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ABSTRACT 
 
 
Since the dawn of the genomics era, the genetics of numerous human disorders has 

been understood which has led to improvements in targeted therapeutics. However, 

the focus of most research has been primarily on protein coding genes, which 

account for only 2% of the entire genome, leaving much of the remaining genome 

relatively unstudied. In particular, repetitive sequences, called microsatellites 

(MST), which are tandem repeats of 1 to 6 bases, are known to be mutational 

hotspots and have been linked to diseases, such as Huntington disease and Fragile X 

syndrome. This work represents a significant effort towards closing this knowledge 

gap. Specifically, we developed a next generation sequencing based enrichment 

method along with the supporting computational pipeline for detecting novel MST 

sequences in the human genome. Using this global MST enrichment protocol, we 

have identified 790 novel sequences. Analysis of these novel sequences has 

identified previously unknown functional elements, demonstrating its potential for 

aiding in the completion of the euchromatic DNA. 

 

We also developed a disease risk diagnostic using a novel target specific enrichment 

method that produces high resolution MST sequencing data that has the potential to 

validate, for the first time, the link between MST genotype variation and cancer. 

Combined with publically available exome datasets of non-small cell lung cancer 

and 1000 genomes project, the target specific MST enrichment method uncovered a 



signature set of 21 MST loci that can differentiate between lung cancer and non-

cancer control samples with a sensitivity ratio of 0.93.  

 

Finally, to understand the molecular causes of MST instability, we analyzed 

genomic variants and gene expression data for an autosomal recessive disorder, 

Fanconi anemia (FA). This first of its kind study quantified the heterogeneity of FA 

cells and demonstrated the possibility of utilizing the DNA crosslink repair 

dysfunctional FA cells as a suitable system to further study the causes of MST 

instability.    

	 	



GENERAL AUDIENCE ABSTRACT 
 
 
The field of genetics has enjoyed substantial growth since the conclusion of the 

human genome project, which was declared complete in the year 2003. The human 

genome project produced the first framework for the human DNA sequence, the 

human genome. With the availability of this framework, the understanding of the 

genetic basis for a number of diseases has significantly grown, which has resulted in 

better methods of clinical diagnosis and treatment. While the current focus on 

understanding the genomic regions that are responsible for making proteins has 

inarguably helped, it has also created a gap in knowledge. Protein coding regions of 

the human genome account only for 2% of the entire human genome and a large part 

(47%) of the genome is occupied by repetitive DNA. DNA sequences can be 

complex, with the nucleotides arranged in no particular order, e.g. ATCGTACGA, 

or DNA sequences can be repetitive, e.g. ATATATATAT. Repetitive sequences, 

which have repeating units of 1 to 6 bases, are called microsatellites (MST). MSTs 

have been shown to be unstable and they have been linked to diseases such as 

Huntington disease and Fragile X syndrome. This work helps to close this 

knowledge gap by developing molecular methods and computational tools focused 

on identifying MST variations. Research conducted with this aim has resulted in 

three major accomplishments. One, we developed novel molecular and 

computational methods which we used to detect 790 previously unknown sequences 

in the human genome. This work proved the ability of our method to uncover 

functional elements in the human genome that can potentially answer numerous 

biological questions. Two, we developed another novel method for the production 

of high resolution MST sequence data that not only can improve MST research in 

general but also shows the potential for the development of new genetic diagnostics 

and cancer therapeutics. We identified a signature set of 21 MST sequences that can 



differentiate between lung cancer patient genomes and non-cancer control genomes. 

These results represent the first potential validation for a proposed link between 

MST sequence length (genotype) variation and cancer. Three, we attempt to 

understand a possible molecular cause and consequences of MST instability in a 

disease called Fanconi anemia. The results from this work not only, for the first time, 

quantify the effects of this disease on the genome but also establishes Fanconi 

anemia as a suitable system for studying MST instability in detail.  
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INTRODUCTION 

 

The genome and repetitive DNA: The human genome project was declared 

complete in 20041. Since then, a total of 3981 eukaryotic organisms have been 

sequenced2.  The human genome is approximately 3 billion base pairs long3. Protein 

coding genes occupy about 2% of the human genome while introns occupy 24% 

(Figure 1-1). About 47% of the human genome is found to be repetitive sequences. 

Other organisms, compared to human, have a higher percentage of their genome 

occupied by repetitive DNA:  Mus musculus (mouse) – 55%, Gallus gallus (chicken) 

– 88%, Drosophila melanogaster (fruit fly) – 71%, Anopheles gambiae (mosquito) 

– 85% and Caenorhabditis elegans – 80%4. It is evident that a large percentage of 

most genomes is composed of repetitive DNA. Repeats can be long transposable 

elements (DNA sequences that can alter their position in the genome) such as DNA 

transposons and retrotransposons or tandem repeats such as minisatellites and 

microsatellites.  

 

Microsatellites and microsatellite instability:  Microsatellites (MST) are short 

tandem repeats of 1 to 6 bases (Minisatellites contain repeats of greater than six 

bases). Repetitive DNA sequences are prone to slippage (replication slippage 

happens when the DNA polymerase erroneously adds more nucleotides than needed) 

and breaks (chromosomal translocations) during DNA replication by DNA 

polymerase. Hence MSTs are often mutational hot spots. The mutational rates at 

MSTs have been shown to be higher than what is found to occur in non-repetitive 

DNA5-8. Microsatellite mutations, or instability (MSI), caused by polymerase 

slippage has been shown to occur at a higher rate in MSTs made up of repeating 

monomers, dimers and trimers. The higher rate of variability at the shorter MSTs 

can be explained by the greater reduction in DNA complexity (equal and more 
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stochastic distribution of the 4 nucleotides), compared to the repeats with longer 

units 9-11.  

 

Challenges in MST research: There are two reasons MSTs have been poorly 

studied compared to non-repeating coding regions. The first reason is that the large 

majority of MSTs occur in non-coding regions, which until very recently were 

considered “junk” DNA. Consequently, most of the programs for mapping reads 

from next generation sequencing were tuned to study the exome. Popular programs 

like Bowtie and BWA mask repeat regions in the reference genome and map 

sequencing reads only to the non-repetitive parts of the genome12,13. Thus, research 

projects that use such codes completely ignore this part of the genome and miss any 

relevant genetic or clinical contributions therein.  The second reason is that a 

microsatellite-containing sequencing read needs to include both flanking regions of 

the repeated sequence to be correctly mapped. However, until recently the 

sequencing technology for reads of sufficient length was expensive and rarely used. 

Without a read of sufficient length, a repeat region can map to many different 

locations in the genome and hence a single read that contains nothing but MST will 

be mapped to multiple locations in the genome. Thus, the alleles or genotype of any 

microsatellite-containing locus with miss-mapped reads will not be called correctly.  

Hence, there is an urgent need to develop dedicated DNA enrichment techniques and 

the accompanying computational tools to further our understanding of the repeat 

regions of the genome.  

 

MST genotyping: The accepted convention for MST genotyping from next 

generation sequencing reads is to calculate the number of reads that contain the entire 

MST along with at least 5 flanking bases on both sides. The allele with the highest 

number of reads is considered to be the primary allele. If an allele with a read depth 
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larger than the half of the read depth of the primary allele is present, it is considered 

as the secondary allele and that MST locus is assumed to be heterozygous. If no such 

secondary allele is found, then the MST locus is assumed to be homozygous. After 

having established the genotype of an MST locus, the procedure searches any other 

alleles that are found with at least 3 reads, and if found the allele is assumed to be a 

minor allele14.  While genotyping variants in the non-repetitive parts of the genome 

are not heavily dependent on read depth, genotyping MST variation depends both 

on length of the read and the depth of coverage for a given locus. The accuracy of 

MST genotyping is generally less than 94% for a sample coverage (read depth) of 

40X15. Due to the higher possibility of allele variation and insufficient read depth, 

comparing MST alleles in population size studies are generally distribution oriented; 

beginning with defining a modal (most frequent) genotype in the control population 

and then looking for a significant difference in the ratio of the modal and non-modal 

genotypes in the disease population14,16,17.  

 

Recent advances in MST research: Figure 1-2 shows a few allele variations of a 

CAG trimer. Such variations in a CAG MST have been linked to Huntington’s 

disease18. Figure 1-3 shows the expansion of one CAG motif to three, adding two 

extra glutamines to the HTT protein. Now that the association between MST allele 

variations and diseases is well established, efforts are being made to 

comprehensively examine MST regions of the genome. While typical genotyping 

methodologies have a less than 20% accuracy in identifying MSTs, newer 

computational techniques have been developed to increase the accuracy of the MST 

genotyping to 94% 15,19. MST genotyping, since then, is becoming an important part 

of genomic variant detection19. Taking advantage of these newer MST genotyping 

methodologies, including our methodology described below, several studies have 

shown the connection between MSI and diseases. For example, a set of 55 MST loci 
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was found to distinguish normal and breast cancer germline exomes with a 

sensitivity of 0.8814. Tumor grade specific signatures that can differentiate 

glioblastoma and lower-grade glioma were identified by comparing MST alleles 

from normal germline samples from the 1000 Genomes Project (1kGP) with two 

grades of gliomas and glioblastoma from The Cancer Genome Atlas20,21. Forty-eight 

glioblastoma specific MST loci and 42 lower-grade glioma specific MST loci were 

identified, and 29 MST loci were identified that can differentiate between these two 

cancer types17. Further, a set of 60 MST loci that can differentiate normal germline 

samples and ovarian cancer germline samples were identified at a high sensitivity of 

0.9016. Recently, an extensive study was done to analyze 18 types of cancer using 

5930 cancer exomes. Surprisingly, 14 of the 18 cancer types were identified as 

having MSIs22.  

 

MSTs and mismatch repair: The process of copying DNA, replication, often adds 

the incorrect nucleotide and thereby introducing an error into the genome. As MSTs 

are particularly vulnerable to replication slippage, understanding the following 

topics in detail is critical: 1. Occurrence of mismatch between DNA strands, 2. the 

cellular mechanisms that are in place to correct an erroneous nucleotide introduction 

and 3. the effects of an uncorrected mismatch. While erroneous extensions in a MST 

monomer leads to MST allele variation, extensions in a trimer MST can also form 

loop structures that have been shown to cause diseases23. When a mismatch is 

introduced by the polymerase, the proofreading mechanism that follows the 

polymerase enzyme attempts to correct the error. Two mismatch repair complexes 

exist to deal with mismatch24. Depending on the length of the mismatch, one of two 

mismatch repair (MMR) mechanisms is activated. Analogs of MutS protein, that is 

found in prokaryotic systems, are the two MMR complexes. Short mismatches of 1-
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2 bases are handled by the MSH2/MSH6 complex while longer insertions and 

deletions are dealt by the MSH2/MSH3 complex25,26.  

 

Since MSTs are prone to slippage and breaks, incorrect MMR result in MSI. 

Recently, it has been shown that nucleotide excision repair and the cross-link repair 

complex also can affect the instability of MST trimers27-29. One of the projects 

described below explores these mechanisms in further detail. 

 

Fanconi Anemia: Fanconi anemia (FA) is a congenital autosomal recessive disorder 

found predominantly in Jewish populations30,31. An autosomal recessive disorder is 

when the offspring inherits a mutated copy of the gene from both parents. FA cells 

have been found to be enriched with chromosomal aberrations that are caused by 

unrepaired DNA crosslinks32-34. Thirteen genes/proteins have been reported to form 

the core ingredients of the FA pathway involved in repair. They are also called 

complementation groups and they are identified as A, B, C, D1, D2, E, F, G, I. J. L, 

M and N35-45. DNA crosslinking agents such as mitomycin have been used to disrupt 

the cell division in cancer but the cell’s response to inter-strand crosslinks has not 

been understood46. The FA pathway is known to gather crosslink repair proteins but 

it is also suspected to be involved in general upkeep for genomic stability47. Hence 

comprehensive understanding of the FA pathway and its full range of functionalities 

is important.  Thus, exploiting this disease will give us important insights into 

mismatch repair. One of the projects below studies the role of microsatellite 

instability on FA. 
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Overview of the 3 projects, hypothesis and approach 

 

1. Novel MST detection and the possibility of completing the human genome: 

The human genome project was focused on the completion of the euchromatic 

portion of the genome and the first completed framework contained about 94% of 

the euchromatin3,48. Earlier attempts have been made to complete the last 1% of the 

incomplete reference genome. One such recent effort found 309 missing sequences 

in the human reference genome and also confirmed about 76% of these sequences 

to be commonly present in primate genomes49. Other researchers and we believe that 

the last 1% of the euchromatic DNA could be embedded in the repeat rich regions 

of the genome which are usually ignored during sequencing due to the technical 

reasons that were previously discussed50. Equipped with the necessary experience 

and tools to deal with challenges of studying the repeat regions of genome, our 

hypothesis is that the last 1% of the euchromatin (possibly including protein coding 

genes and/or functional elements) could be found hidden in the usually ignored MST 

regions of the genome. To accomplish this, we developed a novel target enrichment 

system to specifically sequence repeat regions genome-wide, and developed the 

necessary computational tools to extract possible novel MSTs and functional 

elements embedded within repeat rich regions.  

 

A previous attempt to complete the genome by Liu et al. was done entirely on the 

exome data acquired from the 1000 genomes projects (1kGP)49. The exome data 

downloaded from the 1kGP are sequenced using baits (hybridizing sequence 

adapters that can pull down target sequences in a given sample) that are designed to 

capture the known exome regions and genomic regions that are found to flank these 

exomic sequences.  It should be noted that these baits do not capture the repeat 

regions and by that have no access to pull down and enrich any possible functional 
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element/complex DNA that is embedded within the repeat rich regions of the 

genome. To overcome this hurdle, we generated, through computational means, a 

set of baits that will specifically hybridize to the repeat regions of the genome.  

 

To overcome the inefficiency of mapping MST reads, we performed analysis only 

on the reads that were found to be unmapped to the reference genome. The 

computational pipeline specifically designed to extract possible novel MSTs and 

hidden functional elements utilizes the paired-end sequencing method and advances 

in sequence assembling algorithms to overcome the technical issues related to MST 

computation.   

 

MST based biomarker discovery in non-small cell lung cancer:  The relevance 

of the MST instability in diseases such as Huntington’s disease is well established18.  

A normal HTT gene (gene that codes for the huntingtin protein) contains 35 or fewer 

CAG repeats while a gene with 36 or more CAG repeats has been linked to the onset 

of Huntington’s disease. An array of other neurological diseases, such as Fragile X 

syndrome, have been established as trinucleotide repeat disorders51. The Garner lab 

has worked on MST instability and its influence on cancer for two decades. The lab 

has provided comprehensive computational insight into the positive influence of 

MST allele variability and cancer occurrences14,16,17. For example, McIver et al 

present a set of 55 MST markers that correlate positively with breast cancer and any 

patient with 76% or more of the 55 MST loci with the cancer genotype will be 

determined as cancer-like, or at enhanced risk of developing breast cancer. These 

research projects take full advantage of publically available genomic datasets such 

as The Cancer Genome Atlas (TCGA) and 1kGP. While utilizing publically 

downloaded datasets come with the challenge of low depth of coverage, appropriate 

statistical methods of using genotype distributions have been employed to counter 
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this challenge14. These comprehensive computational projects have established 

statistical models that demonstrate the potential power of MST markers as risk, sub-

typing and companion diagnostics.  

 

To validate this research, it is necessary to study the consistency of these findings 

with high depth sequencing. As mentioned earlier, research conducted through 

public datasets are usually limited by their depth of coverage. The ultra-high-depth 

genotyping of the MST markers will validate MST genotyping, thus confirming the 

value of MST biomarker research. For the purpose of this project we focused on 

non-small cell lung cancer52. We developed a target enrichment system to enrich a 

set of 300 disease related MST loci along with 90 control MST loci and sequenced 

30 lung cancer samples and 90 1kGP samples. Recent studies show highly 

convincing results connecting MST instability with a large (14 out of 18) varieties 

of cancers22. This large-scale study, again, emphasizes the need of further validation 

of the influence of MSI on cancer.  

 

About 85% of the lung cancer cases are non-small cell lung cancer52. The well-

established fact that never smokers are susceptible to lung cancer too, makes genetic 

biomarker screening a priority53. More importantly, recent studies show that 20% of 

people who get lung cancer are non-smokers54. This not only emphasizes the need 

for a comprehensive understanding of genetic biomarkers in lung cancer but in all 

other cancer types. For this project, we also try to identify genetic biomarkers for 

prescreening those at risk of lung cancer (including never smokers) through the 

development of the target specific MST enrichment kit. 

 

Exploring the molecular sources of MST instability: MST instability is primarily 

caused by slippage during replication27,28. The proofreading mechanism that follows 
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the DNA polymerase-driven replication initiates one of two mismatch repair 

pathways depending on the length of the error that has been introduced by the 

polymerase enzyme24-26. It has been largely known that MST instability is caused by 

mismatch repair mechanism dysfunction, but recent studies show that nucleotide 

excision repair and inter-strand crosslink repair also contributes to MST 

instability28,29.  

 

The Garner lab has studied MSTs extensively: 1. Understanding Mendelian 

inheritance in MST, 2. Exploring MST genotyping from 1kGP samples, 3. 

Developing computational tools to improve accuracy of MST genotyping, 4. 

Developing diagnostic models and statistical methods to understand the influence of 

MST instability on breast, ovarian, brain and lung cancers14-17,19,55. This project 

builds on this work by exploring the mechanisms that cause MST instability.  

 

While nucleotide excision repair and crosslink repair mechanisms have been shown 

to affect MST instability, this project will investigate the mechanism by which 

crosslink repair results in MSI. To understand inter-strand crosslink caused MSI, the 

Fanconi anemia system has been chosen. PD20 cells are a cell line that have a 

dysfunctional Fanconi anemia (FA) pathway gene called FANCD2. PD20 cells 

which are retrovirally corrected for FANCD2 expression have also been obtained to 

study and compare the effects of a functional and dysfunctional FA pathway and 

their corresponding effects of MST instability.  

 

While a list of 16 genes have been linked to the dysfunction of the FA pathway, very 

little is known about the downstream effects of a FA pathway affected by the failure 

to repair inter-strand crosslinks. DNA lesions causing chromosomal translocations 

have been identified to occur in FA patients56. This work aims to address the need 
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to explore in detail the effect of crosslink repair and its effect on MST instability and 

the urgent demand to quantify and understand the types and amount of genomic 

damage that is caused by a dysfunctional FA pathway.  
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Figure 1-1: Composition of the human genome. About 47% of human genome is 

composed of a variety of repetitive DNA of which microsatellites have known to 

significantly change DNA complexity and thereby are mutational hot spots.  

 
	 	



	

	 13	

Figure 1-2: MST allele variation. This figure illustrates a few of the many 

possibilities of allele length variation of the MST shown as reference. It should be 

noted that without the flanking region, this CAG microsatellite can be placed in the 

genome in at least a thousand locations, making the identification of a single MST 

impossible. By considering the flanking regions, the genotyping programs identify 

a MST from the unmapped reads that are correctly mapped to the appropriate locus.   
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Figure 1-3: CAG repeat expansion causes Huntington’s disease. Huntington’s 

disease is one of the diseases that is caused by a CAG repeat expansion. Huntington’s 

disease is not caused when the MST contains 35 or fewer repeats while 36 or more 

has been shown to be strongly associated with the disease condition.   
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ABSTRACT 
 
The human genome is 99% complete. This study contributes to filling the 1% gap 

by enriching previously unknown repeat regions called microsatellites (MST). We 

devised a Global MST Enrichment (GME) kit to enrich and nextgen sequence 2 

colorectal cell lines and 16 normal human samples to illustrate its utility in 

identifying contigs from reads that do not map to the genome reference. The analysis 

of these samples yielded 790 novel extra-referential concordant contigs that are 

observed in more than one sample. We searched for evidence of functional elements 

in the concordant contigs in two ways: (1) BLAST-ing each contig against normal 

RNA-Seq samples, (2) Checking for predicted functional elements using 

GlimmerHMM. Of the 790 concordant contigs, 37 had an exact match to at least one 

RNA-Seq read; 15 aligned to more than 100 RNA-Seq reads. Of the 249 concordant 

contigs predicted by GlimmerHMM to have functional elements, 6 had at least one 

exact RNA-Seq match. BLAST-ing these novel contigs against all publically 

available sequences confirmed that they were found in human and chimpanzee BAC 

and FOSMID clones sequenced as part of the original human genome project. These 

extra-referential contigs predominantly contained pentameric repeats, especially two 

motifs: AATGG and GTGGA. 
	 	



	

	 22	

INTRODUCTION 

 

In April of 2003 the Human Genome Project was declared complete, and from it we 

gained a framework to build the reference genome upon which the majority of 

analyses are anchored. The scope of the Human Genome Project was focused on the 

94% of the genome that is euchromatin1, now sequenced to 99% completion2. 

Attempts are being made to complete the 1% of the incomplete “complete” human 

reference3, however we and others have hypothesized that some genomic sequence 

regions (which may contain functional elements, genes) may be missing from the 

human reference because they are embedded in refractory repetitive DNA sequence, 

e.g. microsatellites (MSTs)4. MST sequences, regions of repeated 1- to 6-mer DNA 

motifs, are abundant throughout the genome and are a source of significant genomic 

variation5. However, to date, analysis of microsatellite-containing loci has been 

limited because standard exome enrichment and whole genome sequencing uses 

software to mask out repeats6, focuses on capturing non-repetitive DNA, or is 

designed to capture only a small subset of the known MST loci7. In this paper we 

present a novel target enrichment strategy specifically designed to enrich for all 

microsatellite loci based on the repeat motif, rather than the flanking sequence, as 

baits, and have paired this technique with our recently developed method for analysis 

of unmapped reads8. Our analysis has revealed:  1) assembly of contigs from 

unmapped genome sequences and high-depth sequences from this novel target 

enrichment system that specifically selects for repetitive elements enables the 

quantification and characterization of these regions; 2) concordant contigs, those that 

appear in multiple samples, contain new structural elements (potential 

genes/pseudogenes, etc.), a subset of which have high similarity to expressed 

mRNAs; 3) these extra-referential genome regions are dominated by 5-mer repeats, 

in particular, an AATGG and a GTGGA centromeric repeat. This platform 
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technology has the potential to extend "reference genomes" and identify new 

functional elements. 
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METHODS 

 

Standard exome enrichment sequencing is designed using a bait set that contains the 

sequence of the known high complexity exomic regions. However, portions of the 

human genome remain unknown and as such are not captured and evaluated by 

current enrichment technologies. In addition, whole genome sequencing, which can 

be used to sequence these additional unknown regions is limited in its ability to 

evaluate these regions because sequencing reads are aligned to the known reference 

genome, and they lack sufficient sequencing depth for reliable assembly. Although 

these methods (WGS and exome enrichment) are excellent for evaluating a large 

portion of the genome, they are not optimal for identifying and aligning novel 

genomic sequence (i.e. gap filling, finishing genomes containing highly repetitive 

regions). Similarly, only reads in RNA-Seq data that are aligned to known reference 

genes are quantified, thus, an incomplete reference genome also impacts expression 

studies.  One potential reason that sections of the human genome remain unknown, 

or are not included in the reference, is that they contain highly repetitive DNA that 

makes it difficult to sequence and align properly. We have created a reference-

independent enrichment method that is designed to specifically enrich for repetitive 

DNA. This global microsatellite enrichment (GME) assay uses a bait design in 

which each 120 nt bait is composed of 4 x 30nt segments, selected to minimize the 

potential for intra-bait hairpin formation. Every possible 1-6 nt repetitive motif is 

represented within the bait set.  

 

Design of global microsatellite enrichment (GME) bait set: We designed a 

custom bait set that target all 1- to 6-mer microsatellite motifs. Each120nt bait is 

broken into four 30nt regions, each of which targets a different motif sequence. We 

programmed and ran a custom PERL script to design the baits to maintain 
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approximately a 40% G/C content along the full length of the bait (across all four 

motifs on each bait).  The custom script also evaluated the potential for hairpin 

formation of the baits and selected motifs for each bait to have a lower probability 

of internal hairpin formation. The baits were uploaded into Agilent’s eArray. 

 

Enrichment and Sequencing: Agilent exome enrichment, and our custom 

enrichment were performed according to the manufacturer’s directions. For the 

combined GME + Exome enrichment, the bait sets were combined in house. All 

enrichments were sequenced using the 150bp Illumina HiSeq Rapid-Run.  

 

Cell culture: DLD1 (ATCC® Number: CCL-221™) and SW403 (ATCC® 

Number: CCL-230™) human cell lines were purchased from ATCC 

(http://www.atcc.org Date of access: 01/06/2014). Cells were grown to confluence 

in DMEM + 10% FBS at 37C with 5% CO2 (DLD1) or Lebovitz media at 37C with 

no CO2 (SW403). Genomic DNA was isolated using Qiagen DNA Blood and Tissue 

kit according to the manufacturer’s protocol. DNA for the 16 normal samples was 

purchased from Coriell. 

 

Novel microsatellites prediction from unmapped reads:  Sequenced reads of all 

samples were obtained in the form of fastq files. The sequenced reads were paired-

end with a sequence length of 150 bases. The reads were quality checked and 

trimmed using Trimmomatic. The program uses sliding windows to check for the 

quality and a window of 10 bases was used. A quality score threshold of 20 was 

used; a 20 quality score means an error probability of 1 in 100 bases. The length 

threshold was set to 70 bases so any sequence read that is shorter than 70 bases after 

the quality trimming will be filtered out.  
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The BWA aligner was used to align the paired-end reads to the human reference 

genome, Hg19. A custom written python program was used to extract the unmapped 

reads from the sam files and output them in fasta format. The SAMTOOLS view and 

index programs were used to sort the sam files and convert sam file to bam format. 

The ‘add-read-groups’ program in the Picard software suite was used to add read 

groups to the bam files. The GATK program was used for indel realignment. The 

bam file that was indel realigned was then used to collect the unmapped reads in 

fasta format using a custom written PERL script for further processing.  

 

The fasta file with unmapped reads was passed on to a shell program to check and 

remove recurring “N”s in the unmapped reads. Any read shorter than 50 bases after 

the removal of “N”s was discarded. The “N” filtered unmapped reads were used to 

form contigs using the Velvet program. The kmer length (hash length) used for the 

velveth program was 71. The choice of an odd number for hash length is a 

requirement of the program so as to avoid palindromes. The resultant contig file is 

then passed on to the Tandem Repeat Finder (TRF) program for microsatellites 

identification. Note that there are a total of 1811360 known microsatellite loci in the 

Hg19 reference genome as identified by TRF.  The match weight, mismatch penalty, 

indel penalty, match probability, indel probability, minimum alignment score and 

period size used are 2, 7, 5, 80, 10, 14 and 6, respectively. The ‘-h’ parameter was 

used to suppress HTML output. A custom written PERL program was used to extract 

the predicted microsatellite list from binary output provided by TRF. In order to 

check if there are known microsatellites in the list generated by TRF, the TRF 

identified microsatellites are BLASTed against known genomes. For this purpose, a 

PERL program was written to add flanking regions (30 bases on each side) to the 

microsatellite list by referring back to the contigs file generated by Velvet. The 

microsatellites with flanking sequences are then BLASTed using the blastn program 
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against the blast formatted nucleotide sequence database and the human genome 

database downloaded from https://ncisf.org/software-databases/blast-databases 

(Date of access: 08/09/2014). An e-value of 0.001 was used for the blastn program. 

A PERL program was written to separate the microsatellites that were either found 

in the human or the nucleotide sequence database hence leaving only novel 

microsatellites.  

 

Read number calculation:  The read depth is calculated from the contig depth using 

the formula provided by Velvet. For a given contig the information about the contig 

is provided in the contig ID by the Velvet program (e.g. 

NODE_35_length_226_cov_17.079645). Using this information the contig 

coverage can be converted into read depth: C=Ck*L/(L-k+1). C is the read depth, 

Ck is the contig coverage, L is the average read length, and K is the read kmer length 

used. 

