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LIST OF SYlYlBOLS 

H(2) 1 (ka) 
n 

a = Radius of the slot antenna 

az = Unit vector in Z-direction 

A' =Vector potential at a distant point P due to an 

elemental strip at Z or thickness dZ. 

A' e 
-j kr = e eJZ<Iw, .,.,..4_-;r_r___ e 

A' • e -jkr 
<P 4 '7Tr -

A" = Vector potential at a distant point P due to an u 
elemental surface u. 

K =Magnetic vector potential. 

B = J) H = Magnetic flux density web/m2 

b = 2 7( 
..,/'\._I 

B = Total slot distributed susceptance. 

B1 = Slot distributed susceptance due to conduction currents. 

c = ka Sin CJ Cos(<f- cP). 
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C3 = Slot distributed capacitance. 

d = k Cose 

D = cft = Vector electric flux density Oou.lomb,/ir12 • 
-E = Vector electric intensity volt/m. 

F *'" Electric vector potential volt. 

fn (l{z) = Function to1iedetermined from boundary condition. 

gn(l::p) = Function tobedetermlned from boundary condition. 

gn :::; Sin nx 
~ nx 

G : Slot distributed conductance mho/m. 

H =Vector magnetic intensity. 

I ( 215 ) = Transform of' current I (bf) • 

J{Z_, "ip) = Curren Jc density distribution about 

f'erence of a cylinder at {Z, 4) ) • 

J(Z _, '77') = Current density distribution about 

ference of a cylinder at (Z~'11). 

the circum-

the circum-

Jn = Jn(~ka) : Bessel fUnction of the first kind~ 

J ( ?1) = Maximum value of J(as Z varies) at cJ; = 7f m 
J =Current density amper~/m2 • 

Ju = Current density due to elemental area u. 

JV =Current density due to elemental area v. 

JS = JU-+ JV 

Ja = Ju-+ Jv. 

K jc J -jc -• = Jue - Ve 

kl =} k2 - w2 
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? 9 ,,.- + 1,.-h.e '"Z l-:e , kz 1:: Separation constant k~ = 
k = j!!-- = Wave number of' the medium .. 

L ;:; Slot distr-lbuted reactance, heni"'Jr/1-, 

21 o Slot leng·ch 

M ... Magnetic aourceJ volt/m~ 

N = Radiation Vector. 

j ,.. _, 
i' 1 " J d" . ..,; -•t "u = u ·t... e d. u 

N! -- (N~ CorJc/> + N! Sin ) Cos f) ~ 
" 

N! S:lnc1 + N. Cos¢. 
4>- y 

p = A point in the roc1iat:ton f'ielcl. 

qv = Charge dens1t~/ 11mp/i1, 

r• = Distance fro:rr, u to a distant point p. 

t ::: Slot thiclmeaa . 

u = Elemental area on the cylinder-lcal surface. 

V ; Applied voltage 
s I v :: Velocity of light 3xl0 m aec. 

W _ Slot width. 

X - tAf L .:::: Slot disi;:r:lhutGd reuctance ohrr/1:·!. 

Y = Slot d:tst~lbuted admittance r;1bo/m. 
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Z = Slot distribu.'ced reactance ohm/m 

Z = Slot characteristic impedance ohm/m. 

~ d? / Z "' Cylindrical coordinate symbols. 

r, e, <P ::: Spherical coordinate symbols. 

t:-, n = 1 when n = 0) [,, ~ 2 when n > O. 

cf? = 2 ~ = Slot angle. 

er = Propagat:ton cons'i;ant. 

,A= Wave length of current density distribution about the 
I 

circumference of the cylinder . 

./\...s = Wave length of' slot region :: 

../-... = Wave length of free space = 

~ (Z L <A (Z) = Slot fUnction. 

2 7f -i3-
27T 

k 

;f :: Angle measured 1 .. rom X-axis to elemental area u in cP 
direction. 

c = Permitivity of free space {8.85x10-12 farad/m). 

_,;J. = PermeabiJ.j_ty of free space (4 xio-7 henry/m}. 

fr = { 1) ~ ... 120 7r = Intrinsic impedance of free space. 

</> G Field function. 

v.J = 2 7f f = Angular velocity. 

d.. ... Att2nuation constant. 
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I1'JTRODUCTION 

.An antenna that has important application at ver"J 

high frequencies consisJcs of' a slot or slots cut into a 

conducting cylinder. For example, a longitudinal slot in 

a vertical cylinder produces a horizontally polarized 

signal suitable for FM or television. The ba~1c p~oblem 

or communicating to and from aircraft .. satellites 3 and 

submarines has stimulated research work into the theory 

and application of slotted cylinder antennas. It is the 

purpose of this paper to aid this worK by describing the 

field patterns prodt1ced by the slot antenna. 

In 1950 Silver and Saunders developed general 

expressions for the external field produced by a slot or 

ar>bitrary shape, in the wa.11 of an infinite circular 

cylinder, on the assumption that the tangential electric 

field in tl1e slot is a prescribed function. In this case 

it is assumed that the width of the slo"t; is very much 

smaller than its length and that the excitation is a 

cosine distribution along its length and is uniform over 

its width, which is 

Cos -rr Z 21 
Where V is the excitation source, 2 ~is the slot angle, a 

ls the radius of the cylinder antenna, 21 is the slot 
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lol'lgth alO!i$ tho a"t1s1 axis.~ :Out the l"eSUlt can only apply 

t·' a alot antenna or a £ixed dimension fo1., a single 

fr·aquency which is v.nlmotm. Because the z>'<.:)lation between 

the wave len~th at slot ..>-., and the wave length in the 

ro.diation field >.. is unknown .. 

It would be more gc~ner'a.l to a.ssurae tbat tile f'ie ld in 

th(~ ::!lot :ts 

- v - 24!a 
0 

Cos f3 ( 1 .... 1ZI ) 

where ,4 ia the phase .shift constant def"lned by /::t :: .z 7T f I"' -x---? s 
Whf!r-c ..)\..~ ia wave length at slot re~ion.. Wave length at 

the slot rc:gion could be round in ter-ws of the dimensions 

ot the cylinde1 ... antenna and the wave length .A. Theref'ore, 

clit'ferent z>adiation fields cori~spond ro:i:~ different values 
ot• ..AJ o But Sil ·ver emd Salh'"lders di.d not introduoe any method 

to f':tnc1 the wave 1en.$th at slot. 
Another:> method was ouggested by D.ro C. A. Iiolt in 1950~ 

tt1at the externa,l f1eld could be found by assuming a 

current distribution around tlle c:t.rcuuu"~n>ence Q Dr. Holt 

has t:i::•eated the slot ao tile loaded tmnsm:t.ssion line~ and 

tt1e distributed parameters of' the slot region can be 

:round~ from which tr1e wa.ve ... length along the slot can be 

deterr111ned. Hov-:eveJ?, this method of finding the i"'adiation 

field is restricted by the assumption of a cosin;usoidal 
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current density distribution about the circumfei-ence used 
~co find the radiated power,, while ac·i:;ually the current 

density distribution is a series of sinusoidal functions~ 

This method is applicable only for diameter·-wave length 

* ratio less than about 0.2 . 

In this paper improvement is made in finding the 

radiation field by assuming an electric field at ti1e slot 

by 

Cos ,,6 (l - I Z I ), 
and then using Dr. Holt •s method to find the wave length at 

slot to get j3 • The r--a.diation found by the combination 

of these two methods is less restrictive than the above 

two methods~ Satisfactory result is anticipated. 

