16)
7 Z



or gé{ej“"‘/ ek )P ko, €)% @, (1)
7 f(’

where g k%,+ k§ and n = integer.

3. Three-dinensional radiation

L three~dimensional problem having cylindrical
boundaries can be reduced to a two-dimensional problem by
applying a Fourier transformation with respect to Z (the
cylinder axis).% For example, if ¢ (X,Y.Z,) is a solu-

tion to the three-dimensional wave equation

( <2 * M cgla * Ke) ?é = 0

&L
> x° = y© =y

then o
Y(X,Y,u) = /{Z(X,Y,z)e"m”’z dz

is a solution to the two-dimenslonal problem wave equation

&l C;L 2 -
( 2 + 2 + kl ) ¢ =2 0
=X 4

[n]
Where k% - X% - W is the Fourier transform of ¢. Once
the two-dimensional problem for ¢ is solved, the tharee-

dimensional solutlon is obtained from the lnversion

Y (x,¥,2) » _1__ /ﬁx & (x,¥,w)ed™? au
2
—-00

¥Zece Ref. 1, sec, 11, chap 5.
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Thls 1s usually o 4difficult overation. Fortunately,
in the radiation zone the inversion becomes quite simple.
This far-zone inversion fomaula wlll now be obtained.

Consider the problem of a filameni of Z-directed
current along the Z axis, as illustrated by Pig. (2). The
only restrlictilon placed on the current I(z) is that it be
fouricr~transfornable. In the usual way, we construct a
solution

Hs Ux A E=ag:¢
where ¢ iz a wave funcetion independent of ¢ and repregen-
ting ocut-ward traveling waves at large .

Frowm the general solution of Eq. (16), the solution

to this problewm would be n(separation varlable assoclatad

&szj and

with @ ) = 0. A narnonic function is gilven by
a traveling wavza in the vadial direction is given by the
Hankel function of the second kind Hég)(kle )}, where ky =

(kd~ WQ, Therefors, anticipating the need for Fourler
transforng, we write

g R O S (e L (28)

The Pourier transform of ¢ is evidently

Z = ¢ (e St W)

where £{w) is determined by the naturs of the source,

according to Ampers!s Circuital Law

m-— -
| e ad o 1w (19)



1) b—_

Fig. (2)

A filament of current along the Z-axis
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where ﬁ¢ and I(w) are transforms of Hy and I.

(2)

*
The small-argument formula for Hy ° ylelds_

H(gz)( ¢ iP- WE)T—_G(Z‘ P I-E pi Yf/kp- Wy

Y = 1,781 (Euler's constant)

Therefore,

and H= Uxa therefore f¢ =_ 9¢
o€
— 2'
¢ 0 7 e ()

Hence equation (19) yields

f’(w) - ..I%.‘i‘l..._

Substitution in Eq. (13) gives the transform sclution to

the problem of Fig, (2)

¢ = "35;;?” //mo I(w) Hég)(f’ K- wa)e‘jWZ aw (20)

oo

- g b
where I(w) = I(2)e Juzt g

- o0

I{z*) is the filamentary current along the Z-axls.

* Ref. 1, appendix D.



- Consider the case of the 'iinear antenna' carrvying
a current I{(z'), The magnetic vector potential for this

problem by Eq. (5), is

14
~ikp Y,
A, : %.:7,’__«_\.” / I(z*)ed*? 0058 4, S>> 1
. . [, b
AS A“. = ﬁ8¢
- ¢ Sy |
and I(w) = /[ I(z!)e JWET g
L ¢

Therefore 1t can be written

~-Jkr
¢ =A, . g J I(-k Coso) (21)
Y —=es } 7y
Eg. (12) yields
B, —eee— ~JW M4 A = JUM Sino ¢

6 T T

Siné I(-k Cos &)

-jkr
Jw M

Ea y —o Y arp

Hence the radiation filecld is simply relatzd to the
transform of the source evalvated at w = -k Cos &,

Comparison of Eq. (20) and Bqg. (21) reveals the identity

- s A 3 e, ~JKI?
fo TS (¢ [B- vP)ed au — jee
-4

—d r

I(- kCos @) (22)

which holds for any function I(w).
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The asymptotic expression of Hankel function aof arbi-

trary order is

152 () . (Bl e
Z 2 mX
frown which 1t is evident that
) , A (2 ,
1(?) (x) 88 (x)

P
As long as § ¥ o0 or 7r , we have p—o0 as r—oo,

becauvse €= r sine . Also, if k is complex (some dissipa-
tion assumed), then Jk2~ W 18 never zero on the path of
integration. We are then justified in using the asympto-
tic formula for the Hankel function and we can replace the

1$2) or Bq. (22) by 37H(®). The resuit is

R . o, ~JKT
f 1w ( e [iP- vl au  2¢ gptl
L o8 r——v»oo o
| F(-kCos 6 ) (23)

This formula will be used in the radiation problewm that

follows.

