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(ABSTRACT) 

Theory often indicates that a given response variable should be a function of certain explan-

atory variables yet fails to provide meaningful information as to the specific form of this function. 

To test the validity of a given functional form with sensitivity toward the feasible alternatives, a 

procedure is needed for comparing non-nested families of hypotheses. Two hypothesized models 

are said to be non-nested when one model is neither a restricted case nor a limiting approximation 

of the other. These non-nested hypotheses cannot be tested using conventional likelihood ratio 

procedures. In recent years, however, several new approaches have been developed for testing 

non-nested regression models. 

A comprehensive review of the procedures for the case of two linear regression models was 

presented. Comparisons between these procedures were made on the basis of asymptotic 

distributional properties, simulated finite sample performance and computational ease. A modifi-

cation to the Fisher and McAleer JA-test was proposed and its properties investigated. As a com-

promise between the JA-test and the Orthodox F-test, it was shown to have an exact non-null 

distribution. Its properties, both analytically and empirically derived, exhibited the practical worth 

of such an adjustment. 

A Monte Carlo study of the testing procedures involving non-nested linear regression models 

in small sample situations (n =::;: 40) provided information necessary for the formulation of practical 

guidelines. It was evident that the modified Cox procedure, N , was most powerful for providing 

correct inferences. In addition, there was strong evidence to support the use of the adjusted J-test 



(AJ) (Davidson and MacKinnon's test with small-sample modifications due to Godfrey and 

Pesaran), the modified JA-test (NJ) and the Orthodox F-test for supplemental information. Under 

nonnormal disturbances, similar results were yielded. 

An empirical study of spending patterns for household food consumption provided a practical 

application of the non-nested procedures in a large sample setting. The study provided not only 

an example of non-nested testing situations but also the opportunity to draw sound inferences from 

the test results. 
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I. Introduction 

In recent years, the study of non-nested hypothesis testing has received a great deal of atten-

tion in the statistical and econometric literature. In general, non-nested hypotheses arise when the 

researcher wants to test a given null hypothesis against an alternative hypothesis which belongs to 

a separate parametric family. A common problem of this nature is determining whether a given set 

of data was sampled from one distributional family or from another. For instance, a researcher 

may be interested in seeing whether a sample of data follows a log-normal distribution or an ex-

ponential distribution. This example however does not represent the only type of application of 

non-nested hypotheses. 

In regression studies, a similar situation occurs when the researcher wants to test the validity 

of one model against a specified alternative model. Specifically, the researcher may be interested in 

testing whether the given model is appropriate in terms of its functional specification: the form of 

fin the following model, 

( 1.1) 

Models involving different functional forms provide one type of non-nested situation. Another way 

in which non-nested models arise is when the models have the same functional specification, such 

as a linear form, but contain different regressor variables. However, not all cases of testing model 

validity, even of these types, come under the heading of non-nested hypotheses. 

If one of the models represents a restricted case (or subset) of the alternative model, then the 

test of this null model versus the specified alternative can be accomplished using the classical like-

lihood ratio (LR) approach. The following pair of linear regression models represents this "nested" 

case 



and can be tested using the following F-test: 

(SSE(Ho) - SSE(Hi)) / rank(X2) 

MSE(Hi) 

( 1.2) 

(1.3) 

In general, such nested cases are indicative of the variable selection process in which a test 

of hypothesis is performed to see if an additional explanatory variable, or set of variables, should 

be included in the model. Even in the most general variable selection situation, the tests performed 

on these models are designed to address the validity or correctness of the given model specification. 

The purpose is to detect misspecifications in the given model in the form of biases resulting from 

the exclusion of important explanatory variables or the use of an incorrect functional form. A 

particular case is when the alternative model is some higher order equation in the explanatory var-

iables. For instance, the researcher wants to determine whether a linear form or a quadratic form 

is the more appropriate functional specification for a particular response model; i.e. (for 

t = 1, 2, ... , n ), 

( 1.4) 

(1.5) 

This testing of model specification can be handled using classical techniques since the models under 

test are of the nested form. 

Suppose, however, that the alternative model of interest to this researcher is a semi-log model 

in lieu of a quadratic model; i.e., 

2 



(1.6) 

In this case, the null model (HL: linear form) is not a restricted case of the alternative model 

(Hsi: semi-log form), or vice versa. In other words, these two models are not nested, or "non-

nested." When one model is neither a restricted case nor a limiting approximation of the other, and 

vice-versa, then the two models are said to be non-nested. Consider the following hypothesized 

models: 

( 1.7) 

( 1.8) 

If 0 1 n 0 2 * 0 1 and n 1 n 0 2 * 0 2 , then these two models are non-nested, or "separate." This 

definition allows for overlap of some of the regressor variables in the models under consideration 

as long as the space spanned by the columns of X1 is not a subset of the space spanned by the 

columns of X2, and vice-versa. 

Hypotheses involving non-nested regression models cannot be tested using the classical 

Neyman-Pearson likelihood ratio approach. Not only are the testing procedures no longer appro-

priate, but the interpretation of such tests must also be modified. In the classical hypothesis testing 

situation, when there is sufficient evidence from the data to "reject H0" the alternative is then ac-

cepted as "correct." This conclusion may be invalid in the non-nested case. Here, the alternative 

model represents the "direction" in which high sensitivity is desired in the test. In other words, the 

alternative is specified as representative of the type of model (if not a specific model) against which 

high power of the test is required. The specified alternative is usually another candidate model. 

However, since the rejection of the maintained hypothesis is not indicative of the alternative's va-

lidity, this is not a necessary condition. 

3 



Consequently, in order to also test the alternative model as being valid, the hypotheses must 

be reversed and the test repeated with the alternative as the maintained hypothesis. Therefore, four 

possible outcomes can be obtained from the pair of tests for a given pair of models: 

( 1) Accept first model, reject second model; 

(2) Reject first model, accept second model; 

(3) Reject both models; 

or ( 4) Accept both models. 

In the case of (1) or (2), the test has yielded a decisive inference as to which model specifica-

tion is "correct." However, outcomes (3) and (4) imply inconclusive results. Outcome (3) indicates 

that neither model is adequate, while outcome ( 4) may be interpreted as the case in which the data 

do not provide enough information to distinguish between the two models. In other words, out-

come ( 4) implies that both models perform equally well in terms of their ability to explain the be-

havior of the response variable. In either of these cases, however, further investigation of alternative 

models is warranted. Notice, that in order to test k hypothesized models, k(k-1) pairwise tests need 

to be performed. 

From the emphasis given to the possible outcomes for a given pair of tests, it is clear that the 

purpose of these procedures is to evaluate the validity, or "truth," of the models considered, not just 

in choosing which better fits the data. If model discrimination was the only concern there would 

be no need for such hypothesis tests. The necessary decision could be made on the basis of com-

parisons of R2, adjusted R2, MSE, CP, and other measures of fit. The PRESS statistic would be a 

useful tool in model selection, particularly if prediction capability is important. 

Since these tests are designed for evaluating the validity of the functional form for a given 

response model in the presence of a specified alternative, it is no surprise that many relevant ap-

plications of non-nested model testing deal with economic modeling. Model specification concerns 

are very important to the economist since theory often indicates that a particular response variable 

should be a function of certain explanatory variables yet fails to provide meaningful information 

4 



as to the specific form of this function. In demand analyses involving the general Engel curve, the-

ory designates a small set of functional forms which are all feasible, and for a particular data set for 

a given response, one of those forms should be close enough to the true underlying relationship to 

be considered valid. Consequently, without a priori information, a method is needed to judge 

among the various functional forms. 

Applications also exist in other fields. In early work on non-nested hypothesis testing (i.e., 

Cox, 1962), tests of competing quanta! response models were used as examples. Therefore, the 

usefulness of non-nested hypothesis testing can extend to any field in which competing models arise 

in the modeling of the behavior of a response variable. 

By their very nature, non-nested hypotheses presented a need for new testing procedures. 

The first work in this area was that of Cox (1960, 1962) who proposed an asymptotic test which 

was a modification to the classical likelihood ratio test. His test statistic considered the difference 

between the value of the log-likelihood ratio for the two hypotheses under test and an estimate of 

the expected value of this log-likelihood ratio under the assumption that the maintained hypothesis, 

H0 , was true. Pesaran (1974) and Pesaran and Deaton (1978), respectively, formulated the Cox test 

for testing linear and nonlinear regression models. Since then, other tests have been proposed. It 

turns out that these tests are either linearized or slightly modified versions of the Cox test. (See 

Fisher, 1983 and MacKinnon, 1983 for examples of such discussions.) For several of the resulting 

tests which are asymptotic in nature, small sample corrections have been suggested (Godfrey and 

Pesaran, 1982, 1983). Although the approaches taken to handle the problem differ, they all rely 

heavily on the asymptotic properties of maximum likelihood estimation and are thus quite similar, 

often equivalent at least in large sample. Recently, the use of a parametric and a non-parametric 

bootstrap approach and an empirical moment generating function approach were applied to the 

general concept of non-nested hypothesis testing (Aguirre-Torres and Gallant, 1983; Epps et al, 

1982; Loh, 1985). 

5 



Most of the procedures for testing non-nested hypotheses, non-nested regression models in 

particular, are asymptotic in nature. Specifically, only two of the more commonly used tests, the 

Fisher and McAleer JA-test and the Atkinson (NA) test, have exact null distributions. Conse-

quently, a void is created about the usefulness of these tests in practice. In particular, since the 

sample sizes in many applications are relatively small (20 :::;; n :::;; 50), large sample approximations 

become questionable. Some Monte Carlo experiments and real-data examples have been per-

formed by many of the originators of these tests, and a summary of these results will be presented 

in Chapter II. These studies have by no means been comprehensive, and thus there is still much 

to be learned about the appropriateness of the tests in small samples. 

In Chapter II, a formal discussion of the more commonly employed non-nested procedures 

1s presented and includes an examination of the asymptotic distributions of the test statistics, 

asymptotic power comparisons under local alternatives and equivalencies among the various tests 

and their underlying approaches. Because of the asymptotic nature of most of these tests, this 

discussion would not be complete without investigation into the analytic and simulated power 

comparisons of the tests in the context of linear regression models with nontransformed dependent 

variables. These past studies bring to light some of the serious flaws in the various procedures. 

Based on examination of the the apparent advantages as well as flaws of the procedures, a modified 

version of the Fisher and McAleer JA-test is proposed and its properties examined in Chapter III. 

There is still much to be learned about the relative performance of the testing procedures in 

small sample situations under varying conditions. Therefore, some of the cases warranting investi-

gation are addressed in a Monte Carlo study. In particular, this study examines hypothesis testing 

situations involving models which are linear in functional form and non-nested only in the choice 

of regressor variables. Not only is this study concerned with violations in the classical assumption 

of normal disturbance terms but also with uncovering the usefulness of the test procedures in cases 

where both models under test are incorrectly specified. Both the layout and results of these exper-

iments are presented in Chapter IV. Comparisons are made on the basis of average estimated 

power and type I error probabilities as well as a measure of concordance among the tests in repli-

6 



cations. From these, some guidelines and warnings for use in practical applications of testing 

non-nested regression models are formulated. Such rules can be used to guide the researcher to 

correctly interpret test results under cases involving varying numbers of regressor variables and de-

grees of collinearity both within and between the models under consideration. 

In Chapter V, an empirical study for modelling weekly household food expenditures provides 

a real data setting involving a large sample of cross-sectional data as well as non-nested functional 

forms. An examination of several widely endorsed functional specifications of the general Engel 

curve is made for the purpose of selecting the n;iost appropriate model in analyzing food expenditure 

patterns. In many demand analyses, choosing the most appropriate specification of the Engel curve 

as well as evaluating the validity of the model are main concerns of the econometrician. Therefore, 

this study should provide a good practical example. Other useful aspects of the study are empirical 

comparisons between the non-nested procedures and the Box-Cox formulation (Box and Cox, 

1964), where applicable. 

Consequently, there are several phases of this study which have different immediate objec-

tives; the main interest, however, is in pooling together the wealth of information regarding tests 

of non-nested regression models in such a manner that it is useful to the applied researcher. In 

particular, discussion of both the anal)'iic and simulated power comparisons of the tests leads to 

practical warnings about the interpretations of the test results in applications. Since the choice of 

functional form is important to the economist in particular, the study of both small sample time 

series data and large sample cross-sectional data provides helpful results. The recommendations for 

use of the tests as well as topics warranting further study are summarized in Chapter VI. By uti-

lizing this information, the researcher can gain greater confidence in the results obtained from test-

ing hypotheses involving non-nested regression models. 
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II. Tests of Non-Nested Regression Models 

2.1 Approaches to the Non-Nested Problem 

Although the classical testing procedures cannot be used to evaluate the "truth" of the main-

tained model in the non-nested case, the new procedures proposed for testing model specification 

in terms of functional form align themselves closely with the classical theory. In all cases they 

represent either modified versions of traditional nested tests or else asymptotically valid applications 

of these tests under an induced nesting scheme. These methods encompass the two main ap-

proaches to testing non-nested models which Fisher (1983) formally termed as the centered log-

likelihood ratio (CLR) criterion (also referred to as the modified log-likelihood ratio 

criterion-MLR) and the artificial nesting (AN) criterion. Strong similarities and, in some cases, 

equivalencies exist among the tests resulting from these two approaches. 

The CLR criterion is credited to Cox (1960,1962); his work marks the origination of non-

nested testing procedures. His work addressed the general problem of testing between separate 

distributional families (i.e., Y has probability density function (pdf) fo(y; l!n) versus Y has pdf 

f,,(y; !!.,)), of which testing between two non-nested regression models is just one specific form. 

Cox's approach was to develop a test based on the log-likelihood ratio (llr) between the two hy-

potheses. However, unlike the usual nested situations, the standard Likelihood Ratio (LR) test is 

not valid here. LR testing procedures require a distributional assumption to formulate the appro-

priate likelihood, but in the general case of non-nested hypotheses, it is this distributional assump-

tion that is being tested. Thus Cox derived the asymptotic null distribution of the log-likelihood 

ratio using the asymptotic properties of Maximum Likelihood estimators (MLE's). The result is 

a test statistic which is asymptotically distributed as standard normal, based on the comparison of 

the value of the . log-likelihood ratio and its expected value under the maintained hypothesis. 

Consequently, procedures based on the CLR criterion represent modifications of the classical LR 

tests, thus also the name modified log-likelihood ratio (MLR). 
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The alternative non-nested testing approach is rooted in the concept of "artificially" nesting 

the two models or their likelihoods in some fashion so that nested procedures can then be applied 

validly (usually, asymptotic validity only). This nesting is accomplished through the use of a mixing 

parameter, A., and is commonly formulated as either an exponential combination of the likelihoods 

or a linear combination of the models (i.e., the pdf's) themselves. If the artificial model is a linear 

combination of the pdf' s, it would be of this form: 

.E = (1 - A.).fo(J!o) + A.fa(fla). (2.1) 

However, the resulting artificial model is plagued by an identification problem. In general, A. is not 

identifiable (unless the values of l!o and !!., are known a priori) and thus there are too many pa-

rameters to be estimated. In other words, the above equation could be estimated although it would 

not be clear how to "separate" the estimated products of parameters of the form A.a;i into the ap-

propriate pieces without having a priori information. Therefore, the parameters are not identifiable. 

Consequently, the term "artificial" nesting is derived from the replacement of the parameters from 

the alternative model by estimated values. This replacement circumvents the problem in that A., 

although still not identifiable, can be estimated and its value tested. Therefore, the tests derived 

under the AN approach are asymptotically valid applications of the usual t-test (or LR test) on the 

value A.= 0 or l, which implies the truth of H0 or Ha, respectively. Different choices of nesting 

formulation and parameter estimators result in a variety of tests constructed in this manner. 

Interestingly enough, Cox ( 1960) also suggested a simplified approach aimed at handling 

non-nested regression models. This approach advocates the simple difference between two variance 

estimates (from the two models) as the basis of the test and therefore can be regarded as a 

linearization of the Cox CLR criterion. Fisher (1983) demonstrated that the procedures derived 

under the AN approach are direct realizations of this simplified approach. Consequently, the re-

sulting tests derived under both approaches are closely related. Then, why might the AN proce-

dures be employed in place of the Cox test? Generally, these procedures have test statistics whose 
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values can be read directly from the output of any conventional regression package and under some 

circumstances yield exact null distributions. 

Furthermore, there is another tie which binds the two approaches together philosophically. 

The concept of nesting the alternative models can also be traced back to the derivations of the test 

procedures under the Cox approach, as demonstrated by Atkinson (1971). However, a clear dis-

tinction exists between the two approaches. Under the CLR criterion, there is no estimation of the 

mixing parameter as in the AN approach. The value of /... under the maintained hypothesis is as-

sumed (/... = 0 or 1) and then the centered log-likelihood ratio (cllr) is employed to see if the data 

provide sufficient evidence to disprove the validity of the maintained model. This procedure is in-

deed different from the AN approach which estimates the value of /... and then tests to see if the 

parameter value is either 0 or l, as indicated by the maintained hypothesis. Therefore, due to the 

similarity of these approaches, it is understandable that the tests resulting from the two approaches 

are also quite similar. 

Some general comments regarding these two approaches can be made. In general, the AN 

procedures are advantageous in that they tend to be easier to compute. However, with the software 

packages available now, this advantage is not particularly salient. Also, the AN approach can lead 

to the development of exact tests, particularly in the case of two linear regression models. These 

tests are exact in the sense that their null distribution is known. As will be shown later, however, 

the performance of these exact tests in terms of power is not necessarily better than that of their 

asymptotic counterparts based on the CLR approach. Thus, there do not appear to be any con-

crete reasons at the onset to prefer procedures based on one approach over the other. Therefore, 

procedures developed under both approaches will be examined in depth. 

10 



2.2 An Overview of the Tests for Non-Nested Linear Regression Models 

Based on the two approaches a number of tests for non-nested linear regression models have 

been developed. The Cox test along with its modified versions were derived on the basis of the 

CLR criterion. On the other hand, the J-test due to Davidson and MacKinnon (1981) and the 

JA-test due to Fisher and McAleer (1981) are the result of the AN approach, with nesting applied 

linearly in the models. These tests as well as any small-sample adjustments for testing the following 

models are presented in Table II. l: 

(2.2) 

(2.3) 

Allowing for the overlap and/or exact collinearities between various regressor variables in the two 

models, these models can be reexpressed as: 

(2.4) 

where Xis n x ko, Ji is ko x 1 , Z1 is n x k1, l'.i is k1 x 1, Z2 is n x k1 and '12 is k2 x 1 . In this case, 

no columns of Z 1 can be obtained as a linear combination of columns of Z2, and vice-versa. It is 

necessary to make the distinction between the overlapping portion of the models (X ll) and those 

"separate" pieces (Z1 11 and 2 2 121 respectively) in determining the appropriate form of the testing 

procedures. Specifically, the overlapping portion is always included as part of the maintained 

model, with the alternative model being treated as only including the non-nested set of independent 

or explanatory variables. This approach is a viable means of dealing with the situation, since the 

results from the testing will then be more conservative in terms of rejecting the null model which 

is maintained as being correct in the development of the testing procedures. In addition, it is also 
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reasonable from the standpoint that the test of interest is to see which functional form, in the 

non-nested portions specifically, is best able to explain the response variable's behavior. 

For the purposes of testing the model in H1 maintained against the model in H2 as in (2.4), 

the two models actually employed in the procedures are 

(2.5) 

where §.22 = XJ3. + §.2• The procedures given in Table 11.1 are the embodiment of the non-nested 

approaches for these hypothesized models. However, there is an alternative to using non-nested 

testing procedures. Prior to Cox's work and its actual application to regression models in the 

1970's, a method, the Orthodox F-test, was used which employed the straightforward combination 

of the hypothesized models and then applied likelihood ratio theory for .testing. This Orthodox 

F-test is first given consideration. 

2.2.1 Orthodox F-test 

The Orthodox F-test is simply a classical F-test used to judge whether or not a particular 

subset of the regressor variables in a comprehensive model has coefficients significantly different 

from zero. The corresponding comprehensive model for the hypothesized models given in (2.4) 

would be of the form 

(2.6) 

or in compact form, 

* * ,E=XJ3. +§.. 
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Table II.I: Non-Ncskd Testing Procedures for Unear Regression Models 

Test Crikrion 

Cox (N) test T n [ cr}2] 11 = - log -.--
2 o~1 

N-tcst 

W-test 

w 

Test Statistic 

.!!. log[ o}2 ] 

N., = [ • 2 oj, l 
-!1. J(P,MZlMIMZlPil. Ill 
oj, 

1/2 (n - "2) log[ ~:] 
Nu= [ 02 21 ] 

I ' ---- £211 .Cm + I /2 of tr( Bl) lfl 
ojl 

where B = MZl - P,MnPi _ [ tr(M,Mn) ] 
n - "9 + k1 M, 

and fm = M1MnPil. 

w - (n - k2) [ob - 0~1] 
12 - -

[ 4 ok211 '.e211 + 2 Oi tr( Bl) ]'12 



Table II.I: Non-Nested Testing Procedures for Uncar Rt.-gr~ion Models (cont'd) 

Test Criterion Test Statistic 

Atkinson's (NA) test 

Linearized Cox (NL) test 

J-test 

AJ-test 

JA-test 

-A 



Then, in order to test H 1 as the maintained hypothesis against H2 , the corresponding test in terms 

of the comprehensive model would be H 1: 1J. = .Q versus H2 : y_2 :¢: .Q : 

<a,*x*l'. - i1x'1,!'.) / k1 
F12 = ------------------

lUn - x* (X'* x*) - Ix*),!'. I (n - ko - k1 - k1) 
(2.7) 

where the Ji are the corresponding MLE's of the 13. for the indicated models. If H 1 were rejected, 

it would imply that at least one regressor variable exclusive to Z2 was useful in modelling the re-

sponse y, beyond the modelling capability already provided by those variables in X1 • 

The interpretation of this comprehensive model testing approach is similar to that of the or-

iginal non-nested hypotheses in that two tests must be performed so that each model is given the 

role of the maintained hypothesis (i.e., must also test H0: y_1 = .Q versus H.: y_1 :;e .Q). However, in 

using a comprehensive model, the temptation exists of using models which include some variables 

from each hypothesized model. It would appear that if a mixture of the hypothesized models 

provided a theoretically feasible solution to the modelling problem at hand, then the intent is truly 

not testing model specification. Consequently, variable selection criterion would provide more 

pertinent results. 

If, however, theoretical considerations specify the alternatives as separate, then the advantages 

of using the orthodox F-test are that it is an exact test and it can be easily implemented by re-

searchers in other fields. Its distribution under H2 as well as under H 1 is exact. One possible 

drawback is the estimation of what may become a large comprehensive model thwarted by 

multicollinearity. This problem could have a major impact on the test results manifested as defi-

ciencies in terms of power when compared to its non-nested counterparts. Therefore, it is easy to 

understand the desire to develop better procedures for testing hypotheses concerning non-nested 

regression models. The following non-nested tests have more intuitive appeal for testing correct 

functional form. 

15 



2.2.2 The Cox Test and its Small Sample Modifications (N,W,N) 

The first non-nested procedure was developed by Cox (1960,1962). His approach (CLR) to 

testing hypotheses involving separate distributional families of hypotheses was based on the cen-

tered log-likelihood ratio (cllr): the difference between the maximized value of the log-likelihood 

and its expected value under the null hypothesis. So, in order to test the following pair of hy-

potheses: 

H0: Y has pdf fo(y, l!Q) 

(2.8) 

the corresponding cllr is given by: 

To = [Lo(~) - La(~)] - Eo [Lo(~) - La(~) ]J!!o = ~ 
" 

" L = Lao - n plimo[ ~o J l!!o = ~ 
n-+00 

(2.9) 

" 

where Laa = [Lo(~) - L0 (2.a)J. LiiJ) denotes the maximized log-likelihood corresponding to Hp 

evaluated at the MLE of !!j, gj , and plimj denotes the probability limit under Hj (j = 0, a ). In the 

expression for T0 , MLE's are used in place of unknown parameter values. Then by using the 

asymptotic properties associated with MLE's, Cox derived the asymptotic null distribution of this 

statistic. Under the necessary regularity conditions, he showed that 

N(O, V0(T0)) (2.10) 
asympt. 

(2.11) 

where Q is the asymptotic information matrix associated with l!o given by 
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and 

l . 1 a2(.lv(!!o)) Q = - Pll11on ----
n-+ 00 8uo 8a' 0 

n-+00 n=n-------
a!!o 

(2.12) 

(2.13) 

Based on this result, a test can be formulated which is an asymptotically valid standard normal test. 

It is from this general work that Pesaran (1974) derived the explicit formulation of the test 

statistic for the case of two linear regression models. In terms of the models given in (2.4), the 

regularity conditions on the Cox test are ( White, 1982 ): 

(a) X1 and X2 are non-nested and non-stochastic; 

(b) lim ~ X'1X1 = 1:11 , lim ~ X'2X2 = L22 , 
n-+00 n-+00 

lim ~ Z'1Z 1 = Lz11 and lim ~ Z'2Z2 = Lz22 exist and are non-singular; 
n-+ 00 n-+ 00 

(c) lim ~ X'1Z2 = L1Z2 and lim ~ Z\X2 = Lz12 exist and are non-null. 
n-+ 00 n-+ 00 

Based on assumption (c), the Cox test cannot handle the situation where X1 and X2 are 

orthogonal to one another. In other words, if the two models are "completely" separate, this test 

falls apart. 

For the models in (2.4) under the assumption of normality on the disturbance terms, the 

log-likelihoods are readily obtained 

'-(a") = n log(27tcr2) _l_,,, X A )''" X A ) '-1.J -v - 2 I - 2cr2 l.l: - !!LI \!. - !!LI 
I 

(2.14) 

where u'0 = (13.'i, crf) and 
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(2.15) 

where l].1
0 = (y_'2, cr~2). Then for these models of interest, the specific expression for the maximized 

log-likelihood ratio is given by 

(2.16) 

where cr~ 
e' e. = -;', the MLE of crf, and £.t = the ML residual vector under H, using projection 

matrix P; e'z·ez· 
= X;(X' ;_X;)- 1X', for the full models, and similarly cr~, = - ~- I ' the MLE of cr~i• and 

£.z; = the ML residual vector under H21 using projection matrix P2; = Z;(Z';Z;)- 1Z'; for the 

partial alternative models ( for i = 1, 2 ). 

Next, in order to obtain the expression for the centered log-likelihood ratio, the expected 

value of this ratio under H1 must be estimated. A necessary piece of the expression is the 

asymptotic expection of the variance estimate for the alternative (partial) model under the as-

expression is derived for the expected value of the llr is obtained 

cr2 
= .!l... log[ --1l.] 

2 crf 
(2.17) 

Consequently, by replacing the unknown quantities in (2.17) with their MLE's and combining 

(2.16) and (2.17), the estimated centered log-likelihood ratio ( cllr), or the numerator of the Cox test, 

can be written 

(2.18) 

18 



This cllr measures the difference between the estimated error variance in the alternative model 

( H2 ) and the estimated expected value of that same estimated error variance given that the main-

tained model (H1) was indeed true. In other words, the numerator of the Cox test, T0, measures 

the validity of the maintained model against the specified alternative on the basis of how well the 

null model can predict the performance of the alternative, in terms of estimated error variances. In 

order to evaluate the numerator, the necessary MLE's are given as (for i = 1, 2) 

(2.19) 

(2.20) 

(2.21) 

and (2.22) 

Similarly, the formulation for Vi ( T12) was derived. (See Pesaran ( 197 4) for a detailed <level-

opment.) With unknown quantities replaced with consistent estimates, the estimated variance of 

T12 is given by: 

(2.23) 

Then, the resulting test for these two linear regression models is given by: 

(2.24) 
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and under H1 1s asymptotically N(O,l). This test 1s defined as long as 

fun (X'i M 22 M 1 M 22X1) * 0 . This condition implies that the test is not appropriate for cases 
n-+ CX) 

where the models are nested or where the two sets of explanatory variables are orthogonal to one 

another. However, by its nature, the Orthodox F-test is applicable and is exact in both of these 

cases. 

The Cox test is constructed so that a two-sided N (0, 1) test can be used to verify the appro-

priateness of the maintained model. The sign of the test statistic is also informative. Under H1, 

E(T12) < 0 . Therefore, a significant negative N12 statistic implies that the null model is not the 

"truth" and that the true model is in the direction, in some sense, of the specified alternative. In 

other words, the alternative model performed better ( i.e. explained more variation in the dependent 

variable ) than the maintained model projected it would. If the statistic is positively significant, this 

can be interpreted as the null model once again being incorrect, but that the true model is in a di-

rection opposite to the specified alternative. Similarly, the maintained model's projection of how 

well the alternative model would perform was not met. In either case, however, it is clear that a 

significantly nonzero test statistic indicates that the maintained model could not explain that which 

the alternative could and therefore is not valid. 

Cox developed the test such that the alternative model is representative of the type of model 

against which high power is desired. This alternative model can be thought of as the type of 

functional form misspecification that the researcher wants to be able to detect with high sensitivity. 

Once again, it is useful to reiterate that the non-nested procedures are designed to test for correct 

model specification not to choose the "best" model from a set of candidate models. As Pesaran and 

Deaton (1978, p. 692) expressed it, "The N (Cox) test is not a measure of the relative fit; it is a 

measure of whether a given hypothesis can or cannot explain the performance of an alternative 

hypothesis against the evidence." 

It should also be remembered that this test result is asymptotic in nature, so in general its fi-

nite sample null distribution is not known. However, Pesaran's (1974) funited simulation work 
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showed that the normal approximation was good even in samples as small as n = 20. Also, its 

power appears good relative to the F-test, particularly in cases where the correlation between the 

explanatory variables in the alternative models is strong ( i.e., the canonical correlations between 

X1 and Z2 ) and even in small samples (n = 20,40). However, the estimated probability of making 

a type I error, or the estimated size of the test, appears to be understatement of the nominal level 

from the standard normal distribution. This result is due to finite sample bias in the numerator of 

the test statistic. It was this apparent problem with the Cox test that led Godfrey and Pesaran 

( 1983) to the small sample modified versions of this test: the W and N tests. 

Examination of the numerator, T12 , of the Cox test sheds much light on the conditions which 

create a bias large enough to force the test to over-reject a true null hypothesis. Another way to 

look at the form of T12 (2.18) is as follows: 

e' e = (n/2) log[ - 22 -22 J 
g'1 gl + g'21 g21 

(2.25) 

where g21 = M22PiJ!., which is the residual vector from the regression of ,E1 on Z2 • f 21 corresponds 

to the residual vector from the regression of the estimated "true" y's, given H1 as true, on the non-

nested portion of the H2 model. 

Under H11 it is desired that N12 have expectation of zero. In order for this to be the case, 

£ 1 [cr~2 I cri1] should equal one. Equivalently, £ 1(z1) should be zero where 

(2.26) 

Under H1, Godfrey and Pesaran (1982) show that: 

£ 1(z1) = cri[tr(P22P1) - k2] 

= - cri[ f (1 - Ph + max(k2 - (ko + k1), O)] 
I= 1 

(2.27) 
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where the pl are the squared canonical correlations given by the s = min(ko + k1, "2) non-zero 

solutions to: 

(2.28) 

From this result, it is clear that the Cox test will tend to over-reject under any of the following 

situations: 

(i) the correlation between the two sets of regressor variables, X1 and Z2, is low or moderate 

(i.e., the Pl are small), 

(ii) the true model does not fit the data well (i.e., cri is large), 

(iii) the number of regressor variables in the true model is smaller than the number of regressor 

variables in the false alternative model. 

Based on these, Godfrey and Pesaran derived a modified Cox test based on the unbiased cri-

terion 

z1 = z1 - ~i[tr(P22P1 ) - k2] 

= (n - "2) (~~ - ~~1) 
(2.29) 

The - 's indicate unbiased estimates instead of the MLE's. The unbiased estimates referred to here 

coincide the Ordinary Least Squares (OLS) estimates in the case of linear regression models: 

= J!.'MziJ!. 
(n - ki) 
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Based on z1, a test was derived in a fashion similar to the Cox test. Not only was the bias in 

the numerator eliminated, but also the test was adjusted for a variance estimate of the cllr that was 

consistent but tended to underestimate the true variance. The test, denoted N12 , is also an 

asymptotically standard normal test: 

(2.30) 

where fm = M1MnPiJ!., the residual vector from the regression of f 21 on X1, and 

(2.31) 

Asymptotically, N12 has a N(O,l) distribution under H1• 

The modifications made to the Cox (N12) test statistics involved the use of: 

(i) unbiased estimators of cr~2 and cr~ 1 instead of MLE's; 

(ii) adjustment of the variance (shifted upward by the magnitude of ( 1/2)( crt/cr~ 1 )tr(B[2) ); 

(iii) (n - k2)/2 in place of (n/2) . 

Consequently, the asymptotic null distribution of this modified version of the Cox test re-

mains N(O,l). In addition, simulation studies performed by Godfrey and Pesaran show improve-

ments in terms of its observed size (more in line with the nominal level) without any significant 

reduction in power. At the same time, Godfrey and Pesaran presented a Wald-type test (W-test) 

that was essentially an adjusted Cox test: 

(2.32) 
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This test is based directly on t1 and is similar to a Wald test if we consider g(y) = cr~ - cr~ 1 

and are testing H1: g(y) = 0 . It too is an asymptotic standard normal test due to the Lindberg-

Feller Central Limit Theorem. Also, as in the case of the N-test, Godfrey and Pesaran's simulation 

work shows much promise in the small sample performance of the W-test in terms of power and 

size for a variety of cases involving unequal numbers of regressors, varying degrees of collinearity 

between the models, and two skewed non-normal distributions on the disturbance terms. 

Therefore, it appears that the CLR criterion provides the basis for some well-behaved non-

nested testing procedures, especially when adjustments for finite sample size are used. However, 

there are two other procedures which are rooted heavily in the original Cox approach. These pro-

cedures as well as others which are offshoots of the CLR based tests are the next topic for review. 

2.2.3 Atkinson's CLR Test (NA) and the Linearized Cox Test (NL) 

Atkinson's ( 1970) work to develop an alternative procedure to discriminate between two 

separate families of hypotheses ( i.e., pdf's or models ) brought into focus a parallel interpretation 

of the Cox test statistic. His approach is rooted in Cox's suggestion to work from an exponentially 

combined form of the likelihoods or pdf's. In order to test the pair of hypotheses given in (2.8), 

or as in Atkinson's intention to discriminate (choose) between the two, the combined pdf would 

be of the form 

(2.33) 

Consequently, the hypothesized model in (2.4) can be reexpressed as testing H0: A. = 0 versus 

H1: A. = 1 in the context of the combined pdf. Atkinson's method was to construct an 

asymptotically normal test statistic formulated as the LR test on A. while the !!o and g., were treated 

as nuisance parameters. 
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The resulting test statistic can be interpreted as the "derivative of the log-likelihood with re-

spect to the parameter of interest adjusted for regression on the partial derivative with respect to the 

nuisance parameter, divided by the appropriate standard error" (Atkinson, 1970, p. 332). The ad-

justment to the derivative is made to guarantee the asymptotic unbiasedness of this statistic no 

matter the estimate of the nuisance parameters. The work of Bartlett and Neyman led Atkinson 

to the decision of using the MLE's of the nuisance parameters under the null hypothesis. This 

application leads to the general expression of T A0 in a form that is quite similar to the expression 

for T0, specifically for the hypotheses given in (2.8): 

(2.34) 

where !Lo = pli~ !!,,, and correspondingly, fLo = pli~ fLi20 _ ~· Clearly, the only difference be-
"_. CO n_. CO 

tween Cox's CLR and Atkinson's CLR criterion is the evaluation of the entire statistic under the 

null hypothesis in the case of Atkinson's work. These two statistics are asymptotically equivalent 

under the null hypothesis and result in asymptotically equivalent tests for the case of linear re-

gression models. However, their finite sample behavior would be expected to be somewhat differ-

ent. To illustrate, consider the form of this asymptotically normal test statistic for the case of two 

linear regression models as given in (2.4): 

= N(O,l). (2.35) 
asympt. 

Notice the difference between this test statistic and N12 as given in (2.24). The numerators are not 

only different, but also the NA-test uses 0-~2 as its error variance estimate while the Cox test em-

ploys cr 12/cr~1 in the estimate of the asymptotic variance of the cllr. 

As indicated here, this test, as derived by Atkinson, is asymptotically valid only. However, 

Fisher ( 1983) goes on to show that for the case of testing two linear non-nested regression models, 

the test statistic is distributed as a beta variate with 1/2 and (n - k1 -1)/2 degrees of freedom. 

This proof was accomplished by employing the work of Graybill and Milliken (1969, 1970) to ex-
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press the NA 12 test statistic as the ratio of a chi-square to the sum of that chi-square and an inde-

pendent chi-square with 1 and (n - k1 - 1), respectively. 

In order to compare their performance in finite samples, Atkinson performed a series of 

Monte Carlo studies for the case of testing the exponential distribution against the log normal for 

sample sizes of n = 20, 50, 100, 150, and 250. From the examination of the moments of the em-

pirical distributions of the statistics, he found that in both cases the approach to the asymptotic 

normal distribution was rather slow. Generally, on the basis of the first two moments, NA 12 was 

preferable; however, large values of the third and fourth moments offset this advantage. It should 

again be noted that this comparison was for just one case, and that there is still much to be learned 

about its small sample performance in the case of two non-nested linear regression models. 

Along this line, Pereira ( l 977b) asserted that Atkinson's CLR criterion yielded inconsistent 

tests in some instances. However, Fisher and McAleer (1981) provided a proof of consistency in 

the cases of both linear and nonlinear regression models. Therefore, this test is one to be consid-

ered, particularly in light of its being less biased in small samples than the unadjusted Cox test with 

its apparent size larger than the nominal level. 

The one remaining testing procedure which is an offspring of the Cox criterion is the 

linearized Cox test. This statistic, presented by Fisher and McALeer (1981), is simply based on an 

approximation of T12 using a linearized estimate, and is given by 

"2 
= .!!.{ O'z2 _ l} 

2 "2 
0'21 

(2.36) 

The linearization of the Cox criterion and the nume~ator of the Wald-type test, W, are indeed 

similar. Based on this similarity and on the use of unbiased estimates in the W-test, it is reasonable 

to suspect that the linearized Cox test's performance relative to the W-test would be similar to that 

of the unadjusted Cox test (N) and the N-test. Based on TL12, a consistent, asymptotically normal 

test statistic is obtained for the linear models given in (2.4) and is given by 
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NL12 = (2.37) 

Although the behavior of this statistic previously has not been studied in the case of finite 

samples, several relationships can be formed regarding these three versions of the Cox CLR test. 

Fisher ( 1983) noted that the numerators of the unadjusted tests were related in the following man-

ner: 

(2.38) 

This relationship provides some insight as to the linearized test being more conservative than the 

other tests under certain conditions. If the alternative model fits much better than it should, the 

unadjusted Cox test is more likely to reject the null hypothesis than the NL test. On the other 

hand, if the alternative model is fitting much worse than it should, Atkinson's version is more likely 

to reject the null hypothesis. Consequently, under these conditions, NL may accept the null hy-

pothesis, while the others may reject. Therefore, it may be reasonable in practical applications to 

compute and compare the results of all three test statistics. 

These tests are asymptotically equivalent under the null hypothesis. However, under the al-

ternative hypothesis, the relationship among them is unknown. A hint of their relative performance 

can be seen in this expression which follows from (2.38): 

TA 
plimi--fl:-

n-.CO 
(2.39) 

Without information on the behavior of the variance estimates in the denominators of the test 

statistics under the alternative hypothesis, no concrete information regarding their relative power is 

obtained, even asymptotically. Consequently, in order to judge these three versions of the Cox test 

as to their practical usefulness, Monte Carlo studies for finite samples need to be engaged. How-

ever, it is expected that the Atkinson version will have a more reasonable size than the unadjusted 
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Cox test. Also, the relative ease in computing the linearized Cox test, once the necessary regressions 

have been petformed, make it worth further investigation. 

In conclusion, the Cox CLR-based tests are rooted in the classical likelihood ratio theory and 

provide a feasible approach to testing non-nested hypotheses. All the tests are essentially testing 

to see if cr~2/cr~ 1 = l. The bottom line, in other words, is the investigation of the ability of the 

maintained model to predict the fitting ability of the alternative model through examining the ratio 

of two error variance estimates. However, under the Cox CLR approach, this comparison is ac-

complished through testing whether or not the residuals from the regression of X1 on .E are 

asymptotically uncorrelated with the difference between the fitted values from the two alternative 

models (MacKinnon, 1983). Although indeed a reasonable approach, it would appear simpler to 

test the relationship directly. According to MacKinnon, this approach is indeed the intention of 

the testing procedures derived under the Artificial Nesting approach. 

2.2.4 Tests Derived Under the AN Approach (J,AJ,JA) 

In general, the AN approach involves the formulation of a nested model from the two or 

more individual models under investigation. If the artificially nested model is properly constructed, 

then the resulting test is simply a traditional test of hypothesis (classical LR test) on the appropriate 

parameter, or set of parameters. However, the artificial nesting procedure often leads to the situ-

ation where not all of the parameters to be estimated are identifiable. Thus the various AN tests 

were developed through the application of various means of circumventing the identification prob-

lem. Two such tests are the J- and JA-tests which are asymptotically equivalent. 

To see how these tests are constructed for the case of two non-nested linear equations, con-

sider the exponentially weighted combination of the models in (2.4) using ~ as a mixing parameter 
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(2.40) 

where Var(~) = cr2/" for cr- 2 = (1 - ~)cr1 2 + ~crz,l . Then, in the univariate case, this can be 

transformed into what appears to be a straightforward linear combinatiion of the detenninistic 

portions of the models, by substituting A. for ~cr2/cr~2 : 

= (2.41) 

Then corresponding to the testing of H1 as the maintained hypothesis against H2 in (2.4) is the 

equivalent testing of H 1: A. = 0 against H2: A. :¢: 0 in the above artificially formulated model. It is 

evident that this model cannot be estimated directly, since A. is not identifiable as long as the values 

of the parameter vectors 111 and 1J. are unknown. Consequently, if the test to be performed is on 

the value of A. from the combined model, a way to force A. to be estimable is necessary. The J and 

JA tests accomplish this through the replacement of Z21J. (from the alternative hypothesized model) 

with a consistent estimate. Since different consistent estimators are used in these two tests, they 

may be asymptotically equivalent although not equivalent in small samples. Importantly, the use 

of any consistent estimator for Z21J. would yield an alternative asymptotically valid test. However, 

the two tests discussed here are two of the more reasonable members of a much larger class of AN 

testing procedures. 