 

Identifying novel contigs/MSTs:  Any assembled contig that has 100% identity 

match with a human or a NT database sequence for more than half the length of the 

query sequence, then the contig is considered known. The remaining contigs are 

considered novel. All TRF predicted MSTs in the novel contigs are considered to be 

novel MSTs.   

 

Kmer calculation:  The kmers are divided into six categories: 1-mer, 2-mer, 3-mer, 

4-mer, 5-mer and 6-mer. The main input file to calculate kmer frequency information 

is the final output from the previous section that contains a predicted novel 

microsatellite list. The kmers were grouped into families. A kmer is added to a 

family if a) they are cyclically same or b) they are cyclical reverse complements. For 

example, if AACT is a family name, then TAAC, CTAA and ACTA belong to the 
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same family. According to reverse complementarity, AGTT, TAGT, TTAG and 

GTTA also belong to the AACT family. So an N-mer family has N*2 possible family 

members. All the read depths in a family are summed and hence each family has one 

kmer read depth value. To aid in the comparison of kmer families across samples, 

the name of the kmer families are kept similar. After grouping the cyclical kmers 

and cyclical reverse complements kmers, measures were taken to unify the family 

names across samples. The entire kmer calculation procedure was done using a 

series of custom python scripts.  

 

Concordant contig calculation:  The novel contigs from all the 16 + 6 samples 

were pooled together to find contigs that are observed in two or more samples, i.e. 

concordant. The pooled contigs were converted into a fasta file and was formatted 

into a BLAST database. All the individual contigs were then BLASTed against the 

database. Alignments that are more than 70% of the query length and aligned with 0 

or 1 mismatch (to allow for potential individual variation) were considered for 

further analysis. A python script was written to generate two lists (with no mismatch 

and 1 mismatch) of concordant contigs that were found in more than one sample. 

The contigs in each concordant group were assembled into one contig sequence 

using the CAP3 program.   

 

Evaluation of contigs for gene-like structure:  All concordant contigs were fed 

into the GlimmerHMM program for Gene-Like Structure (GLS) prediction.  The 

program was trained using the human training data provided with the GlimmerHMM 

package. The program can predict one or more exons in a given contig. The predicted 

exons in a GLS can be of three types; initial, internal and final. All the GLS with 

more than one exon were considered for further processing.   
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Comparison of putative cDNA to RNA-seq data:  The start and end positions of 

the exons were obtained from the GlimmerHMM output to extract putative cDNA 

sequences. The cDNA sequences of all concordant contigs from all the samples were 

combined to make a single cDNA database. Ten lymphoblastoid RNA-Seq samples 

were obtained in the form of FASTQ files 

(http://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-1/samples/ Date of 

access: 15/01/2015) and were BLAST searched against the cDNA database. A 

cDNA query sequence that aligned to an RNA-Seq read with an identity of 100% 

and with an alignment length longer than 70% of the query length was considered to 

be a highly similar match. The RNA-Seq reads evaluated in this study were on 

average 75 bases long. The results of the both the BLAST searches were combined 

and are provided in Extended Data Table 7. Analysis of the BLAST search output 

was done using custom written python scripts.  

 

Similar to the paragraph above, the concordant contigs were searched against RNA-

Seq sample reads.  The results of this BLAST search are provided in Extended Data 

Table 5. 

 

Whole genome analysis:  The k-mer analysis graph presented in Figure 1 contains 

the k-mer distribution of all the 22 samples along with the human reference genome 

and a whole genome sample. The whole genome sample was added to compare the 

k-mer levels of the six samples with a sample where the entire genome is sequenced 

without enrichment bias and not just the exome.  

 

A B-Lymphocyte whole genome DNA sequencing sample (HG00106) was 

downloaded from the 1000 genomes project for this purpose. The paired-end 

sequencing reads were downloaded in the form of a FASTQ file. The reads were N 
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filtered and mapped to the human reference genome (Hg19) using BWA. The 

unmapped reads were separated from the SAM file. The unmapped reads, in the form 

of a FASTA file, was used as the input for the TRF program to predict MST loci. 

The same parameters used for the other samples for TRF was used here too. A 

custom written PERL program was used to analyze a list of known MSTs and the 

TRF output data file to generate a list of predicted MST loci along with their read 

depths. This list of MST loci was used in the preparation of Figure 1.   
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RESULTS AND DISCUSSION 

 

To verify the performance of our GME, we selected two colorectal cell lines: MST 

stable SW403 cells, and MST unstable DLD-1 cells9,10 (Extended Data Table 1). For 

each cell line, DNA isolated from cells grown as a single large cell culture was split 

and enriched using: (1) the Agilent exome enrichment kit; (2) our GME enrichment 

kit; or (3) an admixture of exome and our enrichment where the baits were combined 

prior to the enrichment.  This enabled us to quantify the relative enrichment of 

repetitive regions for each enrichment system.  Once enrichment performance was 

optimized and verified, we then sequenced 16 additional normal human DNA 

samples (Extended Data Table 1) from the 1000 Genomes Project using this 

enrichment system, and then processed the data to identify novel contigs that 

reproducibly appear in multiple samples.  These concordant contigs were then 

analyzed for potential functional elements, as predicted by GlimmerHHM and 

supported by high similarity to RNA-Seq reads found in a variety of tissues.  All 

enrichments, on average, had 99% of the high-quality reads map to the known human 

reference Hg19 (Table 1), consistent with what is expected given that 99% of the 

genome is “complete”. A substantial fraction of the reads from our GME enrichment, 

as opposed to those reads from exome enrichment, fell outside the exome (Table 1, 

Exome Overlap %), consistent with our goal of global enrichment for genomic 

microsatellite loci. On average, 0.45% of the total reads were found to be unmapped 

in the GME and the combined samples while only 0.1% of the exome enrichment 

samples were unmapped (Table 1).  This is, again, consistent with the GME system 

specifically targeting repetitive regions.  The GME of the DLD-1 cell line and the 

SW403 cell line were both enriched for microsatellite loci, but in different manners. 

DLD-1-GME captured a greater fraction of the known MSTs (identified from the 

Hg19 reference genome using Tandem Repeat Finder (TRF)11), whereas SW403-
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GME captured fewer of the known MSTs (Table 1) but had greater depth for a 

greater fraction of the MSTs that were captured (Extended Data Fig. 1). That this 

was due to variation in hybridization temperature is supported by an increase in C/G 

nucleotide sequences captured in this sample (Extended Data Fig. 2).  While the 

MST loci amounts in the colorectal samples varied, the additional normal samples 

processed at the optimum temperature produced consistent results. On average, 87% 

of the mapped reads in the normal samples contained MST loci. (Table 1)  

 

Any reads containing novel DNA/MST sequences are by definition unmapped 

relative to the reference genome, therefore we analyzed the content of the unmapped 

reads using our unmapped read analysis pipeline (8 and methods). We built contigs 

from those reads that did not align to the reference (Table 2), and then re-aligned 

these contigs to the reference to further eliminate any contigs with known sequence 

from further analysis. Not only were a higher number of contigs built from the 

unmapped read analysis on the GME samples, but there were also a higher number 

of contigs containing MSTs (Table 2), as expected. We identified between 162 and 

1469 novel contigs per enrichment, of which between 8% and 56% contained MSTs 

(Table 2). These MST-containing loci were found to be covered at a significant read 

depth. On average, 65% of MSTs found in novel contigs of the normal samples and 

the colorectal cell lines were supported by more than 10 reads (Extended Data Fig. 

1 and 3). The analysis of all 20 independent GME samples (2 colorectal GME only, 

2 colorectal GME combined with exome, and 16 normal) has yielded 790 concordant 

contigs (283 bp average length) that were observed in more than one sample (on 

average, each contig is seen in 5.6 samples, Extended Data Table 2).  The concordant 

contigs were observed in as many as all 20 samples (Extended Data Table 3). This 

high reliability data (as confirmed in multiple samples) can reveal robust new MST-

containing loci and high complexity sequence in unmapped regions. The distribution 
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of the lengths of all the concordant contigs and those that contain a MST (Extended 

Data Fig. 4) shows that more than 90% of concordant contigs are shorter than 500 

nt. As nextgen raw read lengths grow, longer contigs in these repeat-containing 

regions could be assembled.  

Extended Data Fig. 5 shows that the GME approach can capture MST-containing 

loci of varying length; as short as 10nt, but also longer than 150nt (i.e. as observed 

in assembled contigs).  Given that 14% of the known MSTs identified in Hg19 using 

TRF are >50nt, our approach of enrichment plus contig building will, as raw read 

lengths grow, give access to longer MST loci. 

 

To assess the potential value of these novel contigs, we searched the 790 concordant 

contigs for functional elements by aligning the contigs to 10 normal Lymphoblastoid 

RNA-Seq samples (Extended Data Table 4). We found that 37 concordant contigs 

aligned to at least one RNA-Seq read (Extended Data Table 5); and 22 of these 37 

were supported by at least 10 RNA-Seq reads.  BLASTing these 37 concordant 

contigs against the all known sequences in GenBank confirmed that the vast majority 

of these novel sequences (i.e. less than 50% identity to any portion of the known 

human reference) appear to be in human and chimpanzee subclones sequenced as 

part of the earliest human genome sequencing efforts, but not mapped to the current 

human genome reference, again confirming they are part of the missing human 

genome reference.  This raises the possibility that sequences that had been relegated 

to the unaligned or pre-nextgen clone sequence trash heap may eventually be 

captured at a depth and with a reliability that allow them to be integrated into the 

reference.  Table 3 illustrates the top 10 concordant contigs aligned to at least 235 

RNA-Seq reads.  Interestingly, the contig with the most hits to RNA-Seq reads was 

confirmed by BLASTing against GenBank to have 99% identity to abundant 
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Ribosomal RNA sequences which may indicate a coding region for a new rRNA 

family member.    

 

We also examined the 790 concordant contigs for the presence of gene-like 

structures (GLS) (e.g. putative exon, intron followed by another in-frame exon) 

using GlimmerHMM12 (Table 2). We found that 249 concordant contigs contained 

potential GLSs (Table 2).  The majority of the contigs with GLS had 2-3 exons with 

no contig identified as having over 8 exons (Extended Data Table 6). Extended Data 

Fig. 4 shows that there was no significant difference in average contig length for 

contigs containing a MST and/or GLS. We then generated putative cDNAs from the 

concordant contigs identified as having GLS and compared them to 10 RNA-Seq 

data sets discussed above. Six of these putative cDNAs matched to the RNA-Seq 

data with between 1 and 90 RNA-Seq reads aligned to each GLS (Extended Data 

Table 7), demonstrating that these novel contigs not only have potential GLS, but 

some were identified as low abundance mRNAs.  It further indicates that many new 

potential coding regions that robustly align to RNA-Seq reads contain functional 

elements not recognized by GlimmerHHM.    

 

Analysis of the microsatellite motifs represented in the unmapped reads containing 

novel MSTs revealed an over-abundance of reads containing pentameric repeats 

(Fig. 1). A comparison of the relative abundance of the MST-containing contigs to 

the expected “known” motif ratios present from the human reference (Hg19) 

identified with Tandem Repeat Finder (TRF) and those present in a whole genome 

sequenced sample from the 1000 genomes project shows that the abundance of 

pentameric MST loci repeats are >3.5 fold more abundant in the whole genome 

sample than expected from the known reference (Fig. 1). Pentameric MSTs were 

present in the exome enrichment at a similar abundance as in the whole genome 
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sequenced sample, however, in our GME the fraction of novel pentameric MSTs that 

were captured was an average of  9.2 fold greater than the fraction found in the 

known reference and 2.6 fold greater than the whole genome sequenced sample (a 

list of the top 5 most abundant motifs is given in Extended Data Table 8), consistent 

with these pentameric MSTs being localized extra-referentially.  

 

Examination of the specific sequences of the MST containing loci revealed that the 

motifs AATGG and GTGGA were abundant in all samples, including the analysis 

of the whole genome sample, but not in the known human reference data (Extended 

Data Table 8). AATGG has been identified as a human centromeric13,14 sequence 

motif and therefore the overabundance of this sequence in the data, but its absence 

from the human reference assembly, is consistent with it being a component of 

centromeric heterchromatin. The motif GTGGA differs from AATGG by one 

nucleotide, and based on its similarity to a known centromeric repeat and 

overabundance in the data also makes it a candidate centromeric repeat as well.  The 

overabundance of reads that contain the AATGG sequence was unexpected, and an 

average of 53% of unmapped reads with MSTs contained the AATGG motif, 

whereas, reads were devoid of the often-studied telomeric repeat, GGGTTA.  
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CONCLUSION 

 

 Our GME provides the possibility for discovery of new/non-reference DNA 

sequence through the non-specific (i.e. not linked to a single reference locus) capture 

of repetitive DNA. Applying this target enrichment strategy broadly and pairing it 

with our algorithmic approach for identifying novel concordant contigs from 

unmapped reads can drive the human genome towards true completion; identify and 

annotate new potential functional elements therein; finish genomes containing even 

more repetitive sequence, such as plants; and be key to quantifying and 

comprehending the importance of telomeric and centromeric structure.  
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FIGURES 

 

Figure 2-1: Frequency of MSTs motif classes in unmapped reads relative to 

those found in the reference genome (HG19) and the whole genome. The 

majority of novel microsatellite loci captured using our method contained 

pentameric repeats. For comparison, most loci found in the reference genome are 

not pentameric; and analysis of whole genome data confirms that much of the 

missing genome is associated with pentamer repeat regions. 
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Table 2-1: Mapping of enrichment reads.  

Sample & 
Enrichment 

Total 
Reads 

Mapped 
% 

Exome 
Overlap 

% 

Mapped 
with MST 

% 

Known 
MST Loci 
called % 

Unmapped 
% 

Unmapped 
with 

MST% 
DLD-1- Exome 107763705 99.9 53.7 7.3 44.4 0.1 1.6 
DLD-1 - GME 99869840 99.6 2.9 15.7 61.7 0.4 2.8 
DLD-1 - Comb 86571454 99.8 52.3 12.1 41.1 0.2 4.2 
SW403 - Exome 99392535 99.9 57.3 6.8 41.2 0.1 1.8 
SW403 - GME 93042396 99.1 2.3 67.4 11.7 0.9 3.8 
SW403 - Comb 95846052 99.7 51.7 12.0 27.3 0.3 3.3 
Normal-1-GME 107184846 99.2 1.8 86.7 33.3 0.8 1.1 
Normal-2-GME 86039208 98.4 1.9 87.5 26.3 1.6 0.5 
Normal-3-GME 77776824 98.1 1.9 88.6 23.3 1.9 0.4 
Normal-4-GME 76888422 99.0 2.0 89.1 23.1 1.0 0.9 
Normal-5-GME 88088498 97.6 2.1 87.1 26.1 2.4 0.5 
Normal-6-GME 87529722 97.7 2.0 87.7 25.9 2.3 0.4 
Normal-7-GME 85362982 98.8 2.0 86.5 26.7 1.2 0.7 
Normal-8-GME 69912104 98.3 1.8 88.7 24.1 1.7 0.6 
Normal-9-GME 89072202 99.1 1.8 83.5 36.8 0.9 0.7 
Normal-10-
GME 

88599848 99.1 1.9 87.0 30.6 0.9 0.7 

Normal-11-
GME 

67477542 99.1 1.9 87.1 27.0 0.9 1.1 

Normal-12-
GME 

74895624 98.4 2.1 87.6 27.3 1.6 0.5 

Normal-13-
GME 

102597820 98.3 2.0 89.1 29.3 1.7 0.5 
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Normal-14-
GME 

39497576 98.5 1.8 89.6 22.4 1.5 0.6 

Normal-15-
GME 

97582298 99.3 1.8 88.1 29.3 0.7 1.3 

Normal-16-
GME 

91613940 98.1 1.8 86.7 32.0 1.9 0.6 
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Table 2-2: Novel contigs and MSTs from unmapped reads. 
 

Sample & 
Enrichment 

Novel 
Contigs 

% Contigs 
with MSTs 

% Contigs 
with GLS 

% Contigs 
with both 
MST and 

GLS 

Total MSTs % Novel 
MSTs 

DLD1-Exome 224 8 16 2 48 35 
DLD1-GME 1469 20 23 7 510 71 
DLD1-Comb 515 36 25 9 297 79 
SW403-Exome 162 19 16 3 55 62 
SW403-GME 372 46 34 19 227 92 
SW403-Comb 267 38 34 15 153 88 
Normal-1-GME 312 52 34 20 265 78 
Normal-2-GME 278 55 28 18 244 82 
Normal-3-GME 261 54 30 17 239 74 
Normal-4-GME 289 53 30 17 255 75 
Normal-5-GME 257 54 34 18 249 70 
Normal-6-GME 316 50 33 17 253 79 
Normal-7-GME 275 52 36 20 250 71 
Normal-8-GME 255 56 31 18 219 82 
Normal-9-GME 245 52 36 18 210 74 
Normal-10-GME 221 54 31 17 197 75 
Normal-11-GME 248 52 33 20 219 79 
Normal-12-GME 265 51 38 21 221 76 
Normal-13-GME 308 51 32 18 243 79 
Normal-14-GME 198 52 29 16 192 68 
Normal-15-GME 351 52 34 19 279 81 
Normal-16-GME 307 51 28 16 254 79 
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Total 7395 42 29 14 5079 77 
Concordant 790 42 32 16 533 100 
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Table 2-3: Alignment analysis of concordant contigs with normal lymphoblastoid RNA-Seq samples. The top 

10 out of 37 concordant contigs that had RNA-Seq hits are presented in this table. HS: Homo sapiens; PT: 

Pantroglodytes; Chr: chromosome. 

 

# 
RNA-Seq samples  Total 

aligned 
reads 

Contig 
length BLAST hit 

1 2 3 4 5 6 7 8 9 10 

1 9441 17648 208 31 6957 1506
4 7134 2005 12173 7 70668 370 HS clone. Chr21 

2 24 76 77 7 26 33 19 63 32 11 368 615 HS FOSMID clone. 
Chr7 

3 24 67 75 7 21 33 20 61 32 11 351 628 HS FOSMID clone. 
Chr7 

4 24 69 75 7 21 33 19 60 32 11 351 624 HS FOSMID clone. 
Chr7 

5 55 38 28 11 4 48 0 48 46 26 304 531 HS FOSMID clone. 
Chr17 

6 25 67 43 4 23 23 16 52 29 14 296 310 PT BAC clone. Chr7 
7 18 25 38 5 57 36 35 7 30 24 275 303 HS BAC clone. Chr17 
8 22 66 42 4 19 18 13 52 22 13 271 314 PT BAC clone. Chr7 
9 21 66 41 4 16 18 13 51 21 13 264 323 PT BAC clone. Chr7 
10 19 61 39 4 18 12 11 44 16 11 235 289 PT BAC clone. Chr7 
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Figure S2-1: Read coverage analysis for MST motifs. For every sample >15% of 

known microsatellite loci (MSTs in mapped reads) (A) and >50% of novel 

microsatellite loci (MSTs in novel contigs) (B) were covered by more than 10 

sequencing reads. 
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Figure S2-2: Homopolymer Nucleotide Distribution. As our GME captures 

repetitive motifs based on 30nt repetitive regions, it was possible that C/G 

nucleotides were captured in higher abundance than with standard exome capture. 

We found that the SW403-GME sample, but not the DLD1-GME enriched sample 

was enriched for C/G nucleotides. This difference in capture between the two GME 

samples may be due to slight differences in hybridization temperatures used while 

optimizing the capture process, and may indicate a use for this technology in 

specifically capturing C/G nucleotide regions in the future. 
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Figure S2-3: Read coverage analysis of MST motifs in normal human samples. 

(A) In every individual sample more than 30% of the MSTs are covered by more 

than 15 reads while an equal percentage are covered by 2 to 5 reads. (B) 

Approximately 60% of MSTs found in the novel contigs are covered by more than 

15 reads. 
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Figure S2-4: Concordant contig length distribution. This histogram shows how 

the concordant contigs with and without MSTs and GLS are distributed according 

to their lengths. Each category of contigs represents the combined information of all 

the samples (i.e. 16 GME sequenced normal samples, 3 DLD1 samples and 3 SW403 

samples). It should be noted that except for the “less than 250 bases” bin, all other 

contigs contain two or more reads. 
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Figure S2-5: Length distribution of novel microsatellites. The following 

histograms show the MSTs according to their length in the colorectal cell lines (A) 

and in the normal samples (B). 
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Table S2-1: Details of the samples on which GME was performed. 

Sample # Sample Sample Type Sample Source 
1 DLD1-Exome Colorectal ATCC CCL-221 
2 DLD1-GME Colorectal ATCC CCL-221 
3 DLD1-Comb Colorectal ATCC CCL-221 
4 SW403-Exome Colorectal ATCC CCL-230 
5 SW403-GME Colorectal ATCC CCL-230 
6 SW403-Comb Colorectal ATCC CCL-230 
7 Normal-1-GME Lymphoblastoid Coriell HG00384 
8 Normal-2-GME Lymphoblastoid Coriell HG00383 
9 Normal-3-GME Lymphoblastoid Coriell HG00382 

10 Normal-4-GME Lymphoblastoid Coriell HG00381 
11 Normal-5-GME Lymphoblastoid Coriell HG00380 
12 Normal-6-GME Lymphoblastoid Coriell HG00379 
13 Normal-7-GME Lymphoblastoid Coriell HG00378 
14 Normal-8-GME Lymphoblastoid Coriell HG00377 
15 Normal-9-GME Lymphoblastoid Coriell HG00376 
16 Normal-10-GME Lymphoblastoid Coriell HG00375 
17 Normal-11-GME Lymphoblastoid Coriell HG00373 
18 Normal-12-GME Lymphoblastoid Coriell HG00372 
19 Normal-13-GME Lymphoblastoid Coriell HG00371 
20 Normal-14-GME Lymphoblastoid Coriell HG00369 
21 Normal-15-GME Lymphoblastoid Coriell HG00368 
22 Normal-16-GME Lymphoblastoid Coriell HG00367 
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Table S2-2: The statistics of the concordant contigs are furnished in the below 

table. The data is divided according to the number of mismatches allowed for the 

concordant contig calculation to illustrate that if some mismatch is allowed (due to 

possible variations among individuals) the additional contigs may be further 

assembled.  However, for further analysis, only those concordant contigs assembled 

using the strict 0 mismatch value were used.  

Statistics Mismatch 
0 1 

Total concordant contigs (observed in at least 2 samples) 790 747 
Total sample contigs found concordant 4419 4915 
Maximum # of sample contigs assembled into a 
concordant contig 25 29 

Minimum # of sample contigs assembled into a 
concordant contig 2 2 

Average # of samples a concordant contig was found 5.6 6.6 
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Table S2-3: Concordant contig sample distribution. Novel contigs that were 

present in multiple samples are considered to be concordant. The table groups the 

concordant contigs according to the number of samples in which they were found. 

The data is divided by mismatch 0 and mismatch 1 (Number of mismatches allowed 

while generating the concordant contigs). 

# of 
samples 

Concordant contigs 
0mismatch 1mismatch 

2 243 188 
3 125 99 
4 85 80 
5 59 48 
6 36 50 
7 44 38 
8 29 30 
9 31 28 

10 20 24 
11 26 30 
12 14 21 
13 18 29 
14 13 17 
15 9 13 
16 8 11 
17 8 9 
18 15 18 
19 7 11 
20 0 2 
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Table S2-4: Details about the RNA-Seq samples that were used to confirm that the 

concordant contigs contain potential functional elements. 

Sample # SampleID Sample Type Sample Source 
1 ERR188040 Lymphoblastoid ArrayExpress - EBI 
2 ERR188231 Lymphoblastoid ArrayExpress - EBI 
3 ERR188043 Lymphoblastoid ArrayExpress - EBI 
4 ERR188280 Lymphoblastoid ArrayExpress - EBI 
5 ERR188325 Lymphoblastoid ArrayExpress - EBI 
6 ERR188327 Lymphoblastoid ArrayExpress - EBI 
7 ERR188373 Lymphoblastoid ArrayExpress - EBI 
8 ERR188313 Lymphoblastoid ArrayExpress - EBI 
9 ERR188382 Lymphoblastoid ArrayExpress - EBI 

10 ERR188359 Lymphoblastoid ArrayExpress - EBI 
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Table S2-5: Thirty-seven concordant contigs aligned to at least one RNA-Seq read. As indicated in methods, a 

RNA-Seq hit must align with 0 mismatches to at least 70% of the length of the contig. 

# 
RNA-Seq samples Total 

aligned 
reads 

Contig 
length BLAST hit 

1 2 3 4 5 6 7 8 9 10 

1 9441 17648 208 31 6957 15064 7134 2005 12173 7 70668 370 HS clone. 
Chr21 

2 24 76 77 7 26 33 19 63 32 11 368 615 HS FOSMID 
clone. Chr7 

3 24 67 75 7 21 33 20 61 32 11 351 628 HS FOSMID 
clone. Chr7 

4 24 69 75 7 21 33 19 60 32 11 351 624 HS FOSMID 
clone. Chr7 

5 55 38 28 11 4 48 0 48 46 26 304 531 HS FOSMID 
clone. Chr17 

6 25 67 43 4 23 23 16 52 29 14 296 310 PT BAC clone. 
Chr7 

7 18 25 38 5 57 36 35 7 30 24 275 303 HS BAC clone. 
Chr17 

8 22 66 42 4 19 18 13 52 22 13 271 314 PT BAC clone. 
Chr7 

9 21 66 41 4 16 18 13 51 21 13 264 323 PT BAC clone. 
Chr7 

10 19 61 39 4 18 12 11 44 16 11 235 289 PT BAC clone. 
Chr7 

11 21 61 37 4 18 11 9 43 15 11 230 294 PT 
uncharacterized 
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12 14 54 38 2 13 13 8 37 14 11 204 274 PT 
uncharacterized 

13 5 11 37 2 67 4 3 7 0 2 138 327 HS clone. 
14 11 18 2 0 66 13 3 12 10 0 135 242 HS rRNA gene 
15 13 15 8 1 13 11 0 27 18 9 115 387 HS clone. 

Chr17 
16 11 18 13 0 9 7 6 12 11 8 95 466 HS clone. 

Chr21 
17 5 8 8 0 28 0 2 9 3 9 72 363 HS FOSMID. 
18 7 13 13 0 22 6 1 3 1 5 71 285 PT BAC clone. 

ChrY 
19 1 3 9 2 14 0 0 2 0 1 32 437 PA BAC clone. 

Chr16 
20 3 11 4 0 2 0 0 6 2 1 29 324 HS clone. 

Chr21 
21 0 2 0 6 0 0 2 8 3 0 21 1016 BB genome 

scaffold 
22 1 5 1 4 0 0 0 1 0 3 15 512 No hits 
23 0 0 1 0 1 1 0 3 0 3 9 370 HS clone. 

Chr21 
24 1 2 0 2 0 0 0 0 2 0 7 368 HS FOSMID 

clone. Chr11 
25 0 0 1 0 1 0 0 2 0 2 6 372 HS clone. 

Chr21 
26 1 0 2 0 0 0 0 2 0 0 5 423 HS BAC clone. 
27 1 1 0 0 3 0 0 0 0 0 5 495 HS clone. Chr9 
28 0 0 0 0 3 2 0 0 0 0 5 346 HS clone. 

Chr21 
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29 0 0 0 0 0 0 0 3 0 0 3 381 PT BAC clone. 
Chr7 

30 1 0 0 0 1 0 0 0 0 0 2 259 OF genome 
scaffold 

31 0 0 0 0 0 0 0 0 0 1 1 449 PT BAC clone. 
ChrY 

32 0 0 0 0 0 0 0 1 0 0 1 314 HS FOSMID 
clone. Chr7 

33 0 0 1 0 0 0 0 0 0 0 1 232 No hits 
34 0 0 1 0 0 0 0 0 0 0 1 364 No hits 
35 0 1 0 0 0 0 0 0 0 0 1 277 HS contig. 
36 0 1 0 0 0 0 0 0 0 0 1 283 HS clone. 

