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Abstract 
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Nuclear and Electron Intermolecular Interactions 

 

Jennifer Lynn Russ 

 

 Advanced nuclear and electron magnetic resonance techniques (i.e. nuclear 

magnetic resonance (NMR), dynamic nuclear polarization (DNP), and magnetic 

resonance imaging (MRI)) were used to study the attitude and dynamics of TEMPO 

(2,2,6,6-tetramethylpiperidinyloxy)-substrate systems and the relaxivity properties of 

water-soluble trimetallic nitride template functionalized endohedral metallofullerenes 

(TNT-fMF).  The attitude and average distance of interaction for each TEMPO-substrate 

system was determined from comparing density functional theory (DFT) calculation 

results with experimental hyperfine coupling constants leading to an improved 

understanding of solution dynamics.  The short-lived solvent-solute interactions of the 

TEMPO-substrate molecules, such as transient complex formation, are governed by weak 

hydrogen-bonding interactions.  The collisions in solution were explained by determining 

the favored orientations of the two molecules interacting using calculated relative energy 

minima and reproducibility of the experimental results by the calculated coupling 

constants.   

 Water-soluble TNT-fMFs are studied as candidates for the next generation MRI 

contrast agents as diagnostic agents and also as possible therapeutic agents to kill cancer 

cells and decrease tumors.  The TNT-fMFs are being studied as part of a multi-modal 

platform dependent upon which metal atoms are encapsulated inside: Gd – MRI contrast 

agent (diagnostic), Lu and Ho – radio labeled for use as a therapeutic agent, Tb – 

fluorescence, and Lu – x-ray contrast.  The current commercial MRI contrast agent, 

OmniscanTM, contains one gadolinium atom; however, the metal is complexed to, not 

encapsulated in, the molecule.  TNT-fMFs fully encapsulate three metal atoms to ensure 

the patient does not run the risk of metal poisoning.  The r1 and r2 relaxivities of TNT-
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fMFs containing either Gd, Lu, Ho, or Sc metals were measured at 0.35T.  The data for 

the Gd containing TNT-fMFs indicated the metallofullerene has significantly higher 

relaxivities than OmniscanTM, and can be the next generation MRI contrast agent.  The 

Ho containing species has a high R2/R1 ratio compared to the other samples showing it is 

a potential T2 agent, and has therapeutic capabilities. 
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