4, The Tangential fleld over the cylinder

Consider a conducting cylinder of infinite length in
which one or more aperbures exist. The geometry is shoun
in Fig. (3). We seek a solution for the field external
to the cylinder in terms of the tangenftial components of

® over the apertures.
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Fig. (3) Slotted cylinder antenna wilth
infinite length

We snall first develop the Fourier expansion for the
tangential component of the electric field over the sur-
face of the cylinder. The tangential electric field in the
slot in general has both ¢ and Z components, which we
consider to be prescribed functlons E, (a,® .2) and E,

(a,®,Z) respectively.
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Now let E, denote either E 4 (a, ¢,2) or Ez(a, #,2).
In the ¢ direction Ex 1is a periodic function and there-

fore, can be represented by a Fourler series

o9
Eyx (a,¢.Z) = Z An(z)e‘m¢
n=-o
the co-efficlent being a function of Z. I is readlly

evident that

&.(2) .
E, (aé,2)e ¢ as .
b(z) élé Z \Za
An(z)= 0 2<2; 2>z,

An is thus a plecewise continuous function and 1ts

Fourler representation 1ls the Fourler integral

A (2) - _l_..f [ J A, (z)e IW2 cazJ eIWZ gy
27 )l )

The previous expression for A,(Z) yields

(=
. o< : -
A (z) = "“‘L*""j L j ¢ Ve o
ko A A

o o

Pz)
Hence the tangential field

Eo( (a:¢ ,Z) = .._....:!.’..:_ 7 Jn¢/ sz

hmo e
dZ
P2) j

Eo( (as ¢ :Z)e*‘jnéé d¢
P(Z)

4,(2)
J E_ (a, ¢ ,Z)e-'jnds d e
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It is more obvious, if it is written

- 727 o<
&, (n,w) = Elw a¢ jddz E (a4 ,2)e IP? ¢"IW2
o4
_ 27 o ind ‘frz )
Ey (n,w) = 2 as J dz Ey (a, ¢ ,2)e"dR? o7d
27 ), Lo | (25)

Then the inverse transformation is

oo od
E (a, ¢,2) = - — >T- e‘jm5 E (n,w)eJWZ aw  (26)
z s / [ o “z
n=-~o0
X . (a4 <
Bp(e,9.2) =L [ 5 et (@)
27 po0 ]

The fleld external to the c¢ylinder can be expressed as the
gsum of a TE component and TM component.
Inspecting from Eqs. (9) and (10), the wave functions

A, and F, are constructed in such a manner that & and Z

b4
functions possess the same form as Eq. (26) or (27), and
they represent outward traveling waves at large ¢ . Then

it is assumed that

A, o — Ei e3n¢//ajfn(w)ﬂég)( Ay wa)fejWZ dw

2

27T Nn=-o9 o9 (28)
ad 4 =] 11
F, = —31 Z edn¢/ gn(w)ﬂég)( PJka— w2 eIVZ Gy
27 N= - —ed (29)

E4 and By are calculated from Egs. (9) and (10) and frou
the boundary condition at ¢ = a. Then £,(w) and g,(w)

are determined., The procedure is



2

Ez(e, @.2) & ~ Julb, + L 2 Az
Jweé X ge
= - J A+ 1 -WE A
JuAA, a7 (%) &,
o —1 P wP) A,
gwé .
where 1{2 = -(.jw/) (jufé) = wz,dé . Therefore,
By (€4.2) = o jwee SF5F
and
' ing
B (¢, ¢.2) - 1 X / (- ) £, (w)
Z j2 T E /z—-pc

Héa) (¢ J’E Wa) oJWZ  aw

Since these equations, specialized to € = a, must equal

Egs. (2%) and (25), comparison ylelds

Jwe £, (n,w)

£,(w) = 2 ) B2 (a ) (30)

(1) I —— , 3
n JuP- w8 Héz)' (a 4 k°- w") {E ¢ (n,w) +

n W gz‘z(ngw)
a(2- w=) (31)
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5. The pradlation from a transverse rectansular slot in

a_clrcuiay cyliader

It 1s shown that the principal transverse plane
pattern of such a slot in whici the excitation has only a
circumferential tangential electric field couponent is
identical to the patiern generated by an infinite axial
slot with the same circumferential excitation. The compu-~
tatlions have been made for the especlally lmportant case
of & narrow sloft having an axial extent of a half-wave
length.,

The Fleld Distribution in the 3lot.

AL tne boundarles of the slot the component of tie
electric field that is tangent To the boundary wmust be zero.
In general, the excitation of the slot may be concelved as
the superposition of many modes of field distribution, ecach
of which satisfies the general excitation of a thin wire
antenna, which may be synthesized by superposition of
characterstic slnusoidal distributions that satisfy the
requlrenent that the cuvrent by 2ero at the ends,

The geoumetry of the configuration suggests that the
field components are separable functions of ¢ and Z; thus

(see Fig. 4)



™
(9N
/
/
\
\

g
)

Fig, (4) Radiation from a transverse rectangular

slot in a circular cylinder

E¢ (a: @ JZ)
E, (a,¢.2)

F, (2) 6,(2)
Fa(#) Gpo(2)

i

With the boundary condition at the edge of the slots it is
evident that
Z2) =
0@ = |

Sin (p 72/21) p even
Cos (pm2z/21) p odd



[Sin (p7r¢ /2¢) P even

P2l 2 - Cos (p7md /2¢) p odd

From the point of view that the slot is a very
shallow section of wave guide in consequence of which the
field configuration is lilke that over the cross section of

a wave gulde, on this basis, it should be that

F(8) [005 (ame /f28) a even
1 B sin (q7g /24) q odd
GB(Z ) = {Cos (q@ 72/21 ) q even

Sin (q 7 2/21 ) q odd

The narrow rectangular slot,

When the transverse dimen‘sion 2 ¢ a of the slot is
small compared with the wave length and the slot length,
the significant wode of excitation 1s that in which
there 18 only an E 4 -component that is uniform across the
slot and has a sinusoldal distribution along its length.
Thus

F1(#) 61(2) = (v/2a 4, )6,(2) = B, (2.9 .2)

Radiation Fleld

Method one:



