```
THE RADIATION EIELD PRDDUCED BY LONGITUDINAL
    SIOTS IN A LONG CIRCULAR CYZINDER
    by
    Jaw Jim Hsieh
Thesis submitted to the Graduate Eaculty of the
        Yirginia Polytecmic Instizute
        in candidacy for the degree of
            MASTER OF GCIENCE
            in
                ELECTRICAL ENGINEERING
            September, 1963
            Blacksburg, Virginia
```


TABTA OF CONTENT

PAGE
IIST OF FIGURES 4
LIST OF SYMPOLS 5

1. INTRODUCMION 9
2. INTRODUCTTON TO THE FUNDMENTAL CONCEPTS 12
MAXHEL工'S EQUATIONS 12
VECTOR POTENTIALS 12
CONSTRUCTION OR SOLUTION 13
FAR-ZONE FIEID $\because 2 r_{r}$
THE WAVE FUNGTIONS 15
3. THREE DIMENSIONAE RADIATION 19
4. THE TANGENTIAT FIESD OVER THE CYIINDER 24
5. THE RADIATION FROM A TRANSVERSE RECTANGUTAR SLOT IN A CIRCULAR CYLINDER 29
THE FIEID DISTRIBUTION TN THE SLOT 29
THE NARROW RECTANGULAR SLOT 31
RADIATION FTELD 31
METHOD (I): RADIATION RIELD IN TERMS OF TIE FIEID IN THE APERTURE 31
TETHOD (2): RADIATION FTEID IN TETAS OR THE CURRENT DISTRIBUTION 34
6. EXPRESSION FOR $J_{\mathrm{m}}(\pi), \lambda, \beta, \mathcal{I}_{\mathrm{C}}$ 43
7. FIELD PATEERNS AT $£=900 \mathrm{mc}$ 50
8. COMPARISON OF METHODS (1) AND (2) 54
page
THE PRINCIPAL H-PTANE 54
THE PRINCIPAL E-PLANE 55
9. FIELD PATTERNS WITH THE CHANGE OF FREQUENCIES 57
THE PRINCIPAL H-PLANE
THE PRINCIPAL E-PIANE
10. TWO SLOTYIED ANTENNAS 65
11. DISCUSSION 72
LIST OF REFERENCES 75
ACKNOWLEDGEMENT 76
VITA 77

LIST OF FIGURES

NO. Page

1. Linear antenna energized at the center 13
2. A filament of current along the Z-axis 21
3. Slotted cylinder antenna with infinite length 25
4. Radiation from a transverse rectangular slot in a circular cylinder 30
5. Field in terms of the current distribution 35
6. Comparison of principal H-plane 52
7. Comparison of principal E-plane 53
8. Principal E-plane as $\mathrm{ka} \rightarrow 0$ 56
9. Principal H-plane varies with the frequencies 62
10. Principal E-plane varies with the frequencies F - 63
11. Two slotted antennas with slots in the same orientation 65
12. Principal E-plane of two slotted ancennas with two slots oriented in the same direction 68
13. Two slotted antennas with slots on opposite sides- 69
14. Principal H-plane of two slotted antenna with two slots oriented in diametrically opposite direction 71

LIST OF SYMBOLS

$$
\begin{aligned}
& a_{n}=a_{n}^{\prime}+a_{n}^{\prime \prime} \\
& a_{n}^{\prime}=\frac{\epsilon_{n} J_{n}(k a)}{J_{n}^{\prime}(k a)^{\prime}} \\
& a_{n}^{\prime \prime}=\frac{-\epsilon_{n} H_{n}^{(2)}(k a)}{H_{n}^{(2)^{\prime}}(k a)}
\end{aligned}
$$

$a=$ Radius of the slot antemna
$a_{z}=$ Unit vector in Z-direction
$A^{\prime}=$ Vector potencial at a distant point P due to an elemental strip at Z of thickness $d Z$,
$A_{\theta}^{\prime}=\frac{e^{-j k r}}{4 \pi r} e^{j Z d_{N}}$
$A_{\phi}^{\prime}=\frac{e^{-j k r}}{4 \pi r}-e^{j Z C_{N}{ }_{\phi}}$
$A_{\theta}=\int_{-l}^{l} A_{\theta}^{\prime}$
$A_{\phi}=\int_{-l}^{l} A_{\phi}^{\prime}$
$A_{u}^{\prime \prime}=$ Vector potential at a distant point P due to an elemental surface u.
$\bar{A}=$ Magnetic vector potential.
$\bar{B}=\mu \bar{H}=$ Magnetic Slux density web $/ \mathrm{m}^{2}$
$b=\frac{2 \pi}{\lambda_{1}}$
$B=$ Total slot distributed susceptance.
$B^{\prime}=S l o t$ distributed susceptance due to conduction currents.
$c=k a \sin \theta \cos (\phi-\Phi)$.
$C_{S}=$ Slot distributed capacitance.
$d=k \cos \theta$
$\bar{D}=\epsilon \bar{E}=$ Vector electric flux density Coulomb/ $/ \mathrm{m}^{2}$.
$\bar{E}=$ Vector electric intensity volt/m.
\bar{F} - Electric vector potential volt.
$f_{n}\left(k_{z}\right)=$ Function tobedetermined from boundary condition.
$g_{n}\left(k_{\rho}\right)=$ Function tobedetermsned from boundary condition.
$\mathrm{S}_{\mathrm{n}}=\frac{\operatorname{SIn} \mathrm{nx}}{n \mathrm{x}}$
$G=$ Slot distributed conductance mho/m.
$\bar{H}=$ Vector magnetic intensity.
$\bar{I}(W)=$ Transform of current $I(W)$.
$J(Z, \bar{\phi})=$ Current density distribution about the circumference of a cylinder at ($2, \bar{\Phi}$).
$J(Z, \pi)=$ Current density distribution about the circumference of a cylinder at ($2, \pi$).
$J_{n}=J_{n}\left(\frac{1}{2} k a\right)=$ Bessel function of the first kind.
$J_{m}(\pi)=$ Maximum value of J (as Z varies) at $\phi=\pi$
$J=$ Current density ampere $/ \mathrm{m}^{2}$.
$J_{u}=$ Current density due to elemental area u.
$J_{v}=$ Current density due to elenental area v.
$J_{s}=J_{u}+J_{v}$
$J_{a}=J_{u}+J_{v}$.
$K=J_{u} e^{j c}-J_{v} e^{-j c}$
$k_{1}=\sqrt{k^{2}-w^{2}}$

$$
\begin{aligned}
& k_{e}, k_{z}=\text { Separation constant } k^{2}=k_{\rho}^{2}+k_{2}^{2} \\
& \text { is }=\frac{z \pi}{\lambda}=\text { Wave number of the medium. } \\
& I_{\text {. }}=\text { Slot distributed reactance, henry/m } \\
& 21=310 t \text { engin } \\
& \text { Hin magnetic source, volt } / m^{2} \\
& N=\text { Radiation Vector. }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{y}}^{\prime \prime}=\mathrm{N}_{\mathrm{M}, \mathrm{y}}^{\mathrm{H}}+\mathrm{N}_{\mathrm{v}}^{\mathrm{n}} \mathrm{y} \\
& \text { 酸 }=\int_{\bar{\phi}=0}^{\pi} N_{X}^{\prime \prime} \\
& N_{Y}=\int_{\Phi=0}^{\pi} N_{V}^{\prime \prime} \\
& N_{V}^{n}=J_{\mathrm{V}}^{\boldsymbol{\sigma}=0} e^{j c} \partial \bar{I}_{\mathrm{y}}^{\prime \prime} \\
& N_{u}^{\prime \prime}=J_{i} d 己 e^{j c} \mathrm{di}_{u}^{1} \\
& N_{\theta}^{\prime}=\left(N_{x}^{\prime} \cos \phi+H_{y}^{\prime} \sin \right) \cos \theta . \\
& N_{\phi}=N_{x}^{\prime} \sin \phi+N_{y}^{\prime} \cos \phi . \\
& \rho=A \text { point in the radiation field. } \\
& q_{v}=\text { Charge density anp/it } \\
& r^{\prime \prime}=\text { Distance from u to a distant point } p \text {. } \\
& t=\text { Slot thicloness. } \\
& u=\text { Elemental area on the eylindericel surface. } \\
& \mathrm{V}=\text { Applied voltage } \\
& y=\text { Velocity or } 11 \mathrm{ght} 3 \times 10^{9} \mathrm{~m} / \mathrm{sec} \text {. } \\
& W=\text { slot width. } \\
& X=W I=S l o t \text { distributed reactance fnma, } \\
& y=310 t \text { distributed admittance mho/k. }
\end{aligned}
$$

$Z=S l o t$ distributed reactance ohm/m
$Z=S l o t$ characteristic impedance ohm/m.
$\rho, \bar{\Phi}, Z=C y l i n d i c a l$ coorcinate symbols.
$r, \theta, \phi=$ Spherical coordinate symbols.
$\epsilon_{n}=1$ when $n=0, \epsilon_{n}=2$ when $n>0$.
$\phi_{1}=2 \phi_{0}=$ Slot angle.
$\sigma=$ Propagation constant.
$\lambda_{1}=$ Wave length of current density distribution about the circumference of the cylinder.
$\lambda_{s}=$ Wave length of slot region $=\frac{2 \pi}{\beta}$
$\lambda=$ Wave lengin of free space $=\frac{2 \pi}{k}$
$\phi_{1}(Z), \phi_{2}(Z)=$ Slot runction.
$\bar{\phi}=$ Angle neasured from X-axis to elenental area u in ϕ direction.
$\epsilon=$ Permitivity of free space (8.85×10^{-12} farad $/ \mathrm{m}$).
$\mu=$ Permeability of Iree space (4×10^{-7} henry/m). $\eta=\left(\frac{\mu}{\epsilon}\right)^{\frac{1}{2}}=120 \pi=$ Intrinsic impedance of free space. $\psi=$ Field function.
$W=2 \pi i=$ Angular velocity.
$\alpha=$ Actenuation constant.

INTRODUCTION

An antenna that has important application at very high frequencies consists of a slot or slots cut into a conducting cylinder. For example, a longitudinal slot in a vertical cylinder produces a horizontally polarized signal suitable for FM or television. The banic problem of cormunicating to and from aircraft, satellites, and submarines has stimulated research work into the theory and application or slotted cylinder antennas. It is the purpose of this paper to aid this work by describing the field patterns produced by the slot antenna.

In 1950 Silver and Saunders developed general expressions for the external field produced by a slot of arbitrary shape, in the wall or an infinite circular cylinder, on the assumption that the tangential electric rield in the slot is a prescribed function. In this case it is assmed that the width of the slot is very much smaller than its length and that the excitation is a cosine distribution along its length and is uniforn over its width, which is

$$
E_{\phi}(a, \phi, Z)=\frac{V}{2-\phi_{0} a} \cos \frac{\pi Z}{21} \quad \begin{aligned}
& -1<Z<1 \\
& -\phi_{0}<\phi<\phi_{0}
\end{aligned}
$$

Where V is the excitation source, $2 \phi_{0}$ is the slot angle, a is the radius of the cylinder antenna, 21 is the slot

Jength alone the axiai axis. But the result can only apply to a slot antenna of a fixed dimension for a single Requency mich is unkow. Eecause the relation between the wave length at alot λ_{s} and the wave length in the rodiation field λ is unkown.

It would be nore generel to assune that the field in the alot is

$$
E_{\phi}(a, \phi, z)=\frac{V}{2 \phi_{0}, 2} \cos \beta(1-|z|)
$$

where β ia the phase shist constent derined by $\beta=\frac{2 \pi}{\lambda_{s}}$, where λ_{s} is weve length at slot region. Wave length at the slot region could be found in terras of the dimentions of the cylinder antema and the wave length λ. Therefore, diferent raciation fields comespond for dfferent values of λ_{s}. But Silver mad Sounders did not introduce any method to find the wave length at glot.