ChrX 
37 0 0 0 0 0 0 0 0 1 0 1 295 HS clone. 

Chr17 
HS: Homo sapiens; PT: Pan troglodytes; BB: Babesia bigemina; OF: Onchocerca flexuosa; Chr: Chromosome. 
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Table S2-6: Distribution of predicted exon number within the concordant 

contigs predicted by GlimmerHMM to have Gene-Like Structures (GLS). 

#Exons #GLS 
2 73 
3 105 
4 44 
5 24 
6 2 
8 1 

Total 249 
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Table S2-7: Six putative cDNAs found in the concordant contigs had at least 

one read hit in the RNA-Seq samples.  

# 
Aligned 

RNA-Seq 
reads 

Contig 
length 

cDNA 
length BLAST hit 

1 90 314 219 PT BAC clone. Chr7 
2 10 323 108 PT BAC clone. Chr7 
3 5 495 384 HS clone. Chr9 
4 1 370 159 HS clone. Chr21 
5 1 259 138 OF genome scaffold 
6 1 368 159 HS FOSMID clone. Chr11 

PT: Pan troglodytes; HS: Homo sapiens; OF: Onchocerca flexuosa; Chr: 
Chromosome. 
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Table S2-8: Top five pentameric and hexameric motif families.  The top five 

pentameric and hexameric motif families are shown for the DLD-1 and SW404 

samples, a representative split (50,000 unmapped reads) from a whole genome 

sequenced sample and the known human reference hg19 where MSTs were 

identified using Tandem Repeat Finder (Hg19-TRF). The telomeric repeat is 

underlined. 

	
	 	

DLD#1%Exome% DLD#1%GME% DLD#1%Combined%
Mo2f% Loci% Percent% Mo2f% Loci% Percent% Mo2f% Loci% Percent%

AATGG$ 2$ 22$ AATGG$ 20$ 20$ GTGGA$ 118$ 47.2$
ATATA$ 2$ 22$ GTGGA$ 20$ 20$ AATGG$ 116$ 46.4$
AGGGG$ 2$ 22$ ATATA$ 6$ 6$ GAATT$ 1$ 0.4$
GGGAT$ 1$ 11$ GGGGC$ 4$ 4$ GGATT$ 1$ 0.4$
TTTTC$ 1$ 11$ GCCCT$ 4$ 4$ GGGAT$ 1$ 0.4$
!! !! !! !! !! !!
TCCTCT$ 1$ 25$ CATCAC$ 4$ 40$ CCCCGG$ 1$ 25$
GGGGGA$ 1$ 25$ CCCTCA$ 2$ 20$ AGGTCC$ 1$ 25$
CAGCAA$ 1$ 25$ GGCCCA$ 2$ 20$ CCTGGC$ 1$ 25$
CCTGGC$ 1$ 25$ ATAAAA$ 2$ 20$ CCCTCA$ 1$ 25$

SW404%Exome% SW403%GME% SW403%Combined%
Mo2f% Loci% Percent% Mo2f% Loci% Percent% Mo2f% Loci% Percent%

GTGGA$ 8$ 36.4$ AATGG$ 107$ 55.7$ AATGG$ 57$ 48.3$
AATGG$ 5$ 22.7$ GTGGA$ 64$ 33.3$ GTGGA$ 55$ 46.6$
ATATA$ 2$ 9.1$ CCCAC$ 11$ 5.7$ CCCAC$ 2$ 1.7$
CAAAA$ 1$ 4.5$ ATTCG$ 2$ 1$ GGATT$ 1$ 0.8$
AGGGG$ 1$ 4.5$ CCTTC$ 1$ 0.5$ ATTTT$ 1$ 0.8$
!! !! !! !! !! !!
TCCTCT$ 1$ 33.3$ CAGCAA$ 1$ 20$ CTGGGG$ 1$ 16.7$
GGCCCA$ 1$ 33.3$ CAACGA$ 1$ 20$ TCCTCT$ 1$ 16.7$
CCTGGC$ 1$ 33.3$ CTGGGG$ 1$ 20$ CCCCGG$ 1$ 16.7$
!! !! AAAATG$ 1$ 20$ AGGGTC$ 1$ 16.7$
!! !! !! CCCTCA$ 1$ 20$ AAAATG$ 1$ 16.7$

HG19%TRF% Whole%Genome%
Mo2f% Loci% Percent% Mo2f% Loci% Percent%

CAAAA$ 51763$ 28$ AATGG$ 2192279$ 82.1$
ATTTT$ 39451$ 21.3$ CAAAA$ 159237$ 6$
TTTTC$ 26684$ 14.4$ ATTTT$ 89791$ 3.4$
ATTAA$ 6162$ 3.3$ TTTTC$ 52059$ 2$
CTTTC$ 4678$ 2.5$ GTGGA$ 50117$ 1.9$
!! !! !! !!
ACAAAA$ 20644$ 17$ ACAAAA$ 41995$ 25.9$
TCTTTT$ 16995$ 14$ ATAAAA$ 21847$ 13.5$
ATAAAA$ 16293$ 13.4$ GGGTTA$ 14626$ 9$
GTATAT$ 4297$ 3.5$ TCTTTT$ 13237$ 8.2$
CATACA$ 3557$ 2.9$ TGTCTC$ 4982$ 3.1$

Pe
nt
am

er
$

He
xa
m
er
$

Pe
nt
am

er
$

He
xa
m
er
$

Pe
nt
am

er
$

He
xa
m
er
$



	

	 59	

 

 

 

 

 

Chapter 3: High-depth, high-accuracy microsatellite genotyping enables 

precision lung cancer risk classification 
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ABSTRACT 

There remains a large discrepancy between the known genetic contributions to 

cancer and that which can be explained by genomic variants, both inherited and 

somatic. Recently, understudied repetitive DNA regions called microsatellites have 

been identified as genetic risk markers for a number of diseases including various 

cancers (breast, ovarian and brain). In this study we demonstrate an integrated 

process for identifying and validating microsatellite based risk markers for lung 

cancer using data from the cancer genome atlas (TCGA) and the 1000 genomes 

project. Comparing whole exome germline sequencing data from 488 TCGA lung 

cancer samples to germline exome data from 390 control samples from the 1000 

genomes project, we identified 119 potentially informative microsatellite loci. These 

loci (risk markers) were found to be able to distinguish between cancer and control 

samples with sensitivity and specificity ratios over 0.8. Then these loci, 

supplemented with additional loci from other cancers and controls, were evaluated 

using a custom target enrichment kit and sample-multiplexed nextgen sequencing. 

Thirteen of the 119 risk markers were validated using high-depth (579x±315) 

nextgen sequencing of 30 lung cancer and 89 control samples, resulting in sensitivity 

and specificity ratios were 0.90 and 0.94, respectively. When 8 loci harvested from 

the bioinformatic analysis of other cancers are added to the classifier, then the 

sensitivity and specificity rise to 0.93 and 0.97, respectively. Analysis of the genes 

harboring these loci revealed two genes (ARID1B and REL) and two significantly 

enriched pathways (chromatin organization and cellular response to stress) which 

suggest that the process of lung carcinogenesis is linked to chromatin remodeling, 

inflammation, and tumor microenvironment restructuring.  We illustrate that high-

depth nextgen sequencing enables a high-precision microsatellite-based risk 

classifier analysis approach.  This microsatellite-based platform approach confirms 

the potential to create clinically actionable diagnostics for lung cancer.   



	

	 61	

INTRODUCTION 
 
Lung cancer has a high rate of incidence with 224,000 new cases projected this year 

alone: more than the next four cancers (colorectal, pancreatic, breast, and prostate) 

combined. Only 18% of those diagnosed with lung cancer will survive 5 years1, 2; 

however, early detection can dramatically improve outcomes. About 80% to 85% of 

lung cancers are found to be non-small cell lung cancer 3. If found early the 5 year 

survival rate of non small cell lung cancer improves significantly: stage IA – 49%, 

stage IB – 54%, stage IIA – 30%, stage IIB – 31%, stage IIIA – 14%, stage IIIB – 

5% and stage IV – 1%4. The differing stage dependent survival rate and varying 

provenance of new lung cancers underscores the value of developing a lung cancer 

genetic risk diagnostic – especially for screening of “at risk” populations (family 

members with lung cancer, second hand exposure to smoke or other hazards) which 

could be tested, with subsequent adjustments made to clinical observation or 

lifestyle.  Interestingly, as the smoking rate has dropped in the US, it has been 

observed that ~20% of lung cancer deaths are from never smokers, attributable to 

other environmental exposures and genetic mutations5, 6.  

 

Studies of disease specific variation have largely neglected repetitive DNA in 

favor of Single Nucleotide Variants (SNVs). However, an abundance of neurological 

disorders have been linked to length specific variations in repetitive DNA 

microsatellites (MST)7. These microsatellites consist of short (1-6bp) units repeated 

in tandem. Recent studies have shown that microsatellites contribute to the genetic 

complexity of various cancers8-10. Based on these previous findings it is 

hypothesized that microsatellites may play a role in the genetics of lung cancer11.   
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Our recent population-scale studies of MST loci and their repeat length 

variations have shown that MSTs can stratify risk, provide clinical decision support, 

and be potential therapeutic targets8-10, 12-14. These observations were made possible 

by building robust computational pipelines to accurately genotype MST loci based 

repeat length variation8-10, 12. Our previous work in computationally discovering 

clinically informative MST loci from publically available data sets (The Cancer 

Genome Atlas of affected individuals, the 1000 Genomes Project of healthy 

“normal” individuals) have yielded disease specific MST loci variations for breast 

cancer, ovarian cancer, glioblastoma, and lower-grade glioma8-10, 12. We have also 

shown somatic MST variability (SMV) and the presence of minor alleles can act as 

indicative disease markers for colorectal and liver cancer15. Furthermore, 

microsatellite variations are somatically acquired in normal tissues as one ages at 

rates higher than SNVs and that they are a sensitive measure of toxic environmental 

exposures16, 17. 

 

The goal of this manuscript is to discover and validate a set of microsatellite 

markers for lung cancer risk via comparison of patient germline and normal control 

germline exome sequences. Validation utilizes a custom target enrichment kit for 

high depth next-gen targeted sequencing. The focused, ultra-high read depth 

multiplexed sequencing approach used here enables accurate economical 

genotyping, validation and final selection of informative loci to ultimately create a 

high sensitivity and specificity risk classifier assay.  
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METHODS 

Computational identification of LUAD and LUSC specific MST loci 

A total of 266 LUAD and 222 LUSC germline exome samples were downloaded 

from TCGA. For the non-tumor control population, 390 germline exome samples 

were downloaded from the 1kGP. A set of 1.8 million MST loci, that were extracted 

from the human genome (38 build) using the tandem repeat finder, were genotyped 

in these samples. A modal genotype was computed for each MST locus using the 

1kGP samples. A 2 X 2 Fisher’s exact test was computed for each locus comparing 

the modal and non-modal genotype distributions in these two samples groups10. A 

Benjamini-Hochberg cut-off of 0.01% was used as a false discovery rate cut-off.  A 

binary classifier was generated using ROCR library in R for the two MST loci lists 

to determine their potential to differentiate their corresponding lung cancer subtype 

from the normal control samples42, 43.  

 

Assembling informative MST loci set to target enrich and validate 

A set of 347 loci was assembled into the Illumina TruSeq Amplicon V1.5 kit target 

enrichment kit (Supplemental table 1). Of the 347, 119 were found to be specific for 

lung cancer, 144 were found in similar manner by analyzing other cancer datasets 

(Supplemental table 2) and 84 were included as controls (Supplemental tables 6, 7 

and 8).    

 

Genomic DNA library prep and sequencing 

Thirty lung cancer samples and 89 B-Lymphocyte non-tumor samples were obtained 

from Origene and Coriell cell repositories. The cells were cultured following the 

suppliers’ recommended conditions (Supplemental tables 3 and 4).  Isolation of 

genomic DNA was done using the Qiagen DNA Blood and Tissue kit following the 

manufacturer’s protocol.  
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Target sequencing, SMTEK 

The assembled set of 347 MST loci was uploaded to Illumina’s Design Studio tool, 

obtained in the form of a target enrichment kit and was used to target enrich and 

sequence the 30 lung cancer samples and 89 control samples.    

 

Genotyping of target enriched samples 

The 347 MST loci were genotyped in the target enriched samples using custom 

written scripts, after performing quality control steps using the Trimmomatic tool to 

ensure only high quality reads are used in genotyping44.  For each loci, a modal 

genotype and a predominant cancer genotype was computed. A modal genotype is 

the genotype that is found in more than 50% of the control samples and the 

predominant cancer genotype is the genotype that is found in more than 50% of the 

lung cancer samples. Any locus that has differing modal genotype and predominant 

cancer genotype was considered as a risk classifier (Supplemental table 5).  

 

Statistical procedure to assess differentiating power of the validated risk 

markers 

Of the 119 computationally found lung cancer specific MST loci, 13 were found to 

differentiate lung cancer and normal control validation samples. A binary classifier 

was generated using the ROCR library in R using the 13 MST loci to assess their 

statistical capacity to call lung cancer samples from normal control samples. The 

sensitivity, specificity and other ROC related calculations were computed using the 

ROCR library in R. Odds ratio was calculated using the formula: (TP/FP)/(FN/TN), 

where TP, FP, FN and TN are true positive, false positive, false negative and true 

negative, respectively45. A set of 8 MST loci that were computationally found to be 

specific for other cancers were also found to differentiate the lung cancer samples 

from the normal control samples. This set was added to the 13 MST loci to form a 
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21 MST set. A similar statistical assessment was performed with this loci set. A 

leave one out cross validation was performed to quantify the consistency of the 

predictive power of the 21 loci classifier. 

 

Mechanistic analysis 

Genes for each marker were identified from the UCSC genome browser referencing 

HG38. Functional enrichment analysis of genes harboring microsatellite markers 

and gene ontologies were obtained through the David Bioinformatics 6.8 Database46. 

Pathway analyses were performed using the Reactome database26. Alterations and 

co-occurrence/mutual exclusivity of genes in gene set were analyzed in TCGA lung 

cancer studies using cbioportal47. Studies included in cbioportal analyses were: Lung 

Adenocarcinoma48, Lung Adenocarcinoma (TCGA, Provisional), Lung Squamous 

Cell Carcinoma49, Lung Squamous Cell Carcinoma (TCGA, Provisional), and Pan-

Lung Cancer50. Drug-ability of gene set was analyzed using the DGIdb database24. 
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RESULTS 
 
Cancer risk classification pipeline 

A computational pipeline was created for both candidate marker discovery and 

validation (Figure 1).  The process to identify statistically informative individual 

MST loci and develop a classification signature (including Receiver Operating 

Characteristic (ROC) curves and sensitivity and specificity calculations), follows the 

approach we have used previously for other cancers studies 8-10, 12.  We applied part 

(depicted on the left side of Figure 1) of the pipeline to compute classifiers for Lung 

Adenocarcinoma (LUAD) germline samples vs normal germline controls and Lung 

Squamous Cell carcinoma (LUSC) germline samples vs normal germline controls. 

Each of the individual loci found to be informative, i.e. which passed statistical and 

false discovery tests were harvested for inclusion on a custom nextgen target 

enrichment kit.  Those loci were supplemented with additional informative loci 

gathered from an analysis of additional cancer types (breast, ovarian, melanoma and 

3 different brain cancers) to identify potential pan-cancer markers.  To the full set of 

informative loci were also added control loci that included random exon 

microsatellite loci, forensics/paternity testing loci, and MSI (microsatellite stability) 

loci to verify performance of the enrichment kit.   

Once a set of potentially informative microsatellite loci were identified (left 

side of figure 1), lung cancer and control DNA samples were enriched for these 

markers using a custom Specific Microsatellite Target Enrichment Kit (SMTEK) 

and sequenced at high depth with 16 to 48 samples multiplexed on each sequencing 

run (right side of figure 1).  The high depth sequencing of these regions enabled 

calling of high accuracy genotypes at each of the enriched loci.  These genotypes 

were in turn used to validate those loci that could differentiate cancer from 

controls.  Receiver Operating Characteristic curves were computed for the validated 
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loci from the lung cancer sets and for the lung cancer set plus informative loci from 

the other cancer types.  Using these two verified sets of high accuracy loci, we 

analyzed them for possible mechanistic (ontology, pathway, function, drug-ability, 

etc.) relationships to illustrate their potential role in lung cancer. 

 

Analysis of whole exome sequencing data for cancer and control germline 

samples 

To compare MST genotypic variation in lung cancer germline samples and non-

cancer germline control samples, 266 LUAD and 222 LUSC germline cancer exome 

samples were downloaded from The Cancer Genome Atlas (TCGA) and 390 

germline non-cancer control exome sequencing data were downloaded from the 

1000 Genomes Project (1kGP).  With our 95% accurate14 MST allele calling method, 

a total of 1.8 million microsatellite loci were analyzed by comparing modal (most 

frequent genotype in control samples) and non-modal genotype distributions in the 

two lung cancer sub-types and the non-cancer control samples. Two sets (one each 

for LUAD and LUSC) of MST loci were identified having significantly different 

genotypic distributions compared to non-cancer controls. Of these two sets, 96 

LUAD and 67 LUSC MST loci (Supplemental table 6) passed false discovery rate 

tests. A classification model was developed to assess how well each set of markers 

differentiates the disease samples from healthy controls10. The Receiver Operating 

Characteristic (ROC) demonstrates the predictive power of this classification 

scheme as well as the value of the underlying sets of loci: the area under the curve 

(AUC) is 0.94 (LUAD) and 0.92 (LUSC) (Supplemental figures 3 and 4). For each 

classification scheme an “at risk” score was established by plotting accuracy vs. 

cutoff, a sample with 39% or more of the 96 LUAD signature MST loci set with 

non-modal genotype will be classified as ‘at-risk’ for adenocarcinoma of the lung 

(Figure 2A) while a sample with 37% or more of the 67 LUSC signature MST loci 
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set with non-modal genotype will be classified as ‘at-risk’ for squamous cell 

carcinoma (Figure 2B).  The specificity and sensitivity of the LUAD classification 

scheme is 0.87 and 0.87, respectively. The specificity and sensitivity of the LUSC 

classification scheme is 0.82 and 0.88, respectively. The specificity and sensitivity 

of the classification power of the LUAD signature set was found to be 0.87 and 0.87 

the same for the LUSC signature set was found to be 0.82 and 0.88.  

 

High-depth target sequencing of computationally harvested disease specific 

MST loci 

To assess the differentiating power of the computationally harvested 119 (96 LUAD 

and 67 LUSC; of which 44 were in common) MST loci using high-depth enabled 

high accuracy genotyping to validate the computational findings, the 119 MST loci 

along with 144 MST loci computationally found to be specific for other cancers, and 

control loci were combined and enriched in 30 lung cancer samples (Supplemental 

table 3) and 89 non-cancer control samples (Supplemental table 4). Supplementary 

figures 1 and 2 show that more than 93% of the loci were called in all the lung cancer 

and non-cancer control samples.  The average read depth per loci across all samples 

was 579x (Standard Deviation, 315x).  The minimum read depth was 83x. 

 

Control loci genotyping 

A set of 84 control loci were added to the enrichment kit to demonstrate the 

hypermutable nature of forensic and paternity test MST loci and the resilience of 

random MST loci in exonic regions (highly conserved) of the genome to MSI in both 

the lung cancer and non-cancer control sample groups. Of the 84 control loci, 79 

were reliably called in both sample groups. About 70% of the 64 control loci found 

in exon regions were found to have the same predominant genotype (found in greater 

than 50% of the control or cancer samples) in both sample groups while 86% of the 
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15 hyper mutable loci were found to have a wide spectrum of genotypes. None of 

the 79 control loci were found to have consistent genotypes that differed between 

the sample groups (cancer and normal), that is none of the control loci were 

informative for differentiating the two groups, as expected.   

 

Validation of LUSC and LUAD MST loci sets 

We successfully called the genotype for 105 out of 119 microsatellite markers that 

significantly differ in the lung cancer germline samples compared to non-cancer 

controls. Specifically, the predominant genotype for these 105 markers was 

calculated using high depth sequencing of 30 lung cancer samples (Supplemental 

table 3) and 89 non-cancer control samples (Supplemental table 4). A subset of 13 

markers (from the 105) were found to have differing predominant genotypes 

between the high depth lung cancer and non-cancer control datasets. 

  

Genotyping MST loci from other diseases in the lung cancer samples 

Recent findings from pan-cancer studies suggest that different cancer types share 

oncogenic signatures18, 19. We investigated this possibility by including 144 

informative MST loci identified in studies of breast cancer, ovarian cancer, lower 

grade glioma, glioblastoma, melanoma, and medulloblastoma to the target 

enrichment kit. Of the 144 loci, 137 loci were reliably genotyped in both sample 

groups.  Among these, 8 loci (Table 1) were found to have differing predominant 

genotypes in the high depth lung cancer and 1kGP non-cancer control datasets.  

 

Performance of the high-depth informative loci as a classifier 

A binary classification model was developed to assess the power of the 13 validated 

MST loci set (Table 1) to differentiate lung cancer samples from non-cancer control 

samples. The 13 MST loci signature differentiated lung cancer samples from non-
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cancer control samples with a sensitivity of 0.90 and specificity of 0.94. The area 

under the ROC curve was 0.96 (Supplemental figure 5A). An optimal cutoff of 0.61 

was identified by calculating the accuracy vs. cutoff (Supplemental figure 5B).  This 

result has a simple interpretation: 8 or more predominant genotypes (out of 13) 

indicate an increased risk for non-small cell lung cancer. (Figure 3A).  

A similar classification model was generated for all 21 validated MST loci set 

(Table 1). This model has higher classification power with sensitivity and specificity 

values of 0.93 and 0.97 respectively. The area under the ROC curve is 0.97 

(Supplemental figure 6A). The accuracy vs. cutoff plot suggests a cutoff of 0.57. 

The 21 MST classifier (Supplemental figure 6B) shows that any sample with 57% 

or more of the 21 MST loci with predominant cancer genotype will be classified as 

‘at-risk’ for non-small cell lung cancer (Figure 3B).  

While the statistical power of the 21 MST loci to differentiate lung cancer from 

non-cancer control samples is significant, a leave one out cross validation was 

performed to estimate the performance of this model. The leave one out analysis (see 

methods) predicted 28 out of 30 lung cancer samples to be ‘at-risk’ and 88 out of 89 

non-cancer control samples to be ‘healthy’. The average sensitivity and specificity 

of this cross validation effort, corresponding to the 119 leave one out iterations (due 

to the 30 + 89 sample count), was found to be 0.93 and 0.97, respectively. This cross 

validation demonstrates the consistency of this prediction method.   

 

Potential roles of the genes that harbor these informative loci  

Of the 13 MST loci that are found to differentiate lung cancer samples from control 

samples, all were in the intronic regions of genes. To understand the mechanistic 

roles of these genes, the occurrence of mutations in these 13 genes were examined 

in 5 TCGA lung cancer studies. On average 37% of the lung cancer samples in these 

5 studies contained mutations in at least one of the 13 genes (Supplemental table 
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10). An LUSC study with 177 lung cancer samples had ~50% of the samples with 

mutations in at least one out of the 13 genes (Supplemental table 10).  Nine gene 

pairs were found to co-occur significantly (Supplemental table 11). Of these gene 

pairs, the REL gene significantly co-occurred with 4 genes (PPP1R21, CCDC88A, 

ATG3, and PRPF18) and ARID1B co-occurred with 2 genes (IMPG1, FUBP3). 

Interestingly, when these 13 genes were inspected for possible association with 

cancer using the COSMIC Cancer Gene Census20, only REL and ARID1B were 

found to be previously implicated in cancer21-23.  When all 13 genes were examined 

for possible drug-ability, using DrugDB24, REL and ARID1B were found to be 

clinically actionable.  When clustering the 13 genes using the David ontology 

database we found alternative splicing (P value: 0.005) and splice variants (P value: 

0.046) to be significant ontological characterizations (Supplemental table 12). It 

should be noted that all the 13 MST loci that are found to be lung cancer 

differentiating are found in the intron regions of genes (Table 1). It has been shown 

previously that alterations in the MST loci in the intronic regions of the genes can 

influence transcription, alternative splicing, or mRNA export to the cytoplasm25. 

Upon further investigation of the 13 genes using Reactome26, we found that two 

pathways were statistically enriched: the cellular response to stress pathway and the 

chromatin organization pathway. 
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DISCUSSION 

 

Although substantial effort has been directed at identifying diagnostic actionable 

markers, there is a significant gap between the known genetic contributors to lung 

cancer and the number and power of known inherited and somatic variants.  About 

85% of all lung cancers are non-small cell lung cancer (NSCLC), and with a better 

understanding of the heterogeneity of NSCLC, more patient specific treatment 

options are on the rise27. The success of tailored lung cancer treatment arises from 

improvements in genetic and epigenetic biomarker discovery28; however, early 

detection still remains the most significant factor in cancer survival.  Important to 

early discovery is the identification of genetic risk markers, inherited or 

spontaneous, that will aid in identifying high-risk patients for enhanced monitoring 

or preventative measures.  Recent studies have found that 20% of newly diagnosed 

lung cancer patients are never-smokers, underscoring the need and potential for new 

genetic risk markers.2, 5, 6 The markers found in this study will potentially fill the gap 

by enabling risk stratification, allowing clinicians to monitor high-risk patients more 

closely leading to earlier detection.    

 

By analyzing the modal and non-modal genotypic distribution of about 1.8 

million MSTs in the two lung cancer sub-types in comparison with the non-cancer 

control samples, we found 67 LUSC and 96 LUAD MST loci (Supplemental table 

7) that can differentiate their corresponding lung cancer sub-type from the non-

cancer controls at significant sensitivities and specificities (Supplemental figures 3 

and 4).  Although we have previously demonstrated our genotyping accuracy from 

exome datasets to be 95%, the modest (~15x) read coverage in publically 

downloaded TCGA and 1000 Genome Project exome datasets limits the accuracy 

and ability to call genotypes at all loci13.  Low coverage, reduced sequence 
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complexity and non-random variation, have hampered microsatellite based 

biomarker discovery13, 29. While we have addressed these limitations in our previous 

efforts to identify cancer associated MST loci and tuned our genotyping algorithms 

accordingly, here we endeavored to mitigate the main source of genotyping error by 

dramatically increasing the depth of coverage at informative loci8-10, 12. Hence we 

specifically enriched 347 (disease and control) MST loci (Supplemental table 1) in 

119 multiplexed samples and attained an average per locus sample read depth of 579 

(Supplementary figure 2) which is ~20 times the usual exome read depth8-10, 12.  

 

With high-depth enabled high accuracy genotyping, 13 MST loci were found 

to have one predominant genotype (a genotype found in more than 50% of group 

members) that differed in the lung cancer and the non-cancer control groups 

(Supplemental table 5). Eight MST loci previously found to be specific for other 

cancers were also able to differentiate lung cancer samples from the non-cancer 

control samples.  The culling of uninformative loci in the validation study and 

incorporation of control loci significantly increased the overall reliability, sensitivity 

and specificity of the assay.   

 

All MST loci were found in genes (Table 1), specifically within the introns of 

genes, which we have previously shown to influence alternative splicing25. Of these 

genes, all 13 are expressed in the lung, giving confidence that genes could play a 

role in lung carcinogenesis.  TCGA analysis suggests REL, ARID1B and associated 

genes can drive lung carcinogenesis through DNA damage and chromatin 

remodeling induced genomic instability (Figure 4).  

 

ARID1B is a transcriptional modulator of specific genes through chromatin 

remodeling. ARID1B is a part of the switch/sucrose non-fermenting (SWI/SNF) 
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complex that is implicated in several cancers30. More recently a study reported that 

loss of function in the SWI/SNF complex leads to genomic instability in lung 

cancer31. Lung cancer subtypes showed no significant differences between 

histology, implying that the loss of SWI/SNF function caused genomic instability 

regardless of lung cancer subtype, consistent with our observation that ARID1B is a 

marker for both LUAD and LUSC [Table 1].  