{9Y)
N

Assume in the aperture

Eg (a,4,2) = v SinA(1 - [z]) —qq:<¢<¢°
2¢a _

Ez(as ¢:Z) = 0

Z7T
Ns

where / 1ls the phase shift constant given by &=

s 1s the wave length of the slot régioa, k = —ZT

and XN = wave length of free space.
For a very narrvow slot (&£—o) the transforms of

Eqs. (24) and (25) become

o p )
Eg(n,w) = Jé’ j e In% W2 gyp A (L -12Z])
1}77¢aa, 4 _Z - d¢
. 2V_Sin né, [jo sin A1 + 2) "% gz
)“‘ ’Tf¢° an - £

+ j‘ sin g (1 - 2) e JIWe dz]
.o

The integrationsyield

E%(n,w) .Vsinndg [ -2 4Cos /31 2% Cos wl_]

27 nd,a B WS B - W
VvV A ( Cos wl - Cos 81 )
ma (B - w)

=

Ez(n,w) a 0
From Egqs. (30)., (31) we obtain

£w) = 0 (32)



W) = -V A (Cos 21 - Cos wl)
gn(‘r) a (ﬁz" Wg)/,/k"" We H-Aa)(a /kQ__ Wd) (33)

A, and F, are constructed according to Eqs. (28) and (29).

For the radiation field use is made of thne BEgq. (23).

- ke 0 . '
p, Tl 5 eI T e ()
oy
n==°
N - ) w : ' .
Fz r —>d —é——q}.{:—L— Z eJn¢ Jﬂ +1 gn(w)
7y P

Substitute Eqs. (32) and (33) in A,. In the radiation zone

Eg = ~Jwdhy - jkF¢
Ey :-JN/(A¢ + JkF,
where Ag = ~Az Sin 6, A¢ = 0, Fe = -F, Sing, F¢ = 0.
Then
AZWO Ee(r,e,qb) = 0

E¢ (r, 8,4¢) ?_j-Jsz sin 0

4k 81 mJkr & g+
. =Jk Sing e ZeJ ¢jn lgn(w)

mr
/[:—do

- KV 4 3Sin b e"Jkrj(:os wl - Cos Z41)

7' ra( 8- we) JiE- w

n==0

ad ejn¢ 30
Z B! (a [ k°- we)
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Finally the radilation field B gz O, and, since
‘ . 2 [2
-~k Cos @= w, 1«:2 COsae = w",Vk"’- w2 = Kk 3in o

E - v Be-dkr gos{kl Cos 0) - Cos IEA
‘ ra( /J’Zw k= Cos= 8)

ﬁ éan Cos ng

34
neo H(ﬁ)' (ka 8ino) o

where 6,,: lwienn =90, € =2whenn >3,

The radiation zone wust be characterized by the plane

wave relations

Eg=z NHy Egy= Nl o

therefore, H ¢ and

i
<
©

oo~ —Ef
{

where Egls given by Eq. (3%)

i

1]

Method Two: FPield in teruws of the current distri-
hution

If sinusoidal axial and cosinusoidal cilrcunferential
current distributlions are asauned around a slotied cylinder
antenna, then the radiatlon field can be obtained in tems

of the assumed current distribution.
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Fig. (5)

Field in terms of Current Distribution

Fig. (5) represents a guadrant of an axial section of
the cylinder. « represents an elemental area on the surface.
The point P is at a great distance from the cylinder, An
approxlmate expresgsion for r!' in terms of the radius and

the coordinates will now be derived.



r12 o p2 4 p"2l 2rr»" Cos rr"

2. .2

2 " - 5
= r~+ta"+ 2"~ - 2rr" Lo08s rr

ry w r Sinbd Cos ¢

ry = r Sing Sind
r, =T Cos 6
:c*x" = a Cos &
n N
r = & oil
¥ @
PZ" = &

) ot 2 - 1wy 2 ~ ny2
T J(rx ', )%+ (ry ry) + (z'z z’z)

[}

2, 42 .
=T [1+é_.:‘r_-§._. - ._...%_F%_._(Sin9003¢00s$)

N

- 2B (Sino Sind Sind) - —=Z_ COSQ]
r r ‘
Applying the binomial expansion, neglecting the second

and higher orders of r, and sinplifyling yield

r! = r - a SinbCos (P - F) - Z Cos O

- L 5 P | / — -'k:.? —
B - 3, e Jkr i;’ﬂ ip = 34;7”_ o JKZ Cose A,
r

In the preceding equations A is a vector potential at a
distant poin%t P due %o an slemental surface « , and Ju 18
the current density at the elewmental surface « ; 1Y = cir-

cunferential distance to elemental surface measured from



¢ = 7, and

J,. az e%¢ a1y,

i

i

ka Sin @ Cos( < -

2)

Let v represent a similar elemental surface diametri-

cally opposite « .
inay be readlly determined,

the relations
N},; = N‘;(l)( -+ N"L;K

" 1 1t
Ny = Nﬂ,)’ + v,Y

it 1s easily shown that

The X and Y components of N and KU

If Nj and NY, are defined by

N;: -KdZz a Sing a¢
N:;;a K dzZ a Cosd ad
where K = Ju ejc - Jve"jc K, may be expressed by
K= (3, + 3,) % & (55 - J,) e79°
=JJSSinc4-JaCQSc
where J = Jytdy Jg = Iy - Jy
Sin ¢ = Sin [' ka Sin 6 Cos (¢-3)]

it

Sin [§ ka Sin (6 *@-F )+ % ka ..