* Ref. (2 j, sec. l 
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2. Introduction to the Fundamental Concepts 

Maxwell's Equations: Assume the time variation is a 

sinusoid function; then 

\l x E = -Jw J3 
\l x ii = Jw f> -+ J 
Vactor potentials: 

(1) Q-:8 .. o 
(2) v, fi = qv 

(3) 

(4) 

For a linear an-cenna energized at the centel":; ca1 ... rying 

a current I (z•), the magnetic vector potential is 

{see Fig. 1) 

1 Jf I(z, )e-jk 11-.-r•I 
Az. = lf1T -t 1 r. - r•I dz' 

where I- - , )2 2 r - r' = r + z 1 - 2rz 1 cosB ~ Az is the 

magnetic potential in z direction, k is the wave 
l 

number of the free space, and given by le :: arc fie )2", 

In the far zone 

Ir - r•I = r - z I cos e ( 
and 

I( 1 } jkz •cos e (S°) 
z e dz' 
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Fig. (1) 

Linear antenna energ:i.zed at the center 

Same expression for the electric vector potent:i..al can be 

ma.de by dua15-ty b·~tween electric source and magnetic 

source 

r -t 
( ) J"kz 'Cose 

K Z ' e dz' 
where K (z') is the magnetic current oriented in the Z-

direction, and Fz is the electric vector potential in 

Z-direct:ton. 

Constru .. ction of solution: 

In a homogeneous source-free lossless region, the 

fields satisfy 

(6) 



- vx n: = j/,{}ft n 
\]x fi;: jal€iJ. 
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\l• i1 l!. 0 

\7· E = o 
Expressions for the fields in te~i~S of vector 

potentials can be obtained b:y· expressing part o.r the 

field in terms of! F and part in terms of' A. 

E:E•-+:fil" 
H = a•+ ii11 

where E' and ft• are due to elact1~1c sourcGs and E 11 and ft" 
ru.'\le due to magnetic sources o Th0n 

1 _.,._N_ 
JaJe 

vxvxK (7) 

(8) 
2-

From the vector identity V x vx A s V' (\/'·A) - V A 

and Mam'7e11 1s equations, Equ,.:1,t:tons (?) and (8) become 
- - 1/ - 1 -) E = - v X]' - j.Wµ. A+ TdJe:- \1 ( \J• A 

H= \j:idl.-JweF-'"-j.__ r7(\7·F) 
j JAf Ji v 

Far zone field (radiation tield): 

Th~ distant field o:t"' an el·ectric current element 

consists essentially of outward traveling plane waves. 

(9) 

(10} 

The same is tx-ue or a r.1agnet:tc. currrait elem~:?nt by dua.lity o 

Hence;) the radiation zone muet be characterized by 

(11) 

since the field is a superposition of' the f'ields froc1 i:mny 
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current elements by evaluating the partial H-field due to 

electric source J, according to H' = \}xi, and retaining 

only the dominant terms (r-l variation). It can be 

* sho't'm that 

~ 

with E 1 

H1 ,., {VxA) e = 
H~ = (\]xA)~ 

given by Eq~ (11). S:lmilai.,ly, for the pa1 .. tial E -

field due to M, in the radiation zone 

E ll 
e -

E t! 
t) = 

{\7 xF) e = 
- (\7xF)~ = 

- jkFJi 

jlcF8 

with H" given by Eqo {11). The total field is the sum of 

these partial fields, or 

E - E' + E'e = - j tAf.Jf A - jkFtP {12) e - s 

E¢ - E~ + E" <! ... - j /PA A -+ jkF8 (13) 
-in the radiation zone, with H given by Eq. (11) 

The wave function: 

Equations (9) and (10) show how to construct the 

general solutions to the field equations in homogeneous 

regions once the general solutions to the scalar Helmholtz 

equation are obtained. Use is made of' the method 

*Ref. 1~ sec. 13, chap. 3. 
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•separation or variables'. General solutions to the 

Helmholtz equation can be constructed in certain coordi-

nate systems. In this case, the cylindrical coordinate 

system is used. 

The scalar Helmholtz equation in cylindrical coordi-

nates is 
d ! ='¢I I cJ 2 tP o> 2 rP 
fdf \ f C) f) + fL OJ ¢z -+ c;? z J. 

where cf is the field function. Let the solu·tions be 

the f.'orm 

{,6 ::R (f)4> ( ¢) Z ( Z) 

Using the method of separation-·of-variables yields 

d d 12 Ii 2 n2J R ... o 
f d r . <f d ~, > -+ L(kf F > 

d2p -a-;is--2-- + = 0 

{14) 

(15) 

where k2 = k~ + k2 and these together with n are separation 

constants. The if and Z equations are harmonic equations, 

giving rise to harmonic functions, denoted by h(n.¢) and 

h(kc,z). The R equation is Bessel's equation of order n, 

denoted by Bn (kf',f). Commonly used solutions to Bessel 1 s 

equation are 



l'""( 

Any two of the funqtions are linearly independent solu-

tions; so Bn(ke,f ) iss in general, a linear combination 

of any two of them. According to Eq. (15) the soJ.utions 

to tl1e Helmholtz equation become•. 

<f k P , n, kz = Bn ( k .f'· P ) b ( n, </> ) l1 ( kz , z ) 

wbere </ is tl1e elementar.y· wave function. 

J_,inear combinations of J~he elementary wave f'unctions 

are also solutions to Jci1e Helmholtz equation. Possible 

values of n and k f7 :; or n and kz can be summed to get the 

desired solutionj (but not kf and kz for they are interrel-

ated). For example, 

tP = [ ) cn,ke cf k e )n,kz 
n ~ 

= [_ [ C11 , k f' Bn ( k e , f ) h ( n, ¢ ) h ( kz, z ) 
Jt ~(' 

j_s a. solution to the Helmholtz equat:ton9 where Cn,kf' are 

constants. It is also possible to :!.ntegrate over the 

separation var1able. The possible solutions to the 

Helmholtz equation are 

f ) h (n, ¢ ) h ( k,,. , z ) 
;t. 

dk z 



cf;~ L J gn(kf )Bn(lcf' , f )h(nJ dJ )h(k2 ,Z} dk f 

n "~ 
where the integrations are over any contour in the complex 

plane and i'n (kz) and gn (k C' ) are functions to be deter-

mined from bounda1"y conditions. If cf is single valued, 

it is necessal?"'.f that cf ( ¢) = cf ( dJ + -Z7f}. This means 

~chat b(n,¢) must be periodic in</;, in which case n must 

be an integer. In this condition, we choose ejn¢. Thus, 

the n summations of Eqs. (2!!-) and (25) are usu.ally Fou1->ier 

series of ¢ . As h(lczf) is a harmonic solution to a 

harmonic function, a possible solution of ejkzz is taken 

in this case. 

Considering the various solution to Besselts 

equation, it is apparent that H.1\ 2 > (k e. f ) ai"0 the only 

solutions which vanish for large (if l<: f is complex. 

They represent outward-traveling waves if lee is real. 

Therefore~ if there are no sources at infinity~ the Bri 
(ke,C') must be H,_~2 )(k~,f) if' p-o01s to be included. 

Hence the elementary wave function becomes 

and the general solution to the Helmholtz equation becomes 

dkz (16) 
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3. Three-dimensional radiation 

A three-dimensional problem having cylindrical 

boundaries can be reduced to a two-dimensional problem by 

applying; a Fourier transformation wi-th respect to Z (the 

* cylinder axis) . .. For example, if' ¢ (X_, Y, Z ~ ) is a solu-

tion to ~,he three-dimensional wave equation 

= 0 

then 

'1'(X,Y,w) = /_ 00tf (X,Y,Z)e -JWZ dz 
-e><J 

is a solution to the two-dimensional problem wave equation 

( 
dx2 

+ __ d_.l.._ + kr > cf 
Q) y2 = 0 

2 2 2 where ki :;: k - w is the Fourier transform of¢. Once 

the two-dimensional problem foi'J d is solved, t.he three-

dimensional solution is obtained fi,.om the inversion 

tf (X,Y,Z) .,, __l_ r rj (X,Y,w)ejWZ dw 
2 7( 

-o<J 

*See Refo i, sec. 11, chap 5. 
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Tbi8 la usu..'.llly a difficult opettitiono Fortunately, 

:tn the radiati.on zone tne inversion becomes quite simple. 

This far-zone inversion formula w:tll now be obtained. 