 

REL is a proto-oncogene and member of the NFkB transcription factor family. 

Rel/NFkB transcription factors are critically involved in innate and adaptive immune 

responses through the up-regulation of chemokines, cytokines, cell adhesion 

molecules and proteases. It has been shown that chronic inflammation increases the 

likelihood of tumorigenesis through increased proliferation and DNA damage32. The 

role of tobacco smoke as a carcinogen has been highly correlated with lung cancer 

and one explanation is the production of reactive oxygen species that is known to 

cause DNA damage and to activate NFkB33.  It can be deduced that alterations in 

REL could predispose a smoker to increased risk of cancer compared to a non-

smoker. Overexpression of REL has been associated to many lymphoid cancers such 

as Primary mediastinal B-cell lymphoma, Classical Hodgkin’s Lymphoma, and solid 

tumors such as Breast cancer, Pancreatic cancer, and Head and Neck cancer but not 

lung cancer21, 34-37. Interestingly, our lung cancer risk classifying locus harbored by 

the REL gene lies only 68 base pairs downstream of Exon 6 and 17 base pairs 

upstream of Exon 7, both of which are included in the REL Homology Domain 

(RHD).  The RHD is an N-terminal protein domain which is shared by REL genes, 

which mediates DNA binding, inhibitor binding, nuclear localization signal and 

dimerization33. It can be inferred that intronic mutations located in between two 

exons in close proximity of each other can affect protein structure in the RHD that 
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can influence downstream effects of the NFkB pathway and consequently 

predispose individuals to cancer.  

 

Further, REL, ARID1B and other genes in our set are members of pathways, 

the cellular response to stress pathway and the chromatin organization pathway, that 

could potentially play a role in carcinogenesis. Chromatin remodeling is a dynamic 

process which regulates DNA repair, recombination, and gene transcription, which 

if impaired can play a pivotal role in carcinogenesis38, 39. Few studies have reported 

the association of the chromatin-remodeling pathway to lung cancer risk. For 

example, one recent study identified polymorphisms in the chromatin-remodeling 

pathway as a lung cancer risk classifier in a Chinese population40. The cellular 

response to stress pathway is involved in damage control through protective or 

destructive cell response mechanisms that promote survival or initiate cell death41. 

Dysfunction in the cell response stress pathway can lead to inappropriate response 

to stress and accumulate mutations. For example, our previous studies revealed that 

a single exposure to carcinogens such as nicotine can cause mutations to accumulate 

in epithelial tissue, which can contribute to carcinogenesis16.  

 

Taken together, our results propose a 13 loci lung cancer risk classifier that may 

reveal insight into the mechanism of lung carcinogenesis. Dysfunctions in the two 

significantly enriched pathways can possibly encourage lung carcinogenesis through 

chromatin remodeling, inflammation and tumor microenvironment restructuring. 

The genes ARID1B and REL are of special interest because of their druggability, 

oncogenic implications, odds risk ratio scores (Supplemental table 11) and co-

occurrence with other implicated loci.  These findings may be of interest because of 

the clinical potential value of this lung cancer risk classifier for novel therapeutic 

target discovery, lung cancer prediction, and cancer risk assessment.   
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FIGURES 
 

Figure 3-1: Flow chart of informative loci identification and validation 
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Figure 3-2: The computationally harvested LUAD and LUSC MST loci 

differentiate their corresponding cancer type from 1000 genomes non-cancer 

control samples with high sensitivity (LUAD: 0.87, LUSC: 0.88).  (A) A sample 

with 39% (vertical black line; identified via ROC analysis) or more of the 96 LUAD 

specific MST loci with cancer genotype will be called ‘at-risk’ for adenocarcinoma 

of the lung. (B) A sample with 37% or more of the 67 LUSC specific MST loci with 

cancer genotype will be called ‘at-risk’ for squamous cell carcinoma.  The orange 

and blue bars represent cancer germline and control germline samples, respectively.  
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Figure 3-3: The 13 lung cancer specific MST loci and 8 MST loci specific for 

other diseases can differentiate between the lung cancer and non-cancer control 

sample groups.  The blue and red bars represent the non-cancer control and lung 

cancer samples, respectively. (A) A sample with 61% or more of the 13 MST loci 

with cancer genotype will be termed ‘at-risk’ for lung cancer with sensitivity and 

specificity values of 0.90 and 0.94. (B) A sample with 57% or more of the 21 MST 

loci with cancer genotype will be termed ‘at-risk’ for lung cancer with sensitivity 

and specificity values of 0.93 and 0.97.  The vertical black line corresponds to the 

optimum cut-off values found from the ROC analysis.   
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Figure 3-4: Schematic describing potential mechanism underlying lung 

carcinogenesis. Two genes out of 13 have significant oncogenic potential.   
	

	



	

	 80	

Table 3-1: MST loci that can precisely differentiate between the lung cancer samples and non-tumor samples.  

Genomic 
position 

Re-
peat 

Gene 
region Gene 

Entrez 
ID Disease 

Odds 
ratio 

chr2:60918364-
60918376 

T Intron REL 5966 LUAD, LUSC 39.92 

chr6:157174818-
157174831 

T Intron ARID1B 57492 LUAD, LUSC, MB, 
SKCM 

13.57 

chr6:76018867-
76018880 

A Intron IMPG1 3617 LUSC, OV 12.28 

chr3:94035443-
94035458 

T Intron ARL13B 200894 GBM, LUAD, 
SKCM 

11.20 

chr3:112534347-
112534360 

A Intron ATG3 64422 GBM, LGG, LUAD, 
LUSC 

10.29 

chr8:129862369-
129862381 

A Intron FAM49B 51571 LUAD, LUSC 7.01 

chr9:130622843-
130622857 

A Intron FUBP3 8939 GBM, LGG, LUAD, 
LUSC, MB, OV 

6.93 

chr7:135414296-
135414309 

A Intron CNOT4 4850 LUAD 5.07 

chr2:48461120-
48461133 

T Intron KLRAQ1 129285 LGG, LUAD, 
LUSC, MB, SKCM 

4.43 

chr2:55332516-
55332530 

A Intron CCDC88A 55704 LUAD, LUSC, 
SKCM 

3.90 

chr13:31148484-
31148500 

A Intron HSPH1 3315 LUAD, SKCM 3.70 

chr15:20458509-
20458521 

A Intron HERC2P3 283755 LUAD 3.00 
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chr10:13591929-
13591943 

T Intron PRPF18 8559 LUSC 2.25 

chr2:202815832-
202815844 

A Intron ICA1L 130026 BC, GBM, OV 7.61 

chr13:114236623
-114236635 

T Intron CDC16 8881 LGG, SKCM 6.19 

chr12:106106383
-106106396 

A Intron NUAK1 9891 OV 5.74 

chr3:98580864-
98580876 

A Intron CPOX 1371 BC, OV 5.02 

chr16:70839964-
70839978 

T Intron HYDIN 54768 GBM 4.58 

chr2:233460070-
233460083 

A Intron DGKD 8527 OV 3.82 

chr5:87383860-
87383873 

T Intron RASA1 5921 OV 2.93 

chr8:23852057-
23852082 

TG Intron STC1 6781 BC 1.87 
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SUPPLEMENTARY MATERIAL 

 

Figure S3-1: Callable loci distribution in the lung cancer and non-tumor 

samples. In 93% of non-tumor samples and 100% of the lung cancer samples, 90 to 

100% of the 326 MST loci were called. The figure shows that in the 89 + 30 target 

enriched samples a very high percentage of the loci included in the enrichment kit 

can be called with confidence.    
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Figure S3-2: Read depth distribution in the lung cancer and non-tumor 

validation samples.  
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Figure S3-3: The 96 computationally found LUAD specific MST loci set 

differentiated LUAD germline samples from non-cancer 1kGP control samples 

with a sensitivity of 0.87 and a specificity of 0.87. The AUC value of this 

prediction was found to be 0.94.  
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Figure S3-4: The 67 computationally found LUSC specific MST loci set 

differentiated LUSC germline samples from non-cancer 1kGP control samples 

with a sensitivity of 0.88 and a specificity of 0.82. The AUC value of this 

prediction was found to be 0.92.  
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Figure S3-5: A set of 13 MST loci that were computationally associated with 

lung cancer was validated by the high-depth enabled high accuracy genotyping 

to differentiate lung cancer samples from non-cancer 1kGP control samples 

with a sensitivity and specificity of 0.90 and 0.94, respectively. (A) The AUC 

value for the classifier was found to be 0.96. (B) The accuracy versus cutoff plot 

gives the optimum point where the true positive value is high and the false positive 

value is low. According to the accuracy versus cutoff plot, a sample with 61% or 

more of the 13 MST loci set with predominant cancer genotype will be classified as 

‘at-risk’ for NSCLC.  
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Figure S3-6: A set of 21 (13 computationally known to be associated with lung 

cancer and 8 that were found to be associated for other diseases) MST loci was 

validated by the high-depth enabled high accuracy genotyping to differentiate 

lung cancer samples from non-cancer 1kGP control samples with a sensitivity 

and specificity of 0.93 and 0.97, respectively. (A) The AUC value for the classifier 

was found to be 0.97. (B) The accuracy versus cutoff plot gives the optimum point 

where the true positive value is high and the false positive value is low. According 

to the accuracy versus cutoff plot, a sample with 57% or more of the 21 MST loci 

set with predominant cancer genotype will be classified as ‘at-risk’ for NSCLC.    
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Table S3-1: The Specific Microsatellite Target Enrichment Kit (SMTEK) 

consisted of 347 MST loci of which 322 were genotyped in at least 10 tumor and 

non-cancer control samples. All 322 successfully genotyped loci had at least 10 

reads in all the samples they were called.  

 

  
After 

sequencing 
Loci 
Type 

Total before 
sequencing Passed Failed 

Disease 263 242 21 
Control 84 79 5 
Total 347 322 28 
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Table S3-2: Genotyping all MST loci in several TCGA germline cancer sample 

types and comparing them to 1000 Genome Project sample genotypes yield 

disease specific sets of MSTs that can differentiate cancer and non-cancer 

control samples.  Note, some loci were found to be informative for several cancer 

disease types 

 

Cancer disease type 
# MST 
loci 

Lung squamous cell 
carcinoma 67 
Lung adenocarcinoma 96 
Skin cutaneous melanoma 68 
Breast cancer 55 
Ovarian cancer 57 
Glioblastoma 48 
Medulloblastoma 25 
Lower grade glioma 38 

Lung squamous cell carcinoma = LUSC; Lung adenocarcinoma = LUAD; Skin 
cutaneous melanoma = SKCM; Breast cancer = BC; Ovarian cancer = OV; 
Glioblastoma = GBM; Medulloblastoma = MB; Lower grade glioma = LGG.  
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Table S3-3: Details of the 30 lung cancer samples used to validate the LUSC 
and LUAD markers via SMTEK nextgen sequencing. 
  

Sample # Tissue Sample source 
1 Lung cancer Origene 3398 
2 Lung cancer Origene 3538 
3 Lung cancer Origene 3619 
4 Lung cancer Origene 3803 
5 Lung cancer Origene 3842 
6 Lung cancer Origene 3844 
7 Lung cancer Origene 3863 
8 Lung cancer Origene 3931 
9 Lung cancer Origene 3950 
10 Lung cancer Origene 3989 
11 Lung cancer Origene 4031 
12 Lung cancer Origene 4033 
13 Lung cancer Origene 4056 
14 Lung cancer Origene 4119 
15 Lung cancer Origene 4176 
16 Lung cancer Origene CD07 
17 Lung cancer Origene CD22 
18 Lung cancer Origene CD26 
19 Lung cancer Origene CD28 
20 Lung cancer Origene CD36 
21 Lung cancer Origene CD44 
22 Lung cancer Origene CD56 
23 Lung cancer Origene CD57 
24 Lung cancer Origene CD59 
25 Lung cancer Origene CD61 
26 Lung cancer Origene CD62 
27 Lung cancer Origene CD66 
28 Lung cancer Origene CD71 
29 Lung cancer Origene CD77 
30 Lung cancer Origene CD97 
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Table S3-4: Details of the 1000 genomes germline samples used as control 

samples, i.e. were normal healthy individuals. 

Sample # Cell type Sample source 
1 B-Lymphocyte Coriell HG00313 
2 B-Lymphocyte Coriell HG00180 
3 B-Lymphocyte Coriell HG00181 
4 B-Lymphocyte Coriell HG00138 
5 B-Lymphocyte Coriell HG00113 
6 B-Lymphocyte Coriell HG00100 
7 B-Lymphocyte Coriell HG00116 
8 B-Lymphocyte Coriell HG00107 
9 B-Lymphocyte Coriell HG00278 
10 B-Lymphocyte Coriell HG00269 
11 B-Lymphocyte Coriell HG00125 
12 B-Lymphocyte Coriell HG00182 
13 B-Lymphocyte Coriell HG00272 
14 B-Lymphocyte Coriell HG00273 
15 B-Lymphocyte Coriell HG00121 
16 B-Lymphocyte Coriell HG00186 
17 B-Lymphocyte Coriell HG00134 
18 B-Lymphocyte Coriell HG00131 
19 B-Lymphocyte Coriell HG00190 
20 B-Lymphocyte Coriell HG00102 
21 B-Lymphocyte Coriell HG00127 
22 B-Lymphocyte Coriell HG00135 
23 B-Lymphocyte Coriell HG00110 
24 B-Lymphocyte Coriell HG00274 
25 B-Lymphocyte Coriell HG00118 
26 B-Lymphocyte Coriell HG00115 
27 B-Lymphocyte Coriell HG00187 
28 B-Lymphocyte Coriell HG00104 
29 B-Lymphocyte Coriell HG00111 
30 B-Lymphocyte Coriell HG00122 
31 B-Lymphocyte Coriell HG00277 
32 B-Lymphocyte Coriell HG00139 
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33 B-Lymphocyte Coriell HG00282 
34 B-Lymphocyte Coriell HG00183 
35 B-Lymphocyte Coriell HG00309 
36 B-Lymphocyte Coriell HG00119 
37 B-Lymphocyte Coriell HG00268 
38 B-Lymphocyte Coriell HG00310 
39 B-Lymphocyte Coriell HG00097 
40 B-Lymphocyte Coriell HG00312 
41 B-Lymphocyte Coriell HG00108 
42 B-Lymphocyte Coriell HG00308 
43 B-Lymphocyte Coriell HG00178 
44 B-Lymphocyte Coriell HG00132 
45 B-Lymphocyte Coriell HG00266 
46 B-Lymphocyte Coriell HG00129 
47 B-Lymphocyte Coriell HG00117 
48 B-Lymphocyte Coriell HG00099 
49 B-Lymphocyte Coriell HG00136 
50 B-Lymphocyte Coriell HG00133 
51 B-Lymphocyte Coriell HG00171 
52 B-Lymphocyte Coriell HG00188 
53 B-Lymphocyte Coriell HG00275 
54 B-Lymphocyte Coriell HG00176 
55 B-Lymphocyte Coriell HG00306 
56 B-Lymphocyte Coriell HG00103 
57 B-Lymphocyte Coriell HG00140 
58 B-Lymphocyte Coriell HG00098 
59 B-Lymphocyte Coriell HG00281 
60 B-Lymphocyte Coriell HG00177 
61 B-Lymphocyte Coriell HG00109 
62 B-Lymphocyte Coriell HG00271 
63 B-Lymphocyte Coriell HG00106 
64 B-Lymphocyte Coriell HG00105 
65 B-Lymphocyte Coriell HG00137 
66 B-Lymphocyte Coriell HG00128 
67 B-Lymphocyte Coriell HG00124 
68 B-Lymphocyte Coriell HG00096 
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69 B-Lymphocyte Coriell HG00142 
70 B-Lymphocyte Coriell HG00284 
71 B-Lymphocyte Coriell HG00120 
72 B-Lymphocyte Coriell HG00285 
73 B-Lymphocyte Coriell HG00276 
74 B-Lymphocyte Coriell HG00123 
75 B-Lymphocyte Coriell HG00173 
76 B-Lymphocyte Coriell HG00280 
77 B-Lymphocyte Coriell HG00112 
78 B-Lymphocyte Coriell HG00174 
79 B-Lymphocyte Coriell HG00101 
80 B-Lymphocyte Coriell HG00311 
81 B-Lymphocyte Coriell HG00179 
82 B-Lymphocyte Coriell HG00114 
83 B-Lymphocyte Coriell HG00267 
84 B-Lymphocyte Coriell HG00130 
85 B-Lymphocyte Coriell HG00126 
86 B-Lymphocyte Coriell HG00189 
87 B-Lymphocyte Coriell HG00141 
88 B-Lymphocyte Coriell HG00270 
89 B-Lymphocyte Coriell HG00185 
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Table S3-5: A set of 13 lung cancer specific loci and 8 other loci that were found to be specific for other diseases 

were found to have differing   genotypes in both the sample groups.  All the 21 loci have predominant genotypes 

(larger than the sum of all the other genotypes, i.e. more than 50%) in both the groups. The genomic coordinates 

furnished correspond to the HG38 genome reference build.  

Genomic 
position 

Modal 
control 
GT 

Modal 
control GT 
sample % 

Predominan
t cancer GT 

Predominan
t cancer GT 
sample % Odds ratio 

chr2:6091836
4-60918376 

13_13 49/89 (55%) 13_12 29/30 (97%) 39.92 

chr6:1571748
18-157174831 

14_14 51/89 (57%) 14_13 27/30 (90%) 13.57 

chr6:7601886
7-76018880 

14_14 60/85 (71%) 14_13 24/30 (80%) 12.28 

chr3:9403544
3-94035458 

16_16 46/88 (52%) 16_15 27/30 (90%) 11.20 

chr3:1125343
47-112534360 

15_15 46/83 (55%) 15_14 26/30 (87%) 10.29 

chr8:1298623
69-129862381 

13_13 57/86 (66%) 13_12 22/30 (73%) 7.01 

chr9:1306228
43-130622857 

15_15 55/84 (65%) 15_14 22/30 (73%) 6.93 

chr7:1354142
96-135414309 

14_14 47/87 (54%) 14_13 23/30 (77%) 5.07 

chr2:4846112
0-48461133 

14_14 69/89 (78%) 14_13 16/30 (53%) 4.43 

chr2:5533251
6-55332530 

15_15 53/85 (62%) 15_14 20/30 (67%) 3.90 
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chr13:311484
84-31148500 

17_16 43/83 (52%) 16_15 18/30 (60%) 3.70 

chr15:204585
09-20458521 

13_12 48/89 (54%) 12_11 20/30 (67%) 3.00 

chr10:135919
29-13591943 

15_15 56/89 (63%) 15_14 16/30 (53%) 2.25 

chr2:2028158
32-202815844 

13_13 69/85 (81%) 13_12 18/30 (60%) 7.61 

chr13:114236
623-
114236635 

13_13 51/89 (57%) 13_12 24/30 (80%) 6.19 

chr12:106106
383-
106106396 

14_14 40/61 (66%) 14_13 14/22 (64%) 5.74 

chr3:9858086
4-98580876 

13_13 50/83 (60%) 13_12 22/30 (73%) 5.02 

chr16:708399
64-70839978 

15_12 59/89 (66%) 12_12 19/30 (63%) 4.58 

chr2:2334600
70-233460083 

14_14 44/88 (50%) 14_13 23/30 (77%) 3.82 

chr5:8738386
0-87383873 

14_14 45/83 (54%) 14_13 20/30 (67%) 2.93 

chr8:2385205
7-23852082 

26_26 44/84 (52%) 26_24 16/30 (53%) 1.87 
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Table S3-6:  Out of 119 MST loci computationally found to be specific for LUAD and/or LUSC cancer types, 

105 produced data in both sample groups. All loci produced at least 10 reads per loci in at least 10 samples in both 

sample groups. The genomic coordinates furnished attribute to the HG38 build.  

Genomic position Repeat 
Gene 
region Gene Disease 

chr6:36484827-
36484842 

A intron KCTD20 BC, GBM, LGG, LUAD, 
LUSC, SKCM 

chr13:44943348-
44943377 

AC intron NUFIP1 BC, GBM, LUAD 

chrX:13757634-
13757649 

T intron OFD1 BC, GBM, LUAD 

chr1:10297149-
10297165 

T intron KIF1B BC, LGG, LUAD, SKCM 

chr17:16070104-
16070120 

T intron NCOR1 BC, LGG, LUSC, SKCM 

chr14:50881564-
50881580 

T intron ABHD12B BC, LUSC 

chr3:112534347-
112534360 

A intron ATG3 GBM, LGG, LUAD, LUSC 

chr9:130622843-
130622857 

A intron FUBP3 GBM, LGG, LUAD, LUSC, 
MB, OV 

chr17:42834438-
42834469 

GA intron PSME3 GBM, LGG, LUAD, LUSC, 
MB, SKCM 

chr13:113310584-
113310595 

T intron LAMP1 GBM, LGG, LUAD, LUSC, 
MB, SKCM 

chr4:5745180-5745201 TTC intron EVC GBM, LGG, LUAD, LUSC, 
MB, SKCM 
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chrX:132097403-
132097440 

AC intron FRMD7 GBM, LUAD 

chr10:33182834-
33182862 

CA intron NRP1 GBM, LUAD 

chr6:31864580-
31864594 

A intron SLC44A4 GBM, LUAD, LUSC 

chr2:86894983-
86894997 

T intergenic - GBM, LUAD, LUSC, MB 

chr1:16564320-
16564331 

A intron NBPF1 GBM, LUAD, LUSC, MB 

chr15:84512873-
84512887 

A 3utr FLJ40113 GBM, LUAD, MB 

chr1:111762785-
111762800 

A intron DDX20 GBM, LUAD, SKCM 

chr3:94035443-
94035458 

T intron ARL13B GBM, LUAD, SKCM 

chr3:196361939-
196361954 

A intron UBXN7 LGG, LUAD 

chr4:127699990-
127700002 

T intron INTU LGG, LUAD 

chr3:50118451-
50118476 

GA exon RBM5 LGG, LUAD, LUSC 

chr2:110963566-
110963604 

TG intron ACOXL LGG, LUAD, LUSC, MB, 
SKCM 

chr13:27559820-
27559834 

A intron LNX2 LGG, LUAD, LUSC, MB, 
SKCM 

chr7:65961068-
65961081 

A intron GUSB LGG, LUAD, LUSC, MB, 
SKCM 
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chr2:48461120-
48461133 

T intron KLRAQ1 LGG, LUAD, LUSC, MB, 
SKCM 

chr16:66912992-
66913023 

GT intron CDH16 LGG, LUAD, LUSC, 
SKCM 

chr12:95094564-
95094577 

A intron FGD6 LGG, LUAD, LUSC, 
SKCM 

chr4:112186674-
112186688 

T intron C4orf32 LGG, LUAD, LUSC, 
SKCM 

chr13:77217965-
77217977 

A intron MYCBP2 LGG, LUAD, LUSC, 
SKCM 

chr15:73126401-
73126414 

T intron NEO1 LGG, LUAD, LUSC, 
SKCM 

chr5:137677662-
137677675 

A intron KLHL3 LGG, LUAD, LUSC, 
SKCM 

chr15:43710473-
43710501 

TG intergenic - LGG, LUAD, LUSC, 
SKCM 

chr5:72889765-
72889779 

T intron TNPO1 LGG, LUAD, LUSC, 
SKCM 

chr4:22442629-
22442643 

A intron GPR125 LGG, LUAD, OV, SKCM 

chr9:115402097-
115402108 

T intron DEC1' LGG, LUAD, SKCM 

chr21:43068646-
43068659 

A intron CBS LGG, LUSC 

chr8:7359489-7359500 T intergenic - LUAD 
chr3:46709584-
46709610 

AAG exon TMIE LUAD 

chr16:19608281-
19608294 

T intron C16orf62 LUAD 
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chr12:80845943-
80845957 

A intron LIN7A LUAD 

chr12:118383996-
118384007 

T intron SUDS3 LUAD 

chrX:133216975-
133216989 

A exon TFDP3 LUAD 

chr4:84635240-
84635255 

T intron CDS1 LUAD 

chr14:24102652-
24102664 

A intron PCK2 LUAD 

chr14:58208106-
58208119 

A intron ACTR10 LUAD 

chr14:62950568-
62950583 

A intron KCNH5 LUAD 

chr7:135414296-
135414309 

A intron CNOT4 LUAD 

chr6:13316549-
13316562 

A intron TBC1D7 LUAD 

chr6:95586994-
95587006 

TA intron MANEA LUAD 

chr15:43635426-
43635437 

A intron CATSPER2 LUAD 

chr15:20458509-
20458521 

A intergenic - LUAD 

chr1:186361564-
186361576 

A intron TPR LUAD 

chr1:1988996-1989009 A intron KIAA1751 LUAD 
chr18:74129655-
74129666 

A intron FBXO15 LUAD 
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chr5:172994758-
172994772 

T intron ATP6V0E1 LUAD 

chr5:157098910-
157098931 

AG intron HAVCR2 LUAD 

chr6:7595009-7595021 T intron SNRNP48 LUAD 
chr2:190673068-
190673082 

T intron NAB1 LUAD 

chr3:108505839-
108505853 

A intron MYH15 LUAD 

chr3:132502233-
132502248 

T intron DNAJC13 LUAD 

chr11:89914202-
89914215 

A intron LOC729384 LUAD 

chr16:74893610-
74893622 

A intron WDR59 LUAD 

chr2:60918364-
60918376 

T intron REL LUAD, LUSC 

chr6:157901855-
157901868 

T intron SNX9 LUAD, LUSC 

chr16:12051827-
12051841 

T upstream SNX29 LUAD, LUSC 

chr12:96912826-
96912839 

T 5utr NEDD1 LUAD, LUSC 

chr14:81108485-
81108507 

T intron TSHR LUAD, LUSC 

chr4:109347460-
109347474 

T intergenic - LUAD, LUSC 

chr4:44689779-
44689792 

A intron GUF1 LUAD, LUSC 
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chr10:104038216-
104038281 

AC intron COL17A1 LUAD, LUSC 

chr20:33367014-
33367027 

A intron CDK5RAP1 LUAD, LUSC 

chr8:129862369-
129862381 

A intron FAM49B LUAD, LUSC 

chr8:109523216-
109523230 

T intron PKHD1L1 LUAD, LUSC 

chr11:108188043-
108188057 

T intron NPAT LUAD, LUSC 

chr11:124754810-
124754824 

A intron ESAM LUAD, LUSC 

chr3:161238095-
161238109 

T intron NMD3 LUAD, LUSC, MB, SKCM 

chr6:157174818-
157174831 

T intron ARID1B LUAD, LUSC, MB, SKCM 

chr11:108271229-
108271243 

T intron ATM LUAD, LUSC, MB, SKCM 

chr4:185267220-
185267233 

A intron SNX25 LUAD, LUSC, OV 

chrX:52753170-
52753183 

T intron SSX2 LUAD, LUSC, SKCM 

chr6:136389532-
136389546 

A intron MAP7 LUAD, LUSC, SKCM 

chr22:35323386-
35323400 

A intron TOM1 LUAD, LUSC, SKCM 

chr2:55332516-
55332530 

A intron CCDC88A LUAD, LUSC, SKCM 



	

	 106	

chr1:62578975-
62578989 

A intron DOCK7 LUAD, LUSC, SKCM 

chr4:73144839-
73144853 

A intron ANKRD17 LUAD, MB 

chrX:52895580-
52895606 (HG19) 

GT intron XAGE3 LUAD, MB 

chr16:10689232-
10689244 

A intron TEKT5 LUAD, OV 

chr2:24327999-
24328012 

A intron ITSN2 LUAD, SKCM 

chr13:31148484-
31148500 

A intron HSPH1 LUAD, SKCM 

chr7:5199689-5199704 A intron WIPI2 LUAD, SKCM 
chr1:172608725-
172608738 

T intron C1orf9 LUAD, SKCM 

chr1:100077147-
100077161 

T intron HIAT1 LUAD, SKCM 

chr4:165467674-
165467685 

T intron CPE LUAD, SKCM 

chrX:48354751-
48354764 

A intron SSX3 LUAD, SKCM 

chr12:21638477-
21638491 

A intron LDHB LUSC 

chr10:13591929-
13591943 

T intron PRPF18 LUSC 

chr3:186804505-
186804518 

A intron RFC4 LUSC 

chr19:6833152-
6833167 

T intron VAV1 LUSC 
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chr1:153645035-
153645049 

T intron C1orf77 LUSC, MB, SKCM 

chr6:76018867-
76018880 

A intron IMPG1 LUSC, OV 

chr4:145110085-
145110100 

T intron ABCE1 LUSC, SKCM 

chr1:94498584-
94498598 

T intron ABCD3 LUSC, SKCM 

chr1:52481679-
52481693 

A intron ZCCHC11 LUSC, SKCM 

chr12:7368968-
7368991 

GA intron CD163L1 LUSC, SKCM 

Genomic coordinates that have ‘HG19’ mentioned on the side were partially deleted in HG38 hence the coordinates 
from the previous build are given.  
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Table S3-7: Out of 144 MST loci computationally found to be specific for other cancer types, 137 produced 

data in both sample groups. All loci produced at least 10 reads per loci in at least 10 samples in both sample groups. 