+ Sin

(9—¢*¢ﬂ



(&)
(&0

- Sin [%1«:3.311’1(9*415—5)]008[-?s;-kaSin(9~¢+ffi
+ Cos [; ka, s:m(@+¢—¢)] Sin [-:L.-kasm(e—aﬁ)ré)]

Similarly |
Cos ¢ = Cos ‘;%lka Sin (944¢-$)] Cos [:% ka Sin(e?¢4fj

- 8Sin ( % ke Sin (6+¢'¢)] 8in [% ka Sin 6-4’*?1

But Sin (3 ka Sind) = 2 ﬁ Jopn +151in (2n + 1)9
=0
and Cos (% ka Sing) = J_+ 2 i Jopy Cos 2np ©
The Bessel function argument & ka is understood.
For ka £ 1 an exeelient approximation for each of the above
expressions ig obtained by using only the first term of
the infinife series, Using only the first term and

substif.uting into the expressions for Sin ¢ and Cos ¢ yield

Sinc z 4 Jod; Sino6 Cos(g - &)
and .
Cos ¢ = Jo
then
K = 3y [ 4 3,7 Sin6Cos( ¢~ &) +3, I
Le¥
-
LA j ;!
F=0

# Rei. 5, sec. 5, chap 8.



39

and define N;, simllarly. In order to perform these
integratlions it is necessary to speclfy the current-density

distribution with respect to & . Let
J(Z, P ) = J(Z, r ) Cos p1!

with 1' = circumferential distance measured from & = 77,
27

-

b =

— and A, = wave length of current density distri-
bution about the clrcumference of the cylinder., This
assumptlion l1s based on the current distribution about the
cirvcumference of an infinite cylinder, uniformly fed along
the slot with equal, in-phase voltages, which has been

fovnd% to be

J(#) = .Tj_y__i_’_(ﬂ

1

277 a
whereP(¢)=ao+ oi angnCos-nqS,gn:Sinnx,
oy 0x.
fn
(2) ap = 3t a,
€, Jn(ka) e B (xa) ‘
and a) =~ a, = . P(& ) isa
n ‘Tr'x(ka) 12l 1 (ya)
, o)

series of Cosinusoidal functions, converges more rapidly
for small values of ka. Thervefore, it is assumed that the

current distribution about the cilrcumference is a simple

¥Ref., (2), sec. ILLL
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cosinusoidal variatlon, i.e. Cos blt'! , provided that ka =
_27a 1s small, which means 'a' small for a certain fre-
qu;;cies, or the frequencics could nof be toc higher than
its cut-off frequency for a:certain dimension of the
antenna,

Then
4

3= 3(2,77 ) Cos ba( 7 - &)
And
Jy = J(Z,77 ) Cos ba @

Therefore K becomes upon substituting,
K =332, 7 ) [;jlwl Sin © (Cos ba 77 + 1) Cos bad
Cos(® -&F) + jl}Jl Sin o6 Sin bad Sin ba 7 Cos (4-P)
J,(Cos ba7- 1) Cos ba & +J, Sin ba7 $in bad |

Substituting for K into the expressions for N, and N;, and
integration from ¢ = 0 to & =7, give N} and N;. The

simplified results are

Nt - -d 16a 3,073(Z, 77 ) 4Z Sin ba 7 Siné Sing
X
ba(¥ - v°a?)

Jh Jl(2~b2a2) Sing Cos¢
ba(4 - b2a®

) ba Jo
(1 - 022 )

NO = 2aJ.0,(2, 7 ) dz Sin ba [
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NY = (N} Cos @+ N;r Sin¢ ) Cos®é
1 ! ]
N¢'Nx Sinqé-fNy Cos ¢

Substituting for N;, and N;r glves

N -sba? J2 Sin ba 7 Sin¢ Cos 6 J (2, 77) dz
( 1 s J4J, Sin 6 Cos @ ]
[ (@ -vR?) 3, (4 - p%a2 ) J
[»]
NY, = - 2ba® Jo Sin 77ba J ( Z,7) 4z
2 2
Cos & J4J, Sin 9 (v"a“ Cos g - a)J
2o o2 22
(1 - b7a%) J, p°a® (4 - bv%a” )
Now -Jjkr
A'G"’ ej eJZd N'B
Yy 7 p
PO S b o922
Y 77

where d = k Cos &,

The vector-potentlal cowmponents are

[o»
_ e ¢
‘.
J,
)

Ao

Ag

[H

The total slot length beling 21. Befeore these integrations

can be performed, a distribution function f or J (Z,77)



nust be specified,

@) - du(r) sns (1 - Izl

Jm( 77 ) = Maximum value of J ( as Z varies ) at'¢:;77

B = f:Z4 where s is the wave length at slot region.
This current density distributlion about the circumfierence
of the cylinder in the Z-direction is identical to the
method one of a field distributlion along a slot in the
axial direction, Tne current density is zero at both ends
of the slot. All the current densities are confined in
the circumference of the slot region. Substituting N} ,
AY into the integrating equation of A, ; Ny , Al into

¥%
A¢ , and Integrating yield the resulf

-Jjkr
A, =8 ! Ng
4y 77 r
-Jjkr
A¢ = e J N¢
4 77y
whare
2.2
Y va~ 3 F (7) Sin var
Ng = [- °Em( ; * ] [SirwﬁCosé]
(& - 4%) J

1 s J4% JySine Cos ¢

Cospl - Cos dl
# } [(1~b2a2) Jo (4 - v°8%)

F¥Ref. (2), sec, VI.



2
Ne o |- 4 4 ba J?)Jm ( 77) Sin va7 Gos A1 - Cos dl
? (a® -e2)
[ Cos ¢ J43, siné ( b°a®CosH - 2) }
—
(1 - p%a®) Jo v°a2 ( 4 - b“a? )

Ny and N, are radiation vectors of ¢ and & components
respectively.