Davidson and MacKinnon (1981) proposed the use of ,E2 = P2 iJ!., the predicted value of 

Z2y2 = Ei.(r) under the alternative hypothesis, an OLS/ML (consistent) estimator. Correspond-

ingly, to test H1 against H2 in (2.4), the following model is estimated and a test on the significance 

of A. is used to make the inference regarding the maintained model: 

" .E = (1 - A.)X11i1 + A.)2 + ~ (2.42) 

From this estimated model, the t-test on the significance of the value of A. is of the form: 
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(2.43) 

where crJ is the vanance estimate based on the SSE from the regression 111 (2.42) and has 

(n - l<;i - k1 - 1) df. 

This test is very easily computed using a regression procedure such as PROC REG in SAS. 

Since it only requires the estimation of four regressions for testing any given pair of hypothesized 

models, it can be implemented readily. (See section 2.4.) However, the J-test, similar to the un-

adjusted Cox test, is biased in the numerator under the maintained hypothesis. Consequently, it 

too has the tendency to over reject a true null model, particularly when the number of regressors 

in a false alternative is larger than that in the true null. 

Once again, such a problem was investigated by Godfrey and Pesaran· (1982) in order to 

derive a similar adjustment for small sample bias in the numerator as employed in the case of the 

Cox test. The adjusted J-test, or AJ-test, maintained its nature of being at-test on the value of/.. 

with the adjustment applied to the estimator of the predicted value from the alternative model. 

Unfortunately, the Monte-Carlo work of Godrey and Pesaran showed only minimal improvement 

over the J-test and, in some cases, it performed with less satisfaction in terms of power. This result 

was the case even though its observed size was brought closer to the nominal level. 

The 112 test statistic was derived asymptotically through the limiting distribution of 

n- 112 { 1 g2 (Godfrey and Pesaran, 1982). The bias in the numerator of the test statistic comes from 

its expectation under H1 which is of the form: 

(2.44) 

The bias is similar to that in the cllr of the Cox test (2.27). Godfrey and Pesaran asserted that given 

the use of the appropriate adjustment in the model to be estimated, namely the use of i 2 - PriJ:.1 in 
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place of i 2 in the combined model (2.41), the resulting test would have expectation zero under the 

maintained hypothesis, H 1• Specifically, the AJ-test is based on the estimation of the following 

model with the resulting t-statistic being an asymptotically valid test on the significance of A.: 

" g = (1 - A.)XiJ11 + A.(a - P12g1) + §. (2.45) 

where P12 (2.46) 

An equally popular AN testing procedure is the JA-test proposed by Fisher and McAleer 

(1981). This procedure is identical to the unadjusted J-test except for the consistent estimator used 

for Z2YJ. . Their approach reflects Atkinson's since the estimator used is one that estimates £1 (i2) 

(which is essentially, for the case at hand, plim1[i22 ]) and is given by i 21 = P22PIJ!. . The corre-
n-+OO 

sponding t-test on A. for the estimation of (2.41) using this new consistent estimator is the JA-test, 

which is appealing in that its null distribution is an exact t-distribution; i.e., 

" 
i21M1g 

J A 12 = ---,,.-2-...,."-, --,.-1-;2-
( crJA g 21M1b1) 

(2.47) 

However, the JA-test is not exact under the alternative hypothesis. Even though the nominal 

size of the test should be maintained, no information regarding its relative power under the alter-

native is gained analytically. From the studies of Godfrey and Pesaran (1983), it is evident that the 

nominal size of the JA-test appears to actually be, in general, an over-statement of the "true" 

probability of making a type I error. In addition, the test lacks power to make the correct inference 

in the case where the number of regressors in the true null hypothesized model is larger than that 

in the false alternative model. This last result seems counter-intuitive since it would be expected 

that given two models which fit the given data set relatively well the procedures would tend to '1ean" 

toward the model with the larger number of parameters. However, this emphasizes the difference 

between the J-test and the JA-test (and in a similar fashion, the N-test and the NA-test) in terms 

of the degree of conservativeness in the projected variance estimate from the alternative model. 
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Like the J-test, the JA-test has inherent problems when the number of regressors in the 

competing models are not equal. One definitive advantage to using these AN tests is their ready 

extension to hypothesized models involving different transformations on the dependent variable. 

Such procedures will be discussed within the context of the empirical study in Chapter V. Although 

these procedures are generally simpler to compute, they are not necessarily better. Therefore, fur-
-

ther investigation of these tests derived under the AN approach as well as those derived under the 

CLR approach is warranted. 

For completeness, the general form and properties of the class of AN procedures should be 

discussed. Pesaran ( l 982b) investigated this class whose member tests are based on the substitution 

of any linear ii into (2.42) which are of the form Rl_ where R is a k2 x n matrix satisfying the fol-

lowing conditions: 

R.l plim1(Rf..1) = plimi,(Rf..22) = .Q; 
n-+ 00 n-+00 

R.2 1im (RX1) = D1, where D1 is a finite, non-zero matrix; 
n-+00 

R.3 1im (RZ2) = D22, where D22 is a k2 x k,, positive semi-defmite matrix and 
n-+00 

If conditions R.1 and R.2 are met by a given R, then the resulting t-test on /... from the 

combined model in (2.42) is an asymptotically valid standard normal test under the maintained 

hypothesis and is of the form: 

t1..(R) = (2.48) 

where 

(2.49) 
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If in addition to conditions R. l and R.2, condition R.3 is met by a given _b, then the resulting test 

of H1 maintained against H2 is consistent. From this general framework, it should be clear that for 

the J-test, R = (Z'2Z2)- 1Z'2 and for the JA-test, R = (Z'2Z2)- 1Z'2P1• Although there are a variety 

of tests which could be formed in the manner discussed here, the J- and JA-tests are both intuitively 

appealing and more powerful (as will be shown in section 2.3.1 ) in the presence of certain alter-

native models. 

With the groundwork for the various non-nested testing procedures now laid, it is important 

to see how they actually perform relative to one another. Therefore, comparisons among these 

testing procedures, both asymptotically and in finite samples, will be made. 

2.3 Comparisons: Analytic and Simulated 

The fundamental aspects of the developments of the various non-nested testing procedures 

for the case of two linear regression models have been presented in the previous section along with 

some of their properties. The purpose of this section is to provide comparable information about 

the various tests in terms of their distributional properties and actual performance. First, consid-

eration is given to asymptotic properties and other analytic comparisons which can be made. Then 

statements regarding the relative performance of the tests as witnessed in past simulation studies 

will be noted. 

2.3.1 Analytic Comparisons 

Since most of the testing procedures are only asymptotically valid, analytic comparisons are 

primarily limited to asymptotic properties. To start, all the test statistics derived under the two 

non-nested approaches are asymptotically distributed standard normal under the maintained hy-

pothesis (excluding the Orthodox F-test). All these tests are consistent, with correct size 
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asymptotically. As noted, the JA- and F-tests are the only two test statistics possessing exact 

finite-sample null distributions. In addition, through investigation of regularity conditions (White, 

1983), it is clear that the tests remain valid asymptotically in the presence of non-normal disturb-

ances. 

The Cox procedures (N, NA and NL) are asymptotically equivalent under the maintained 

hypothesis, although the only information regarding their behavior under the alternative was pro-

vided b.y Fisher ( 1983) and given in (2.39). But as previously indicated, the estimated variances are 

not the same for these three testing procedures and therefore no concrete information is gained re-

garding their relative asymptotic power. In terms of finite samples, Pereira ( 1977b) showed that the 

Atkinson procedure was in general less biased in the first and second moments of the test statistic 

than the Cox procedure under the maintained hypothesis. However, the Cox procedure demon-

strated closer agreement with the limiting distribution in the higher moments measuring skewness 

and kurtosis. (It is interesting to note at this point that Pereira stated that the Cox test was still 

practical since corrections could more readily be made to correct for the bias in the first and second 

moments, which is precisely what Godfrey and Pesaran did in the development of the W- and 

N-tests.) 

Also, by construction, any AN testing procedure, specifically the J- and JA-tests, are 

asymptotically equivalent under the null hypothesis. This equivalency relies solely on the consist-

ency of the estimate of Z2 I 2 employed. It appears that the respective tests are essentially equivalent 

on the basis of limiting behavior under the maintained hypothesis. However, since the power of 

the tests when the alternative is true is important to the researcher, it would be useful to compare 

the power under the limiting distributions in some manner. 

Since the limiting distributions of the various test statistics are not available under the alter-

native hypothesis, except for the case of the Orthodox F-test, power comparisons are not directly 

obtainable. Consequently, Pesaran (1983) investigated the Cox, Orthodox F- and J-tests on the 

basis of power under local alternatives. Such power is a means of comparing the asymptotic effi-
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ciency of the procedures. Given the null model H1 as in (2.4), local alternatives are defined as a 

sequence of alternatives H2n which approach H1 as n approaches infinity. Specifically, Pesaran de-

fined them by 

-tp -tp = X1Br2 + n !:112 + o(n )l + ~z2 (2.50) 

where o(.) denotes the small order relation, 1 is a n x 1 vector of l's and B and !:!. are 

(ko + k1) x k.i and n x k.i nonzero matrices of constants, with the restriction on !:!. such that 

lim (2.51) 
n-+00 

exists and is nonzero. These limiting requirements on!:!. guarantee that as n-+ oo, H2n-+ H1 at a 

rate so that the asymptotic power will be strictly larger than the probability of a type I error while 

it is bounded away from one. 

Under this structure of local alternatives, Pesaran derived the following results regarding the 

asymptotic power of the testing procedures. Specifically, for the Orthodox F-test, its asymptotic 

power under local alternatives, denoted by PF• is given by 

(2.52) 

where 11F = y'2W2y2/cr~. For the square of the unadjusted Cox test, N?2n its limiting power under 

local alternatives is given by 

PN = lim Pr[N12n2 ~ x[1),1- cxlH2nJ 
n-+00 

= Pr[x2'(t), 11N ~ xt1),1-cxJ 
(2.53) 

where cr~ 11N = .r'2W{f2· Similarly, the limiting power of the square of the J-test, Jf2n, under local 

alternatives is the same as that for N?2n· Consequently, the Cox N-test and the J-test are 

asymptotically equivalent under both the maintained hypothesis as well as under local alternatives. 
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Therefore, PN = P1 can be compared to PF since both are based on the noncentral x2-distributions 

with the same non-centrality parameters (llF = 11N = 111) but different degrees of freedom (df). On 

the basis of work by Das Gupta and Perlman( 1974), Pesaran stated that the power function of such 

noncentral x2 tests is strictly decreasing in df. Therefore, it is concluded that 

(2.54) 

with equality holding only when the number of non-overlapping variables between the models, k2 

is one. Correspondingly, as the number of non-overlapping variables increases, the more powerful 

the non-nested procedures become compared to the Orthodox F-test, at least in large samples. 

Now consideration is given to the family of AN procedures addressed by Pesaran (1982b) 

based on the class of consistent linear estimators of the form 12 = RJ!. meeting the conditions 

specified by R.1-R.3 discussed in Section 2.2.4. Under local alternatives as defined in (2.47), this 

family oft-tests has asymptotic distributions given by 

where 

asympt. 
2, 

X (!), 112(R) 

[)'.'2Dz2'W212J2 

cr~ 12'Dz2'W2Dz2r2 

(2.55) 

(2.56) 

From this general form of the asymptotic power function of this family of AN procedures under 

local alternatives, the power can be maximized in terms of maximizing the value of the non-

centrality parameter based on values of R. Pesaran showed that maximum asymptotic local power 

is achieved for this class of tests when ri 2(R) = 12'W2r2/cr~ . In addition, Pesaran (1982b) proved 

that both the J- and JA-tests meet this requirement for achieving maximum asymptotic power un-

der local alternatives, and therefore the procedures are not only asymptotically equivalent under the 

null hypothesis but also under local alternatives. 
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From these results, it would seem reasonable that the non-nested procedures would be ex-

pected to have higher power for making the correct inference on the basis of a pair of competing 

models than the Orthodox F-test, at least asymptotically. This result will not necessarily hold 

though, depending on the form of the alternative model since the comparisons made here deal only 

with local alternatives. To evaluate the finite sample behavior of these testing procedures, Monte 

Carlo studies must be considered. 

2.3.2 Simulated Comparisons 

There have been several Monte Carlo studies conducted to evaluate the relative performance 

of the non-nested testing procedure in finite samples. The most comprehensive of these studies 

was that performed by Godfrey and Pesaran ( 1983) in the context of examining the behavior of the 

small-sample modifications to the Cox test in the case of two linear regression models. They con-

trolled for characteristics of the competing models such as the number of regressor variables in the 

competing models, the amount of collinearity between the models, the quality of fit of the true 

model, presence of a lagged dependent variable and non-normal disturbances (namely, x2 and log-

normal). From these, useful information regarding the testing procedures is obtained. More limited 

studies were conducted by Atkinson (1971), Pesaran (1974, 1982a), Davidson and MacKinnon 

(1983) and Sawyer (1983). 

The two main criteria for evaluating the performance of these tests are the estimated type I 

error probability (size of the test) and estimated power. Here the power of the test is really related 

to the pair of tests on each pair of competing models and is the probability of rejecting the false 

null when it is maintained and accepting the true null when it is maintained. In other words, it 

measures the ability of the test to lead the researcher to the correct inference regarding a pair of 

models. 

37 



Since the F-test and the JA-test are both exact under the null, it is expected that the estimated 

type I error probability (a) will align itself closely with the nominal level. When the true model is 

maintained as the null hypothesis, a is the proportion of times the true null is incorrectly rejected. 

For the F-test, the nominal and observed levels appear to be in agreement. However, in the case 

of the JA-test, the observed size tends to be somewhat less than the designated significance level, 

but not extremely so. This result may be indicative of how the conservative estimate of the error 

variance for the alternative model actually works in practice. However, it is important to remember 

that all the results discussed here are restricted to a limited number of model conditions. Specif-

ically, it is when the maintained model has a smaller number of regressors than the alternative that 

the a tends to be smaller than the nominal level in the case of the JA-test. 

The bias in the N- and J-tests (in regards to expectation of the test statistic under the main-

tained hypothesis) manifests itself in observed type I error probabilities which exceed the nominal 

level. Based on large sample approximations, a test on the true finite sample size of these tests will 

often reject the hypothesis that the type I error probability equals the nominal level. In terms of 

the other two CLR tests, the NA- and NL-tests, not much is known based on simulation. How-

ever, Atkinson (1971) showed through simulated testing between the log-normal and exponential 

distributional assumptions that the NA procedure was indeed less biased in terms of the first and 

second moments than the unadjusted Cox procedure. 

When small-sample bias adjustments as suggested by Godfrey and Pesaran (1983) are applied 

to the Cox (N) and J-tests, the observed type I error probability is more in line with the nominal 

level of the test based on the asymptotic distribution. Particularly, a is better behaved in the case 

of the W- and N-tests. Taking into account the range of the observed significance levels of the tests 

under the maintained hypothesis, the ability of the testing procedures to lead to a correct inference 

regarding a given pair of models is examined. 

In general, (based primarily on the results of Godfrey and Pesaran, 1982 and 1983), the power 

of the unadjusted Cox test as well as the W- and N-tests are fairly large. For most cases, the power 
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of the Orthodox F-test, which was adversely affected by increased amounts of collinearity between 

the models, _tended to be less than that of any of the three Cox procedures. Unfortunately, no in-

formation about the NA- and NL-tests was compiled in the case of two linear regression models. 

Supplementary to this study is information regarding the reinforcement of the trends in terms of 

asymptotic power under local alternatives between the N- and F-tests in finite samples (Pesaran, 

1983). Also, in this study, it becomes evident that the size and power of the Cox N-test, although 

far off in samples of size 20, rapidly approach their asymptotic levels. 

Turning to the AN procedures, the J. and AJ-test tended to have reasonably large power. 

One difficulty with the J-test as indicated from this study is its tendency to over-reject the true null 

when the number of regressors in the false alternative is larger than in the null. Consequently, 

guarded use of the J -test is advisable in practice, even though its power is fairly good. On the other 

hand, its adjusted version, AJ, has a more reasonable a but at the expense of reduced power in some 

cases (Godfrey and Pesaran, 1982). 

The JA-test, however, with its correct size also had problems in terms of power when there 

was an unequal number of regressors in the competing models. Overall, the power of the JA-test 

tended to be lower than the power of the other procedures. This result was emphasized in the cases 

where the false null model with ko + k1 paramters was maintained against the true alternative model 

with k2 > ko + k1 parameters. Consequently, the J-test and the JA-test have problems when the 

number of regressors are unequal in the models, although their difficulties pull in opposite di-

rections. 

Therefore, it would appear on the basis of the information presented here that the adjusted 

· Cox tests (W, N) and the F-test tend to be more reasonable for use in practice based on the desig-

nated evaluation criteria. Again, it should be reemphasized that the statements presented here in-

dicate observed trends based on results compiled under a limited set of model conditions. Also, 

not all the procedures were used in the studies, so the information is not complete. Finally, in all 

the cases studied, one of the two competing models was the correct model, although this may not 
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be the case in practice. Even though these summaries are informative, they do not provide the re-

searcher with the full picture. There is still much to be learned about the practical use of non-nested 

hypothesis testing procedures for linear regression models. 
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2.4 Computational Information 

Since most of the testing procedures for non-nested regression models are asymptotic in na-

ture and their performance characteristics can be quite variable depending on the condition of the 

models under test, some consideration should be given to the ease, or lack thereof, in which they 

can be computed. By their nature, the AN test statistics can be calculated quite readily, without 

any additional computations, within the framework of regression packages such as PROC REG in 

SAS. Other test statistics, particularly those employing modifications for finite sample biases, need 

some additional work to obtain the necessary formulation. In this section, the basic steps for 

computing each of the test statistics as well as associated observed significance levels (p-values) will 

be outlined. 

Table II.4 contains a brief list of steps for testing the pair of models in (2.4); i.e., to test H 1 

maintained against H2 as well as H2 maintained against H1 in order to test model validity. Some 

gain in terms of reduction in the number of regressions can be achieved when there is no overlap-

ping portion between the models. Generally, if Xwere null in (2.4), then only one regression would 

be required in place of every pair of Hfull" and HpartialH (non-nested piece only) regressions indicated. 

By examining the information given in Table 11.4, several points become obvious. First, 

small sample adjustments to the Cox and J-tests require substantially more effort to obtain the 

value of the test statistic. In cases where the data set is not particularly small (30 :s: n :S: 40), the 

additional matrix manipulations may not be very manageable in terms of computing time and 

storage allocation. However, this condition does not pose a problem for genuinely small data sets 

since a package with matrix operations could handle the computations. Particularly, PROC MA-

TRIX (soon to be replaced with PROC IML) can perform the additional calculations (e.g., Band 

tr[B2]) without any difficulty. Also, FORTRAN matrix operators could be programmed to do the 

necessary operations. Consequently, it may require some added effort, but the obstacles encount-

ered in the computation of the finite sample adjusted test statistics are not insurmountable. 

41 



Second, the Cox-derived (asymptotic) procedures and the Orthodox F-test require a fair 

number of regressions as well as some further manipulation. These are by no means as complicated 

as the matrix manipulations discussed above. In fact, they involve scalar calculations which could 

even be done by hand. The scalar components of the test statistics can be stored from output of 

the formal regression packages and then a short series of statements programmed to put them to-

gether properly. Once the test statistics themselves have been computed for any of the procedures 

addressed previously, associated p-values are easy to obtain using the probability functions in SAS. 

Finally, the J. and JA-tests can be computed through the performance of four and six re-

gressions, respectively, within the framework of the regression packages. Since the tests are really 

t-tests regarding the significance of one of the regressor coefficients, standard output in regression 

estimation packages; even the p-values associated with the hypothesis tests can be read directly from 

the PROC REG output. Therefore, from the layman's perspective, these tests are very appealing 

given their relatively easy usage. 

A macro in PROC MATRIX (SAS) to compute this series of test statistics for a pair of linear 

regression models with non-transformed dependent variables is provided in Appendix D. For al-

ternative programming of these testing procedures for use in larger samples, refer to the section in 

Chapter V wherein the calculation of the non-nested hypothesis tests is discussed. 
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Table Il.4 Computational Outline 
Number of Additional Calculations? 

Test Regressions Scalar Matrix Basic Steps in Computation 

(I) Cox Test (N) 8 Yes No I. Regress X1 and X2 on J! and retain SSE1, SS~, f 1 and f2; 

(2.24) 2. Regress Z 1 and ~ on,}! and retain SSEz1 and SSEZl; 

3. Regress Z 1 on i 2 and Z 2 on i 1 and retain SEEm SE~1 and 
residual vectors ,e12 and ,e21 , respectively; 

4. Regress X1 on t 21 and X2 on t 12 and retain SS~11 and 
SSE112; 

5. Compute: 

_ (n/2) log (SSE,1/SSEJI) 
NiJ- . 

In SSEi(SS~11/SSEfi)J1ll 

-
(2) N -Test 8 Yes Yes 1-4. as in Cox (N) test; 

(2.30) 5. Compute tr (Bf2) tr (Bj1), (see(2.31)), tr (M1M12) and 
tr(M2M,;); 

- -6. Compute cr~ 1 and cr~2 using 

oJ; = (SSE11 + MSE, tr(Mµ,1))/(n - k1); 

7. Compute: 

- ((n - kj)/2) log IMSE.)crj;) 
NiJ = . 

[ MSE; ( s~rn MSE; (B2)) ]•fl ._ J"I +--tr ·· - JI 2 IJ oJ, 

~ 
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Table 11.4 Computational Outline 
Number of 

Test Regressions 

(3) W-Test 8 

(2.32) 

(4) Atkinson's (NA) 6 

Test 
(2.35) 

Additional Calculations? 
Scalar Matrix 

Yes Yes 

Yes Yes 

Basic Steps in Computation 
-

1-6. in N -test; 
7. Compute: 

W = (n - ki)(MS~ - aj;) 
iJ (2(MSEf) tr(Bl) + 4(MSE1)SS~u)'f2 

I. Reb'fess X1 and X2 on J! and retain SSE,, SS~, 

i1.i2• f1 and .f2; 
2. Regress Z 1 on f2 and Z2 on f 1 and retain f 12 and fw 

respectively; 
3. Regress X, on ,E21 and X2 on .£12 and retain SS~~. and 

SSEJJJD ; 

4. Compute num12 = i:' ,f 21 and nun1.11 = i:' ~12 ; 
5. Compute: 

-num; 
NA = ~ • 

'' [ ( s~E; )ssEj1J 112 
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Table 11.4 Computational Outline 
Number of 

Test Regressions 

(5) Linearized Cox 8 
(NL) Test 
(2.37) 

Additional Calculations? 
Scalar Matrix 

Yes No 

Basic Steps in Computation 

I. Regress X1 and X2 on J!. and retain SSE1, SS~, li and ,E2; 

2. Regress Z1 and Z 2 on J!. and retain SSEw SSEZJ; 
SSRegz1 and SSRegZJ; 

3. Regress Z1 on.£2 and Zl on.£1 and retain_E12,_E21 , 

SSReg12 and SSReg21 ; 

4. Regress X1 on bi and X2 on ,E12 and retain SSEf11 and 
SSE{k; 

5. Compute: 

(l/2)(SSReg,1 - SSReg1;] 
NL= 

'' [ ( s~E; )ssE1~ ]i/l 
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Table 0.4 Computational Outline 
Number of 

Test Regressions 

(6) J-Test 4 
(2.43) 

(7) AJ-Test 6 
(2.45-2.46) 

Additional Calculations'! 
Scalar Matrix 

No No 

Yes Yes 

Basic Steps in Computation 

I. Regress Z 1 and Z2 on ,l and retain .izi and ,iZl; 
2. Regress (X1 l[ZlJ and (X2 lfz1] on ,l and 

lu = t-statistic on the coefficient of,i,1 • 

I. Regress Z 1 and Z2 on ,l and retain l:z1 and _i22; 

2. Re!:,rress X 1 and X2 on ,l and retain , 1 and '2; 
3. Compute tr (P1P 22) and tr (P2P21); 

4. Construct vectors ,i.,1 and ,i1, 2 of the form: 

• • k1 - tr (P;P,1) 
,ljpi = .!'.~ - n - ko - k, ~ 

5. Rcbrrcss (X1 l[lp1] and (X2 1[1, 2) on ,l and 
Al;j = t-statistic on the coefficient of[i,, . 
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Table 11.4 Computational Outline 
Number of 

Test Regressions 

(8) JA-Test 6 
(2.47) 

(9) Orthodox-Test 3 
(2.7) 

Additional Calculations? 
Scalar Matrix 

No No 

Yes No 

Basic Steps in Computation 

I. Regress X1 and Xl on l and retain li and iz; 
2. Regress Z1 on ll and Zl on ,l1 and retain lil and ll•• 

respectively; 
3. Regress (X1 lil1] and [Xl li1l] on J! and 

JA,i = t-statistic on the coefficient of,l1;. 

I. Regress x• = [XI .z. I Zl) on l and retain SSE; 
2. Repress X1 and Xl on J!. and retain SSE1 and SSEz; 
3. Compute: 

(SSE, - SSE)/k1 
FIJ= • 

SSE/(n - ko - k, - k1) 



III. The NJ-Test: A Modified JA-Test 

3.1 Introduction and Motivation 

From the dicsussion of the various testing procedures derived under the two non-nested ap-

proaches (CLR and AN), it is clear that one of the two tests having a known, finite-sample null 

distribution - namely Fisher and McAleer's JA-test - has some appealing characteristics. Having 

an exact null distribution is in itself an advantage of this test over the others since it insures the 

correct size of the test (i.e., the nominal significance level of the test is maintained). Also, the test 

statistic is unbiased under the null hypothesis. By contrast, the simulated results, both in past 

studies and that in Chapter IV, showed that maintaining the nominal size was difficult for the 

asymptotic tests, except where tedious small-sample modifications were employed. In addition, the 

computation process for obtaining the JA-test involves only six regressions and can be read directly 

from the computer output of any standard regression package. Correct size and ease of computa-

tion are both sound reasons for promoting the use of the JA-test in practice. 

However, there is another side to the story. As discussed briefly by Godfrey and Pesaran 

( 1983), both of the AN procedures have problems in terms of power when the number of regressor 

variables in the competing models is unequal. The power referred to here is the ability of making 

the correct inference from the pair of tests performed on a given pair of competing models. In 

particular, the JA-test with its "conservative" estimate of the fit from the alternative model tends to 

favor the null too much when it has fewer parameters. In other words, when a false null model 

with k1 (f<o = 0) parameters is maintained against the true model with k2 > k1 parameters, it seems 

to be fairly difficult to reject using the JA-test relative to the other tests. Although this conclusion 

is based on observed behavior under a limited set of model conditions, the pattern appeared to be 

consistent. Consequently, Godfrey and Pesaran dropped the AN procedures from further Monte-

Carlo investigation. 
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The concern with the JA-test then is its reduced power stemming from the derivation of the 

entire test statistic, even the estimates from the alternative model, under the maintained hypothesis. 

Similar to Atkinson's test in this approach, the question becomes, is this nconservative edgeu really 

a drawback, or can it be used to the researcher's advantage. Too much power of the test in rejecting 

the null hypothesis (i.e., each individual test of hypothesis, not each pair) may be dangerous when 

there are multiple hypothesized models to be considered. In such a case, the researcher would be 

lucky if at least one of the models was close enough to the true underlying relationship to be con-

sidered valid. Therefore, the issue becomes "How much power is goodr when considering the 

possibility of both models under test being false. This issue is addressed in depth in the Monte-

Carlo study discussed in Chapter IV. But for immediate purposes, it raises some doubt in the use 

of this power argument as a means of dismissing the practical use of a test such as the JA-tcst. If 

there were a means to modify the JA-test to improve the power in these circumstances while re-

taining its exact null distributional properties, a useful testing procedure may possibly result. 

On a parallel note, the properties of the Orthodox F-test are also worthy of attention. As it 

is argued by some, the Orthodox F-test is really not a non-nested hypothesis testing procedure since 

its formulation of a comprehensive model is not based on the nesting schemes suggested by Cox. 

However, it can be used to provide meaningful information regarding the appropriateness of a given 

model formulation. Specifically, it has an exact known distribution under both the maintained and 

alternative hypothesis. Because of this property, power in terms of the ability of the test to reject 

the false null model given that the alternative is true (i.e., one half of the inference process) can be 

investigated analytically. This F-test is indeed the only test which provides such information. 

However, possible problems with the power of the test caused by strong collinearity between the 

non-nested sets of regressors cannot be ignored. 

Both of these testing procedures, the JA-test and the Orthodox F-test, have their strengths 

and weaknesses. Therefore, the proposed modification to the JA-test involves the incorporation 

of the more appealing aspects of the F-test into the JA-test formulation. Thus the resulting test 

statistic represents a compromise between the two testing procedures. 
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3.2 Proposed Modification and its Impact on the Test 

The proposed modification to the JA-test is the substitution of the estimated error variance 

from the artificially nested model, 

(3.1) 

with that from the comprehensive model approach, 

(3.2) 

in the JA-test statistic. This new JA-test, named NJ, for testing H1 against H2 (2.4) is of the form: 

(3.3) 
J!.'M1Pz2P1J!. = ~~~~~~~~~~~~~~~~~~~-

{ (J!. 'P 1Pz2M1Pz2P1 J!.) [ J!.' M J!. / ( n - ko - k1 - k1)J} 1/2 

In this expression i MJl. denotes the unrestricted error sum of squares (SSE) from the regression of 

the set of regressors [XI Z1 I ZJ on Jl.· 

What is the motivation for making such an adjustment, and what has been gained, if any-

thing, in terms of actual test performance? To see the possible advantages, examination of the 

properties of such a test is warranted. In particular, of utmost importance is the finite sample 

distributional properties of the test statistic under both the maintained and alternative hypotheses. 

It will be helpful to also examine properties on the basis of asymptotic theory in order to make 

analytic comparisons between the NJ-test and the remaining non-nested testing procedures which 

lack known finite sample behavior. However, before the actual distributional nature of the NJ-test 

is addressed, some background on the distributional properties of the JA-test will be presented. 
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3.2.1 The Distribution of the JA-test Under the Maintained Hypothesis 

The JA-test was derived by Fisher and McAleer (1981) as an asymptotically valid (standard 

normal) test for hypotheses involving two non-nested regression models. Pesaran ( 1982b) was the 

first to realize that the resulting test statistic followed an exact t-distribution under the maintained 

hypothesis when it was a linear regression model. This result is based on the application of Graybill 

and Milliken' s work ( 1969, 1970) regarding the distribution of quadratic forms involving idempotent 

matrices which contain random elements. The results used in the proof of the exact distribution 

of the JA test statistic under H1 are based on Theorems 3.1 and 3.2 in Graybill and Milliken (1969). 

These are given in Appendix A. l. 

Because this theory will be used in the development of the exact distribution of the NJ test 

statistic, it is worthwhile to take an in-depth look at its application to the JA-test. The following 

development was presented by Fisher ( 1983) to show that the square of the JA test statistic follows 

a central F-distribution with (l,n - ko - k; - 1) degrees of freedom under the maintained hy-

pothesis H1 • This result will also bring to light one motivating factor for making the proposed 

modification. Consider the form of JAf2: 

JA~2 = (3.4) 

in which 

n - ko - k1 - 1 · 
(3.5) 

For computing the SSE for cr}A, the matrix of regressors Xi = [XI Z1 I P22Pi.E] is regressed against 

the vector of dependent variable observations .E· Since the set of regressor variables contains the 

consistent estimator of Z21J. under expectation from H1, namely, P22Pi.E, it is clear that the quadratic 

forms for SSE and regression sums of squares (SSR) under the JA artificial model involve matrices 
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containing random elements. All testing procedures constructed under the general AN framework 

have the same difficulty which stems from the use of consistent estimators of the form Rg. (For 

additional remarks concerning the general AN family, see Section (3.4).) Consequently, it is nee· 

essary to apply the theory of Graybill and Milliken ( 1969) to obtain the distributional properties 

of the resulting test statistic. The J A t2 test statistic can be reexpressed in the following form: 

(3.6) 

where P0 is the orthogonal projection onto a subspace, co0 , (of the space spanned by 

X = [XI Z1 I Z2] = [X1 I Z2]), which is defined to be the direct sum of co1 (span of X1 ) and the span 

of P z2P il_. Fisher represents this subspace as 

(3.7) 

since M1 is orthogonal to the projection matrix, P1 , onto co1• 

From this, an additional subspace, co3, is considered which is defined to contain all scalar 

multiples of M1PZ2P;g. Then, since co1 and co3 are othogonal to one another, the projection matrix, 

P3 onto co3, is equivalent to [P0 - P1]. In particular, P3 representing the orthogonal projection onto 

co3 can be expressed as : 

P3 = Po - P1 = M1Pz2P1g[J?.'P1Pz2M1Pz2P1g]- 1J?.'P1Pz2M1 
= _q[_q'_q]- l_q' 

(3.8) 

Consequently, both the numerator and denominator of the JA-test are quadratic forms con-

taining random elements in their designated projection matrices. Therefore, the distributions of 

both of the quadratic forms can be shown to be central x2 variates under H1 through the application 

of Graybill and Milliken's Theorem 3.1 (hereafter referred to as Theorem A.3.1). The theorem is 
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relevant since the elements of both P3 = P0 - P1 and /" - P0 are Borel functions of the random 

vector PrJ!.. = KJ!. . Also there exists a constant matrix L = A11 = I" - P1 whose rows are con-

tained in the orthogonal complement of the row space of K (i.e., LK = 0) such that all the nee-

essary conditions are met by both quadratic forms, i.e., 

(3) tr[P0 - PJ = 

(3.9) 

tr[!" - P0] = n - kn - k1 - 1; 

and 

Then, invoking Theorem A.3.1 from Graybill and Milliken, the following hold: 

J!.'[Po - P1]J!. Ht 

<Jf xfo (3.10) 

J!.'[f" - Po],E Ht 
2 

<Jf X(n- *o - *t -1)· ( 3.11) 

In addition, since [P0 - P1][!" - P0] = 0, the numerator and denominator quadratic forms of 

the JA-test are independent by Theorem 3.2 of Graybill and Milliken (hereafter referred to as 

Theorem A.3.2). Therefore, 

H1 
J At 2 F(J , n - ko - k1 - I)' (3.12) 

or equivalently, 

H1 
JA12 t(n- ko - k1 - t) · 
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However, the exact nature of the distribution of the JA test statistic does not hold under the 

alternative hypothesis, H2 • In particular, u'Jln - P0]u2 # 0, or any other constant under H2• 

Therefore, even if an exact distribution holds under H2 for the numerator and the denominator 

quadratic forms, the denominator would be noncentral in nature. At a minimum, an alternative 

estimator of the error variance is needed if any exact distributional properties are to be obtained 

under H2 using this approach. The use of the comprehensive model approach may be advantageous 

here. Therefore, a closer look at these alternative variance estimators would be beneficial. 

3.2.2 The Error Variance Estimators 

In the general hypothesis testing framework, when a hypothesis H 1 is maintained against hy-

pothesis H2 , the test statistic is (constructed using information) based on the assumption that the 

null hypothesis H1 is true. In the situation at hand, the choice of the error variance estimator must 

necessarily give consideration to the maintained hypothesis. An estimator which is unbiased for 

cri when expectation is taken under H 1 would be ideal from this standpoint. For both of the esti-

mators, cr]A and cr}, this property holds. For the case of the JA-test, this result follows directly from 

(3.11 ). This result is readily observable for the Orthodox F-test, where the error variance estimator 

is based on the unrestricted SSE from the comprehensive model in (3.2). In fact, 

2 2 
er I X(n - ko - k1 - k2) 

(n - ko - k1 - k2) 
(3.13) 

Given this information, either estimator is reasonable for use in the testing procedure. 

However, it is interesting to compare the variance associated with the two estimators as a basis to 

compare their null behavior. Since both are unbiased, the variance is equivalent to the Mean 

Squared Error (MSE) of the estimator. For the JA derived estimator, 

2crt (3.14) 
(n - ko - k1 - 1) ' 
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whereas for the comprehensive approach, 

2crf (3.15) 

This result implies that under H1, MSEXaJ] ~ MSE1[0-3 .. J, and that as the number of non-

overlapping regressor variables in the alternative hypothesized model increases, the disparity be-

tween them becomes larger. Therefore, under H1, both estimators provide unbiased estimates of 

the error variance with the JA derived estimator having smaller variance in general. 

Given these comparisons under H1, attention now centers on the behavior of these variance 

estimators under the alternative hypothesis, H2• As indicated previously, Graybill and Milliken's 

work will not be applicable in an unconditional sense since J.!,'2[/n - P0]u2 :;!: A., a constant. In 

particular, 

(3.16) 

The second form of the SSE is a direct application of Pesaran's derivation for the general family 

of AN procedures given in (2.49). This estimator does not follow a x2 distribution, central or oth-

erwise, under the alternative hypothesis. 

On the other hand, the comprehensive model approach yields an estimator for the true error 

variance under both the maintained and alternative hypotheses, and more specifically, 

2 2 
0'2 X(n- ko - k1 - k2) 

(n - ko - k1 - k2) 
(3.17) 

Then two arguments for making the proposed modification have been presented: 
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( 1) cr} is unbiased for the true error variance under both H1 and H2 ; 

(2) cr} has an exact central x2 distribution under both H1 and H2• 

These arguments also provide information about the behavior of the denominator quadratic form 

of the NJ-test but not about the distributional properties of the test statistic itself. 

3.2.3 The Distribution of the NJ-test 

Recall that the JA-test followed an exact distribution under H1 and that 

"2 
Nlf 2 = JAf 2 [ cr!; J 

(JF 

Therefore, since cr} follows a central x2 distribution under both H1 and H2, all that is necessary to 

formulate the exact distribution of the NJ?2 test statistic is to show that .!([P0 - P1].f and .!(M,f are 

independent. By Graybill and Milliken's Theorem A.3.2, this is easily shown since the matrix 

M = In - X'(X''X')- 1X" can be considered a constant Borel function of PiJ!. . Then since 

L'ML = M\MM1 = M, M = 1vf2, tr(M) = n - ko - k1 - k,. and !!'2MJ!2 = 0 , the only 

condition left to be shown is that [P0 - P1]M = 0. This is indeed the case since by (3.8) the 

product can be examined in the following manner: 

[P0 - P1]M = !J.[!J.'!J.]- 1.!(P1P22M1M 

= !J.[!J.'!J.]- 1.!(P1[PZ2 - Pz2PJ[In - P] 

= !J.[!J.'!J.]- 1.!(P1[P22 - P22P1 - P22P + P22P1P] 

= !J.[!J.'!J.]- 1.!(P1[P22 - P22P1 - Pz2 + P22PJ 

since P = X'[X''X']- 1X'' and X' = [X1 iz2]. Then, 
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Therefore, since .!([P0 - PJ,E and.!( M,E are independent, central x2 random variables, then 

2 
H1 

NJ12 F(1,n- ko - k1 - k2) • (3.18) 

or equivalently, 

H1 
NJ12 t(n - ko - k1 - k2) • (3.19) 

As indicated previously, the exactness of the distribution of the test statistic under H1 is val-

uable since it maintains the nominal size of the test. However, in order to evaluate the power, in 

some sense, of this non-nested testing procedure, the distribution of the NJf2 test statistic under the 

alternative hypothesis is needed. Under H2, .!([P0 - P1],E and .!(M,E remain independent of one 

another and cr} still follows a central x2 distribution. However, the issue of the distribution of the 

numerator quadratic form under H2 is still unresolved. To examine its distribution, it is first nee-

essary to make an amendment to the Graybill and Milliken Theorem 3.1 and the proof thereof. 

As evidenced by its application to the JA-test, Theorem A.3.1 provides a means to obtain an 

unconditional x2 distribution for quadratic forms based on matrices with random elements. How-

ever, this result is rooted in the fact that the conditional distribution of a quadratic form 

.!(A,E I K,E = (K,E)' is the same non-central chi-square for all possible values of K,E = (K,E)'. (See 

Appendix A.l). The necessary condition for this unconditional distribution is that u'Au = A., 

where A. is a constant (and the resulting noncentrality parameter is A./2). 

If condition (4) does not hold with probability one, but the remaining conditions of Theorem 

A.3.1 do, then the distribution of the quadratic form.!(A,E would still be non-central chi-square but 

one which is conditional on Ki_ . In addition, the value of the noncentrality parameter is a random 

variable conditional on K,E. Consequently, a somewhat weaker distributional result is obtained. 
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By applying this result to the distributional development of l([P0 - P1J.E under H2, the fol-

lowing theorem can be stated for the statistic of the NJ-test: 

Theorem 1. For testing H1 maintained against H2 as defined in (2.4), 

the distribution of the NJ test statistic under the alternative 

hypothesis, H2, conditional on P i,E = ,E1 is 

H2 
NJf2 lpil = !; F'(t,n- ko - k1 - k2),'AN1 

where 

Under H2, l([P0 - P1],E are independent with 
H2 

i M,E - O"~ X~n- ko - kJ - k2) • The amendment to Theorem A.3.1 of 

Graybill and Milliken ( 1969) can be applied to 

l([P0 - P1],E under the assumption that H2: ,E = X2L3,2 + ~2 
is the true model and since conditions (1)-(3) hold with probability 

one. This allows for the distribution of l([P0 - P1],E conditional 

on Pi,E = 'to be xfo' with the noncentrality parameter 

conditioned on Pi,E given to be: 

ANJ = ~ 1!'2[Po - P1Jl!2 
0"2 

= 1 {L3.'2X'2M1Pz2P1J!J {E'P1Pz2M1X2L3.2} 
cr~ {E'P1Pz2M1Pz2P1J!.} 

(3.20) 

(3.21) 
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Consequently, the random variable N.ff2 conditional on PiJ!. = ' 
follows a non-central F distribution with (1, n - ko - k1 - k2) 

degrees of freedom and noncentrality parameter, A.NJ, given in (3.21). 

Through Theorem 1 and earlier discussion, distributional information about the NJ test sta-

tistic has been obtained. At first glance, the distribution of NJf2 under H2 being exact only when 

conditional on PiJ!. = 'does not appear to be a very meaningful result. However, from a practical 

point of view, the motivation for examining the non-null behavior of the test statistic is to gain 

information about the power of the testing procedure. In this sense, it is not particularly detri-

mental to this power issue to examine properties conditional on ~1 , the fitted values of g under 

H1, the maintained hypothesis. In any real applications of this procedure for non-nested linear re-

gression models, the fitted values are readily available, and can be considered "fixed" for a given set 

of data. Therefore, it is not unreasonable to examine the power based on these observed values. 

An analogy can be made to the case where cr2 is a nuisance parameter in the test on the population 

meanµ of a normal distribution, although an unconditional result was obtainable in this particular 

situation when s2 was used to estimate the unknown population variance. 