The genomic coordinates furnished correspond to the HG38 genome reference build.  

Genomic position Repeat Gene region Gene Disease 
chr8:39749565-39749600 GT intron ADAM2 BC 
chr8:23852057-23852082 TG intron STC1 BC 
chr2:202765380-202765400 T intron FAM117B BC 
chr3:155116591-155116607 TA intron MME BC 
chr3:113360927-113360938 A intron WDR52 BC 
chr16:20944777-20944802 AC intron DNAH3 BC 
chr12:110396226-110396243 A intron ANAPC7 BC 
chr16:56684104-56684123 T exon MT1X BC 
chr4:76144324-76144338 A intron NUP54 BC 
chr14:102083733-102083750 A intron HSP90AA1 BC 
chr17:59586236-59586253 A intron DHX40 BC 
chr20:20038239-20038260 A intron CRNKL1 BC 
chr7:148797703-148797719 T intron CUL1 BC 
chrX:10141619-10141634 A exon WWC3 BC 
chr1:113829711-113829722 A intron PTPN22 BC 
chr10:45073089-45073105 T intergenic - BC 
chr15:81345017-81345037 GA intron TMC3 BC 
chr4:54264835-54264851 A intron PDGFRA BC 
chr22:37912036-37912064 TG intron MICALL1 BC 
chr18:46812342-46812357 A exon PIAS2 BC 
chr5:87383679-87383696 A intron RASA1 BC 
chr3:33836009-33836020 T intron PDCD6IP BC 
chr2:197469873-197469884 A intron COQ10B BC 
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chr2:75692147-75692171 AT intron C2orf3 BC 
chr3:198153260-198153301 GCA exon FAM157A BC 
chr3:196257948-196257959 A intron PCYT1A BC 
chr11:118482323-118482338 T intron MLL BC 
chr15:83804574-83804590 T intron ADAMTSL3 BC 
chr1:23082431-23082446 T intron AOF2 BC 
chrX:71592599-71592613 T intron ACRC BC, GBM 
chr4:47744586-47744598 A intron CORIN BC, GBM, MB 
chr8:106692713-106692726 A intron OXR1 BC, GBM, OV 
chr2:202815832-202815844 A intron ICA1L BC, GBM, OV 
chr7:38242530-38242549 GT intron TRG BC, MB 
chr9:5798652-5798666 A intron ERMP1 BC, OV 
chr17:65750900-65750913 A intron CCDC46 BC, OV 
chr20:5186510-5186522 T intron CDS2 BC, OV 
chr7:123117666-123117678 A intron SLC13A1 BC, OV 
chr11:110258201-110258215 A intron RDX BC, OV 
chr6:170572302-170572314 T exon TBP BC, OV 
chr8:31076301-31076312 T intron WRN BC, OV 
chr3:98580864-98580876 A intron CPOX BC, OV 
chr11:62798437-62798472 AAAAGA intron NXF1 BC, OV 
chr15:89268652-89268664 T intron FANCI BC, OV 
chr5:134608354-134608369 T intron SAR1B BC, OV 
chr19:29615224-29615240 T intron POP4 BC, OV 
chr15:62748318-62748333 A intron TLN2 BC, SKCM 
chr6:70240579-70240595 AT intron COL9A1 GBM 
chr3:171126228-171126241 A intron TNIK GBM 
chr16:70839964-70839978 T intron HYDIN GBM 
chr4:168275913-168275928 A intron DDX60 GBM 
chr14:95099732-95099772 AC intron DICER1 GBM 
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chr17:56904211-56904226 A intron TRIM25 GBM 
chr4:188142208-188142243 GT intron TRIML1 GBM 
chr7:103185541-103185553 A 3utr DPY19L2P2 GBM 
chr7:73307734-73307743 CAA exon NSUN5 GBM 
chr21:10516457-10516469 A intergenic - GBM 
chr7:83392484-83392501 A intron SEMA3E GBM 
chr10:87057822-87057837 A intron GLUD1 GBM 
chr15:43618669-43618701 CAG exon STRC GBM 
chr14:35865700-35865714 T intron BRMS1L GBM 
chr10:121496816-121496831 T intron FGFR2 GBM 
chr3:121483587-121483611 A intron POLQ GBM 
chr2:138550814-138550849 TC intron SPOPL GBM 
chr3:113000945-113000960 A exon GTPBP8 GBM 
chr3:154284569-154284580 T intron DHX36 GBM 
chr11:119274082-119274098 T intron CBL GBM 
chr1:225519570-225519585 A intron ENAH GBM 
chr1:117062509-117062522 T intron TTF2 GBM 
chr12:33426063-33426109 CA intron SYT10 GBM 
chr2:91698005-91698016 A intergenic - GBM, OV 
chr9:52626-52640 A intergenic - GBM, OV, 

SKCM 
chr14:50595519-50595543 TC intron ATL1 LGG 
chr14:21468604-21468616 A intron RAB2B LGG 
chr17:15613747-15613758 A intron CDRT1 LGG 
chr7:96146537-96146550 A intron SLC25A13 LGG 
chrX:18164978-18164992 A exon BEND2 LGG 
chr1:145456733-145456746 
(HG19) 

A intron POLR3GL LGG 

chr3:132447305-132447317 T intron DNAJC13 LGG 
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chr10:100505295-100505339 CA intron SEC31B LGG, MB 
chr19:21375214-21375230 TG intergenic - LGG, OV 
chr16:70142419-70142432 T intron PDPR LGG, SKCM 
chr12:50660091-50660105 T intron DIP2B LGG, SKCM 
chr13:114236623-114236635 T intron CDC16 LGG, SKCM 
chr12:129081740-129081756 T intron TMEM132D MB 
chr5:36629700-36629712 A intron SLC1A3 MB 
chr11:17089651-17089679 GT exon PIK3C2A MB 
chr10:119037061-119037072 C intron EIF3A MB, SKCM 
chr2:233460070-233460083 A intron DGKD OV 
chr6:49848161-49848174 T intron CRISP1 OV 
chr3:50057664-50057685 T intron RBM6 OV 
chr17:68045756-68045769 T intron KPNA2 OV 
chr17:49821919-49821932 A intron MYST2 OV 
chr19:20646413-20646427 AC intron ZNF626 OV 
chr14:91462502-91462516 T intron SMEK1 OV 
chr12:106106383-106106396 A intron NUAK1 OV 
chr13:49376888-49376921 ATAG intron CAB39L OV 
chr4:71022616-71022630 T intron DCK OV 
chr7:31092622-31092634 T intron ADCYAP1R1 OV 
chr7:82066527-82066542 A intron CACNA2D1 OV 
chr7:36425998-36426012 T intron ANLN OV 
chrX:11169774-11169785 T intron ARHGAP6 OV 
chr10:67939722-67939740 AT intron HERC4 OV 
chr10:92506574-92506588 T intron IDE OV 
chr10:22226073-22226095 A intergenic - OV 
chr15:64680562-64680589 TG intron ZNF609 OV 
chr1:236558153-236558165 A intron HEATR1 OV 
chr1:149929094-149929109 A intron MTMR11 OV 
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chr10:91819355-91819375 T intron TNKS2 OV 
chr18:23540418-23540433 A intron NPC1 OV 
chr8:120506629-120506642 T intron MTBP OV 
chr2:222474811-222474831 T intron SGPP2 OV 
chr11:89800992-89801004 A intron TRIM49 OV 
chr11:30417412-30417426 T intron MPPED2 OV 
chr1:169586130-169586142 A intron F5 OV 
chr5:87383860-87383873 T intron RASA1 OV 
chr5:159084572-159084586 A intron EBF1 OV 
chr5:123378441-123378458 A intron CEP120 OV 
chr18:2960515-2960527 A intron LPIN2 OV 
chr12:75508182-75508196 A intron KRR1 OV 
chr4:140527442-140527455 T intron ELMOD2 OV, SKCM 
chr6:88929270-88929284 A intron RNGTT OV, SKCM 
chr8:98042609-98042620 A intron RPL30 SKCM 
chr6:125928610-125928624 T intron NCOA7 SKCM 
chr16:3508263-3508275 T intron CLUAP1 SKCM 
chr20:59922427-59922441 A exon SYCP2 SKCM 
chr7:138749322-138749335 A intron ATP6V0A4 SKCM 
chr6:100540391-100540403 A intron ASCC3 SKCM 
chr15:32424717-32424732 A 3utr FAM7A1 SKCM 
chr11:115209592-115209633 TGG exon CADM1 SKCM 
chr18:46844689-46844703 T intron PIAS2 SKCM 
chr3:180961448-180961461 T intron FXR1 SKCM 
chr1:243572909-243572923 T intron AKT3 SKCM 
chr5:138177681-138177692 A intron BRD8 SKCM 
chr19:21167718-21167729 A intron ZNF431 SKCM 
chr19:4947051-4947063 T intron UHRF1 SKCM 
chr12:95992869-95992882 CCCT intron HAL SKCM 
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Table 3S-8: Out of 84 MST loci computationally found to be specific for other cancer types, 79 produced data 

in both sample groups. All loci produced at least 10 reads per loci in at least 10 samples in both sample groups. The 

genomic coordinates furnished attribute to the HG38 build.  

Genomic posiiton Repeat Gene region Gene/ Repeat ID 
chr8:19957980-19958041 AAAT intron LPL 
chr8:25503396-25503417 GAAAG exon CDCA2 
chr1:209432292-209432332 AGC exon LOC642587 
chr2:48515217-48515259 TC exon KLRAQ1 
chr2:1489620-1489686 AATG intron TPOX 
chr6:110895439-110895479 GTTTT exon AMD1 
chr7:149239672-149239691 CGG exon ZNF212 
chr6:109632842-109632919 ATAG exon AKD1 
chr3:49115555-49115580 TCTTCC exon USP19 
chr3:18349641-18349687 CTG exon SATB1 
chr16:69693627-69693682 CAG exon NFAT5 
chr12:49033867-49033913 TGC exon MLL2 
chr12:114355457-114355501 TC exon TBX5 
chr9:127506124-127506152 CTCA exon FAM129B 
chr9:132896597-132896621 GCT exon TSC1 
chr9:71768574-71768616 CCTCCG exon TMEM2 
chr16:67980293-67980324 GCA exon DPEP3 
chr17:58756094-58756155 CCGAAC exon PPM1E 
chr17:12992120-12992153 TGAT exon ELAC2 
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chr17:50835991-50836015 GCT exon WFIKKN2 
chr17:17136248-17136283 CAG exon MPRIP 
chr4:90127564-90127590 CT exon FAM190A 
chr4:139889485-139889540 GCT exon MAML3 
chr4:68349770-68349795 CCG exon YTHDC1 
chr19:47742125-47742165 TTCC exon EHD2 
chr14:94842043-94842108 [CTGT]n[CTAT]n D14S1434 
chr14:61321907-61321932 GGGA exon PRKCH 
chr14:103385444-103385464 GCG exon MARK3 
chr14:22883256-22883286 GCACAC exon REM2 
chr12:76031129-76031189 GCT exon PHLDA1 
chr12:4914286-4914330 ACAA exon KCNA1 
chr12:5983962-5984074 AGAT intron VWA 
chr17:42699813-42699840 GCTGT exon CNTNAP1 
chr17:81996788-81996845 AGCAGG exon ASPSCR1 
chr17:52158102-52158125 GCG exon CA10 
chr4:54740022-54740046 AAAAC exon KIT 
chr4:93829017-93829037 CCG exon ATOH1 
chr20:49905305-49905338 AAAAC exon SPATA2 
chrX:53077999-53078047 TC exon GPR173 
chrX:134481487-134481569 AGAT intron HPRTB 
chr1:965304-965347 TTTA exon KLHL17 
chr1:15746939-15746954 TGC exon TMEM82 
chr6:6321353-6321413 AAAG   
chr6:45422678-45422748 GCA exon RUNX2 
chr10:129294237-129294302 GGAA  D10S1248 
chr10:75028875-75028954 GAGGAA exon MYST4 
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chr15:40036336-40036424 CTG exon SRP14 
chr1:247876957-247876991 CT exon TRIM58 
chr1:2556549-2556574 TTCTCT exon TNFRSF14 
chr1:26429657-26429681 CTTCC exon LIN28 
chrY:18639710-18639764 GAAA  DYS385_a/b 
chr11:3855884-3855906 TCTCT exon STIM1 
chr3:45540732-45540809 AGAT  D3S1358 
chr10:117548492-117548574 GA exon EMX2 
chr10:49016119-49016146 TTTG exon C10orf72 
chr3:126988622-126988658 TGC exon PLXNA1 
chr18:63281662-63281742 GAAA  D18S51 
chr22:37140281-37140335 ATT  D22S1045 
chr18:69867388-69867414 TCTCT exon CD226 
chr8:144530000-144530021 CAGGA exon KIAA1688 
chr5:113017812-113017852 ATATCT exon DCP2 
chr5:88684765-88684804 TC exon LOC645323 
chr5:153490748-153490778 AAGG exon GRIA1 
chr11:2171078-2171122 AATG intron TH01 
chr16:67842859-67842951 GCA exon THAP11 
chr1:226993391-226993405 TGC exon CDC42BPA 
chr5:150076298-150076384 AGAT intron CSF1PO 
chr5:146233608-146233675 CCAGGC exon RBM27 
chr5:148982979-148983006 TGACAT exon SH3TC2 
chr5:150651587-150651611 CTGGG exon SYNPO 
chr19:11164698-11164760 CCAT exon KANK2 
chr19:11466768-11466792 GGGCC exon ELAVL3 
chr19:29926209-29926306 (AAGG)(AAAG)(AAGG)(TA

GG)[AAGG]n 
D19S433 

chr19:2514952-2515006 GA exon GNG7 
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chr18:37243909-37243929 CGG exon BRUNOL4 
chr11:6390698-6390746 GGCGCT exon SMPD1 
chr12:12297001-12297100 [AGAT]8-17[AGAC]6-

10[AGAT]0-1 
D12S391 

chr12:114406047-114406082 TC exon TBX5 
chr12:12643661-12643693 TCTAG exon CREBL2 
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Table S3-9: The leave one out cross validation confirms that the predictive 

power of the model sustains when applied to a test set. The model consistently 

predicted 28 out of 30 lung cancer germlines samples to be ‘at-risk’ and 88 out of 

89 thousand genome non-cancer control samples to be ‘healthy’. The explanations 

of the sample types are as follows: LC – Lung cancer, 1kGPC – 1000 genome project 

control.   

Sample # 
Sample 

Type 

% of loci 
with 

cancer 
GT 

Leave one 
out at-risk 
% cut off 

Leave one 
out 

prediction 
1 LC 95.2 52.4 At risk 
2 LC 63.6 50.0 At risk 
3 LC 81.0 52.4 At risk 
4 LC 54.5 50.0 At risk 
5 LC 68.2 50.0 At risk 
6 LC 57.1 52.4 At risk 
7 LC 72.7 50.0 At risk 
8 LC 81.8 50.0 At risk 
9 LC 95.2 52.4 At risk 

10 LC 77.3 50.0 At risk 
11 LC 76.2 52.4 At risk 
12 LC 47.6 52.4 Healthy 
13 LC 57.1 52.4 At risk 
14 LC 71.4 52.4 At risk 
15 LC 90.5 52.4 At risk 
16 LC 71.4 52.4 At risk 
17 LC 72.7 50.0 At risk 
18 LC 63.6 50.0 At risk 
19 LC 66.7 52.4 At risk 
20 LC 68.2 50.0 At risk 
21 LC 72.7 50.0 At risk 
22 LC 59.1 50.0 At risk 
23 LC 57.1 52.4 At risk 
24 LC 81.8 50.0 At risk 
25 LC 31.8 50.0 Healthy 
26 LC 66.7 52.4 At risk 
27 LC 63.6 50.0 At risk 
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28 LC 71.4 52.4 At risk 
29 LC 50.0 50.0 At risk 
30 LC 90.5 52.4 At risk 
31 1KGPC 25.0 55.0 Healthy 
32 1KGPC 45.0 55.0 Healthy 
33 1KGPC 47.6 52.4 Healthy 
34 1KGPC 40.0 55.0 Healthy 
35 1KGPC 40.0 55.0 Healthy 
36 1KGPC 52.4 52.4 Healthy 
37 1KGPC 42.9 52.4 Healthy 
38 1KGPC 30.0 55.0 Healthy 
39 1KGPC 25.0 55.0 Healthy 
40 1KGPC 50.0 59.1 Healthy 
41 1KGPC 57.1 52.4 At risk 
42 1KGPC 47.6 52.4 Healthy 
43 1KGPC 40.0 55.0 Healthy 
44 1KGPC 38.1 52.4 Healthy 
45 1KGPC 38.1 52.4 Healthy 
46 1KGPC 25.0 55.0 Healthy 
47 1KGPC 47.6 52.4 Healthy 
48 1KGPC 47.6 52.4 Healthy 
49 1KGPC 31.8 59.1 Healthy 
50 1KGPC 40.0 55.0 Healthy 
51 1KGPC 33.3 52.4 Healthy 
52 1KGPC 52.4 52.4 Healthy 
53 1KGPC 52.4 52.4 Healthy 
54 1KGPC 40.0 55.0 Healthy 
55 1KGPC 38.1 52.4 Healthy 
56 1KGPC 35.0 55.0 Healthy 
57 1KGPC 52.4 52.4 Healthy 
58 1KGPC 38.1 52.4 Healthy 
59 1KGPC 45.5 59.1 Healthy 
60 1KGPC 33.3 52.4 Healthy 
61 1KGPC 45.5 59.1 Healthy 
62 1KGPC 33.3 52.4 Healthy 
63 1KGPC 38.1 52.4 Healthy 
64 1KGPC 14.3 52.4 Healthy 
65 1KGPC 31.8 59.1 Healthy 
66 1KGPC 28.6 52.4 Healthy 
67 1KGPC 50.0 59.1 Healthy 
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68 1KGPC 42.9 52.4 Healthy 
69 1KGPC 25.0 55.0 Healthy 
70 1KGPC 36.4 59.1 Healthy 
71 1KGPC 50.0 55.0 Healthy 
72 1KGPC 40.0 55.0 Healthy 
73 1KGPC 40.9 59.1 Healthy 
74 1KGPC 38.1 52.4 Healthy 
75 1KGPC 45.5 59.1 Healthy 
76 1KGPC 18.2 59.1 Healthy 
77 1KGPC 25.0 55.0 Healthy 
78 1KGPC 33.3 52.4 Healthy 
79 1KGPC 42.9 52.4 Healthy 
80 1KGPC 9.5 52.4 Healthy 
81 1KGPC 36.4 59.1 Healthy 
82 1KGPC 23.8 52.4 Healthy 
83 1KGPC 23.8 52.4 Healthy 
84 1KGPC 35.0 55.0 Healthy 
85 1KGPC 28.6 52.4 Healthy 
86 1KGPC 47.6 52.4 Healthy 
87 1KGPC 36.4 59.1 Healthy 
88 1KGPC 36.4 59.1 Healthy 
89 1KGPC 20.0 55.0 Healthy 
90 1KGPC 23.8 52.4 Healthy 
91 1KGPC 45.5 59.1 Healthy 
92 1KGPC 40.0 55.0 Healthy 
93 1KGPC 42.9 52.4 Healthy 
94 1KGPC 50.0 59.1 Healthy 
95 1KGPC 50.0 59.1 Healthy 
96 1KGPC 42.9 52.4 Healthy 
97 1KGPC 31.8 59.1 Healthy 
98 1KGPC 25.0 55.0 Healthy 
99 1KGPC 40.0 55.0 Healthy 

100 1KGPC 50.0 59.1 Healthy 
101 1KGPC 38.1 52.4 Healthy 
102 1KGPC 35.0 55.0 Healthy 
103 1KGPC 15.0 55.0 Healthy 
104 1KGPC 40.0 55.0 Healthy 
105 1KGPC 31.8 59.1 Healthy 
106 1KGPC 10.0 55.0 Healthy 
107 1KGPC 25.0 55.0 Healthy 
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108 1KGPC 54.5 59.1 Healthy 
109 1KGPC 23.8 52.4 Healthy 
110 1KGPC 40.9 59.1 Healthy 
111 1KGPC 20.0 55.0 Healthy 
112 1KGPC 42.9 52.4 Healthy 
113 1KGPC 27.3 59.1 Healthy 
114 1KGPC 33.3 52.4 Healthy 
115 1KGPC 27.3 59.1 Healthy 
116 1KGPC 47.6 52.4 Healthy 
117 1KGPC 36.4 59.1 Healthy 
118 1KGPC 42.9 52.4 Healthy 
119 1KGPC 45.5 59.1 Healthy 
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Table 3S-10: Investigation of TCGA lung cancer data reveal that alterations in 

genes in lung cancer risk classifiers occur on average in 37% of studied 

individuals. 
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Table S3-11: Analysis of TCGA Pan Cancer lung cancer studies reveal indicate 

that 9 gene pairs tend to significantly co-occur within lung cancer risk 

classifiers. 

 



	

	 123	

Table S3-12: Analysis of ontologies indicates alternative splicing, acetylation, and splice variants to be 

significant terms among the 12 genes in lung cancer risk classifier. 
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Chapter 4: Dysfunctional DNA repair pathway via defective FANCD2 gene 

engenders multifarious exomic and transcriptomic effects 



	

	 125	

ABSTRACT 

 

Fanconi Anemia (FA) affects only 1 in 130,000 births, but has severe and diverse 

clinical consequences.  It has been theorized that defects in the FA DNA repair 

complex lead to a spectrum of variants that are responsible for those diverse clinical 

phenotypes.  Here we show using nextgen sequencing that a clinically-derived FA 

cell line relative to its retrovirally corrected line continued to accumulate variants, 

especially INDELs.  Over 200 SNV and 25 INDEL robust impact variants 

(introduction of start/stop codons, nonsense and missense mutations) distinguished 

the FA and corrected cell lines, including many high-impact variants.  Further, 

sequences from biological replicates indicated that new mutations accumulated 

during a single 30-hour culture.  These genetic modifications had a devastating effect 

on the transcriptome, with statistically significant changes in the expression of 270 

genes.  These genetic and transcriptomic variants significantly impacted many 

pathways and functional ontologies, spanning those associated with many diverse 

disease phenotypes/symptoms.  The downstream continuously accumulating variant 

diversity is consistent with the disease diversity seen in FA patients.  These results 

underscore the consequences of defects in DNA repair mechanisms, and indicate 

that accumulating diverse mutations from individual parent cells make it difficult to 

anticipate the longitudinal clinical behavior of emerging disease states in an 

individual with FA. 
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INTRODUCTION: 

 

Fanconi anemia (FA) is a congenital disorder that is phenotypically expressed in the 

daughter generation usually due to an autosomal recessive genetic condition in the 

parent generation. FA is characterized by bone marrow failure, infection 

susceptibility and a predisposition to cancer, specifically acute myeloid leukemia 

(AML)1. FA cells have been found to be enriched with chromosomal aberrations that 

occur due to unrepaired DNA crosslinking that are left uncorrected by the 

dysfunctional DNA repair mechanism; the FA pathway 2-4. The presence of 

increased chromosomal aberrations is used as a preliminary diagnostic test that can 

confirm FA5. DNA crosslinking agents have been used as cytotoxic drugs to disrupt 

cell division in cancer but the cell’s response to this method has not been entirely 

understood6. Recruiting DNA repair proteins to the interstrand crosslinks (ICLs) has 

been known to be the primary function of the FA pathway, and recent studies show 

the involvement of the FA pathway in maintaining general genome stability7. About 

16 genes have been identified to be coding for the FA pathway core protein complex. 

These genes have been classified into complementation groups: A, B, C, D1, D2, E, 

F, G, I. J. L, M and N 8-15. 

 

A major portion of previous research that has been conducted has tried to understand 

the causes of these DNA lesions and have extensively discussed the 

complementation groups of genes that have mutations that lead to a dysfunctional 

FA pathway1,8-12,16-18.  The complementation studies show that the dysfunction of 

anyone of the 16 genes can cause FA. In this work, we undertake an effort to 

understand the genome-wide and transcriptome-wide downstream effects of 

dysfunctional FANCD2 gene in PD20 cells. We hypothesize that one of the 

downstream consequences of FA caused ICL is disrupted transcription, which can 
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lead to altered transcriptional products. It has been shown that transcriptional 

products can be altered during cancer19. A significant level of transcriptome 

instability has been shown to always be present in cells and several stabilizing 

mechanisms have been known to be in place to respond to them20. However, in the 

absence of a functional FA pathway, we propose that an increased level of 

unrepaired ICLs can overwhelm the transcriptome stability maintaining mechanisms 

and lead to altered transcriptional products, in which case consequent impairments 

of cellular function is imminent. While the ICL repair function of FA pathway is 

well known, there are studies that suggest that the FA pathway may be involved in 

the general upkeep of genomic stability7. Microsatellite instability has been linked 

to dysfunctional mismatch repair but recent studies show the contribution of the 

crosslink repair (FA) pathway to microsatellite instability21-23.   Hence we also aim 

to understand possible effects of a dysfunctional FA pathway on the microsatellite 

instability. 
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METHODS: 
	
Cell lines and DNA/RNA sample preparation: PD20 cell lines containing a 

defective FANCD2 gene and retrovirally corrected FANCD2 were obtained from 

the FA cell repository at Oregon Health and Science University 

(http://www.ohsu.edu/research/fanconi-anemia/celllines.cfm/forum/index.cfm).  

The cells were seeded onto six well plates at 1.5 x 104 cells/well. After ~24 hours of 

incubation, the medium (5 ml of DMEM-10% FBS) was changed. After 4 hours of 

incubation, the cells were tripsin-ized and collected for DNA (Qiagen Allprep kit) 

and RNA (Qiagen RNA prep kit) extraction.  DNA and RNA from two PD20 

samples and two PD20 RV corrected for FANCD2 gene were sent for exomic 

sequencing and RNASeq analysis.  

 

DNA variant detection: Paired-end sequencing reads of the 4 Fanconi Anemia 

DNA samples were obtained in the form of fastq files. The samples had a mean of 

30 million reads with a standard deviation of 3 million reads.  The samples were then 

checked for quality using the Trimmomatic tool.  The Trimmomatic tool utilizes a 

window based system to check for the sequencing quality of bases. The tool requires 

user input for three parameters: sliding window length, quality score threshold and 

minimum length of sequencing read. The following values were used: 10, 20 and 70. 