Another method was suggested by Dr. C. A. Holt In 1950, that the extemal field could be found by assuant a current distribution around the clreumperence. Dr. Holt has treated the slot as the looded tranemission line, and. the distributed paremetern of the slot region oan be found, from which the wave-hearth along the slot can be detemmed. However, this nethod of finding the raciation pield is restricted by the assumption os a cosinusoidal
curent density distribution about the circumference used to find the radiated power, while actuolly the curpent density distribution is a sexies of sinusoidal functions. This method is applicabie only for diameter - wave length ratio less than about 0.2^{*}.

In this paper improvement is made in finding the radiation field by assuming anelectric ijeld at the slot by

$$
E_{\phi}(a, \phi, 2)=\frac{V}{2 \phi_{0} 2} \cos \beta(1-|z|),
$$

and then using Dr. Holt's method to find the wave lengith at slot to get β. The radiation found by the combination of these two methods is less restrictive than the above two methods. Satisfactory result is anticipated.

2. Introduction to the Fundamental Concepts

Maxwell's Equations: Assume the time variation is a sinusoid function; then
$\nabla \times \quad \bar{E}=-j \omega \bar{B}$
(I) $\nabla \cdot \bar{B}-0$
$\nabla \times \quad \overline{\mathrm{H}}=j \omega \overline{\mathrm{D}}+\bar{J}$
(2) $\nabla \cdot \bar{D}=q_{v}$

Vector potentials:
For a linear antenna energized at the center, carrying a current $I\left(z^{\prime}\right)$, the magnetic vector potential is (see Fig. I)

$$
A_{z}=\frac{I}{4 \pi} \int_{-l}^{l} \frac{\left.I\left(z^{\prime}\right) e^{-j k}\right|_{r-r^{\prime} \mid}}{\left|r-r^{\prime}\right|} d \cdot z^{\prime}
$$

where $|\bar{r}-\bar{r}|=\sqrt{r^{2}+z^{2}-2 r z ' \cos \theta}, A_{z}$ is the magnetic potential in Z direction, k is the wave number of the free space, and given by $k=\omega(\mu t)^{\frac{1}{2}}$. In the far zone

$$
|\vec{r}-\bar{r}|=r-z^{\prime} \cos \theta
$$

and

$$
\begin{equation*}
A_{z}=\frac{e^{-j k r}}{4 \pi r} \int_{-l}^{l} I\left(z^{\prime}\right) e^{j k z^{\prime} \cos \theta} d z^{\prime} \tag{5}
\end{equation*}
$$

Fig. (I)

Linear antenna energized at the center

Same expression for the electric vector potential can be made by duality between electric source and magnetic source

$$
\begin{equation*}
F_{z}^{\prime}=\frac{e^{-j k x}}{4 \pi r} \int_{-l}^{l} \pi\left(z^{\prime}\right) e^{j k z^{\prime} \cos \theta} d z^{\prime} \tag{6}
\end{equation*}
$$

where $K\left(z^{\prime}\right)$ is the magnetic current oriented in the $Z-$ direction, and F_{z} is the electric vector potential in Z-direction.

Construction of solution:
In a homogeneous source-free lossless region, the fields satisîy

$$
\begin{aligned}
-\nabla x E & =j \omega \mu \bar{H} & \nabla \cdot \tilde{H} & =0 \\
\nabla x E & =j \omega \epsilon \bar{E} & \nabla \cdot E & =0
\end{aligned}
$$

Expressions for the Rields in terms of vector potentials can be obtained by expressing past of the field in terms of \hat{F} and part in terms of \vec{A} ．

$$
\begin{aligned}
& \text { 部 }=\text { 翮 }
\end{aligned}
$$

where ${ }^{2}$ ，and $\overline{\text { In }}$＇are due to electric sources and $\mathrm{E}^{\prime \prime}$ and $\mathrm{T}^{\prime \prime}$ are due to magnetic sources．Then

$$
\begin{align*}
& \overline{\mathrm{B}}=-\nabla x \overrightarrow{\mathrm{~F}}+\frac{2}{\hat{j} \omega \epsilon} \nabla \times \nabla \times \overline{\mathrm{N}} \tag{7}\\
& \overline{\mathrm{H}}=\nabla \times \overline{\mathrm{A}}+\frac{1}{\hat{j} \omega \mu} \nabla \times \nabla \times \overline{\mathrm{F}} \tag{3}
\end{align*}
$$

Fron the vector identity $\nabla \times \nabla^{x} \quad \bar{A}=\nabla(\nabla \cdot \bar{A})-\nabla^{2} \bar{A}$ and Nanvell＇s equations，Equations（7）and（8）become

$$
\begin{align*}
& \overline{\vec{F}}=-\nabla \times \tilde{F}-j w \mu \bar{A}+\frac{3}{j w \epsilon} \nabla(\nabla \cdot \vec{A}) \tag{9}\\
& \bar{H}=\nabla x \bar{A}-j w \epsilon \overline{\mathrm{~F}}+\frac{1}{j w \mu} \nabla(\nabla \cdot \tilde{F}) \tag{10}
\end{align*}
$$

Far zone field（radiation field）：
The distant fleld of an electric current element
consists essentially of outward treveling plane waves． The same is brue of a magnetic curpent element by duality． Hence，the radiation zone must be characterized by

$$
\begin{equation*}
E_{\theta}=\eta H_{\phi} \quad E_{\phi}=-\eta H_{\theta} \tag{11}
\end{equation*}
$$

since the ficld is a superposition of the fielas from wany
curent elements by evaluating the parcial $\bar{H}-f y e l d$ due to electric source \bar{J}, according to $\bar{H}=\nabla \times \bar{A}$, and retaining only the dorinant terms (x^{-1} variation). It can be shown *hat

$$
\begin{aligned}
& H_{\theta}^{\prime}=(\nabla x \bar{A})_{\theta}=j k A_{\phi} \\
& H_{\phi}^{\prime}=(\nabla \times \bar{A})_{\phi}=-j k A_{\theta}
\end{aligned}
$$

With \bar{E} ' given by Eq. (11). Similamy, for the partial \vec{E} field due to \bar{M}, in the radiation zone

$$
\begin{aligned}
& E_{\theta}^{\prime \prime}=-(\nabla x \bar{F})_{\theta}=-j k F_{\phi} \\
& E_{\phi}^{\prime \prime}=-(\nabla x \bar{F})_{\phi}=j k F_{\theta}
\end{aligned}
$$

with $\bar{H}^{\prime \prime}$ given by Eq. (11). The total field is the sum of these partial fields, or

$$
\begin{align*}
& E_{\theta}=E_{\theta}^{\prime}+E_{\theta}^{\prime \prime}=-j \omega \mu A-j k F_{\phi} \tag{12}\\
& E_{\phi}=E_{\phi}^{\prime}+E_{\phi}^{\prime \prime}=-j \omega \mu A+j k F_{\theta} \tag{13}
\end{align*}
$$

in the radiation zone, with H given by Eq. (11)

The wave function:
Equations (9) and (10) show how to construct the general solutions to the fleld equations in homogeneous regions once the general solutions to the scalar Helmholtz equation are obtained. Use is made of the method
*Rer. 1, sec. 13, chap. 3.
'separation of variables'. General solutions to the Helmholtz equation can be constructed in certain coordinate systems. In this case, the cylindrical coordinate system is used.

The scalar Helmholtz equation in cylindrical coordinates is

$$
\begin{equation*}
\frac{\partial}{\rho \partial \rho}\left(\rho \frac{\partial \psi}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} \psi}{\partial \phi^{2}}+\frac{\partial^{2} \psi}{\partial Z^{2}}+k^{2} \psi=0 \tag{14}
\end{equation*}
$$

where ψ is the field function. Let the solutions be the form

$$
\begin{equation*}
\psi=R(\rho) \Phi(\phi) z(Z) \tag{15}
\end{equation*}
$$

Using the method of separation-of-variables yields

$$
\begin{aligned}
\rho \frac{d}{d \rho} \cdot\left(\rho \frac{d R}{d \rho}\right)+ & {\left[\left(k_{\rho} \rho\right)^{2}-n^{2}\right] R=0 } \\
& \frac{d^{2} \Phi}{d \phi^{2}}+n^{2} \Phi=0 \\
& \frac{d^{2} Z}{d Z^{2}}+k_{Z}^{2} Z=0
\end{aligned}
$$

where $k^{2}=k_{\rho}^{2}+k^{2}$ and these together with n are separation constants. The Φ and Z equations are harmonic equations, giving rise to harmonic functions, denoted by $h(n, \phi)$ and $h\left(k_{z}, z\right)$. The R equation is Bessel's equation of order n, denoted by $B_{n}\left(k_{p}, \rho\right)$. Commonly used solutions to Bessel's equation are

$$
\begin{array}{r}
B_{n}\left(k_{\rho, \rho}\right) \sim J_{n}\left(k_{\rho, \rho}\right): N_{n}\left(k_{\rho, \rho}\right), H_{n}^{(1)}\left(k_{\rho, \rho}\right), \\
\\
H_{n}^{(2)}\left(k_{\rho}, \rho\right)
\end{array}
$$

Any two of the functions are linearly independent solutions; so $B_{n}\left(k_{\rho}, \rho\right)$ is, in general, a linear combination of any two of them. According to Eq. (15) the solutions to the Helmholtz equation become

$$
\psi_{k \rho}, n, k_{z}=B_{n}\left(k_{\rho}, \rho\right) n(n, \phi) n\left(k_{z}, z\right)
$$

where ψ is the elementary wave function.
Linear combinations of the elementary wave functions are also solutions to the Helmholte equation. Possible Values of n and $k e$, or n and k_{z} can be sumed to get the desired solution, (but not $k \rho$ and k_{z} for they are interrelated). For example,

$$
\begin{aligned}
\psi & =\sum_{n} \sum_{k_{\rho}} C_{n, k_{\rho}} \psi_{k_{\rho}, n, k_{z}} \\
& \approx \sum_{n} \sum_{k_{l}} c_{n, k_{\rho}} B_{n}\left(k_{\rho}, \rho\right) n(n, \phi) n\left(k_{n}, z\right)
\end{aligned}
$$

is a solution to the Helmholtz equation, where $C_{n, t}$ are constants. It is also possibie to integiate over the separation variabie. The possible solutions to the Helmholtz equation are

$$
\psi=\sum_{n} \int_{k_{z}} f_{n}\left(k_{z}\right) B_{n}\left(k_{\rho}=\rho\right) n(n, \phi) n^{\prime}\left(k_{z}, z\right) \quad d k_{z}
$$

$$
\psi=\sum_{n} \int_{k_{\rho}} g_{n}\left(k_{\rho}\right) B_{n}\left(k_{\rho}, \rho\right) n(n, \phi) n\left(k_{z}, z\right) d k \rho
$$

Where the integrations are over any contour in the complex plane and $f_{n}\left(k_{z}\right)$ and $g_{n}\left(k_{\rho}\right)$ are functions to be determined fron boundary conditions. If ψ is single valued, it is necessary that $\psi(\phi)=\psi(\phi+2 \pi)$. This means that $h(n, \phi)$ must be periodic in ϕ, in which case n must be an integer. In this condition, we choose $e^{j n \phi}$. Thus, the n sumations of Eqs. (24) and (25) are usually Fourier series of ϕ. As $h\left(x_{z} z\right)$ is a hamonic solution to a harmonic function, a possible solution of $e^{j k_{2} z}$ is taken In this case.