Consider tbe problem ·:Jf: a filament or Z-directed 

current along the Z axia, as illustrated by Fig. (2). The 

only restriction placed on the current I(z) is that it be 

four1er-t1 .. ansfo1"rnable. In the usual way j/ we construct a 

solution 

H :: \7 x A A = a~ tf 
where </; is a wave function independent or ¢ and r"'~presen-

ting out-ward traveling waves at large .. 
From the gener-al solution of' Eq. (16), the solution 

to this problem would be n(separat1on variable associated 

with ¢; ) ;.: o. A harmonic function is e-,iven by ejWZ, and 

a traveling wav:~ in the radlal direction is given by the 

Hankel fUnction of the second ld.nd Hig) (k1 e ), where k1 = 
J ?) 2 
k~- w 0 Thereforo~ ant1e:tpating the need for Fou.r1er 

tmnsrom.s, we write 
cf= 2 \ 1: !'(w) ni2) ( ('J2 _ w2)eJwZ dw 

1l'he Fouriel" transfol."ffi of rf :1.a evidently 

'Cf = r {w)H~2 ) ( f J k2- w2) 

where :r(w} is de·tenn1ned by ·the natv.re of the source, 

according; to Ampere•s Circuital Law 

1 . .2ff H¢ f d ¢ i(w) 
u e-o 

(18) 

(19) 
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( 
p 

J(Z) r---' e t 
I '/ 

Fig. (2) 

A filament of current along the Z-axis 
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-where H q, and I ( w} are transforms of Hip and I. 

The small-argument formula for H(2 ) yields* 0 -

Y ..,. 1. 781 (Euler 1 s constant) 

Therefo:r•e, 

(/J = f'(w) (1 - j2 
'7f 

and therefore 

H<P f --; 
Hence equation (19} yields 

f(w) ... r{w) 
4j 

2j 
7ff 

B:.1. - Cl¢ -., ... - <9(' 

r(w) 

Substitution in Eq. (18) gives the transform solution to 

the problem of Fig. (2) 

_J_8_l1T_ ;: I- ( . ) H. ( 2) ( p j k2 2) jwZ d w 0 ·, -we w 

where I(w) = £ I(Z)e-jwz• dz' 

I(z i) is the filamenta1•.y curi"ent a.long the Z-axis. 

* Ref. 1, appendix D. 

(20} 



Consider the case of the 1lineaz> antenna• carrying 

a cur•rent I{z•). · 1'he magnetic vector potential for th:.ts 

problem by Eq. (5)~ is 

Az :: e -jkr ,_ j l I(z • )ejkz •cos e dz' 
·• 4 '7Tr --1 

As A :: al tf1 

and I(w) = i f _-twz' 
I{z')e tJ dz' 

.f 

Therefore it can be written 

e -jkr 

Eq. (12) yields 

-jlcr 
E e r -"'° jw fi 4 7( r 

I{-k Cos B ) 

Sin() i(-k Cos B) 

r >-> 1 

(21) 

Hence the radiation field ia simply related to the 

transform of the source evaluated. at w .. -le Cos e . 
Comparison or Eq. (20) and Eq. (21) reveals the identity 

[ (2) I 2 2 jWZ j2e-jkl" 
I(w}H0 ( f ,.Jk - w )e dw - • ~ r-p(J r 

-ell 

I(- kCos s ) (22) 

which holds for any function I(w). 
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The asymptotic expression of Hankel function of arbi-

trary order :ls 
HA2) {x) 

~ dJ 

from which it is evident that 

As long as & =\= o or '7T , we have f'--oo as r-->"" ~ 

because e = r sine • AlsoJ if' k is complex {some dissipa·-
) 2 2 tion assumed), then k - w is never zero on the path of 

integration. We are then justi:.fied in using the asympto-

tic formula for the Hant-eel fm1ction and we can replace the 

Hi2 ) of Eq. (22) by j-nrr4i2 ). The result is 

~ -j1cr ,e .n + 1 ----J 
r~o0 :c 

I(-kCo~ e ) (23} 

This fornmla will be usec.1 in the r•adiation problem that 

follows. 

4. The Tangential field over the cylind~r 

Consider a conducting cylinder of infinite length in 

which one or more apertl.tr•es exist. The geometry is shown. 

in F'ig. (3). We seek a solution for the field external 

to the cylinder in terms of the tangential compon~nts of 

E over the apertures. 
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·z 

--- -
Fig. {3) Slotted cylinder antenna with 

infinite length 

p 

y 

We shall first develop the Fourier expansion for the 

tangential component of the electric field over the sur-

face of the cylinder. The tan~ential electric field in the 

slot in gene1"al has both 4> and Z components, which we 

consider to be prescribed ftmctions E<P (aJ c/> :Z) and Ez 

(a., cp PZ) respectively. 
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Now let Eo< denote elther E<j; {a~ 4>,Z) or Ez{a,tP,Z). 

In the ¢> direction E°" is a periodic f'unction and there-

fore, can be represented by a Fourier series 
otJ 

Eo< (a~ cp ,Z) ... '[_ An{Z)ejn<P 
n=..ctJ 

the co-efficient belng a function of Z. It is readily 

evident that 

An is thus a piecewise continuous function and its 

Fourier representation is the Fourier integral 

Z > z· 2 

A0 (Z) • 2 \ J: [ J~ A0 (Z)e-jWZ dZ J eJWZ dw 

The previous expression for An{Z) yields 

1 io<J _4_7(...,..2.-
-oO 

Jf)~Ci!.) ·nt/J 
E ot (a, t/> ,Z )e -J d c/> 

't!,{z) 

Hence the tangential field 

Eo( (a, cP ,Z) :: 1 ejn4je><! Jwz 
e aw -- . 

n=-CJ(J jo<J e -jwZ dZ 

1¢,(z!) _CJ() • jn.P Eot (a, 4> ,Z}e - df 
¢,czJ 
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It is more obvious, if it is written 

1 
2 71 

[ 
Then tl1e inverse t.ransf'ormation is 

2 7f 
e jn¢ 1: -( ) JWZ """ Ez n,w e aw (26) 1 =-

(27) 

The field external to the cylinder can be expressed as the 

sum of a TE component and TM component. 

Inspecting from Eqs. (9) and (10), tt1e wave functions 

Az and Fz are constructed in such a manner that ~ and Z 

functions possess the same form as Eq. {26) or (27), and 

they represent outwa:r>d traveling waves at large p • Then 

it is assumed that 

oC 

eJnl' 1: i'n (w)i42) ( f')k2- w2)ejWZ A i [ dw m-z 27T (28) >t"' -(?(] 

1 
(7<I 

eJn<P 1: g;n{w)~2) ( p J1<:2- w2)ejwZ Fz =- I aw 
271 Jt= -A (29) 

E<P and Ez are calculated from Eqs. (9). and {10) and from 

the boundary condit1on at f = a. Then fn(w) and gn{W) 

are determined. The procedure is 



Ez ( f, cp, Z) !! 

= 

28 

J. 

- j tJJJiA? + 1 .;:> Az 
OJ z2 ... 

jW-6 

- joJ)lAz + 1 (-w2) A 
j c,tJ6 

i (k2- W2) AZ 
j {ft c 

z 

where k2 = -(JvJjlJ(j~~)= tJJ2:4c • Therefore, 

-1- _1 __ 
j {/JC- f 

and 

Since these equations~ specialized to f = a, must equal 

Eqs .. (2l~) and (25), comparison yields 

(30) 

g (w) - 1 n .,.. I 2 2 f2\.-.,----,1~2~~2r;:::= 
,..,J k - w ~c I (a 1:: - w ) [E <P (11,w) -t 

nvJ E (n~w) ] ______ z......_.__ (31} 
a(k2 - w2) 
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5. Ti1e radiat~on f'.F?m a tx•ansv~~e ,:rec~anmulal"' slot in 

a ci1'»Cular cylind,er: 

It :ls showa that the principal transverse plane 

pattern of such a slot in which the excitation has only a 

c.ircumf·erential tangential electric field component ia 

identical to the pattern generated by an infinite axial 

slot with the same circumfemntial excitation. The compu-

ta.tiona have been made f'or the especially important case 

of a. narrow slot having m1 axial extent of a half'-wave 

length. 