Although the noncentrality parameter of the numerator x2' is a random variable itself, general 

comments concerning the non-null behavior of the test statistic can be made by investigating the 

distribution based on the noncentrality parameter evaluated at g = £,.(l,) = X2!i2 • This substi-

tution by no means yields the expectation of the noncentrality parameter under H2 , but it can 

provide a basis from which to gain insight about the power of the testing procedure. Utilizing this 

substitution, 

A.NJ = ANJll = E2Q'.) 

= Ol'2X'2M1Pz2P1X2!h}2 (3.22) 

.!i'2X'2P1Pz2M1Pz2P1X2.!i2 
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By making use of the conditional distribution under H2 , without the above simplification, the 

power of the NJ-test can be discussed in the following manner: 

Power NJ = P[ Reject false H1 maintained against true HJ 

= P[N.ff2 > F{1,n- ko - k1 - k2), l-a] 

= P[F(I, n- ko - k1 - k2). 'NJ > F{1, n- ko - k1 - k2), I-a]. 

(3.23) 

This expression is not the power associated with making the correct inference regarding a pair of 

tests on a given pair of hypothesized models, H1 and H2• This definition of power is concerned only 

with the probability that the non-nested testing procedure leads to a correct rejection of a false null 

model maintained against the true model. Therefore, it relates to only one half of the actual 

inferential process for a given pair of hypothesized models. 

Since the Orthodox F-test based on the comprehensive model approach is the only other 

testing procedure which provides an exact non-null distribution of its corresponding test statistic 

(under H2), it is the only non-nested test to which analytic power comparisons can be made from 

the NJ-test on a finite sample basis. The only realm on which to make comparisons between the 

performance of the NJ-test and the remaining asymptotically valid tests is in the context of large 

samples. Therefore, power comparisons must be made on the basis of asymptotic power under 

local alternatives. 

3.2.4 Asymptotic Power Under Local Alternatives for the NJ-test 

As presented in section (2.3), Pesaran ( 1983) defined a sequence of so called local alternatives 

H2n, given in (2.50), which approach the maintained model H1, given in (2.4), as n approaches in-

finity; i.e., 

(2.50) 
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where o(.) denotes the small order relation, 1 is a n x 1 vector of l's and B and ~ arc 

(ko + ki) x k2 and n x ki nonzero matrices of constant, with the restriction on ~ such that 

1im (2.51) 
n-+00 

exists and is nonzero. On the basis of local alternatives constructed in this manner, the asymptotic 

power of the NP-test can be formulated. 

Theorem 2. Under local alternatives as defined in (2.50) with condition 

(2.51) met, the asymptotic power of the NJ2 -test, 

Proof: 

P NJ , is given by: 

PNJ = 1im P[NJf2n ~ X~l),i-a I H2n] 
n-+00 

= P[x2 '<i>.l'IN12 ~ Xto.i-aJ 

where riN12 

For any pair of hypothesized models Hi and Hw 

whether H2i is a local alternative of Hi or not, crb 

follows a central x2 distribution. Therefore when the 

(3.24) 

comprehensive model formulation is employed for a sequence of local 

"2 
CJF,2n 

2 
<Jin 

alternatives to Hi as in (2.50), this result is still valid. Then, 

for the local alternatives H2n , 

Therefore, plimH2n (cr}.2n/crt,) = 1. Consequently, the 
n-+ 00 

asymptotic power of the NJ2 -test under local alternatives is 
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based on the numerator x2 distribution and is given by: 

PNJ = lim P~'[Po - P1]~ :<:: Xf1),1-alH2J 
n-+00 

= P[x2'ci>. TINJ2 :;;:: Xfo.1-aJ 

.r'2 U?;12 
where 11N12 = 111«<2 = oj 

as shown by Pesaran (1982b, 1983). 

As expected, P NJ = P1«< since the tests are asymptotically equivalent under the assumption 

of local alternatives. In other words, the asymptotic power of the NJ- and JA-tests are equivalent 

under local alternatives. Therefore, the comparisons under local alternatives made between the 

JA-test and the others are equivalent to such comparisons made between the NJ-test and others. 

At this point, both the finite sample and asymptotic properties of the modified JA-test have been 

derived. So, it is now important to make use of this information about the behavior of the NJ-test 

to judge whether ot not it performs well relative to the other non-nested testing procedures. De-

tailed results for addressing this issue can be resolved in a practical way in the Monte Carlo study 

of Chapter IV. Therefore, the comparisons to be presented in this next section are based on the-

oretical considerations. 

3.3 Comparisons With Other Testing Procedures 

3.3.1 Estimated Variances Under H1 for the JA- and NJ-tests 

The numerator of the JA and NJ test statistics are identical. Therefore, any differences in 

their inferential ability will stem from the denominators: the estimated error variance. Under the 

alternative hypothesis, the JA derived error variance estimator does not follow an exact finite sam-
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ple distribution and is clearly not unbiased. However, using the amended version of Theorem A.3.1 

(Graybill and Milliken, 1969), it can be seen that 

2, 
X (n - kn - k1 - I), AJA (3.25) 

where 

(3.26) 

Consequently, even on a conditional basis, the JA-test will not be exact under the alternative since 

its denominator is a non-central, as well as conditional, x2 • Therefore, the only other way to 

compare the NJ-test to its parent test is on the basis of their error variance estimates under H1• 

As was indicated in Section 3.2.2, under H1 the two variance estimates are unbiased, with that es-

timator from the JA-test having smaller variance in general. However, for a given sample of data, 

the two estimators will not yield the same estimates. Therefore, it is worthwhile to compare the 

estimates in terms of their magnitudes under certain model conditions. In particular, each of the 

corresponding SSE's can be written in a more telling form: 

and in a similar fashion for the F-test while employing more of the results about partitioned ma-

trices of the form X = [X1 I ZJ, the following expres.ssion for the F-test's estimated variance is 

obtained: 

(3.28) 

It is clear that the SSE under either formulation of the models will be a reduction from the simple 

H1 SSE. In addition, the SSE from the F-test will be smaller in general. But to what degree de-

pends on the number of non-overlapping variables, as well the relative fit and other characteristics 
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common to both models. More importantly is the fact that the different degrees of freedom prevent 

the making of any clear cut comparisons of the two variance estimators. 

3.3.2 Analytic Power Comparisons Between the NJ- and F-tests 

Since the Orthodox F- and NJ-tests are the only two which have exact finite sample distrib-

utions under the alternative hypothesis, H2 , they are the only two for which power can be discussed 

in a finite sample setting. Because both tests have the same central x2 denominator, namely the 

SSE from the comprehensive model, the real comparisons of power must be based on the numer-

ator x2 's: particularly their degrees of freedom and noncentrality parameters. 

Notice that the Orthodox F-test has the following distribution under H2 : 

where f..F 

(3.30) 

Therefore, if the power of the comprehensive F-test is defined in the same manner as the power 

of the NJ-test, the following expression for power is formulated: 

= P[ Reject false H1 maintained against true H2] 

P[Fi2 > F(k2,n- *o - *I - k2), 1-J (3.31) 

= P[F(k2,n- *o- *I - k2),J..p > F(k2,n- ko- k1 - k2), l-a]. 

In order to examine the power of these two tests it is important to realize that the character-

istics of the models play a great role in determining the magnitude of the noncentrality parameter 
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as well as the number of degrees of freedom. Such characteristics include the number of regressors 

(overlapping and not) in the alternative models, the amount of collinearity between the competing 

sets of regressor variables and the quality of fit on the true model itself. Consequently, it is not 

possible to draw any absolute conclusions about one test having greater power than the other uni-

formly. In addition to the varying model characteristics influencing power, it is important to keep 

in mind that the noncentrality parameter of the N.P-test is really a random variable, which com-

plicates even more the comparability of the power of the two tests. In other words, even though 

the above model characteristics may be known, the actual value of the noncentrality parameter for 

the NJ-test, and thus power, varies with the actual observed ,E (i.e.,~). 

In the case of the NJ-test, then, the substitution of £.i<J!..) for 2 in the conditional portions of 

the noncentrality parameter will be used to simplify the examination of the behavior of the 

noncentrality parameters, and thus power, in general. At this point, however, there is no evidence 

about how misleading such results may be in regard to the true conditional value of the 

noncentrality parameter. In order to evaluate the magnitude of such discrepancies, the observed 

differences between the resulting power under the two approaches are computed in the Monte Carlo 

study. In the limited context of the simulation design presented in Chapter IV, some empirical 

evidence was obtained through the calculation of the power of the NJ-test in the detection of a false 

null model maintained against the true alternative using both the observed 2 (in P t,E ) as well as the 

expectation of ,E under H2 (i.e., XJi2). Then as a measure of the similarity of these two methods, 

the squared deviation between the two calculations of power was computed for each repetition of 

the process and an average squared deviation between the power and "expected" power was com-

puted. Although these results are not presented until Chapter IV, they do indicate that the dis-

crepancy between the "expected" and the true power was minimal. Therefore, since this 

substitution could provide helpful comparison information, the current discussion of power centers 

on the "expected0 power using A.NJ in the case of the NJ testing procedure. 

As far as the power comparisons are concerned, it is clear that not only are the noncentrality 

parameters unequal in general, but also the numerator degrees of freedom from the two tests can 
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be quite different depending on the number of non-overlapping regressors in the (true) alternative 

model. Specifically, as k,. becomes larger, the difference in the numerator degrees of freedom 

("2 - 1) will also increase. What influence does this have on the overall power of the tests. To see 

its effect, the results of Das Gupta and Perlman (1974) should be utilized. 

Their work showed that the power function of a test based on a non-central x2, with a fixed 

value of the noncentrality parameter, is strictly decreasing in degrees of freedom. Therefore, in the 

case where A.NJ= Ap, this result implies that the power of the NJ-test would become increasingly 

larger than that of the F-test as the number of non-overlapping variables in the alternative model, 

"2, increases above 1. However, based on the differences in the noncentrality parameters, it is un-

known how likely this is to be the case. It would be useful, then, to examine the model conditions 

which lead to such results as well as those which lead to the contrary. 

It is therefore necessary to evaluate and compare power under given cases of the model 

characteristics. Since there are an infinite number of possible model conditio.ns to consider, a lim-

ited number of cases will be examined by imposing certain constraints on the forms of the models 

as well as the controlling parameters indicated above. Clearly, the numbers of regressors, ko, k1, and 

"2, the true error variance er~ and the collinearity between the models (as controlled through the 

squared canonical correlation between the two sets of regressors) are characteristics of the model 

which greatly influence the power and thus should be controlled when examining power. In addi-

tion, for this investigation of power, the design structure for the small sample Monte Carlo study 

(Chapter IV) will be invoked on the models as a means of obtaining a reasonable number of cases 

which are representative of the more general setting. The exact structure of the true and false 

competing model generation is discussed in Section 4.2.3. However, the implications of the im-

posed structure which concern this examination of.power are that the regressors within each model 

are independent of one another, the amount of collinearity between the competing sets of regressor 

variables is controlled through the squared canonical correlation p2, the fit of the true model is 

controlled through its R2 and that there are no overlapping variables in the two competing models 
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(i.e., ko = 0). The formulation of the variance-covariance structure between the sets of regressor 

variables for this class of models is given in Appendix B.1. 

For the purpose of investigating power, it is necessary to look at the noncentrality parameters 

from the two tests under this model framework. The derivations of the noncentrality parameters 

for both the NJ- and F-tests are given in Appendix B.2, and the results are as follows: 

(3.32) 

(3.33) 

Specifically, without a finite sample of regressor variables specified, these results on the form of the 

noncentrality paramet are derived by substituting the variance-covariance matrices in for the X';~ 

matrices. Such a substitution, although necessary for obtaining some basis for comparison, will 

pull the power down quite a bit from what it actually would be. Notice the similarity between the 

two noncentrality parameters under the constrained class of competing models. One disconcerting 

aspect, however, is that past empirical evidence has indicated that the amount of collinearity be-

tween the competing models has a strong influence on the resulting power. This apparent influence 

gets completely "washed out" in this design for the models. Clearly, this result implies that the use 

of this design on the competing models leaves some unanswered questions with respect to this 

feature's effect on power. On the other hand, the value of the noncentrality parameter and the 

corresponding power can be viewed as being averaged over all levels of p2, the strength of the 

collinearity between the competing models. 

Also, it is interesting to note that the only difference between these two noncentrality pa-

rameters is whether or not all of the p21 's are included in the summation or only those which cor-

respond to regressor variables which were non-independent of regressors in the true model. 
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Although this may seem puzzling at first, it is reasonable when the nature of the two testing pro-

cedures in terms of numerator x2' s i~ considered. 

First consider the form of the quadratic form in the numerator of the NJ-test, which can be 

expressed as 

where Z 2 = X2 since ko = 0 in the design class under consideration. Any pieces of information 

in the H2 model which are independent of the regressors in the H1 model (i.e., orthogonal regressors) 

are eliminated from increasing the quadratic form's sum of squares. This condition is a direct result 

of the NJ (and JA) approach in that it forces the alternative model to explain the behavior of the 

estimated expected value of the dependent vector.!:'. under the assumption that the maintained model 

is indeed valid. Therefore, in the resulting regression, the fitted values ,i21 = P1P7J!. (since 

P2 = P22 in this setting) depend only on the information coming from those regressors in the al-

ternative model which are non-orthogonal to the regressors in H1• Consequently, even though the 

resulting quadratic form is based on the projection of.!:'. onto!], !l also will exclude the explanatory 

information of those orthogonal regressors through the above original projection of X2 onto 

,E, = PiJ!.. 

On the other hand, the F-test is based on the projection of.!:'. onto the full comprehensive 

model (regressors [X1 I X2]). Therefore, the explanatory information from all the regressor variables 

in X2 , which is in addition to that from those regressors in X1, is included in that quadratic form in 

the numerator. Consequently, the difference in the formulation of the tests manifests itself in this 

apparent difference in the noncentrality parameters. However, having such orthogonal regressors 

between models is highly unlikely in practical situations, and thereby indicates another limitation 

in this particular formulation of the models. 

Consequently, the information gained concerning the relative power of these two testing 

procedures is by no means comprehensive, but it does provide some general trends regarding the 
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influence of various model characteristics on the power. Based on this formulation, power curves 

have been constructed for various combinations of the number of regressors in the two models, 

R2 for the true model and p2 • However, in order to actually compute the power based on the 

"F-test" construction, it is necessary to specify the true values of the P2/s as well as the sample size 

n. For this situation (as in the simulation design), all the P2/s have been set to 1 and two sample 

sizes, n = 20 and 40, were used. Several of these power curves are given in Figures 3.1-3.6. 

Based on the examination of the plots, it is evident that the NJ-test tends to be more powerful 

than the F-test when the number of non-overlapping variables in the true models is less than or 

equal to the that in the false alternative. However, the conservative approach used in the JA for-

mulation as it applies to the numerator quadratic form of the NJ-test makes itself evident in terms 

of the F-test having greater power than the NJ-test when the true alternative model has more 

regressors than the false null model. Although this reduction in power is not great for most cases 

and the overall power of the NJ-test tends to be at least comparable with that of the F-test in a 

larger more general class of conditions on the models, it still warrants close consideration when it 

comes to practical use of the procedure. 
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Once again, it is important to point out that these comparisons are based on a rather limited 

set of cases on a somewhat restrictive set of models. Therefore, the above results can be considered 

indicators of the general trends in the behavior of the power under varied model conditions for both 

the NJ- and F-tests. Clearly, there is still much to be learned about the relative power of these tests. 

In particular, it is the power of making a correct inference based on a pair of tests on a given pair 

of competing models, and not that of rejecting the false model only, which is truly of interest. The 

Monte Carlo study discussed in Chapter IV provides a supplement to and a reinforcement of the 

trends in power observed here. 3.3.3 Asymptotic Comparisons 

Since all of the non-nested testing procedures for the case of two linear regression models are 

only asymptotic in nature, with the exception of the NJ- and F-tests, it is necessary to make analytic 

comparisons between the various procedures through the use of asymptotics. This situation in-

duces the return to the concept of local alternatives and the asymptotic power of the various pro-

cedures under them. As it was indicated in section 3.2.4, the asymptotic power of the NJ-test was 

equivalent to that of the JA-test. From this, some comparisons between the NJ-test and the others 

in this asymptotic setting are apparent (refer to Section 2.3). First, 

(3.34) 

under all cases of local alternatives. In addition, since its asymptotic power under local alternatives 

is equivalent to that of the J- and JA- tests, the NJ-test like the other two achieves maximum local 

power for Pesaran's general class of AN testing procedures. (Even though the NJ-test is a modified 

version of one of the general family of AN procedures.) Then, in regards to the Orthodox F-test, 

it is evident (from Pesaran, l 982b, 1983) that 

(3.35) 

with the equality holding when the number of additional regressors in the local alternative sequence 

kin is only one and strict inequality holding when kin > 1. Clearly, in terms of its asymptotic power, 
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the NJ-test has lost nothing relative to the JA-test and in some cases has gained power over the 

Orthodox F-test. Based on these results and the finite sample comparisons given in section 3.3.2, 

it appears that the NJ-test as a compromise between the JA- and F-tests may have some real ad-

vantages. 

However, there is still much to be investigated which can only be grasped through the use 

of simulation studies. Of particular interest is the comparison between the observed performance 

of the JA- and the NJ-tests. In other words, empirical evidence must be compiled in order to judge 

whether or not the proposed modification accomplished what it was intended to do in terms of 

increased power in cases where the JA-test tended to be conservative. Since the remaining com-

parisons can only be made on the basis of empirical evidence, the Monte Carlo study and the results 

thereof is the next topic presented. 
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IV. A Monte Carlo Study of Finite Sample Performance 

4.1 Introduction and Objectives 

The purpose of this Monte Carlo study is to produce a practical comparison of the non-

nested testing procedures in the case of linear regression models. Such a comparison is needed in 

order to formulate guidelines which will enable the researcher to employ those non-nested testing 

procedures which will yield the most reliable results. However, as was indicated in the review of 

the testing procedures in Section 2.3, the inferential ability of each test is a function of the charac-

teristics of the models under test. Therefore, under various conditions regarding the formulation 

of the competing models, comparisons will be made on the basis of observed power, observed type 

I error probabilities, and rankings based on p-values among the testing procedures. The basic 

underlying design for this study is the simulation work embarked upon by Godfrey and Pesaran 

( 1982, 1983). In the context of this basic design, the current study will emcompass a larger number 

of testing procedures as well as the effects of other model features on the performance of the tests. 

There are two main objectives in addition to an investigation into the influence of basic model 

characteristics. One is the performance of the test procedures under the violation of the normality 

assumption on the distribution of the disturbance terms. The performance will be evaluated under 

both skewed and symmetric distributions for competing models constructed with varying numbers 

of regressor variables, quality of fit on the true model and degrees of collinearity between the 

competing sets of regressor variables. Through these results, evidence about the robustness of the 

tests to violations of the normality assumption on the disturbances will be compiled. 

Similarly, the worth of these tests lies in the ability to produce a correct inference regarding 

a pair of models, and not just in its ability to discriminate between the two models where one is 

indeed correct. Therefore, it is a parallel objective to evaluate how adequately the testing proce-

dures can correctly indicate the presence of two false models. This issue is of particular importance 
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in practical situations, such as the demand analysis in Chapter V, where the researcher has more 

than two models to investigate. 

4.2 Design Structure 

4.2.1 Control Parameters 

Jhe structure of this study relies heavily on the work of Godfrey and Pesaran (1982,1983) 

which was mainly concerned with the performance of the Cox test, its small-sample adjusted ver-

sions and the Orthodox F-test in the case of two competing linear regression models. Also, in their 

1982 study, the main goal was to evaluate the improvement accomplished by the small-sample ad-

justment to the J-test (AJ-test). In the more comprehensive study, some limited comments were 

made regarding the performance of the J- and JA-tests in the preliminary stages of their work. 

However, due to their apparent deficiencies in cases having unequal numbers of regressor variables 

in the competing models they were quickly dismissed from further investigation. With respect to 

the model parameters to be controlled within the study and the methodology by which the com-

peting models are constructed, the Godfrey and Pesaran study provides a sound foundation on 

which to build. 

In their study, two non-normal distributions for the disturbance terms were considered: the 

chi-square with 2 degrees of freedom and the log-normal based on the transformation of a normal 

with mean zero. Both distributions are skewed and were adjusted so that they would have mean 

zero and a variance which yielded the appropriate R2 for the true model. Therefore, this study will 

employ these two skewed distributions as well as two symmetric distributions: the truncated 

normal and the Student-t with 3 degrees of freedom. Since one has a shorter and the other a heavier 

tail than the corresponding normal, some additional information regarding the robustness of the 

various non-nested testing procedures to the normality assumption can be obtained. 
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Since the ability of the testing procedures to make a correct inference when both models un-

der test are incorrect is to be examined, the generation of a second false model will be added to the 

study. Therefore, information regarding this aspect of performance capability will be gained by 

evaluating the proportion of times the procedures correctly indicate that both models are invalid. 

In addition, this study will employ all of the procedures discussed in section 2.2 as well as the 

modified JA-test. Therefore, the Atkinson (NA) and Linearized Cox (NL) tests will be given the 

same consideration as the other test procedures examined in the previous Godfrey and Pesaran 

studies. Of particular interest is the performance of the modified JA-test (NJ) in small samples for 

making inferences based on a pair of tests compared to the F-test. From Chapter III, it is known 

analytically that the power of the NJ-test for rejecting a false null model maintained against the true 

model will exceed that of the F-test under particular model conditions; however, greater power in 

the resulting inference is not guaranteed since the previous power measure does not take into ac-

count the probability of a type I error for the reversed test. In addition, it will be useful to compare 

the NJ-test's power with that of the JA-test in order to detennine the conditions under which the 

NJ-test will be an improvement over the unmodified test. 

By use of the Godfrey and Pesaran approach, the control parameters for the simulation study 

as well as the associated levels of interest for each are given as: 

sample size: n = 20, 40 

fit of the true model: 

collinearity between true model and its 

alternatives as measured by the squared 

canonical correlations between the two 

sets of regressor variables: 

number of regressor variables: 

(where ko = 0) 

distribution on the disturbance terms: 

R2 = 0.75, 0.90 

p2 = 0.25, 0.50, 0.75, 0.90 

(k1, k2, k3) = (2,4,6), ( 4,2,6), ( 6,2,4), ( 4,4,4) 

N(O, crD, truncN(O, cr~) ( 10% ), 

t<3>, Xf2i, 1n = exp(N(O,l)). 
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Each individual experiment consists of generating the true model and two false alternatives 

under the constraint of the control parameter values and performing all ten test procedures on the 

three pairwise combinations of the models, 1000 times each for samples of size 20 and 500 times 

each for samples of size 40. It is obvious that a complete investigation of all combinations of the 

control levels would involve 5 sets (one for each distributional assumption) of a 22 x 42 factorial 

design (i.e., 320 experiments). Employing this full design would yield an unmanageable as well as 

expensive Monte Carlo study. Consequently, in order to make this study more reasonable, frac-

tional factorial designs will be used 'within the context of each of the distributional studies. The 

fractions are selected such that all "main" effects as well as some of the pairwise interactions between 

the control parameters are estimable. This setup provides the means to evaluate the relative im-

portance of the various model characteristics, as controlled through the above parameters, on the 

performance of any of the ten given testing procedures. 

The fractional designs for each of the distributional cases are selected on a somewhat se-

quential basis. Primarily, the classical case (normal case) will yield a standard by which to measure 

the robustness of the tests. Therefore, in the normal case, a one-half fraction was employed as well 

as some additional runs in which the sample size was held at 20 and the number of regressor vari-

ables held at 4 in all three models. For the other distributional cases, some direct comparisons were 

made to the normal case through experimental runs with the same control parameter settings. 

However, a one-fourth fraction of a 22 x 42 factorial design for which the sample size, n, was held 

at 20 represents the formally specified design in each case. The actual set of experimental runs for 

these cases will be presented in section 4.3.2. 

Regarding the issue of the number of replications in each sample size, the main consideration 

in using only 500 replications for samples of size 40 was expense. However, in terms of the stability 

of the results as well as the estimated standard errors on all observed performance criteria, there 

was not a significant loss by reducing the number of replications for samples of size 40 from 1000 

to 500. As an example of this, Appendix C contains a comparable pair of runs based on samples 

of size 40 using both 500 and 1000 replications. 
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4.2.2 Comparison Criteria 

The purpose of this study is to obtain practical guidelines (for the use in actual applications) 

regarding the credibility of the results from the ten tests so that the most meaningful results will be 

obtained. Therefore, the feasibility of this study must be judged through the criteria to be used for 

making comparisons among the testing procedures. Of primary concern is the power of the tests 

in finite samples, i.e., the ability of the test to indicate the correct inference for the given pair of 

models under test. In addition, the size of the tests is important, particularly as it influences power. 

Consequently, for the case of testing the true model with one of the false alternative models, the 

following comparison criteria will be employed: 

1. Power (and its standard error): To be calculated as the proportion ofreplications within 

each experiment for which a correct decision regarding the pair of models under test is made. (i.e., 

reject the false and accept the true) 

2. Type I error probability (and its standard error): To be calculated as the proportion 

of replications within each experiment for which the true model is incorrectly rejected when it was 

maintained against a false model. 

3. Kendall's coefficient of concordance (Kendall, 1939): To be calculated for each pair of 

models tested within each experiment from assigned rankings on the p-values associated with the 

rejection of the false model when it is maintained against the true model. To see the practical side 

of using this measure, the individual replications can be viewed as judges who rank the ten testing 

procedures on the basis of how likely they are to detect the presence of a misspecified maintained 

model (the p-values). To be used as a measure of agreement among individual replications, this 

statistic is aimed at evaluating the stability of the relative performance of the testing procedures. 
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To take into account and to assess a penalty for type I errors, the p-value is set to one whenever 

the corresponding test rejects the true model when it is the maintained hypothesis. 

4. Average rankings of the tests: To be calculated as the p-value rankings within each 

replication as computed for Kendall's concordance coefficient. To serve as relative "power" 

rankings among the testing procedures. 

5. Analytically computed power (and its standard error): To be analytically calculated -

for the NJ- and F-tests only - as the power of rejecting a false model when it is maintained against 

the true model within each replication, and averaged over all replications. To compare the two 

procedures, the proportion of replications for which the computed power of the F-test exceeded 

that of the NJ-test is recorded. 

For the case involving two false models under test, the proportion of replications for which 

each of the four possible inferential outcomes from a pair of tests regarding two specified models 

is computed. In particular, comparisons can be made on the basis of how often the testing proce-

dures yield the correct inference, indicating the need for further investigation in the search for the 

correct model. In addition, warnings can be drawn for practical use concerning which test proce-

dures tend to 1ean" toward a false model which possesses certain model characteristics, such as 

larger R2 or larger number of regressor variables. 

Clearly, valid analyses can be.made using the comparison-oriented data as indicated above 

under the designated sets of experimental runs for each distributional case. From these analyses, 

meaningful comparisons can be drawn. Therefore, this Monte Carlo study, as this layout indicates, 

should go a long way toward providing the information necessary to formulate practical guidelines. 

Only the mechanics behind the model building procedure given the various control parameters re-

main to be presented. 
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4.2.3 Model Generation 

As indicated by the control parameters for the simulation study, the format for the generation 

of the models under test is that of Godfrey and Pesaran ( 1983). Within each replication of each 

experimental run, one "true" model and two false linear regression models are generated. In par-

ticular, for a given set of parameters {n, R2, p2,(k1, k2, k3)} the true model, H1, is of the following 

form: 

Yr = 
k, 
! xw + Er, for t = 1, 2, ... , n 

i= 1 

where Et,.,, iid (0, er~) and x 1it ,.,, iidN(O, 1) ¥ i,t. 

(4.1) 

The variance of the disturbance terms, Et, is generated so that the coefficient of determination, 

R2, is maintained at the specified level through the following expression: 

(J2 = 
ll (4.2) 

Accordingly, the distribution used to generate the disturbance terms depends on the assumption 

made. For the normal case, Et,.,, iid N(O, crD. Similarly, for the truncated normal based on the 

p.d.f. of a N(O, crD with tails cut-off at ± 1.6449cr .. the appropriate variance is maintained by using 

this formulation: 

<Ye 
------ur, where Ur ,.,, TruncN(O,l), 
[0.6230336] 112 

(4.3) 

since V ar(ut) = 1 - 2{ l.6449 exp[ - 1- ( 1.6449)2]} = 0.6230336. Once again, the trans-
0.90(27t)1i2 2 

formation of the Student-t ( with 3 df) variates into a mean 0, variance cr~ disturbances only require 

a straightforward scaling of the data; i.e., 

84 



Er = 
CJ' e 

--- Ur, where Ur - iid t(J) 
[3]1/2 

(4.4) 

In the case of the skewed distributions, transformations must be made not only to achieve the 

appropriate variance but also a mean of zero. As indicated by Godfrey and Pesaran, the necessary 

transformations for the chi-square and log-normal deviates are as follows: 

For the log-normal case, 

Er = exp{"foUr} - y1 (4.5) 

where u, - iid N(O,l); y~ = log{ 1/2 + 1/2 (1 + 40'~) 1'2} ; y1 = exp{yU2} ; 

and for the chi-square distributional assumption, 

(4.6) 

where u, - iid X~2>· 

Then for the two false models, H2 and H3, the regressor variables are generated in order to 

have the squared canonical correlation between themselves and those in the true model be the 

specified value of p2• Through this parameter value, the strength of the collinearity between the 

models is regulated. Correspondingly, the regressor variables in H1,(j = 2,3) are generated as fol-

lows: 

{ 
p xw + vjit• for i = 1, 2, ... , min(k1, kj) 

(1 - p2)1/2 Xju = 
vjlt• for i = k1 + l, k1 + 2, .. ., ~; if kj > k1 

(4.7) 

where v11, - iid N(0,1). Consequently, under this construction process, the models generated will 

reflect the model characteristics dictated by the control parameter values. 
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The simulation program involves the random deviate generation through the use of IMSL 

subroutines in FORTRAN and the remaining model construction, test procedure calculations and 

comparison criterion calculations are performed within the framework of PROC MATRIX in SAS. 

A copy of the programs for the normal and nonnormal cases are contained in Appendix D. Since 

the layout of the study has been presented in detail, the results of the study are next examined and 

appropriate comparisons drawn. 

4.3 Results and Practical Conclusions 

Within this section of results, the normal disturbance case is given much consideration. 

Following that discussion and its implications regarding the usefulness of the various tests in the 

case of two invalid models, the remaining four distributional studies will be presented. Parallels to 

the behavior under the normal case will be made in regard to the influence of the other control 

factors. Then the presence of non-normality in the disturbances will be used to make statements 

evaluating the apparent robustness of some of the test procedures. Once all the results have been 

highlighted, practical conclusions will be made regarding these ten procedures in terms of their rel-

ative inferential ability in the case of non-nested linear regression models. 

4.3.1 The Normal Disturbance Case 

For the case of e1 - N(O, crn, a total of 50 experimental runs were made: a 32-run one-half 

fraction of the 22 x 42 factorial design in the control parameters, 10 additional runs to complete the 

n = 20, k1 = 4 analysis ovei: all levels of R2 x p2, as well as several other runs. With this design, 

all of the 2-way interactions between the control parameters as factors were estimable. An analysis 

of variance could be performed on the effects of the control parameters on the power, size and 

rankings of the various test procedures. This information will provide a good basis for making 

comparisons. 
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Table IV.2.2 contains the results from all 50 experimental runs, with a listing of the control 

parameter levels for all experiments given in Table IV.2.1. (All tables for Chapter IV are located 

following the text.) Based on the results given in Table IV.2.2, the general behavior of each of the 

testing procedures is discussed individually. These highlights on each testing procedure are designed 

to point out those aspects of the test's performance which vary with given model characteristics. 

Following these individual comments, the tests are examined in terms of their relative performance 

with one another in order to judge which tests yield the most reliable inferences. The concept of 

the test's "performance" is used instead of power since the asymptotics of most of the testing pro-

cedures does not guarantee the maintainence of a nominal size for the tests in general. 

As it will become clear through the discussions which follow, having different numbers of 

regressor variables in the competing models plays an important part in the determining a test's 

performance. In fact, almost all of the testing procedures show either a direct or inverse relationship 

between the signed difference in the number of (non-overlapping) regressors in the true and false 

models and the observed power of the test. In many practical applications involving the testing of 

non-nested regression models, the number of regressors in the competing models will be equivalent 

with the form or transformation of the regressor variables being the primary concern of the re-

searcher. Consequently, the cases where the number of (non-overlapping) regressors in the com-

peting models are the same will be given particular attention. (It is important to note that this equal 

number of regressors does indeed represent an equal number of non-overlapping regressor variables 

since one can compare models with overlapping pieces on the basis of.!'. - £0 , the dependent var-

iable observations after first extracting the overlapping influence of those ko regressors, in place of 

the original observations, .!'. .) 

Kendall's coefficient of concordance is computed in order to obtain a measure of how much 

agreement there is among the testing procedures relative to one another across all the replications 

in a given experiment. The power and type I error probabilities obtained from each experiment 

will be used in the formulation of guidelines for real applications. Therefore, the guidelines which 

are set forth will only be as reliable as the empirical results on which they are founded. In addition 
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to measuring the stability of the experiments themselves, some insight into the concept of power 

is gained. The rankings used to compute the concordance coefficient are based on the p-values 

associated with the detection of the false null. Consequently, since the rejection of a false model 

when it is maintained against the the true model is one of the necessary steps in making the correct 

inference concerning the pair of models, such p-values can provide a general idea of the actual 

power of the procedure. This result is not the actual power, so it seems that a more meaningful 

piece of information is how the procedures compare relative to one another. The average, taken 

over all the replications in a given experimental run, of the p-value rankings for a given procedure 

can be thought of as a relative, as well as a scaled, measure of power. Based on the observed values 

of Kendall's concordance coefficient and its significance over the various experimental settings, the 

results from the various runs indicate consistency in the relative performance of the testing proce-

dures. 

Also, it should be noted that there an instances throughout the discussion of the simulation 

results in which statistical analyses, such as ANOVA's, repeated measures designs and even paired 

t-tests, are employed. However, due to the nature of the simulation study, each experimental really 

yields two observations for cases in which the true model is tested with one or the other false al-

ternative. As a result, the basie assumptions governing most of the procedures listed above are vi-

olated (i.e., there are dependencies among some of the observations). These analyses, in turn, are 

to serve only as a means to discuss the results in a more formal setting. Consequently, information 

coming from those procedures must not be taken as absolute, but rather as an indication of trends. 

Clearly, if the results are taken at their true worth, they can provide additional insight or stronger 

evidence to support the apparent behavior trends (as extended to real data applications) which are 

observable in the results. 
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4.3.1.1 Performance of the Tests on an Individual Basis 

As indicated, consideration is given to the testing procedures on their merits individually. 

Specifically, the strong trends in their behavior as affected by changes in model characteristics are 

highlighted. An indication as to their overall ability to detect the presence of two incorrectly spec-

ified models is also given. 

The Cox (N) test: As previous evidence has shown, its power in terms of small p-values for 

the rejection of the false null when it is maintained against the true alternative is large, even when 

the p-values are penalized for rejecting the true null (i.e., the p-values associated with the rejection 

of the false null model is set to one when a type I error has occurred on the reversed test. This result 

is evidenced by small average p-value rankings throughout the experimental runs. In terms of the 

power of making the correct inference, it is not so promising due to the large observed probabilities 

of making a type I error. For samples of size 20 the Cox.test falsely rejected the true maintained 

model an average of 13.2% of the time instead of the nominal 5%, with that being reduced to an 

average of 8.4% with samples of size 40. As the evidence, both theoretical and empirical, of 

Godfrey and Pesaran ( 1983) showed, this was as expected due to biases in the test statistic under 

the maintained hypothesis. 

In addition, when attention is given to cases involving two incorrectly specified models, the 

unmodified Cox test indicates that further investigation is warranted on average more than 50% 

of the time. In some instances, it did even better than that due to its bias toward rejecting the null 

model, even when it was correct, so that much more when the model is false. When it was testing 

between false models which both fitted poorly and had relatively few regressor variables, it tended 

to be much less effective at detection. Even with the positive aspects of the test's performance taken 

into account, the small sample modifications are indeed necessary in order to give credibility to the 

practical use of the Cox approach. 
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The W- and N- tests Given the past simulation work of Godfrey and Pesaran, it is of no 

surprise that these small sample adjusted versions of the Cox test retain the attributes of high power 

while bringing the observed significance levels much closer to the nominal levels. When comparing 

the two procedures, which are very closely related, it appears that in terms of the p-value measure 

of power for rejecting the false null model, the N- test fares better in terms of its average ranking 

being much smaller than that of the W-test, and in fact is often very close to that of the unadjusted 

Cox test. This seems to be related to the fact that the W-test, as a Wald-type test, is more con-

servative in terms of rejecting the maintained hypothesis. Evidence for this conjecture is also ob-

tained through the comparison of the observed significance levels of the two procedures. The 

average size of the N-test was 0.0493, whereas the average observed size of the W-test was 0.0398, 

about a 1 % difference overall. 

Once again, if consideration is given to the ca~es involving incorrectly specified models, both 

procedures are able to indicate the need for further investigation over 50% of the time. In this 

situation, the W-test tends to do slightly better than the N, with both doing a much better job than 

the unadjusted Cox-test in the cases of relatively poor fit on those incorrect models. For the most 

part, the W-test relies mainly on neither model being able to reject the other, more so than the 

N-test, as a detection mechanism for questionable models. Clearly, the small- sample adjustments 

to the Cox test are a great improvement over the original procedure on all points of performance. 

Atkinson's (NA) test: This is the first test to be addressed which has not received much at-

tention in terms of empirical power studies. It becomes quite clear that the test suffers from poor 

power and relatively large observed significance levels, which is surprising when the conservative 

nature of this test in its ''bias" toward the null model is considered. However, in cases where the 

true model has fewer regressor variables than the competing alternative, it has the ability to detect 

such a case, much more so than some of its competitors. Corresponding to its conservative nature, 

the rankings on the p-values for rejecting the false null model are clearly quite poor. 
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In the situation involving two false models, the Atkinson test indicates that both models are 

questionable over 50% of the time, on average, which is due mainly to the case in which neither 

model is able to "reject" the other. In the cases where the false models involve (2,4) and (2,6) 

regressor variables, the Atkinson test detects questionable models (i.e., either both rejected or both 

accepted) an average of 62.3% of the time (which is quite good given the tendency of most proce-

dures to choose the model with more regressors), with the test rejecting both models only 3.9% 

of the times. 

Linearized Cox (NL) test: This test seems to be plagued by large observed significance levels 

ranging from a minimum of 0.05 to 0.173, in a similar manner as its predecessor. As in the case 

of the unadjusted Cox test, its ranking in terms of the p-values with which it rejects the false null 

are fairly small (generally between 2.5 and 4.5 on the 10 scale ranking). In addition, this test indeed 

suffers from reduced power in cases where the true and alternative models have an equal number 

of regressor variables. Each of the testing procedures tends to show an interaction effect between 

R2 and p2 in the equal k case, but it is much more pronounced in the results of the NL-test. 

If its behavior under the situation of two incorrect models is addressed, the NL-test indicates 

the presence of questionable models more than half of the time, in general. Even though all of the 

testing procedures tend to exhibit a reduced ability in detection as the collinearity between the 

models increases, the NL-test is affected to a stronger degree. Overall, this testing procedure, al-

though appealing with its ease of calculation, is too volatile to be of practical use. 

The J-test: As Godfrey and Pesaran indicated on the basis of their empirical work, the J-test 

exhibits a tendancy toward overrejecting the true null model in the presence of an alternative which 

has more regressors. This result is demonstrated clearly through the results of this study. In par-

ticular, consider the contrast between observed power of 0.957 (a = 0.043) in Experiment 2 and 

of 0.970 (a = 0.030) in Experiment 22 when the true model had 6 regressor variables and the false 

model had only 2 and the cases where the true model, having only 2 regressors was maintained 

against an alternative model of 6: i.e., observed power of 0.678 (a = 0.239) in Experiment 5 and 
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that of 0.744 (a = 0.190) in Experiment 23. These indeed bear out the inherent problems with the 

J-test when the models contain different numbers of parameters. How it performs under the "equal 

k" case will be addressed in the next section. 

However, if its performance in the case of two false models under test is examiiled, the J-test 

once again is often misled because of different numbers of parameters in the models. It has a 

tendency to reject the model with fewer regressor variables in favor of another false model which 

contains a larger number of regressors. In addition, as the collinearity between the models increases, 

its ability to detect the two models as being false diminishes as with the other procedures. Overall, 

it tends to detect the presence of the incorrect models just about 50% of the time, which is again 

not a favorable result in terms of promoting the use of the procedure in practical applications. This 

result then encourages the investigation into the advantages, if there are any substantial ones, of 

incorporating Godfrey and Pesaran's adjustment to the test. 

The Al-test: As the work of Godfrey and Pesaran ( 1982) showed, the observed significance 

levels of the test in practice are brought down in magnitude dramatically by using their adjustment 

to the J-test. In fact, they have been brought down well below the nomiilal level of 0.05 to an 

overall average for the experimental runs of 0.024. In terms of observed power, the Al-test tends 

to do quite well under most situations. However, its power can become quite small in cases where 

the R2 is low and the collinearity between models is increased. Particularly, in situations where the 

true model also has fewer regressors (i.e., in addition to R2 low and p2 high), the reduction in power 

is intensified. Interestingly enough, this observation did not coincide with an increase in the ob-

served significance level as was the case with the unadjusted J-test. 

Turniilg to the situation in which both models are incorrectly specified, the Al-test did a 

much better job of detection than the unadjusted test when the fit on the competing models was 

relatively poor. Based on cases of R2 = 0.50 and 0.70 for the equal k case, the Al-test detected 

questionable models an average of 71.6% of the time, whereas the J-test detected them only an 

average of 45.3% of the time. This improved ability in detection is rooted in the large proportion 
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of times neither model was rejected, which is a direct result of the adjustment designed to decrease 

the bias in the J test statistic under the maintained hypothesis. When this information is considered 

altogether, the AJ-test is a vast improvement over the J-test and is fairly well behaved with the ex-

ception of cases where the fit was relatively poor and the collinearity between competing models 

large. 

The JA-test As far as the procedures derived under the AN approach are concerned, the 

JA-test stands in striking contrast to the J-test. Both test procedures are plagued with inherent 

difficulties when the competing models involve different numbers of regressors due to their con-

struction. However, the similarity stops there. In terms of relative behavior, the J-test favors the 

alternative to the same degree as the JA-test favors the maintained model. This result is quite ob-

vious by the very small observed significance levels in the case of the JA-test. In general, its & av-

eraged 0.025, well below the nominal level of the test, and it reached a maximum of 0.04 over all 

50 experimental runs. Since the JA-test results in observed significance levels being so far below 

the nominal level it is not taking full advantage of its stated probability for making type I errors. 