Considering the various solution to Bessel's equation, it is apparent that $H_{n}^{(2)}$ (k_{e}, ρ) are the only solutions which vanish for large e if $k \rho$ is complex. They represent outward-traveling waves if k_{e} is real. Therefore, if there are no sources at infinity, the B_{n} (k_{e}, ρ) must be $H_{n}^{(2)}\left(k_{\rho}, \rho\right)$ if $\rho \rightarrow \infty$ is to be included. Hence the elementary wave function becomes

$$
\psi_{k_{\rho}, n, k_{z}}=H_{n}^{(2)}\left(k_{e}, \rho\right) e^{j n \phi} e^{j k k_{z}^{Z}}
$$

and the general solution to the Helmholtz equation becones

$$
\psi=\sum_{n} e^{j n \phi} \int_{k_{z}} f_{n}\left(k_{z}\right) H_{n}^{(2)}\left(k_{e}, \rho\right) e_{z}^{j k k_{z}^{z}} d k_{z}(16)
$$

or $\varphi=\sum_{n} e^{j n \phi} \int_{k \rho} E_{n}(k \rho) H_{n}^{(2)}(k \rho, \rho) e^{j k_{z} Z} d k^{Z}$
where $k^{2}=k_{\rho}^{2}+k_{z}^{2}$ and $n=$ integer.
3. Three-dimensional radiation

A three-dimensional problem heving cylindrical
boundaries can be reduced to a two-dimensional problem by applying a Fourier transformation with respect to Z (the cylinder axis). For example, if $\psi(X, Y, Z$,$) is a solu-$ tion to the three-dimensional wave equation

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}+K^{2}\right) \varphi=0
$$

then

$$
\bar{\psi}(X, Y, w)=\int_{-\infty}^{\infty} \psi(X, Y, Z) e^{-j w Z} d z
$$

is a solution to the two-dimensional problem wave equation

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+k_{I}^{2}\right) \bar{\psi}=0
$$

where $k_{1}^{2}=k^{2}-w^{2}$ is the Fourier Exansform or ψ. once the two-dimensional problem for $\bar{\psi}$ is solved, the threedimensional solution is obtained from the inversion

$$
\psi(x, y, z)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \bar{\psi}(x, y, w) e^{j \omega Z} d w
$$

*See Ref. i, sec, 11 , chap 5.

This is usuaily a diencult operation. Fortunately, in the radiation zone the inveraion becomes quite simple. This iar-zone inversion somala will now be obtained.

Consider the problew or a inament or 2 -directed current along the Z axis, as illustrated by Fig. (2). The only restriction placed on the current $I(z)$ is that it be foumber-twansommable. In the usual way, we construct a solution

$$
\ddot{H}=\nabla \times \bar{A} \quad \ddot{A}=\bar{a}_{z} \psi
$$

where ψ is a wave function independent of ϕ and representing out-ward traveling waves at large.

From the general solution of Eq . (16), the solution to this problem would be n (separation variable assoctated with ϕ) $=0$. A hamonic function is given by $e^{j W Z}$, and a traveling wave in the radial direction is given by the Bankel runction of the second kind $H_{0}^{(2)}\left(k_{1} e\right)$, where $k_{1}=$ $\sqrt{k^{2}-w^{2}}$. Therefore, antictpating the need son Fourier transforms, we write

$$
\begin{equation*}
\psi=\frac{1}{2 \pi} \int_{-\infty}^{\infty} E(w) H_{0}^{(2)}\left(e \sqrt{x^{2}-w^{2}}\right) e^{j w Z} d w \tag{18}
\end{equation*}
$$

The Foumer transform of ψ is evidently

$$
\bar{\psi}=f(w) H_{0}^{(2)}\left(\rho \sqrt{k^{2}-w^{2}}\right)
$$

where $\tilde{r}(w)$ is detemined by the nature of the source, according to Ampere's Cipcuital Law

$$
\begin{equation*}
\int_{0}^{2 \pi} \bar{H}_{\phi} e d \phi \overrightarrow{e \rightarrow 0} \vec{I}(w) \tag{19}
\end{equation*}
$$

Fig. (2)
A filanent of current along the Z-axis
where \vec{H}_{ϕ} and $\bar{I}(w)$ are transforms of H_{ϕ} and I. The small-argument formula for $H_{o}^{(2)}$ yields**

$$
H_{0}^{(2)}\left(\rho \sqrt{k^{2}-w^{2}}\right) \underset{\rho \longrightarrow 0}{ }\left(1-\frac{j 2}{\pi} \log \frac{r \rho \sqrt{k^{2}-w^{2}}}{2}\right)
$$

$$
Y=1.781 \text { (Euler's constant) }
$$

Therefore,

$$
\bar{\psi}=f(w)\left(1-\frac{j 2}{\pi} \log \frac{Y e \sqrt{k^{2}-w^{2}}}{2}\right)
$$

and $\bar{H}=\nabla \times \bar{A} \quad$ therefore $\quad \vec{H}_{\phi}=-\frac{\partial \bar{\psi}}{\partial \rho}$

$$
\bar{H}_{\phi} \xrightarrow[\rho \longrightarrow 0]{ } \frac{2 j}{\pi \rho} f(w)
$$

Hence equation (19) yields

$$
f(W)=\frac{\bar{I}(W)}{4 j}
$$

Substitution in Eq. (13) gives the transform solution to the problem of Fig. (2)

$$
\begin{equation*}
\psi=\frac{1}{j 8 \pi} \int_{-\infty}^{\infty} \bar{I}(w) H_{o}^{(2)}\left(\rho \sqrt{k^{2}-w^{2}}\right) e^{j w Z} d w \tag{20}
\end{equation*}
$$

where $\bar{I}(w)=\int_{-\infty}^{\infty} I(z) e^{-j w z^{\prime}} d z^{\prime}$
$I\left(z^{\prime}\right)$ is the filamentary current along the z-axis.

* Ref. I, appendix D.

Consider the case or the 'innear anterna' carrying a cument $I\left(z^{\prime}\right)$. The magnetic vector potential for this problem by Eq. (5), is

$$
A_{z} \doteq \frac{e^{-j k r}}{4 \pi r} \int_{-l}^{l} I\left(z^{\prime}\right) e^{j k z ' \operatorname{Cos} \theta} d z^{\prime} \quad r \gg 1
$$

$\mathrm{Es} \tilde{A}=\bar{a}_{z} \psi$
and $\bar{I}(w)=\int_{-l}^{l} I\left(z^{\prime}\right) e^{-j w z^{\prime}} d z^{\prime}$
Therefore it can be written

$$
\begin{equation*}
\psi=A_{z} \xrightarrow{r \longrightarrow \infty} \frac{e^{-j k r}}{4 \pi r} I(-k \cos \theta) \tag{21}
\end{equation*}
$$

Eq. (12) yields

$$
\begin{aligned}
& E_{\theta} \xrightarrow[r \longrightarrow \infty]{ }-j w \mu \mathrm{~A}=j w \mu \sin \theta \psi \\
& E_{\theta} \xrightarrow[r \longrightarrow \infty]{ } \text { jw } \mu \frac{\frac{o}{}_{-j k r}^{4 \pi r}}{4 \pi n} \bar{I}(-k \cos \theta)
\end{aligned}
$$

Hence the radiation Pleid is simply related to the transform of the source evaluated at $w=-k \cos \theta$. Comparison of Eq. (20) and Eq. (21) reveals the identity

$$
\begin{array}{r}
\int_{-\infty}^{\infty} \bar{I}(w) H_{0}^{(2)}\left(\rho \sqrt{k^{2}-w^{2}}\right) e^{j w Z} d w \underset{r \longrightarrow \infty}{ } \frac{j 2 e^{-j k r^{2}}}{r} \\
\bar{I}(-k \cos \theta) \tag{22}
\end{array}
$$

Which holds for any function $I(w)$.

The asymptotic expression of Hankel function of arbitrary order is

$$
H_{\Omega}^{(2)}(x) \xrightarrow{\longrightarrow \longrightarrow} \sqrt{\frac{2 j}{\pi x}} j^{n} e^{-j x}
$$

from which it is evident that

$$
\mathrm{H}_{32}^{(2)}(x) \underset{x \longrightarrow \infty}{\longrightarrow} j^{n_{H}(2)}(x)
$$

As long as $\theta \neq 0$ or π, we have $\rho \rightarrow \infty$ as $r \rightarrow \infty$, because $e=r \sin \theta$. Also, if k is complex (some dissipa.tion assumed), then $\sqrt{k^{2}-w^{2}}$ is never zero on the path of integration. We are then justified in using the asymptotic formula for the Hankel function and we can replace the $H_{0}^{(2)}$ of Eq. (22) by $j^{-n_{H}}(2)$. The result is

$$
\begin{array}{r}
\int_{-\infty}^{\infty} \bar{I}(w) H_{n}^{(2)}\left(\rho \sqrt{k^{2}-w^{2}}\right) e^{j w Z} d w \underset{M}{\longrightarrow \infty} \frac{2 e^{-j k x}}{r} j^{n+1} \\
\bar{I}(-k \cos \theta ; \tag{23}
\end{array}
$$

This formula will be used in the radiation problen that follows.
4. The Tangential field over the cylinder

Consider a conducting cylinder of insingte length in which one or more apertures exist. The geometry is shown in Fig. (3). We seek a solution for the field extemal to the cylinder in terms of the tangential components of is over the apertures.

Fig. (3) Slotted cylinder antenna with infinite length

We shall first develop the Fourier expansion for the tangential component of the electric field over the surface of the cylinder. The tangential electric field in the slot in general has both ϕ and z components, which we consider to be prescribed functions $E_{\phi}(a, \phi, Z)$ and E_{z} (a, ϕ, z) respectively.

Now let E_{α} denote ej.ther $\mathrm{E}_{\phi}(\mathrm{a}, \phi, \mathrm{z})$ or $\mathrm{E}_{z}(\mathrm{a}, \phi, Z)$. In the ϕ direction E_{α} is a periodic function and therefore, can be represented by a Fourler series

$$
E_{\alpha}(a, \phi, z)=\sum_{n=-\infty}^{\infty} A_{n}(z) e^{j n \phi}
$$

the co-efficient being a function of $\%$. It is readily evident that

$$
\begin{array}{rl}
A_{n}(z)=\frac{1}{2 \pi} \int_{\phi_{1}(z)}^{\phi_{2}(z)} E_{\alpha}(a, \phi, z) e^{-j n \phi} d \phi \\
z_{1} \leqslant z \leqslant Z_{2} \\
A_{n}(z)=0 & z<z_{I} \quad z>Z_{2}
\end{array}
$$

An is thus a plecewise continuous function and its Fourler representation is the Fourier integral

$$
A_{n}(Z)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} A_{n}(Z) e^{-j w Z} \dot{\alpha} Z\right] e^{j w Z} d w
$$

The previous expression for $A_{n}(Z)$ yields

$$
\begin{aligned}
A_{n}(Z)=\frac{1}{4 \pi^{2}} & \int_{-\infty}^{\infty} e^{j w Z} d w \int_{-\infty}^{\infty} e^{-j w Z} d Z \\
& \int_{\phi,(z)}^{\phi_{2}(z)} E_{\alpha}(a, \phi, z) e^{-j n \phi} d \phi
\end{aligned}
$$

Hence the tangential field

$$
\begin{aligned}
E_{\alpha}(a, \phi, z)=\frac{1}{4 \pi^{2}} & \sum_{n=-\infty}^{\infty} e^{j n \phi} \int_{-\infty}^{\infty} e^{j w Z} d w \\
& \int_{\phi_{1}(z)}^{\phi_{2}(z)} E_{\alpha}(a, \phi, z) e^{-j n \phi} d \phi
\end{aligned}
$$

It is more obvious, if it is written

$$
\begin{aligned}
& \bar{E}_{z}(n, w)=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi \int_{-\infty}^{\infty} d Z E_{z}(a, \phi, Z) e^{-j n \phi} e^{-j w Z} \\
& \bar{E}_{\phi}(n, w)=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi \int_{-\infty}^{\infty} d Z E_{\phi}(a, \phi, Z) e^{-j n \phi} e^{-j w Z}
\end{aligned}
$$

Then the inverse transformation is

$$
\begin{align*}
& E_{z}(a, \phi, z)=\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} e^{j n \phi} \int_{-\infty}^{\infty} \tilde{E}_{z}(n, w) e^{j w Z} d w \tag{26}\\
& E_{\phi}(a, \phi, z)=\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} e^{j n \phi} \int_{-\infty}^{\infty} \tilde{E}_{\phi}(n, w) e^{j w Z} d w \tag{27}
\end{align*}
$$

The rield extemal to the sylinder can be expressed as the sum of a TE component and TM component.