The radiation fileld is given by Eqs. (12) and (13)

E9 - J w/d AG (35)

L1

- AL (36)

1l

K
while Fy and F, are zero in this case.

6. Expression for J,( 7 Y. AL B f
Determination of J_ (7)

From the circumferential current-density'distribution
along a uniformly-fed infinite slotted cylinder antenna it
was foundf that

J(7r) = VP (7 )
277 a
n+

n n
+ ) (1) a, g, - 2.772 ka+4ka ) (-1)
n=1 n=1

where P(77 ) = a,

¥*Ref. (2), sec. III.
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__n is the intrinsic impedance of free space = 1207
n

and "

ap = aj + ap

2 #2)
at o g (k2) . ()
' —— e = 5
I (ka) 2t (ka)

For n = O omit the factor 2.

2

= Sin n7w = 0
n

am
P(7) = ag -~ 2.772 ka

= a4 + ag - 2.772 ka

I ( 77 ) can ve expressed in terms of the input voltage.

The specified current-denslity distribution is

J(2,%)=z=3,(7)sins(1 - [2]) Cosab (7~ &)
Therefore

J (0,7 ) =dy (77) Sin 21

The circumferential current density distribution is
to be matched as closely as possible with that of the

corresponding infinite cylinder, uvniformly fed. Therefore,

J(O,W): :.JY.R_(_Z_)

2 m17 a
V belng the applied voltage at 2 = 0. Equating the above

two expressions for J(0,7 ) and solving for J,( 7 ) gives



k5

J,. (77') :..:‘JVP(W)
H 274 a 8in A1

As Im P{ 77 ) is negligible compared with Re P(7 )*

J ('77)= -—JV'RQP(’W)
1 2747 g Sin 81

Determination of the wave length ~, around cylinder,

Nt is to be found from the current-density distribu-
tion of the infinite cylinder., For ab 0.5, satisfactory
results are obtained as the distribution is approximately
consinusoidal as assumed. In reference (2) is shown that
J(Z, %) = J3(2,7) Cos bl'. Fords=%d4 =z 4, 1'—a7,
therefore, J(0,44 ) = J(0,7)Cos ab. &s Im P(3¢), In
P(7) are negliglble compared with Re P(3 ), Re P(77)
respectively, therefore,

Re P(4#) = Re P{7) Cos ab
vields reasonable values of b, where & is the slot
angle = 24and b « .,;2\..;’

Determination of & = ?XZL with A¢denoting the wave
length of slot regilon.

In order to find .. . the phase constant 2 1t isnpecessary
first to find the input impedance of the slot. The slot
is viewed as a loaded fransmission line, The slot width

is very small compared with the wave length, and the metal is

¥ Ref. (2), sec. 11L.
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" assumed te be perfectly conducting. The assumption is
made that Y and Z are independent of the axlal coordinate
Z, i.,e. that the line is uniform. As in ordlnary uniform
line theory the propagation constant and the characteris-
tlc impedance can be expressed in terms of Y and Z as
follows.

Ir
;o= ox+ 3f =1z

where ¥ = @+JB, Z2 = JX = J # L, it is easily shownf that

the phnase-shift constant

. X (.6 )= J.x J32+c2%+3= 27
B (<>< ) > ( ) =

2
for frequencies conslderably above the cuf-off
frequency, & become negligible, and
&= BX
For frequencies near or below tne cut-~off frequency,
the G 1s found from

G=Re I3 &) - Im PG &)
v 27mq a

The slot distributed susceptance is

B = WCg + B!

F Ref. (2), sec. II.
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B' is the susceptance per unit{ length due to the conduction
curren’t densifty and C3 is the capacitanczs per unit lengih
between the slo¥ faces.

Cg 1s determined by the relation

where ¢ is the thickness of %he cylinder at %the slot and
W is the slo% width, and ¢ 1s the permittivity of free
space,

As BtY 15 evaluated at the slof surface, all displace-
ment current excepi that flowlng directly between the slo®
faces is accounted for in the evaluation of B!.

From the infinite cylinder, the current distribution
around cylinder%

J(#)=-3VB(P)

27/ a

At the slot ¢ = ;l;‘@
2

and J(3 8 ) - -j VA2 4 ) (i d) s -VBe (3 &)
2 77 a 2 77 a
Therefore
Bt - ~-InJ(3 & ) _ ReP(Z & )
\' 2 771 a

*Ref. (2) sec. III
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Then
B-we + - BeR( & )
8 2 w4 a
where
Co = € =
S W

The Inductance L per unlt length 1s expressed in Ref. 2
Sec, V as
L = 1
2 vb
VCs +
where v is velocity of light 3x108m/éec.

If P, denotes ReP(Z & ) evaluated at ka,
then

= 0.05
Pyp=Re P(:4) |xa = 0.2

1 mn - 8on
where P(3 &) = a + ) a8t Yka z: =,

n=i n=m+ B
m 18 a sufficlently large so that a; = bka  pop n>n
n

X a L
From the calculated values of B, G, and X, the 2 1s

obtained from

5 = 4/..3;_.3._. JEE+ e+
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Cut-~off frequency {

The cut-off frequency is defined as that frequency at
which the wave length in the slot would bhecome infinite 1If
thefe were no radlation., If there were no radiation, G

would be zero. Thep
2.3 *
X =J..X... A/(3=.>>2+ G“)? - B =-0

2

and & = JBX. It follows that & = 0 and ~s becomes

infinite when B = 0. In the actual case @ will not be zero.
Therefore, for £ = £, o= B = J%fi. Thus the cut-off
frequency would be definad as that frequency at which

of = RAwhere B = O

Tnerefiore,

UJCCS—i- Re P(é‘¢l) = O
2771 a

or

_Re 11’(%45, ) » - 0.711x10%% ¢
Gtz

S

By plotting the curve Re P(} ¢ ) versus ka, it is an
easy matter Yo find the value of ka which satisfies the
above expression. The cut-off fregquency in terms of

kea is

fo=A2.75  _ % a2 me

*Ref’, (2) sec. I1I.
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In plotting of the fleld patterns, the MKS system of
units is used. For other variables convention units are

uged, such as 48 in neper/m, G in mho/m, etc.