Only sequences that contained both the mate pairs reads were used for further 

processing. After quality trimming, the samples on overage had 27 million reads 

with a standard deviation of 3 million. The ‘mem’ function of the BWA package 

was used to map the sequencing reads to GRCh38 reference genome. On average 

99% of reads in all the samples were mapped to the reference genome. The 

SAMTOOLS package was used to convert the SAM file into a sorted and indexed 

BAM file. The AddOrReplaceReadGroups function in the Picard package was used 
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to add read groups to the BAM files. All the four BAM files were pooled together 

to create INDEL realignment targets using the RealignerTargetCreator function in 

GATK package. The GATK IndelRealigner function was then used on individual 

samples to create INDEL realigned BAM files. The GATK HaplotypeCaller was 

used to create VCF files with INDEL and SNP calls and the SelectVariants function 

was used to separate SNPs and INDELs.  

 

Python and shell scripts were written to calculate the number of commonly present 

SNPs and INDELs in the FA and FA_RV samples (Table 2). The BEDTOOLS 

coverage function was used to calculate the percentage of the exome that is covered 

by the reads and the SAMTOOLS depth function (samtools depth sample.bam | awk 

'{sum+=$3} END { print "Average = ",sum/NR}') was used to calculate the 

coverage of the read covered exome (Table 3).  

 

The VCF files were fed to the SNPEff program to annotate the SNP and INDEL 

calls. The SNPEff annotation output was used to classify the detected variants 

according to the type and genomic region (Supplemental table 2). The SNPEff 

program outputs the possible effects of a given variant and classifies the effect into 

4 categories: high, low, moderate and modifier.  

 

Custom written python scripts were used perform the pairwise comparison of DNA 

variants (tables) that were predicted as high impact by SNPEff. A variant is 

considered to be specific to a sample, during the pairwise comparison, if the variant 

position is covered in the both samples and does not have the same variant call.  

 

The calculations describing the pairwise comparisons in Table 5 and 6 are described 

in detail in the Supplemental table 3 and 4.  
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RNA-Seq data processing and analysis: The single end sequencing reads of the 

RNA samples were obtained in the form of fastq files. On average each sample 

contained 36 million reads with a standard deviation of 1 million. They were quality 

trimmed using Trimmomatic tool with the same parameters used for the DNA 

samples. After quality trimming, the samples retained on average 35 million reads 

(standard deviation 1 million).  The quality trimmed RNA sequence reads were then 

mapped to the GRCh38 reference genome by the Tophat2 program with a prebuilt 

transcriptome index. On average 90% (Standard deviation: 3%) of the reads were 

uniquely mapped. The mapped BAM file was passed through the Cufflinks and 

Cuffmerge programs and were finally passed through the Cuffdiff program as 4 

separate sample groups. The Cuffdiff program generates a pairwise comparison of 

the FPKM values for each gene in all the 4 samples, providing 6 pairwise 

comparisons. Genes found to have statistically significant (P value < 0.05) 

differential expression in comparisons across the FA and FA_RV sample groups and 

no significant differential expression within the FA and FA_RV sample groups are 

provided in the supplemental table 4 as differentially expressed between the two 

sample groups.  

 

Microsatellite genotyping: Microsatellite (MST) genotyping of the Fanconi 

Anemia samples was performed using the Repeatseq program24. The program 

requires three user inputs: mapped sequencing reads in the form of a BAM file, a list 

of MST genomic coordinates and the reference genome. Repeatseq outputs a variant 

call file listing all possible alleles detected for each microsatellite. Custom written 

perl scripts were written to generate a list of MSTs with their primary, secondary 

and minor allele information. An MST is considered to have a minor allele only if 

the minor allele is covered by at least 3 reads.  
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Generating the query list of microsatellites: A list of microsatellites in version 19 

of the human reference genome was generated with a custom perl script 

‘searchTandemRepeats.pl’ using default parameters. This script has been used in 

previous microsatellite studies and is available online at 

http://genotan.sourceforge.net/#_Toc324410847. The initial list generated with this 

script included 1,671,121 microsatellites. To mitigate the likelihood of improper 

read mapping between microsatellites we removed all subsets of microsatellites 

possessing the same motif between identical 3’ and 5’ flanking regions. For example, 

the microsatellites ‘GCTGC(A)34CTTAG’ and ‘GCTGC(A)15CTTAG’ were 

preemptively removed from our initial list of microsatellites. The fact that there were 

many of these potentially ambiguous regions is not surprising considering 

microsatellites are often embedded in larger repetitive motifs such as LINES and 

SINES. Our filtered list included 611,515 microsatellites. 

 

Mechanistic analysis: The DAVID online bioinformatics tool was used to perform 

the ontological gene enrichment analysis25. The DAVID tool was used on the 270 

genes that were found to be differentially expressed between the FA and FA_RV 

sample groups. The REACTOME pathway online tool was used to find the pathways 

in which the two sets of genomic variant associated genes are involved26.  The 

pathway hits that were found to have significant (P value < 0.05) involvement are 

considered for analysis and are furnished in supplemental tables 8 and 9. 
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RESULTS AND DISCUSSION 

 

Verification of FANCD2 retroviral correction: 

To assess the extent of genomic damage that can be caused by the dysfunction of 

only one of the DNA repair genes, in this case FANCD2, it is first necessary to 

establish the differential expression of FANCD2 in the two sample groups i.e. 2 

biological replicates of the original clinical FA sample and 2 FA samples that were 

corrected for FANCD2 expression using a retroviral vector.  Table 1 shows the 

statistically significant differential expression of FANCD2 gene in these two sample 

groups by comparing the FPKM values from RNA sequencing. All the four 

comparisons (FA1 vs FA_RV1, FA2 vs FA_RV1, FA1 vs FA_RV2, FA2 vs 

FA_RV2) of FPKM (Fragments Per Kilobase of transcript per Million mapped 

reads) values across the two sample groups show significant difference while both 

the comparison within groups (FA1 vs FA2, FA_RV1 vs FA_RV2) do not show any 

such difference.  This confirms that expression of FANCD2 is quenched in the FA 

samples, and restored in the corrected samples. 

 

The RNA sequencing derived differential expression data in Table 1 demonstrates 

that the retrovirus mediated correction of the FANCD2 gene in the FA_RV sample 

group is restoring proper expression of the gene and that the FA_RV sample group 

can be utilized as a control to study the propagation of genomic damage in the FA 

sample group. The gene expression fold change of all 17 Fanconi Anemia related 

genes show that only FANCD2 had a significant gene expression change between 

FA and FA_RV sample groups and the other 16 genes did not show any such change 

in gene expression (Supplemental Table 1). Hence, the genomic damage and 

associated transcriptional profile change in non-FA genes found to be specific to the 
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FA sample group can be attributed to the dysfunctional DNA repair mechanism 

caused by the incorrect expression of the FANCD2 gene.  

 

Genomic variant analysis: 

The four DNA samples, 2 biological replicates for FA cell line and 2 biological 

replicates for the FA_RV cell line were sequenced and mapped to the human genome 

version 38 reference to identify genomic variants, such as SNPs and INDELs, and 

assess their potential impact. About 55% of the INDELs were found in all four 

samples while 65% of the SNPs were commonly found in all the four samples (Table 

2), thus confirming a common origin, i.e. that these had existed in the clinical sample 

prior to creating the cell lines. About 70% of INDELs and 75% of SNPs were found 

to be shared by samples within groups (Table 2). The remaining fraction of un-

shared variants indicate that the biological replicates continue to develop different 

variants that go uncorrected, illustrating a mechanism for enhanced heterogeneity.   

 

A significant increase in the fraction of INDELs in all the four samples was 

observed, in comparison to the 1000 Genome Project samples (1kGP) (Table 3).  

Chromosomal aberrations such as DNA lesions are signature variants of Fanconi 

Anemia5. The increased fraction of INDEL variants observed in all 4 Fanconi 

Anemia samples is consistent with the specific correction mechanism defect in FA. 

It should be noted that such a difference in SNP-INDEL ratio is found while the 

fraction of the exome being sequenced and the depth of coverage are approximately 

equal in the 4 Fanconi Anemia samples and the 1kGP samples. The constancy of the 

SNP: INDEL ratio in three different 1kGP samples (9.2:0.8) serves as a reference 

which shows all the FA samples have a higher fraction of INDELs (8.8:1.2) than 

what is seen in a normal population.     
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Analyzing the high impact genomic variants in all the 4 Fanconi anemia samples, a 

set of 82 genes was found to be associated with variants that were found only in the 

FA samples and a set of 618 genes was found to be associated with variants that 

were found commonly in all the 4 samples (FA and FA_RV sample groups).   

 

Microsatellite genotyping was done to understand the effect of crosslink repair 

mechanism on MST instability. It has been suggested that MST instability is not 

only caused by the mismatch repair mechanism but could also be caused by 

nucleotide excision repair and crosslink repair mechanisms21-23. The fraction (5% - 

256 MSTs) of heterozygous MST in the Fanconi anemia samples is found to be 

higher than the fraction (3.5% - 138 MSTs) in the 1kGP samples which is consistent 

with the increase in the percentage of MST with minor alleles.  The fraction of 

callable MSTs with minor alleles is 5% (200 MSTs) in the 1kGP samples while the 

fraction of callable MSTs with minor alleles is 8.5% (437 MSTs) in the Fanconi 

anemia samples.  

 

To explore in detail the heterogeneity in these 4 samples, pairwise comparisons of 

SNP and INDEL occurrences were made. SNP and INDEL-containing loci were 

compared only if the corresponding genomic location in the other sample was 

sequenced and called. On average, 24% of SNPs was found to sample specific, 

demonstrating, again, the high heterogeneity between these samples (Table 5 and 

Supplemental Table 3). Around 14% of INDELs were found to be sample specific 

(Table 6 and supplemental table 4). It should be noted that such high level of 

variance in genome is consistent with the fact that Fanconi Anemia patients are 

highly predisposed to cancer27.  ICLs can directly affect DNA replication by 

phenomenally increasing DNA errors which can lead to cell death or uncontrolled 

cell growth27.  
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RNA sequencing to measure expression changes: 

Having realized the extent of genomic damage caused by a dysfunctional DNA 

repair gene, it is pertinent to examine the downstream effect of this DNA damage on 

the transcriptome, i.e. on gene expression. Along with FANCD2, a set of 270 genes 

(Supplemental Table 5) were found to be differentially expressed in the biological 

replicates between the FA and the FA_RV samples groups.  Significant changes in 

expression ranged from 1.1 to 11.5.  The top most 8 genes with altered expression 

are shown in Table 7.  

 

The pairwise comparisons of the number of differentially expressed genes in all 4 

samples showed that on average all 4 pairwise comparisons across sample groups 

had 375 differentially expressed genes (FA1 - FA_RV1 = 376; FA1 - FA_RV2 = 

384; FA2 - FA_RV1 = 373; FA2 - FA_RV2 = 369) while the two comparisons 

within sample groups (FA1-FA2 = 1, FA_RV1-FA_RV2 = 1) had only 1 

differentially expressed gene each. This confirms that although there was some 

divergence in the genomes of the biological replicates, that the effect was very minor 

on the transcriptome.  Also, as a control, and to put these numbers into context, three 

1kGP RNA-Seq samples were downloaded and pairwise analyzed for differentially 

expressed genes. The number of differentially expressed genes in these 3 samples 

ranged from 105 to 236.  It should be noted that the expression measurements in the 

1kGP samples were for different individuals under differing conditions, while the 

FA samples were from the same individual under controlled culture conditions.  

 

In addition to the raw expression level changes, there are indications that these genes 

are alternatively spliced.  Pairwise comparisons of exon count in genes within and 

across the FA and FA_RV sample groups show that on average 29% of expressed 

genes have varying exon counts across sample groups while 24% of expressed genes 
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have varying exon counts within sample groups. An increase of 5% of genes (795 

genes) with varying exon counts between FA and FA_RV sample groups shows the 

effects of the dysfunctional FANCD2 gene on alternative splicing. These findings 

might suggest that a dysfunctional DNA repair mechanism leads to DNA damage 

which in turn affects gene expression through truncated RNA transcripts rather than 

directly affecting the number of genes that are expressed. 

 

Mechanistic analysis of genes with differential expression and genomic 

variants: 

 

In order to understand the mechanistic role of genes that were affected by a DNA 

repair gene (FANCD2) dysfunction, three sets of genes where analyzed for their 

gene ontology term enrichment and their overrepresentation in pathways: 1) set of 

genes (270) were found to be differentially expressed (RNA-Seq) between the FA 

and FA_RV sample groups; 2) set of genes (82) that were associated with DNA 

variants that were specific to the FA sample group and were not found in the FA_RV 

sample group and; 3) set of genes (618) that were found to associated with genomic 

variants (SNPs and INDELs) that were occur in both sample groups.  

 

The gene ontology enrichment analysis of differentially expressed genes and 

pathway analysis of the 82 genes that were found to be specific for the FA sample 

group are consistent. Both sets showed the common involvement of genes in 

immune functions such as antigen presentation and signaling pathways 

(Supplemental Table 7 and 8). These genes were also found to be involved in 

immune related signaling pathways (Supplemental Table 8).  
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Pathway analysis of the FA specific gene set, in comparison to the gene variants that 

are commonly found in all samples, show involvement in a wider variety of 

functionalities such as apoptosis and transcriptional regulation, along with known 

immune related FA functions such as antigen presentation and immune related 

signaling. The common gene variant set, on the other hand, is only involved in 

immune related pathways. This could suggest that earlier mutations target the 

immune system while further addition of mutations that are caused by the unrepaired 

FA pathway may lead to a wider variety of genomic effects that can initiate 

apoptosis.  

 

Pathway analysis of the differentially expressed genes show that signaling genes are 

specifically involved in immunological processes such as T cell receptor signaling. 

One of the highly overrepresented pathways as indicated by the differentially 

expressed genes was found to be the endosomal pathway. The Cathespin L gene 

(CTSL) that is mainly involved in the lysosomal degradation of proteins was not 

only differentially expressed between the FA and FA_RV sample group but it was 

up-regulated in the FA samples and down-regulated in the FA_RV samples. It has 

already been suggested that dysfunction of FANCD2 affects the transcripome by the 

production of broken transcripts which can be translated into malformed proteins 

that can require overactive lysosomal activity. Other overrepresented pathways are 

the PD-1 (programmed cell death) signaling pathway and ER-phagosome pathway. 

For example, one gene involved in the phagosome pathway is MYD88 which again 

was found to be more highly expressed in the FA sample group and not in the 

FA_RV sample group. We observed the up-regulation of 12 collagen genes 

(COL4A2, COL5A2, COL1A2, COL6A2, COL6A1, COL8A1, COL11A1, 

COL4A1, COL3A1, COL16A1, COL5A3, COL6A3) in the FA sample group.  Cell 

viability and the regulation of the extra cellular matrix has been convincingly linked 
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to cancer progression and the up-regulation of a collection of collagen coding 

proteins is consistent with up-regulation of cell death signaling and phagosomal 

activity28. It should be noted that an up-regulation of cell death and collagen genes 

can lead to cancer and, recalling, Fanconi Anemia patient are predisposed to acute 

myeloid leukemia28. 
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CONCLUSION: 

 

These findings are unexpected and surprising.  We find it surprising that so many 

variants, so many high-impact variants, accumulate so quickly as a consequence of 

uncorrected genomic mistakes.  We find it unexpected that so many genes can be 

altered and/or disrupted, yet tolerated, at least such that the cells survive.  Further, 

we find it surprising that although there were many coding variants, these and other 

non-coding variants resulted in fewer genes with altered expression.  One must 

consider cause and effect.  How much does the genomic variants modify the 

expression level, and how much has the expression level of various genes shifted to 

compensate and ensure cell survival. One must also wonder how many 

cellular/genomic trajectories are possible, and how cells compensate accordingly. In 

this experiment, we quantified the variants from but one of the many (currently 

estimated at 16) genes that are members of this DNA repair complex.  It begs the 

question as to how each of these genes contribute to the repair process, and how 

defects in each manifest themselves as to the number and spectrum of variants that 

persist. 
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FIGURES: 

 

Figure 4-1: Two types of Fanconi anemia – PD20 cell lines were included in this 

experiment. The cell lines represented in yellow are FA cell lines with a 

dysfunctional FANCD2 gene while the cell lines represented in pink are FA cell 

lines that were corrected with a functional FANCD2 gene using retroviral 

transduction.  Variants with respect to the human genome reference found in 

common among all samples are indicative of variants accumulated prior to 

extraction from the patient.  Variants found in common in each of the pairs of 

biological replicates are indicative of mutations that diverged when the original cell 

line was repaired.  Differences between the biological replicates indicates the 

divergence of each of the cell line cultures as different uncorrected errors are made 

in each sample. 
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TABLES 

 

Table 4-1: Pairwise comparison of FANCD2 gene expression in 2 FA samples and 2 FANCD2 RV corrected 

FA samples. Gene expression calculated by FPKM confirms that compared to FA samples, the expression of 

FANCD2 in the FA_RV samples is significant. This verifies the retroviral correction of the FANCD2 gene in the 

FA_RV samples.     

Sample 1 Sample 2 
Sample 1 

FPKM 
Sample2 
FPKM 

log2(fold_
change) P value Significance 

FA1 FA2 4.6 3.4 -0.4 0.4 No 
FA1 FA_RV1 4.6 108.6 4.5 0.0 Yes 
FA2 FA_RV1 3.4 108.6 5.0 0.0 Yes 
FA1 FA_RV2 4.6 124.2 4.7 0.0 Yes 
FA2 FA_RV2 3.4 124.2 5.1 0.0 Yes 
FA_RV1 FA_RV2 108.6 124.2 0.1 0.5 No 

FPKM is the Fragments Per Kilobase of exon per Million fragments mapped.  
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Table 4-2: Variant calls for the 2 FA and 2 FANCD2 RV corrected FA sample, with respect to the human 

reference genome.  While a significantly large number of SNPs and INDELs were found to be repeated in all the 4 

samples, the difference in the number of variants within biological replicates show evidence of heterogeneity in these 

replicate cell line cultures.   

Variant 
Type Sample Sample 

Type 

Variant count 

# Repeated in 
replicates 

Repeated in all 
samples 

INDEL 

GRL1398 FA 28053 19556 
15023 GRL1399 FA 27218 

GRL1400 FA_RV 27386 18836 GRL1401 FA_RV 25966 

SNP 

GRL1398 FA 201940 153043 
128179 GRL1399 FA 198816 

GRL1400 FA_RV 194954 144266 GRL1401 FA_RV 191593 
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Table 4-3: Distribution of SNPs and INDELs in the FA, FA_RV and 1kGP samples. While the ratio of SNP vs 

INDELs in the FA and FA_RV samples are constant, an increase in the INDEL events is seen in the FA and FA_RV 

samples, compared to the 1kGP samples, which we include as another type of control.   

Sample 
Sample 

Type 
Total 

variants SNP INDEL 

SNP-
INDEL 

ratio 
Exome % 
covered Coverage 

GRL1398 FA1 234244 205,613 28631 8.8 : 1.2 92 13 
GRL1399 FA2 229972 202,186 27786 8.8 : 1.2 92 10 
GRL1400 FA_RV_1 226132 198,180 27952 8.8 : 1.2 92 11 
GRL1401 FA_RV_2 221086 194,671 26415 8.8 : 1.2 91 11 
HG02003 1KG 281236 258,715 22521 9.2 : 0.8 86 12 
HG02008 1KG 271595 250,147 21448 9.2 : 0.8 87 10 
HG02009 1KG 252543 232,261 20282 9.2 : 0.8 86 11 
HG02010 1KG 278559 255,466 23093 9.2 : 0.8 86 11 
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Table 4-4: Microsatellite genotyping of the 4 Fanconi Anemia samples and 

healthy controls from the 1kGP. On average, 8.4% of the callable MST loci have 

minor allele while only 5% of the callable MST in 1kGP samples have minor alleles 

which indicates a higher rate of mutations in MSTs in the Fanconi Anemia samples.  

Sample 
Callable 

MST Homozygous Heterozygous 
Minor 
alleles 

FA1 5395 95.4 4.6 7.6 
FA2 5011 94.9 5.1 7.7 
FA_RV1 5818 94.9 5.1 9.2 
FA_RV2 4519 95.0 5.0 9.3 
HG02003 4485 96.6 3.4 5.5 
HG02008 3834 97.1 2.9 4.5 
HG02009 3211 96.6 3.4 4.0 
HG02010 4158 95.6 4.4 6.1 
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Table 4-5: Pairwise comparison of high impact SNPs in FA and FA_RV samples 

show the extent of SNP variability within biological replicates. To ensure 

accurate comparison, only SNPs that were sequenced in both samples in a sample 

pair were considered.  

 FA1 FA2 FA_RV1 FA_RV2 
FA1 * 142 167 252 
FA2  * 169 255 
FA_RV1   * 234 
FA_RV2    * 
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Table 4-6: Pairwise comparison of high impact INDELs in FA and FA_RV 

samples show the extent of INDEL variability within biological replicates. To 

ensure accurate comparison, only genomic positions that were sequenced in both 

samples were used.  

 FA1 FA2 FA_RV1 FA_RV2 
FA1 * 27 25 36 
FA2  * 23 30 
FA_RV1   * 29 
FA_RV2    * 
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Table 4-7: Of 270 differentially expressed genes, the most significant are illustrated here.  Eight had a high 

gene expression fold change and was significantly divergent from the exponential distribution of the full set 

of genes, when comparing FA and FA_RV sample groups. A “+” indicates higher gene expression in FA_RV 

sample group and a “-” sign indicates higher gene expression in FA sample group.   See supplement table 5 for the 

full list. 

# Gene ID 
Gene 

Symbol Genomic position 
GE fold 
change 

High 
expression 
in FA_RV 

1 XLOC_003069 - chr1:239266341-
239270392 

11.5 + 

2 XLOC_014162 COLEC12 chr18:318126-
500729 

10.5 - 

3 XLOC_015674 ZNF626 chr19:20619938-
20661596 

10.0 - 

4 XLOC_033910 FGF13 chrX:138631570-
139222889 

9.8 + 

5 XLOC_011076 MT1E chr16:56625653-
56627112 

9.5 - 

6 XLOC_002609 GLUL chr1:182381703-
182392206 

8.8 - 

7 XLOC_018786 COL6A3 chr2:237324011-
237422190 

8.8 - 

8 XLOC_002401 C1orf85 chr1:156292686-
156295689 

8.8 - 
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SUPPLEMNTAL INFORMATION 

 

FIGURES 

 

Figure S1-1: Of 270 genes that were found to have significant difference in gene 

expression between the FA and FA_RV sample groups, 8 were found to have a 

high gene expression fold change that diverged significantly from the 

exponential fit. These genes, with the most significant gene expression difference, 

were chosen to illustrate these significant changes.  The full list of genes is found 

below.    
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Table S4-1: The log2(fold change) in gene expression for all the genes (16) that are known to be related to 

Fanconi Anemia for all 6 pairwise comparisons of 2 FA cell lines and FANCD2 RV corrected FA cell lines. 

Only FANCD2 gene shows any discernible fold change in gene expression.  This confirms that the FANCD2 gene 

was disrupted in the FA cell lines and restored in the FA_RV cell lines. 

Gene Gene expression fold change 
 FA1/FA2 FA1/FA_RV1 FA2/FA_RV1 FA1/FA_RV2 FA2/FA_RV2 FA_RV1/FA_RV2 

BRCA1 0.11 0.10 -0.02 0.03 -0.08 -0.06 
BRCA2 0.12 -0.18 -0.30 -0.06 -0.18 0.12 
FANCD2 -0.45 4.54 5.00 4.73 5.19 0.19 
PALB2 0.16 0.29 0.13 0.32 0.16 0.02 
FANCG -0.08 0.15 0.23 0.11 0.19 -0.04 
FANCF 0.24 0.77 0.53 0.68 0.44 -0.09 
FANCE -0.03 0.59 0.62 0.64 0.66 0.04 
FANCC 0.14 -0.12 -0.26 -0.21 -0.35 -0.09 
FANCB 0.23 -0.38 -0.61 -0.34 -0.57 0.04 
FANCA -0.17 0.71 0.88 0.59 0.76 -0.12 
BRIP1 0.10 -0.81 -0.91 -1.03 -1.14 -0.22 
FANCM 0.13 0.16 0.04 0.20 0.07 0.04 
FANCL -0.07 -0.05 0.01 -0.22 -0.16 -0.17 
RAD51C 0.14 -0.56 -0.70 -0.59 -0.72 -0.02 
FANCI 0.12 0.22 0.10 0.24 0.11 0.02 
SLX4 0.16 -0.02 -0.18 0.11 -0.05 0.13 
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Table S4-2: Distribution of the DNA variants with respect to the human genome reference (build - Grch38) in 

all the four Fanconi Anemia samples. There were a significant number of variants found, many that are high 

impact.  The classification of variants was done using the SNPEff program that annotates GATK VCF output. This 

also illustrates that many variants had already been acquired when the primary cells were taken from the patient to 

establish the defective and corrected cell lines.  

# DNA variant event FA1 FA2 
FA_R
V1 

FA_R
V2 

1 intron_variant 664039 650794 644703 631624 
2 downstream_gene_variant 289232 283457 278135 276387 
3 upstream_gene_variant 200121 194620 190464 188488 
4 3_prime_UTR_variant 59656 59324 57570 57931 
5 non_coding_transcript_exon_variant 59060 58437 56577 56950 
6 synonymous_variant 33460 33362 32162 32662 
7 missense_variant 30275 30518 29686 31696 
8 intergenic_region 30699 30131 29501 27426 
9 splice_region_variant 14149 14279 13791 14389 

10 5_prime_UTR_variant 13877 13618 13058 13405 
11 sequence_feature 5716 5569 5509 5455 
12 structural_interaction_variant 2965 3044 2998 2987 
13 5_prime_UTR_premature_start_codon_gain_variant 1855 1815 1746 1831 
14 TF_binding_site_variant 1175 1074 1120 1130 
15 frameshift_variant 643 650 647 727 
16 stop_gained 354 410 368 767 
17 splice_acceptor_variant 391 424 343 428 
18 splice_donor_variant 361 308 343 367 
19 disruptive_inframe_deletion 317 307 311 312 
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20 disruptive_inframe_insertion 227 229 219 210 
21 conservative_inframe_insertion 170 149 167 176 
22 protein_protein_contact 154 154 154 153 
23 conservative_inframe_deletion 72 101 89 66 
24 start_lost 70 76 61 68 
25 stop_lost 52 52 56 55 
26 stop_retained_variant 46 47 39 41 
27 non_coding_transcript_variant 37 27 30 23 
28 intragenic_variant 24 20 19 19 
29 TFBS_ablation 10 15 11 5 
30 initiator_codon_variant 4 4 4 4 
31 bidirectional_gene_fusion 2 2 3 3 
32 gene_fusion 1 1 1 1 
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Table S4-3: Variability in high impact SNPs. This table presents the calculation of pairwise SNP comparisons in 

and across the FA and RA_RV sample groups. The number of unique high impact SNPs that are found specific in 

each sample shows the heterogeneity of the Fanconi anemia samples.  

 # high impact SNPs SNPs specific to 
sample    

Sample pair S1 S2 S1 S2 
Mean 
high 

impact 

Mean 
specific 
SNPs 

% of 
specifi

c 
SNPs 

FA1 - FA2 810 808 139 145 809 142 18 
FA1 - FA_RV1 810 786 178 155 798 167 21 
FA1 - FA_RV2 810 960 173 331 885 252 28 
FA2 - FA_RV1 808 786 182 155 797 169 21 
FA2 - FA_RV2 808 960 179 331 884 255 29 
FA_RV1 - 
FA_RV2 786 960 147 321 873 234 27 

S1 – First sample of the samples in the sample pair column. S2 – Second sample of the samples in the sample pair 
column.  
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Table S4-4: Variability in high impact INDELs. This table presents the calculation of pairwise INDEL 

comparisons in and across the FA and RA_RV sample groups.  The number of unique high impact INDELs that are 

found specific in each sample confirms the heterogeneity of the Fanconi anemia samples. 