Inspecting from Eqs. (9) and (10), the wave functions A_{z} and F_{z} are constructed in such a manner that ϕ and Z functions possess the same form as Eq. (26) or (27), and they represent outward traveling waves at large ρ. Then it is assumed that

$$
\begin{align*}
& A_{z}=\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} e^{j n \phi} \int_{-\infty}^{\infty} f_{n}(w) H_{n}^{(2)}\left(\rho \sqrt{k^{2}-w^{2}}\right) e^{j w Z} d w \tag{28}\\
& F_{z}=\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} e^{j n \phi} \int_{-\infty}^{\infty} G_{n}(w) H_{n}^{(2)}\left(\rho \sqrt{k^{2}-w^{2}}\right) e^{j w Z} d w \tag{29}
\end{align*}
$$

E_{ϕ} and E_{z} are calculated from Eqs. (9) and (10) and from the boundary condition at $\rho=a$. Then $f_{n}(w)$ and $g_{n}(w)$ are determined. The procedure is

$$
\begin{aligned}
E_{z}(\rho, \phi, z) & =-j \omega \mu A_{z}+\frac{1}{j \omega \epsilon} \frac{\partial^{2} A_{z}}{\partial z^{2}} \\
& =-j \omega \mu A_{z}+\frac{1}{j \omega \epsilon}\left(-w^{2}\right) A_{z} \\
& =\frac{1}{j \omega \epsilon}\left(k^{2}-w^{2}\right) A_{z}
\end{aligned}
$$

where $k^{2}=-(j \omega \mu)(j \omega \epsilon)=\omega^{2} \mu t$. Therefore,

$$
E_{\phi}(e, \phi, z)=\frac{\partial F_{z}}{\partial \rho}+\frac{1}{j w \in \rho} \frac{\partial^{2} A_{z}}{\partial \phi \partial z}
$$

and

$$
\begin{array}{r}
\mathrm{E}_{\mathrm{z}}(e, \phi, z)=\frac{1}{j 2 \pi \omega \epsilon} \sum_{n=-\infty}^{\infty} e^{j n \phi} \int_{-\infty}^{\infty}\left(k^{2}-w^{2}\right) \mathrm{i}_{n}(w) \\
H_{n}^{(2)}\left(\rho \sqrt{\left.k^{2}-w^{2}\right)} e^{j w Z} d w\right.
\end{array}
$$

Since these equations, specialized to $\rho=a$, must equal Eds. (24) and (25), comparison yields

$$
\begin{align*}
& f_{n}(w)=\frac{j w \in E_{z}(n, w)}{\left(k^{2} \ldots w^{2}\right) H_{n}^{(2)}\left(a \sqrt{\left.k^{2}-w^{2}\right)}\right.} \tag{30}\\
& \mathrm{g}_{n}(w)=\frac{1}{\sqrt{k^{2}-w^{2} H_{n}(2)^{\prime}\left(a \sqrt{\left.k^{2}-w^{2}\right)}\right.}\left[\vec{E}{ }_{\phi}(n, w)+\right.} \\
& \left.\frac{n w E_{z}(n, w)}{a\left(k^{2}-w^{2}\right)}\right] \tag{31}
\end{align*}
$$

5. The radiation from a transverse rectangulai glot in a cipcular cylinder
It Is shown thet the principal transverse plane pattern of such a slot in which the excitation has only a circumferential tangential electric field component is identical to the pattern genereted by an infinite axial slot with the same circumperential excitation. The computations have been made for the especially faportant case of a narrow slot having an axial extent of a half-wave length.

The Field Distribution in the Slot.
At the boundaries oi the slot the component of the electric field that is tangent to the boundary must be zero. In generals, the excitation of the slot may be conceived as the superposition of many modes of field distribution, each of which satisfies the general excitation of a thin wire antenna, which may be synthesized by superposition of characterstic slmusoidal distributions that satisity the requirement that the curpent by zewo at the ends.

The geometiry or the conriguration suggesta that the field components are separable functions of ϕ and Z; thus (see Fig. 4)

Fig, (4) Radiation from a transverse rectangular slot in a circular cylinder

$$
\begin{aligned}
& E_{\phi}(a, \phi, Z)=F_{1}(\phi) G_{1}(Z) \\
& E_{Z}(a, \phi, Z)=F_{2}(\phi) G_{2}(Z)
\end{aligned}
$$

With the boundary condition at the edge of the slots it is evident that

$$
G_{I}(z)=\left[\begin{array}{ll}
\sin (p \pi z / 21) & p \text { even } \\
\cos (p \pi z / 21) & p \text { odd }
\end{array}\right.
$$

$$
F_{2}(\phi)=\left[\begin{array}{ll}
\sin \left(p \pi \phi / 2 \phi_{0}\right) & p \text { even } \\
\cos \left(p \pi \phi / 2 \phi_{0}\right) & p \text { odd }
\end{array}\right.
$$

From the point of view that the slot is a very shallow section of wave guide in consequence of which the field configuration is like that over the cross section of a wave guide, on this basis, it should be that

$$
\begin{aligned}
& F_{1}(\phi)=\left[\begin{array}{ll}
\cos \left(q \pi \phi / 2 \phi_{0}\right) & q \text { even } \\
\sin \left(q \pi \phi / 2 \phi_{0}\right)
\end{array}\right. \\
& G_{2}(z)= \begin{cases}\cos (q \pi z / 21) & q \text { even } \\
\sin (q \pi z / 21) & q \operatorname{odd}\end{cases}
\end{aligned}
$$

The narrow rectangular slot.

When the transverse dimension $2 \phi_{0}$ a of the slot is small compared with the wave length and the slot length, the significant mode of excitation is that in which there is only an E_{ϕ}-component that is uniform across the slot and has a sinusoidal distribution along its length. Thus

$$
F_{1}(\phi) G_{1}(z)=\left(v / 2 a \phi_{0}\right) G_{1}(z)=E_{\phi}(a, \phi, z)
$$

Radiation Field
Method one:

Assume in the aperture

$$
\begin{aligned}
& E_{\phi}(a, \phi, z)=\frac{V}{2 \phi_{0} a} \sin \beta(1-|z|)-\phi_{0}<\phi<\phi_{0} \\
& E_{z}(a, \phi, z)=0
\end{aligned}
$$

where β is the phase shift constant given by $\beta=\frac{2 \pi}{\lambda_{s}}$, λ_{s} is the wave length of the slot region, $k=\frac{2 \pi}{\lambda}$, and $\lambda=$ wave length of free space.

For a very narrow slot $\left(\phi_{0} \rightarrow 0\right)$ the transforms of Eds. (24) and (25) become

$$
\begin{aligned}
\bar{E}_{\phi}(n, w)= & \frac{V}{4 \pi \phi_{0} a} \int_{-\phi_{0}}^{\phi_{0}} \int_{-l}^{l} e^{-j n \phi} e^{j w Z} \sin \beta(1-|Z|) \\
= & \frac{2 V \sin n \phi_{0}}{4 \pi \phi_{0} a n}\left[\int_{-l}^{0} \sin \beta(1+Z) e^{-j w Z} d Z\right. \\
& \left.+\int_{0}^{l} \sin \beta(1-Z) e^{-j w Z} d Z\right]
\end{aligned}
$$

The integrations yield

$$
\begin{aligned}
\bar{E}_{\phi}(n, w) & =\frac{V \sin n \phi_{0}}{2 \pi n \phi_{0} a}\left[\frac{-2 \beta \cos \beta 1}{\beta^{2}-w^{2}}+\frac{2 \beta \cos w 1}{\beta^{2}-w^{2}}\right] \\
& =\frac{V \beta(\cos w 1-\cos \beta 1)}{\pi a\left(\beta^{2}-w^{2}\right)} \\
\bar{E}_{z}(n, w) & =0
\end{aligned}
$$

From Eqs. (30). (3I) we obtain

$$
\begin{equation*}
f_{n}(w)=0 \tag{32}
\end{equation*}
$$

$$
\begin{equation*}
g_{n}(w)=\frac{-v \beta(\cos \beta I-\cos w)}{\left.\pi a\left(\beta^{2}-w^{2}\right) \sqrt{\left.k^{2}-w^{2} H_{n}^{2}\right)(a} \sqrt{k^{2}-w^{2}}\right)} \tag{33}
\end{equation*}
$$

A_{z} and F_{z} are constructed according to Eqs. (28) and (29). For the radiation field use is made of the Eq. (23).

$$
\begin{aligned}
& A_{z} \xrightarrow{r \longrightarrow \infty} \frac{e^{-j k r}}{\pi r} \sum_{n=-\infty}^{\infty} e^{j n \phi} j^{n+1} f_{n}(w) \\
& F_{z} \xrightarrow[r \longrightarrow \infty]{ } \sum_{n=-\infty}^{\infty} e^{j n \phi} j^{-j k x} g_{n}(w)
\end{aligned}
$$

Substitute Eqs. (32) and (33) in A_{2}. In the radiation zone

$$
\begin{aligned}
& E_{\theta}=-j \omega \mu \mathbb{A}_{\theta}-j k F_{\phi} \\
& E_{\phi}=-j \omega \mu A_{\phi}+j K F_{\theta}
\end{aligned}
$$

where $A_{\theta}=-A_{z} \sin \theta, A_{\phi}=0, F_{\theta}=-F_{z} \sin \theta, F_{\phi}=0$. Then

$$
\begin{aligned}
& A_{z} \longrightarrow r \rightarrow \infty E_{\theta}(r, \theta, \phi)=0 \\
& E_{\phi}(r, \theta, \phi) \xrightarrow[r \longrightarrow \infty]{\longrightarrow}-j k F_{z} \sin \theta \\
&=\frac{-j k \sin \theta e^{-j k r}}{\pi r} \sum_{n=-\infty}^{\infty} e^{j n \phi_{j n}+I_{\operatorname{Gin}_{n}}(w)} \\
&= \frac{k V \beta \sin \theta e^{-j k r}(\cos w l-\cos \beta 1)}{\pi^{2} r a\left(\beta^{2}-w^{2}\right) \sqrt{k^{2}-w^{2}}} \\
& \sum_{n=-\infty}^{\infty} \frac{e^{j n \phi} j_{n}^{n}}{\left.H_{n}^{2}\right)}\left(a \sqrt{\left.k^{2}-w^{2}\right)}\right.
\end{aligned}
$$

Finally che radation field $E_{\theta}=0$, and, since $-k \cos \theta=w, k^{2} \cos ^{2} \theta=w^{2}, \sqrt{k^{2}-w^{2}}=k \sin \theta$

$$
\begin{align*}
& E=\frac{\left.v \beta_{e^{-j k s} \cos (k 1} \cos \theta\right)-\cos \beta}{\operatorname{ra}\left(\beta^{2}-k^{2} \cos ^{2} \theta\right)} \\
& \sum_{n=0}^{\infty} \frac{\epsilon_{n j}^{n} \cos n \phi}{i_{n}^{(1)}(k 2 \sin \theta)} \tag{34}
\end{align*}
$$

where $\epsilon_{n}=1$ when $n=0, \epsilon_{n}=2$ when $n>0$.
The radiation zone must be characterized by the plane weve relations

$$
E_{\theta}=\eta_{H_{\phi}} \quad E_{\phi}=-\eta H_{\theta}
$$

thererore,

$$
\begin{aligned}
& H_{\phi}=0, \text { and } \\
& n_{\theta}=-\frac{E \phi}{\eta}
\end{aligned}
$$

where ${ }_{\phi}$ is given by Eq. (34)

Hethod Two: Field in tems of the current distribution

If sinusoidal axiai and cosinusoldal circumferential current distributions are assuried around a slotted cylinder antema, then the radation field can be obtained in tems of the assumed current distribution.