In other words, the rejection region for the test could be made larger and still have the nominal size 

maintained. Therefore, this feature is manifested in terms of the JA-test's power being generally less 

than that of the other tests under the majority of model conditions investigated. In addition, its 

conservative approach yields p-value (associated with the rejection of the false null) rankings being 

on average 7 .5 on the 1-10 scale, which is relatively poor in comparison to its competitors. 

It is interesting to see how the two testing procedures from the AN approach can yield such 

different inferences. The JA-test, as is evidenced here and in the work of Godfrey and Pesaran, has 

the tendency to exhibit high power when the true model has fewer parameters than a false alterna-

tive, and very low power when the situation is reversed. (This result is the opposite of the J-test.) 

Particularly, its power is greatly affected when the difference I k1 - k2 I grows in magnitude. By 

examining the JA-test's performance on those experimental runs examined under the J-test, the 

following is observed: When the two variable model was true and tested against an alternative with 

6 variables, the observed power was 0.852 (a = 0.026) for Experiment 23 and 0.787 (a = 0.024) for 
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Experiment 5; whereas for cases involving a true 6 regressor model versus a 2 variable model, the 

observed powers were 0.304 (a = 0.022) for Experiment 2 and 0.322 (a = 0.026) for Experiment 

22. Overall, the JA-test's power is not as large as the majority of its competitor's, and is highly 

unpredictable when there are different numbers of regressors in the competing models. 

Under the situation where both models are incorrectly specified, the JA-test is able to detect 

questionable models about 63.8% of the time overall. In particular, when the relative fits are poor 

on the models under consideration, the JA-test does a better job of detection. As in the case of 

Atkinson's test, the detection of questionable models relies mainly on the non-rejection of both 

models when maintained against one another. Although the test fares well in terms of the detection 

of false models, it still is deficient in terms of power. Therefore, it will be interesting to see how 

much improvement is accomplished by the modified JA-test, NJ. 

The NJ-test: This testing procedure represents the combination of the JA-test and the Or-

thodox F-test. Consequently, its performance should tend to lie "in between," in some sense, the 

performance of the JA- and F-tests on which it is based. Of particular interest is to see whether the 

observed significance levels for this modified JA-test are more closely aligned with the nominal level 

of the test. If this has been obtained, then the power of the test should be increased above that of 

the JA-test, if not in general, at least for some of the cases in which the JA-test was lacking. Clearly, 

the observed significance levels from these experimental runs lie close to the nominal 0.05 level, 

with an average over all the experimenatal runs being 0.054. In addition, its power is larger than 

that. of the JA-test in general. Specifically, in the cases where the number of regressors in the true 

model is larger than that in the alternative, the NJ-test yields substantial increases in power for most 

situations. When the number of regressors are the same, the two tests tend to perform equally well 

in terms of power. On the other hand, a slight price is paid as far as power is concerned in the cases 

where the true model has fewer regressors than its alternative by using the NJ-test in place of the 

JA-test. However, the magnitude of the power improvement for other cases more than compen-

sates for this slight reduction in power. When consideration is given to the p-value rankings, the 

NJ-test comes out only slightly better than the unmodified test, with an average ranking of about 
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7. Therefore, it is clear that the modification is slight enough not to change the basic nature of the 

testing procedure, but significant enough to improve its power where needed most. 

Considering the situaiton in which both models under test are misspecified, the NJ-test detects 

the problem an average of 61 % of the time. In this aspect, the NJ-test's detection ability is quite 

similar to that of the unmodified JA-test, although it has a tendency to be slightly less helpful. Once 

again the conservative approach in the design of the JA-test carries over to the NJ-test in that the 

detection of questionable models relies primarily on the case where neither model is able to reject 

the other. On the basis of these empirical results, it is clear that the NJ-test is slightly less sensitive 

to the unequal regressor case. However, in terms of overall power, it is not the most powerful of 

the procedures investigated here. Since it does have an exact non-null distribution, it is worth 

consideration. Also, the modification to the NJ-test involved the use of the error variance estimator 

from the comprehensive model approach, which brings up the issue of how well this modified 

JA-test performs relative to the Orthodox F-test. 

Orthodox F-test: As the only procedure which is truly not rooted in the Cox non-nested 

approaches, the Orthodox F-test warrants investigation into its performance and comparisons made 

with the other procedures on a relative basis. First, since this test has an exact null distribution, 

as the JA- and NJ-tests do, its observed significance levels over the range of experiments should 

remain close to the nominal 0.05 level. The overall average size of the F-test in the study was 

0.0494, which is indeed in line with the theory. Therefore, it is important to see how well the test 

performs in terms of its power to make the correct inference. Overall, the power of the F-test tends 

to remain close to that of the NJ-test, with the exception of those cases in which it is not adversely 

affected by the false alternative model under test having fewer regressor variables than the true 

model. In such instances, the F-test's power remains relatively large. On the other hand, the F-

test's power trails that of the NJ-test when the quality of fit of the true model is low. Another in-

teresting fact about the F-test is that its power is larger than that of the NJ-test when the collinearity 

between the competing models is very small. This result should be of no surprise based on the 

difference in the "nesting" methods used to derive the two testing procedures. (See Section 3.3.2 for 
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further discussion on this point.) Further attention will be given later to the performance of the 

F-test relative to that of the NJ-test. However, on its own merit, the F-test is farirly powerful, but 

is often outdone by its non-nested competitors. In terms of its p-value rankings, it has an average 

ranking of about 7.4. It does slightly better in terms of this p-value ranking as well as the power 

to make the correct inference when the sample size is increased to 40. 

However, another issue is how this nesting approach fares in terms of detecting the presence 

of two misspecified models. By the nature of the comprehensive model formulation, a more ac-

curate ability for detecting invalid models would be expected in general. In the experimental runs 

discussed in this study based on samples of size 20, the F-test detected the inappropriate models 

70.7% of the time on average, which was larger than that for any other test. In paricular, the F-test 

was able to detect the presence of the false models a larger proportion of the time (0.853, 0.789 on 

average) when the quality of fit was relatively poor (in particular, the cases where the true model 

had R2 = 0.50, 0.70). Also, it does not seem to fall into the trap of uniform distribution into the 

four inferential categories when the number of regressors in the competing false models were equal: 

on average, it detected the misspecified models 72.7% of the time. By weighing the evidence re-

garding this nnon non-nestedn procedure, it can be quite useful in practical applications, particularly 

if it is used in conjunction with some of the non-nested procedures. 

Now that all the procedures have been discussed briefly in an overall context and their 

strong/weak points highlighted, some useful statements can be made that go a long way toward 

setting forth practical guidelines. However, investigation into several of the specifics of the model 

characteristics and their effects on the resulting inferences is warranted before such recommen-

dations can be made. 

Based on the information gained from the overview of the various testing procedures as far 

as observed power, observed significance levels and the p-value rankings on the rejection of the false 

model maintained against the true model, several tests have been deemed inappropriate for the sit-
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uations involving such small samples. In particular, the unadjusted Cox (N) test, the Linearized 

Cox (NL) test and possibly the J-test can all be ruled out of the lineup of practical testing proce-

dures for the small sample cases on the basis of their large observed significance levels. In addition, 

Atkinson's (NA) test is also one that can be eliminated from further investigation on the basis of 

its overall low power. 

Therefore, the remaining tests, as well as the J-test, will be examined under the situation in-

volving equal numbers of (non-overlapping) regressor variables in the competing models, which 

will be referred to as the nequal kn case. 

4.3.1.2 Equal k Case 

Some motivation was presented in the earlier part of this section for investigating the case of 

equal numbers of regressors. For many practical applications, as in the empirical demand study in 

Chapter V, it is a functional form issue and not one of variable selection which brings about non-

nested regression models. Since it is a situation which arises often in the empirical applications of 

these procedures and the primary objective of this study is to formulate guidelines for such situ-

ations, the #equal kn case deserves special attention. 

In particular, the experimental runs to be considered in this section encompass competing 

models based on 4 regressor variables each and for samples of data of 20 observations. Then, within 

this context, overall performance of the tests can be compared for the equal k case. In addition, it 

provides a feasible setting for investigating the influence of R2 for the true model and p2, the 

collinearity between competing models, on the inferential ability of the various procedures. 

Therefore, the tests will be examined on the basis of observed power and significance levels for 

models under the conditions: R2 = 0.50, 0.70, 0.75, 0.90 and p2 = 0.25, 0.50, 0.75, 0.90 (which cor-

respond to Experiments 4, 6, 10, 16, 33-40 and 47-50). 
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Using the results from these experimental runs, the overall stability of the procedures should 

first be addressed. In terms of observed significance levels over all the combinations of R2 and p2, 

the size of all the testing procedures under examination (i.e., excluding the N-, NA- and NL-tests), 

definitely exhibit a stability which was not always present in situations involving models with une-

qual numbers of regressors. In particular, the J-test has an observed significance level which can 

be much larger than the nominal level under the unequal k cases. In the equal k case, however, the 

significance levels observed when the J-test was used still tend to exceed the nominal level when the 

fit of the true model is relatively poor or when the collinearity between models is very low, but not 

to the same degree. What is seen, then, is that even under the equal k case, the J-test, although 

much better behaved, is still overly influenced by the bias in the numerator of the test statistic under 

H1 and thus yields an observed size of the test larger than the nominal level much too frequently. 

For the remaining tests, which are either exact under the null or representative of small sample 

modifications to the Cox and J-test, the levels are well within reasonable bounds of the nominal 

size. In particular, when the observed significance levels from the various tests are considered as 

dependent variables in a two-way ANOV A with R2 and p2 as treatments, neither the interaction 

effect, R2 x p2, nor either main effect (R2 or p2) are significant for any of these remaining procedures 

with the exception of the N test. (See Appendix E.l.) For this adjusted Cox test, the significance 

level appears to be influenced by R2 , with the borderline significance of the other two effects. If 

Duncan's multiple range test is used to test for significant differences in the mean observed signif-

icance levels over R2 and p2 , not all the means are determined to be equal. On the other hand, it 

appears that the mean observed levels are centered within a reasonable proximity of the nominal 

0.05 level, even though they fluctuate slightly as the levels of R2 and p2 vary. Since any differences 

among the average observed type I error probabilities over levels of R2 represent a reduction on the 

observed size from the nominal level in general, such variations resulting from changes in R2 and 

p2 do not provide evidence against the stability of the N-test's behavior. 
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Once again, it should be pointed out that the N-, NJ- and F-tests all tend to maintain the size 

close to the nominal level. With the W-, AJ- and JA- tests, however, the specified level is an 

overstatement of the true type I error probabilities (as estimated by the Monte Carlo study). 

Since all of these 6 testing procedures are acceptable from the perspective of significance lev-

els, the power properties of these procedures should be examined in general. A good starting point 

is to use the same two-way AN OVA approach that was employed in the analysis of the observed 

significance levels. The analysis determined that all of the effects, all of the effects, interaction and 

main, were significant regarding the influence of R2 and p2 on the power of these tests. (See Ap-

pendix E.2.) Therefore, two very meaningful pieces of information can be used to determine which 

procedures work best under various model conditions. This can be quite helpful for making prac-

tical guidelines since the fit on the competing models as well as the degree of the collinearity be-

tween the competing sets of regressors can be computed from the researcher's data. The computed 

R2's and p2's can be used as "ball-park" estimates of the model characteristics surrounding the cor-

rectly specified model, whether or not it is one of the models under investigation. This information 

can then be used in conjuction with the trends observed here to provide the researcher with the best 

procedure(s) to be used in his particular application. 

Considering the power of the tests across these 16 combinations of R2 x p2 under the equal 

k case with samples of size 20, statements regarding the relative power of the procedures can be 

made. It is clear that the N test exhibits that largest power for all levels of p2 when the true model 

has a coefficient of determination of 0.50 or 0.70. Once the R2 on the true model reaches 0.75, any 

marked differences in power among the various procedures have been greatly diminished. 

For the lower three levels of collinearity between the models, given R2 = 0.75, the AJ-test 

demonstrated slightly larger power than the N-test, with the AJ-test's power tapering off a bit 

quicker than that of N as p2 was increased. Then once the true model reached an R2 = 0.90 , the 

N- and AJ-tests both generally exhibit larger power over all the collinearity levels. These two tests 
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are quite comparable in terms of power for this case in that no meaningful advantage is gained by 

either test. 

This result does not imply that the other testing procedures are not useful since they do not 

achieve the largest observed power. In particular, the NJ- and JA-tests perform well when the R2 

is at least 0.75 and the collinearity between the competing models' regressors is at least as large as 

p2 = 0.50. With consideration to the W-test, although the N- test will beat the W-test in terms of 

power in most instances, the W-test has large power when the fit of the true model is quite good 

and the collinearity between the models is low. 

The collinearity between the models seems to have a positive impact on the power of the test 

given that the fit on the true model is fairly good up to a point. (See displays of means in Table 

IV.3.1.) However, when the canonical correlation between the two sets of regressor variables was 

0.90, the power of all the testing procedures experience a drop. It is the AN and Orthodox F 

procedures which are most adversely affected by this increase in collinearity, particularly for R2 of 

0.75. The two adjusted Cox procedures also reflect this relationship, although the N-test seems to 

be the most resistent to it. Therefore, it appears that under this design, the small sample adjust-

ments to the asymptotically valid procedures seem to come out front-runners in the power race. 

Next, the issue of detecting two misspecified models is addressed since it is to play a part in 

determining the practical worth of the testing procedures. The equal k case, by the construction 

of the models under this Monte Carlo design, should provide some interesting results in this situ-

ation. Since the two false models generated will have the same number of regressors with the same 

collinearity structure with respect to the same true model, it would be of no surprise to find that 

the procedures uniformly (or randomly) distributed their outcomes over the individual replications 

across the four possible inferences. In such a case, it would be expected that each of the four pos-

sible inferences would occur approximately 25% of the time. Consequently, in this case, the pro-

cedures can be judged as to whether or not they really can distinguish between the models on the 

basis of information other than the observed R2• To evaluate this, a chi-square test of independence 
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for the two by two contingency tables created by each procedure for all 16 experimental runs will 

provide useful information toward this end. Here the two-way table was constructed based on 

proportion of times each test did and did not reject for testing H2 versus H3 and H3 versus H2• 

The F-test, as well as the NJ- and JA-tests, tend to do a much better job at indicating the 

presence of the false models. Also, on the basis of the chi-square tests of independence between 

the outcomes on each of the tests, H1 versus H2 and H2 versus H1 , in each case, it is clear that these 

"AN" procedures (used loosely for the F-test) rely on information other than their relative fit to 

determine whether the sample evidence is in favor of an alternative. The F-test rejected the null 

hypothesis of independence in all but one of the 16 experiments, namely Experiment 40, with 

R2 = 0.90 and p2 = 0.75. The JA- and NJ-tests also did quite well with the JA-test rejecting the 

hypothesis of independence in 14 of the 16 runs (exceptions were Experiments 37, 47, each with 

p2 = 0.25) and the NJ-test rejecting in 13 of the 16 runs (exceptions were Experiments 36, 37, 47). 

The other testing procedures did not do quite so well: W-test rejected in 11 of 16 runs (exceptions: 

10, 34, 37, 39, 47); N rejected in 10 of 16 runs (exceptions: 4, 10, 33, 34, 37, 47); and the AJ-test 

rejected a disappointing 9 of 16 (exceptions: 4, 10, 34, 37, 39, 47, 48). 

On the other hand, since the two models are so close in terms of model characteristics, then 

the situation in which neither model provides sufficient evidence to reject the other may not be very 

informative at all. It really is indicative of a lack of distinguishability between the models. But if 

this is what is being indicated by the outcome, isn't it really an indication that further investigation 

as to the correct model specification is warranted. What the empirical results indicate is that for 

situations involving equal numbers of regressors, the more conservative approach may be more 

appropriate, at least from the perspective of detecting false models. 

If the information regarding the case of true versus false as well as that of false versus false is 

pooled together, some interesting ideas about practical use of the tests has been gathered. First, the 

N - and AJ-tests indeed yield larger observed power in general. Therefore, if it is known a priori 

that one of the two models under consideration should be close enough to being the true model that 
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it can be considered a correct specification, then these tests are sure to lead to the correct inference 

with a high degree of certainty. 

On the other hand, if there are multiple models to be considered, the procedures which tend 

to be slightly more conservative, the NJ- and F-tests (JA-, too) may also be worth consideration. 

In other words, several procedures may be applied to the data and then information about their 

"sensitivity" toward rejecting the null used to formulate the most reasonable inference. More will 

be said in regards to a practical set of guidelines in section 4.3. (As a sidenote: the procedures 

above being conservative implies that the procedure requires stronger evidence in order to reject the 

null in the presence of the specified alternative.) 

However, before the equal k case is put aside, it is important to keep in mind its usefulness 

due to the frequency with which it will be encountered in practice. Based on the above results, the 

six. procedures discussed in depth - N, W, AJ, JA, NJ and F - all have potential for practical use, 

as long as their limitations are kept in perspective. 

4.3.1.3 Analytic Power Comparisons for the NJ- and F-tests 

At this point in the discussion of the Monte Carlo results, many comments regarding the 

behavior of the NJ- and F-tests, in their own right and relative to one another, have been made. 

The main purpose of this section is to examine how the analytic power for rejecting the false model 

in the presence of the true model relates to the observed power of making the correct two-test in-

ference for the same pair of models. Also, in the case of the NJ-test, empirical evidence is compiled 

in order to see whether the use of A.NJ = A.NJ evaluated at £i(E) in the analytic power computation 

yields results which are close enough to the actual power based on the observed value of A.NJ to 

make it a reasonable tool for making comparisons. 
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The latter issue is the first one to be discussed. Overall, the average squared deviation be-

tween the true power and the "expected" power (i.e., based on XN1) is about 0.0055, or in terms of 

a standardized deviation, about 0.07, or 7%. The average squared deviation between the two 

measures is decreasing in the sample size, n, as well as in R2 and p2, on average. In other words, 

the closer the estimated i 21 under H2 is to the true.!'.• the smaller the discrepancy between the two 

measures of power. The XN1 yields a larger power than the true A.NJ> due to the presence of the 

disturbances (i.e., variability around the true mean of,!'.). Therefore, for making general compar-

isons as was done in Section 3.3.2, the XNJ provides basic information about the behavior of the 

power curve for the NJ-test, although it tends to overstate the true power conditional on 

P i.E = k; nevertheless this overstating is only slight in most cases. 

However, when the analytic power for the NJ-test is compared to that of the F-test, it is done 

using power computations with the true noncentrality parameter, not its "expected" value. One 

built-in comparison tool is the actual proportion of replications for a given experiment for which 

the analytic power of the F-test exceeded that of the NJ-test. Another way to compare the analytic 

power of these procedures more formally is through a repeated measures design on these analytic 

powers from the experimental runs, with between-subject (or crossed) effects being n, p2, R2 and 

k12 = (k1, k2), including all two-way interactions. This analysis yielded significance on all between-

subject effects, except for the two-way interactions involving k12• (See Table IV.3.2.) Therefore, if 

the observed analytic powers are averaged over the various effects, the powers are fairly close 

overall, with the dramatic exception being based on the different numbers of regressor variables in 

the competing models. As the power curves in Figures 3.1-3.6 showed, the power of the NJ-test 

is larger, in general, when the number of variables in the true model is less than or equal to that in 

the false alternative. The F-test gives larger power when the reverse is the case. This result seems 

to parallel the trends in the observed power for making the correct two-test inference. 

Investigating the interaction effect between R2 and p2 , averaged over the other model char-

acteristics, points out several trends. When the R2 for the true model is relatively poor (0.50, 0.70), 

the analytic power for both tests decreases as p2 increases, but the NJ-test holds a slight edge over 
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its competitor. (Recall that these are equal k cases, so tests perform as expected based on the ob-

served inferential power.) Once the fit for th_e true model has reached R2 = 0.75, the F-test has 

much higher power, on average, than the NJ-test when the squared canonical correlation between 

the sets of regressor variables for the true and false models is only 0.25 (i.e., 0.854 compared to 

0.795). But as p2 increases, both procedures show substantial reductions in power, although the 

F-test trails off more quickly. In particular, both tests experienced sharp reductions in power when 

p2 reached 0.90. This result implies that the average analytic power of the tests become quite similar 

for large p2 given R2 = 0.75. Then for the case in which the true model fit is quite good, 

R2 = 0.90, there is no real difference in terms of power. 

Referring back to the power curves of Chapter III, it was clear that n, (k1 - k2) and the R2 

had a significant influence, in a statistical sense, on the analytic power for the true model. However, 

since the noncentrality parameters derived in Chapter III were computed using variance-covariance 

matrices in place of X';J0, the influence of p2 on power was not visible. (Refer back to Appendix 

B.2.) In practice, though, the degree of collinearity between the_ models under test is an important 

factor in determining the true analytic power of both the NJ- and F- tests. By examining the form 

of the noncentrality parameters, it is clear that the observed matrices X';J0, i :;C j for a given sample 

play an important role in the power of the testing procedure, and the structure of these matrices 

depend heavily on the magnitude of p2• As the Monte Carlo results indicate, the analytic power for 

testing a false alternative against the true model reflects the influence of all the control parameter 

values, including p2. 

As the results indicated, the behavior of the analytic power for one-half of the testing process 

parallels the behavior of the empirical power for making the correct inference on a given pair of 

models. Specifically, if the Pearson product-moment correlations between these two power meas-

ures are computed over all experimental runs, the following are obtained: 

(0.96237 for equal k cases only) 
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(0.95377 for equal k cases only) 

However, this does not consider the equality of, or the magnitude of the differences in, the actual 

computed powers. In checking for equality, an interesting observation can be made. For the 

NJ-test, the actual observed empirical power for making the correct inference is almost always 

greater than the corresponding analytically computed power. The only exceptions coincide with 

cases in which the analytic power exceeded 0.95. Then the observed power of making the correct 

inference was brought back down to approximately 0.95, which reflects the significance level on the 

reversed test. For the F-test, similar results were observed. In some cases, the increase from the 

indicated analytic power for rejecting the false model in favor of the true to the observed probability 

of making a correct inference for the pair of models was quite dramatic. Consequently, this analytic 

power can be considered a lower bound for the empirical power of making the correct inference for 

a given pair of models unless this power exceeds (1 - a), which serves as an upper bound for the 

power. 

Further investigation can be made into how these tests perform, but much useful information 

has already been obtained. In particular, the motivation for making comparisons between the an-

alytic power for detecting the true alternative and that of the inference itself is to gain insight into 

the latter through something that is computable, or at least estimable. If the value of the non-

centrality parameter corresponding to each half of the testing procedure can be estimated from the 

data, these analytically computed powers for the rejection of a false maintained model in favor of 

the true alternative can be used to see which of these two procedures may be more useful in a 

particular application. Quite simply, the added information can only help in drawing the correct 

conclusion based on the non-nested testing results. 

4.3.1.4 Some Additional Comments 
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There are many ways to analyze the results from this Monte Carlo study which are still un-

tapped. However for the purposes of this study, sufficient information has been drawn from the 

experimental outcomes to formulate some practical guidelines. A parallel purpose for this study is 

to evaluate the robustness of these testing procedures to the violation of the normality assumption 

on the disturbance term. The results from that portion of this study will be presented and discus~ed 

in the next section. After they have also been reviewed, the implications of the study regarding 

practical use of the procedures can be drawn and incorporated with the information from cases in-

volving the classical assumptions. 

Before the normal case is considered closed, it is worthwhile to consider the asymptotic 

properties of some of the procedures. In many situations, samples of size 30 are considered large 

enough to use limiting approximations. As all statisticians are aware, the quality of the approxi-

mation is often dependent on other factors. As the discussion based on the normal disturbance case 

experiments revealed, a sample of size 40 in the case of non-nested linear regession models is gen-

erally not large enough to have the asymptotically valid procedures behave well. In this case, the 

behavior of the test is measured in terms of its agreement with its asymptotic distribution. Support 

fo this contention can be gleaned from the Cox (N) test and Linearized Cox (NL) test in particular, 

and the J-test to some extent. With the increase from a sample size of 20 up to 40, many im-

provements resulted. However, a warning about assuming that the asymptotic results hold ap-

proximately even in samples of size 40 is necessary. (For evidence regarding the behavior of the 

Cox and J-tests in samples of size 60, see Godfrey and Pesaran, 1982, 1983). 

4.3.2 The Non-Normal Disturbance Case 

The purpose of this portion of the Monte Carlo study is to evaluate how robust these non-

nested testing procedures are to a violation of the normality assumption on the disturbance terms. 

White (1982), in his discussion of the regularity conditions for the Cox (N) test, addressed the 

asymptotic validity of the Cox procedure under the case of non-normal disturbances. Since all the 
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procedures discussed thus far are essentially asymptotically equivalent, this asymptotic robustness 

should hold for the other procedures. However, the main concern here is whether or not this 

asymptotic property will hold in finite samples as small as 20. 

In the work of Godfrey and Pesaran (1983), they investigated the case of skewed non-normal 

distributions on the disturbances. Once again it is necessary to point out that their work dealt 

primarily with the W, N and F test procedures. Therefore, in the current study, an extension of 

their work regarding robustness is presented here. This extended study will incorporate all ten of 

the procedures discussed thus far and an additional pair of non-normal distributions on the dis-

turbance terms, both of which symmetric: the Student t and a truncated normal (10% in tails). 

(The model generation for the non-normal cases is described in section 4.2.3.) 

Since the goal of this part of the study is to evaluate the robustness, and not the relative 

inferential ability, of the tests under this particular violation of the classical assumptions, only a 

limited number of situations were examined. Consequently, the simulation was designed to handle 

all four non-normal distributions simultaneously as well as a normal case. This approach is em-

ployed so that the normal and non-normal models will be comparably based on the same sets of 

generated regressor variables. (The program for this portion is contained in Appendix D.) 

Eight experimental runs based on 500 replications each were used since they formed a one-

half fraction of a 22 x 4 factorial design with factors: R2 at levels 0.75, 0.90; p2 at levels 0.25, 0.50, 

0.75, 0.90; and (kl! "1,, k3) at levels (4,2,6) and (4,4,4). The sample size has held at 20 for all of the 

experiments which are given by the following sets of model conditions of the form 

{R 2 , p2,(k1, "1,, k3)} : 

NNl: 0.75, 0.25, (4,2,6) 

NN2: 0.90, 0.25, (4,4,4) 

NN3: 0.90, 0.50, (4,2,6) 

NN4: 0.90, 0.75, (4,4,4) 

NN5: 0.75, 0.50, (4,4,4) 

NN6: 0.75, 0.75, (4,2,6) 

NN7: 0.75, 0.90, (4,2,6) 

NN8: 0.90, 0.90, (4,4,4) 
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The results for these experiments are presented in Table IV.3.3 in a test-by-test manner since 

the robustness of each procedure is determined independently of the other procedures and not on 

any relative basis. A glance across the different testing procedures and the various non-normal 

distributions for the experiments outlined above reveals no severe drops in power under the non-

normal disturbance models nor increases in observed significance levels. Slight variations are pres-

ent as would be expected, particularly in the case of either a skewed or heavy-tailed distribution. 

In order to determine where any significant variation which would question the robustness of a 

given procedure was coming from, a comparison criterion is needed. 

One way to analyze the results in terms of detecting significant differences between the non-

normal cases and the normal is through the use of contrasts within the repeated measures frame-

work for analysis of variance. Specifically, the different error distributions would represent levels 

of the within model effect, and the usual model conditions of R2, p2, and their interaction would 

represent the between model effects. Under all ten of the testing procedures, there was no signif-

icant effect which corresponded to the different error distributions, when the dependent measure 

was power or significance level. 

Therefore, in order to see if the robustness of the various procedures to the normality as-

sumption is in actuality dependent on the type of non-normal error distribution invoked, the four 

non-normal distributions for the error terms must be compared to the normal case one at a time. 

To accomplish this, a series of paired t-tests was performed on the basis of the power of the tests. 

(See Table IV.3.4.) Once again, there were not many significant differences in terms of power, ex-

cept in a few instances. In particular, the heavy-tailed Student t distribution yielded power which 

was significantly different from that of the normal case for several of the procedures. The "AN" 

procedures: J, AJ, JA, NJ and F, were the ones most affected in terms of power reduction. 
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Similarly, when the case of two misspecified models is addressed, some of the procedures 

yielded significant changes in the proportion of times "both models" and "neither model" was re-

jected. These occurred under the t and chi-square distributional assumptions generally. Overall, 

it safe to say that although not completely resistent to the presence of non-normal error terms, these 

testing procedures remained quite robust given the small sample size of 20. However, the "AN" 

procedures (including the F-test) were less robust to the presence of the heavy-tailed symmetric 

distribution and the chi-square distribution than were the Cox based approaches. In addition, the 

asymptotic theory indicates asymptotic validity of all the procedures, so things can only improve 

with increased sample sizes. In particular, although it too experienced slight changes in power and 

significance level, the N-test seems to be the most robust, at least for the distributions investigated 

here. 
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4.3.3 Comparisons and Summary Information 

When both the normal and non-normal cases are considered simultaneously, the recommen-

dations made previously regarding the six procedures which performed quite adequately in small 

samples- N, W, AJ, JA, NJ and F -have still been upheld. However, it would seem that those tests 

which were conservative in their approach are the ones which show the largest discrepancies be-

tween the normal and non-normal disturbance cases; i.e., the JA, NJ and F testing procedures. 

This result is still not enough reason to rule out the possible use of these procedures as a means 

of providing supporting information into the inference making process. The practical guidelines 

which will now be discussed indicate when the added information from the conservative tests may 

be desired. 

4.4 Practical Guidelines and Warnings 

When deciding which of the non-nested testing procedures to use, the researcher should keep 

a few facts in mind. First, even when the sample is of size 40, those procedures which are only 

asymptotically valid will not necessarily be close enough to the nominal size to be worth practical 

consideration. Therefore, the unadjusted Cox (N) test and the Linearized Cox (NL) test are not 

suitable for small sample situations. Although the Atkinson (NA) test does have .an exact finite 

sample null distribution, it suffers in general from poor power as well as relatively large observed 

significance levels. This test, too, is not suitable for samples of size 20 and 40, at least by the evi-

dence this study provided. There is sufficient evidence in terms of large significance levels for also 

eliminating the J-test, in its unmodified form, from the pool of applicable testing procedures. 

Therefore, warnings concerning the realization of asymptotic behavior in the finite sample setting 

have led to a sizable reduction in the number of procedures which could be used with some confi-

dence in small samples. 
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As a result, there are .essentially two types of procedures to consider in small sample situations 

(20 s: n s: 50). The first being the small sample adjusted versions of the Cox and J-tests. The 

empirical evidence from this study showed that the N-test possesses the best power properties 

overall and its observed significance level is well in line with the nominal level. The other tests in 

this category are the Wald-type adjusted version of the Cox test, W, and the AJ-test, the modified 

version of Davidson and MacKinnon's J-test. The W-test enjoys fairly large power in general and 

is noted for a reasonably large detection rate regarding the situation involving two misspecified 

models. On a complementary note regarding the Adjusted J-test (AJ), its observed significance level 

is often smaller than the nominal size and yet it exhibits large power when the fit of the true model 

is indeed quite good and the number of regressors equal across models. Clearly all three of these 

procedures have their advantages for use in practice. 

The second set represents the 0 AN" procedures which posess exact null distributions: JA, 

NJ and F. Recall that the JA- and F-tests both detected situations involving two misspecified 

models a large percent of the time, overall. In addition, the NJ- and F-tests have exact 

distributional properties under the alternative which allows lower bounds on the probability of the 

test yielding a correct inference to be estimated and thus added performance information obtained. 

The NJ-test tended to exhibit larger power than the F-test under the equal k case. All of these 

represent sound reasons to consider using the procedures in practical situations. However, a 

warning should be stated regarding the low power of the JA-test when the true model has more 

regressor variables than its competition and small observed significance levels which are consistently 

below the nominal level. 

Interestingly enough, these two groups represent differing opinions regarding how much evi-

dence is needed by an alternative model to warrant the rejection of the maintained model, thus 

deeming it misspecified. The latter group of tests are clearly of a conservative nature when it comes 

to rejecting the null hypothesis. This contention is supported by the JA- and NJ-tests which will 

not easily reject a model with only two variables when it is tested against a correct model specifi-

cation with many more variables. This is not to say that small sample modified procedures require 
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little in order to reject the null - only that they are tempered versions of tests which were biased 

away from the null model. This difference can be a useful piece of information for making practical 

guidelines. 

In order to make any worthwhile guidelines to be used in practice, two separate cases of 

models under test must be addressed: equal and unequal numbers of variables across models. 

Case !.Guidelines for the case of equal numbers of regressors across models under test: For this 

case, the N-test leads to the largest power in general, although the Al-test is just as appealing in 

terms of power when the models have relatively large coefficients of determination (i.e., 

R2 ~ 0.75). As a supplement, the F- or NJ-test should be used also to cover the possibility that 

both models being tested are misspecified. (This result would most likely be the case if these two 

procedures were able to reject neither of the hypothesized models.) 

Case 2.Guidelines for the case of unequal numbers of regressors in the competing models (i.e., 

k1 * "2): In this case, the importance of handling the situation differently from the equal k case is 

directly related to the magnitude of I k1 - "21 . If the numbers of non-overlapping variables in the 

two models are very different, then the following procedure will be essential if the probability of 

making the correct inference is to be "maximized." 

Again, the N procedure will provide a good starting point due to its good power properties, 

although it might not do too well at detecting the case of both models being invalid. Two inter-

esting scenerios can result on the basis of the N -test's results: 

Scenario 1: Suppose you have two models under test having regressor variables such that 

k1 < "2 and the initial test result from the N-test indicates that the model with ki variables is valid. 

The question arises as to whether or not this is just a result of increased R2 on the model due to 

more regressors. Therefore, in order to gain some support for this inference, a more stringent test 

should be applied to see if the resulting inferences agree. In this scenario, a more stringent test 

would be either the NJ- or JA-test (although the JA-test may be unreasonable based on its power 
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in such cases). Clearly, the NJ-test would be a test whose reduced power in cases involving the true 

model having the larger number of regressors would require "more evidence" in some sense in order 

the reject the model with fewer parameters. 

If the NJ- and N-tests yield the same inference, namely that the "2 model is indeed valid, extra 

support for the original inference was obtained. On the other hand if they disagree, further inves-

tigation is warranted using other non-nested procedures, such as the F and W-tests, as well as other 

criteria. 

Scenario 2: Suppose you have the same two models with k1 < k2, but this time the initial 

inference resulting from the N-test is that the model with k1 regressors is the valid model. In this 

case additional support of the N's inference would come from a '1ess stringent" procedure such as 

the AJ- or J-test (once again, as in the case of JA and NJ, the unmodified test's size is generally 

much larger than the nominal level making it almost certain that it would reject the "smaller" 

model). As the Monte Carlo study evidenced, the AJ-test, although less biased than the unmodified 

J-test, has fairly large power for rejecting the smaller model in favor of a larger one. 

If the AJ-test yields the same inference as the N-test, then even more evidence has been 

compiled to conclude that the k1 model was indeed valid. If, however, the two procedures yield 

different results, as in the case involving the NJ-test, further investigation is warranted, not only by 

using other non-nested procedures such as the F-test, but through the comparison of other model 

criteria. 

Based on the empirical evidence from this Monte Carlo study, these guidelines should help the re-

searcher use the non-nested testing procedures with greater confidence. Clearly, if the results from 

the study extend to the more general arena, which they no doubt will, then the use of these simple 

recommendations in small sample settings should improve the probability of making the correct 

inference regarding the validity of the models under test. Therefore, from a practical perspective, 

the Monte Carlo study has accomplished what it set out to do. 
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Table IV.2.1: ExperimentaJ Runs for the NormaJ Deviate Case 

Run n R2 p2 (k1, k2, k3) 

l 20 0.75 0.25 (4,2,6) 

2 20 0.75 0.25 (6,2,4) 

3 20 0.75 0.50 (2,4,6) 

4 20 0.75 0.50 (4,4,4) 

5 20 0.75 0.75 (2,4,6) 

6 20 0.75 0.75 (4,4,4) 

7 20 0.75 0.90 (4,2,6) 

8 20 0.75 0.90 (6,2,4) 

9 20 0.90 0.25 (2,4,6) 

10 20 0.90 0.25 (4,4,4) 

11 20 0.90 0.50 (4,2,6) 

12 20 0.90 0.50 (6,2,4) 

13 20 0.90 0.75 (4,2,6) 
14. 20 0.90 0.75 (6,2,4) 

15 20 0.90 0.90 (2,4,6) 

16 20 0.90 0.90 (4,4,4) 

17 40 0.75 0.25 (2,4,6) 

18 40 0.75 0.25 (4,4,4) 

19 40 0.75 0.50 (4,2,6) 

20 40 0.75 0.50 (6,2,4) 

21 40 0.75 0.75 (4,2,6) 

22 40 0.75 0.75 (6,2,4) 
23 40 0.75 0.90 (2,4,6) 

24 40 0.75 0.90 (4,4,4) 

25 40 0.90 0.25 (4,2,6) 

26 40 0.90 0.25 (6,2,4) 

27 40 0.90 0.50 (2,4,6) 

28 40 0.90 0.50 (4,4,4) 

29 40 0.90 0.75 (2,4,6) 

30 40 0.90 0.75 (4,4,4) 

31 40 0.90 0.90 (4,2,6) 

32 40 0.90 0.90 (6,2,4) 
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Table IV.2.1: (continued) 

Run n R2 p2 (k,, k.i, k3) 

33 20 0.50 0.25 (4,4,4) 

34 20 0.50 0.50 (4,4,4) 
35 20 0.50 0.75 (4,4,4) 

36 20 0.50 0.90 (4,4,4) 
37 20 0.75 0.25 ( 4,4,4) 

38 20 0.75 0.90 (4,4,4) 

39 20 0.90 0.50 (4,4,4) 
40 20 0.90 0.75 (4,4,4) 

41 20 0.75 0.50 (4,2,6) 
42 20 0.90 0.25 (4,2,6) 
43 20 0.90 0.90 (6,2,4) 
44 40 0.90 0.50 (2,4,6) 
45 40 0.90 0.50 (6,2,4) 
46 40 0.90 0.75 (4,2,6) 
47 20 0.70 0.25 (4,4,4) 
48 20 0.70 0.50 (4,4,4) 
49 20 0.70 0.75 (4,4,4) 

50 20 0.70 0.90 ( 4,4,4) 
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Table IV .2.2 Results of Normal Deviate Experiments 

Experiment: 01 

Parameters: n=20 R2 = 0.75 pl=0.25 (k.' "2. k3) = ( 4,2,6) m= 1000 

H1 vs H2 Hi VS HJ 

PawerF 0.881682 0.674905 ( 0. 01131) co. 027126) 
PawerNJ 0.605316 0. 776474 co. 08198) C0.030767) 

PawerF > PawerNJ 0.8060 0.1690 

Pawe'Ni 0.648731 0.785694 C0.07082) C0.040897> 
SSE(PawerNi• Pawe'fij) 0.013740 0.017374 

. 
Test p a Avg. Rank p a Avg. Rank 

N 0.896 0.104 z-. '1925 0.789 0 .211 2.7255 C.00966) C.00966) c. 01291) C.01291) 
w 0.956 0.033 5.7910 0.932 0. 032 6.9975 C.00649) C.00565) c. 00796) C.00557) 

N 0.957 0.038 2.7010 0.936 0.049 2.7010 C.00642) C.00605) c. 00774) C.00683) 

NA 0.520 0. 071 8.8670 0.842 0.078 7. 0775 C.01581) C.00813) (. 01154) C.00848) 

NL 0.907 0.093 2.5530 0.829 0.171 3.2990 c. 00919) C.00919) C.01191> C.Oll9U 

J 0.962 0.037 3.9310 0.827 0.171 4. 6270 C.00605) C.00597) C.01197) C.01191> 

A.J 0.973 0.015 5.2915 0.947 0.029 5.2495 c. 00513) C.00385) C.00709) c. 00531) 

JA 0.515 0.022 9.1045 0.823 0.028 7.2700 C.01581) C.00464) C.01208) C.00522) 

NJ 0.744 0.042 7.1750 0.886 0.054 6.5560 c. 01381) C.00635) C.01006) c. 00715) 

F 0.950 0.035 7.4085 0.851 0. 064 8.4970 C.00690) C.00581) c. 01127) c. 00774) 

Kendall's W 0.769899 a. 5il6 009 
C.000) C.000) 
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Table IV .2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 01 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 H3 

N 0.436 0.010 0.483 0.071 

w 0.019 0.805 0.095 0.081 

N 0.031 0.680 0.180 0.109 

NA 0.012 0.759 0.083 0 .146 

NL 0.414 0. 013 0.490 0.083 

J 0.180 0 .113 0.661 0.046 

Al 0.020 0. 771 0.161 0.048 

JA 0.002 0.853 0.073 0. 072 

NJ 0.012 0.820 0.087 0.081 

F 0.033 0.780 0 .119 0.068 
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Table IV.2.2 Results of NonnaJ Deviate Experiments (continued) 

Experiment: 02 

Parameters: n=20 R2 = 0.75 pJ=0.25 (k1, ki. k3) = ( 6,2,4) m= 1000 

H1 vs H2 H1 vs H3 

PowerF 0. 797130 0.673709 
(0.02046) (0.025320) 

PowerN1 0.445039 0.609523 
(0.07837) C0.065380) 

PowerF > PowerN1 0.8610 0.5220 

Powe'Ni 0.479578 0.647423 
(0.07297) C0.072540) 

SSE(PowerNJ• Powe'fjj) 0.007555 0.026509 

. . 
Test p CI Avg. Rank p CI Avg. Rank 

N 0.855 0.145 2.4650 0.853 0.147 2.3215 
(. 01114) (. 01114) (. 01120) (. 01120) 

w 0.937 0.029 6.1775 0.909 0.025 6.7570 
C.00769) (.00531) (. 00910) C.00494) 

N 0.951 0.034 3.0215 0.938 0.037 3.0895 
(.00683) C.00573) C.00763) (.00597) 

NA 0.307 0.099 8.6095 0.571 0.095 7.9875 
(.01459) (.00945) C.01566) C.00928) 

NL 0.860 0.140 2.6355 0.867 0 .133 2.7985 
(.01098) (.01098) (.01074) C.01074) 

J 0.957 0.043 3. 7360 0.925 0.075 3.9015 
C.00642) C.00642) C.00333) (.00333) 