 # high impact 
INDELs 

INDELs specific to 
sample    

Sample pair S1 S2 S1 S2 
Mean 
high 

impact 

Mean 
specific 
INDEL

s 

% of 
specifi

c 
INDE

Ls 
FA1 - FA2 205 209 25 28 207 26 13 
FA1 - FA_RV1 205 204 25 25 204 25 12 
FA1 - FA_RV2 205 209 34 38 207 36 17 
FA2 - FA_RV1 209 204 24 21 206 22 11 
FA2 - FA_RV2 209 209 30 29 209 29 14 
FA_RV1 - 
FA_RV2 204 209 27 31 206 29 14 

S1 – First sample of the samples in the sample pair column. S2 – Second sample of the samples in the sample pair 
column.  
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Table S4-5: A total of 270 genes were found to be statistically significantly differentially expressed between 

the FA and FA_RV sample groups. The genes are sorted according to the gene expression fold change. This table 

furnishes the entire list of 270 genes that were differentially expressed. The very large number of genes, with very 

large expression changes illustrate the significant impact that the many variants have on the cell lines. 

Gene Id Gene symbol Genomic position 
GE fold 
change 

High 
expression 
in FA_RV 

XLOC_003069 - chr1:239266341-239270392 11.48 + 
XLOC_014162 COLEC12 chr18:318126-500729 10.50 - 
XLOC_015674 ZNF626 chr19:20619938-20661596 10.00 - 

XLOC_033910 FGF13 
chrX:138631570-
139222889 9.79 + 

XLOC_011076 MT1E chr16:56625653-56627112 9.46 - 
XLOC_002609 GLUL chr1:182381703-182392206 8.85 - 
XLOC_018786 COL6A3 chr2:237324011-237422190 8.80 - 
XLOC_002401 C1orf85 chr1:156292686-156295689 8.78 - 
XLOC_022046 CDCP1 chr3:45082273-45146422 8.39 - 
XLOC_019959 MX1 chr21:41420557-41459214 8.25 - 
XLOC_006994 CLEC2B chr12:9852368-9869859 8.25 - 
XLOC_017545 GALNT5 chr2:157257547-157314078 8.18 - 
XLOC_008950 LOC440157 chr14:19298728-19303582 8.14 + 
XLOC_022006 SUSD5 chr3:33149927-33219215 8.14 - 
XLOC_021235 MYD88 chr3:38138477-38143022 7.97 - 
XLOC_011492 XYLT1 chr16:17102323-17470881 7.77 - 

XLOC_008904 LOC102723726,TNFAIP2 
chr14:103121351-
103137439 7.76 - 
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XLOC_008934 CRIP1 
chr14:105481517-
105488789 7.70 - 

XLOC_031419 - chr8:122168573-122171056 7.65 + 
XLOC_029150 PEG10 chr7:94656324-94669695 7.65 - 
XLOC_007989 ZIC2 chr13:99981771-99986765 7.57 + 
XLOC_008412 FLJ39632 chr14:19076243-19096796 7.57 + 
XLOC_015095 RCN3 chr19:49527617-49543634 7.48 - 
XLOC_015837 ATP1A3 chr19:41966475-41994276 7.40 + 
XLOC_032446 SLC35D2 chr9:96313436-96383710 7.35 - 
XLOC_030357 C8orf48 chr8:13566842-13568288 7.31 - 
XLOC_017040 EMILIN1 chr2:27078566-27086403 7.22 - 
XLOC_030680 - chr8:122139981-122168546 7.16 + 
XLOC_017096 QPCT chr2:37344609-37373322 7.13 - 
XLOC_024738 ZNF354C chr5:179060406-179083771 7.09 - 
XLOC_003948 PCBD1 chr10:70882279-70888784 6.97 - 
XLOC_008753 IFI27 chr14:94110732-94116699 6.87 - 
XLOC_002724 C1orf116 chr1:207018520-207032761 6.78 - 
XLOC_031978 PHYHD1 chr9:128920894-128942041 6.76 - 
XLOC_010362 CYP1A1 chr15:74719541-74725610 6.63 + 

XLOC_006805 HSPB8 
chr12:119178789-
119194746 6.59 - 

XLOC_011239 PLCG2 chr16:81779293-81958294 6.59 - 
XLOC_026014 CUL9 chr6:43182174-43224587 6.50 - 
XLOC_027033 LAMA4 chr6:112107930-112306683 6.47 - 
XLOC_000273 THEMIS2 chr1:27872542-27886685 6.37 - 
XLOC_015133 CD33 chr19:51225078-51240019 6.29 + 
XLOC_002809 ITPKB chr1:226631689-226739327 6.25 - 
XLOC_032358 - chr9:78848554-78863649 6.17 + 
XLOC_012078 ZFP3 chr17:5078458-5096374 6.09 - 
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XLOC_023003 LIMCH1 chr4:41359606-41700044 6.08 + 
XLOC_012093 XAF1 chr17:6755836-6775647 6.07 - 
XLOC_022879 STK32B chr4:5051545-5501001 6.06 - 
XLOC_000296 SERINC2 chr1:31409564-31434680 5.97 - 
XLOC_028763 FAM20C chr7:192958-260774 5.96 - 
XLOC_007833 FREM2 chr13:38687035-38887131 5.85 + 
XLOC_020937 - chr22:15854177-15855201 5.77 + 
XLOC_009291 FBLN5 chr14:91869409-91947702 5.75 - 
XLOC_014387 - chr18:14858969-14863974 5.75 + 
XLOC_009235 MLH3 chr14:75013763-75051532 5.71 - 
XLOC_006696 - chr12:98289603-98305388 5.69 + 

XLOC_034013 CLIC2 
chrX:155276206-
155334681 5.66 - 

XLOC_005225 H19,MIR675 chr11:1995175-1997835 5.62 + 
XLOC_007091 TMTC1 chr12:29500812-29784759 5.62 + 
XLOC_013665 - chr17:41110001-41112904 5.62 + 
XLOC_021327 KLHDC8B chr3:49171565-49176486 5.56 - 
XLOC_004657 SERPING1 chr11:57597553-57614853 5.55 - 
XLOC_022019 SCN5A chr3:38548061-38649675 5.54 + 
XLOC_007107 KIF21A chr12:39293227-39443390 5.51 + 
XLOC_030536 TRIM55 chr8:66127042-66175485 5.50 - 
XLOC_005657 CD248 chr11:66314486-66317044 5.44 - 
XLOC_010530 - chr15:30488358-30490284 5.43 - 
XLOC_017645 COL3A1 chr2:188974372-189012746 5.42 - 
XLOC_012724 C1QTNF1 chr17:79019208-79049788 5.34 - 
XLOC_011438 PPL chr16:4882506-4937135 5.33 - 
XLOC_006569 DTX3 chr12:57604326-57609804 5.28 - 
XLOC_012992 USP32P2 chr17:18511261-18531380 5.25 - 
XLOC_019537 TSPY26P chr20:32186497-32190526 5.21 - 
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XLOC_023332 GUCY1B3 chr4:155758973-155807631 5.07 + 
XLOC_005429 PAMR1 chr11:35431826-35530300 5.05 - 
XLOC_012186 TRPV2 chr17:16415541-16437003 5.00 - 
XLOC_019717 LAMA5 chr20:62309059-62367312 4.93 - 
XLOC_023129 ANXA3 chr4:78551587-78610451 4.89 - 
XLOC_021138 FANCD2 chr3:10026383-10108291 4.87 + 
XLOC_015509 COL5A3 chr19:9959560-10010471 4.84 - 
XLOC_029774 NSUN5 chr7:73302515-73308867 4.77 - 
XLOC_000113 TNFRSF1B chr1:12166942-12209220 4.76 - 
XLOC_011062 MMP2 chr16:55479168-55506674 4.76 - 
XLOC_025963 MAPK13 chr6:36130483-36144524 4.74 - 
XLOC_025635 DSP chr6:7540450-7586713 4.70 - 
XLOC_017001 KCNS3 chr2:17877846-17932985 4.65 + 
XLOC_004032 PPP1R3C chr10:91628439-91633101 4.63 - 
XLOC_030912 NEFL chr8:24950954-24956869 4.62 - 
XLOC_024221 CCDC152 chr5:42756805-42811922 4.61 - 

XLOC_004154 ABLIM1 
chr10:114431109-
114779903 4.56 - 

XLOC_022647 BDH1 chr3:197509782-197573323 4.53 - 
XLOC_015498 ZNF560 chr19:9466354-9498603 4.52 - 
XLOC_000682 GSTM1 chr1:109687795-109693745 4.49 - 
XLOC_002107 GSTM3 chr1:109733931-109741038 4.49 - 

XLOC_007460 TMEM119 
chr12:108589845-
108598118 4.48 - 

XLOC_019438 FERMT1 chr20:6074844-6123544 4.47 - 
XLOC_005789 ME3 chr11:86441022-86672636 4.41 - 
XLOC_032395 SEMA4D chr9:89360790-89498014 4.36 - 
XLOC_017690 CDK15 chr2:201790453-201895550 4.35 - 
XLOC_023402 SLC25A4 chr4:185143262-185150384 4.35 - 
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XLOC_014991 APOE chr19:44905781-44909393 4.34 - 
XLOC_001078 PRRX1 chr1:170662727-170739400 4.34 - 
XLOC_033198 FAM133A chrX:93674012-93712274 4.33 + 
XLOC_020061 TMPRSS15 chr21:18268866-18477284 4.30 + 
XLOC_003939 AIFM2 chr10:70052600-70132934 4.26 - 
XLOC_009515 SNRPN,SNURF chr15:24823646-24978582 4.25 - 
XLOC_001304 MARK1 chr1:220528182-220664457 4.23 + 
XLOC_007768 TNFRSF19 chr13:23570369-23676105 4.22 - 
XLOC_019508 NINL chr20:25452696-25585531 4.21 - 

XLOC_008016 TEX29 
chr13:111320667-
111344247 4.20 - 

XLOC_029826 SEMA3A chr7:83957817-84492768 4.20 - 
XLOC_018505 DPP4 chr2:161992240-162074542 4.18 - 
XLOC_008768 BDKRB2 chr14:96204797-96244329 4.15 - 
XLOC_017714 ADAM23 chr2:206443543-206621130 4.14 + 
XLOC_020507 APOBEC3G chr22:39077004-39087743 4.14 - 
XLOC_025666 GMPR chr6:16238579-16295549 4.13 - 
XLOC_013997 ANKRD30B chr18:14748239-14854702 4.11 + 
XLOC_001631 MFAP2 chr1:16974501-16981586 4.09 - 
XLOC_014195 PIEZO2 chr18:10670189-11149534 4.09 - 
XLOC_019417 ADAM33 chr20:3667972-3682131 4.03 - 
XLOC_009672 GCHFR chr15:40764086-40767713 4.00 - 
XLOC_002292 CTSK chr1:150796207-150808441 4.00 - 
XLOC_011431 CDIP1 chr16:4510674-4538815 4.00 - 
XLOC_019053 SPTLC3 chr20:13008953-13169001 3.99 - 
XLOC_020436 TCN2 chr22:30607082-30627060 3.97 - 
XLOC_021152 PPARG chr3:12287849-12434356 3.95 - 
XLOC_009076 FOXA1 chr14:37589551-37595120 3.89 + 
XLOC_019744 STMN3 chr20:63639704-63654977 3.88 - 
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XLOC_001759 COL16A1 chr1:31652246-31704242 3.86 - 
XLOC_002087 COL11A1 chr1:102876466-103108496 3.86 - 
XLOC_032002 AIF1L chr9:131096475-131123152 3.84 + 
XLOC_011603 STX1B chr16:30989255-31010508 3.79 - 
XLOC_018582 FRZB chr2:182833274-182866770 3.74 - 
XLOC_024507 TGFBI chr5:136028894-136063818 3.70 - 
XLOC_024998 F2RL2 chr5:76403254-76708132 3.70 - 
XLOC_007942 SLAIN1 chr13:77697736-77764242 3.66 + 
XLOC_029710 GRB10 chr7:50590062-50793462 3.65 - 
XLOC_032192 ELAVL2 chr9:23690098-23826344 3.64 + 
XLOC_016959 RSAD2 chr2:6877664-6898232 3.61 - 
XLOC_017085 LTBP1 chr2:32947153-33399509 3.60 - 
XLOC_032494 ABCA1 chr9:104781001-104928246 3.57 - 
XLOC_000275 XKR8 chr1:27959992-27968093 3.57 - 
XLOC_020790 FOXRED2 chr22:36487185-36507101 3.56 + 
XLOC_021231 CTDSPL chr3:37862152-37984469 3.54 - 
XLOC_013620 SECTM1 chr17:82321023-82334045 3.54 - 
XLOC_007808 MEDAG chr13:30882561-30932608 3.52 - 
XLOC_020014 COL6A1 chr21:45981748-46005049 3.50 - 
XLOC_019958 MX2 chr21:41362022-41408943 3.47 - 

XLOC_007542 OASL 
chr12:121020291-
121039242 3.46 - 

XLOC_007614 CHFR 
chr12:132840351-
132887618 3.42 - 

XLOC_002410 BCAN chr1:156640499-156661441 3.39 - 
XLOC_012316 CCL2 chr17:34255276-34257203 3.37 - 
XLOC_028862 GPNMB chr7:23246685-23275110 3.35 - 
XLOC_031933 OLFML2A chr9:124777137-124814891 3.30 - 
XLOC_022011 TRANK1 chr3:36826816-36945057 3.29 - 
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XLOC_031238 MTSS1 chr8:124550769-124728507 3.25 + 

XLOC_006782 OAS1 
chr12:112906933-
112919907 3.22 - 

XLOC_002412 CRABP2 chr1:156699605-156713174 3.22 - 
XLOC_014114 SERPINB2 chr18:63887704-63903890 3.13 - 
XLOC_024819 CMBL chr5:10277594-10308056 3.13 - 
XLOC_020015 COL6A2 chr21:46098118-46132849 3.10 - 
XLOC_003369 PLAU chr10:73909968-73922777 3.10 - 

XLOC_008041 LINC00452 
chr13:113883636-
113926238 3.10 - 

XLOC_018250 CAPG chr2:85394747-85414074 3.08 - 
XLOC_032636 CRAT chr9:129094793-129110791 3.07 - 
XLOC_026169 POU3F2 chr6:98834703-98838790 3.06 + 
XLOC_022447 HLTF chr3:149029382-149102823 3.05 - 
XLOC_018202 PAIP2B chr2:71182663-71227103 3.04 + 
XLOC_021488 COL8A1 chr3:99638364-99799220 3.02 - 
XLOC_022698 - chr3:75483604-75489296 3.02 + 
XLOC_002345 S100A4 chr1:153543495-153545806 2.99 - 

XLOC_006784 OAS2 
chr12:112978346-
113011723 2.96 - 

XLOC_033765 TMSB15A 
chrX:102513681-
102516771 2.94 + 

XLOC_018606 SDPR chr2:191834304-191847280 2.88 + 
XLOC_004976 FAT3 chr11:92224640-92896533 2.85 + 
XLOC_026946 ELOVL4 chr6:79914811-79947598 2.85 - 
XLOC_027008 CD24 chr6:106969830-106975454 2.83 + 
XLOC_015120 EMC10 chr19:50466787-50505802 2.80 - 
XLOC_010197 FBN1 chr15:48408305-48645788 2.80 - 
XLOC_000565 IFI44 chr1:78649791-78664078 2.80 - 
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XLOC_031709 PGM5 chr9:68355188-68531061 2.80 - 
XLOC_015457 C3 chr19:6677834-6720651 2.77 - 
XLOC_004350 EPS8L2 chr11:706116-727727 2.74 - 
XLOC_003177 KIAA1217 chr10:23694745-24557525 2.71 - 
XLOC_018507 FAP chr2:162114440-162243535 2.70 - 
XLOC_000564 IFI44L chr1:78620381-78646255 2.70 - 
XLOC_004340 IFITM1 chr11:313990-315272 2.68 - 
XLOC_008248 KCTD12 chr13:76880168-76886405 2.68 + 
XLOC_026181 AIM1 chr6:106360807-106570460 2.64 - 
XLOC_002167 TBX15 chr1:118882758-118989556 2.61 - 
XLOC_004418 TRIM22 chr11:5689586-5710863 2.59 - 
XLOC_018593 COL5A2 chr2:189031914-189179879 2.58 - 
XLOC_000213 EPHB2 chr1:22710769-22915330 2.56 - 
XLOC_020308 USP18 chr22:18149953-18177397 2.52 - 
XLOC_029590 IGF2BP3 chr7:23310208-23470491 2.51 - 
XLOC_001732 IFI6 chr1:27666060-27672213 2.49 - 
XLOC_020801 RAC2 chr22:37225260-37244299 2.46 - 
XLOC_013434 CYB561 chr17:63432303-63446363 2.45 - 
XLOC_032599 ANGPTL2 chr9:126914773-127223166 2.43 - 
XLOC_031215 ENPP2 chr8:119557076-119673404 2.37 - 
XLOC_006963 C1R chr12:7080208-7092570 2.36 - 

XLOC_008336 COL4A1 
chr13:110148962-
110307149 2.34 - 

XLOC_017455 INHBB chr2:120346142-120351807 2.34 + 
XLOC_031995 ASS1 chr9:130444706-130501274 2.33 - 
XLOC_023921 DDX60 chr4:168216290-168318807 2.28 - 
XLOC_004926 DGAT2 chr11:75768732-75801536 2.27 + 
XLOC_004725 FADS2 chr11:61799624-61867354 2.27 - 
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XLOC_005840 MMP1 
chr11:102783675-
102843611 2.20 - 

XLOC_012791 NXN chr17:799312-979775 2.19 - 
XLOC_023355 CPE chr4:165378944-165498330 2.15 - 
XLOC_017529 KIF5C chr2:148875222-149026759 2.14 + 
XLOC_019324 CDH4 chr20:61252425-61940617 2.14 + 

XLOC_009361 AHNAK2 
chr14:104924849-
104978357 2.12 - 

XLOC_006972 SLC2A3 chr12:7919227-7936296 2.07 - 
XLOC_000012 ISG15 chr1:1013466-1014540 2.07 - 
XLOC_026239 GJA1 chr6:121435598-121449727 2.03 - 
XLOC_022561 CAMK2N2 chr3:184249656-184293031 2.02 + 
XLOC_023165 HERC6 chr4:88378685-88443097 2.02 - 
XLOC_014654 CD97 chr19:14380590-14408725 1.96 - 
XLOC_026329 SASH1 chr6:148212113-148552049 1.96 - 
XLOC_030733 LY6K chr8:142700110-142726973 1.95 + 

XLOC_006783 OAS3 
chr12:112938443-
112973251 1.94 - 

XLOC_031767 CTSL chr9:87726058-87731469 1.93 - 
XLOC_027083 MOXD1 chr6:132296054-132401525 1.93 - 
XLOC_026400 MLLT4 chr6:167826916-167972023 1.91 - 
XLOC_002032 GBP1 chr1:89052303-89065360 1.88 - 

XLOC_005937 MCAM 
chr11:119308523-
119318377 1.86 + 

XLOC_026130 TPBG chr6:82363205-82367422 1.85 - 
XLOC_018508 IFIH1 chr2:162267078-162318708 1.81 - 
XLOC_002314 S100A10 chr1:151982909-151994238 1.79 - 
XLOC_023670 ANTXR2 chr4:79901217-80073472 1.78 - 
XLOC_029195 PCOLCE chr7:100586332-100608175 1.77 - 
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XLOC_026113 CD109 chr6:73694235-73828317 1.76 - 

XLOC_008010 COL4A2 
chr13:110307283-
110513027 1.72 - 

XLOC_003446 IFIT1 chr10:89392545-89406487 1.72 - 
XLOC_005802 CHORDC1 chr11:90200428-90223364 1.71 + 
XLOC_000513 PGM1 chr1:63593275-63660245 1.69 - 
XLOC_030901 TNFRSF10D chr8:23135587-23164030 1.66 + 
XLOC_002230 TXNIP chr1:145992434-145996631 1.66 - 

XLOC_008358 GAS6 
chr13:113815609-
113864073 1.65 - 

XLOC_005644 RNASEH2C chr11:65711995-65720938 1.62 + 
XLOC_013563 LGALS3BP chr17:78971252-78979979 1.60 - 
XLOC_029851 SAMD9 chr7:93099512-93118023 1.57 - 
XLOC_008580 LGALS3 chr14:55129216-55145430 1.57 - 
XLOC_005191 IFITM3 chr11:319672-320914 1.56 - 
XLOC_012598 MRC2 chr17:62627400-62693601 1.55 - 
XLOC_005821 MRE11A chr11:94417299-94493874 1.52 + 
XLOC_001666 HSPG2 chr1:21812264-21937257 1.52 - 
XLOC_006321 EMP1 chr12:13196667-13216774 1.51 - 
XLOC_003133 OPTN chr10:13100074-13138291 1.50 - 
XLOC_030737 LY6E chr8:143018484-143022410 1.50 - 
XLOC_007246 ITGA5 chr12:54395260-54419266 1.48 - 
XLOC_025847 HLA-A chr6:29887759-29945884 1.45 - 
XLOC_003443 IFIT2 chr10:89301948-89309276 1.44 - 
XLOC_032210 DDX58 chr9:32455301-32526324 1.44 - 
XLOC_004997 CEP57 chr11:95790460-95832693 1.44 + 
XLOC_026696 HLA-B chr6:31353871-31357212 1.42 - 
XLOC_030925 CLU chr8:27596916-27615031 1.39 - 
XLOC_019496 CST3 chr20:23627896-23638048 1.38 - 
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XLOC_025239 DPYSL3 chr5:147390807-147510056 1.37 - 
XLOC_002343 S100A6 chr1:153534596-153536241 1.36 - 
XLOC_029148 COL1A2 chr7:94394560-94431232 1.35 - 
XLOC_013255 VAT1 chr17:43014566-43022442 1.35 - 
XLOC_021728 MME chr3:155079646-155183729 1.32 - 
XLOC_005507 UBE2L6 chr11:57551654-57568330 1.30 - 

XLOC_005851 CASP4 
chr11:104942866-
104968598 1.28 + 

XLOC_005005 YAP1 
chr11:102110419-
102233423 1.27 + 

XLOC_009729 EID1 chr15:48823678-48963507 1.26 - 
XLOC_019547 E2F1 chr20:33675485-33686404 1.25 + 
XLOC_002315 S100A11 chr1:152032505-152037035 1.22 - 
XLOC_004759 STIP1 chr11:64185271-64204548 1.13 + 
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Table S4-6: Pairwise comparison of the number of exons in the most expressed transcript of genes in 4 Fanconi 

Anemia samples. The % of expressed genes with varying exon counts when comparing within sample groups is 

23.5 but % of expressed genes with varying exon counts when comparing samples across sample groups is about 

28.5%. This table explains the effect of a dysfunctional FANCD2 gene on the transcriptome.  

Sample pair 
Transcripts 
with equal 

exons 

Expressed 
genes 

Transcripts 
with 

varying 
exon count 

FA1 - FA2 12221 15903 23 
FA_RV1 - 
FA_RV2 12016 15903 24 
FA1 - FA_RV1 11311 15903 29 
FA1 - FA_RV2 11351 15903 29 
FA2 - FA_RV1 11401 15903 28 
FA2 - FA_RV2 11432 15903 28 
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Table S4-7: Ontological gene enrichment analysis of the 270 genes that were found to be differentially 

expressed the FA and FA_RV sample groups.  The exceptional p-values seen for these GO ontology terms, 

especially for terms involved in infectious disease, development and cancer illustrate the potential connections with 

the observed symptoms and diseases seen in FA patients. The DAVID online bioinformatics tool was used to this 

GO enrichment analysis.  

Term 
type Term Count 

List 
Total PValue Genes 

BP GO:0060337~type I interferon 
signaling pathway 

17 241 4.71E-
16 

IFITM1, IFITM3, OAS3, 
HLA-A, RSAD2, OAS1, 
HLA-B, OAS2, IFIT2, 
OASL, IFIT1, IFI27, 
ISG15, XAF1, MX1, 
MX2, IFI6 

BP GO:0030574~collagen catabolic 
process 

16 241 1.17E-
14 

COL4A2, COL4A1, 
MRC2, COL3A1, 
COL5A3, COL5A2, 
MMP2, MMP1, CTSL, 
CTSK, COL6A3, 
COL6A2, COL1A2, 
COL6A1, COL8A1, 
COL11A1 

BP GO:0009615~response to virus 19 241 1.73E-
14 

IFIH1, CYP1A1, IFITM1, 
IFITM3, CLU, OAS3, 
RSAD2, OAS1, IFI44, 
OAS2, TRIM22, DDX58, 
IFIT2, OASL, IFIT1, 
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MYD88, DDX60, MX1, 
MX2 

BP GO:0030198~extracellular matrix 
organization 

23 241 7.75E-
14 

COL4A2, COL4A1, 
COL3A1, FBN1, HSPG2, 
BCAN, OLFML2A, 
COL5A3, COL16A1, 
COL5A2, EMILIN1, 
LAMA4, ITGA5, 
LAMA5, FBLN5, 
COL6A3, TGFBI, 
COL1A2, COL6A2, 
COL6A1, MFAP2, 
COL8A1, COL11A1 

BP GO:0007155~cell adhesion 28 241 5.26E-
10 

MTSS1, CCL2, FERMT1, 
BCAN, CDH4, 
LGALS3BP, FAP, TGFBI, 
COL6A3, COL6A2, 
COL6A1, CD24, GPNMB, 
COL8A1, ADAM23, 
COL16A1, MCAM, 
TPBG, GAS6, EMILIN1, 
LAMA4, PGM5, FREM2, 
ITGA5, CD33, SUSD5, 
SEMA4D, THEMIS2 

BP GO:0051607~defense response to 
virus 

17 241 1.90E-
09 

IFITM1, IFITM3, OAS3, 
RSAD2, APOBEC3G, 
IFI44L, OAS1, OAS2, 
TRIM22, IFIT2, OASL, 
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IFIT1, ISG15, DDX60, 
MX1, MX2, GBP1 

BP GO:0045071~negative regulation 
of viral genome replication 

10 241 3.99E-
09 

IFIT1, OASL, ISG15, 
IFITM1, IFITM3, OAS3, 
RSAD2, APOBEC3G, 
OAS1, MX1 

BP GO:0071230~cellular response to 
amino acid stimulus 

8 241 7.58E-
06 

COL4A1, ASS1, 
COL3A1, COL1A2, 
COL6A1, COL16A1, 
MMP2, COL5A2 

BP GO:0035987~endodermal cell 
differentiation 

6 241 3.58E-
05 

COL4A2, ITGA5, 
COL6A1, COL8A1, 
COL11A1, MMP2 

BP GO:0060333~interferon-gamma-
mediated signaling pathway 

8 241 6.83E-
05 

OASL, OAS3, HLA-A, 
OAS1, OAS2, HLA-B, 
TRIM22, GBP1 

BP GO:0001525~angiogenesis 13 241 9.88E-
05 

COL4A2, CCL2, LAMA5, 
ITGA5, FAP, TGFBI, 
HSPG2, MCAM, 
COL8A1, TNFAIP2, 
MMP2, PLAU, EPHB2 

BP GO:0022617~extracellular matrix 
disassembly 

8 241 1.06E-
04 

CTSL, CTSK, CAPG, 
FBN1, HSPG2, BCAN, 
MMP2, MMP1 

BP GO:0006955~immune response 18 241 1.19E-
04 

SECTM1, CRIP1, CCL2, 
ENPP2, C3, IFITM3, 
OAS3, HLA-A, OAS1, 
C1R, OAS2, HLA-B, 
TRIM22, TNFRSF1B, 
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TNFRSF10D, CD24, 
SEMA4D, IFI6 