Fig. (5)
Fiald in terms of Current Distribution

Fig. (5) represents a quadrant of an axial section of the cylinder. μ represents an elemental area on the surface. The point P is at a great distance from the cyinder. An approximate expression for r^{\prime} in terms of the radius and the coordinates will now be derived.

$$
\begin{array}{rl}
r^{\prime 2} & =r^{2}+r^{\prime \prime 2}-2 r^{\prime \prime} \cos r^{\prime \prime \prime} \\
& =r^{2}+a^{2}+z^{2}-2 r^{\prime \prime} \cos \overline{r r}^{\prime \prime} \\
r_{x} & =r^{\sin \theta \cos \phi} \\
r_{y} & =r \sin \theta \sin \phi \\
r_{z} & =r \cos \theta \\
r_{x}^{\prime \prime} & =a \cos \phi \\
r_{y}^{\prime \prime} & =a \sin \phi \\
r_{z}^{\prime \prime} & =z \\
r^{\prime}=\sqrt{\left(r_{x}-r_{x}^{\prime \prime}\right)^{2}+\left(r_{y}-r_{y}^{\prime \prime}\right)^{2}+\left(r_{z}-r_{z}^{\prime \prime}\right)^{2}} \\
=r & 1+\frac{a^{2}+z^{2}}{r^{2}}-\frac{2 a}{r}(\sin \theta \cos \phi \cos \phi) \\
-\frac{2 a}{r}(\sin \theta \sin \phi \sin \phi)-\frac{2 Z}{r} \cos \theta
\end{array}
$$

Applying the binomial expansion, neglecting the second and higher orders of r, and simplifying yield

$$
r^{\prime}=r-a \sin \theta \cos (\phi-\phi)-z \cos \theta
$$

$\bar{A}_{\mu}^{\prime \prime}=J_{\mu} d Z e^{-j k i} \frac{d l_{\mu}^{\prime}}{4 \pi r} \bar{a}_{\phi}=\frac{e^{-j k \theta}}{4 \pi r} e^{j k Z \cos \theta} \bar{N}_{\mu}{ }^{\prime \prime}$
In the preceding equations $A_{\mu}^{\prime \prime}$ is a vector potential at a distant point P due $t o$ an elemental surface μ, and $J \mu$ is the comment density at the elemental surface μ; $I^{\prime} \mu=c i r-$ cumferential distance to elemental surface measured from
$\phi=\pi$, and

$$
\begin{aligned}
& \bar{N}_{u}^{\prime \prime}=J u d Z e^{j c} d I_{u}^{\prime} \\
& c=k a \sin \theta \operatorname{Cos}(\phi-\phi)
\end{aligned}
$$

Let v represent a similar elemental surface diametrically opposite U. The X and X components of $\bar{N}_{\mu}^{\prime \prime}$ and \bar{N} nay be readily determined. If $\mathbb{N}_{x}^{\prime \prime}$ and $N_{y}^{\prime \prime}$ are defined by the relations

$$
\begin{aligned}
& N_{X}^{\prime \prime}=N_{u, x}^{n \prime}+N_{v, x}^{\prime \prime} \\
& N_{Y}^{n}=\mathbb{N}_{u, y}^{n}+N_{v, y}^{n \prime \prime}
\end{aligned}
$$

it is easily show that

$$
\begin{aligned}
& N_{X}^{\prime \prime}=-K d Z a \sin \phi d \phi \\
& N_{Y}^{\prime \prime}=K d Z a \cos \phi d \phi
\end{aligned}
$$

where $K=J_{u} e^{j c}-J_{v} e^{-j c} \quad K$, may be expressed by

$$
\begin{aligned}
K & =\frac{1}{2}\left(J_{s}+J_{a}\right) e^{j c}-\frac{1}{2}\left(J_{s}-J_{a}\right) e^{-j c} \\
& =j J_{s} \sin c+J_{a} \cos c
\end{aligned}
$$

where $J_{s}=J_{u l}+J_{v} \quad J_{a}=J_{u}-J_{v}$

$$
\begin{aligned}
& \sin c=\sin [\operatorname{ka} \sin \theta \cos (\phi-\phi)] \\
&=\sin \left[\frac{x}{2} \operatorname{sa} \sin (\theta+\phi-\phi)+\frac{1}{2} k a \cdots \sin \right. \\
&(\theta-\phi+\phi)
\end{aligned}
$$

$$
\begin{aligned}
& =\sin \left[\frac{1}{2} k a \sin (\theta+\phi-\phi)\right] \cos \left[\frac{1}{2} k a \sin (\theta-\phi+\phi)\right] \\
& +\cos \left[\frac{1}{2} k a \sin (\theta+\phi-\phi)\right] \sin \left[\frac{1}{2} k a \sin (\theta-\phi+\phi)\right]
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\cos c & =\cos \left[\frac{1}{2} k a \sin (\theta+\phi-\bar{\phi})\right] \cos \left[\frac{1}{2} k a \sin (\theta-\phi+\phi)\right. \\
& -\sin \left[\frac{1}{2} k a \sin (\theta+\phi-\bar{\phi})\right] \sin \left[\frac{1}{2} k a \sin (\theta-\phi+\phi)\right.
\end{aligned}
$$

But $\sin \left(\frac{1}{2} k a \sin \phi\right)=2 \sum_{n=0}^{\infty} J_{2 n+1} \sin (2 n+1) \phi$ and $\cos \left(\frac{1}{2} k a \sin \phi\right)=J_{0}+2 \sum_{k=1}^{\infty} J_{2 n} \cos 2 n \phi{ }^{*}$.

The Bessel function argument $\frac{3}{2} \mathrm{ka}$ is understood. For ka $\leqslant 1$ an excellent approximation for each of the above expressions is obtained by using only the first term of the infinite series. Using only the first term and substituting into the expressions for $\sin c$ and $\cos c$ yield

$$
\sin c=4 J_{0} J_{1} \sin \theta \cos (\phi-\phi)
$$

and

$$
\cos c=J_{0}^{2}
$$

then

$$
K=J_{0}\left[j 4 J_{s} J_{1} \operatorname{Sin} \theta \cos (\phi-\phi)+J_{2} J_{0}\right]
$$

Let

$$
N_{X}=\int_{\phi=0}^{\pi} N_{X}^{\prime \prime}
$$

* Ref. 5, sec. 5, chap 8.
and define N_{y}^{\prime} similarly. In order to perform these integrations it is necessary to specify the current-density distribution with respect to $\bar{\phi}$. Let

$$
J(z, \bar{\phi})=J(z, \pi) \cos b I^{\prime}
$$

with $I^{\prime}=$ circumferential distance measured from $\phi=\pi$, $b=\frac{2 \pi}{\lambda,}$, and $\lambda_{1}=$ wave length of current density distribution about the circumference of the cylinder. This assumption is based on the current distribution about the circumference of an infinite cylinder, uniformly fed along the slot with equal, in-phase voltages, which has been found* to be

$$
J(\phi)=-j \frac{V p(\phi)}{2 \pi \eta a}
$$

where $P(\phi)=a_{0}+\sum_{n=1}^{\infty} a_{n} \xi_{n} \cos n \phi, g_{n}=\frac{\sin n x}{n x}$,
(2) $a_{n}^{\prime}=a_{n}^{\prime}+a_{n}^{\prime \prime}$
and $a_{n}^{\prime}=\frac{\epsilon_{n} J_{n}(k a)}{J_{n}^{\prime}(k a)}, \quad a_{n}=\frac{-\epsilon_{n}^{H} n_{n}^{(2)}(k a)}{H_{n}^{(2)}(k a)} \cdot P(\phi)$ is a
series of Cosinusoidal functions, converges more rapidly for small values of ka. Therefore, it is assumed that the current distribution about the circumference is a simple
cosinusoidal variation, i.e. Cos bI', provided that ka $=$ $\frac{2 \pi a}{\lambda}$ is small, which means 'a' small for a certain frequencies, or the frequencios could not be too higher than its cut-off frequency for a certain dimension of the antenna.

Then

$$
J_{u}=J(z, \pi) \operatorname{Cos} \mathrm{ba}(\pi-\Phi)
$$

And

$$
J_{v}=J(z, \pi) \operatorname{Cos} b a \phi
$$

Therefore K becomes upon substituting,

$$
\begin{aligned}
K= & J_{0} J(Z, \pi)\left[j 4 J_{1} \sin \theta(\cos \text { ba } \pi+1) \cos \text { ba } \phi\right. \\
& \operatorname{Cos}(\phi-\Phi)+j 4 J_{1} \sin \theta \sin \text { ba } \phi \sin \text { ba } \pi \cos (\phi-\phi) \\
& \left.J_{0}(\cos \text { ba } \pi-1) \cos b a \phi+J_{0} \sin \text { ba } \pi \sin \text { ba } \overline{ }\right]
\end{aligned}
$$

Substituting for K into the expressions for $N_{X}^{\prime \prime}$ and $N_{y}^{\prime \prime}$, and integration from $\bar{\phi}=0$ to $\bar{\sigma}=\pi$, give N_{X}^{\prime} and $N_{\bar{y}}^{\prime}$. The simplified results are

$$
\begin{aligned}
& N_{x}^{\prime}=\frac{-j 16 a J_{0} J_{1} J(2, \pi) d Z \sin b a \pi \sin \theta \sin \phi}{b a\left(4-b^{2} a^{2}\right)} \\
& N_{y}^{\prime}=2 a J_{0} J_{1}(Z, \pi) d Z \sin b a \pi\left[\frac{j 4 J_{1}\left(2-b^{2} a^{2}\right) \sin \theta \cos \phi}{b a\left(4-b^{2} a^{2}\right.}\right. \\
& \left.-\frac{b a J_{0}}{\left(1-b^{2} a^{2}\right)}\right]
\end{aligned}
$$

$$
\begin{aligned}
& N_{\theta}^{\prime}=\left(N_{X}^{\prime} \operatorname{Cos} \phi+N_{Y}^{\prime} \operatorname{Sin} \phi ; \operatorname{Cos} \theta\right. \\
& N_{\phi}^{\prime}=N_{X}^{\prime} \operatorname{Sin} \phi+N_{Y}^{\prime} \operatorname{Cos} \phi
\end{aligned}
$$

Substituting for N_{X}^{\prime} and N_{y}^{\prime} gives

$$
\begin{aligned}
& N_{\theta}^{1}=-2 b a^{2} J_{0}^{2} \sin b a \pi \sin \phi \cos \theta J(Z, \pi) d Z \\
& {\left[\frac{1}{\left(1-b^{2} a^{2}\right)}+\frac{j 4 J_{1} \sin \theta \cos \phi}{J_{0}\left(4-b^{2} a^{2}\right)}\right]} \\
& N_{\phi}^{1}=-2 b a^{2} J_{0}^{2} \sin \pi b a \operatorname{J}(2, \pi) d Z \\
& {\left[\frac{\cos \phi}{\left(1-b^{2} a^{2}\right)} \frac{j 4 J_{1} \sin \theta\left(b^{2} a^{2} \cos \phi-2\right)}{J_{0} b^{2} a^{2}\left(4-b^{2} a^{2}\right)}\right]}
\end{aligned}
$$

Now

$$
\begin{aligned}
& A_{\theta}^{\prime}=\frac{e^{-j k x}}{4 \pi r} e^{j Z d} N_{\theta}^{\prime} \\
& A_{\phi}^{\prime}=\frac{e^{-j k r}}{4 \pi r} e^{j Z d} N_{\phi}^{\prime}
\end{aligned}
$$ where $d=k \cos \theta$.

The vector-potential components are

$$
\begin{aligned}
& A_{\theta}=\int_{-l}^{l} A_{\theta}^{\prime} \\
& A_{\phi}=\int_{-l}^{l} A_{\phi}^{\prime}
\end{aligned}
$$

The total slot length being 21. Before these integrations can be performed, a distribution function f or $J(Z, \pi)$
must be specified,
Let

$$
J(Z, \pi)=J_{m}(\pi) \sin \beta(1-|Z|)
$$

$J_{m}(\pi)=$ Maximum value of J (as Z varies) at $\phi=\pi$
$\beta=\frac{2 \pi}{\lambda_{s}}$, where λ_{s} is the wave length at slot region.
This current density distribution about the circumrerence of the cylinder in the Z-direetion is identical to the method one of a field distribution along a slot in the axial direction. The current density is zero at both ends of the slot. All. the current densities are confined in the circumference of the slot region. Substituting N_{θ}, A_{θ}^{\prime} into the integrating equation of $A_{\theta} ; N_{\phi}^{\prime}, A_{\phi}^{\prime}$ into A_{ϕ}, and integrating yield* the result

$$
\begin{aligned}
A_{\theta} & =\frac{e^{-j k r}}{4 \pi r} N_{\theta} \\
A_{\phi} & =\frac{e^{-j k r}}{4 \pi r} N_{\phi}
\end{aligned}
$$

where

$$
\begin{aligned}
N_{\theta}= & {\left[-\frac{4 b a^{2} J_{0}^{2} J_{m}(\pi) \sin b a \pi}{\left(\alpha^{2}-\beta^{2}\right)}\right][\sin \phi \cos \theta] } \\
& {[\cos \beta 1-\cos a 1]\left[\frac{1}{\left(1-b^{2} a^{2}\right)}+\frac{j 4 J_{1} \sin \theta \cos \phi}{J_{0}\left(4-b^{2} a^{2}\right)}\right] }
\end{aligned}
$$

$$
\begin{gathered}
N_{\phi}=\left[-\frac{4 \beta b a^{2} J_{0}^{2} J_{m}(\pi) \sin b a \pi}{\left(d^{2}-\beta^{2}\right)}\right][\cos \beta I-\cos d I] \\
{\left[\frac{\cos \phi}{\left(1-b^{2} a^{2}\right)}+\frac{j 4 J_{1} \sin \theta\left(b^{2} a^{2} \cos ^{2} \phi-2\right)}{J_{0} b^{2} a^{2}\left(4-b^{2} a^{2}\right)}\right]}
\end{gathered}
$$

N_{ϕ} and N_{θ} are radiation vectors of ϕ and θ components respectively.
The radiation field is given by Eqs. (12) and (13)

$$
\begin{align*}
& E_{\theta}=-j w \mu A_{\theta} \tag{35}\\
& E_{\phi}=-j w \mu A_{\phi} \tag{36}
\end{align*}
$$

while F_{ϕ} and F_{θ} are zero in this case.
6. Expression for $J_{m}(\pi), \lambda_{1}, \beta, f_{c}$.