T Field patterns at f£= 900 mc

The field patterns are made under the conditions that

a << N s Sin née. 1, and ab < 0.5, which satis-
neg, i

fy the assumptions in both methods.

Let
£ = 900me
21 = 1.41 A
W = 0,00111 ~
a = 0.0318 ~
t = 0.0075 ~

and the calculated values become
ab = 0.302
ta = 0.2

820 me

y
Q
L1}

18.85

b
L]

= 5.98x10~11
174

o'
=
i

L = 3.7%x1078
209

0.085



N
ca

G = 0,0119
= 4,42

33.3 com

Y
!

Y

Principal H-plane

The principal H-plane is obtained by setting o = 90°
and the gilven data into the expression for radiation. The
fleld pattern is a variation of the field with different
values of ¢ at constant r. From Eq. (3%) of method (1)
and Eq. (35), (30) of method (é) it is easy to draw the
field patterns of the principal H-plane.

Method (1) Eq. (34) becones

A f €n %{1 Cos n¢ l
i B (0.2)

|E¢l =

where A i1s a constant.
Method (2) Egs. (35), (36) become
Ep =0

1E¢| ‘B (1.1 cos#- jo.562(2 - 0.091 Cos2¢ )] l

where B is a constvant.

Principal E-plane
The principal E-plane is obtained by setting & = 0O,
or ¢ = 90° and the glven data into the expression for the

radiation, The fleld pattern is a variafion of the field
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P=7
method (=)
metbhod )
37
= A= F
&#=o0
Fig. (6)

Comparison of Principal H-plane



N
Cud

with different valuesg of 6 , at constant r. From Eq. (3%)

of the method (1) and Egs. (35), (36) of the wethod (2) it

is easy to draw the field pattern of the principél E-plane.
Method (1) Eg. (3%4) becomes

At _Cos (4.52 Cose) - 0.475
18 - 355 Cos®e

ff 6B Cos n ¢ )
L

|5 | -

2)' (0.2 sins)
where A' is a constan?t.

Method (2) Egs. (35), (36) become £, =0

|gg| = ¢

0.524-Cos_(4.52C0s 6 ) [1.1 - J0.538(
355 Cos“g~ 18

2-0.091 Cos? 4 ﬂ‘

where C 1s a constant. (see Fig, T7)

6=0

@=0
me./-/? od (2)

- 7
67z

G=7
@ (9:_2//2

method )

8=7
Fig. (7)

Comparison of Principal E-plane
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8. Comparison of methods (1) and (&)

The principal H-plane
Methed (1)

Al i €n J% Cos n¢ (a)

[iEaﬁl;_ = 5 Z H‘gg): (xa)

where A'/a = A

Method (2)

Cos ¢ +34J(b2a20032 - 2)
1 - v%a® J, b2a? (4 - p2a2)

aB! (b)

#

E¢|

where aB' = B, as ka —— 0, ab << 0.5, Eq. (a) becomes

At 1 l

|E¢ = |-Al 1
a  H®' (ka) a J8 (xa)- Jn! (ra) |
= A -l: A"k » Constant (c)
-j 2a_
ka

In BEq. (b), as ka .., 0, ab«< 0.5

‘E\: Bla| Cos¢ + __Jdka (-2)
4 2.2
4 v=g
= Bla| Cosp- —d¥K
2b2a
Fora_,0, K ___ >>Cos¢,
2bCa
Therefore,
Eg|=Bta |——K | B" k = Constant (a)
2b°a

It is obvious from Eqs. (c) and (d) that, as ka __, 0



A
\ ;1

with ab ¢< 0.5, the fleld derived Trom both methods appro-
achs a constant, and the field pattern is a circle, In
thls case, the slot antenna behaves like a dipole antenna,.

The coincidence of these two methods could be antlci-
pated. In method (1), thé assumption is made that %he
slot angle is very small so that —§i%;§fi = 1, and a —s 0.
In method (2) the assumption is made that ab < 0.5, and
good results can be obtained for ab <« 0.5, Therefore,
under these ceonditions as ka —.»> 0, ab< 0.5, wnich
satisfy hoth assumptions in these two methods.

The condition for ka —— 0, 1.26. &8 — O for a
certain frequency, veduces the series of the Hankel func-
tlons to the n = O term., Thervefore, for a finite small
slot angle _._S;rll%!_lﬁ__ N —= 0%
method (1) is satisfiled under the condition ka . 0,

1. The assumption in

The principal E-plane ( #=o0, or =7 )

Method (1)

|E¢| =

¢" Cos(klCos 6 ) - Cos Al if €n 32 Cos né ‘
B~ k=Cos%e N=o Hée)'(ka Sinéa)’

where C" is a constant.

Method (2)

D" _Cos (k1 Cos 8 )-Cos 81 [ Cosd J4J,
Be. kZCos<p 1-b<a® J

]

24| =

( p2a? . 2)
ba? (4 - b2a




\Ji
N

where D is a constant,
As ka > 0, ab K 0.5, the field pnattern in method
(1) becomes
A Cos (k1 Cos ¢) - Cos A1
/52~ keCos 24

where A™ = A" k, and the field pattern in method (2)

-

hecomes

IE l :'IBW Cos (k1 Cos8) ~ Cos A1
# /3 2. ¥2Cos20 ‘

where B" = B"k.
The field patterns derived from these two methods are
exactly the same, provided that ka-»~ 0, bé <« 0.5 and the
ield is much like that of a2 dipole antenna.