BP GO:0009612~response to 
mechanical stimulus 

7 241 3.01E-
04 

TXNIP, INHBB, CCL2, 
COL3A1, PPARG, 
BDKRB2, PIEZO2 

BP GO:0070208~protein 
heterotrimerization 

4 241 0.0012 C1QTNF1, COL1A2, 
COL6A2, COL6A1 

BP GO:0010716~negative regulation 
of extracellular matrix disassembly 

3 241 0.0012 FAP, CST3, DPP4 

BP GO:0019941~modification-
dependent protein catabolic process 

3 241 0.0020 ISG15, UBE2L6, CHFR 

BP GO:0030199~collagen fibril 
organization 

5 241 0.0023 COL3A1, COL1A2, 
COL5A3, COL11A1, 
COL5A2 

BP GO:0006952~defense response 6 241 0.0027 INHBB, CST3, COLEC12, 
HLA-B, MX1, MX2 

BP GO:0008637~apoptotic 
mitochondrial changes 

4 241 0.0027 IFIT2, AIFM2, SLC25A4, 
CD24 

BP GO:0045087~innate immune 
response 

15 241 0.0039 DDX58, IFIH1, CASP4, 
MYD88, LGALS3, 
DDX60, CLU, PPARG, 
APOBEC3G, SERPING1, 
COLEC12, C1R, HLA-B, 
MX1, MX2 

BP GO:0006508~proteolysis 16 241 0.0041 C3, ADAM23, MME, 
C1R, MMP2, PCOLCE, 
MMP1, CTSL, CTSK, 
CASP4, BACE2, FAP, 



	

	 173	

ADAM33, DPP4, PLAU, 
TMPRSS15 

BP GO:0035456~response to 
interferon-beta 

3 241 0.0069 IFITM1, IFITM3, XAF1 

BP GO:0050776~regulation of immune 
response 

8 241 0.0080 IFITM1, C3, CD33, 
CLEC2B, COL3A1, HLA-
A, COL1A2, HLA-B 

BP GO:0035455~response to 
interferon-alpha 

3 241 0.0085 IFITM1, IFITM3, MX2 

BP GO:0035457~cellular response to 
interferon-alpha 

3 241 0.0085 IFIT2, OAS1, GAS6 

BP GO:0032480~negative regulation 
of type I interferon production 

4 241 0.0088 DDX58, IFIH1, ISG15, 
UBE2L6 

BP GO:0007229~integrin-mediated 
signaling pathway 

6 241 0.0138 ADAM23, LAMA5, 
ITGA5, COL3A1, 
ADAM33, COL16A1 

BP GO:0051091~positive regulation of 
sequence-specific DNA binding 
transcription factor activity 

6 241 0.0174 DDX58, FOXA1, PPARG, 
TRIM22, ANXA3, ZIC2 

BP GO:0033627~cell adhesion 
mediated by integrin 

3 241 0.0189 ITGA5, FBN1, COL16A1 

BP GO:0006024~glycosaminoglycan 
biosynthetic process 

4 241 0.0220 XYLT1, GALNT5, 
SLC35D2, HSPG2 

BP GO:0090280~positive regulation of 
calcium ion import 

3 241 0.0240 CCL2, LGALS3, TRPV2 

BP GO:0030334~regulation of cell 
migration 

5 241 0.0255 DDX58, LAMA4, 
LAMA5, ENPP2, 
DPYSL3 
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BP GO:0030168~platelet activation 6 241 0.0256 F2RL2, RAC2, PLCG2, 
COL3A1, COL1A2, GAS6 

BP GO:0043691~reverse cholesterol 
transport 

3 241 0.0268 APOE, CLU, ABCA1 

BP GO:0044267~cellular protein 
metabolic process 

6 241 0.0273 TGFBI, CST3, HSPG2, 
UBE2L6, MMP2, MMP1 

BP GO:1902998~positive regulation of 
neurofibrillary tangle assembly 

2 241 0.0284 APOE, CLU 

BP GO:0034344~regulation of type III 
interferon production 

2 241 0.0284 DDX58, IFIH1 

BP GO:0048285~organelle fission 2 241 0.0284 MX1, MX2 
BP GO:0060700~regulation of 

ribonuclease activity 
2 241 0.0284 OAS3, OAS1 

BP GO:1900221~regulation of beta-
amyloid clearance 

2 241 0.0284 APOE, CLU 

BP GO:1902622~regulation of 
neutrophil migration 

2 241 0.0284 MYD88, RAC2 

BP GO:0032355~response to estradiol 6 241 0.0328 TXNIP, ASS1, C3, 
FOXA1, CST3, BDH1 

BP GO:0008544~epidermis 
development 

5 241 0.0348 CRABP2, IFT172, DSP, 
POU3F2, EMP1 

BP GO:0042730~fibrinolysis 3 241 0.0358 SERPINB2, SERPING1, 
PLAU 

BP GO:0060279~positive regulation of 
ovulation 

2 241 0.0423 INHBB, PLAU 

BP GO:0071400~cellular response to 
oleic acid 

2 241 0.0423 ASS1, DGAT2 

BP GO:0002486~antigen processing 
and presentation of endogenous 

2 241 0.0423 HLA-A, HLA-B 
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peptide antigen via MHC class I via 
ER pathway, TAP-independent 

BP GO:0035583~sequestering of 
TGFbeta in extracellular matrix 

2 241 0.0423 LTBP1, FBN1 

BP GO:0060741~prostate gland 
stromal morphogenesis 

2 241 0.0423 CRIP1, FOXA1 

BP GO:0070458~cellular 
detoxification of nitrogen 
compound 

2 241 0.0423 GSTM1, GSTM3 

BP GO:0039528~cytoplasmic pattern 
recognition receptor signaling 
pathway in response to virus 

2 241 0.0423 DDX58, IFIH1 

BP GO:0051260~protein 
homooligomerization 

7 241 0.0439 KCNS3, GLUL, CEP57, 
C1QTNF1, DPYSL3, 
COLEC12, KCTD12 

BP GO:0045880~positive regulation of 
smoothened signaling pathway 

3 241 0.0457 FOXA1, IFT172, PRRX1 

BP GO:0016032~viral process 10 241 0.0476 DDX58, IFIH1, ISG15, 
SLC25A4, HLA-A, 
RSAD2, APOBEC3G, 
HLA-B, TRIM22, MMP1 

BP GO:0001501~skeletal system 
development 

6 241 0.0482 COL3A1, FBN1, 
COL1A2, BCAN, FRZB, 
COL5A2 

MF GO:0005201~extracellular matrix 
structural constituent 

10 232 4.10E-
07 

COL4A2, LAMA4, 
COL4A1, COL3A1, 
FBN1, COL1A2, BCAN, 
COL5A3, COL11A1, 
COL5A2 
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MF GO:0001730~2'-5'-oligoadenylate 
synthetase activity 

4 232 1.11E-
05 

OASL, OAS3, OAS1, 
OAS2 

MF GO:0005178~integrin binding 10 232 1.81E-
05 

ADAM23, LAMA5, 
ITGA5, FAP, FBLN5, 
TGFBI, COL3A1, FBN1, 
GPNMB, COL16A1 

MF GO:0005518~collagen binding 7 232 2.00E-
04 

CTSL, CTSK, C1QTNF1, 
TGFBI, MRC2, COL5A3, 
PCOLCE 

MF GO:0003725~double-stranded 
RNA binding 

7 232 2.19E-
04 

DDX58, IFIH1, OASL, 
DDX60, OAS3, OAS1, 
OAS2 

MF GO:0048407~platelet-derived 
growth factor binding 

4 232 4.25E-
04 

COL4A1, COL3A1, 
COL1A2, COL6A1 

MF GO:0016740~transferase activity 8 232 5.47E-
04 

GSTM1, OASL, SPTLC3, 
XYLT1, GALNT5, OAS3, 
OAS1, OAS2 

MF GO:0042802~identical protein 
binding 

20 232 0.0012 S100A4, MTSS1, ASS1, 
PCBD1, PPARG, CST3, 
OPTN, EPHB2, DDX58, 
TRIM55, GLUL, GSTM3, 
MYD88, APOE, HSPB8, 
COL1A2, POU3F2, 
NEFL, DPP4, GBP1 

MF GO:0005509~calcium ion binding 22 232 0.0014 S100A4, S100A6, ME3, 
LTBP1, ENPP2, CD248, 
PAMR1, FAM20C, FBN1, 
HSPG2, S100A11, 
S100A10, C1R, CDH4, 
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MMP1, ANXA3, GAS6, 
FAT3, FBLN5, AIF1L, 
NINL, RCN3 

MF GO:0005102~receptor binding 14 232 0.0016 MTSS1, CCL2, C3, HLA-
A, GJA1, HLA-B, 
ABCA1, CRAT, GAS6, 
EPHB2, LAMA4, 
SEMA4D, ANGPTL2, 
DPP4 

MF GO:0004252~serine-type 
endopeptidase activity 

11 232 0.0019 CTSL, CTSK, C3, FAP, 
PAMR1, C1R, MMP2, 
DPP4, PLAU, MMP1, 
TMPRSS15 

MF GO:0030023~extracellular matrix 
constituent conferring elasticity 

3 232 0.0029 COL4A1, FBN1, 
EMILIN1 

MF GO:0008270~zinc ion binding 30 232 0.0030 ABLIM1, S100A6, IFIH1, 
ENPP2, PPARG, MME, 
APOBEC3G, OAS1, 
OAS2, MMP2, MMP1, 
PEG10, CUL9, MT1E, 
ADAM33, XAF1, CRIP1, 
ADAM23, CA12, DTX3, 
HLTF, TRIM22, VAT1, 
QPCT, DDX58, TRIM55, 
CPE, LIMCH1, 
CHORDC1, CHFR 

MF GO:0030674~protein binding, 
bridging 

6 232 0.0047 COL1A2, DSP, OPTN, 
TRIM22, COL11A1, 
NEFL 



	

	 178	

MF GO:0050840~extracellular matrix 
binding 

4 232 0.0057 CD248, TGFBI, 
OLFML2A, COL11A1 

MF GO:0030246~carbohydrate binding 9 232 0.0075 LGALS3, CD33, 
CLEC2B, CD248, 
GALNT5, MRC2, BCAN, 
CD24, AIM1 

MF GO:0043394~proteoglycan binding 3 232 0.0101 CTSL, CTSK, COL5A3 
MF GO:0015075~ion transmembrane 

transporter activity 
3 232 0.0120 S100A6, TRPV2, GJA1 

MF GO:0005515~protein binding 105 232 0.0139 S100A4, S100A6, LTBP1, 
CRABP2, FAM20C, 
FGF13, APOBEC3G, 
ITPKB, MYD88, ISG15, 
APOE, ELOVL4, 
C8ORF48, FAP, CUL9, 
TGFBI, MX1, 
TMPRSS15, KIF5C, HLA-
A, CST3, SERPING1, 
OPTN, MOXD1, GRB10, 
HSPB8, CD33, COL1A2, 
DSP, CHORDC1, EMP1, 
GBP1, EID1, IFIH1, 
IFITM1, CLU, MME, 
OAS1, IGF2BP3, 
BDKRB2, ABCA1, 
PPP1R3C, PEG10, PPL, 
AHNAK2, LGALS3, 
ADAM23, FOXRED2, 
MRC2, UBE2L6, 
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S100A10, COL16A1, 
GAS6, EMILIN1, 
TRIM55, DDX58, 
C1ORF116, ITGA5, 
PLCG2, ANTXR2, IFI6, 
PLAU, E2F1, PPARG, 
GJA1, CDCP1, MLH3, 
FAM133A, USP18, 
DDX60, YAP1, DPP4, 
SLC25A4, CLIC2, HLTF, 
INHBB, CTSL, CTSK, 
FANCD2, SEMA4D, 
CHFR, C3, COL3A1, 
RSAD2, PCOLCE, 
PAIP2B, TNFRSF1B, 
CEP57, C1QTNF1, CD24, 
COL8A1, GPNMB, 
SCN5A, NEFL, GCHFR, 
TXNIP, FBN1, DTX3, 
HSPG2, ELAVL2, 
TRIM22, IFIT2, IFIT1, 
FBLN5, CAPG 

MF GO:0004222~metalloendopeptidase 
activity 

6 232 0.0238 ADAM23, FAP, MME, 
ADAM33, MMP2, MMP1 

MF GO:0005044~scavenger receptor 
activity 

4 232 0.0288 LGALS3BP, ENPP2, 
COLEC12, TMPRSS15 

MF GO:0046977~TAP binding 2 232 0.0419 HLA-A, HLA-B 
MF GO:0005031~tumor necrosis 

factor-activated receptor activity 
3 232 0.0449 TNFRSF1B, TNFRSF10D, 

TNFRSF19 
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MF GO:0008022~protein C-terminus 
binding 

7 232 0.0462 SASH1, FBLN5, HSPG2, 
STIP1, YAP1, OPTN, 
NEFL 

Count: The number of genes in the input list that was found to be associated with the given GO term. List total: The 
total number of genes in the input list that are associated with GO terms in the DAVID database. 
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Table S4-8: Pathway analysis of 82 genes that were found to be associated with genomic variants that were 

specific to the FA sample group.  Pathway analysis also confirms the association of the differentially expressed 

genes with the observed signs, symptoms and diseases typically seen in FA patients.  The pathway analysis was 

performed using the REACTOME pathway online tool.  

Pathway name 
#Entities 
found 

#Entities 
total 

Entities 
pValue 

Translocation of ZAP-70 to Immunological synapse 4 42 0.0002 
Phosphorylation of CD3 and TCR zeta chains 4 45 0.0003 
PD-1 signaling 4 45 0.0003 
Generation of second messenger molecules 4 58 0.0007 
Downstream TCR signaling 5 124 0.0016 
MHC class II antigen presentation 5 142 0.0028 
TCR signaling 5 146 0.0032 
Costimulation by the CD28 family 4 96 0.0042 
Synthesis of PIPs at the late endosome membrane 2 21 0.0091 
TFAP2 (AP-2) family regulates transcription of growth 
factors and their receptors 2 21 0.0091 
Metabolism of Angiotensinogen to Angiotensins 2 26 0.0136 
Synthesis of PIPs at the early endosome membrane 2 29 0.0167 
Activation of Matrix Metalloproteinases 2 35 0.0237 
Defective SLC22A18 causes lung cancer (LNCR) and 
embryonal rhabdomyosarcoma 1 (RMSE1) 1 4 0.0266 
Vpr-mediated induction of apoptosis by mitochondrial outer 
membrane permeabilization 1 4 0.0266 
Adaptive Immune System 13 1076 0.0284 
Interferon gamma signaling 4 176 0.0317 
Transport of the SLBP independent Mature mRNA 1 5 0.0332 
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Defective CYP19A1 causes Aromatase excess syndrome 
(AEXS) 1 5 0.0332 
Formation of apoptosome 1 5 0.0332 
SMAC-mediated apoptotic response 1 5 0.0332 
SMAC-mediated dissociation of IAP:caspase complexes  1 5 0.0332 
SMAC binds to IAPs  1 5 0.0332 
Lysosome Vesicle Biogenesis 2 43 0.0345 
Transport of the SLBP Dependant Mature mRNA 1 6 0.0397 
PLCG1 events in ERBB2 signaling 1 6 0.0397 
Signaling by Overexpressed Wild-Type EGFR in Cancer 1 6 0.0397 
Inhibition of Signaling by Overexpressed EGFR 1 6 0.0397 
Activation of caspases through apoptosome-mediated 
cleavage 1 7 0.0462 
Cytochrome c-mediated apoptotic response 1 7 0.0462 
Transcriptional regulation by the AP-2 (TFAP2) family of 
transcription factors 2 52 0.0486 

Entities found: Number of genes in the input list that were found to be associated with a pathway. Entities total: 

Total number of genes that are associated with a given pathway in the reactome database.  
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Table S4-9: Pathway analysis of 618 genes that were found to be associated with variants that were commonly 

found in all 4 Fanconi Anemia samples. The genomic variants are found in pathways that were highly correlated 

with the significant pathways identified through expression changes. The pathway analysis was performed using the 

REACTOME pathway online tool.  

Pathway name 
#Entities 
found 

#Entities 
total 

Entities 
pValue 

Interferon gamma signaling 19 176 0.0016 
Antigen Presentation: Folding, assembly and peptide loading of 
class I MHC 11 102 0.0142 
Defective GALNT3 causes familial hyperphosphatemic tumoral 
calcinosis (HFTC) 4 20 0.0182 
Defective GALNT12 causes colorectal cancer 1 (CRCS1) 4 20 0.0182 
Defective C1GALT1C1 causes Tn polyagglutination syndrome 
(TNPS) 4 20 0.0182 
Translocation of ZAP-70 to Immunological synapse 6 42 0.0193 
Endosomal/Vacuolar pathway 9 82 0.0227 
Interferon alpha/beta signaling 13 140 0.0244 
PD-1 signaling 6 45 0.0259 
TRKA activation by NGF 2 5 0.0260 
Olfactory Signaling Pathway 31 432 0.0272 
Interferon Signaling 22 291 0.0354 
APC truncation mutants are not K63 polyubiquitinated 1 1 0.0483 

Entities found: Number of genes in the input list that were found to be associated with a pathway. Entities total: Total 
number of genes that are associated with a given pathway in the reactome database. 
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Chapter 5: Concluding remarks and future directions 
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RESEARCH OVERVIEW AND CONCLUSION 

 

The thesis presented here consists of three comprehensive studies that shed light on 

different research paradigms of repetitive DNA, microsatellites (MST) in particular, 

which have been relatively understudied, despite being linked to several disorders 

such as Huntington disease and Fragile X syndrome1-3. This thesis represents a 

much-needed improvement in building computational tools, a novel utilization of 

target specific sequencing techniques to facilitate MST genomics research, and a 

possible validation of the involvement of MST instability (MSI) in cancer 

progression based on MSI signatures for congenital inheritance of cancer4. A part of 

this work also investigates the role of molecular level cellular processes that may 

give rise to MST instability, other than the well-studied mismatch repair process5-8.  

 

The results of this work can be useful in three areas of research: 1. The utilization of 

global MST enrichment to further genomic research, 2. The power of target specific 

MST enrichment and its utility in the development of high-accuracy companion 

diagnostics in cancer (and other diseases) and 3. Recommendations for further MST 

instability research using DNA repair deficient cellular systems.  

 

Global MST enrichment:  

Since the advent of genomic research, the focus of biologists on the coding regions 

of the genome and the development of tools for studying these protein coding 

genomic sequences have resulted in a large gap in our understanding of repeat 

regions that form about 47% of the human genome4. This has not only directly 

contributed to the existence of the incomplete knowledge of the euchromatic DNA, 

but has also contributed to the failure to address the possibility of uncovering 

important functional elements that could be hidden among the repetitive regions of 
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the human genome. Since the completion of the human genome project, at which 

point 94% of the euchromatic DNA was known, recent efforts have advanced the 

euchromatic DNA framework to 99%9,10. Using our newly developed molecular 

techniques and computational methods we successfully sequenced novel MST 

sequences in the human genome, demonstrating the potential for detecting novel 

MST sequences that can help in the possible identification of the 1% of unknown 

euchromatic DNA. Specifically, our assembly technique can detect longer MSTs, 

which is not possible through currently available genomic enrichment and 

computational methods4. This work also identifies novel functional elements that 

could potentially shed light on biological issues such as the existence of multiple 

isoforms of rRNA.  

 

The results, while showing potential for aiding in the completion of the euchromatic 

human DNA, also holds the promise of advancing the completion of other genomes 

that have even higher content of repetitive DNA sequences. Figure S2-4 shows the 

distribution of the length of the novel contiguous sequences that were assembled 

using our global MST enrichment technique. While sequencing of MSTs by whole 

genome or exome enrichments usually allow the detection of 100 to 200 bp MST 

sequences, the global MST enrichment, coupled with appropriate assembling tools, 

enables the detection of longer MST sequence regions (250 to 500 bp) (Figure S2-

4).  

 

This technique shows promise in 3 ways:  

1. With the advent of better sequencing technologies, in the future, that can provide 

longer sequencing reads without compromising the read depth, longer novel 

contiguous sequences (contigs) can be assembled. This will aid in the sequencing of 

more functional elements, directly adding to the knowledge of human genetics and 
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disease. For example, 37 novel contigs assembled (Table 2-3) using the global MST 

enrichment technique were found in 1kGP RNA-Seq samples. The contig with the 

highest number of hits in the 10 RNA-Seq samples was found in large clone DNA 

sequences that were sequenced as a part of the original (pre-nextgen) human genome 

project but was, conspicuously, not found in the reference genome. This contig is 

370 bp and a portion of which was found to match with high sequence identity (99%) 

to multiple rRNA subunits. Recent studies in parasite models suggest the diverse 

evolution of rRNA subunits to accommodate specific functions that are, specific to 

subnuclear compartments11. The study by Deveau et al shows the diversification of 

two rRNA subunits in a protozoan parasite. By the targeted sequencing of MST, 

novel functional elements identification is possible and their discoveries, like the 

rRNA sequence, have the potential to contribute to answering numerous 

biomolecular questions.  

 

2. This technique may contribute even more when used for genomes of plants and 

amphibians. The repetitive DNA content of amphibians, plants and insects have been 

shown to be higher than that of the human genome12. The probability of finding 

functional elements and genes in the refractory regions of these repeat heavy 

genomes is high.  

 

3. One of the most interesting findings of this study was the abundance of two 

pentamer MST repeats. While the telomere regions are known to have a high 

percentage of the hexamer repeat GGGTTA, the finding of these pentamer repeats, 

AATGG and GTGGA, and their comparative abundance sheds new light onto the 

repeat rich telomere and centromere regions of the chromosomes. Telomere 

shortening has been linked to aging, cancer and other diseases13-16. Access to the 

functional elements of these repeat heavy regions can possibly help understand the 
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reason behind the connection between telomere shortening and associated 

disorders16.  

 

Target specific MST enrichment: 

Coupled with the inefficiency (especially low depth coverage, that limits accuracy) 

of normal exome enrichment methods for sequencing MSTs, the high sequence 

(40X) coverage requirement of MST genotyping programs present a highly 

challenging problem4,17,18. The MST genotyping methodology involves specific 

statistical steps that allow the accommodation of low MST sequence coverage from 

exome enrichments to be efficiently utilized19-22. While the Garner lab has shown 

convincingly the statistical significance of the MST instability in breast, ovarian and 

brain cancers, the validation of these findings remained to be completed19-22 By using 

Illumina’s target specific enrichment, this validation was made possible in a lung 

cancer scenario that involved lung cancer and normal sample sets apart from the 

publically downloaded LUSC and LUAD germline samples from the TCGA and 

1kGP (Tables S3-3 and S3-4). This work resulted in a signature set of 21 MST loci 

(all located in gene regions), 57% or more of which were found in a cancer genotype 

with a sensitivity ratio of 0.93 (Figure 3-3).  

 

Applications and future directions: 

This work, while providing the first validation for a possible link between specific 

microsatellite mutations and cancer, is also a technique that can be adapted to be 

used as a companion diagnostic in oncological health care facilities. Next to the wide 

spread usage of the Bethesda markers for forensic identifications, this technique 

presents an opportunity for introducing a MST based marker kit for disease 

diagnostics.  
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While MSI based markers for colon cancer is well known, the involvement of MSI 

in cancer was not confirmed until recently 23-25. This target specific MST enrichment 

will show the possibility of developing a next generation sequencing (ultra-high 

resolution) based diagnostic kit for all MSI positive disorders. More importantly, as 

demonstrated in Chapter 3, it is known that ultra-high-depth sequencing and normal 

exome sequencing can indicate different genotypes. This method, hence, not only 

presents an accurate way of MST genotyping but also introduces the opportunity to 

develop a genome wide MST specific enrichment sequencing process. Also, this 

enrichment method will allow us to revise observations from previous genome wide 

MST genotyping studies that may be incorrect, and will also provide a strong 

platform to understand in high resolution the heterozygosity-homozygosity ratio of 

cancer tissues and MST17,18.  

 

Perhaps one of the most appealing direct applications of this work, specific to lung 

cancer, is the early diagnosis of lung cancer in never smokers. About 20% of lung 

cancer cases with non-small cell lung cancer are reported to be non-smokers26. The 

theory that these cases could have inherited lung cancer signature from their parents 

is highly probable. As this work is based on genotyping MST from the germline cells 

of patients, this diagnostic kit could be applied to detect any future onsets of lung 

cancer in never smokers with a lung cancer familial trait27,28.  

 

Fanconi anemia 

 

Fanconi anemia, as a DNA repair deficiency disorder: 

Fanconi anemia is an autosomal recessive disorder that occurs mainly in Jewish 

populations29. When one of the 16 genes, that code for the DNA inter-strand 

crosslink repair complex of the Fanconi anemia (FA) pathway, harbor a protein 
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modifying mutation, FA is likely to occur30,31. Much information about the FA genes 

that are involved in crosslink repair have been reported, thanks to the availability of 

a variety patient samples, which has divided the FA genes into complementation 

groups32-37. Although the FA core complex has been studied extensively, the details 

of this pathway are not entirely understood. It is well established that the FA pathway 

recruits DNA repair proteins to crosslink sites, however, there are also studies that 

suggest that the FA pathway might also be involved in the maintenance of general 

genomic stability38. Also, recent studies reveal the involvement of the FA pathway 

in MST instability39-41.  

 

The hypothesis of this project is twofold: 1. By sequencing PD20-FA cell lines with 

defective FANCD2 gene and PD20-FA cell lines with retrovirus corrected FANCD2 

gene and understanding their genomic variants and difference in gene expression 

patterns, we will be able to understand the effects of a dysfunctional FANCD2 gene 

on the genome and the transcriptome and by that come to a first-hand understanding 

of the other roles of a functioning FA pathway. 2. By performing MST genotyping 

on FA samples we can estimate any possible effects of a dysfunctional FA pathway 

on MST instability.  

 

Over all conclusion: 

Genomic variant analysis on the ratio of SNPs vs. INDELs show an increased 

percentage of INDELs in the FA samples, compared to 1kGP samples. This suggests 

an increased amount of DNA lesions which can be the result of uncorrected DNA 

crosslinks (Table 4-3). The difference in SNP and INDEL variations within 

biological replicates (tables 4-5 and 4-6) suggest a high heterogeneity and a 

significant effect of a dysfunctional FA pathway on the transcriptome. Unlike non-

existent gene expression difference between biological replicates, the exon count 
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(transcript length) of the most expressed transcript of genes show that a large number 

of genes (23.5%) within biological replicates have varying exon counts (Table S4-

6) which is consistent with the observed genomic damage. This, again, demonstrates 

the pronounced effect of a dysfunctional FA pathway on the transcriptome. Also, the 

significant increase in the percentage of MSTs with minor alleles in the FA samples 

(Table 4-4), compared to the 1kGP samples, suggest that the FA pathway, when not 

functional, could also be another source of MST instability, along with the DNA 

mismatch repair mechanisms.  

 

Future directions:  

Owing to the significant increase in the MST instability (MST with minor alleles) in 

the FA samples, the hypothesized possibility of the FA pathway contributing to MST 

instability becomes more evident. While this confirms the FA cell line system to be 

a prospective platform for studying the FA pathway and MSI, a few factors should 

be included in future experimental designs. A time-lapse longitudinal study that 

involves DNA extraction from FA and FA_RV samples at different time points or 

at different passage numbers during cell culturing is needed to understand the 

progression rate of DNA damage in FA cells and the progression rate of DNA 

damage in FA_RV cells.  

 

Quantifying DNA breaks that occur in the form of chromosomal translocations in 

FA genomes are important to better understand inter-strand crosslink occurrences. 

While SNPs and INDELs form an essential variant determination paradigm, the 

quantification of DNA translocations is a critical way of determining the effect of a 

corrected or dysfunctional DNA repair gene on the genome. Recent advances in 

translocation sequencing present an opportunity to quantify double strand break 

caused chromosomal translocations42-44. DNA samples from cells that are treated 
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with crosslink inducing agents such as mitomycin C were previously thought to be 

unsuitable for sequencing, but with the advent of translocation sequencing, the 

genome-wide effect of mitomycin and the counter effect of a functional FA pathway 

can be studied with high precision. 
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