Determination of $J_{m}(\pi)$
From the circumferential current-density distribution along a uniformiy-fed infinite slotted cylinder antenna it was round * that

$$
J(\pi)=\frac{-j V p(\pi)}{2 \pi Y a}
$$

where $P(\pi)=a_{0}+\sum_{n=1}^{m}(-1)^{n} a_{n} g_{n}-2.772 \mathrm{ka}+4 k a \sum_{n=1}^{m}(-1)^{n+z}$
*Rer. (2), sec. III.
$\frac{g_{n}}{n}$
and \quad is the intrinsic impedance of free space $=120 \pi$

$$
\begin{aligned}
& a_{n}=a_{n}^{\prime}+a_{n}^{\prime \prime} \\
& a_{n}^{\prime}=\frac{2 J_{n}(k a)}{J_{n}^{\prime}(k a)} \quad a_{n}^{\prime \prime}=\frac{-2\left(f_{n}^{(2)}(k a)\right.}{H_{n}^{(2)}(k a)}
\end{aligned}
$$

For $n=0$ omit the factor 2.

$$
\begin{aligned}
& E_{n}=\frac{\sin n \pi}{n \pi}=0 \\
& \begin{aligned}
P(\pi) & =a_{0}-2.772 \mathrm{ka} \\
& =a_{0}^{\prime}+a_{0}^{\prime \prime}-2.772 \mathrm{ka}
\end{aligned}
\end{aligned}
$$

$J_{\mathrm{r}}(\pi)$ can be expressed in terms of the input voltage. The specified current-density distribution is

$$
J(z, \Phi)=J_{\mathrm{m}}(\pi) \sin \beta(1-|z|) \cos a b(\pi-\Phi)
$$

Therefore

$$
J(0, \pi)=J_{m}(\pi) \sin \beta I
$$

The circumferential current density distribution is to be matched as closely as possible with that of the corresponding infinite cylinder, uniformly fed. Therefore,

$$
J(0, \pi)=\frac{-3 V P(\pi)}{2 \pi r a}
$$

V being the applied voltage at $Z=0$. Equating the above two expressions for $J(0, \pi)$ and solving for $J_{m}(\pi)$ gives

$$
J_{\mathrm{in}}(\pi)=\frac{-j V P(\pi)}{2 \pi \gamma \sin \beta I}
$$

As $\operatorname{Im} P(\pi)$ is negligible compared with $\operatorname{Re} P(\pi)^{*}$

$$
J_{\mathrm{m}}(\pi)=\frac{-\mathrm{jV} \operatorname{Re} P(\pi)}{2 \pi \dot{\operatorname{Han}} \sin \beta I}
$$

Determination of the wave length λ, around cylinder.
λ_{1} is to be found from the current-density distribution of the ininite cylinder. For $a b<0.5$, satisifactory results are obtained as the distribution is approximately consinusoidal as assumed. In reference (2) is shown that $J(z, \phi)=J(z, \pi) \cos b I^{\prime} . F \operatorname{For} \phi=\frac{1}{2} \phi_{1}=\phi_{0}, I^{1} \rightarrow a \pi$, therefore, $J\left(0, \frac{1}{2} \phi\right)=J(0, \pi) \operatorname{Cos} a b$. As $\operatorname{Im} P\left(\frac{2}{2} \phi,\right)$, Im $P(\pi)$ are negligible compared with $\operatorname{Re} P\left(\frac{1}{2} \phi\right)$, Ke $P(\pi)$ respectively, therefore,
$\operatorname{Re} P\left(\frac{1}{2} \phi,\right)=\operatorname{Re} P(\pi) \operatorname{Cos} a b$
yields reasonable values of b, where ϕ, is the slot angle $=2 \phi_{0}$ and $b=\frac{2 \pi}{\lambda_{1}}$.

Determination of $\beta=\frac{2 \pi}{\lambda_{s}}$ with λ_{s} denoting the wave Iength of slot region.

In order to find the phase constant β it is necessary first to find the input impedance of the slot. The slot is viewed as a loaded transmission line. The slot width is very small compared with the wave length, and the metal is
*ReI. (2), sec. III.
assumed to be perfectly conducting. The assumption is made that Y and Z are independent of the axial coordinate Z. ie. that the line is uniform. As in ordinary uniform line theory the propagation constant and the characterisetic impedance can be expressed in terms of Y and Z as follows.

If

$$
\begin{aligned}
\sigma & =\alpha+j \beta=\sqrt{Y Z} \\
Z_{0} & =\sqrt{Z / Y}
\end{aligned}
$$

where $Y=G+j B, Z=j X=j \omega L$, it is easily shown ${ }^{*}$ that the phase-shift constant

$$
\beta=\frac{X}{2}\left(\frac{G}{\alpha}\right)=\sqrt{\frac{X}{2}} \sqrt{\left(B^{2}+G^{2}\right)^{\frac{1}{2}}+B}=\frac{2 \pi}{\lambda_{s}}
$$

For frequencies considerably above the cutoff frequency, G become negligible, and

$$
\beta=\sqrt{B X}
$$

For frequencies near or below the cutoff frequency, the G is found from

$$
G=\operatorname{Re} \frac{J\left(\frac{1}{2} \phi_{1}\right)}{V}=\operatorname{Im} \frac{P\left(\frac{1}{2} \phi_{1}\right)}{2 \pi h a}
$$

The slot distributed susceptance is

$$
B=w C_{S}+B^{t}
$$

* Ref. (2), sec. II.
B^{\prime} is the susceptance per unit length due to the conduction current density and ω_{s} is the capacitance par unit length between the slot faces.
C_{S} is determined by the relation

$$
c_{s}=\frac{t}{W} \epsilon
$$

Where t is the thickness of the cylinder at the slot and W is the slot width, and ϵ is the permittivity of free space.

As B^{1} is evaluated at the slot surface, all displacemont current except, that flowing directly between the slot faces is accounted for in the evaluation of B^{\prime}.

From the infinite cylinder, the current distribution around cylinder*

$$
J(\phi)=-j \frac{V P(\phi)}{2 \pi \pi a}
$$

At the slot $\phi=\frac{1}{2} \phi_{1}$ and $J\left(\frac{1}{2} \phi_{1}\right)=-j \frac{\operatorname{VP}\left(\frac{1}{2} \phi_{1}\right)}{2 \pi \eta a}, \operatorname{Im}\left(\frac{1}{2} \phi_{1}\right)=-\frac{\operatorname{VRe}\left(\frac{1}{2} \phi_{1}\right)}{2 \pi \eta a}$

Therefore

$$
B^{\prime}=-\frac{\operatorname{Im} J\left(\frac{1}{2} \phi_{1}\right)}{V}=\frac{\operatorname{ReP}\left(\frac{1}{2} \phi_{1}\right)}{2 \pi \eta a}
$$

*Ref. (2) sec. III

Then

$$
B=W C_{S}+\frac{\operatorname{ReP}\left(\frac{1}{2} \phi_{1}\right)}{2 \pi r a}
$$

where

$$
c_{s}=\frac{t}{W} \epsilon
$$

The inductance L per unit length is expressed in Ref. 2 . Sec. V as

$$
L=\frac{1}{v^{2} C_{S}+\frac{v b_{1}}{2 \pi \eta}}
$$

where v is velocity of light $3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$. If $P_{k a}$ denotes $\operatorname{ReP}\left(\frac{1}{2} \phi_{1}\right)$ evaluated at ka, then

$$
b_{1}=\frac{5}{6}\left(3 P_{1}-4 P_{0.05}-P_{0.2}\right)
$$

$P_{1}=\left.\operatorname{ReP}\left(\frac{1}{2} \phi_{1}\right)\right|_{k a}=1$
$P_{0.05}=\left.\operatorname{Re} P\left(\frac{1}{2} \phi_{1}\right)\right|_{k a}=0.05$
$\left.\mathrm{P}_{0.2}=\operatorname{Re} \mathrm{P}\left(\frac{1}{2} \phi_{1}\right) \right\rvert\, \mathrm{ka}=0.2$
where $\mathrm{P}\left(\frac{1}{2} \phi_{1}\right)=\mathrm{a}_{0}+\sum_{n=1}^{m} \mathrm{a}_{\mathrm{n}} \mathrm{g}_{2 \mathrm{n}}+4 \mathrm{ka} \sum_{n=m+1}^{\infty} \frac{\mathrm{g}_{2 \mathrm{n}}}{\mathrm{n}}$,
m is a sufficiently large so that $a_{n}=\frac{4 k a}{n}$ for $n>m$

$$
X=W L
$$

From the calculated values of B, G, and X, the β is obtained from

$$
\beta=\sqrt{\frac{X}{2}} \sqrt{\left(B^{2}+G^{2}\right)^{\frac{1}{2}}+B}
$$

Cut-ofe frequency P_{c}
The cut-off frequenoy is defined as that frequency at which the wave length in the slot would become infinite if there were no radiation. If there were no radiation, G woula be zero. Then

$$
\alpha=\sqrt{\frac{X}{2}} \sqrt{\left(B^{2}+G^{2}\right)^{\frac{2}{2}}-B}={ }^{*} 0
$$

and $\beta=\sqrt{B X}$. It follows that $\beta=0$ and λs becomes infinite when $B=0$. In the actual case G will not be zero. Therefore, for $f=P_{c}, \alpha=\beta=\sqrt{\frac{1}{2} G X}$. Thus the cut-off frequency woule be derined as that frequency at which $\alpha=\beta$ where $B=0$ Thereiore,

$$
w_{c} C_{s}+\frac{R e P\left(\frac{1}{2} \phi_{1}\right)}{2 \pi n a}=0
$$

or

$$
\frac{\operatorname{Re} P\left(\frac{1}{2} \phi_{L}\right)}{\mathrm{Ka}}=-0.711 \times 10^{12} \mathrm{c}_{\mathrm{s}}
$$

By plotting the curve Re $P\left(\frac{1}{2} \phi_{1}\right)$ versus ka, it is an easy matter to find the value of ka which satislies the above expression. The cut-off frequency in terms of $\mathrm{k}_{\mathrm{c}} \mathrm{a}$ is

$$
f_{c}=\frac{47.75}{a} \quad \mathrm{~K}_{\mathrm{c}}{ }^{2} \mathrm{mc}
$$

[^0]In ploting of the field pattems, the MKS system of units is used. For other variables convention units are used, such as β in neper $/ m$, G in mho/ m, etc.
7. Field patterns at fm 900 mc

The field patterns are made under the conditions that $a \ll \lambda, \frac{\sin n \phi_{0}}{n \phi_{0}} 1$, and $a b<0.5$, which satisiy the assumptions in both methods.