=0
#=7 @=0

Y
N .

b
MR
e

6=

Fig. (8) Principal E-plane as ka —s O
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g. Fleld pattern with change of frequencies

The frequenciles ranged from 500 mc to 1500 me; only
500 mc. 700 me, 900 mc, 1100 me, and 1500 wc are used. In
all of these caseg, same dimensions and the same excita-
tion are assumed. Method one 1is adopted in these cases.

List of data

f = 500 me
~ = 60 ¢m
= 0.0178 ~
W - 0,000616 A
= 0.00416 ~
21 = 0.8 A

The calculated values:

ka » 0,111
¢g = 5.98x10711
ab = 0.105

L - 3.73{10—8
X = 114
B = - 0.924
G = - 0.00715
f = 820 mec

e

& = 0.0397

The principal H-plane:
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o

|E 4| =]c y €n j® Cos né
? o B3 (0.111)

The principal E~plane:

¢t Cos(2.5Cos 6 )-0.9999973 ’f €n j’Cos ng l
(0.00158 - 108 Cos?s ) .=, H(2)'(0.111 Sing |

|Ey| =
where C and C!' are constants.

List of data:

£ = 7000 me
A= 42.8 em
a = 0.0247 A

t = 0.0058% A
W = 0.00086% A
2l = 1.12 A

The calculated values:

ka = 0.155
Cs = 5.98x107%1
ab = 0.22
by = 174

L = 3.7x1070
X = 163

B - - 0.135

G = - 0.00955
£, = 820 me

5 = 0.1435
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The principal H-plane:
Dién B Cos nd ,

BEl= :
= = aE)T (0.155)
The princlpal E-plane:

lESf’l - |pv _Cos(3.53C0s 6 )-0.999 OZO €n j"Cos n o
0.0206 - 216 Cose ,FOH£2)'(0,155 Sineg

where D and D' are constants.

List of data:

f = 1100 me
a = 0.0388 A
t = 0.00915 A
W =z 0.00135 A
21 = 1.75 A
A = 27.3 cn

The calculated values:

ka = 0.24%

Cs = 5.98x1071t
ab = 0.357

by = 174

L = 3.7x1075
X = 250

B = 0.27

G = - 0.016

f = 820 mc

p= 8.32
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The principel H-plane:

B4|= |ET <D gn'.Cos n¢
a0 g(2)' (0.214)
|E¢|= E! 005(5.55 Coso )-0.414 d>én i Cos né
| 69.2 - 534 Cos®e n=0 ng)'(0.244 Sine)

where E and E' are constants,

List of data:

£ = 1500 me
Az 20 cn
a = 0.053 ~
= 0,0125 ~
W = 0.00185~
21 = 2.4 A

The calculated values:

ka = 0.333

¢y = 5.98x107H
ab = 0.523

by = 174

L = 3.7x1073
X = 349

B = 0.6

G = - 0.021
5= 143

The principal H-plane:
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F 5 ¢€n j* Cos nd
nso  H32)7(0.333)

| B =

The principal E-plane:

lE4>| - th Cos(T7.54C0s 6 )-0.956 & €n % Cos n¢
205 ~ 985 Cos%s %=o 111(12)'(0.333 Sin é)

where F and F!' are constants.
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Fig. (9)
Principal H-plane varies with the frequencies £
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Fig. (10)

Principal E-plane varies with the fregquencies
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The cut-off frequency is defined as that frequency at
which cKz/ﬁ . Below cut-off B is negative, rapidly becoming
a large negative quaniliy as the frequency is reduced and
o/ becomes very much greater than/?. For frequenciles suffie-
ciently above the cut-off frequency B is positive, and./7 be-
comes very much greater than

The fleld patterns only change slightly for operating
frequencies not far beyond that of the cut-off frequencies.
For frequencies much below that of the cut-off frequency,
the principal fleld pattern ls approximately circular, For
frequenclies much higher that the cut-off frequency, errors
occur for the assumption that ka...5 O,

where k¥ = gﬁﬂ;g—.

When./? is comparable with k, the E~field pattern is
no longer like that of a dipole antenna, (maximum field
occurs not at = 90°). If this is the case, as the
frequencles are higher than the cut-off frequency and ka
becomes large, the assumption made before is invalild,

The‘maximum field of the principal E-fleld could be
found by differentiating the field with respect to € . As
the serles form of the Hankel functlon changes almost linear-
1y with 6, 1t is coavenlent to treat the derivative of the
series as a constant. From this 1t is found that maximum
field occurs at 9= Cos™t “éi* . Un1e53/3« k, the maximum

fleld would not occur at 9 = 90°.
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10. Two slotted antennas

The radiation field produced by two slots in the same
direction in a cylinder as shown in Fig. (11), could be
obtained by superposition. With the same assumptions made
as far a single slot, and the coordinates as shown in Fig.

(11), results could be found by the following procedures.