The Field Dist1 .. ibut::ton 1n the Slot. 

At the boundaries ot the slot the component of ti1e 

electric .field that is tangent to ·tfle bounda.1~ must be zero. 

In generals the exc1tat1on or the elot may be conceived as 

the superposition of many modes or fleld d:.tatribution, each 

of wilich satisfies the gene:ml exc1tat1on oi' a thin wire 

antenna, which mali· be synthesized by superposition of 

characteratic a1nuso1da.l distributions that satiafy the 

requil~ement that the current by zero at the ends. 

The geometl')Y of ttle configuration suggests that the 

field components are sepa>:Jable functions ot: cpand Z; thus 

(see Flg. 4) 
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r 

e 

------

Fig. (4) Radiation from a transverse rectangular 

slot in a circular cylinder 

E c;P (a 1 </; , Z ) : Fl ( ¢> ) G1 ( Z ) 

Ez (a,¢ .iZ) = F2 ( ¢) G2 (Z) 

With the boundary condition at the edge of the slots it is 

evident that 

G (Z) ::: 
1 

[ 
Sin ( p '17' Z/21) 

. Cos (p'1TZ/21) 

p even 

p odd 
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l Sin { p '7T' 4> /2 </;0 ) 

l Cos (p77d> /2~) 
p even 

p odd 

From the point of view that the slot is a very 

shallow section er wave guide in consequence of which the 

field configuration is like that over the cross section of 

a wave guide, on this basis, it should be that 

r Cos ( q 7T ¢ /2 <Po ) 

[ Sin ( q 7T ¢ /2 ¢. ) 

r Cos (q '7f Z/21 ) 

l Sin (q 'TT Z/21 ) 

The narrow rectangular slot. 

q even 

CJ. odd 

q even 
q odd 

When the transverse dimension 2 cf .. a of the slot is 

small compared with the wave length and the slot length, 

the significant mode of excitation is that 1n which 

there is only an E 4' -component that is uniform across the 

slot and has a sinusoidal distribution along its length. 

Thus 

Rad:tation Field 

Method one: 
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Assume in the aperture 

E ~{a, t:P ,z) = _ _.v __ 
2¢.a 

Sin_? (1 - lzl ) -cf/ t? < tPo 

where /2... is the phase shift constant given by ,,& = _..z.,,..71 __ , /-' .>-s 

>t. is the wave length of the slot .:r.e.gion, k ::: 

and A = wave length of free space. 

For a very narrow slot ( Q0 - o ) the transforms of 

Eqs. (24) and (25) become 

e -Jn¢ ejwZ Sin fi (1 - IZI ) 
dZ d</> 

= 2V Sin n cfo, I j 0 Sin ;1 ( l -r z ) e -JWZ dZ 
4 'Tf t:f>o an l -t 

+ r Sin ft (1 - Z) e-J11Z dZ l 
The integrationsyielc 

V Sin n tFo = -------
271' ntPoa 

I -2 fi Cos .,&1 + 
L .A3.l - w2 

V ,§ ( Cos wl - Cos /3 1 ) 
7r a ( ~~ - W2) 

:Ez(n,w) =- o 
From Eqs. (30), (31) we obtain 

2 ~Cos wl j 
At 2. 2 ./'-' - w 

(32) 



3-, 
.) 

Cf' (~.;} -V z8 J.Q..os 71 -Cos wJ.) ( ) 
C>n' = '7fa (;S2.-w2) k2-w'2Hl\2)(a Jk2-w2) 33 

Az and Fz are constructed according to Eqs. (28) and (29). 

For the radiation field use is made of the Eq. (23). 

-J·kr A ---e z r-oa----
oO 

L 
n=-o4 

F -jkr 
Z r~ __§__ __ _ 

7( l~ 

f eJniP Jn+ 1 gn{w) 
)'t = -o4 

Substitute Eqs. (32) and (33) in Az· In the radiation zone 

Ee - -JW..4AB 

E¢ :: -j fJf fi At/ 

where Ae = -A17 Sin (), , ... 
Then 

E1J {r, e, ¢) 

- jl~{; 

+ jkF c9 

A¢ II; 0, Fe = -Fz Sin fJ , F ¢ = O. 

Ee (r, e , ¢) = o 

---+- -JkFz Sin fJ r-p<J 

= -Jk Sina e-jkr f- ~jn.4'Jn + lgn(w) 
?rr L 

I[= -A 

: l<:V ~ Sine e-jkr(Cos Wl - Cose 1) 
'7T 2 ra { ,,8:1 - w2 ) ) k2 - w2 
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Finally the radiation field E 9 : o, and, since 
C. e 2. 2 212 2 -k os :: w, k Cos 9-:. w ,vlt - w ::: k s:tne 

E ::: y ~ e-Jk7 Cos(ltl Cos e) - Cos {!_ 1 
· ra( 13z- k2 Cos2 e) 1 

where €.n= 1 when n :;:; o~ En= 2 'men n > O. 

The radiation zone must be characterized by the plane 

wave relations 

theret'ore ~ H rf ::: 0 3 and 

E . ~ 

~ 
u e :::: ·-

Method Two: Field in terme of the current d1str1-

but ion 

If sinusoidal axial ant1 cos1nuso1dal circumre:rential 

current distributions are assumed around a slotted cylinder 

ante1~1a, then the I"'ddiation field can be obtained in terms 

of the assumed current o.istr:tbution. 
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l. 

f rc"5 e 

I 

Fig. (5) 

Field in terms of Curi,ent Distribution 

Fig. (5) represents a quadrant of an axial section or 
the cylindei-- • .4 represents an elemental area on the surface. 

The point P is at a g;rea.t distance from the cylinder. An 

approximate expression f'or r' in terms of the radius and 

the coordinates Will now be derived. 



I"t 

rt2 = r'2- + rn2_ 2rrn 

-- r2-t a2-t z2 -
rx .. l~ Sine Cos 4> 

ry = r s1n e Sin.() 

r = z r Cos e 
r If a Cos "tp ;;: x 
ry II a Sin q; :::: 

rz !I '7 - <.I 

= )(rx -r" )( 
)2 + 

= r [ l + a2+ z2 ri 

Cos rrn 
2rr11 Cos rr" 

{r - :r ")2 + (r - :r ")2 y y z ~ 

2 a 
r (Sine Cos ¢ Cos<!) 

2 a (Sin 9 Sin ¢ Sin ~ ) - Cose 2 J J.. 
r 

Applying the binoriiial expanslon, neglecting the second 

and hlgher ordex•s of' r, and simplifying yield 

r' :.: r - a Sin B Cos ( ¢ - (f ) ·- Z Cos e 

·-11 -jl~r'' A)) ::: J~ dZe -a¢> :: e-jk:;.'"' . ejkZ Cose N,tt t1 

47rr 

In the preceding equations A~ is a vector potential at a 

d:tstant point P due '.;o an elemental surface ..a )" and J .a :i.s 

tbe cur1"ent density at the elemental surfact-; ..d. ; 11 = cir-

cumferential distance to elemental surface measured from 
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cf> = 7f , and 

= Ju dZ ejc dl ~ 

c .: lta Sine Cos(¢ - ~) 

L~t v represent a similar elemental surface diametri-

cally opposite tJ. • The X and Y components of .N~ and N~ 

may be readily determinedo If' M~ and N'~ are defined by 

the relations 

N" x = N" -+ tJ,x N" v,x 

N" = N" -r N" y µ,y v,'f 

it is easily shown that 

N" = - K dZ a Sin </> d ¢ x 

N; = K dZ a Cos ¢ d ¢ 

- JtJ ejc - J e-jc 
v where K Kj may be expressed by 

Bin c = Sin [ 1-ca Sin e Cos (¢-~)] 

- Sin r~ ka Sin ( f) +¢-(f)-r} ka. Sin 

(9-<fi~?J~ 



,...,, 
:.;;0 

= Sin [ ~ ka Sin ( 8 -t cP - '(/) }] Cos [ -1- ka Sin { a-¢+~~ 

+Cos L~ lea Sin ( t9 + </>-?>) ] S:i.n ["~· ka Sin( e - </>+Cf>~ 

Similarly 

Coo c =Cos [ ~ ka Sin (e+¢-4>)] Cos [-l? ka S1n(e-¢+<f~ 

... Sin ( ·~- ka Sin ( e +~-~)]Sin [ ~ ka Sin ( a-¢+~~ 
01 

But Sin (~ Ir..a S:tn4 ) = 2 L. J 2n + 1s1n (2n + 1)¢ 
n=o 

and Cos (-~ ka Sin 4>) = J 0 + 2 f_ J 2n Cos 2n¢ ~ 
I(.:./ 

The Bessel function argument ~ ka is understood. 