Let

$$
\begin{aligned}
\mathrm{f} & =900 \mathrm{mc} \\
21 & =1.41 \lambda \\
\mathrm{~W} & =0.00111 \lambda \\
\mathrm{a} & =0.0318 \lambda \\
t & =0.0075 \lambda
\end{aligned}
$$

and the calculated values become

$$
\begin{aligned}
\mathrm{ab} & =0.302 \\
\mathrm{ka} & =0.2 \\
\mathrm{f}_{\mathrm{c}} & =820 \mathrm{mc} \\
\mathrm{k} & =18.85 \\
\mathrm{c}_{\mathrm{S}} & =5.98 \times 10^{-11} \\
\mathrm{~b}_{1} & =174 \\
\mathrm{~L} & =3.7 \times 10^{-3} \\
\mathrm{X} & =209 \\
\mathrm{~B} & =0.085
\end{aligned}
$$

$$
\begin{aligned}
& G=0.0119 \\
& \beta=4.42 \\
& \lambda=33.3 \mathrm{~cm}
\end{aligned}
$$

Principal H-plane
The principal H-plane is obtained by setting $\theta=90^{\circ}$ and the given data into the expression for radiation. The field pattem is a variation of the field with different values of ϕ at constant r. From Eq. (34) of method (1) and Eq. (35), (36) of method (2) it is easy to draw the field patterns or the principal H-plane.

Method (1) Eq. (34) becomes

$$
\left|E_{\phi}\right|=\left|A \quad \sum_{n=0}^{\infty} \frac{\epsilon_{n} j^{n} \cos n \phi}{H_{n}^{(2)}:(0.2)}\right|
$$

where A is a constant.
Method (2) Eqs. (35), (36) become

$$
E_{\theta}=0
$$

$$
\left|E_{\phi}\right|=\left|B\left[1.1 \cos \phi-j 0.562\left(2-0.091 \cos ^{2} \phi\right)\right]\right|
$$

where B is a constant.

Principal E-plane
The principal E-plane is obtained by setting $\phi=0$, or $\phi=90^{\circ}$ and the given data into the expression for the radiation. The field pattem is a variation of the field

Fig. (6)
Comparison of Principal H-plane

With different values of θ, at constant r. From Eq. (34) of the method (1) and Ens. (35), (36) of the method (2) it is easy to draw the field pattern of the principal E-plane.

Method (1) Eq. (34) becomes

$$
\begin{aligned}
\left|E_{\phi}\right|= & \left\lvert\, A^{\prime} \frac{\cos (4.52 \cos \theta)-0.475}{18-355 \cos ^{2} \theta}\right. \\
& \left.\sum_{n=0}^{\infty} \frac{\epsilon_{n} j^{n} \cos n \phi}{H_{n}(2)^{1}(0.2 \sin \theta)} \right\rvert\,
\end{aligned}
$$

where A^{\prime} is a constant.
Method (2) Eqs. (35), (36) become $E_{\theta}=0$
$\left|E_{\phi}\right|=C\left|\frac{0.524-\cos (4.52 \cos \theta)}{355 \cos ^{2} \theta-18} \quad \begin{array}{c}{[1.1-j 0.538(} \\ \left.2-0.091 \cos ^{2} \theta\right) \mid\end{array}\right|$
where C is a constant. (see Fig, 7)

Fig. (7)
Comparison of Principal Enplane

54

8. Comparison of methods (1) and (2)

The principal H-plane
Method (1)

$$
\begin{equation*}
\left|E_{\phi}\right|=\left|\frac{A^{\prime}}{a} \sum_{n=0}^{\infty} \frac{\epsilon_{n} j^{n} \cos n \phi}{H_{n}^{(2)^{\prime}}(k a)}\right| \tag{a}
\end{equation*}
$$

where $A 1 / a=A$
Method (2)

$$
\begin{equation*}
\left|E_{\phi}\right|=a B^{\prime}\left|\frac{\cos \phi}{1-b^{2} a^{2}}+\frac{34 J\left(b^{2} a^{2} \cos ^{2}-2\right)}{J_{0} b^{2} a^{2}\left(4-b^{2} a^{2}\right)}\right| \tag{b}
\end{equation*}
$$

where $\mathrm{aB}^{\prime}=\mathrm{B}$, as ka $\longrightarrow 0, \mathrm{ab} \ll 0.5$, Eq. (a) becomes

$$
\begin{align*}
\left|E_{\phi}\right| & =\left|\frac{A^{\prime}}{2} \frac{I}{H_{0}^{(2)!}(k a)}\right|=\left|\frac{A^{\prime}}{a} \frac{I}{J!(k a)-j N_{0}^{\prime}(k a)}\right| \\
& =\left|\frac{A^{\prime}}{-j \frac{2 a}{k a}}\right|=A^{\prime \prime} k=\text { Constant } \tag{c}
\end{align*}
$$

In Eq. (b), as ka $\longrightarrow 0, a b \ll 0.5$

$$
\begin{aligned}
\left|E_{\phi}\right| & =B^{\prime} a\left|\cos \phi+\frac{j k a(-2)}{4 b^{2} a^{2}}\right| \\
& =B^{\prime} a\left|\cos \phi-\frac{j k}{2 b^{2} a}\right|
\end{aligned}
$$

For $a \longrightarrow 0, \frac{k}{2 b^{2} a} \gg \cos \phi$,
Therefore,

$$
\begin{equation*}
\left|E_{\phi}\right|=B^{\prime} s^{2}\left|\frac{k}{2 b^{2} a}\right|=B^{\prime \prime} k=\text { Constant } \tag{d}
\end{equation*}
$$

It is obvious from Eqs. (c) and (d) that, as ka $\longrightarrow 0$
with ab <<0.5. the fileld derived rrom ooth methods approachs a constant, and the field pattem is a circle. In this case, the slot antenna behaves like a dipole antenna.

The coincidence of these two methods could be anticipated. In method (I), the assumption is made that the slot angle is very small so that $\frac{\sin n \phi_{0}}{n \phi_{0}}=1$, and a $\longrightarrow 0$. In method (2) the assumption is made that $a b<0.5$, and good results can be obtaincd for $a b \ll 0.5$. Therefore, under these conditions as ka $\rightarrow 0, \mathrm{ab}<0.5$, which satisfy both assumptions in these two nethods.

The condition for ka $\rightarrow 0$, i.e. $a \rightarrow 0$ for a certain frequency, redaces the sexies of the Hankel functions to the $n=0$ term. Therefore, for a finite small slot angle $\frac{\sin n \phi_{0}}{n \phi_{0}} n \phi_{0} \rightarrow 0^{=}$. The assumption in method (1) is satisfied under the condition ka $\longrightarrow 0$. The principai E-plane $(\phi=0$, or $\phi=\pi)$

Mechod (I)

$$
\left|E_{\phi}\right|=\left|C^{\prime \prime} \frac{\cos (k I \cos \theta)-\cos \beta 1}{\beta^{2}-k^{2} \cos ^{2} \theta} \sum_{n=0}^{\infty} \frac{\epsilon_{n} j^{n} \cos n \phi}{H_{n}^{(2)^{\prime}}(k a \sin \theta)}\right|
$$

where $C^{\prime \prime}$ is a constant.
Method. (2)

$$
\begin{aligned}
\left|E_{\phi}\right|=\left\lvert\, D^{\prime \prime} \frac{\cos (k I \cos \theta)-\cos \beta I}{\beta^{2}-k^{2} \cos ^{2} \theta}\right. & {\left[\frac{\cos \phi}{1-b^{2} a^{2}} \frac{j 4 J_{1}}{J_{0}}\right.} \\
& \left.\frac{\left(b^{2} a^{2}-2\right)}{b^{2} a^{2}\left(4-b^{2} a^{2}\right.}\right] \mid
\end{aligned}
$$

Where D is a constant.
As ka $\longrightarrow 0, a b \ll 0.5$, the field pattern in method
(I) becomes

$$
\left|E_{\phi}\right|=\left|A^{\prime \prime} \frac{\cos (k 1 \cos \theta)-\cos \beta I}{\beta^{2}-k^{2} \cos ^{2} \theta}\right|
$$

where $A^{\prime \prime}=A^{\prime \prime} k$, and the field pattern in method (2) becones

$$
\left|E_{\phi}\right|=\left|B^{\prime \prime} \frac{\operatorname{Cos}(k I \operatorname{Cos} \theta)-\operatorname{Cos} \beta I}{\beta^{2}-k^{2} \operatorname{Cos}^{2} \theta}\right|
$$

Where $B^{\prime \prime \prime}=B^{\prime \prime} k$.
The field patterns derived from these two methods are exactly the same, provided that $k a \rightarrow 0$, ba <0.5 and the field is much like that of a dipole antenna.

Fig. (8) Principal E-plane as ka $\longrightarrow 0$

9. Field patterin with change of frequencies

The frequencies ranged from 500 inc to 1500 mc ; only $500 \mathrm{mc}, 700 \mathrm{mc}, 900 \mathrm{mc}, 1100 \mathrm{mc}$, and 1500 mc are used. In all of these cases, same dimensions and the same excitation are assumed. Method one is adopted in these cases.

List of data
$f=500 \mathrm{mc}$
$\lambda=60 \mathrm{~mm}$
$a=0.0178 \lambda$
$\mathrm{W}=0,000616 \lambda$
$t=0.00415 \lambda$
$21=0.8 \lambda$
The calculated values:
$\mathrm{ka}=0.111$
$c_{s}=5.98 \times 10^{-11}$
$a b=0.105$
$b_{1}=174$
$L=3.7 \times 10^{-8}$
$x=114$
$B=-0.924$
$G=-0.00715$
$\mathrm{r}_{\mathrm{c}}=820 \mathrm{mc}$
$\beta=0.0397$
The principal H-plane:

$$
\left|E_{\phi}\right|=\left|c \sum_{n=0}^{\infty} \frac{\epsilon_{n} j^{n} \cos n \phi}{H_{n}^{(2)^{\prime}}(0.111)}\right|
$$

The principal E-plane:

$$
\left|E_{\phi}\right|=\left|c \cdot \frac{\cos (2.5 \cos \theta)-0.9999973}{\left(0.00158-108 \cos ^{2} \theta\right)} \sum_{n=0}^{\infty} \frac{E_{n} j^{n} \operatorname{Cos} n \phi}{H_{n}(2)^{\prime}(0.111 \sin \theta)}\right|
$$

where C and C ' are constants.

List of data:

$$
\begin{aligned}
\mathrm{f} & =7000 \mathrm{mc} \\
\lambda & =42.8 \mathrm{~cm} \\
a & =0.0247 \lambda \\
t & =0.00584 \lambda \\
W & =0.000864 \lambda \\
21 & =1.12 \lambda
\end{aligned}
$$

The calculated values:

$$
\begin{aligned}
\mathrm{ka} & =0.155 \\
\mathrm{c}_{\mathrm{s}} & =5.98 \times 10^{-11} \\
\mathrm{ab} & =0.22 \\
\mathrm{~b}_{1} & =174 \\
\mathrm{~L} & =3.7 \times 10^{-8} \\
\mathrm{X} & =163 \\
B & =-0.135 \\
G & =-0.00955 \\
\mathrm{I}_{\mathrm{c}} & =820 \mathrm{mc} \\
\beta & =0.1435
\end{aligned}
$$

The principal H-plane:

$$
\left|E_{\phi}\right|=\left|D \sum_{n=0}^{\infty} \frac{\epsilon_{n} j^{n} \cos n \phi}{H_{n}^{(2)}(0.155)}\right|
$$

The principal E-plane:

$$
\left|E_{\phi}\right|=\left|D^{\prime} \frac{\cos (3.53 \cos \theta)-0.999}{0.0206-216 \cos ^{2} \theta} \sum_{n=0}^{\infty} \frac{\epsilon_{n} j^{n} \operatorname{Cos} n \phi}{H_{n}^{(2)}(0.155 \operatorname{Sin} \theta)}\right|
$$

where D and D^{\prime} are constants.
List of data:
$\mathrm{r}=1100 \mathrm{mc}$
$a=0.0388 \lambda$
$t=0.00915 \lambda$
$W=0.00135 \lambda$
$21=1.75 \lambda$
$\lambda=27.3 \mathrm{~cm}$
The calculated values:
$\mathrm{ka}=0.244$
$c_{\mathrm{S}}=5.98 \times 10^{-11}$
$a b=0.357$
$b_{1}=174$
$L=3.7 \times 10^{-8}$
$x=256$
$B=0.27$
$G=-0.016$
$f_{c}=820 \mathrm{mc}$
$\beta=8.32$

The principal Fi-plane:

$$
\begin{aligned}
& \left|E_{\phi}\right|=\left|E \sum_{n=0}^{\infty} \frac{E_{n} j^{n} \cos n \phi}{H_{n}^{(2)^{\prime}} \frac{(0.244)}{(2)}}\right| \\
& \left|E_{\phi}\right|=\left|E^{\prime} \frac{\cos (5.55 \cos \theta)-0.414}{69.2-534 \cos ^{2} \theta} \sum_{n=0}^{\infty} \frac{E_{n} j^{n} \cos n \phi}{H_{n}(2)^{\prime}(0.244 \sin \theta)}\right|
\end{aligned}
$$

where E and E are constants.