Z

zpf,,-—

-
s
|

S

Fig. (11)

™wo slotted antenna with slots in the same orientation
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It is assumed in the apertures

E(a,#,2) =« ¥ __SinA (h+1- l2l)
2¢ a

under the condition that 21 = g‘ , that 1s, the slot

length is one half of the wave length of the slot region,

where A= 2;’7: , h is the distance from the center of %the
slot to the origilon.
The transforms of Egs. (24) and (25) become

E (n,w) = 2V8in (n® ) (Cos wh Cos wl) “‘“A%EP'
an mre /é?m 1

Egs. (30) and (31) yileld
£,(w) =0

_2AVCos wh Cos wl

rrad kX2- w? Hée)'(a,Jkg- we) (/52»w2 )

for small slot angles.

g, (W)

Since -kCosé=- w, RQCoseéz wg, k2~ w2 = kSine ,

the radiation field is

v A2 e~ IK? cos(xhCose )Cos(klCos o )
7’ra ( 8°- k2Cos2e )

E¢ =

fé n j® Cos nd
n=0 ngz) ' (ICaSin e )

This could bhe checked by setting h = 0 and 1 = 5 in
this field and the field derived in Eq. (34%).
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Fleld pattern

The principal H-plane is the same as for a single
slot antenna. This is anticipated fron the superposition
theory. The principal E-plane is much like tnat of the
pattern of end-fire arrays of point sources. Use the
sane dimensions as for a single slot antenna. And let

by Q00 nic

9!

i

> = 33.3 cm

1 “.i.\z.. = 35.6 cm

The principal E-plane 1s plotted as

4E¢‘ .| Cos(6.28C0s 6 )Cos(6.97Cos8 ) & £n j¥Cos nd
2 2@y
v 18 ~ 354Cos<e n=o Hn (0.28in &
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b
N
h
N

Fig. (12)
Princlpal E-plane of two slotted antennas with two

slote oriented in the same direction
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Rediation field produced by two slots on opposite
sides of a c¢ylinder could be obtained by the supefposition
mathod, With the same assumptions made as for the single

slot antenna, and with the coordinates taken as shown in

Fig. (i3), the result s Pound by the following procedures.

Fig. (13)
Two slotted antennas with slots

on opposite sides
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It is assumed in the apertures

- V | 1 - ‘¢o(¢<¢o
4 (a, #,2) = Ta s mA (-2 [ G s
Ez(aaép :z) = 0

The transforms of Eqs. (24) and (25) become (for small @)

E,(nw) = 2v 4 (Cog wl 5 Cos £1) n even
7a (A - w)

Eyp (n,w) = 0 n odd

11

Finally the radiatlon field E, = O, and

Ey - 2v,8e ¥ cos(kiCos o )- Cos 81 2 _jCos nd
7*ra( 82~ k%Cos ) ‘ n=o Hﬁg)'(kaSiné?)

where m even .

Field pattern of two slotted antennas

For the same dlmensions as the single slot antenna
and with £ = 900 mec, the principal E-plane is much like
that of a dipdle antenna for small ka. As 1t 1s easlly
seen for small ka the predominant terms in the series are
approximately constants for various value of . The

principal Héplane is

)
B - nio nggi;'czng;fﬁ

where A' is a constant. The field pattern is almost a
circle. This result mlght well be expected from the

superposition theory. (see ?ig. i4)
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&
Mg
by
N

Fig. (1%)
Principal H-plane of two slotted antennas with
two slots oriented in diametrically opposite

directlons
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11. Discussion

The results glven in this paper are restricted to the
far-zone field of varlious slovs, The far-zone flelds are
given in terms of an infinite series of terms involving
the reciprocal of the first derivative of the Hankel
function where the argument are functions of ka Sino ,
where k = 27/x and a 1s the radius of the cylinder. This
series con?erges rapidly for small value of ka Sin o6 (for a
certain value of § thls serles converges rapidiy for small
value of ka). However, as the cylinder becomes larger,
the series representation £ or the far field coverges more
slowly and a greater number of terms are required to appro-
ximate the sum of the infinite series to a glven accuracy.
Therefore, 1n the previous assumption ka is s0 small that
only two terms of.the Hankel are talken.

The disagrecrvent between these two calculated field
patterns might come from the assumption of a cosinusoidal
current density distribution arround the circumference in
the second method. Actually 1% could be imagined from the
cirvcunferential curvent density distribution of an
Infinite cylinder, uniformly fed, that the current distri-
butlion along the circumference 1s a series of sinusoidal
functions. Thls sepries converges slowly. It is very
difficult to find the vector potential in this series form.

But 1if ab << 0.5, the predominant term in the form of the
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curvent distributlion ls Just a simple cosine functilon.
With thils restriction tne radiation is much easier to
handle by assuming & cosluusoldal current distribution
along the circumference., Howeveyr, the main lobes in the
corresponding ficld pattermis are approximately the saue.
The agssumption of a cosinusoldal circumlerential currsnt
distribution does not geriously limit the validity to find
the vadiation field.

The {leld pattern produced by two alotied antennas
with tnese slots oriented in the sawme direction does not
change greatly with the distance between the slots, The
orincipal E-plane 13 identically the {field pattern of the
end-rire arrays of polnt scurces. The fleld pattemy pro-
duced by two slotted antennas wlth these slots diametrically
opposite 18 a cirecle in the principal He-plane, This result
is useful especially for TV ragdiation.

Method one assumed that & is small; therefore, for
large¢3modification wust be applied to the derivation of
the radiation fleld. The same restriction is also presented
in method two in £inding the wave lengthAaround the
¢ylinders.

Prowm the agraement of these two methods, 1t is easy
to design a slot antenna with the desired fleld pattern by

assuning the approximate current distzidbution along the
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circumference, or a reasonable assumption can be made
concerning the field distribution in the slot and the
result can be obtained. The slotted cylindeyr antenna has
many desirable properties, Its band width, while not
large, is suitable for many communication purposes at very
high and ultra-high frequencies. As such slois are easy |
to construct and excite, they are useful in application to

mlcrowave antenna design,
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