For ka ~ 1 an excellent approximation for each of the above 

expressions is obtained by using only the first term of 

the infinite series. Using only the first term and 

su.bstituting into the expressiQns for Sin c and Cos c yield 

and 

then 

Let 

Sin c = 4 J 0 J, Sin €J Cos(¢ - cp ) 

Cos c 

( 7f N i1 

~==O X 

* Ref. 5, sec. 5; chap 8. 
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and define N; similarly. In order to perform these 

integr~tions it is necessary to specify the cu~rent-density 

distribution with respect to cp • Let 

J{Z, <!> ) = J{Z, 7r ) Cos bl' 

with 1 1 = circumferential distance measurEd t;r9m cl> = 7f , 

b = 2 ?f , and .>...., = wave length. of current density distJ;"i-
....-'\., 

bution about the circumference of the cylinder. This 

assumption is based on the current distribution about the 

cii-•cumference Of an infinite cylinder, uniformly fed along 

the slot 'With equal, in-phase voltages 9 which has been 

* fov.nd to be 

J( ¢>) = ~J 

where P( ¢; ) :: ao + 

6 J (lm) 
/l. n 

and a 1 = -----, 
n Jri (ka) 

v p( cP ) 
2 7r1 a 

°"' r an en Cos n <:P ' gn 
Jt= I 

(2) a~ 
_ tri ~n (ka) 

H(2) t (ka) • 
n 

= Sin nx 
nx 

=a•..i...a 11 
n • n 

:; 

P( qS ) is a 

series or Cosinusoidal fUnctions, converges more rapidly 

for small values of ka. Therefore, it is assumed that the 

current distribution about the cii .. cumference is a simple 

*Ref. (2), sec. III 



cosinusoidal variation:i i.e. Cos bl 1 s Pl"O"lided that ka ::a 

;;z 71 a is small, which means I a I small for a certain frG-
>.... 

quencies, or the frequencies could not be too higher than 

its cut-off frequency for a'· certain dimension of the 

antenna. 

Then ,,, 
Ju= J(Z, 7T ) Cos ba( 7T - Cf ) 

And 

Tl1erefoJ:-e K becomes upon substituting, 

K = J 0 J(Z, '7f ) l J4J1 Sin e (Cos ba 7T + l) Cos ba<P 

Cos ( 4> - <P ) -t jl~J 1 Sin e S·bn ba ¢ Sin ba 7f Cos ( tP- ~) 

J 0 (Cos ba71- 1) Cos ba ¢+J0 Sin ba7f Sin ba.P J 
Substituting for K into the expressions for N~ and N", and y 
integration from i/ = o to if = 71, give N::: and N;_. The 

simplified results are 

N' = x 
_j 16a J0 J 1J(Z, 7f) dZ Sin ba~ s1ne Sin¢ 

ba(4 - b2a2 ) 

) ~ 
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N~ = (Ii~ Cos tfl + N; Sin tp ) Cose 

N' "" N' Sin cl> + Ny' Cos ,,1, <? x 'f' 

Substituting for Nx' and N' gives 
~ y 

N~ : -oiba2 J~ Sin ba 11 Sin cp Cose J (Z, 77 ) dZ 

f 1 j4J1 Sin t9 Cos¢ 
~-~~~~~~--~~~-+~.~~~~~~~~--

(l • b 2a 2 ) J 0 (4 - b2a 2 ) 

N f ..;. 
<I - - -:iba2 J2o t;:.. Sin 7T ba J ( z,n-- ) dZ 

[(l 
Cos¢ j4Jl Sin 8 (b2a 2 Cos~ - 2)J 

- b2a2) J b 2a 2 ( 4 - b 2a 2 ) 0 

Now -jkr ejZd N'e A' "' e e 4 '7T r 

-jkr ejZd N~ A' - e 
q,-47fr 

whe11 e d = k Cose. 

The vector-potentla.l. components a.i"e 

A' $ 

The total slot length being 21. Before these integrations 

can be performed., a. distribution fUnction f or J (Z,'71) 
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must be specified. 

Let 
J (Z,'71) = Jm( "71) Sin/> (l - IZI) 

Jm ( 71 ) = Maximum value of J ( as Z varies ) at ¢ = ?T 

a = ~-' where ..A.5 is the wave length at slot region. /-' As 

This current density distribution about the circumference 

of the cylinder in the Z-di:rect:ton is identical to the 

method one of a field distribution along a slot in the 

axial direction. The current; density is zero at both ends 

of the slot. All the current densities are confined in 

the circumference of the slot region. Substituting N~ , 

A·~ int.:> the integrating equat:i.on of Ae ; N '¢ , A~ into 

* A¢ , and integrating yield the result 

where 

e-jkr 
Ae =-----Ne 

4 7T r 

-jkr = _e ---- N ¢> 
4 '7f r 

[ 
~ [ 1 j4 J 1 Sine Cos cP 

Cosfl - Cos dlj (l-b2a 2 ) +-J-0-(-4-_-b ___ a_) ___ --+ 

*Ref. (2), sec. VI. 
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l 2 2 l t ~ 4 ba J J { 71 ) Sin ba ff 
Ntfi = - ~ o m2 - Cos~l - Cos dl 

( a -~2 ) 

N 1' and N ~ are radiation vectors of t:P and e components 

respectively. 
1rhe radiation field is given by Eqs. (12) and (13) 

while F ¢ and F 8 are zero in th:ts case. 

6. Expression for Jm { '7T ) , /""-1 ,;E>, £.. 
Determination of J ( 7f) m 

(35) 

(36) 

From the c i"rcumferential current-density distribution 

along a uniformly-fed infinite slotted cylinder antenna it 

* was found that 

where P( ?f ) = 

J( 71 ) = -jVP ( '71 ) 

27f'1 a 

m m n+z L. ( -1 )n an gn - 2. 772 ka + 4ka [ ( -1) 
rz=-1 !l.=-1 

*Ref. (2), sec. III. 



gn is the intrinsic impedance or free space = 120~ 
n 

and 

a• .. 2Jn (ka) 
n Ji,_ (ka) 

For n = O omit the factor 2. 

g _ Sin n 7f = o 
n - n?r 

P ( 7T ) c a0 - 2 • 772 Y'..a 

= a~-+ a~ - 2.772 ka 

(ka) 

(ka) 

Jm ( 7f ) can be expressed in terms of the input voltage. 