> List of data:
> $\hat{L}=1500 \mathrm{mc}$
> $\lambda=20 \mathrm{~cm}$
> $a=0.053 \lambda$
> $t=0.0125 \lambda$
> $W=0.00185 \lambda$
> $21=2.4 \lambda$

The calculated values:
$k a=0.333$
$c_{s}=5.98 \times 10^{-11}$
$a b=0.523$
$b_{1}=174$
$L=3.7 \times 10^{-8}$
$x=349$
$B=0.6$
$G=-0.021$
$\beta=14.3$
The principal H-plane:

$$
\left|E_{\phi}\right|=\left|F \sum_{n=0}^{\infty} \frac{\epsilon_{n} j^{n} \cos n \phi}{H_{n}^{(2)}(0.333)}\right|
$$

The principal E-plane:

$$
\left|E_{\phi}\right|=\left|F^{\prime} \frac{\cos (7.54 \cos \theta)-0.956}{205-985 \cos ^{2} \theta} \sum_{n=0}^{\infty} \frac{\epsilon_{n} j^{n} \cos n \phi}{H_{n}^{(2)^{\prime}}(0.333 \sin \theta)}\right|
$$

where F and F^{\prime} are constants.

Fig. (9)
Principal H-plane varies with the frequencies f

Fig. (10)
Principal E-plane vanies with the frequencies f

The cut-off frequency is defined as that frequency at which $\alpha=\beta$. Below cut-onf B is negative, rapidly becoming a large negative quantity as the irequency is reduced and α becomes very much greater than β. For frequencies sufficiently above the cut-orf frequency B is positive, and β becomes very much greater than α.

The field pattems only change slightly for operating frequencies not far beyond that of the cut-off frequencies. For frequencies much below that of the cut-orf frequency, the principai field patterm is approximately circular. For frequencies much higher that the cut-off frequency, errors occur for the assumption that $k a \rightarrow 0$, where $k=\frac{2 \pi f}{V}$.

When β is comparable with k, the E-field pattern is no longer like that of a dipole antenna, (naximum field occurs not at $\theta=90^{\circ}$). If this is the case, as the frequencies are higher than the cut-off frequency and ka becomes large, the assumption made before is invalid.

The maximum field of the principal E-field could be found by differentiating the field with respect to θ. As the series form of the Hankel function changes almost linearIy with θ, it is convenient to treat the derivative of the series as a constant. From this it is round that maximum field occurs at $\theta=\cos ^{-1} \frac{\beta}{k}$. Unless $\beta<k$, the maximum fileld would not occur at $\theta=90^{\circ}$.
10. Two slotted antennas

The radiation field produced by two slots in the same direction in a cylinder as show in Fig. (11), couid be obtained by superposition. With the same assumptions made as far a single slot, and the coordinates as shown in Fig. (11), results could be found by the following procedures.

Fig. (11)
Two slotted antenna with slots in the same orientation

It is assumed in the apertures

$$
E(a, \phi, z)=\frac{V}{2 \phi_{0} a} \sin \beta(h+1-|z|)
$$

under the condition that $21=\frac{\lambda s}{2}$, that is, the slot length is one half of the wave length of the slot region, where $\beta=\frac{2 \pi}{\lambda_{s}}, h$ is the distance frore the center of the slot to the origion.

The transforms of Eqs. (24) and (25) become

$$
\bar{E}(n, w)=\frac{2 V \operatorname{Sin}\left(n \phi_{0}\right)}{a n \pi \phi_{0}}(\cos \text { wh } \cos w 1) \frac{\beta}{\beta^{2}-w^{2}}
$$

Eqs. (30) and (31) yield

$$
f_{n}(w)=0
$$

$$
g_{n}(w)=\frac{2 \beta v \cos w h \cos w]}{\pi a \sqrt{k^{2}-w^{2}+N_{n}(2)^{\prime}\left(a \sqrt{k^{2}-w^{2}}\right)\left(\beta^{2}-w^{2}\right)}}
$$

for small slot angles.

$$
\text { Since }-k \cos \theta=w, k^{2} \cos ^{2} \theta=w^{2}, \sqrt{k^{2}-w^{2}}=k \operatorname{Sin} \theta \text {, }
$$

the radiation field is

$$
\begin{aligned}
E_{\phi}= & \frac{2 V \beta e^{-j k r} \cos (k n \cos \theta) \cos (k i \cos \theta)}{\pi^{2} r a\left(\beta^{2}-k^{2} \cos ^{2} \theta\right)} \\
& \sum_{n=0}^{\infty} \frac{\epsilon_{n} j^{n} \cos n \phi}{H_{n}^{(2)}(k \sin \theta)}
\end{aligned}
$$

This could be checked by setting $h=0$ and $I=\frac{\lambda_{s}}{4}$ in this field and the field derived in Eq. (34).

Field pattern
The principal H-plane is the same as for a single slot antenna. This is anticipated from the superposition theory. The principal E-plane is much like that of the pattern of end-fire arrays of point sources. Use the same dimensions as for a single slot antenna. And let $\tilde{F}=900 \mathrm{mc}$
$\mathrm{n}=\lambda=33.3 \mathrm{~cm}$
$1=\frac{\lambda \mathrm{s}}{4}=35.6 \mathrm{~cm}$

The principal Enplane is plotted as

$$
\left|E_{\phi}\right|=\left|\frac{\cos (6.28 \cos \theta) \cos (6.97 \cos \theta)}{18-354 \cos ^{2} \theta} \sum_{n=0}^{\infty} \frac{\epsilon_{n} j^{n} \cos n \phi}{H_{n}^{(2)}(0.2 \sin \theta)}\right|
$$

FIG. (12)
Principal E-piane of two slotted antennas with two slots oriented in the sane direction

Radiation field produced by two slots on opposite sides of a cylinder could be obtained by the superposition method. With the same assumptions made as for the single slot antenna, and with the coordinates taken as show in Fis. (13), the result in found by the following procedures.

Fig. (13)
Two slotted antennas with slots on opposite sides

It is assumed in the apertures

$$
\begin{aligned}
& E_{\phi}(a, \phi, z)=\frac{V}{2 \phi_{0} a} \sin \beta(I-|z|) \quad\left[\begin{array}{c}
-\phi_{0}<\phi<\phi_{0} \\
\pi-\phi_{0}<\phi<\pi-\phi_{0}
\end{array}\right. \\
& E_{z}(a, \phi, z)=0
\end{aligned}
$$

The transforms of Eqs. (24) and (25) become (for small ϕ_{0})

$$
\begin{array}{ll}
\bar{E}_{\phi}(n, w)=\frac{2 V \beta(\cos w 1-\cos \beta 1)}{\pi a\left(\beta^{2}-w^{2}\right)} & n \text { even } \\
\bar{E}_{\phi}(n, w)=0 & n \text { odd }
\end{array}
$$

Finally the radiation field $\mathrm{E}_{\theta}=0$, and

$$
E_{\phi}=\frac{2 V \beta e^{-j k x} \cos (k l \cos \theta)-\cos \beta 1}{\pi^{2} r a\left(\beta^{2}-k^{2} \cos \right)} \sum_{n=0}^{m} \frac{j^{n} \cos n \phi}{H_{n}^{(2)^{\prime}}(\operatorname{kasin} \theta)}
$$

Where $m=$ even

Field pattern of two slotted antennas
For the same dimensions as the single slot antenna and with $f=900 \mathrm{mc}$, the principal E-plane is much like that of a dipole antenna for small ka. As it is easily seen for small ka the predominant terms in the series are approximately constants for various value of θ. The principal H-plane is

$$
\left|E_{\phi}\right|=\left|A \cdot \sum_{n=0}^{m} \frac{\epsilon_{n} j^{n} \cos n \phi}{H_{n}^{(2)}(0.2)}\right|
$$

Where A' is a constant. The field patterm is almost a circle. This result might well be expected fror the superposition theory. (see Fig. I4)

Fig. (1.4)
Principal H-plane of two slotted antennas with two slots oriented in diametrically opposite directions

11. Discussion

The results given in this paper are restricted to the far-zone field of various slots. The far-zone fields are given in terms of an infinite series of terms involving the reciprocal of the first derivative of the Hankel function where the argument are functions of ka $\sin \theta$, Where $k=2 \pi / \lambda$ and a is the radius of the cylinder. This series converges rapidly for small value of ka $\sin \theta$ (for a certain value of θ this series converges rapidly for smali value of ka). However, as the cylinder becomes larger, the series representation f or the far field coverges more slowly and a greater number of terns are required to approximate the sum of the infinite series to a given accuracy. Therefore, in the previous assumption ka is so small that only two terms of the Hankel are taken.

The disagneerent between these two calculated field patcerns might come from the assumption of a cosinusoidal current density distribution arround the circumference in the second method. Actually it could be imagined from the circumperential current density distribution of an ininite cylinder, uniformy fed, that the current distribution along the circumference is a series of sinusoidal functions. This series converges slowly. It is very difficult to find the vector potential in this series form. But in $a b \ll 0.5$, the predominant term in the form of the
current distribution is just a simple cosine function. With this restriction the radiation is nuch easier to handle by assuming a cosinusoidal cusrent distribution along the circumference. However, the noin lobes in the corresponding field patterne axe approximately the wame. Tive assumption of a cozinusoldal circumferantial current distiribution does not seniously limit the validity to find the radiation field.

The fielc pattem produced by two slotted antemas with these slots oriented in the same direetion does not change greatly with the distance between the slots. The principal E-plane is identically the 1 deld pattem of the end-ifre arrays of point sources. the ileld pattern produced by two slotted antennas with these slots dianetrically opposite is a circle in the principal H-plame. This reault is useful especialiy for IV madation.

Method one assumed that ϕ_{0} is small; therefore, for large ϕ_{0} modification mist be applied to the derivation or the radiation Sleld. The same restriction is also prosented in method two in finaing the wave lengtin around che cyinder.

From the agreement of these two methods, it is easy to design a slot antenne witi the dessmed sield pattern by assuming the approximate current distribution along the
circumference, or a reasonable assumption can be made concerning the field distribution in the slot and the result can be obtained. The slotted cylinder antenna has many desireble properties. Its band width, while not large, is suitable for many commication purposes at very high and ultra-high frequencies. As such slo's are easy to construct and excite, they are userul in application to microwave antenna design.

Inst of references

1. Roger F. Harrington, THe-Harmonic Electronagnetic fields' 1961.
2. Charles A. Holt, 'Input Impedance of a slotted Cylinder Antenna' 1950.
3. G. Sinclair, The Extemal Fleld Produced by a Slot In an Infinite Circular Cylinder'. Proc. IRE 36, 1948.
4. Samuel Silver and WIlliam K. Saunders, The Radation from a Transverse Rectangular Slot in a Circulai Cylinder' Jaumal Applied Physics, Vol. 21, Feb. 1950.
5. C. R. Wylie, Jr, 'Advanced Engineering Mathematics' 1951.
6. Jahnke and Emde, 'Tables of Functions', 1945.

ACKNOWLEDGENENYS

The author wishes to express his sincere appreciation to Dr. Charles A. Holt for his invaluable guidance and encouragement, especially during his vacation in the summer. Appreciation is also expressed to other professors for their role in imparting knowledge to the author.

The vita has been removed from the scanned document

[^0]: *Ref. (2) sec. II.