AJ 0.963 0.016 4.8270 0.947 0.020 5. 0360 
(.00597) (. 00397) C.00709) C.00443) 

JA 0.304 0.022 9.2315 0.547 0.025 8.6565 
(.01455) C.00464) C.01575) (.00494) 

NJ 0.571 0.050 7.0920 0.782 0.046 6.5430 
(.01566) (.00690) (.01306) (.00663) 

F 0.918 0.047 7.1675 0.848 0.044 7.9090 
(.00868) C.00670) (.01136) C.00649) 

Kendall's W 0. 711844 0.644323 
C.000) (.000) 
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Table IV.2.2 Results of Nonna! Deviate Experiments (continued) 

Experiment: 02 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 H3 

N 0.350 0.019 0. 463 0.168 

w 0. 011 0.800 0.105 0.084 

N 0.020 0.723 0.153 0.104 

NA 0.016 0.796 0.081 0.107 

NL 0.319 0.025 0. 474 0.182 

J 0.108 0.290 0.496 0 .106 

AJ 0.007 0.808 0.126 0.059 

JA 0.004 0.866 0.063 0.067 

NJ 0.014 0.835 0.077 0.074 

F 0.019 0.799 0 .110 0. 072 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 03 

Parameters: n=20 Rl = 0.75 pl= 0.50 (k,, "2. k3) = (2,4,6) m= 1000 

H1 vs H2 Hi VS H3 

Pawerp 0.756183 0.690914 
co. 02153) ( 0. 024772) 

PawerN1 0.825962 0.779198 
co. 01733) (0.020923) 

Pawerp > PawerN1 0.0600 0.0400 

Pawe'Ni 0. 837298 0. 765011 
C0.01534) C0.034349) 

SSE(PawerN1, Pawe'Ni) 0.002032 0.015466 

. . 
Test p a Avg. Rank p a Avg. Rank 

N 0.845 0.154 2.2565 0.791 0.209 2.6860 
(. 01145) c. 01142) (. 01286) (.01286) 

w 0.936 0.041 6.5165 0.923 0.038 7.3520 
c. 00774) (. 00627) C.00843) C.00605) 

N 0.924 0.066 2.3470 0.937 0.045 2.2840 
C.00838) C.00786) C.00769) C.00656) 

NA 0.917 0.056 8.2205 0.910 0.067 6.8150 
C.00873) C.00727) C.00905) (. 00791) 

NL 0.889 0.107 3.4035 0.859 0.140 3.5160 
(.00994) C.00978) c. 01101) C.01098) 

J 0.883 0.106 4.9325 0.800 0.187 5.2610 
C.01017) (. 00974) C.01266) C.01234) 

AJ 0.934 0.034 7.3495 0.931 0.022 6.4005 
C.00786) C.00573) C.00802) C.00464) 

JA o,q33 0.025 6.2795 0.936 0.017 5.8930 
(. 00791) (. 00494) (. 00774) C.00409) 

NJ 0.922 0.052 7.5325 0.909 0.048 7.6960 
C.00848) C.00702) C.00910) C.00676) 

F o. 884 0.059 6 .1775 0.882 0.043 7.0965 
C.01013) C.00745) C.01021) (.00642) 

Kendall's W 0. 541307 0.464313 
C.000) C.000) 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 03 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 H3 

N 0.636 0.002 0.209 0.153 

w 0.052 0.590 0 .138 0.220 

N 0 .113 0.388 0.213 0.286 

NA 0. 065 0.422 0.199 0.314 

NL 0.561 0.004 0.252 0.183 

J 0.444 0.040 0.342 0.174 

Al 0.066 0.542 0.181 0 .211 

JA 0.024 0.558 0.176 0.242 

NJ 0.033 0.536 0.182 0.249 

F 0.044 0.721 0.092 0.143 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 04 

Parameters: n=20 R2 = 0.75 p2 = 0.50 (k1, "2, k3) = ( 4,4,4) m= 1000 

H1 vs H2 H1 VS H3 

PowerF 0.596498 0.600657 
C0.02493) C0.022390) 

Powern1 0.748413 0.755419 co. 02947) C0.026989) 

Powerp > Powern1 0.1000 0.0930 

Powerm 0. 789605 0.771000 
C0.02000) C0.035493) 

SSE(Powern11 Powerm) 0.009073 0.015690 

. . 
Test p !l Avg. Rank p !l Avg. Rank 

N 0 .869 0.131 2.0470 0.850 0.149 . 2.2015 
(.01067) C.01067) C.01130) (. 01127) 

w 0.900 0.041 7.0455 0.928 0.036 7.1035 
(.00949) (. 00627) C.00818) (. 00589) 

N 0.919 0.058 2.6620 0.930 0.054 2.5680 
(.00863) (.00740) C.00807) (.00715) 

NA 0.838 0.088 7.6535 0.862 0.078 7.6245 
(. 01166) (.00896) C.01091) (. 00848) 

NL 0.901 0.098 3.0945 0.898 0.101 3.1095 
C.00945) (. 00941) (.00958) (.00953) 

J 0.930 0.059 4.0440 0.935 0.063 4.0820 
C.00807) (.00745) (.00780) (.00769) 

AJ 0.925 0.024 5.9700 0.935 0.027 5.8965 
(.00833) C.00484) (.00780) (. 00513) 

JA 0 .862 0.023 7.2585 0.871 0.028 7 .29'Ji) 
(.01091) (.00474) (. 01061) C.005221 

NJ 0.875 0.057 6.7015 0.901 0.047 6.5950 
(.01046) (.00734) (.00945) C.00670) 

F 0.822 0.046 8.5370 0.827 0.041 8.5205 
C.01210) (.00663) C.01197) (. 00627) 

Kendall's W 0.619672 0.613459 
C.000) C.000) 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 04 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 H3 

N 0.563 0.008 0.215 0.214 

w 0 .114 0.488 0.193 0.205 

N 0.178 0.334 0.250 0.238 

NA 0.088 0.417 0.237 0.258 

NL 0. 466 0.023 0.255 0.256 

J 0.328 0.096 0.296 0.280 

AJ 0.099 0.502 0.199 0.200 

JA 0.048 0.540 0.193 0.219 

NJ 0.066 0.503 0.202 0.229 

F 0.090 0 .613 0.140 0.157 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: OS 

Parameters: n=20 R2 = 0.75 p2 = 0.75 (k1, "2. k3) = (2,4,6) m= 1000 

H1 VS H2 H1 VS H3 

PowerF 0.475189 0.419554 
(0.01790) (0.016794) 

Power NJ 0.586030 0.531912 
(0.02073) co. 021291) 

PowerF > PowerNJ 0.0110 0.0140 

Powerm 0.596471 0.538639 co. 01988) (0.032168) 

SSE(Power"1, Powerm) 0.000689 0.012708 

. . 
Test p ct Avg. Rank p a Avg. Rank 

N 0.816 0.166 2.2535 0.731 0.263 3.0430 
C.01226) C.01177) C.01403) (.01393) 

w 0.794 0.044 7.7410 0. 771 0.034 7. 8115 
C.01280) C.00649) C.01329) C.00573) 

N 0.851 0.070 2.5385 0.833 0. 069 2.5905 c. 01127) c. 00807) C.01180) C.00802) 

NA 0.828 0.068 6.3075 0.842 0.057 4.9430 
C.01194) C.00796) c. 01154) C.00734) 

NL 0.827 0.123 3.5935 0. 771 0.199 3.8660 
C.01197) C.01039) c. 01329) C.01263) 

J 0.788 0 .115 5.0680 0.678 0.239 5.6940 
(.01293) C.01009) C.01478) (.01349) 

AJ 0.795 0.028 7.1890 0.755 0.039 6.6250 c. 01277) C.00522) (. 01361) C.00613) 

JA 0.807 0.033 5.9870 0.787 0.024 5.6700 
C.01249) C.00565) (.01295) C.00484) 

NJ 0.793 0.050 7.3390 0.762 0.048 7.3270 
C.01282) C.00690) C.01347) (.00676) 

F 0.699 0.042 6.9985 0.649 0.053 7.4250 c. 01451) C.00635) C.01510) C.00709) 

Kendall's W 0.478547 0.409325 
(.000) C.000) 
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Table IV .2.2 Results of NonnaJ Deviate Experiments (continued) 

Experiment: 05 (continued) 

Reject Reject Reject Reject 

Test Both Neither H1 H3 

N 0.554 0.009 0.258 0.179 

w 0.049 0.576 0.160 0.215 

N 0.136 0.336 0.233 0.295 

NA 0.080 0.348 0.227 0.345 

NL 0.446 0.018 0.307 0.229 

J 0.379 0.057 0.364 0.200 

Al 0.076 0.521 0.195 0.208 

JA 0.038 0.519 0.203 0.240 

NJ 0.042 0.495 0.216 0.247 

F 0.050 0.726 0.095 0.129 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 06 

Parameters: n=20 R2 = 0.75 p2 = 0.75 (kit k,,, k3) = ( 4,4,4) m= 1000 

H1 vs H1 H1 VS HJ 

PowerF 0.330075 0.327821 
( 0. 01146) ( 0. 010821) 

PowerN1 0.546323 0 .542773 
(0.02245) C0.021765) 

PowerF > PowerN1 0.0060 0.0090 

Powe'Ni 0.578697 0.575413 
C0.01979) C0.035441) 

SSE(PowerN1, Powe'Ni) 0.003173 0.015173 

. 
Test p <l Avg. Rank p <l Avg. Rank 

N 0.853 0.122 1.9185 0.868 0 .113 1.9135 
(. 01120) (.01035) (.01071) (.01021) 

w 0.747 0.039 7.6670 0.769 0.035 7.7835 
C.01375) C.00613) (.01333) (. 00531) 

N 0.827 0.066 2. 9060 0.855 0.050 2.3190 
(.01197) C.00786) (. 01114) (.00690) 

NA 0. 773 0.080 6.1360 0. 782 0. 079 6.1400 
(. 01325) (.00858) (.01306) (.00853) 

NL 0.846 0.101 3.2060 0.366 0.087 3 .1365 
(. 01142) C.00953) (.01078) (.00392) 

1 0.845 0.054 4.1670 0.875 0.040 4. 0560 
(. 01145) (. 00715) C.01046) C.00620) 

AJ 0.760 0.028 6.6830 0.799 0.016 6.6530 
(. 01351) C.00522) (. 01268) (. 00397) 

JA 0.767 0.027 6.5070 0. 775 0.025 6.6255 
C.01337) C.00513) c. 01321) C.00494) 

NJ 0.748 0.055 6.8385 0.764 0.050 6.8675 
(. 01374) (. 00721) C.01343) C.00690) 

F 0.535 0.053 8.9850 0.557 0.049 9.0005 
(.01578) C.00709) (.01572) C.00683) 

Kendall's W 0.606749 0.637769 
(.000) (.000) 
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Table IV .2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 06 (continued) 

Reject Reject Reject Reject 

Test Both Neither H1 HJ 

N 0.429 0.026 0.255 0.290 

w 0.088 0.361 0 .271 0.280 

N 0.189 0.203 0.281 0.327 

NA 0 .111 0.277 0.294 0.318 

NL 0.309 0.068 0.286 0.337 

J 0.193 0.147 0. 306 0.354 

AJ 0.071 0.406 0.254 0.269 

JA 0. 073 0.383 0.269 0 .275 

NJ 0. 073 0.362 0.276 0.289 

F 0. 064 0.614 0.161 0.161 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Expenment: 07 

Parameters: n=20 R2 = 0.75 p2 = 0.90 (k1, ~. k3) = (4,2,6) m= 1000 

H, VS H2 H, VS HJ 

PowerF 0.715245 0.129463 
(0.02222) (0.00lll3) 

Power NJ 0.180046 0.242237 
C0.00688) (0.005917) 

PowerF > PowerN1 0.9970 0.0020 

Powe'Ni 0.185135 0.259158 
co. 00682) CO.Oll075) 

SSE(PowerNJ• Powe'Ni) 0.000101 0.004570 

. 
Test p <l Avg. Rank p <l Avg. Rank 

N 0.903 0.095 1. 897 0 0.670 0.208 2. 6570 
(.00936) (.00928) (.01488) (.01284) 

w 0.909 0.046 5.0470 0.393 0.051 7.7250 
(.00910) (.00663) (.01545) (.00696) 

N 0.928 0.049 2.9050 0.551 0.049 3.8280 
C.00818) C.00683) C.01574) C.00683) 

NA 0. 062 0. 091 a.7335 0.528 0. 091 4 .1285 
C.00763) C.00910) C.01579) (.00910) 

NL 0.913 0.085 2.4825 0.613 0.167 3. 3745 
C.00892) C.00882) (. 01541) C.Oll80) 

J 0.960 0.038 4.1260 0.508 0.132 4.9810 
C.00620) C.00605) (.01582) c.01011; 

AJ 0.931 0.031 5.6165 0.446 0.031 6.7845 
C.00802) C.00548) C.01573) C.00548) 

JA 0.076 0.034 9.4915 0.454 0.019 6.1765 
C.OC838) C.00573) C.01575) (. 00432) 

NJ 0.260 0.069 7.7695 0.424 0.062 6.9730 
C.01388) C.00802) C.01564) C.00763) 

F 0.881 0.058 6.9505 0.201 0.069 8. 3720 
C.01024) C.00740) C.01268) C.00802) 

Kendall's W 0.820392 0.455658 
c. 000) C.000) 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 07 (continued) 

Reject Reject Reject Reject 

Test Both Neither H1 H3 

N 0.295 0.001 0.696 0.008 

w 0.057 0.262 0.603 0.078 

N 0.108 0.138 0.693 0.061 

NA 0. OU 0.732 0.045 0.212 

NL 0.251 0.002 0.734 0. 013 

J 0.152 0.006 0.838 0.004 

AJ 0.097 0.165 0.708 0.030 

JA 0.001 0.822 0.045 0.132 

NJ 0. 011 0. 719 0.136 0.134 

F 0.102 0.277 0.611 0.010 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 08 

Parameters: n=20 R2 = 0.15 p2 = 0.90 (k,, ~. k3) = (6,2,4) m= 1000 

Hi VS H2 H, VS HJ 

PowerF 0.690759 0.370026 
co. 02327) (0.015298) 

Power NJ 0.130732 0.189887 
(0.00433) (0.006159) 

PowerF > PowerNJ 1.0000 0.9210 

Powe'Ni 0.134844 0.210482 
C0.00435) (0.010257) 

SSE(PowerNJ• Powe'Ni) 0.000060 0.003706 

. 
Test p <l Avg. Rank p <l Avg. Rank 

N 0.887 0 .113 2.1865 0.890 0.101 1. 8350 
(.01002) (.01002) C.00990) (.00953) 

w 0.919 0.030 5.8720 0.792 0.022 5.9255 
(.00863) (.00540) (.01284) (.00464) 

N 0.942 0.031 3.0495 0.874 0.027 3.2795 
C.00740) (.00548) (.01050) (.00513) 

NA 0.022 0 .114 8.8065 0.141 0.087 8.3000 
(.00464) C.01006) (. 01101) (.00892) 

NL 0.886 0 .114 2.4305 0.887 0.098 2 .657 5 
(.01006) (.01006) (.01002) (.00941) 

J 0.967 0.033 3.7225 0.955 0.024 3.6035 
C.00565) (.00565) (. 00656) (.00484) 

Al 0.940 0.023 4.8370 0.859 0.018 5.1450 
(. 007 51) (.00474) (. 01101) (. 00421) 

JA 0.030 0.030 9.5265 0 .130 0.019 9.2815 
C.00540) (.00540) (.01064) (.00432) 

NJ 0.211 0.047 7.6920 0.296 0.046 7.5865 
(. 01291) (.00670) (.01444) (.00663) 

F 0.882 0.048 6.8910 0.594 0.041 7.3860 
(.01021) (.00676) (.01554) (. 00627) 

Kendall's W 0.808056 0. 763464 
C.000) (. 000) 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 08 (continued) 

Reject Reject Reject Reject 

Test Both Neither H1 H3 

N 0.144 0.043 0.747 0.066 
w 0.021 0.491 0.447 0.041 -
N 0.036 0.388 0.520 0.056 

NA 0.010 0.836 0.054 0.100 

NL 0.124 0.070 0.743 0.063 

J 0.072 0.153 0.748 0.027 

Al 0.028 0.458 0. 483 0.031 

JA 0.000 0.879 0.049 0.072 

NJ 0.008 0-.826 0.093 0.073 

F 0.053 0.533 0.398 0.016 

131 



Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 09 

Parameters: n=20 R2 = 0.90 p2 = 0.25 (k1, "2. kl)= (2,4,6) m= 1000 

H1 VS H2 Hi VS H3 

PawerF 0.997474 0.992037 
C0.00010) C0.000849) 

PawerN1 0.993060 0.995256 
C0.00320) C0.000422) 

PawerF > PawerN1 0.2360 0.1410 

Pawe'Ni 0.997972 0.992267 
C 7.9E-0) C0.001131) 

SSE(PawerN1t Pawef"jjj) 0. 003115 0.000776 

Test p <l Avg. Rank p <l Avg. Rank 

N 0.896 0.104 2.3355 0 .877 0.123 2.3575 
C.00966) C.00966) C.01039) C.01039) 

w 0.954 0.046 6.6485 0.953 0.047 7.8110 
C.00663) C.00663) C.00670) C.00670) 

N 0.950 0.050 1. 9565 0.942 0.058 1.9655 
C.00690) C.00690) C.00740) C.00740) 

NA 0.921 0.067 9.5450 0.931 0.066 9.2730 
C.00853) c. 00791) C.00802) (. 00786) 

NL 0.919 0.081 3.2590 0.900 0.100 3.6615 
C.00863) C.00863) C.00949) (. 00949) 

J 0.927 0.073 4.4840 0.889 0 .111 4.4430 
C.00823) C.00823) C.00994) C.00994) 

AJ 0.976 0.024 5.9985 0.973 0.027 5.1775 
C.00484) C.00484) C.00513) (.00513) 

JA 0.955 0.027 7.0650 0.966 0.028 6.2835 
C.00656) (.00513) C.00573) C.00522) 

NJ 0.935 0. 060 7.6910 0.947 0.053 7.5640 
C.00780) c. 00751) C.00709) C.00709) 

F 0.937 0.063 6.0355 0.949 0.051 6. 4635 
C.00769) C.00769) C.00696) C.00696) 

Kendall's W 0. 684640 0.666159 
C.000) C.000) 

132 



Table IV.2.2 Results of NormaJ Deviate Experiments (continued) 

Experiment: 09 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 H3 

N 0.563 0.005 0.263 0.169 

w 0.022 0. 746 0.106 0.126 

N 0.061 0.577 0.178 0.184 

NA 0.037 0.633 0 .136 0.194 

NL 0.499 0.009 0.294 0.198 

J 0.402 0.067 0.367 0.164 

AJ 0.041 0 .657 0.164 0 .138 

JA 0.012 0. 774 0.094 0.120 

NJ 0.023 0.730 0 .118 0.129 

F 0.055 0.757 0.090 0.098 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 10 

Parameters: n=20 R2 = 0.90 p2 = 0.25 (k1, ki. k3) = (4,4,4) m= 1000 

Hi VS H2 H, VS HJ 

Pawerp 0.989644 0.988397 
C0.00069) C0.000868) 

PawerN1 0.977132 0. 979313 
(0.00680) (0.005716) 

PawerF > PawerN1 0.3180 0.2920 

Pawerm 0.984878 0. 978227 
C0.00290) ( 0. 005781) 

SSE(PawerN1t Pawerm) 0.002679 0.001542 

. . 
Test p a. Avg. Rank p a. Avg. Rank 

N 0.898 0.102 2.2580 0.895 0.105 2. 2713 
C.0095B) (.00958) (.00970) (.00970) 

w 0. 963 0.037 7.5810 0.957 0.043 7.5420 c. 00597) C.00597) C.00642) (.00642) 

0.959 0.041 1.9720 0.952 0.048 1.9970 
N ( . 00627) (. 00627) (.00676) (.00676) 

0.875 0.080 9.2445 0.860 0.099 9.2820 
NA C.01046) (.00858) (.01098) (.00945~ 

0.910 0.090 3.2035 0.899 0.101 3.2615 NL (.00905) C.00905) (.00953) (.00953) 

0.951 0.049 3.9995 0.943 0.057 4.0430 
J (. 00683) (.00683) (.00734) (.00734) 

0.982 0.018 4.9530 0.985 0.015 4.8860 
Al (. 00421) (. 00421) (.00385) (.00385) 

0.910 0.023 8.1290 0.910 0.025 8.0740 
JA C.00905) (.00474) C.00905) (.00494) 

0.947 0.045 6. 4745 0.945 0.052 6.3865 
NJ C.00709) (.00656) (. 00721) C.00702) 

0.958 0.042 7.1990 0.941 0.058 7.2565 
F C.00635) (.00635) C.00745) (.00740) 

Kendall's W 0.751564 o. 748962 
C.000) (.000) 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 10 (continued) 

Reject Reject Reject Reject 

Test Both Neither H1 HJ 

N 0.588 0.001 0.204 0.207 

w 0.039 0 .647 0.153 0.161 

N 0.082 0.510 0.194 0.214 

NA 0.036 0.620 0.171 0.173 

NL 0.536 0.005 0.226 0.233 

J 0.388 0.093 0 .264 0.255 

AJ 0.050 0.623 0 .162 0 .165 

JA 0. 011 0.729 0.126 0.134 

NJ 0.021 0.672 0.149 0.158 

F 0.067 0 .682 0.131 0.120 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 11 

Parameters: n=20 R2 = 0.90 p2 =0.50 (k1, !Gi. k3) = (4,2,6) m= 1000 

Hi VS H2 H1 vs H3 

PowerF 0.995799 0.913317 c 0. 00021) (0.009873) 

Power NJ 0.865508 0.976900 
C0.04485) (0.002384) 

PowerF > PowerNJ 0.8880 0.0310 

Power;u 0.873191 0.973435 
C0.04058) C0.003514) 

SSE(PowerNJ> Power;u) 0.001252 0. 001182 

. . 
Test p a Avg. Rank p a Avg. Rank 

N 0.933 0.067 2. 0770 0.868 0 .132 2.1695 c. 00791) c. 00791) C.01071) C.01071) 
w 0.968 0.032 6.5785 0.951 0.045 8.2435 

C.00557) (.00557) C.00683) C.00656) 

N 0.966 0.034 1.9480 0.944 0.056 2.0485 
(.00573) C.00573) C.00727) (. 00727) 

NA 0.582 0. 069 9.1195 0.910 0.085 7. 9270 c. 01561) C.00802) C.00905) C.00882) 

NL 0.935 0. 065 2.9505 0.891 0.109 3.8470 
(.00780) C.00780) (. 00986) C.00986) 

J 0.976 0.024 3.9070 0.920 0.080 4. 0360 
(.00484) C.00484) C.00858) C.00858) 

0.982 0.018 4.9460 0.969 0.029 5.0255 AJ c. 00421) C.00421) C.00548) c. 00531) 

JA 
0.593 0.020 9.3855 0.960 0.029 6.3480 

C.01554) C.00443) C.00620) c. 00531) 

NJ 
0.907 0.039 7.1935 0.935 0.061 6.5205 

C.00919) (.00613) C.00780) c. 00757) 

F 0.966 0.034 6.9075 0.937 0.051 8.8345 c. 00573) (.00573) C.00769) C.00696) 

Kendall's W 0.852636 0 .691372 
C.000) C.000) 
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Table IV.2.2 Results of NonnaJ Deviate Experiments (continued) 

Experiment: 11 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 HJ 

N 0.536 0.003 0.421 0.040 

w 0.087 0.449 0.322 0.142 

N 0.155 0.280 0.423 0.142 

NA 0.029 0.550 0.149 0 .272 

NL 0.493 0.006 0.450 0.051 

J 0.284 0.021 0 .670 0.025 

AJ 0.085 0.382 0.453 0.080 

JA 0.013 0.666 0 .145 0.176 

NJ 0.035 0.587 0.215 0.163 

F 0.097 0.487 0.343 0.073 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 12 

Parameters: n=20 R1 = 0.90 p1 = 0.50 (k,, "2. kJ) = (6,2,4) m= 1000 

H, VS H1 H, VS HJ 

PowerF 0.991713 0.951975 
C0.00056) C0.004612) 

Power NJ 0.706068 0.898331 
C0.07825) c 0. 024377) 

PowerF > PowerN1 0.9390 0.5440 

Powerm 0.718396 0 .897148 
C0.07333) C0.027646) 

SSE(PowerN1, Powerm) 0.001335 0.005359 

Test p a Avg. Rank p a Avg. Rank 

N 0.898 0.102 2.3170 0.872 0.128 2. 247 5 
(.00958) (.00958) C.01057) C.01057) 

w 0.956 0.044 6.7320 0.954 0.044 7.0850 
(. 00649) (.00649) C.00663) C.00649) 

N 0.957 0.043 2.2355 0.948 0.051 2.1710 
C.00642) (. 00642) C.00702) (.00696) 

NA 0.285 0.098 8.8475 0.704 0.100 8.6155 
C.01428) (. 00941) (.01444) C.00949) 

NL 0.899 0.101 2.8000 0.887 0 .113 3.3410 
C.00953) (.00953) C.01002) C.01002) 

J 0.959 0.041 3.9555 0.956 0.044 3.8870 
(. 00627) C.00627) (.00649) C.00649) 

AJ 0.973 0.027 4.8570 0.976 0.023 4.8150 
(.00513) C.00513) C.00484) (.00474) 

JA 0.289 0.031 9.4810 0. 711 0.022 g. 9270 
(.01434) C.00548) C.01434) C.00464) 

NJ 0.788 0.054 7.2405 0. 911 0.054 6.3915 
C.01293) C.00715) (. 00901) C.00715) 

F 0.956 0.044 6.5525 0.951 0.047 7.5195 
(.00649) C.00649) (.00683) C.00670) 

Kendall's W 0.799244 0.737635 
C.000) c. 000) 
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Table IV .2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 12 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 H3 

N 0.367 0.028 0.499 0.106 

w 0.036 0.592 0.276 0.096 

N 0.065 0. 472 0.343 0.120 

NA 0.025 0.690 0.154 0.131 

NL 0.323 0.032 0.528 0 .117 

J 0.147 0.158 0.623 0.072 

Al 0.030 0.600 0.305 0.065 

JA 0.007 0.762 0.141 0.090 

NJ 0.024 o. 719 0.172 0.085 

F 0.057 0.626 0.262 0.055 
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Table IV.2.2 Results of NonnaJ Deviate Experiments (continued) 

Experiment: 13 

Parameters: n=20 R2 = 0.90 p.1=0.75 (k1, "2. k3) = ( 4,2,6) m= 1000 

H1 vs H2 H1 VS HJ 

PawerF 0.989979 0.670006 
(0.00061) (0.028173) 

PawerNJ 0.724474 0.883949 
(0.04677) (0.012939) 

PawerF > PawerNJ 0.9840 0.0000 

Pawer;u 0.731980 0.883458 
(0.04473) (0.015005) 

SSE(PawerNJI Pawery:u) 0.000480 0.002920 

Test p (l Avg. Rank p (l Avg. Rank 

N 0.916 0.084 2.0690 0.872 0.128 2.0505 
(.00878) (.00878) (.01057) (.01057) 

w 0.957 0.043 6.2230 0.949 0.037 8.5175 
C.00642) C.00642) (.00696) (. 00597) 

N 0.959 0.041 1.9455 0.950 0.048 2 .1380 
C.00627) (. 00627) C.00690) (.00676) 

NA 0.361 0. 074 8.8940 0.917 0. 079 6.8660 
C.01520) (.00828) (.00873) (.00853) 

NL 0.914 0.086 3.2120 0.915 0.085 3.9305 
C.00887) C.00887) C.00882) (.00882) 

J 0.970 0.030 3.8900 0.933 ·o. 066 4 .1145 
(.00540) (.00540) (.00791) (.00786) 

AJ 0.978 0.022 4.9180 0.969 0.019 5.4830 
C.00464) C.00464) (.00548) (.00432) 

JA 0.342 0.028 9.5375 0.967 0.021 5.5465 
(. 01501) (.00522) C.00565) (.00454) 

NJ. 0.862 0.050 7.5540 0.938 0.048 6.9955 c. 01091) C.00690) C.00763) C.00676) 

F 0.951 0.049 6. 7750 0.878 0.038 9.3580 
C.00683) C.00683) (.01035) C.00605) 

Kendall's W 0.840798 0.706294 
(. 000) (.000) 

140 



Table IV .2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 13 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 HJ 

N 0.520 0.000 0.472 0.008 

w 0.180 0.143 0.570 0.107 

N 0.260 0.053 0.605 0.082 

NA 0.026 0.514 0.121 0.339 

NL 0.472 0.001 0.514 0.013 

J 0.322 0.002 0.672 0.004 

AJ 0.202 0.076 0.678 0.044 

JA 0.019 0 .629 0.107 0.245 

NJ 0.050 0.484 0.243 0.223 

F 0.202 0.166 0.600 0.032 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 14 

Parameters: n=20 R2 = 0.90 p2 =0.75 (k1, "2. k3) = (6,2,4) m= 1000 

H1 VS H2 H1 vs H3 

PowerF 0.984420 0.886878 
C0.00142) (0.012347) 

PowerN1 0.528865 0.754695 
(0.06637) ( 0. 038861) 

PowerF > PowerN1 0.9920 0.7380 

Power;u 0.537079 0.759852 
( 0. 06497) C0.041602) 

SSE(Power"1 , Power;u) 0.000373 0.005985 

Test p a Avg. Rank p a Avg. Rank 

N 0.898 0.102 2.2855 0.879 0.121 2.0505 
(.00958) (.00958) (.01032) (.01032) 

w 0.959 0.040 6.3765 0.957 0.042 6.4645 
(. 00627) (.00620) (.00642) (.00635) 

N 0.958 0.042 2.2650 0.948 0.051 2.1875 
(.00635) C.00635) (.00702) (.00696) 

NA 0.131 0.086 8.8195 0.548 0 .114 8.6030 
(. 01067) (. 00887) (.01575) (.01006) 

NL 0.905 0.095 2.7670 0.882 0.118 3.4605 
(. 00928) (.00928) (.01021) (.01021) 

J 0.967 0.033 3.9090 0.964 0.036 3.8180 
(.00565) (.00565) (.00589) (.00589) 

Al 0.973 0.027 4.8570 0.972 0.027 4.8345 
(.00513) (.00513) (.00522) (.00513) 

JA 0 .117 0.031 9.5975 0.512 0.026 9.2020 
(. 01017) C.00548) (. 01581) (.00503) 

NJ 0. 713 0.047 7.5600 0.871 0.065 6.8445 
(. 01431) (.00670) (. 01061) (.00780) 

F 0.952 0.048 6.5815 0.920 0.068 7.5350 
(.00676) (.00676) (.00858) (.00796) 

Kendall's W 0.820769 0.765695 
C.000) C.000) 
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Table IV.2.2 Results of NonnaJ Deviate Experiments (continued) 

Experiment: 14 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 H3 

N 0 .283 0.021 0.619 0. 077 
w 0.037 0 .463 0.406 0.094 . 
N 0.071 0.328 0.502 0.099 

NA 0.008 0. 717 0.107 0.168 

NL 0.230 0.038 0.643 0.089 

J 0.134 0.102 0.720 0.044 

AJ 0.040 0.415 0.486 0.059 

JA 0.005 0.784 0.095 0 .116 

NJ 0.012 0. 726 0.149 0 .113 

F 0.062 0.495 0.401 0.042 
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Table IV .2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 15 

Parameters: n=20 R2 = 0.90 p2 =0.90 (k,, "2. k3) = (2,4,6) m= 1000 

H1 VS H2 Hi VS HJ 

PowerF 0.547739 0.473753 
C0.02095) (0.022584) 

PowerN1 0.669368 0.597687 
C0.02060) C0.025185) 

PowerF > PowerN1 0.0000 0.0000 

Powe'Ni 0.672553 0.597505 
C0.02043) ( 0. 029251) 

SSE(PowerN1, Powe'Nj) 0.000040 0.004799 

. 
Test p a. Avg. Rank p a. Avg. Rank 

N 0.866 0 .127 1.9450 0.767 0.223 2. 7230 
C.01078) C.01053) C.01337) (.01317) 

w 0.864 0.038 9.0585 0.828 0.043 8.7005 
C.01085) C.00605) C.01194) C.00642) 

N 0.912 0.057 2.2680 0.879 0.066 2.3010 
C.00896) C.00734) (.01032) C.00786) 

NA 0.882 0.076 6. 4615 0.885 0.057 5.2105 
C.01021) C.00838) C.01009) C.00734) 

NL 0.885 0.086 4.6380 0.833 0.143 4.2285 
(.01009) C.00887) C.01180) (.01108) 

J 0 .877 0.076 4. 7795 0.741 0.202 5.4830 
C.01039) C.00838) (.01386) (.01270) 

AJ 0.904 0.020 6.3300 0.835 0.041 6.1590 
C.00932) C.00443) (. 01174) C.00627) 

JA 0.905 0.029 S.3715 0.857 0.029 5.2495 
(.00928) c. 00531) C.01108) (. 00531) 

NJ 0 .869 0.059 7.3225 0.832 0.044 7.4180 
C.01067) C.00745) (. 01183) C.00649) 

F 0.792 0.048 6.8215 0.710 0.058 7. 527 0 
C.01284) C.00676) C.01436) C.00740) 

Kendall's W 0.550230 0.494089 
C.000) C.000) 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 15 (continued) 

Reject Reject Reject Reject 

Test Both Neither H1 H3 

N 0.589 0.004 0.243 0.164 

w 0.088 0.444 0.218 0.250 
-

N 0.229 0.182 0.298 0.291 

NA 0.151 0.173 0.306 0. 370 

NL 0.442 0.016 0.317 0.225 

J 0.377 0.044 0.386 0.193 

AJ 0 .125 0.374 0.256 0.245 

JA 0. 075 0.328 0.295 0.302 

NJ 0.096 0.339 0.283 0.282 

F 0.076 0.663 0 .112 0.149 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 16 

Parameters: n=20 R2 = 0.90 p2 =0.90 (k1. k,., k3) = (4,4,4) m= 1000 

H1 VS H2 H1 VS H3 

PawerF 0.388175 0.386459 (0.01614) ( 0. 015112) 
Power NJ 0.650878 0.650652 co. 02277) C0.021003) 

PowerF > PawerNJ 0.0000 0.0000 

Pawe'Ni 0.660467 0.656654 (0.02174) (0.024736) 
SSE(PowerNJi Pawe'Ni) 0.000264 0.005406 

Test p a. Avg. Rank p a. Avg. Rank 

N 0.880 0.107 l. 7970 0.894 0.100 1.7300 
(.01028) (.00978) C.00974) (.00949) 

w 
0.847 0.043 8.4565 0.875 0.040 8.4530 

(. 01139) (.00642) (.01046) (.00620) 

N 0.894 0.067 2. 4135 0.912 0. 063 2.3615 
(.00974) (.00791) (. 00896) C.00769) 

NA 0 .862 0.078 6.0505 0.873 0.083 6 .1100 
(.01091) (.00848) (.01053) (.00873) 

NL 0 .875 0.084 3.9195 0.885 0.085 3.9795 
C.01046) (. 00878) (.01009) (.00882) 

J 0.897 0.032 4.2315 0. 911 0.027 4.2020 
(.00962) C.00557) (.00901) C.00513) 

AJ 0.873 0.027 6.2585 0.895 0.023 6.2350 
(.01053) (. 00513) C.00970) C.00474) 

JA 0.879 0.029 5.8215 0.901 0.021 s. 7 37 a 
C.01032) C.00531) (.00945) (.00454) 

NJ 0.843 0.047 6.7940 0.863 0.053 6.8480 
(. 01151) (.00670) (.01088) C.00709) 

F 0 .613 0.054 9.2735 0.644 0.050 9.3440 
(. 01541) C.00715) (.01515) C.00690) 

Kendall's W 0.663162 0.690333 
C.000) (.000) 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 16 (continued) 

Reject Reject Reject Reject 

Test Both Neither H1 H1 

N 0.489 0.012 0.241 0.258 

w 0.159 0.226 0.296 0.319 

N 0.339 0.068 0.292 0.301 

NA 0.238 0 .119 0.319 0.324 

NL 0.328 0.055 0.299 0.318 

J 0. 211 0.140 0.319 0.330 

AJ 0.140 0.230 0.306 0.324 

JA 0.152 0.206 0.313 0.329 

NJ 0 .143 0.217 0.313 0.327 

F 0.083 0.554 0.183 0.180 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 17 

Parameters: n=40 R2 = 0.75 pJ=0.25 (k1, ki. 10,) = (2,4,6) m=500 

Hi VS H2 H1 vs H3 

PowerF 0.998682 0.997956 c 0. 00001) ( 2.6E-05) 

PowerN1 0.994975 0.997484 
C0.00142) (0.000178) 

PowerF > PowerN1 0.2420 0.2160 

Powerm 0.999085 0.993012 
c 0. 00001) (0.001272) 

SSE(PowerN1, Powerm) 0.001403 0.000901 

. 
Test p a Avg. Rank p a Avg. Rank 

N 0.902 0.098 2.7890 0.872 0.128 2.8440 (. 01331) c. 01331) C.01496) C.01496) 
w· 0.952 0.048 3.1870 0.950 0.050 3.7470 C.00957) C.00957) C.00976) C.00976) 

N 0.954 0.046 2.3820 0.948 0.052 2.2640 C.00938) C.00938) C.00994) (.00994) 

NA 0.928 0.068 9.6380 0.942 0.058 9.4880 c. 01157) c. 01127) (.01046) (.01046) 

NL 0.922 0.078 2.8950 0.892 0.108 3.0060 
C.01200) (.01200) (. 01389) (.01389) 

J 0.926 0.074 6.1050 0.864 0.136 6.3280 (.01172) C.01172) (.01535) (.01535) 

AJ 0.978 0.022 7.4360 0.972 0.028 7.1640 (.00657) C.00657) C.00739) C.00739) 

JA 0.966 0.026 7.8050 0.974 0.026 7.4700 (. 00811) C.00712) C.00712) C.00712) 

NJ 0.936 0.064 7.8590 0.952 0.048 7.9470 
C.01096) C.01096) C.00957) (. 00957) 

F 0.950 0.050 4.9040 0.954 0.046 4.7420 (.00976) C.00976) C.00938) C.00938) 

Kendall's W 0. 779068 0.718034 
C.000) (.000) 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 17 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 H3 

N 0.814 0.000 0.120 0.066 

w 0.168 0.350 0.200 0.282 

N 0.200 0.304 0.208 0.288 

NA 0.082 0.444 0.192 0.282 

NL 0.794 0.000 0.140 0.066 

J 0.700 0.006 0.206 0.088 

Al 0.150 0.432 0.200 0.218 

JA 0.060 0.492 0.186 0.262 

NJ 0.078 0.454 0.200 0.268 

F 0.120 0.492 0 .164 0.224 
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Table IV.2.2 Results of NormaJ Deviate Experiments (continued) 

Experiment: 18 

Parameters: n=40 R2 = 0.75 p2 = 0.25 (k1' "2, kJ) = ( 4,4,4) m=500 

H1 VS H2 H1 VS H3 

PawerF 0.995337 0.995709 
( 0. 00011) C0.000103) 

Power NJ 0.933379 0.934003 
(0.00626) C0.007167) 

PawerF > PawerNJ 0.3340 0.3530 

Pawerm 0. 990715 0.980143 
(0.00320) C0.008384) 

SSE(PawerNI• Pawerm) 0.002093 0.001814 

Test p (1 Avg. Rank p (1 Avg. Rank 

N 0.916 0.084 2.4770 0.902 0.098 2.5340 C.01242) (.01242) (. 01331) (.01331) 
w 0.962 0.038 3.9430 0.958 0.042 4.1340 (.00856) (. 00856) (.00898) C.00898) 

N 0.952 0.048 2.2400 0.952 0.048 2.1750 (.00957) C.00957) (.00957) (.00957) 

NA 0.934 0.056 9.5750 0.926 0. 06 0 9.5710 (. 01111) C.01029) (. 01172) (. 01063) 

NL 0.920 0.080 2.7190 0.916 0.084 2.7000 
C.01214) (.01214) (.01242) (.01242) 

J 0.940 0.060 4.8970 0.942 0.058 4.3590 (.01063) C.01063) (._01046) (.01046) 

AJ 0.930 0.020 6.0220 0.974 0.026 6.0720 C.00627) (. 00627) (. 00712) (. 00712) 

JA 0.972 0.018 8.1780 0.954 0.032 8.1660 (.00739) (.00595) (.00933) C.00788) 

NJ 0.946 0.046 7 .1150 0.946 0.050 7. 0670 
C.01012) C.00933) (. 010·12) (.00976) 

F 0.938 0.062 7.8340 0. 962 0.038 7.7220 
(.01080) (.01080) (.00856) (.00856) 

Kendall's W 0.787540 0. 775867 
(.000) C.000) 
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Table IV.2.2 Results of Nonnal Deviate Experiments (continued) 

Experiment: 18 (continued) 

Reject Reject Reject Reject 

Test Both Neither H1 HJ 

N 0.804 0.000 0.090 0.106 

w 0.190 0.226 0.308 0.276 -
N 0.224 0.188 0.322 0.266 

NA 0 .114 0.390 0 .274 0.222 

NL 0. 776 0.000 0.100 0.124 

1 0.652 0.020 0 .164 0 .164 

Al 0.142 0.336 0. 270 0.252 

JA 0.080 0.454 0.266 0.200 

NJ 0.086 0.396 0.284 0.234 

F 0.150 0.370 0.244 0. 236 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 19 

Parameters: n=40 R2 = 0.75 p2 = 0.50 (k,, k2, k3) = (4,2,6) m=500 

H, VS H2 H, VS HJ 

PowerF 0.997324 0.958182 
C 4.7E-0) C0.002168) 

PowerN1 0.861180 0.987752 co. 02974) C0.000360) 

PowerF > PowerN1 0.9760 0.0420 

Powerm 0.873556 0.982356 
(0.02570) (0.001271) 

SSE(PowerNJ• Powerm) 0.001510 0.000800 

. 
Test p a Avg. Rank p a Avg. Rank 

N 0. 916 0.084 2.4350 0.886 0 .114 2.1910 
(.01242) (.01242) C.01423) (.01423) 

w 0.946 0.054 3.9530 0. 960 0.040 5.7330 
(.01012) C.01012) c. 00877) (.00877) 

N 0.942 0.058 2.2860 0.954 0.046 1.9420 (.01046) (.01046) (. 00938) (.00938) 

NA 0.806 0.060 9.3320 0.944 0.056 8.6550 
(.01770) (.01063) (.01029) (.01029) 