The specified current-density distribution is 

J (Z, <P ) : Jm { 7f) Sin~(l - lzl ) Cos ab { ~ - cP ) 

Therefore 

J (0, rrr ) = Jm ( 7f ) Sin ftl 

The circumferential current density distribution is 

to be matched as closely as possible with that of the 

corresponding infinite cylinder, uniformly fed. Therefore, 

J ( O, 7T ) = -.1VP ( 7r ) 
2 7T/'/ a 

V being the applied voltage at Z = O. Equating the above 

two expressions for J(O, 7T ) and solving for Jm( '7f ) gives 
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Jm ( '7T ) = __,-J,._4 _v_P ...... { _7T~) __ _ 
2 7r If a Sin ft 1 

As Im P( '71') is negligible compared with Re P(71 )* 

Jm ( 7T ) = :JY Re P( ,.,,- ) 
.u 2'711 a Sin ,,131 

Determination or the wave length.>--,around cylinder@ 

1'1 is to be found from the current-density distribu-

tion of the infinite cylinder. For ab <0.5, satisfactory 

results are obtained as the distribution is approximately 

consinusoidal aa assumed. In reference (2) is shown that 

J{Z, ?>):: J(Z,7!) Cos bl 1 ~ For¢: fTi::: ~, 1 1-a?T, 

therefore., J(O,·~~) = J(0,7T)Cos ab. As Im P(~-¢,), Im 

P{7T) are negligible compared with Re P(-~ ¢, L Re P(7T) 

respectively, therefore, 

Re P{~~) = Re P(?T) Cos ab 

yields reasonable values of b, where~ is the slot 

angle = 2 ¢o and b = 2 :: • 
./"...., 

Deterri1ination of ,13 = ~~ With A~ denoting the wave 

length of slot region. 

In order to find . ~· the phase constant ~ 1 t rs neces54ry 

first to f'ind the input impedance of the slot~ The slo·;; 

is viewed as a loaded transm:tssion line. The slot width 

is very small compared with the wave length, and the metal is 

*Ref. (2), see. III. 
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assumed to be perfectly conducting. The assumption is 

made that Y and Z are independent of the axial coordinate 

Z: i.e. that the line is vniform. As in ordinary uniform 

line theory the propagation constant and the characteris-

tic impedance can be expressed in terms of Y and Z as 

follows. 

If 
0 -

* whera Y = G + jB, Z = jX : j vJ L, it is easily shown that 

the phase-shift constant 

For frequencies considerably above the cut-off 

frequency, G become negligible, and 

For frequencies near or below the cut-off frequency, 

the G is found from 

G :: Re ~(·~ ¢, ) 
v = Im _P(~- ¢, ) 

2 ,..,,. -1 a 

The slot distributed susceptance is 

B = w Co. + BI 
"' 

* Ref. (2), sec. II. 
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B' is the suscepta.nce per unit length .Clue to the conduction 

current density and C6 is the capacitance par unit length 

between the slot faces. 

C8 is determined by the relation 

t cs = ----:- f . w 
where t is the thickness of the cylinder at thi.~ slot ·and 

W is the slot width, and ~ is the permitti~!ty of free 

spa.ca. 

As B• is evaluated at the slot surface, all displace-

ment current except that flowing directly between the slot 

faces is accounted for 1n the evaluation of B'. 

From the infinite cylinder, the current distribution 

* around cylinder 

J( ¢ ) = -j VP( ¢ ) 
271'! a 

At the slot ~ = .:1....: ¢, 
2 

and J ( ~ ~ ) - -j VP ( ! </; 1 } , Im ( i- <If ) a - VRe ( ! ¢, ) 
2 '7T1 a 2'7Tt'f a 

The:refo:re 
B t _ _ Im J ( ~- ~ ) 

v 

*Ref. (2) sec. III 

ReP(i <'P, ) 
2 7'"1 a 



Then 

where 
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ReP(~- q ) 
2 rr-1 a 

The inductance L per unit length is expressed 1n Ref. 2 • 

Sec. V as 

L : ~=2~~--l~~~~-
v cs + -2.,.,..v-!-'1-

8 where v is velocity or light 3x10 m/sec. 

If Pka denotes ReP(~ ~ ) evaluated at kaJ 

then 

b1 = -t-- (3P1 - 4Poq05 - Po.2 ) 

P 1 = Re P ( ~ cl>, ) \ 
ka = l 

P 0 05 = Re p ( ~ <P, ) I 
· ka = 0.05 

P0 .2 = Re P(~ ~ ) J ka = 0.2 

where P(J.. A-. ) - a -+ ~ a O' _J.. 4ka 
lt) 

z er, - o L_ n o2n ' L 
fl,=/ fl :rn+J 

m is a sufficiently large so that ah = 4ka 
n 

X .. tJ L 

g2n ___ , 
n 

for n ~ m 

From the calculated values of B7 G, and X, the f-> is 

obtained from 

fi = !+ ) (B2-+ G2)~ + B 



Cut-·off frequency f .... 
'"' 

The cut-off frequency :Ls defined as that frequency at 

Wl11ch the wave length in the slot would become infinite if 

there were no radiation. If' there were no radiation,, G 

would be zero. Then 

and /3 :;: JBX. It follows that ;5 -= O and .As becomes 

infinite when B : O. In the actual case G will not be zero. 

Therefore) for f = f c; o( = ;.5 = J"':iOX. Thus the cut-off 

f1"'equcnc;)r would be defined as that f1"equcnc~r at which 

cX. ::: )3 where B :: 0 

Therefore, 

vSc C 8 -+ • P,e .P (-} </>, ) :: 0 
2 71/f a 

or 

Re P(~ 0 ) 
ka 

By plotting the curve Re P(-~ ~ ) versus ka, it is an 

easy matter to find the vr:.lue of ka Which satisfies the 

above expression. Tl1e cut-off frequency in terms of 

me 

*°Ref. (2) sec :-II. 
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In plottin~ of the field patterns; the MKS system of 

units is used. For other variables convention units are 

used: such as .s in neper/m, G in mho/m, etc. 

7. Field patterns at f.,. 900 me 

The field patterns are made under the conditions that 

a<< A , Sin n4', ------+ n¢o 
1 , and ab < 0.5j which sat1s-

fy the assumptions in both methods. 

Let 

r = 900mc 

21 = 1.41 .A. 

w = 0.00111 >-

a = 0.0318 A 

t = 0.0075 .>--

and the calculated values become 

ab = 0.302 

ka = 0.2 

f c = 820 me 

k = 18.85 

cs = 5.98x10-ll 

b1 = 1'7~· 
L = 3.7x10-8 

x = 209 

B ::: 0.085 



G = 0.0119 

/3 = l~.42 
._.,,..,_ = 33 .3 cm 

Principal H-plane 
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Tl1e principal H-plane is obtained by setting e = 90° 

and the given data into the expression for radiation. The 

field pattern is a variation of the field with different 

values of ~ at constant r. From Eq. (34) of method (1) 

and Eq. (35), (36) of method (2) it is easy to draw the 

field patterns of the principal H-plane. 

Method (1) Eq. (34) becomes 

I E <P I = 
o<J 

A L 
/l= 0 

where A is a constant. 

en ~n Cos n<JJ 
H( )t (0.2) 
n 

Method (2) Eqs. (35), (36) become 

E ei : 0 

\E¢1 = B [ 1.1 Cos¢- j0.562(2 - 0.091 Cos2cf; >] 
where B is a constant. 

Principal E-plane 

The principal E-plane is obtained by setting ¢> = O, 

or ~ = 90° and the given data into the expression for the 

radiation. The field pattern is a variation af the field 
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mefhod rz J 

m.e.Mod (1J 

c;P = 0 

Fig. (6) 

Comparison of Principal H-plane 
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with dlfferent values of e , at constant r. From Eq. {34) 
of the method (1) and Eqs. (35), (36} of the method {2) it 

is easy to draw the field pattern of the principal E-plane. 

Method (1) Eq. (34) becomes 

A' Cos (4.52 Cose} - 0.4'75 
18 - 355 Cos2$ 

oO 
\ __ c_~~n~~c_os~n-~~~--~ 
f;-o HA2)' (0.2 Sine} 

where A' is a constant. 