NL 0.924 0.076 2.6540 0.924 0.076 3.1910 
(. 01186) (.01186) (.01186) (.01186) 

J 0.958 0.042 4. 7120 0.926 0.074 4.4660 
(.00898) C.00898) (.01172) (. 01172) 

Al 0.970 0.030 5.7900 0.976 0.024 6.0160 
(.00764) (.00764) (.00685) (.00685) 

JA 0.822 0.034 9. 0710 0.974 0.026 6.6560 
(. 01712) (.00811) (.00712) (.00712) 

NJ 0.914 0.050 7.5570 0.954 0.046 6.7300 
(.01255) C.00976) (.00938) (.00938) 

F 0.950 0.050 7.2100 0.956 0.044 9.4200 
C.00976) C.00976) C.00918) (.00918) 

Kendall's W 0.825987 0.740819 c. 000) c. 000) 

152 



Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 19 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 H3 

N 0.656 0.000 0.336 0.008 

w 0.310 0.076 0.494 0.120 

N 0.358 0. 064 0.480 0.098 

NA 0.078 0.356 0.262 0.304 

NL 0.618 0.000 0.366 0.016 

J 0. 470 0.002 0.520 0.008 

AJ 0.258 0.090 0 .570 0.082 

JA 0.062 0.412 0.250 0 .276 

NJ 0.092 0.332 0.322 0.254 

F 0.262 0.112 0.544 0.082 
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Table IV .2.2 Results of NormaJ Deviate Experiments (continued) 

Experiment: 20 

Parameters: n=40 R2 = 0.75 p2 =0.50 (k1' ki_, kJ) = ( 6,2,4) m=500 

H1 vs H2 Hi VS HJ 

Powerp 0.995881 0.979521 
C 8.9E-O> (0.000886) 

Power NJ 0.687027 0.918192 
(0.06448) C0.013768) 

Powerp > PowerN1 0.9840 0.7040 

Powe'Ni 0.709447 0.920258 
C0.05733) (0.017433) 

SSE(PowerN1, Powe'fii) 0.003608 0.005280 

Test p a Avg. Rank p a Avg. Rank 

N 0.896 0.104 2.5930 0.908 0. 092 2.2320 
(. 01367) (.01367) C.01294) (.01294) 

w 0.954 0.046 4.6240 0.964 0.036 5.4890 
(.00938) (.00938) (.00834) (.00834) 

N 0.946 0.054 2.2960 0.960 0.040 2.1510 
(.01012) (.01012) (. 00877) C.00877) 

NA 0.532 0. 060 8.9680 0.894 0.068 8. 977 0 
(.02234) (.01063) (.01378) (.01127) 

NL 0.908 0.092 2.5850 0.926 0.074 2.7450 
(.01294) (.01294) (.01172) (. 01172) 

J 0.950 0.050 4.2920 0.952 0.048 4.1250 
C.00976) (.00976) (.00957) (.00957) 

AJ 0.976 0.024 5.6020 0.972 0.028 5. 3640 
(.00685) (.00685) (.00739) (.00739) 

JA 0.528 0.034 9.3780 0.916 0.024 8.6750 
(.02235) C.00811) (.01242) (.00685) 

NJ 0.788 0.044 7.5590 0.944 0.046 6.9500 
(.01830) C.00918) (.01029) C.00938) 

F 0. 960 0.040 7.1030 0.956 0.044 8.2920 
C.00877) C.00877) (.00918) C.00918) 

Kendall's W 0.799241 0.801133 
C.000) C.000) 
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Table IV .2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 20 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 83 

N 0.512 0.002 0.438 0.048 

w 0.144 0.236 0.468 0.152 

N 0.186 0 .192 0.476 0 .146 

NA 0.040 0.514 0.236 0.210 

NL 0 .480 0.002 0 .462 0.056 

J 0.322 0.036 0.592 0.050 

AJ 0.104 0.318 0.498 0.080 

JA 0.028 0.554 0.234 0.184 

NJ 0.040 0.498 0 .274 0.188 

F 0.142 0.326 0.444 0.088 
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Table IV.2.2 Results of Normal Deviate Experiments {continued) 

Experiment: 21 

Parameters: n=40 R2 = 0.75 p2 = 0.75 (k,, ki,, k3) = ( 4,2,6) m=500 

H1 VS H2 H1 VS HJ 

Powerp 0.990784 0.733452 
C0.00025) c 0. 012201) 

Power"1 0.676123 0.897427 
C0.03344) C0.004722) 

Powerp > PowerN1 1.0000 0.0000 

Powerm 0.685934 0.899872 
C0.03216) C0.006846) 

SSE(Power"1 , Powerm) 0.000479 0.003636 

Test p a Avg. Rank p a Avg. Rank 

N 0.950 0.050 2.0110 0.888 0 .112 1.8680 C.00976) C.00976) C.01412) C.01412) 
w 0.966 0.034 4.3310 0.956 0.036 7.2150 (.00811) (.00811) C.00918) C.00834) 

N 0.966 0.034 2.0990 0.956 0.042 2.1410 
C.00811) C.00811) (. 00918) C.00898) 

NA 0.578 0.052 9.1400 0.944 0.050 7.2920 c. 02211) C.00994) C.01029) (.00976) 

NL 0.952 0.048 2.7080 0.916 0.084 3.4170 C.00957) C.00957) (.01242) C.01242) 

J 0.980 0.020 4.5420 0.912 0.088 4.4450 C.00627) c. 00627) (.01268) C.01268) 

Al 0.984 0.016 5. 7780 0.966 0.028 6.5000 
C.00562) C.00562) (. 00811) (.00739) 

JA 0.590 0.016 9.4660 0.974 0.018 5. 9270 C.02202) C.00562) (.00712) (. 00.'395) 

NJ 0.852 0.044 7.8290 0.948 0.044 6.6900 
C.01590) C.00918) (.00994) (.00918) 

F 0.954 0.046 7.0960 0.906 0.054 9.5050 
C.00938) C.00938) (.01306) C.01012) 

Kendall's W 0.889995 0.694716 
C.000) (. 000) 
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Table IV .2.2 Results of NonnaJ Deviate Experiments (continued) 

Experiment: 21 (continued) 

Reject Reject Reject Reject 

Test Both Neither H1 HJ 

N 0.606 0.000 0.386 0.008 

w 0.420 0.012 0.532 0.036 
-

N 0.480 0.008 0.494 0.018 

NA 0.062 0.288 0.236 0.414 

NL 0.576 0.000 0.414 0.010 

J 0. 476 0.000 0.520 0.004 

AJ 0.344 0.006 0.632 0.018 

JA 0.046 0.354 0.236 0 .364 

NJ 0.102 0.246 0.334 0.318 

F 0.282 0.016 0.684 0.018 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 22 

Parameters: n=40 R2 = 0.75 p2= 0.75 (k1' ki_, k3) = ( 6,2,4) m=500 

H1 VS H2 Hi VS H3 

PowerF 0.992241 0.942457 
C0.00045) (0.003346) 

Power NJ 0.508021 0.761019 
C0.04144) C0.021437) 

Powerp > PowerN1 1.0000 0.9440 

Powerm 0.522467 0. 758911 
C0.03934) C0.029792) 

SSE(PowerNJJ Powerm) 0.000837 0.010501 

. 
Test p a Avg. Rank p a Avg. Rank 

N 0.922 0.078 2.3570 0.924 0.076 1.8470 
C.01200) C.01200) (. 01186) C.01186) 

w 0.960 0.040 4.6900 0.948 0.052 5.5710 
C.00877) (.00877) C.00994) C.00994) 

N 0.964 0.036 2.2600 0.950 0.050 2.2620 
C.00834) C.00834) C.00976) C.00976) 

NA 0.320 0.068 8.8940 0. 772 0.088 8.8380 
C.02088) c. 01127) C.01878) C.01268) 

NL 0.918 0.082 2.5210 0.922 0.078 2.9580 
C.01228) C.01228) C.01200) C.01200) 

J 0.970 0.030 4.2470 0.966 0.034 4.0220 
C.00764) (.00764) C.00811) C.00811) 

AJ 0.974 0.026 5.6590 0.974 0.026 5. 276 0 
(. 00712) c. 00712) C.00712) (.00712) 

JA 0.322 0.026 9.6320 0.800 0.024 9.1690 
C.02092) (. 00712) (. 01791) C.00685) 

NJ 0.694 0.050 7.8050 0.898 0.062 7.2890 
C.02063) C.00976) C.01355) C.01080) 

F 0.964 0.036 6.9350 0.948 0.048 7.7680 
C.00834) C.00834) C.00994) C.00957) 

Kendall's W 0. 849362 0.825855 c. 000) C.000) 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 22 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 H3 

N 0.342 0.004 0.600 0.054 

w 0 .110 0.186 0.606 0.098 
-

N 0.146 0.132 0.614 0.108 

NA 0.012 0.636 0.150 0.202 

NL 0.314 0.010 0.622 0.054 

J 0.222 0.028 0. 718 0.032 

AJ 0.104 0.206 o .646 0.044 

JA 0.010 0.674 0 .138 0.178 

NJ 0.016 0. 6 08 - 0.204 0.172 

F o .116 0.256 0 .606 0.022 
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Table IV .2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 23 

Parameters: n=40 R2 = 0.75 p2 = 0.90 (k1, "2. k3) = (2,4,6) m=500 

H1 VS H2 H1 VS H3 

Powerp 0.491368 0.458676 
C0.00835) C0.008765) 

Power NJ 0.604140 0.569309 
( 0. 00887) co. 009978) 

Powerp > PowerNJ 0.0000 0.0000 

Powe'Ni 0.608579 0.570021 
C0.00872) C0.014575) 

SSE(PowerNJ• Powe'Ni) 0.000065 0.005945 

. 
Test p a Avg. Rank p a Avg. Rank 

N 0.860 0 .114 1.9180 0. 792 0.184 2.4160 
C.01553) (.01423) C.01817) C.01735) 

w 0.832 0.042 8.0680 0.832 0.042 8. 2670 
(.01674) (. 00898) C.01674) C.00898) 

N 
0.866 0.054 2.3790 0.874 0.056 2.3690 

C.01525) C.01012) C.01486) (.01029) 

NA 
0.834 0.044 6.5510 0.842 0.062 5.3920 

C.01666) C.00918) (.01633) C.01080) 

NL 0.838 0.086 4.0030 0.822 0 .132 3.9350 
C.01649) C.01255) C.01712) (.01515) 

J 
0.826 0.080 5.4960 0.744 0.190 6.1250 

C.01697) C.01214) C.01954) C.01756) 

Al 
0.832 0.028 7.8850 0.838 0.036 7.6320 

C.01674) C.00739) C.01649) C.00834) 

0.852 0.012 6.4490 0.852 0.026 6.2850 JA C.01590) (. 00487) (.01590) C.00712) 

0.822 0.040 7.3650 0.826 0.052 7.5910 NJ C.01712) C.00877) C.01697) (.00994) 

0.744 0.046 4.8860 0.732 0.040 4.9880 F C.01954) C.00938) (. 01983) (.00877) 

Kendall's W 0. 551513 0. 511522 
(. 000) C.000) 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 23 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 HJ 

N 0.564 0.002 0.244 0.190 

w 0 .110 0.236 0.308 0.346 

N 0.208 0. l.38 0.302 0.352 

NA 0.138 0.146 0.324 0.392 

NL 0.434 0.004 0.308 0.254 

J 0.428 0.014 0.336 0.222 

AJ 0 .110 0.280 0.288 0.322 

JA 0.100 0.182 0.336 0.382 

NJ 0.108 0.192 0.330 0 .370 

F 0.056 0.508 0.204 0.232 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 24 

Parameters: n=40 R2 = 0.75 pl=0.90 (k1, ~. k3) = (4,4,4) m=500 

H1 vs H2 H 1 vs H3 

Powerp 0.363204 0.368023 (0.00770) (0.006869) 

PowerN1 0.585926 0.593233 co. 01146) (0.010717) 

Powerp > PowerN1 0.0000 0.0000 

Powerm 0.598820 0.604089 (0.01097) (0.017261) 

SSE(Power"1, Powerm) 0.000332 0.008016 

Test p a Avg. Rank p a Avg. Rank 

N 0.908 0.062 1. 4510 0.890 0.074 1.4450 (.01294) (.01080) (.01401) (. 01172) 
w 0.840 0.040 7.8280 0.828 0.062 8.0850 (. 01641) (. 00877) (.01689) (.01080) 

N 0.896 0.040 2.3940 0.876 0.062 2.4390 (. 01367) (.00877) (.01475) (.01080) 

NA 0.838 0. 064 6 .1120 0.832 0.076 6.2210 (.01649) C.01096) (.01674) C.01186) 

NL 0.878 0. 060 3.2730 0.858 0.076 3.3400 (.01465) (.01063) (.01563) (.01186) 

J 0.890 0.024 4.2470 0.868 0.042 4.2360 (. 01401) (.00685) (.01515) (.00898) 

AJ 0.864 0.018 7.0780 0.850 0.036 6.9960 C.01535) C.00595) C.01598) C.00834) 

JA 0.852 0.020 6.3470 0.848 0.040 6.2830 (.01590) (. 00627) C.01607) (. 00877) 

NJ 0.834 0.046 6.9090 0.828 0.066 6.7590 (.01666) (.00938) (.01689) (.01111) 

F 0.616 0.038 9.3610 0.644 0. 064 9.1960 (.02177) (.00856) (.02143) (.01096) 

Kendall's W 0.739765 0.728012 
(.000) (.000) 
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Table IV .2.2 Results of Nonnal Deviate Experiments (continued) 

Experiment: 24 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 H3 

N 0.398 0.012 0.284 0.306 
w 0.160 0.100 0.362 0.378 -N 0.260 0.042 0.332 0.366 
NA 0.198 0.080 0.344 0.378 

NL 0 .260 0.034 0.336 0 .370 

J 0.212 0.052 0.354 0.382 

AJ 0.128 0.122 0.362 0.388 

JA 0.150 0 .116 0.356 0.378 

NJ 0.148 0 .110 0.364 0.378 

F 0.078 0.456 0.226 0.240 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 25 

Parameters: n=40 R2 = 0.90 p2 =0.25 (k1, k,,, "3) = ( 4,2,6) m=SOO 

Hi vs H2 Hi VS HJ 

PowerF 1.000000 0.999975 
C0.00000) (0.000000) 

Power NJ 0.974396 0.999922 co. 01250) ( l.lE-06> 

PowerF > PowerN1 0.9000 0.2860 

Powerm 0.974932 0.999922 
C0.01196) (0.000001) 

SSE(PowerN1' Powerm) 0.000536 0.000000 

Test p a. Avg. Rank p Cl Avg. Rank 

N 0.944 0.056 3.4540 0.918 0.082 3 .1130 
(. 01029) C.01029) (.01228) C.01228) 

w 0. 964 0.036 3. 4770 0.966 0.034 5.4730 
(.00834) (.00834) (. 00811) (. 00811) 

N 0. 964 0.036 3.3080 0. 970 0.030 2. 7070 
(.00834) C.00834) (.00764) (.00764) 

NA 0.856 0.052 9.5820 0.946 0.054 9.6890 
(.01572) (.00994) (.01012) (.01012) 

NL 0.950 0.050 3.4090 0.934 0.066 3.1580 
(. 00976) (. 00976) (. 01111) ( .01111) 

J 0.968 0.032 3.7250 0.948 0.052 3.8170 
(.00788) (.00788) (.00994) (.00994) 

Al 0.982 0.018 4.4810 0.986 0.014 4.6490 
C.00595) (.00595) (.00526) (. 00526) 

JA 0.872 0.020 8. 9210 0.980 0.020 7.7520 
(.01496) C.00627) (. 00627) C.00627) 

NJ 0.950 0.044 7.2570 0.960 0.040 6.4220 
(.00976) C.00918) (. 00877) (. 00877) 

F 0.936 0.064 7.3800 0.970 0.030 8.2200 
(.01096) (.01096) C.00764) (.00764) 

Kendall's W 0. 718071 0.678645 
(. 000) (.000) 
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Table IV .2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 25 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 HJ 

N 0. 772 0.000 0.218 0.010 

w 0.202 0.292 0.320 0.186 

N 0.240 0.252 0.338 0.170 

NA 0.076 0.486 0.164 0 .274 

NL 0. 744 0.000 0.244 0.012 

J 0.470 0.014 0.502 0.014 

AJ 0.156 0.338 0.388 0 .118 

JA 0.048 0.550 0.168 0.234 

NJ 0. 070 0.494 0.208 0.228 

F 0.170 0 .346 0.326 0.158 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 26 

Parameters: n=40 R2 = 0.90 p2 =0.25 (k1' k,., k3) = ( 6,2,4) m=SOO 

Hi VS Hl Hi VS HJ 

PowerF 1.000000 1.000000 
co. 00000) (0.000000) 

PowerN1 0. 936777. 0. 991811 
C0.02883) (0.003094) 

Powerp > PowerNJ 0.9680 0.7840 

Powe1/ij 0.950333 0.989443 
C0.01829) C0.005109) 

SSE(PowerN1 , Powe'Nj) 0. 004118 0.001678 

Test p a. Avg. Rank p a. Avg. Rank 

N 0.952 0.048 3.1600 0. 912 0.088 3.0760 
C.00957) C.00957) C.01268) C.01268) 

w 0.976 0.024 4.3970 0.956 0.044 5.6820 
C.00685) C.00685) C.00918) C.00918) 

N 0.972 0.028 3.0080 0.960 0.040 2.7050 
C.00739) C.00739) C.00877) C.00877) 

NA 0.742 0.048 9.4030 0.906 0.066 9.5220 
C.01959) c. 00957) C.01306) C.01111) 

NL 0.956 0.044 3 .1390 0.926 0.074 2. 9770 
C.00918) C.00918) c. 01172) c. 01172) 

J 0.978 0.022 3.3730 0.958 0.042 3.3770 
C.00657) c. 00657) C.00898) (.00898) 

AJ 0.990 0.010 4.4770 0.978 0.022 4.4240 
C.00445) C.00445) c. 00657) (. 00657) 

JA 0.748 0.012 9.2380 0.940 0.024 8.7280 
C.01944) C.00487) (. 01063) C.00685) 

NJ 0.948 0.028 7.4100 0.948 0.052 6.7590 
C.00994) C.00739) C.00994) C.00994) 

F 0.954 0.046 7.3950 0.944 0.056 7.7500 
C.00938) (.00938) (.01029) C.01029) 

Kendall's W 0.764144 0.746831 
(.000) C.000) 
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Table IV.2.2 Results of Nonnal Deviate Experiments (continued) 

Experiment: 26 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 H3 

N 0.608 0.000 0.316 0.076 

w 0.104 0.438 0.312 0.146 

N 0.120 0.410 0.322 0.148 

NA 0.058 0.612 0.160 0.170 

NL 0.596 0.000 0.326 0.078 

J 0.298 0.096 0.540 0.066 

AJ 0.074 0.542 0.302 0.082 

JA 0.038 0.672 0.152 0.138 

NJ 0.058 0.616 0.178 0.148 

F 0.088 0.504 0.294 0 .114 

167 



Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 27 

Parameters: n=40 R2 = 0.90 p2= 0.50 (k,, kz, k3) = (2,4,6) m=500 

Hi VS H2 H, VS HJ 

Powerp 0.999998 0.999997 
C0.00000) C0.000000) 

Power NJ 1.000000 0.999999 
C0.00000) (0.000000) 

Powerp > PowerNJ 0.0540 0.0360 

Powe'Ni 1.000000 0.999999 
C0.00000) C0.000000) 

SSE(PowerNJ• Powe'/ij) 0.000000 0.000000 

Test p a. Avg. Rank p a. Avg. Rank 

N 0.918 0.082 2.7450 0.920 0.080 2.5060 
C.01228) C.01228) (.01214) (.01214) 

w 0.948 0.052 7.1450 0.944 0.056 7.8150 
C.00994) C.00994) C.01029) (. 01029) 

N 0.932 0.068 2.6230 0.942 0.058 2.3090 
(. 01127) C.01127) (.01046) (.01046) 

NA 0.940 0. 060 9.7280 0.940 0.060 9.6870 
C.01063) C.01063) '. 01063) c. 01063) 

NL 0.926 0.074 4.7950 0.928 0.072 4.9280 
C.01172) c. 01172) C.01157) (.01157) 

J 0.954 0.046 4.8370 0.942 0.058 4.7800 
C.00938) C.00938) C.01046) C.01046) 

AJ 0.978 0.022 6.0160 0.974 0.026 5.8080 
C.00657) C.00657) C.00712) (.00712) 

JA 0.978 0.022 6.3730 0.974 0.026 6.2310 
(.00657) C.00657) (.00712) C.00712) 

NJ 0.946 0.054 7.2840 0.944 0.056 7. 4740 
C.01012) C.01012) C.01029) C.01029) 

F 0.958 0.042 3.4540 0.968 0.032 3.4620 
C.00898) C.00898) C.00788) C.00788) 

Kendall's W 0.586124 0. 656564 
C.000) c. 000) 
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Table IV.2.2 Results of NormaJ Deviate Experiments (continued) 

Experiment: 27 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 H3 

N 0.954 0.000 0.020 0.026 

w 0.708 0.002 0 .122 0.168 

N 0.804 0.000 0.080 0 .116 

NA 0 .626 0.020 0 .118 0.236 

NL 0.940 0.000 0.024 0.036 

J 0.928 0.000 0.040 0.032 

Al 0.636 0.024 0.148 0.192 

JA 0.554 0.036 0 .148 0.262 

NJ 0. 602 0.024 0.144 0.230 

F 0.484 0. 070 0.204 0.242 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 28 

Parameters: n=40 R2 = 0.90 pl=0.50 (k11 k,,, k3) = (4,4,4) m=500 

H1 vs H2 H1 VS HJ 

PawerF 0.999980 0.999981 
C0.00000) C0.000000) 

PawerN1 0.999995 0.999993 
(0.00000) C0.000000) 

PawerF > PawerN1 0.0560 0.0540 

Pawe'Ni 0.999998 0.999996 
C0.00000) (0.000000) 

SSE(PawerNI• Pawe'!;j) 0.000000 0.000000 

Test p a Avg. Rank p a Avg. Rank 

N 0.942 0.058 2.1950 0.944 0.056 2.1960 
(.01046) C.01046) (.01029) C.01029) 

w 0.960 0.040 7.1010 0.958 0.042 7. 246 0 
(.00877) (.00877) (.00898) (. 00898) 

N 0.964 0.036 2.0020 0.960 0.040 2.0630 
C.00834) C.00834) C.00877) C.00877) 

NA 0.938 0.062 9.8070 0.946 0.054 9.7760 
C.01080) (.01080) C.01012) (.01012) 

NL 0.948 0.052 3. 7770 0.950 0.050 3.6990 
(.00994) (.00994) (.00976) (.00976) 

J 0.972 0.028 3.7320 0.972 0.028 3.7190 
C.00739) C.00739) C.00739) C.00739) 

AJ 0.984 0.016 5.0140 0.972 0.028 5.1050 
(. 00562) C.00562) (.00739) (.00739) 

JA 0.976 0.024 7.1710 0.972 0.028 7 .1120 
(.00685) (.00685) (.00739) (.00739) 

NJ 0.950 0.050 6.3030 0.956 0.044 6.2120 
C.00976) C.00976) (. 00918) (.00918) 

F 0.948 0.052 7.8980 0.946 0.054 7.8720 
(.00994) (.00994) C.01012) C.01012) 

Kendall's W 0. 7 55970 0.751467 
C.000) (. 000) 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 28 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 HJ 

N 0.954 0.000 0.020 0.026 
w 0.816 0.010 0.082 0. 092 
N 0.850 0.010 0.068 0. 072 
NA 0.718 0.020 0 .1.38 0.124 
NL 0.942 0.000 0. 0.30 0.028 
J 0.912 0.000 0.040 0.048 
Al 0.742 0.018 0.110 0. 1.30 
JA 0.674 0.026 0.146 0.154 
NJ 0. 710 0.018 0 .1.32 0.140 

F 0.578 0.0.38 0.192 0.192 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 29 

Parameters: n=40 R2 = 0.90 p2 = 0.75 (k,, k,., k3) = (2,4,6) m=500 

H, VS H2 H, VS H3 

PowerF 0.998322 0.998437 
C 3.2E-0) C 2.lE-05) 

Power NJ 0.999451 0.999513 
( 5.6E-0) ( 3.3E-06) 

PowerF > PowerNJ 0.0000 0.0000 

Powe'Ni 0.999469 0.999374 
C 5.2E-0) C 5.0E-06) 

SSE(PowerNJI PoweT'jjj) 0.000000 0.000001 

. 
Test p a. Avg. Rank p a. Avg. Rank 

N 0.916 0.084 2.0390 0.922 0.078 1. 9780 
C.01242) C.01242) (.01200) C.01200) 

w 0.948 0.052 8.5960 0.950 0.050 8. 9370 
C.00994) C.00994) C.00976) (.00976) 

N 0.940 0. 060 1. 9130 0.962 0.038 1. 7 350 
(.01063) (.01063) (.00856) (.00856) 

NA 0.942 0.058 9. 7160 0.952 0.048 9.4830 
(. 01046) C.01046) C.00957) (.00957) 

NL 0.936 0.064 7.1330 0.930 0.070 6. 9290 
(.01096) C.01096) (. 01142) (. 01142) 

J 0. 960 0.040 4.4470 0.936 0. 064 4.6130 
(. 00877) (. 00877) (.01096) C.01096) 

AJ 0.978 0.022 5.8080 0.980 0.020 5.8090 
(. 00657) (. 00657) (. 00627) C.00627) 

JA 0.980 0.020 5.3130 0.980 0.020 5.2170 
C.00627) (. 00627) (. 00627) (. 00627) 

NJ 0.948 0.052 6.8850 0.954 0.046 7.0970 
C.00994) C.00994) C.00938) (.00938) 

F 0.956 0.044 3.1500 0.954 0.046 3.2020 
(. 00918) (.00918) (. 00938) (.00938) 

Kendall's W 0.801661 0.820608 
(. 000) C.000) 
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Table IV .2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 29 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 H3 

N 0. 960 0.000 0.016 0.024 

w 0.846 0.000 0.056 0.098 

N 0.908 0.000 0.036 0.056 

NA 0.852 0.000 0.050 0.098 

NL 0.946 0.000 0.022 0.032 

J 0.934 0.000 0.034 0.032 

AJ 0.816 0.004 0.066 0 .114 

JA 0.808 0.000 0.062 0 .130 

NJ 0.828 0.000 0.060 0 .112 

F 0.550 0.052 0.140 0.258 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 30 

Parameters: n=40 R2 = 0.90 p2 = 0.75 (k1' "2. k3) = ( 4,4,4) m=SOO 

H1 vs h 2 H1 vs H3 

PowerF 0.996093 0.995317 
( 1. 4E-O) C 9.lE-05) 

Power NJ 0.999615 0.999596 
t 4.6E-0) ( l.8E-06) 

PowerF > PowerN1 0.0000 0.0000 

Powe'Ni 0.999663 0.999394 
( 3.7f-0) C 6.7E-06) 

!JSE(PowerNJ• PoweT'jjj) 0.000000 0.000003 

Test p a Avg. Rank p a Avg. Rank 

N 0.924 0.076 1.9390 0. 928 0.072 1.9240 (. 01186) C.01186) C.01157) (.01157) 
w 0.946 0.054 8. 1.320 0.968 0.032 8.3940 (.01012) (.01012) (.00738) (.00788) 

N 0.940 0.060 1. 8570 0.944 0.056 1.8850 (. 01063) (.01063) (.01029) C.01029) 

NA 0.936 0.064 9.5870 0.958 0.042 9.5550 (.01096) C.01096) (.00898) (.00898) 

NL 0.934 0.066 5.8730 0.958 0.042 5.7290 C.01111) (.01111) (.00898) (.00898) 

J 0.958 0.042 3.4370 0.966 0.034 3.4050 (.00898) (.00898) (.00811) (.00811) 

Al o. 964 0.036 4. 9770 0.976 0.024 4.9710 (.00834) (.00834) (.00685) (.00685) 

JA 0.962 0.038 5.1770 0.974 0.026 5.1850 C.00856) (.00856) (.00712) C.00712) 

NJ 0.942 0.058 5.8870 0.970 0.030 5.7120 
C.01046) (.01046) (.00764) (.00764) 

F 0.948 0.052 8.1340 0.956 0.044 8.2400 
C.00994) (.00994) C.00918) C.00918) 

Kendall's W 
0. 776631 0.795968 

C.000) (. 000) 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 30 (continued) 

Reject Reject Reject Reject 

Test Both Neither H1 HJ 

N 0.970 0.000 0.018 0.012 

w 0.894 0.000 0.064 0.042 

N 0.928 0.000 0.040 0.032 

NA 0.896 0.000 0.064 0.040 

NL 0.940 0.000 0.036 0.024 

J 0.918 0.000 0.046 0.036 

Al 0 .864 0.000 0.084 0.052 

JA 0.874 0.002 0.076 0.048 

NJ 0.878 0.000 0.072 0.050 

F 0.694 0.010 0.180 0 .116 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 31 

Parameters: n=40 R2 = 0.90 pl=0.90 (k1, k,., k3) = ( 4,2,6) m=500 

H1 VS H2 H1 vs H3 

PowerF 0.999997 0.814289 
C0.00000) C0.010823) 

Power NJ 0.755406 0.946053 
C0.02357) C0.002474) 

PowerF > PowerNJ 1.0000 0.0000 

Powerm 0.758268 0.945292 
(0.02302) C0.002867) 

SSE(PowerNJ• Powerm) 0.000040 0.000585 

. . 
Test p CI Avg. Rank p a Avg. Rank 

N 0.926 0.074 2.8670 0.890 0 .110 1.8270 
(.01172) (. 01172) (. 01401) (. 01401) 

w 0.946 0.054 3.5890 0.954 0.046 8.5760 
C.01012) (.01012) C.00938) (.00938) 

N 0.944 0.056 2.7330 0.934 0.066 2.2490 
(.01029) (.01029) C.01111) C.01111) 

NA 0.284 0.070 8.9150 0.936 0. 064 7.3100 
C.02019) c. 01142) C.01096) (.01096) 

NL 0.926 0.074 2.9270 0.914 0.086 4.9870 
(.01172) (.01172) C.01255) C.01255) 

J 0.974 0.026 4.2650 0.928 0.072 3.9300 
C.00712) c. 00712) (.01157) c. 01157) 

Al 0.980 0.020 5.3090 0.972 0.028 5.4040 
(.00627) (. 00627) C.00739) (.00739) 

JA 0.286 0.024 9. 6370 0.976 0.024 4.9890 
C.02023) (.00685) (.00685) (.00685) 

NJ 
0 .874 0.052 7.8810 0.946 0.052 6.2130 

(.01486) (.00994) (.01012) (.00994) 

F 0. 962 0.038 6.8770 0.904 0.060 9.5150 
(.00856) (.00856) (.01319) (.01063) 

Kendall's W 0.792332 0. 715773 
C.000) C.000) 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 31 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 HJ 

N 0 .628 0.000 0. 372 0.000 

w 0.488 0.000 0.512 0.000 

N 0.538 0.000 0.462 0.000 

NA 0.016 0 .374 0.086 0.524 

NL 0.600 0.000 0.400 0.000 

J 0.488 0.000 0.512 0.000 

Al 0.456 0.000 0.544 0.000 

JA 0.010 0.456 0.082 0.452 

NJ 0 .136 0.148 0.382 0.334 

F 0.402 0.000 0.598 0.000 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 32 

Parameters: n=40 R2 = 0.90 p2 =0.90 (k1, "2. k3) = (6,2,4) m=SOO 

Hi VS H2 H1 VS H3 

PawerF 0.999999 0.999639 
( 1. 9E-U C 1. 3E-06) 

PawerN1 0.574959 0.838531 
C0.04268) C0.013327) 

PawerF > PawerN1 1. 0000 1.0000 

Pawerm 0.579020 0.837247 
(0.04214) (0.015404) 

SSE(PawerNJ• Pawerm) 0.000072 0.002710 

Test p CL Avg. Rank p CL Avg. Rank 

N 0.920 0.080 3.0120 0.928 0. 072 2.2500 
C.01214) (.01214) (. 01157) (. 01157) 

w 0.942 0.058 3.9750 0.948 0.052 5.3980 
C.01046) C.01046) C.00994) (.00994) 

N 0.944 0.056 2.8320 0.946 0.054 2.1120 
C.01029) C.01029) C.01012) C.01012) 

NA 0.056 0.080 8.8480 0 .640 0.076 8.8740 
C.01029) C.01214) C.02149) c. 01186) 

NL 0.918 0.082 3.0350 0.928 0. 072 2.8320 
(.01228) C.01228) (. 01157) c. 01157) 

J 0.970 0.030 3.8080 0.970 0.030 4.0440 
C.00764) (.00764) C.00764) (.00764) 

AJ 0.972 0.028 5.0480 0.978 0.022 5.1800 
(.00739) C.00739) (.00657) c. 00657) 

JA 0. 060 0.030 9.6340 0.630 0.026 9.5690 
(.01063) C.00764) (. 02161) (.00712) 

NJ 0. 746 0. 060 7.8710 0.930 0.058 7.7440 
C.01949) .(. 01063) c. 01142) (. 01046) 

F 0.938 0.062 6. 9370 0.950 0.050 6.9970 
C.01080) C.01080) C.00976) C.00976) 

Kendall's W 0.768393 0.839603 C.000) C.000) 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 32 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 HJ 

N 0.300 0.000 0.674 0.026 

w 0 .162 0.024 0.766 0.048 

N 0.188 0.010 0.756 0.046 

NA 0.004 0.700 0.078 0.218 

NL 0.262 0.004 0. 706 0.028 

J 0.212 0.004 0. 772 0.012 

AJ 0.152 0.026 0.794 0.028 

JA 0.000 0.724 0. 074 0.202 

NJ 0.012 0.620 0 .170 0.198 

F 0.144 0.042 0.804 0.010 
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Table IV.2.2 Results of Nonnal Deviate Experiments (continued) 

Experiment: 33 

Parameters: n=20 R2 = 0.50 p2 =0.25 (k1' "2, k3) = ( 4,4,4) m= 1000 

H1 VS H2 Hi VS H3 

PawerF 0.326868 0.329654 
C0.01060) co. 011297) 

PawerN1 0.358386 0.353577 
C0.02963) C0.028283) 

PowerF > PowerN1 0.3720 0.3870 

Powerm 0.447937 0.449312 co. 02239) (0.061484) 

SSE(PowerN1, Powerm) 0.021163 0.041080 

Test p (1 Avg. Rank p (1 Avg. Rank 

N 0.790 0.204 2 .6570 0. 778 0.212 2.7420 
C.01289) C.01275) (.01315) (.01293) 

w 0.633 0.026 6.6645 0.623 0.026 6.6345 
C.01525) (.00503) (.01533) (.00503) 

N 0.725 0.039 3.9370 0.703 0.049 4.0720 
C.01413) C.00613) (.01446) C.00683) 

NA 0.532 0.071 6.6540 0.502 0.072 6.7425 
C.01579) ( :00813) C.01582) C.00818) 

NL 0.821 0.173 3.1070 0.810 0.171 3.0780 
C.01213) c. 01197) (.01241) (.01191) 

1 0.833 0.121 3.9420 0 .811 0 .131 3.9585 
(.01180) (.01032) (.01239) (.01067) 

Al 0.661 0.028 6.1475 0.664 0.025 6.0220 
C.01498) (.00522) C.01494) (.00494) 

JA 0.494 0.022 7.6215 0.448 0.018 7.6640 
(.01582) (.00464) C.01573) (. 00421) 

NJ 0.551 0.046 6.6495 0.521 0.038 6.6435 
C.01574) (. 0066.3) (. 01581) (.00605) 

F 0.535 0.057 7.6.325 0.546 0.051 7.4430 
C.01578) (.00734) C.01575) (.00696) 

Kendall's W 0.417972 0.403787 
C.000) C.000) 
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Table IV.2.2 Results of NormaJ Deviate Experiments (continued) 

Experiment: 33 (continued) 

Reject Reject Reject Reject 

Test Both Neither Hi HJ 

N 0.422 0.013 0.272 0.293 

w 0.016 0.827 0.085 0.072 
-

N 0.022 0.740 0.123 0 .115 

NA 0.023 0. 770 0.105 0.102 

NL 0 .375 0.023 0.289 0 .313 

J 0.218 0.229 0.278 0.275 

Al 0.022 0.801 0.102 0. 075 

JA 0.001 0.851 0.080 0.068 

NJ 0.015 0.824 0.086 0. 075 

F 0.034 0.807 0.087 0. 072 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 34 

Parameters: n=20 R2 = 0.50 p2= 0.50 (k,, "2. k3) = ( 4,4,4) m= 1000 

Hi VS H2 Hi VS H3 

PowerF 0.228990 0.232136 
C0.00512) (0.005518) 

PowerN1 0.318421 0.326490 
C0.01738) C0.017962) 

PowerF > PowerN1 0.1790 0.1530 

Powe'Ni 0.388506 0.412722 
C0.01279) (0.044707) 

SSE(PowerN1, Powe'Jii) 0.012447 0.029475 

. . 
Test p a Avg. Rank p a Avg. Rank 

N 0.799 0.167 2.3385 0.794 0.173 2.3640 
C.01268) (. 01180) (.01280) C.01197) 

·w 
0.495 0.031 7.2440 0.510 0.034 7.1420 

C.01582) C.00548) C.01582) C.00573) 

N 0 .628 0.048 4.3650 0 .628 0.048 4.3135 
C.01529) C.00676) C.01529) C.00676) 

NA 0.541 0.075 5. 8460 0.541 0.089 5.9375 
C.01577) C.00833) C.01577) (. 00901) 

NL 0.804 0.130 2.9165 0.792 0.141 2.9755 
(.01256) C.01064) C.01284) C.01101) 

J 0. 789 0.091 3.7945 0.759 0.084 3.7655 
(. 01291) C.00910) C.01353) (.00878) 

AJ 0.529 0.025 6 .8775 0.546 0.018 6.6895 
C.01579) C.00494) (.01575) c. 00421) 

JA 0.496 0.027 6.9645 0.491 0.030 6.9955 
C.01582) C.00513) C.01582) C.00540) 

NJ 0.505 0.048 6.6005 0.506 0.054 6.6885 
C.01582) C.00676) C.01582) c. 00715) 

F 0.379 0.042 8.0655 0.378 0.046 8.1285 
C.01535) C.00635) C.01534) C.00663) 

Kendall's W 0. 460645 0. 461304 
c. 000) C.000) 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 34 (continued) 

Reject Reject Reject Reject 

Test Both Neither Hl HJ 

N 0 .373 0.035 0.289 0.303 

w 0.026 0.701 0.131 0.142 

N 0.048 0.566 0.185 0.201 

NA 0.021 0.602 0.172 0.205 

NL 0.300 0.053 0.316 0.331 

J 0.192 0.228 0 .273 0.307 

AJ 0.027 0. 711 0 .130 0.132 

JA 0.006 0. 718 0 .125 0.151 

NJ 0.015 0.698 0 .136 0.151 

F 0.030 0.766 0.099 0.105 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 35 

Parameters: n=20 R2 = 0.50 p2 =0.75 (k1, "2. k3) = ( 4,4,4) m= 1000 

H1 vs H2 H1 VS H3 

PowerF 0.132940 0.132278 
C0.00109) (0.001043) 

Power NJ 0.210386 0.209081 co. 00558) (0.005608) 

PowerF > PowerN1 0.0630 0. 0770 

Powe'Ni 0.250259 0.260972 
C0.00489) C0.018586) 

SSE(PowerNJ• Powe'Ni) 0.003420 0.012573 

Test p Cl Avg. Rank p a Avg. Rank 

N 0.651 0.147 2.2955 0.645 0 .134 2.2195 
C.01508) C.01120) C.01514) c. 01078) 

w 0 .276 0.025 7.5960 0.295 0.024 7.7395 
C.01414) C.00494) C.01443) C.00484) 
0.404 0.054 5 .1430 0.414 0.043 5.0905 N C.01552) (. 00715) C.01558) C.00642) 
0 .374 0.072 5.1300 0.383 0.076 5. 07 50 NA C.01531) C.00818) C.01538) C.00838) 
0.600 0 .116 3.0275 0.595 0.104 3.0075 NL C.01550) C.01013) C.01553) C.00966) 
0.503 0.066 3.6750 0.499 0.051 3.6215 J C.01582) C.00786) C.01582) C.00696) 

AJ 
0.324 0.020 7.0665 0.336 0.021 7.1930 

C.01481) C.00443) C.01494) C.00454) 
0 .326 0.028 6.6665 0.340 0.019 6.5845 JA C.01483) C.00522) C.01499) C.00432) 

NJ 
0.307 0.046 6.6420 0.319 0.054 6.6360 

C.01459) C.00663) (.01475) C.00715) 

F 0.185 0.042 7.7695 0.164 0.049 7.8330 
C.01229) C.00635) C.01171) (.00683) 

Kendall's W 0.445028 0.475183 
C.000) c. 000) 

184 



Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 35 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 HJ 

N 0.161 0.125 0.359 0.355 

w 0.008 0. 737 0.121 0 .134 

N 0.033 0.588 0.186 0.193 

NA 0.016 0.604 0.179 0.201 

NL 0.099 0.216 0.346 0.339 

J 0.048 0 .379 0.283 0.290 

AJ 0.006 0.728 0.134 0.132 

JA 0.007 o. 715 0.132 0.146 

NJ 0.007 0.707 0.143 0.143 

F 0.029 0.827 0. 074 0. 070 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 36 

Parameters: n=20 R2 = 0.50 pl= 0.90 (ki, k2, k3) = (4,4,4) m= 1000 

Hi VS H2 Hi vs H3 

PowerF 0.080146 0.079501 
(0.00012) (0.000127) 

Power NJ 0.116817 0.114934 
co. 00088) (0.000904) 

PowerF > PowerNJ 0.0370 0.0390 

Powe'Ni 0.131279 0.135519 
co. 00082) (0.003319) 

SSE(PowerNJt PoweT/jj) 0.000422 0.002668 

. . 
Test p a Avg. Rank p a Avg. Rank 

N 0.382 0.107 2.3470 0. 361 0 .112 2.4865 
(.01537) C.00978) (.01520) (.00998) 

w 0 .113 0.022 7.9160 0 .111 0.026 7.8000 
C.01002) C.00464) C.00994) (. 00503) 

N 0.194 0.034 5.9025 0.194 0.041 5.9390 
C.01251) C.00573) (. 01251) (. 00627) 

NA 0.189 o. 010 4.4595 0.193 o. on 4.4725 
C.01239) C.00807) C.01249) C.00843) 

NL 0.312 0.089 3.1720 0.281 0.095 3.2645 
(. 01466) C.00901) (.01422) (.00928) 

J 0.239 0.042 4.0340 0.230 0.043 4.0515 
(.01349) (.00635) (. 01331) (.00642) 

AJ 0.152 0.022 7.2030 0.159 0.024 7. 0725 
(. 01136) C.00464) (. 01157) (.00484) 

JA 0.161 0.023 6 .3130 0.170 0.026 6.2860 c. 01163) C.00474) C.01188) (.00503) 

NJ 0.147 0.043 6.4890 0.145 0.052 6.5375 
(. 01120) C.00642) c. 01114) C.00702) 

F o. 069 0.041 7.1720 0.068 0.050 7.0900 
C.00802) C.00627) C.00796) C.00690) 

Kendall's W 0.411922 0.387528 
C.000) C.000) 
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Table IV .2.2 Results of NorrnaJ Deviate Experiments (continued) 

Experiment: 36 (continued) 

Reject Reject Reject Reject 
Test Both Neither H2 HJ 

N 0.010 0 .375 0.312 0.303 

w 0.000 0.833 0.081 0.086 

N 0.003 0.685 0.159 0.153 

NA 0.014 0.698 0.148 0.140 

NL 0.006 0.493 0.252 0.249 

J 0.001 0 .640' 0.180 0.179 

AJ 0.000 0.807 0.096 0.097 

JA 0.000 0.786 0.110 0.104 

NJ 0.010 0.788 0.102 0.100 

F 0.030 0.889 0.037 0.044 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 37 

Parameters: n=20 R2 = 0.75 p2 =0.25 (k,, kl, k3) = (4,4,4) m= 1000 

H1 vs H2 H, VS H3 

PowerF 0.760629 0.761759 
C0.02171) (0.020599) 

PowerN1 0.780885 0.768994 
( 0. 04121) C0.046905) 

Powerp > PowerN1 0.3020 0.3310 

Powe'Ni 0.833585 0.780747 
C0.02383) C0.054765) 

SSE(PowerNI• PoweT'jjj) 0.015298 0.020123 

Test p a. Avg. Rank p a Avg. Rank 

N 0.850 0.149 2.2765 0.859 0.141 2.2375 
(. 01130) (. 01127) C.01101) (.01101) 

w 0.938 0.040 6.6425 0.943 0.038 6.6515 
(.00763) (.00620) (.00734) (.00605) 

N 0.932 0.059 2.7120 0.935 0.054 2.7240 
C.00796) C.00745) (.00780) C.00715) 

NA 0.802 0.082 8.2190 0. 779 0. 077 8.3045 
(. 01261) C.00868) (. 01313) (.00843) 

NL 0.872 0 .127 3.0310 0.892 0.107 2.8640 
(.01057) (.01053) (.00982) (.00978) 

J 0.900 0.098 4.2400 0.912 0.086 4.1780 
(.00949) (. 00941) (.00896) (. 00887) 

AJ 0.951 0.032 5.5175 0.956 0.029 5.5065 
(.00683) C.00557) C.00649) (. 00531) 

JA 0.815 0.031 7.9095 0.790 0.027 8.0180 
C.01229) (.00548) C.01289) (.00513) 

NJ 0.874 0.058 6.5810 0.863 0.052 6.6585 
(.01050) C.00740) (.01088) C.00702) 

F 0.893 0.060 7.8875 0.902 0.056 7.8575 
(.00978) (.00751) (.00941) (. 00727) 

Kendall's W 0.600893 0.631397 
(.000) C.000) 
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Table IV.2.2 Results of NormaJ Deviate Experiments (continued) 

Experiment: 37 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 HJ 

N 0.530 0.007 0.214 0.249 

w 0.031 0.706 0 .128 0 .135 . 
N 0. 065 0.597 0.166 0.172 

NA 0.034 0.658 0.155 0.153 

NL 0 .470 0. Oll 0.242 0 .277 

J 0.322 0.139 0. 260 0.279 

AJ 0.034 0.693 0.124 0.149 

JA 0.012 0.750 0.121 0. l17 

NJ 0.024 0.705 0.140 0.131 

F 0.051 0.763 0.084 0.102 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 38 

Parameters: n=20 R2 = 0.75 p2 =0.90 (k,, "2. kJ) = ( 4,4,4) m= 1000 

H, VS H2 H, VS HJ 

Powerp 0.150102 0.151878 
C0.00174) C0.001317) 

Power Ni 0.276436 0.281069 
C0.00749) C0.007898) 

Powerp > PowerNJ 0.0020 0.0000 

Powe'Ni 0.293253 0.298256 
C0.00735) C0.014088) 

SSE(PowerNJi Powe'Ni) 0.000692 0.005794 

. . 
Test p a Avg. Rank p a Avg. Rank 

N 0.704 0.097 1.7920 0.721 0.088 l. 7295 
C.01444) C.00936) C.01419) (.00896) 

w 0.417 0.041 7.9280 0.455 0.028 7. 9240 
C.01560) C.00627) C.01576) (.00522) 

N 0.596 0.054 3.5810 0.603 0.048 3.5705 
C.01552) c. 00715) C.01548) (.00676) 

NA 0.527 0.085 4.8975 0.549 0.076 4.9080 
C.01580) C.00882) C.01574) C.00838) 

NL 0.606 0.093 3.0530 0.634 0.068 2.9920 
C.01546) C.00919) C.01524) (.00796) 

J 0.569 0.031 4.3975 0.565 0.033 4.4600 
C.01567) (.00548) C.01569) C.00565) 

AJ 0.489 0.019 7.2550 0.489 0.020 7.2435 
C.01582) C.00432) (.01582) C.00443) 

JA 0.501 0.024 6. 4860 0.492 0.022 6. 606 0 
C.01582) C.00484) C.01582) C.00464) 

NJ 0.454 0.054 7.0250 0.471 0.044 7.0355 
(.01575) (. 00715) (.01579) (.00649) 

F 0.224 0.056 a.5105 0.224 0.051 8.5310 
C.01319) C.00727) C.01319) (.00696) 

Kendall's W 0.596230 0.605109 
C.000) (. 000) 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 38 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 H3 

N 0.131 0.133 0.365 0.371 
w 0.013 0.555 0.217 0.215 

N 0.052 0.344 0.299 0.305 

NA 0.026 0.403 0.283 0.288 

NL 0.053 0.255 0.340 0.352 

J 0.020 0.388 0.292 0.300 

Al 0.010 0.553 0.218 0.219 

JA 0. Oll 0.529 0.228 0.232 

NJ 0.012 0.531 0.230 0.227 

F 0.032 0.788 0.087 0.093 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 39 

Parameters: n=20 R2 = 0.90 p2 =0.50 (k1, ~. k3) = (4,4,4) m= 1000 

H1 VS H2 H1 VS H3 

PowerF 0.953218 0.955223 
( 0. 00501) (0.004313) 

Power NI 0.981336 0.981975 
ca. 00264) (0.003230) 

PowerF > PowerNI 0.0850 0.0700 

Powerm 0.985850 0.980344 
(0.00161) C0.003645) 

SSE(PowerNJi Powerm) 0.000618 0.000679 

Test p a Avg. Rank p a Avg. Rank 

N 0.893 0.107 2.0720 0. 911 0.089 1. 9555 
C.00978) C.00978) c. 00901) c. 00901) 

w 0.950 0.050 7.9495 0.958 0.040 8.0805 
C.00690) C.00690) C.00635) C.00620) 

N 0.944 0.056 1.9945 0.958 0.042 1. 9200 
C.00727) (. 00727) (.00635) C.00635) 

NA 0.906 0.082 9.0430 0.922 0.069 9.0455 
C.00923) (.00868) (. 00848) (.00802) 

NL 0.916 0.(184 3.6565 0.926 0.074 3.6610 
C.00878) (.00878) (.00828) C.00828) 

J 0.951 0.049 3.8565 0. 962 0.038 3.8295 
C.00683) (.00683) C.00605) C.00605) 

AJ 0.972 0.028 5.0935 0.983 0.017 5.1080 
C.00522) C.00522) (.00409) (.00409) 

JA 0.946 0.034 7.0925 0.968 0.017 6. 966 0 
(. 00715) C.00573) C.00557) C.00409) 

NJ 0.946 0.051 6.3025 0.948 0.048 6.3385 
(. 00715) C.00696) C.00702) C.00676) 

F 0.941 0.056 7.9600 0.945 0.051 8.0955 
C.00745) C.00727) (. 00721) C.00696) 

Kendall's W 0.725840 0.765228 
(. 000) (. 000) 

192 



Table IV .2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 39 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 H3 

N 0 .714 0.004 0.142 0.140 
w 0.198 0.300 0.248 0.254 
N 0.314 0.165 0.261 0.260 
NA 0.189 0.266 0.274 0.271 

NL 0.642 0.006 0.185 0.167 

J 0.517 0.036 0.230 0.217 

AJ 0.168 0.326 0.252 0.254 

JA 0 .116 0.381 0.253 0.250 

NJ 0.137 0.332 0 .274 0.257 

F 0.130 0.508 0.180 0.182 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 40 

Parameters: n=20 R2 = 0.90 p2 = 0.75 (k1, "2. k3) = ( 4,4,4) m= 1000 

Hi VS H2 H1 VS H3 

PowerF 0. 762011 0.765334 co. 02317) (0.021423) 

Power NJ 0.925276 0.927939 
C0.00734) C0.006298) 

PowerF > PowerN1 0.0020 0.0030 

Powe'Ni 0.931355 0.922813 
C0.00639) C0.008755) 

SSE(PowerN1, Powe'fij) 0.000299 0.002257 

Test p a Avg. Rank p a Avg. Rank 

N 0.904 0.096 1.8020 0.897 0.103 1.8595 
C.00932) C.00932) C.00962) C.00962) 

w 0.953 0.044 8.4995 0.958 0.038 8.4435 
C.00670) C.00649) (.00635) (.00605) 

N 0.943 0.056 2 .1715 0.936 0.063 2.2210 
C.00734) C.00727) C.00774) C.00769) 

NA 0.922 0.075 7.8975 0.917 0. 031 7.9015 
C.00848) C.00833) C.00873) C.00863) 

NL 0.924 0.076 4.1210 0.916 0.084 4.1170 
C.00838) C.00838) C.00878) C.00878) 

J 0.963 0.036 3.8080 0.964 0.034 3.8130 
C.00597) C.00589) (. 0058.9) (.00573) 

Al 0.973 0.023 5.5275 0.975 0.022 5.4730 
C.00513) C.00474) C.00494) C.00464) 

JA 0.967 0.027 5.7550 0.972 0.024 5.7125 
C.00565> C.00513) C.00522> C.00484) 

NJ 0.952 0.045 6.4800 0.949 0.048 6.4750 
C.00676) c .00656) C.00696) C.00676) 

F 0.906 0.038 8.9535 0.901 0.052 8.9840 
C.00923) C.00605) C.00945) C.00702) 

Kendall's W 0.714063 0. 714354 
C.000) c. 000) 
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Table IV .2.2 ·Results of NormaJ Deviate Experiments (continued) 

Experiment: 40 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 HJ 

N 0.723 0.002 0.146 0 .129 

w 0.326 0.131 0 .274 0.269 

N 0.495 0.039 0.243 0.223 

NA 0.383 0.072 0.284 0.261 

NL 0.620 0.009 0.203 0.168 

J 0 .475 0.033 0.259 0.233 

Al 0.299 0.151 0.281 0.269 

JA 0.289 0 .136 0.293 0.282 

NJ 0.298 0.136 0.290 0.276 

F 0.132 0.432 0.227 0.209 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 41 

Parameters: n=20 R1 = 0.75 p2 = 0.50 (kit k2, kl)= ( 4,2,6) m= 1000 

H1 VS H2 Hi VS H3 

PowerF 0.835997 0.493797 
C0.01718) C0.024317) 

Power NJ 0.545168 0.697731 co. 06271) (0.028751) 

PowerF > PowerNJ 0.8670 0.0410 

Power;;:; 0.571180 0.712192 
(0.05718) (0.040815) 

SSE(PowerN;. Power;;:;) 0.004947 0.015095 

Test p a Avg. Rank p a Avg. Rank 

N 0.914 0.086 1.9215 0.809 0 .191 2.5080 
(.00887) (.00887) (.01244) (.01244) 

w 0.950 0.032 5.7470 0.863 0.023 7.5140 
(.00690) (.00557) (. 01088) (.00474) 

N 0.957 0.034 2.6920 0.906 0.053 2. 826 0 
(.00642) (.00573) (.00923) (.00709) 

NA 0.446 0.078 8.7985 0.884 0.058 6.0435 
(.01573) (. 00848) (.01013) (.00740) 

NL 0.927 0. 073 2.6015 0.359 0 .139 3.2560 
(.00823) (.00823) (.01101) (.01095) 

J 0.968 0.032 3.9395 0.<S!>5 0.133 4.4965 
(.00557) (. 00557) (. 01114) (.01074) 

AJ 0.966 0.015 5.2740 0.871 0.028 5.9810 
(.00573) (.00385) C.01061) (.00522) 

JA 0. '•55 0.018 9.2415 0.857 0.020 6. 5115 
(. 01576) (. 00421) (.01108) (.00443) 

NJ 0. 715 0.049 7.3210 0.874 0.038 6.8490 
C.01428) (.00683) (.01050) (. 00605) 

F 0.918 0.055 7.4635 0.726 0.036 9.0145 
(.00868) (. 00721) C.01411) C.00589) 

Kendall's W 0.803209 0.539330 
C.000) ( . 0 00) 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 41 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 HJ 

N 0. 463 0.002 0.486 0.049 
w 0.057 0.542 0.287 0.114 
N 0.096 0.404 0 .374 0.126 

NA 0.025 0.589 0 .147 0.239 

NL 0.408 0.007 0.520 0.065 

J 0.227 0.041 0.705 0.027 

AJ 0.049 0.479 0.395 0.077 

JA 0.009 0. 719 0.133 0.139 

NJ 0.017 0.650 0.195 0.138 

F 0. 070 0.565 0.299 0.066 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 42 

Parameters: n=20 R2 = 0.90 p2 = 0.25 (ki, "2, k3) = (4,2,6) m= 1000 

Hi VS Hl Hi VS H3 

Powerp 0.997866 0.971117 
C0.00010) ( 0. 002821) 

Power NJ 0.872804 0.986056 
C0.05373) C0.001893) 

Powerp > PowerN1 0.8120 0.1390 

Powe'Ni 0.887162 0.985571 
C0.04525) C0.001983) 

SSE(PowerN1t Powe'fjj) 0.004500 0.000839 

. 
Test p ll Avg. Rank p ll Avg. Rank 

N 0.906 0.094 2.4375 0.859 0.141 2.4020 
(.00923) C.00923) C.01101) C.01101) 

w 0.963 0.037 6.3580 0.957 0.043 7.8345 
C.00597) C.00597) C.00642) (.00642) 

N 0.955 0.045 2.1065 0.954 0.046 1.9760 
(.00656) C.00656) (.00663) C.00663) 

NA 0 .623 0. 071 9.1735 0.901 0.082 8.5175 
(.015:33) (.00813) C.00945) (.00868) 

NL 0.915 0.085 2.7830 0 .877 0.123 3.5535 
(.00882) C.00882) C.01039) C.01039) 

J 0.960 0.040 3.9960 0.902 0.098 4.2185 
(.00620) C.00620) (.00941) C.00941) 

AJ 0.980 0.020 4.9525 0.977 0.023 4.8550 
(.00443) (.00443) C.00474) (.00474) 

JA 0 .635 0.021 9.1420 0.938 0.028 7.2875 
C.01523) (.00454) C.00763) (.00522) 

NJ 0.885 0.042 6.9960 0.956 0.044 6.2085 
(.01009) C.00635) C.00649) (.00649) 

F 0.953 0.047 7.0550 0.961 0.039 8.1470 
(.00670) C.00670) C.00613) (.00613) 

Kendall's W 0.794920 0.675568 
(. 000) (. 000) 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 42 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 HJ 

N 0 .477 0.004 0.453 0. 066 
w 0.034 0.738 0 .118 0 .110 
N 0.055 0.604 0.209 0.132 
NA 0.030 0.666 0.092 0.212 

NL 0.446 0.005 0.467 0.082 

J 0.214 0.068 0.676 0.042 

AJ 0.039 0.665 0.219 0.077 

JA 0.005 0.803 0.078 0 .114 

NJ 0.023 0.741 0.108 0.128 

F 0.055 0.705 0.152 0.088 
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Table IV.2.2 Results of Nonnal Deviate Experiments (continued) 

Experiment: 43 

Parameters: n=20 R2 = 0.90 p2 =0.90 (k1, Jc,,, kl)= ( 6,2,4) m= 1000 

H1 VS H2 Ht VS HJ 

PowerF 0.978801 0.818241 
C0.00233) (0.018909) 

Power NJ 0.294895 0.460615 
C0.02752) C0.031290) 

PowerF > PowerNJ l. 0000 0.9400 

Powerm 0. 298929 0.468354 
C0.02734) C0.033959) 

SSE(PowerNJ• Powerm) 0.000087 0.005469 

Test p a Avg. Rank p a Avg. Rank 

N 
0.915 0.085 2.2940 0.897 0.103 1. 9505 

(.00882) (.00882) (.00962) C.00962) 
w 

0.962 0.037 5.8900 0.950 0.041 5.9520 
(.00605) C.00597) C.00690) (.00627) 

N 0.962 0.038 2.3665 0.951 0.048 2.2985 
(.00605) C.00605) C.00683) (.00676) 

NA 0.018 0.088 8.8820 0.222 0.100 8. 7155 
(. 00421) (. 00896) C.01315) (.00949) 

NL 0.916 0.084 2.4985 0.900 0.100 3 .1375 
C.00878) (. 00878) (.00949) (.00949) 

J 0.973 0.027 3.9285 0. 962 0.038 3.9215 
(.00513) (. 00513) (.00605) (.00605) 

AJ 0.976 0.024 4.8915 0.967 0.030 4.9040 
C.00484) (.00484) (.00565) C.00540) 

JA 0.020 0.024 9.6555 0.188 0.034 9.4890 
C.00443) C.00484) (. 01236) C.00573) 

NJ 0.453 0.045 7.8205 0.637 0.058 7.4725 
(.01575) (. 00656) (. 01521) C.00740) 

F 0.954 0.044 6. 7730 0.908 0.060 7.1590 
C.00663) C.00649) (.00914) (.00751) 

Kendall's W 0.853577 0.812480 
C.000) C.000) 
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Table IV.2.2 Results of NormaJ Deviate Experiments (continued) 

Experiment: 43 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 HJ 

N 0 .165 0.026 0.762 0.047 
w 0.024 0.344 0.575 0.057 

N 0.045 0.246 0 .649 0. 060 

NA 0.006 0.814 0.057 0.123 

NL 0.141 0.042 0.768 0.049 

J 0.081 0.083 0.814 0.022 

AJ 0.035 0.309 0 .622 0.034 

JA 0.000 0 .862 0.057 0.081 

NJ 0.010 0.797 0 .116 0.077 

F 0.066 0.407 0.513 0.014 

201 



Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 44 

Parameters: n=40 R2 = 0.90 p2 = 0.50 (k1, "2. k3) = (2,4,6) m=500 

H1 VS H2 H1 VS HJ 

Powerp 0.999995 0.999994 
C0.00000) (0.000000) 

PowerN1 0.999999 0.999999 
C0.00000) C0.000000) 

Powerp > PowerN1 0.0300 0.0420 

Powe'Ni 0.999999 0.999992 
C0.00000) C0.000000) 

SSE(PowerNJ• Powe'!ii) 0.000000 0.000000 

. 
Test p a Avg. Rank p a Avg. Rank 

N 0.932 0.068 2.6100 0.908 0. 092 2.6080 
C.01127) (. 01127) (.01294) (.01294) 

w 0.950 0.050 7.0280 0.954 0.046 7.6390 
C.00976) C.00976) C.00938) C.00938) 

N 0.942 0.058 2.5150 0.952 0.048 2.2480 
C.01046) C.01046) (. 00957) (.00957) 

NA 0.944 0.056 9.7310 0.942 0.058 9.6470 
(.01029) (.01029) (. 01046) (.01046) 

NL 0.936 0.064 4.8400 0. 920 0.080 4.8750 
(.01096) C.01096) C.01214) (.01214) 

J 0 .-952 0.048 4.9030 0.918 0.082 4. 9270 
(. 00957) (.00957) C.01228) (.01228) 

AJ 0.972 0.028 6 .1140 0.984 0.016 5.8160 
C.00739) (.00739) (. 00562) (.00562) 

JA 0.976 0.024 6.3790 0.978 0.022 6. 2700 
(.00685) (.00685) (.00657) (. 00657) 

NJ 0.944 0.056 7.3030 0.942 0.058 7.4060 
C.01029) C.01029) (.01046) (.01046) 

F 0.948 0.052 3. 5770 0.956 0.044 3.5640 
C.00994) C.00994) (. 00918) (.00918) 

Kendall's W 0.593434 0.631435 
(.000) (.000) 
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Table IV .2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 44 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 H3 

N 0.962 0.000 0.020 0.018 
w 0.748 0.010 0 .110 0.1.32 -
N 0.812 0.002 0.088 0.098 

NA 0.656 0.022 0.122 0.200 

NL 0.938 0.000 0.0.34 0.028 

J 0.9.30 0.000 0.044 0.026 

AJ 0.664 0.020 0.146 0.170 

JA 0.594 0.0.36 0.148 0.222 

NJ 0.6.38 0.018 0.148 0.196 

F 0.482 0. 060 0.182 0.276 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 45 

Parameters: n=40 R2 = 0.90 p2 = 0.50 (k,, k,., kJ) = ( 6,2,4) m=SOO 

H1 VS H2 H1 vs H3 

Powerp 1.000000 0.999995 co. 00000) (0.000000) 

PowerN1 0.931576 0.997481 co. 02556) (0.000292) 

Powerp > PowerN1 0.9960 0.8380 

Powe'Ni 0.936810 0.997387 
C0.02214) (0.000366) 

SSE(PowerN1, PoweT'jjj) 0.000596 0.000061 

. 
Test p a Avg. Rank p a Avg. Rank 

N 0.904 0.096 3.1880 0.932 0.068 2.5950 
C.01319) C.01319) (.01127) (.01127) 

w 0.946 0.054 4.9810 0.958 0.042 6.3030 
C.01012) C.01012) C.00898) (.00898) 

N 0.944 0.056 2.8870 0.954 0.046 2.4190 
C.01029) C.01029) (.00938) (.00938) 

NA 0.668 0.086 9.1440 0. 928 0.064 9.5000 
C.02108) C.01255) (. 01157) (.01096) 

NL 0.906 0.094 3.1820 0.936 0. 064 2.8840 
C.01306) (.01306) C.01096) (.01096) 

J 0. 960 0.040 3.3070 0. 962 0.038 3.5020 
(.00877) C.00877) (.00856) (.00856) 

AJ 0.972 0.028 4. 4130 0.984 0.016 4.5710 
C.00739) C.00739) (.00562) (.00562) 

JA 0 .690 0.032 9. 2480 0.974 0.016 8.7650 
(.02070) (.00788) (.00712) (.00562) 

NJ 0.918 0.056 7.5300 0.958 0.042 6.6600 
C.01228) (. 01029) (.00898) (. 00898) 

F 0.934 0.066 7.1200 0.942 0.058 7.8010 
(. 01111) (.01111) (.01046) C.01046) 

Kendall's W 0.733267 0.802168 
C.000) (. 000) 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 45 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 HJ 

N 0.614 0.000 0.360 0.026 
w 0.248 0.160 0 .484 0.108 

N 0.278 0.128 0.492 0.102 

NA 0.078 0.458 0.208 0.256 

NL 0.590 0.000 0.380 0.030 

J 0.396 0.008 0 .574 0.022 

AJ 0.186 0.204 0.536 0. 074 

JA 0.052 0.508 0.204 0.236 

NJ 0.078 0.458 0.244 0.220 

F 0.200 0.222 0.506 0.072 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 46 

Parameters: n=40 R2 = 0.90 p2= 0.75 (kl>~. k3) = (4,2,6) m=500 

H1 VS H2 H1 VS H3 

PowerF 1.000000 0.993914 
C0.00000) (0.000118) 

PowerN1 0.957295 0.999499 
C0.00720) ( 1. 7E-06) 

PowerF > PowerN1 1.0000 0.0000 

Powe'Ni 0.959255 0.999313 
C0.00650) C 5.lE-06) 

SSE(PowerNJ• Powe'fij) 0.000081 0.000002 

. 
Test p <l Avg. Rank p a Avg. Rank 

N 0.936 0.064 2. 7780 0.930 0.070 1.9070 
C.01096) (.01096) (. 01142) (. 01142) 

w 0.956 0.044 4.8090 0.948 0.052 8.1520 C.00918) (.00918) (.00994) (.00994) 

N 0.954 0.046 2.6420 0.960 0.040 1.7680 (.00938) C.00938) C.00877) (. 00877) 

NA 0.762 0.062 9.2530 0.938 0.062 8.5950 (.01906) C.01080) C.01080) (.01080) 

NL 0.942 0.058 3.0340 0.936 0.064 5.5300 
C.01046) C.01046) (.01096) (.01096) 

J 0.972 0.028 3. 6570 0.950 0.050 3.5590 (. 00739) C.00739) C.00976) (.00976) 

AJ 0.974 0.026 4.7330 0.974 0.026 4.8560 
C.00712) (.00712) (.00712) (.00712) 

JA o. 774 0.028 9.3310 0.980 0.020 4.9990 
C.01872) (.00739) C.00627) C.00627) 

NJ 0.954 0.042 7.8230 0.956 0.044 6.1280 
(. 00938) C.00898) C.00918) (.00918) 

F 0.946 0.054 6.9400 0.948 0.052 9.5060 
C.01012) (.01012) (.00994) (.00994) 

Kendall's W 0.787329 0.811429 
C.000) (. 000) 
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Table IV.2.2 Results of NonnaJ Deviate Experiments (continued) 

Experiment: 46 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 H3 

N 0.818 0.000 0.182 0.000 
w 0 .642 0.000 0.350 0.008 -
N 0.700 0.000 0.294 0.006 

NA 0.190 0.188 0.148 0.474 

NL 0.784 0.000 0.216 0.000 

J 0 .660 0.000 0.340 0.000 

AJ 0.558 0.000 0.440 0.002 

JA 0.136 0.252 0.166 0.446 

NJ 0.276 0.112 0.304 0.308 

F 0.508 0.000 0.490 0.002 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 47 

Parameters: n=20 R2 = 0.70 p2 =0.25 (k1, k.i. k3) = ( 4,4,4) m= 1000 

H1 VS H2 H1 VS H3 

PowerF 0.659586 0.664004 
C0.02455) (0.026183) 

Power NJ 0.692199 0.693590 
(0.04883) (0.045759) 

PowerF > PowerN1 0.2980 0.3200 

Powe'Ni 0.758556 0.719497 
( 0. 03031) C0.058787) 

SSE(PowerN1, Powe'N.i) 0.021574 0.029039 

. 
Test p Cl Avg. Rank p Cl Avg. Rank 

N 0.830 0.169 2.4010 0.822 0.176 2.4585 
C.01188) c. 01186) C.01210) (.01205) 

w 0.897 0.049 6.4200 0.887 0.036 6.5275 
(.00962) (.00683) C.01002) (.00589) 

N 0.899 0.062 3 .1425 0.905 0.053 3.0760 
C.00953) (.00763) (.00928) C.00709) 

NA 0. 721 0.089 7.5870 0.695 0.090 7.6420 
(.01419) c. 00901) C.01457) C.00905) 

NL 0.860 0.137 2.9265 0.847 0.151 3. 017 5 
c. 01098) C.01088) (.01139) (.01133) 

J 0 .877 0. us 4. 2270 0.884 0. lll 4. l 770 
(.01039) (.01009) (. 01013) (.00994) 

AJ 0.890 0.034. 5.8850 0.900 0.028 5.7165 
(.00990) (.00573) C.00949) (.00522) 

JA 0.707 0.035 7. 7885 0.687 0.026 7. 8775 
C.01440) c. 00581) C.01467) (.00503) 

NJ 0.782 0.063 6.7170 0. 770 0. 064 6.6945 
C.01306) C.00769) c. 01331) C.00774) 

F 0.791 0.056 7.9055 0.803 0.061 7.8130 
C.01286) (.00727) C.01258) C.00757) 

Kendall's W 0.531439 0.530352 
C.000) C.000) 
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Table IV .2.2 Results of NormaJ Deviate Experiments (continued) 

Experiment: 47 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 H3 

N 0.478 0.019 0.243 0.260 
w 0.026 0.715 0 .118 0.141 
N 0.057 0.603 0.154 0.186 
NA 0.037 0.691 0.141 0.131 
NL 0.420 0.026 0.269 0.285 

J 0.299 0.160 0 .274 0.267 

AJ 0.031 0.701 0.122 0.146 

JA 0.009 0. 779 0 .111 0.101 

NJ 0.027 0.735 0 .114 0.124 

F 0.039 0.750 0.094 0 .117 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 48 

Parameters: n=20 R2 = 0.70 p2 = 0.50 (k11 k,,, k3) = ( 4,4,4) m= 1000 

H1 VS H2 H1 VS H3 

PowerF 0.489874 0.482599 
C0.02145) C0.019873) 

Power NJ 0.646493 0.643506 
(0.03158) C0.032650) 

PowerF > PowerNJ 0.1000 0.1060 

Powe'Ni 0.701552 0.671993 co. 02226) (0.047199) 

SSE(PowerNJ• Powe'Ni) 0. 011548 0.021552 

Test p Cl Avg. Rank p Cl Avg. Rank 

N 0.874 0.124 2.0010 0.870 0.128 1.9950 
C.01050) (.01043) (.01064) (.01057) 

w 0.865 0.029 7.0070 0.819 0.036 7.1290 
(.01081) (. 00531) (.01218) C.00539) 

N 0.883 0.045 3 .1100 0.878 0.052 3.1065 
C.01017) (. 00656) C.01035) C.00702) 

NA 0.790 0. 060 6.9030 0. 776 0.076 6.9190 
C.01289) (. 007 51) C.01319) (.00838) 

NL 0.901 0.094 2.8935 0.896 0.092 2.8505 
C.00945) C.00923) (.00966) (.00914) 

J 0.927 0.052 3.9615 0.903 0. 062 4.0140 
(.00823) (.00702) C.00936) C.00763) 

Al 0.837 0.021 6.4185 0.837 0.026 6.4025 
(.01169) C.00454) C.01169) C.00503) 

JA 0.780 0.014 7.2345 0.757 0.022 7. 237 0 
(. 01311) C.00372) C.01357) C.00464) 

NJ 0.788 0.037 6.7595 0.791 0.056 6. 7110 
C.01293) (.00597) C.01286) c. 00727) 

F 0 .671 0.045 8. 7115 0.679 0.054 8.6355 c. 01487) C.00656) C.01477) C.00715) 

Kendall's W 0.601952 0.601669 c. 000) C.000) 
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Table IV.2.2 Results of Nonna! Deviate Experiments (continued) 

Experiment: 48 (continued) 

Reject Reject Reject Reject 

Test Both Neither Hl H3 

N 0. 485 0.015 0 .263 0 .237 
w 0.046 0.562 0.204 0.188 

N 0.101 0.409 0.259 0.231 

NA 0.050 0.483 0.249 0.218 

NL 0.407 0.030 0.293 0. 270 

J 0.264 0 .119 0.334 0.283 

AJ 0.051 0.583 0.186 0.180 

JA 0.019 0.590 0.216 0.175 

NJ 0.023 0.563 0.219 0.195 

F 0.055 0.692 0.138 0 .115 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 49 

Parameters: n=20 R2 = 0.70 p2 = 0.75 (k1, k,., k3) = (4,4,4) m= 1000 

H1 vs H2 H1 vs H3 

PowerF 0. 261127 0.260091 
C0.00694) C0.006815) 

Power NJ 0.443709 0.443418 
C0.01872) C0.018369) 

Powerp > PowerNJ 0.0160 0.0150 

Powe'J:ij 0.481531 0.476259 
C0.01624) (0.033498) 

SSE(PowerNJ> Powe'J:ij) 0.003769 0.016178 

. . 
Test p a Avg. Rank p a Avg. Rank 

N 0.809 0.132 2. 027 0 0.821 0 .114 1.8900 
C.01244) (.01071) C.01213) C.01006) 

w 0.625 0.032 7.4360 0.588 0.030 7.6155 
C.01532) C.00557) c. 01557) C.00540) 

N 0.710 0.060 3.5780 0.724 0.055 3.5485 
C.01436) C.00751) C.01414) c. 00721) 

NA 0 .641 0.090 5. 6285 0.640 0.087 5.7495 
C.01518) C.00905) C.01519) C.00892) 

NL 0. 771 0.107 3.0200 0. 779 0.095 2.9760 
(.01329) C.00978) C.01313) (. 00928) 

J 0.736 0.054 4.0400 0.764 0.043 3.9075 
C.01395) (.00715) C.01343) C.00642) 

AJ 0.603 0.027 7.0545 0.617 0.022 6. 9225 
C.01548) (.00513) C.01538) C.00464) 

JA 0 .600 0.029 6.5990 0.610 0.026 6.8385 
C.01550) (. 00531) (.01543) (.00503) 

NJ 0.590 0.056 6.8720 0.590 0.051 6.9210 
C.01556) C.00727) (.01556) C.00696) 

F 0.373 0.054 8.7450 0.384 0.045 8.6310 
C.01530) c. 00715) C.01539) C.00656) 

Kendall's W 0.562652 0.588004 
C.000) (. 000) 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 49 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 HJ 

N 0.294 0.043 0.332 0.331 

w 0.053 0.514 0.210 0.223 

N 0.108 0.302 0.286 0.304 

NA 0.066 0.379 0.281 0.274 

NL 0.207 0.101 0.339 0.353 

J 0.118 0.210 0.326 0.346 

AJ 0.041 0.529 0.219 0.211 

JA 0.037 0.503 0.229 0.231 

NJ 0.044 0.489 0.231 0.236 

F 0.056 0. 715 0 .113 0 .116 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 50 (continued) 

Reject Reject Reject Reject 

Test Both Neither H2 H3 

N 0.069 0.204 0.346 0.381 

w 0.007 0.691 0.146 0.156 

N 0.024 0.499 0.218 0.259 

NA 0.024 0.561 0.187 0.228 

NL 0.029 0.331 0.301 0.339 

J 0.008 0.511 0.220 0. 261 

AJ 0.004 0.683 0.146 0.167 

JA 0.005 0.659 0.158 0.178 

NJ 0.012 0.669 0.145 0 .174 

F 0.033 0.817 0.072 0.078 
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Table IV.2.2 Results of Normal Deviate Experiments (continued) 

Experiment: 50 

Parameters: n=20 R2 = 0.70 p2 =0.90 (k1, ~. k3) = (4,4,4) m= 1000 

H1 VS H2 H1 VS HJ 

PowerF 0.124813 0 .126036 (0.00086) (0.000898) 

. PowerNJ 0.222932 0.226054 C0.00445) co. 004534) 

PowerF > PowerNJ 0.0030 0.0040 

Powe'Ni 0.238715 0.245704 C0.00438) (0.010256) 

SSE(PowerNI> Powe'Ni) 0.000558 0.005557 

. 
Test p (1 Avg. Rank p (1 Avg. Rank 

N 0.584 0.109 2.0040 0.605 0.099 1.8865 
C.01559) (.00986) (. 01547) C.00945) 

w 0.338 0.035 7.6710 0.302 0.035 7.9435 
(. 01497) (. 00581) (.01453) (. 00581) 

N 0.412 0.057 4.4900 0.447 0.047 4.4125 
C.01557) C.00734) C.01573) C.00670) 

NA 0.381 0.087 4. 7155 0.396 0.088 4.7140 
(.01536) (.00892) (.01547) (.00896) 

NL 0.485 0.086 2.9515 0.515 0.080 2.9025 
(. 01581) (.00887) (. 01581) (.00858) 

J 0 .411 0.040 4.2370 0.449 0.034 4.2450 
(.01557) (.00620) (.01574) (.00573) 

AJ 0.317 . 0.027 7. 3710 0.353 0.023 7.3495 
C.01472) (.00513) C.01512) C.00474) 

JA 0.340 0.029 6.5695 0.370 0.022 6.5430 
C.01499) c. 00531) (.01528) C.00464) 

NJ 0.306 0.056 6.9020 0.335 0.052 6.8290 
(. 01458) (.00727) C.01493) C.00702) 

F 0.134 0.057 8.0885 0.158 0.049 8.1745 
C.01078) C.00734) C.01154) C.00683) 

Kendall's W 0.515612 0.547394 
C.000) C.000) 

2JS 



Table IV.3.1 Mean Observed Power by R2 x p2 

(Equal k cases with n = 20) 

N J 
w AJ 
-

N JA p2 
NA NJ 
NL F 0.25 0.50 0.75 0.90 

0.7840 0.8220 0.7965 0.7740 0.6480 0.5010 0.3715 0.2345 
0.6280 0.6625 0.5025 0.5375 0.2855 0.3300 0.1120 0.1555 

0.50 0.7140 0.4710 0.6380 0.4935 0.4090 0.3330 0.1940 0.1655 
0.5170 0.5360 0.5410 0.5055 0.3785 0.3130 0.1916 0.1460 
0.8155 0.5405 0.7980 0.3785 0.5975 0.1745 0.2965 0.0685 

0.8260 0.8805 0.8720 0.9150 0.8150 0.7500 0.5945 0.4300 
0.8920 0.8950 0.8420 0.8370 0.6065 0.6100 0.3200 0.3550 

0.70 0.9020 0.6970 0.8805 0.7685 0.7170 0.6050 0.4295 0.3550 
0.7080 0.7760 0.7830 0.7895 0.6405 0.5900 0.3885 0.3205 

R2 0.8535 0.7970 0.8985 0.6750 0.7750 0.3785 0.5000 0.1460 

0.8818 0.9235 0.8595 0.9325 0.8605 0.8600 0.8058 0.7230 
0.9502 0.9652 0.9140 0.9300 0.7580 0.7795 0.6350 0.6730 

0.75 0.9428 0.8828 0.9245 0.8665 0.8410 0.7710 0.7428 0.6732 
0.8602 0.9072 0.8500 0.8880 0.7775 0.7560 0.6865 0.6468 
0.9000 0.9238 0.8995 0.8245 0.8560 0.5460 0.7440 0.4270 

0.8965 0.9470 0.9225 0.9642 0.9132 0.9628 0.8870 0.9040 
0.9600 0.9835 0.9565 0.9778 0.9562 0.9720 0.8610 0.8840 

0.90 0.9555 0.9100 0.9565 0.9655 0.9408 0.9688 0.9030 0.8900 
0.8675 0.9460 0.9280 0.9500 0.9332 0.9532 0.8680 0.8530 
0.9045 0.9495 0.9350 0.9450 0.9330 0.9278 0.8800 0.6285 
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Table IV.3.2 Al'\TOV A of Analytic Power of NJ- and F-test 

REPEATED MEASURE ANALYSIS ON ANALYTIC POHERS - F AND NJ 
GENERAL LINEAR MODELS PROCEDURE 

DEP!HDENT VARIABLE• NJ PON 
SOURCI! DF SUM OF SQUARES MEAN SQUARE F VALUE 
MODEL 41 4.55391196 0.09487331 44.72 
ERROR 35 o. 07424462 0.00212127 PR > F 
CORRECTl!D TOTAL 13 4.62816351 0.0001 

R-SQUARI! c.v. ROOT MSE NJPOH MEAN 
0.913951 5.9152 0. 04605730 0.76952571 

SOURCI! DF TYPE I SS F VALUE PR > F 
N 1 0.17600978 412.96 0.0001 
R2 1 0.99481820 461.97 0.0001 
P2 3 1. 77033607 278.19 0.0001 
1Cl2 6 0.59630339 46.85 0.0001 
N•R2 l 0.08250979 38.90 0.0001 
N•P2 3 0.06928553 10.89 0.0001 
Nllltl2 6 0.05301671 4.17 0.0029 
R2•P2 3 0.07886497 12. 39 0 ,0001 
R2•Kl2 6 0.00499559 0.39 0.8788 
P2•K12 11 0.02777894 0.73 0.7610 

SOURCE DF TYPI! III SS F VALUE PR > F 
N 1 0.73953544 348.63 0.0001 
R2 l 0.76262082 359.51 0.0001 
P2 3 1.35584492 213.06 0.0001 
Kl2 Ii 0.53914102 42.36 0.0001 
N•R2 1 0.05362737 25.28 0.0001 
N•P2 3 0.05125353 8.05 0.0003 
N•K12 Ii 0.04564363 3.59 0. 0071 
R2•P2 3 0. 07075796 11.12 0.0001 
R2•Kl2 Ii 0.00421325 0.33 0.9160 
P2llltl2 11 o. 02777894 0.73 0. 7610 

DEPENDl!NT VARIABLE• FPON 
SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE 
MODl!L 41 5.11944017 0 .10811334 70. 71 
ERROR 35 0.05351413 0.00152898 PR > F 
CORRECTED TOTAL 83 5.24295430 0.0001 

R-SCIUARI! c.v. ROOT MSE FPOW MEAN 
0.919793 4.1525 0.03910211 0 .10581330 

SOURCE DF TYPE I SS F VALUE PR > F 
N 1 0.94471875 617.88 0.0001 
R2 l 1.12215813 733.93 0.0001 
P2 3 1.50889487 328. 96 0.0001 
Kl2 6 0.59666765 65.04 0.0001 
N•R2 1 0.10283473 67.2/i 0.0001 
N•P2 3 0.09839637 21.45 0.0001 
Nl1Kl2 6 0.08442578 9.20 0.0001 
R2llP2 3 0 .11870441 25.88 0.0001 
R2•Kl2 6 0.06015398 6.56 0.0001 
P2•Kl2 18 0.55248551 20.07 0.0001 

SOURCI! DF TYPE III SS F VALUE PR > F 

N 1 0.69178484 452.45 0.0001 
R2 l 0. 64640134 422.77 0.0001 
PZ 3 1. 05814664 230.69 0.0001 
Kl2 6 0.55217858 /i0.19 0.0001 
N•R2 1 0.11706439 76.56 0.0001 
NllPZ 3 o. 08118578 17.70 0.0001 
N•K12 6 0.07242992 7.90 0.0001 
R2llP2 3 0.08058190 17.57 0.0001 
R2l1Kl2 6 0. 04935118 5.31 0.0005 
PZ•ltl2 18 0.55248551 20.07 0.0001 
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Table IV.3.2 ANOVA of Analytic Power of NJ- and F-test (continued) 