Method (2) Eqs. (35), (36) become Ee = 0 

1-E qS I = c 0.524-Cos (4.52Cos e ) 
355 Cos~~ - 18 

where C is a constant. (see Fig, 7) 

e =-o 

Fig. (7) 

Comparlson of Principal E-plane 

[1.1 - j0.538( 
2-0. 091 Cos2 8 ~ 

d=-o 
;ne.fhod (z.} 

)?'Je:f-/J 0 d {I) 



8. Comparison of methods (1) and (2) 

The p1•inc:Lpal H-plane 

Method (1) 

- A' 
a 

where A 1/a = A 

Method (2) 

H(2 ) 1 {ka) 
n 

(a) 

jE4' I = aB' COJ!c/> +.J4J(b2a2Cos2 - 2) (b) 
1 - b2a2 J0 b2a2 {4 - b2a2) 

where aB 1 = B.; as ka - 0, ab..(< 0.5,, Eq. (a} becomes 

IE~I A' 1 A' 1 = 7:ft2) 1 = 
a (ka) a JI (ka)- JN' (ka} lo 0 0 

:: A' ::: A 11k .a Constant (c) , ____ 
-j 2a 

ka 

In Eq. (bL as ka --- 0:: ab<<0.5 

IE¢1= B 1a Cos¢+ jl<:a (-2) 
4 b2a2 

= B 1a Cos r/J - Jk 
2b2a 

For a~ O, k >>Cos¢, 
2b2a 

Therefore, 

!Eqil =Bra k = B" k = Constant {d) 
2o2a 

It is obvious from Eqs. (c) and (d) that, as ka --o 



with ab<.< 0.5_, the t'leld derived fr·om bo1;h methods appro· 

acl1s a constant, and the· .field pattern is a circ.le. In 

tl1ls case J the i.:;lo·i:; antenna behaves like a dipole antenna. 

The coincidence o:r these two methods could be antici-

pated. In method (1), the assumption is made that the 

slot e.ngle is V<'~cy small so that Sin ntP. - 1, and a - o. ntP. -
In rilethod {2) the assumption is made that ab < 0.5, and 

good results can be ob·ta:lned f'or ab<< O .5. Therefore :J 

under these conditions as ka ---» O, ab« 0.5, which 

satisfy both assumptions in these two met.hods. 

The condition for ka. -- o, i.e. a - o for a 

certain frequency, rec5.""J.cr~s the series of ·the Hankel .rune-

tions to the n = 0 term. Therefore, for a finite small 

slot angle Sin niPo - 1 The assumption in n qi. ncP. -- o- · 
method (1) is satisfied under the condition ka ~o. 

The principal E-plane ( cfi=o, or i:P== 7f ) 

Method (1) 

c" Cos(klCose) - Cos,,81 f f~ n Cos nr/> 
fl~- k2Cos2e rz =-o HA (ka Sine ) 

where C" is a constant. 

Method. (2) 

Cos (kl Cos 8.,)-C~s /31 [ Cos cP ~ 
/32- k-Cos e 1~ J 0 



where D is a constant. 

As ka ·-> o_, ah,(< O .5, the field pattern in method 

(1) becomes 

Cos (kl Cos & ) - Cos p 1 

fi 2 - k 2Cos 2a 

where A 111 = A" k, and the field pattern in method (2) 

becomes 
B ,,, 

where B"' = B"l<:. 

The field patterns derived from these two methods are 

exactly the same, provided that lra-....+- o, ba << O .5 and the 

field is much like that of a dipole antenna. 

/)_ .JL 
C7 - <. 

()=-0 

tf=o 

Fig. (8) Principal E-plane as ka ---- O 
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9. Field pattern with change _of _freq~encies 

The frequencies ranged from 500 r::1c to 1500 me; only 

500 me; 700 me, 900 me, 1100 me, and 1500 me are used. In 

all of these cases; same dimensions and the same excita-

tion are assumed. Method one is adopted in these cases. 

I.ist of data 

f = 500 me 

..>-. = 60 pm 

a = 0.0178 )I. 

w = 0 ,000616 A 

t = 0 .00'+16 .>-.. 

21 • 0.8 A 

The calculated values: 

ka - 0.111 

C8 = 5.98x10-11 

ab :: 0.105 

bl = 174 
L :: 3.7x10-8 

x = 114 

B = - 0.924 

G = - 0.00715 

f = 820 me c 
;S - 0.0397 -
The principal H-plan.9: 



~2)' (0.111) 

The principal E-plane: 

jE<!j = c• Cos(2.5Cose )-0.9999973 
(0.00158 • 108 Cos2e ) 

where c and c• are constante. 

List of data: 

f = 7000 me 
.A: 42.8 cm 
a ;: o . 024 7 .A 

t = 0.00584 .A 

W : 0.000864 A 

21 = 1.12 )\ 

The calculated values: 

ka = 0.155 
C8 = 5.98x10-11 

ab = 0.22 

b1 : 174 

L = 3.7x10-8 

x = 163 
B : - 0.135 
G = - 0.00955 

f 0 = 820 me 

I-> = 0.1435 

o0 en ncos n¢ ! 0 H(2) '(0.111 Si~) n 
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The principal H-plane: 

lE I = D [ c n 'n Cos n <P 
tp Jt°'O 1i2 I (o".155) 

The principal E-plane: 

Cos{3.53Cos e )-0.999 
0.0206 - 216 Cos2e 

where D and D1 are constants. 

List of data: 

f = 1100 me 

a : 0.0388 A 

t : 0.00915 A 

W : 0.00135 A 

21 s:i 1. 75 A 

A= 27.3 cm 

The calculated values: 

ka • 0.244 

C8 : 5.98x10-11 

ab = 0.357 
b1 = 174 

L = 3.7x10-8 

x = 250 
B = 0 .2'7 

G = - 0.016 

re = 820 me 

fa= 8.32 

I €n Jrlcos n ¢ I 
11=-o H~2 ) '(.0 .. 155 Sine ~ 
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The principal H-plane: 

E I ~ n jn _Q_o,;...s_n.;..4' ____ _ 
n=-o H~ 2 ) ' ( 0 • 244) 

Cos(5:.55 Cose )-Q.:414 
69.2 - 534 Cos2 e 

where E and E' are constants. 

List of data: 
.t:t 1500 me J. = 
A-- 20 Cr.l 

a = Q .053 ,A 

t = 0 .0125 .A 

w = 0 .00185 ,A 

21 - 2.4-" -
The calculated vaJ.ues: 

ka = 0.333 
CC" .., = 5.98x10-11 

ab = 0.523 

bl = 174 
L = 3.7xlo-8 

x = 349 
B = o.6 
G = - 0.021 

13 = 14.3 

The principal H-plane: 

I~n~osn¢ 
11=0 iiJ:2 1 ' ( O . 244 Sine) 
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IE I = IF r l n Jn Cos n</J 
'tP n=o !!Ji2J 1 (0.333) 

The principal E-plane: 

IE~I = F'. Cos(7.54Cos B )-0.956 f_ en Jn Cos nsP 
205 - 985 Cos2a n=o i42 ) '(0.333 Sine) 

where F and F' are constants. 



,,i_ X!£ 
'-I' - z 
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Fig. (9) 

f == /f:JO ;nC 

Principal H-plane varies with the frequencies f 



/1 - 51-
17 - L 

f"" f oon<c 

i == 7t?tJ ,me 

f::; ..fr; 0 ,,,c; 

Fig. (10) 

f == ;S-oo me 

/] - 2L 
C7 - .;;:: 

---f'= tfoomc 
-- - - -- --[= 700/'IC 

f = ~oomc.-

Princ5.pal E-plane varies with the frequencies f 
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The cut-off frequency is defined as that frequency at 

which ol.. =/3 . Below cut-off B is negative, rapidly becoming 

a large negative quantity as the frequency is reduced and 

ol becomes very much grec.ter than13'. For frequencies suffi• 

ciently above the cut-off frequency :a is positive, and fl be-

comes very much greater than ol • 

The field patterns only change slightly for operating 

frequencies not far beyond that of the cut-off frequencies. 

For frequencies much below that or the cut-off frequency, 

the principal field pattern is approximately circular. For 

frequencies much nigher that the cut-of'f f'requenc~r, errors 

occur for the assumption that ka_.~ O; 

where k = 2V71 f • 

When f3 is comparable with k, the E-field pattem is 

no longer like that of a dipole antenna, (maximum field 

occurs not at e = 90°). If this is the case, as the 

frequencies are higher than the cut-off frequency and ka 

becomes large, the assumption made before 1e invalid. 

The maximum field or the principal E-field could be 

round by differentiating the field with respect to e . As 

the series form or the Hankel ftmction changes almost linear-

ly withe, it is convenient to treat the derivative of the 

series as a constant. From this it is round that maximum 

field occurs at e = Cos -l L . Unless/<( k, the maximum 
k 

field would not occur at e: 90°. 
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10. Two slotted antennas 

The radiation field produced by trwo slots in the same 

direction in a cylinder as shown in Fig. (11): could be 
obtained by superposition. With the same assumptions made 
as f'ar a single slot, and the coordinates as shown in Fig. 
(11), ztesults could be found by the following procedures. 

--j z ~I--

I 
" 1-i --I l 'it 

y r ~ 

l ....... 

"' -- -

l 

Fig. (11) 

Two slotted antenna with slots in the same orientation 
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It is assumed in the apertures 

E (a, cf> ,z) = _v_ Sin ;.3 {h + 1 - lzl ) 
2 <P.. a 

under the condition that 21 = ~' that is, the slot 
2 

length is one half o~ the wave length of the slot region, 

where 4- :o:: 2 71 h is the distance from the center of the 
/--' ~ ' 

slot to the origion. 

The transfor•ms of Eqs. (24) and (25) become 

E {n, w) = 2VSin (n <Po ) 
ctn 7tcPo 

{Cos wh Cos wl) /3 
ft-tl 

Eqs. (30) and (31) yield 

fn(w) _ o 

= 2,€> VCos Wh Co~ Wl · . 

'71 a J k2- wg I-~2) '(a J 1{2- w2) ( ,;62-w2 ) 

for small slot angles. 

Since -kCos&= w, k2Cos2e = w2 , J k2- w2 = kSine , 

the radiation field is 

E = ~ e -jkr Cos(khCos e )Cos(klCos e ) 
<P 7'ra { ,;Bz k2Cos2e ) 

o<'.l en in Cos nf 
11'?i I-~2 ) '(lea.Sine ) 

This could be checked by setting h = O and l = ~ in 

this field and the field derived in Eq. (34). 
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Field patt.ern 

The principal H-plane is the same as for a single 

slot antenna. Th:l.s is anticipated from the superposition 

theory. The princ1pal E-plane is much like.that of the 

pattern of end-fire arrays of point sources. Use the 

same dlmensions as :ror a s5.ng1.e slot zmtenna. And let 

f :: 900 me 

1 "' .A:s -- :: 35.6 cm 
4 

The pr:i.ncipal E·-plane is plotted as 

Cos{6.28Cos e )Cos(6.97CosB ) ~ 6n jnCos n¢ J 
.-:i ,L_ (2) I 

18 - 35~-Cosc.;& /1 ==-o H · ( O. 2Sin & 
l1 
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Fig. {12) 

Principal E-plane of two slotted antennas with two 

slots ox-iented :i.n the s.ame direction 



Radiation field produced by two slots on opposite 

sides of a cylinder coulo. be 1:>btained by the superposition 

m,;;:Jcb.od. Wt th tbe same assumptions made as for the single 

slot antenna., c~na. with the coorclinates taken $.~> shown in 

Fig. (13) :1 the result :ts rormd by the follc.wing; .procedures. 

y 

\ 

- <P, 

Fig. (13} 

Two slotted antennas with slots 

on opposite sides 
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It is assumed in the apertures 

E ti (a, <P ,,z) = __....v_ 
2 rPo a 

Ez(a,q_.Z) = O 

s1n f3 (l - lzl ) 

The tran~forms of Eqs. (24) and (25) become (for smallQ,) 

E iP (n,w) = 2V ft (Cos wl - Cos /-3 1) 
'Tl a ( ,-82 - w2) 

Ei? (n,w) = o 
Finally the radiation field E e = O, and 

n even 

n odd 

Ec;t = 2V,;S e -jkr CosJklCos 6) )- cgs gl I jnCos ndi 
7f2 ra( )32- k2Cos ) tt::.o aj_2 ) 1 (kaSin e ) 

where m = even , 

Field pattern of two slotted antennas 

For the same dimensions as the ~ingle slot antenna 

and with r = 900 me~ the principal E-plane is much like 

that of a dipole antenna for small ka. As it is easily 

seen for small 1-ca the predominant terms in the series are 

approximately constants for various value of B. The 

principal H-plane 1s 

= A' 
Jn 

L 
(l = 0 

6n ~n Cos n tf; 
~ >'co.2) 

where A' is a constant. The field pattern is almost a 

circle. This result might well be expected froni the 

superposition theory. (see Fig. 14) 



'(l 

c:J=CJ 

Fig. (14) 

Principal H-plane of two slotted antennas with 

two slots oriented in diametrically opposite 

directions 
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11.. Discussion 

The results given in this paper are restricted to the 

far-zone field of various slots. The far-zone fields are 

given in terms of an infinite series of terms involving 

the reciprocal of the first derivative of the Hankel 

fUnction where the argument are functions of ka Sine .• 

where k = 2-rr/>-. and a is the radius of the cylinder. This 

series converges rapidly :f'oi ... small value of ka Sin B (for a 

certain value of e this series conveI'ges rapidly for small 

value of ka). However, as the cylinder becomes larger., 

the series representation f or the far field coverges more 

slowly and a greater number of terms are required to appro-

ximate the sum of the inf'init;e series to a given accuracy. 

Therefore, in the previous assumption lr..a is so small that 

only two terms of ,_;the Hankel a:r>e tal~en. 

The disag1-eerm1t between these two calculated field 

patterns might come from the assumption of a cos1nuso1dal 

current density distribution arround the circumference in 

the second method. Actually it could be imagined fi.,om the 

circumferential current density distribution of an 

infinite cylinderj uniformly fed, that the current distri-

bution along the circumference is a series of sinusoidal 

functions. Tl1is series converges slowly. It is very 

difficult to find the vector potential in this series form. 

But if ab« 0.5:: the predominant term in the form of the 
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curi~ent distribution is just a simple cosine fUnction. 

With this reat:rtietj.on the r-4diat1on is much easier to 

handle by assuming a cos1nuaoida1 curr.-3nt distribution 

along the c1rcumf'eJ;>ence. Howeve.r, the main lobes 1n the 

corresponding field patteme are approximately the same. 
The assumption of a CO$inusoida.1 circuinre:re11t1a1 current 

dist1"ibution <l¢$S not se1~ously limit the validity to find 

the :t•ad1ation field. 

'l't1e field pattern produced by two alotted antennas 

with these slots ortented in the same dix•ection does not 

change greatly with the distance between the slots. The 

principal E-plane is identically the field pattern of' the 

end-fire ai .. rays of point sources. The f'1elc1 pattern pr-o-

duced by two slotted antennas w:tth these slots d1ametricall:.r 

opposite is a circle in tne pr..1.nc1pal H-pla.ne~ This resUlt 

is useful especially for TV i-aad1ation. 
Method one aasiimed that ¢ 0 is small; therefore, for 

large~ tr1odificat1on mu.st be applied to the derivation of 

t!'le radiation field. The same rest1 ... 1ct1on is also presented 

in method two 1n finding the wave length.,,-\.around the 

cy11ndet• .. 

From the agreement of tnese two methods~ it 13 easy 

to design a slot antenna witb the desired field pattern by 

assuming the approximate current d1st~1b·ut1on a.long; the 
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circumference, or a reasonable assumption can be made 

concer•ning the field distribution in the slot and the 

result can be obtained. The slotted cylinder antenna has 

many desirable properties. Its band width, While not 

large, is suitable for many comrm .. mication purposes at very 

high and ul t1.,a-l1igh frequencies. As such slots are easy 

to construct and excite:1 they are useful :tn application to 

microwave antenna design. 
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