UNIVARIATE TESTS OF HYPOTHESES FOR WITHIN SUBJECT EFFECTS 
SOURCE• TEST 

ADJ PR > F 
DF TYPE III SS MEAN SQUARE F VALUE PR > F G - G H - F 

l 0.11903225 0.11903225 74.70 0.0001 
SOURCE• TESTllN 

ADJ PR > F 
DF TYPE III SS MEAN SQUARE F VALUE PR > F G - G H - F 

l 0.00039&37 0.00039&37 0.25 0.6202 
SOURCE• TESTllRZ 

ADJ PR > F 
DF TYPE III SS MEAN SQUARE F VALUE PR > F G - G H - F 

l 0.00240060 0.00240060 l.51 0. 2279 
SOURCE• TESTllP2 

ADJ PR > F 
DF TYPE III SS MEAN SQUARE F VALUE PR > F G - G H - F 

3 0. 01072921 0.00357643 2.24 0.1003 
SOURCE• TESTllltl2 

ADJ PR > F 
DF TYPE III SS MEAN SQUARE F VALUE PR > F G - G H - F 
' l.00933209 0.16122201 105.57 0.0001 

SOURCE• TESTllNllRZ 
ADJ PR > F 

DF TYPE III SS MEAN SQUARE F VALUE PR > F G - G H - F 
l 0. 00611296 o. 00611296 3.84 0.0582 

SOURCE• TESTllNllP2 
ADJ PR > F 

DF TYPE III SS MEAN SQUARE F VALUE PR > F G - G H - F 
3 0.02320526 o. 00773509 4.85 0.0063 

SOURCE• TEST11Nllltl2 
ADJ PR > F 

DF TYPE III SS MEAN SQUARE F VALUE PR > F G - G H - F 
6 0.04517247 0.00752175 4.72 0.0013 

SOURCE• TESTllR2•P2 
ADJ PR > F 

DF TYPE III SS MEAN SQUARE F VALUE PR > F G - G H - F 
3 0.00081317 0.00027106 0.17 0.9159 

SOURCE• TESTllR2llltl2 
ADJ PR > F 

DF TYPE III SS MEAN SQUARE F VALUE PR > F G - G H - F 

' 0.03457636 0.00576273 3.62 0.0068 

SOURCE• TESTllP2llltl2 ADJ PR > F 
DF TYPE III SS MEAN SQUARE F VALUE PR > F G - G H - F 
l& 0.26157106 0.01453173 9.12 0.0001 

SOURCE• ERRORCTEST> 
DF TYPE III SS MEAN SQUARE 
35 0.05577064 0.00159345 

TESTS OF HYPOTHESES FOR BETWEEN SUBJECTS EFFECTS 

SOURCE DF TYPE III SS MEAN SQUARE F VALUE PR > F 
N l l.43092192 l.43092192 695.70 0.0001 R2 l 1. 40662155 1.40662155 683.89 0.0001 P2 3 2.40326221 0.80108743 389.48 0.0001 
IC12 6 0.0&19&752 0.01366459 6.64 0.0001 NllR2 l 0.16457880 0.164578&0 80.02 0.0001 NllP2 3 0.10923405 o. 03641135 17.70 0.0001 Nllltl2 6 0.07290107 0. 0121501& 5.91 0.0002 R2llP2 3 0.15052669 0.05017556 24.39 0.0001 R2llltl2 6 0.0119a807 0.00316468 l.54 0.1946 P2llltl2 11 0.31869339 0.01770519 8.61 0.0001 
ERROR 35 0.07191111. 0 , Q.OZ0568 0 
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Table IV.3.2 Ai'l'OVA of Analytic Power of NJ- and F-test (continued) 

REPEATED MEASURE ANALYSIS ON ANALYTIC POWERS - F AND NJ 
ANALYSIS OF VARIANCE OF CONTRAST VARIABLES 

CONTRAST VARIABLE• TEST 
SOURCE 
MEAN 
N 
R2 
P2 
ltl2 
NllR2 
NllP2 
NllltlZ 
R2llP2 
R2•1tlZ 
P2llltJ.2 
ERROR 

DF TYPE III SS MEAN SQUARE F VALUE 
1 0.23806450 0.23806450 74.70 1 0.00079673 0.00079673 0.25 1 0.00480121 0.00480121 1. 51 3 0.02145856 0. 00715285 2.24 
6 2. 01866417 0.33644403 105.57 1 0.01222592 0.01222592 3.84 3 0.04641051 0. 01547017 4.85 
6 0.09034494 0.01505749 4.72 ,3 0.00162633 0. 00054211 0.17 6 0.06915272 0. 01152545 3.62 11 0.52314215 0.02906345 9.12 

35 0.11154129 0.00318689 

MANOVA TEST CRITERIA FOR THE HYPOTHESIS QI' NO TEST EFFECT 

WILKS' CRITERION 

H = TYPE III SS&CP MATRIX 
E = ERROR SS&CP MATRIX 
P : DF OF RM EFFECT = 
Q = HYPOTHESIS DF 
NE= DF OF E 
S MIN<P,Q) 
M = .5<ABS<P-Q>-l> 
N = .5<NE-P> 

L = DETCE)/DETCH+E> = 
EXACT F ,. Cl-L)/Lll<NE+Q-Pl/P 

l 
l 

35 
l 

-0.5 
17.0 

WITH P AND NE+Q-P DF 

TEST 

0. 31904875 

FCl,35) " 74.70 PROB > F = 0.0001 

PILLAI 'S TRACE 0.68095125 
F APPROXIMATION • C2N+S)/C2M+S+l> II V/CS-V> 

WITH S<2M+S+l> AND S<2N+S) DF 
FCl,35> = 74.70 PROB > F = 0.0001 

HOTELLING-LAWLEY TRACE • TRCE1111-111H> = 2.13431727 

PR > F 
0.0001 
0.6202 
0.2279 
0.1003 
0.0001 
0.0582 
0.0063 
0. 0013 
0. 9159 
0.0068 
0.0001 

F APPROXIMATION= C2SllN-S+Z>llTRCE1111-l11H)/(SllSllCZM+S+l)) 
WITH SC2M+S+l> AND ZS•N-S+Z DF 

FU,35> = 74.70 PROB > F = 0.0001 

ROY'S MAXIMUM ROOT CRITERION = 2.13431727 
FIRST CANONICAL VARIABLE YIELDS AH F UPPER BOUND 

FCl,35) = 74.70 PROB > F " 0.0001 
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Table IV .3.3 Rmdta ol N_.Nwm .. o.ftate Expai-m 

Cox (N) Test: Cases Involving H1 11.r H1 , J • 2.3 
. 
p Oinribu1ion of Disturbance Term . 
a TN(O,an ~ Xf21 ln(O, a=> N(o,an 
Avg. Rank 

NNl1 <4.2> 0.1120 0.1760 0.1120 0.1900 0.1140 
0.1110 0.1220 0.1110 0.1100 0. ll&o 
2.3270 2.4610 2.3770 2.3250 2.2750 

NNla <4.6> 0.7920 o.1oaa 0.1140 0.7940 0.1120 
0.2010 0.1900 0.1140 0.2060 0.1110 
2.7300 2.6400 2.6070 2.7260 2.6040 

NN2a (4,4) 0.1160 0.9220 0.9100 0.1660 0.9210 
0.1140 o.01aa 0.0900 0.1340 0.0720 
2.3540 2.1120 2.2090 2.5030 2.0610 

NN2a <4.4) 0.1740 0.9020 0.9040 0.9000 0.9040 
0.1260 0.0910 0.0960 0.1000 0.0960 
2.2500 2.1520 2.1210 2.1600 2.0740 

NN31 (4,2) 0.9260 0.9210 0.9300 0.9010 0.9200 
0.0740 o. 0720 0.0700 0.0920 0.0800 
2.1510 2.1300 2.0910 2.1990 2.1640 

NN31 C4,6> 0.1100 o.1aao 0.8900 0.1760 0.8900 
0.1200 0.1200 0.1100 0.1240 0.1100 
1.9150 2.0310 l.1&70 2.0480 1.1400 

NN4a (4,2) 0.9200 0.9140 0.9210 0.1910 0.9340 
0.0800 0.0140 0.0700 0.1020 o. 0660 
2·. 0560 2.1310 2.0010 2.1940 1. 9530 

NN41 (4,6) 0.1100 0.1110 0.8620 0.1540 0.8610 
0.1200 0.1180 0.1360 0.1440 0.1320 
1.9100 1.9240 2.0570 2.1340 1.9850 

NNSa (4,4) 0.1610 0.1110 0 .1900 0 .8620 0.5620 
0.1320 0.1120 0.1060 0.1360 0.1380 
2.0630 1.9690 1.9040 2.0640 2.1170 

NNSa C4.4> 0.1440 o.asoo 0.1700 0.5560 0.8620 
0.1520 0.1360 0.1220 0.1440 o.1340 
2.19H 2.0960 2.0250 2.1110 2.0810 

NN61 (4,4) 0.8660 0.1580 0.1560 0.1280 0.8660 
0.1100 0.1220 0.1280 0.1300 0.1200 
l.&740 l.99H 2.0090 2.0020 1.9350 

NN61 (4.4) 0.1120 0.8740 0.8420 0.8900 0 .8460 
0.1010 0.1120 0.1260 0.0100 0.1110 
1.1470 l .&730 1.9920 1.6310 1. 9510 

NN7a (4,2) 0.9240 0.9060 0.9020 0.9240 0.9020 
0.0760 0.0110 0.0920 0.0760 0.0980 
1. 7790 1. 9570 2.0060 1.8800 1.8920 

NN7r (4,6) 0.6280 0.6760 0.6610 0.'520 0.6520 
0.2320 0.2220 0.2240 0.2460 0.2240 
2.8870 2.7760 2.1010 2.9970 2.7760 

NNl1 (4,4) 0.9020 0.8900 0.1110 0.8760 0.1120 
0.0920 0.0840 0.0940 0.1120 0 .1080 
1.6620 1.6610 1.6970 1.1390 1.1210 

NNla C4,4) 0.1920 0.8910 0.9020 0.1160 0.9000 
0.0980 0.0720 0.0700 0.1020 0.0180 
1.7110 1.5590 1.5260 1.7590 1.6630 

220 



Table IV.3.3 Results of Non-Normal Deviate Experiments (continued) 

Cox (N) Test: H2 vs H3 

Reject Both 
Reject Neither 
Reject H2 Distribution of Disturbance Term 
Reject H3 TN(O, at) t(3) X.tlJ ln(O, crD N(O, cr:) 

NNli (2,6) 0.416 0.424 0.424 0.388 0.422 
0.000 0.010 0.010 0.004 0.006 
0.510 0.478 0.486 0.516 0.490 
0.074 0.088 0.080 0.092 0.082 

NN21 (4,4) 0.560 0 .574 0 .574 0.592 0. 576 
0.002 0.006 0.004 0.000 0.004 
0.214 0.218 0.224 0.200 0.218 
0.224 0.202 0.198 0.208 0.202 

NN31 (2,6) 0.560 0.568 0 .568 0.546 0.558 
0.002 0.002 0.002 0.000 0.000 
0.406 0.400 0.396 0.414 0.408 
0.032 0.030 0.034 0.040 0.034 

NN41 C2,6) 0.544 0.564 0 .600 0.528 0.588 
0.000 0.000 0.000 0.000 0.000 
0.444 0.420 0.390 0.458 0.404 
0.012 0.016 0.010 0.014 0.008 

NNS1 (4,4) 0.562 0.586 0. 574 0.604 0.544 
0.002 0.010 0.010 0.004 0.012 
0.220 0.184 0.192 0.194 0.204 
0.216 0.220 0.224 0.198 0.240 

NN61 (4,4) 0.430 0.538 0.510 0.454 0.472 
0.022 0.020 0.020 0.032 0.022 
0.302 0.246 0.240 0.220 0.254 
0.246 0.196 0.230 0.294 0.252 

NN71 (2,6) 0.318 0.330 0.312 0.284 0.284 
0.002 0.002 0.002 0.002 0.002 
0.666 0.658 0.680 0.698 0. 704 
0.014 0.010 0.006 0.016 0.010 

NN81 (4,4) 0.472 0 .574 0.498 0.532 0.472 
0.020 0.010 0.018 0.020 0.012 
0.220 0.198 0.238 0.232 0.260 
0.288 0.218 0.246 0.216 0.256 
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Table IV .3.3 Results ol Non-Nomud De.late Experiments (continued) 

W-test: Caacs Involving H1 vs H1 , j • 2.3 . 
p Distribution of Disturbance Tenn 
11 TN(O, an "" Avg. Rank 

Xfl1 ln(O, an N(O, an 
NNl• (4,2) 0.9620 0.9440 0.9300 0.9440 0.9420 

0.0220 0.0260 0.0380 0.0340 0.0440 
S.6950 S.&&70 S.9870 S.8340 5. 7480 

NNla <4,6) 0.&660 0.3600 0.8660 0.8460 0.8760 
0.0380 0.0380 0.0400 0.0500 0.0300 
8.1uo 8.5930 8.5240 8.4060 8.3340 

NN2a (4,4) 0.9660 0.9620 o. 9660 0.9540 0.9700 
0.0340 0.0360 0.0230 0.0460 0.0300 
7.4330 7.7&10 7.6550 7.5920 7.5990 

NN2• (4,4) 0.9560 0.9540 0.9580 o •. 9640 0.9660 
0.0440 0.0420 0.0320 0.0360 0.0340 
8.8060 8.&990 8. 91ao 8.8750 8.9370 

NN3a <4.2) 0.9740 0.9620 0 .9660 0.9460 0. 9620 
0.0260 0.0360 0.0340 0.0520 0.0380 
6.5340 6.8520 6.6660 6.6330 6.5490 

NN3a (4,6) o. 9640 0.9280 0.9360 0.9600 0.9420 
0.0340 0.0600 0.0500 0.0360 0.0540 
9.1660 9.2120 9.2430 9.2050 9.1330 

NN4a (4,2) 0.9620 0.9540 0.9660 0.9500 0.9600 
0.0380 0.0360 0.0320 0.0500 0.0380 
6.2320 6.5260 6.3850 6 . .3600 6 .2310 

NN4a (4,6) 0.9380 0.9320 0.9340 0.9160 0.9380 
0.0460 0.0320 0.0380 0.0:60 0.0420 
a .9210 9.0410 &.9350 a. 9130 8.8930 

NNSa (4,4> 0.9160 0.8740 o.8aao 0.&780 0.8940 
0.0280 0.0400 0.0340 0.0520 0.0500 
7.1600 7. 4830 7.4890 7.3560 7.2930 

NNS1 (4,4) 0.8740 0.8300 0.8420 0.8740 0.8440 
0.0420 0.0580 0.0500 0.0340 0.0480 
8.6780 &.8540 8 .&970 8. 7760 8. 7780 

NN61 C4,.U 0.7940 0.8360 o.a200 0.7440 0.7640 
0.0280 0.0220 0.0320 0.0400 0.0220 
7.'1.30 7.9340 7.8550 7. 7710 7.6880 

NN61 (4,4) 0.7400 0.7580 0.7480 0.7220 0.7180 
0.0360 0.0380 0.0340 0.0360 0.0220 
8.7800 8.8740 8.8360 8.9030 8.62!10 

NN71 (4,2) 0.9220 0.9180 0.9000 0.9040 0. 906 0 
0.0320 0.0420 0.0420 0.0220 0. 0580 
5.0710 5.1860 5.2000 5.1030 5.0620 

NN7a (4,6) 0.2760 0.4780 0 .4640 0.3620 o.~240 
0.0380 0.0280 0.0300 0.0260 0.0420 
7.8600 8.0280 7.9690 7.8430 7.9490 

NN81 (4,4) 0.8610 0.8610 0.8380 o.8soo 0.4600 
0.0460 0 .0380 0.0420 0.0460 0.0400 
8. 4&3o 8.7030 8.5550 8.5500 8.4490 

NN81 (4,4) 0 .8380 0.8760 0.8340 0.8420 0.8500 
0. 0640 0.0320 0.0420 0.0420 0.0360 
8.7730 9.0440 8.&980 8.8400 8.8260 
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Table IV.3.3 Results of Non-Normal Deviate Experiments (continued) 

W ·test: H2 vs H, 

Reject Both 
Reject Neither 
Reject H2 Distribution of Disturbance Term 
Reject H3 TN(O, a~) ,(3) Xf2> ln(O, a~) N(O, a~) 

NNl1 C2,6) 0.012 0.008 0.016 0.010 0.016 
0.822 0.804 0.798 0. 786 0.810 
0.102 0.106 0.102 0 .114 0.094 
0.064 0.082 0.084 0.090 0.080 

NN21 (4,4) 0.054 0.060 0.054 0.046 0.050 
0.608 0.646 0.660 0.646 0.666 
0.180 0.150 0 .138 0.150 0.142 
0.158 0.144 0.148 0 .158 0.142 

NN.31 (2,6) 0.096 0 .114 0.108 0.106 0 .114 
0.430 0.426 0.446 0.450 0.438 
0.328 0.324 0.308 0.320 0.304 
0 .146 0.136 0.138 0.124 0 .144 

NN41 (2,6) 0.180 0.192 0.206 0.216 0.200 
0.152 0 .162 0.174 0.146 0.170 
0.546 0.546 0.516 0.540 0.524 
0.122 0.100 0.104 0.098 0.106 

NN51 (4,4) 0.092 0.108 0 .118 0 .118 0.098 
0.456 0.438 0.432 0.422 0 .464 
0.226 0.194 0.208 0.222 0.206 
0.226 0.260 0.242 0.238 0.232 

NN61 (4,4) o. 084 . 0.172 0.158 0.136 0.100 
0.396 0.302 0.322 0.354 0.396 
0.290 0.276 0 .270 0.226 0.262 
0.230 0.250 0.250 0.284 0.242 

NN7 s (2,6) 0.058 0.094 0 .106 0.072 0.096 
0.256 0.178 0.218 0.208 0.246 
0.620 0.684 0.630 0.648 0.610 
0.066 0.044 0.046 0.072 0.048 

NN81 (4,4) 0.128 0.262 0.188 0.232 0.150 
0.240 0.192 0.218 0.224 0.230 
0.304 0.258 0.300 0.274 0.296 
0.328 0.288 0.294 0.270 0.324 
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Table IV.3.3 Results of Non-Normal Deviate Experiments (continued) 

N-test: H2 vs H3 

Reject Both 
Reject Neither 
Reject H1 Distribution of Disturbance Term 
Reject H3 TN(O,cr:> t(3) Xtl> ln(O, crn N(O, cr~) 

NNl1 C2,6) 0.018 0.018 0.030 0.020 0.028 
0. 712 0.702 0.710 0.694 0.714 
0.192 0.178 0.158 0.186 0.154 
0.078 0.102 0.102 0.100 0.104 

NN21 (4,4) 0.094 0.098 0.094 0.096 0.092 
0.450 0.522 0.556 0.508 0.536 
0.250 0.190 0.182 0.198 0.188 
0.206 0.190 0.168 0.198 0.184 

NN31 (2,6) 0.172 0.174 0.172 0.166 0.188 
0.278 0.286 0.312 0.284 0.316 
0.414 0.412 0.390 0.430 0.370 
0.136 0.128 0.126 0.120 0.126 

NN4: (2,6) 0.284 0.286 0.300 0.298 0.292 
0.056 0. 068 0.082 0. 064 0.070 
0.580 0.572 0.542 0. 570 0. 560 
0. 080 0.074 0.076 0.068 0.078 

NN5: (4,4) 0 .178 0.204 0.176 0.202 0.1_74 
0.286 0.280 0.290 0.286 0.294 
0.266 0.230 0.252 0.258 0.246 
0.270 0.286 0.282 0.254 0.286 

NN61 (4,4) 0 .158 0.310 0.266 0.232 0.226 
0.208 0.162 0.164 0.202 0.202 
0.364 0 .272 0.296 0.254 0.298 
0.270 0.256 0 .274 0.312 0 .274 

NN7s (2,6) 0.110 0.152 0.150 0 .118 0.128 
0.156 0.100 0.132 0 .124 0.132 
0.674 0. 706 0.678 0.698 0.696 
0.060 0.042 0.040 0.060 0.044 

NN81 (4,4) 0.306 0.424 0.358 0.386 0.314 
0.084 0.048 0.082 0.092 0.074 
0.278 0.270 0.284 0 .274 0.310 
0.332 0.258 0.276 0.248 0.302 
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Table IV .3.3 Readts ol Nmt-N-al Deriate Experiments (c:ontinued) 

NA·tm: Cases Involving H, vs f1t , J- 2,3 
. 
p Distribution of Disturbance Term . 
a TN(O,a:} '<i1 xill ln(O,a:) N(O,a:} 
Avg. Rank 

NNl1 (4,2) 0.4310 0.5220 0 .4860 0.5220 0. 4780 
o.osao 0.0600 0.1000 0.0640 0.0820 
8. 7440 8.7980 8.auo 8 .8120 a. 7740 

NNli (4,6) 0.3300 0.3460 0.3340 0.8140 0.8340 
0. 0660 0. 0860 0.0840 0.1040 0. 0880 
6.5860 6.9390 6.9700 6.8390 6.7090 

NN21 (4,4) 0.8760 0.8880 0.8980 0.8540 0.9140 
0. 0700 0.0720 0. 0660 0,0840 0.0480 
9.2410 9.3020 9.2290 9.1910 9.2380 

NN21 (4,4) 0.8900 0.8780 0.8860 0.8980 0.8940 
0.0780 0.0800 0.0700 0.0580 0.0660 
8.7050 8.8090 8.7900 8. 11so 8.8090 

NN31 (4,2) 0.5840 0.6000 0.5840 0.5920 0. 5760 
0.0620 0.0680 0. 0620 0.0820 0.0700 
9.1340 9.0990 9.1250 9.0350 9.0910 

NN31 (4,6) 0.9340 0.8900 0.9080 0.9340 0.9020 
0.0560 0 .1060 0.0840 0.0640 0.0940 
7.6110 7.8720 7.7410 7.6700 7.6910 

NN41 (4,2) 0 . .3280 0 . .3560 0 . .3400 0 . .3260 0 . .3540 
0.0800 0.0720 0. 0660 0.0940 0. 0720 
8.90.30 8.8840 8.9280 8.8560 8.9220 

NN41 (4,6) 0.9160 0.9060 0.9000 0.9100 0.9040 
0.0800 o. 0780 0.0820 0.0680 0.0900 
6.7980 7. 0810 6.8440 6.7600 6.7620 

NN51 C4,4) 0.8740 0.8560 0.8520 0.8500 0.8420 
0.0560 0. 0780 0. 0680 0.0720 0.0840 
7.44.30 7.8670 7.8810 7 .6810 7.5220 

NHS• (4,4) 0.8560 0.8240 0.8.300 0.8460 0.8440 
0. 0640 0. 0880 0. 0860 0.0860 0.0880 
6.9450 7.4410 7 . .3460 7 . .3090 7.0790 

NN61 (4,4) 0.8220 . 0. 8.340 0.8100 0.7560 0.7800 
0.0720 o. 0620 0.0880 0.0880 0.0800 
6.1.320 6.5870 6.56.30 6.2.380 6.1550 

NN61 (4,4) 0.8160 0.8420 0.8400 0. 7700 0.8020 
0.0640 0.0640 0. 0600 0.0780 0.0620 
5.7950 6.3010 6.1980 6.0150 5.7490 

NN71 (4,2) 0.0620 0.0860 0.0760 0.0560 0.0680 
0.0720 0.0760 0.0900 0.0500 0.0860 
8.7290 8.72.30 8. 7110 8.6870 8.7000 

NN71 (4,6) 0.5180 0.6200 0.6120 o. 5680 0.5380 
0.0600 0.0660 0. 0740 0.0680 0.0760 
3.6780 4.1540 4.1200 3.8910 3.8240 

NN81 (4,4) 0.8820 0.8660 0.8500 0. 8.5'80 o .8580 
0.0780 0.0740 0.0840 0.0860 0.0860 
6. 0660 6 .6750 6 • .3840 6.3780 6.1900 

NN81 (4,4) o. 8620 0.8760 0.8.580 0.8640 0.8780 
0.0980 0.0680 0.0700 0.0780 0.0700 
6.0430 6.7180 6 .3720 6.4320 6.1330 
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Table IV.3.3 Results of Non-Normal Deriate Experiments (continued) 

NA-test: H2 v.s H3 

Reject Both 
Reject Neither 
Reject H2 Distribution of Disturbance Term 
Reject H3 TN(O, o~) 1<l1 Xl21 ln(O, cr;) N(O, cr;) 

NNl1 (2,6) 0.024 0.020 0.020 0.016 0.024 
0.782 0. 778 0.766 0.758 0. 778 
0.070 0.050 0.048 0.070 0.048 
0.124 0.152 0.166 0.156 0.150 

NN2• (4,4) 0.046 0.046 0.034 0.042 0.040 
0.604 0 .628 0.642 0.622 0.656 
0.192 0.152 0.156 0.172 0.146 
0.158 0.174 0.168 0.164 0.158 

NN31 (2,6) 0.036 0.044 0.034 0.028 0.036 
0.546 . 0. 536 0.540 0.562 0.544 
0.136 0.136 0.132 0.140 0 .128 
0.282 0.284 0.294 0.270 0.292 

NN41 (2,6) 0.020 0.032 0.032 0.032 0.028 
0.484 0.490 0.458 0.516 0.460 
0.106 0.120 0.120 0.096 0.118 
0.390 0.358 0.390 0.356 0.394 

NN51 C4,4> 0.084 0.102 0.102 0.100 0.090 
0.398 0.344 0.376 0.374 0. 368 
0.260 0.256 0.254 0.268 0.262 
0.258 0.298 0.268 0.258 0.280 

NN61 (4,4) 0.102 0.212 0.202 0.154 0 .138 
0.272 0.210 0.222 0.262 0.276 
0.348 0.294 0.290 0.258 0.282 
0.278 0.284 0.286 0 . .326 0.304 

NN71 (2,6) 0.006 0.010 0.004 0.016 0.008 
0 .718 0.700 0. 710 o. 712 0.750 
0.044 0.036 0.042 0.056 0.034 
0.232 0.254 0.244 0.216 0.208 

NN81 (4,4) 0.216 0.340 0.264 0.300 0.218 
0.152 0.092 0.128 0.134 0.124 
0.302 0.282 0.312 0.288 0.322 
0.330 0.286 0.296 0.278 0.336 
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Table IV .J.3 Results of Noa-Nonnu Deriate Experiments (continued) 

NL-test: Caaes Involving H1 vs H1 , j • 2,3 
. 
p Distribution of Disturbance Term . 
a TN(O,aD rp, Xf31 ln(o,an N(O,aD 
Avg. Rank 

HNl1 (4,2) 0 .4940 0.8880 0.8880 0.4940 0.4940 
0.1060 0.1100 0 .1120 0 .1060 0 .1060 
2.6500 2.7850 2.7560 2.7090 2.6070 

NNl• (4,6) 0.8440 0.8580 0.8440 0.8240 0.8440 
0.1560 0.14ZO 0.15ZO 0.1740 0.1540 
Z.8700 2.9390 Z.9970 3. 0650 Z.8450 

NN2• (4,4) 0.9040 0.9300 0.9240 0.8960 0.9280 
0. 0960 0.0700 0.0760 0.1040 0.0720 
3.2520 3.1770 3.1630 3.2710 3.0870 

NN2• (4,4> 0.8920 0.9080 0.9260 0.9120 0.9180 
0.1080 0.0920 0.0740 0.0880 0.0820 
3.1760 3.2870 3.0230 3.1830 3.0170 

NN31 (4,2) 0.9360 0.9320 0.9320 0.91ZO 0.9280 
0.0640 0. 0680 0. 06&0 0.0880 0.0720 
Z.9600 3.0670 3.0140 3.0620 2.9860 

NN31 (4,6) 0.9060 0.8920 0.9020 0.8960 0.9000 
0.0940 0.1080 0.0980 0.1040 0.1000 
3.6530 4.1080 3.8610 3.9210 3 .6570 

NN4• (4,2) 0.9220 0.9180 0.9340 0.9060 0.9380 
0.0780 0. 0780 0.0640 0.0940 0. 06ZO 
3.1420 3.2660 3.1160 3.2270 3.0530 

NN41 (4,6) 0.9040 0.9100 0.9080 0.8980 0.8960 
0.0940 0.0880 0.0880 0.0980 0.1020 
3.9330 4.3880 4.lZOO 4.2270 3.9810 

NN5• (4,4) 0.9040 0.8980 0.9060 0.9020 0.9040 
0.0920 0.1020 0.0840 0.0940 0.0940 
3. 0660 3.3060 3.1850 3.0980 3.0680 

NN51 (4,4) 0.8720 0.8580 0.8840 0.9000 0.8900 
0.1200 0.1240 0.1060 0.0980 0.1040 
2.8530 3.1440 3.0100 2.8430 2.7490 

HN61 (4,4) 0.8610 0.8820 0.8640 0.8240 0.8600 
0.0800 0.0900 0.1020 0 .1060 0.0900 
3.1020 3.4300 3.4820 3.3660 3.1730 

NN61 (4,4) 0.8780 0.8940 0.8600 0.8760 0.8540 
0.0780 0.0740 0.0900 0.0660 0. 0800 
2.8060 3.1100 3.Z080 Z.8550 2.8780 

HN7• (4,2) 0.9260 0.9140 0.9040 0. 9360 0.9100 
0.06&0 0.07&0 0. 0880 0.0620 0.0880 
2.4010 2.6250 2.7030 2.4380 Z.5090 

NN7• (4,6) 0.5900 0.6760 0.6620 0.6260 0.6040 
0.1940 0.1480 0.1640 0.1900 0 .1820 
3.4070 3.2970 3.3640 3.4450 3.2820 

NN8• (4,4) 0.9000 0.8800 0.8740 0.8760 0.8720 
0.0760 0.0760 0.0820 0.0880 0.0920 
3.7630 4.5940 4.2020 4.2000 3.9330 

NN81 C4,4) 0.8800 0.8920 0.8840 0.8740 0.8980 
0.0920 0. 0620 0. 0660 0.0800 0.0640 
3.8210 4.4730 4. 0650 4.1490 3.7600 
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Table IV.3.3 Results of Non-Normal Deviate Experiments (continued) 

. NL-test: H2 v.r H3 

Reject Both 
Reject Neither 
Reject H2 Distribution of Disturbance Term 
Reject H3 TN(O, cr~) t(l) Xf21 ln(O, crD N(O, cr~) 

NNl1 (2,6) 0.390 0.396 0.396 0.362 0.392 
0.004 0.016 0.010 0.004 0.010 
0.530 0.494 0.502 0.536 0.508 
0.076 0.094 0.092 0.098 0.090 

NN21 C4,4) 0.502 0.518 0.514 0.538 0.514 
0.006 0.006 0.008 0.008 0.008 
0.236 0.246 0.250 0.222 0.254 
0.256 0.230 0.228 0.232 0.224 

NN31 (2,6) 0.500 0.530 0.514 0.492 0.516 
0.002 0.004 0.002 0.000 0.004 
0.450 0.430 0.440 0. 462 0.434 
0.048 0.036 0.044 0.046 0.046 

NN41 (2, 6) 0.502 0.524 0. 560 0. 480 0.544 
0.000 0.000 0.000 0.000 0.000 
0.480 0.456 0.424 0.506 0.436 
0.018 0.020 0.016 0.014 0.020 

NN51 (4,4) 0.484 0.528 0.494 0.528 0.454 
0.010 0.014 0.020 0.008 0.024 
0.246 0.210 0.230 0.228 0.246 
0.260 0.248 0.256 0.236 0.276 

NN61 (4,c,) 0.308 0.410 0.400 0.334 0.340 
0.058 0.044 0.058 0. 060 0.060 
0.350 0.288 0.284 0.268 0.302 
0.284 0.258 0.258 0.338 0.298 

NN71 (2,6) 0.282 0.302 0.294 0.252 0. 270 
0.004 0.004 0.006 0.004 0.004 
0.698 0.684 0.692 o. 722 0. 718 
0.016 0.010 0.008 0.022 0.008 

NN81 (4,4) 0.296 0.396 0.348 0.364 0.300 
0. 068 0.040 0.060 0.068 0. 060 
0.292 0.288 0.302 0.308 0.328 
0.344 0.276 0.290 0. 260 0.312 
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Table IV .3.3 Results al N_.Normal Deriate Experiments ( c:ontJnued) 

J-test: Cases Involving H, vi H1 , J- 2.3 
. 
p Distribution of Dim1rbam:e Term . 

' a TN(O,a:> ~ xl:11 ln(O,a:> N(O,a:> 
Avg. Rank 

NNl1 (4,2) 0.9580 0.9620 0.9430 0.9640 0.9420 
0.0420 0.0340 0.0500 0.0360 0.0580 
3.9660 3.3560 3.9290 3.8930 4.0240 

NNl1 (4,6) 0.7460 0.7900 0.7880 0.7500 0. 7720 
0.2540 0.2040 0.2060 0.2440 0.2260 
4.9240 4.6930 4.7330 4.8700 4.7770 

NN21 (4,4) 0.9320 0.9680 0.9540 0.9440 0.9620 
o. 0680 0.0320 0.0460 0.0560 0.0380 
4.1050 3.8690 3.9770 3.9580 3.9930 

NN2r (4,4) 0.9120 0.9380 0.9440 0.9340 0.9440 
o. 0380 o. 0620 0.0560 0. 0660 0.0560 
4.1990 4.0050 4.0400 4.0700 4.0800 

NN3r (4,2) 0.9300 0.9720 0.9700 o. 9560 0.9600 
0.0200 0.0260 0.0300 0.0440 0.0400 
3.8960 3.8320 ·3.8330 3.9100 3.9610 

NN3r (4,6) 0.8680 o.a3oo 0.&960 o.8aao 0.8760 
0.1300 0.1200 0.1040 0.1120 0.1240 
4.3740 4.1340 4.0970 4.1730 4.2670 

NN4r (4,2) 0.9780 0.9740 0.9740 0.9600 0.9720 
0.0220 0.0220 0.0240 0.0400 0.0280 
3.&650 3.7710 3.8570 3.&430 3.9210 

NN4r (4,6) o.&880 0.8740 0.&620 0.8680 0.3720 
0.1060 0.1180 0.1240 0.1260 0.1240 
4.3440 4.2340 4.3530 4.3200 4.4200 

NN51 (4,4) 0.9380 0.9400 0.9320 0.9220 0.9340 
0.0540 0.0460 0.0480 0. 0640 0.0460 
4. 0670 3.9750 3.9550 4.0350 3.9550 

NN51 (4,4) 0.8760 0.8940 0.8930 0.8930 0.9060 
0 .1160 0.0820 0.0740 0.0960 0.0840 
4.2320 3.9970 3. 9570 4.1450 4.0140 

NN61 (4,4) 0.8920 0.8980 0.8940 0.&.360 0.&640 
0.0280 0.0340 0.0460 0.0500 0.0460 
4.0960 3.9960 4.0180 4.0200 4.1720 

NN61 (4,4) 0.&700 0.&620 o.&580 o.a520 o.a5oo 
0.0660 0.0720 0. 0620 0.0520 0.0600 
4.2060 4.1620 4.1020 4.1000 4.1470 

NN71 (4,2) 0.9620 0.9520 0.9500 0.9620 0.9540 
0.0320 0.0340 0.0300 0.0280 0.0420 
4.1470 4.1340 4.0620 4.1080 4.1'240 

NN71 (4,6) 0.4620 0.5440 0.5440 0.4700 0.4660 
0.2080 0.2080 0.1740 0.2260 0.2180 
5.4260 5.4390 5.2230 5.4960 5.4080 

NN81 (4,4) 0.9160 0.9120 o.8aao D.8960 0.8920 
·0.02&0 0. 0180 0.0260 0.0340 0.0260 
4.3130 3. 9570 4.0610 4. 07 DO 4.2260 

NN81 (4,4) 0.9060 0.9080 o.aa20 0.9020 0.9040 
0.0380 0.0320 0.0360 0.0460 0.0400 
4.3110 4.0090 4.1460 4.1150 4.3150 
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Table IV.3.3 Results of Non-Normal Deviate Experiments (continued) 

J-test: H2 vs H1 

Reject Both 
Reject Neither 
Reject H1 Distribution of Disturbance Term 
Reject H3 TN(O, er:) t(3) ;(fl) ln(O, er:) N(O, er:) 

NNl1 (2,6) 0.178 0.144 0 .160 0.166 0 .172 
0.096 0.130 0.094 0 .110 0.118 
0. 684 0.684 0.694 0.684 0.666 
0.042 0.042 0.052 0.040 0.044 

NN21 (4,4) 0.412 0.398 0.412 0.402 0.392 
0.092 0.084 0.102 0.092 0.094 
0.234 0.262 0.244 0.248 0.258 
0.262 0.256 0.242 0.258 0.256 

NN31 (2, 6) 0.306 0.322 0.306 0.288 0.314 
0.014 0.026 0.032 0.014 0.028 
0.650 0 .628 0.640 0.670 0.630 
0.030 0.024 0.022 0.028 0.028 

NN41 (2,6) 0·.346 0.336 0.354 0.336 0.342 
0.000 0.000 0.002 0.000 0.002 
0.644 0.654 0 .638 0.654 0 .648 
0.010 0.010 0.006 0.010 0.008 

NNS1 (4,4) 0.342 0. 374 0.334 0.390 0.338 
0.052 0.066 0.106 0.056 0.086 
0.306 0.254 0. 270 0.260 0. 272 
0.300 0.306 0.290 0.294 0.304 

NN61 C4,4) 0 .194 0.314 0 .272 0.220 0.214 
0.154 0 .118 0.114 0 .148 0.146 
0.362 0.292 0.314 0.284 0.320 
0.290 0.276 0.300 0.348 0.320 

NN71 (2,6) 0.146 0.170 0.178 0.168 0.166 
0.012 0.014 0.010 0.012 0.006 
0.840 0 .810 0.808 0.810 0.824 
0.002 0.006 0.004 0.010 0.004 

NN81 (4,4) 0.176 0.318 0.250 0.274 0.192 
0.154 0.096 0 .114 0.142 0 .118 
0.318 0.292 0.322 0.306 0.358 
0.352 0.294 0.314 0.278 0.332 
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Table IV .3.3 Results of Noa-Normal Deriate Experiments (continued) 

AJ·test: Ca.ses Involving H1 vs H1 , J • 2,3 
. 
p Distribution of Disturbance Tenn . 
Cl TN(O, cJD ~ xbi ln(O, at) N(O,at) 
Avg. Rank 

NNla C4,2) 0.9700 o. 9620 0.9460 0.9600 0.9660 
0.0120 0.0120 0.0260 0.0180 0.0220 
5.3210 5.1850 5.1920 5.2870 5.3060 

NNl• (4,6) 0.9280 0.9120 0.9340 0.9120 0.9320 
0.0300 0.0280 0.0220 0.0400 0.0240 
5.0520 5.1210 5.0480 5.0340 5.1140 

NN2a C4,4) 0.9760 0.9800 0.9780 0.9720 0.9840 
0.0240 0 .0180 0 .0180 0.0280 0.0160 
4.9130 4.9460 4.96&0 4.9040 4. 9860 

NN2• (4,4) 0.9780 0.9840 0.9840 0.9860 0.9900 
0.0220 0.0140 0.0120 0.0140 0.0100 
4.8680 4.8060 4.8830 4.8790 4.8770 

NN31 (4,2) 0.9860 0.9800 0.9820 0.9740 0.9840 
0.0140 o. 0180 0.0180 0.0260 0.0160 
4.9460 4.8890 4.9190 4.8830 4.8760 

NN31 (4,6) 0.9840 0.9640 o. 9620 0. 9740 0.9640 
0.0140 0.0280 0.0340 0.0240 0.0340 
4.9630 4.7910 5.0060 4.9540 5.0580 

NN41 (4,2) 0.9800 0.9740 0.9780 0.9660 0.9800 
0.0200 o. 0130 0.0200 0.0340 0.0180 
4.9440 4.8740 4.9570 4.9220 4.9550 

NN4a (4,6) 0.9720 0.9420 0.9520 0.9300 0.9660 
0.0180 0.0340 0.0240 0.0360 0.0240 
5.3110 5.2240 5.2100 5.2930 5.3370 

NN51 (4,4) 0.9200 0.9010 0.9080 0,1910 0.9320 
0.0220 0. 0180 0.0260 0.0340 0. 0180 
6.0760 5.1410 5.8560 5.9470 6.0310 

NNS1 (4,4) 0. 9260 0.8800 0.8960 0.9220 0.9160 
0.0340 0.0320 0.0340 0.0240 0.0280. 
5.7390 5.5740 5.6740 5.5460 5. 7380 

NN61 • C4,4> o.82ao 0.8420 0.8280 0.7500 o. 7700 
0.0100 0.0200 0.0320 0.0220 0. 0180 
6.7110 6.3530 6.3550 6.4600 6.7150 

NN61 (4,4) 0.'160 0.8240 0.8080 0.7800 0.7860 
0. 0180 0.0260 0.0240 0.0220 0.0200 
6.5630 6.2630 6.2830 6.5000 6.5520 

NN7• (4,2)" 0.9300 0.9460 0.9220 0.9160 0. 9360 
0.0320 0.0200 0.0200 0.0160 0.0360 
5.6370 5.4370 5.5260 5.6460 5.6160 

NN7a C4,6> 0.3940 0.5460 0.5420 0.4460 0.4200 
0.0320 0.0320 0.0400 0.0260 0.0300 
6. 7160 6.5160 6.6000 6.4390 6.6750 

NN81 (4,4) 0.1900 0.9020 0.8700 0.8760 0.8860 
0.0260 o. 0160 0. 0180 0.0280 0.0160 
6.2980 5.8640 6. 0680 6. 0070 6.1840 

NN81 (4,4) 0.8920 0.9040 0.8740 0.8780 0.8820 
0.0240 0.0140 0.0140 0.0260 0.0110 
6.1760 5.1190 6.0360 5.9630 6 .1680 
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Table IV .3.3 Results of Non-Normal Deviate Experiments (continued) 

Al-test: H2 lls H3 

Reject Both 
Reject Neither 
Reject H2 Distribution of Disturbance Term 
Reject H3 TN(O, cr~) t(J) xf1) ln(O, a~) N(O, CJ~) 

NNlr (2,6) 0.006 0.008 0.012 0.014 0.008 
0.746 0. 7 58 0. 774 0.748 0.762 
0.188 0.184 0 .162 0.180 0.168 
0.060 0.050 0.052 o.058 0. 062 

NN21 (4,4) 0.052 0.052 0.058 0.056 0.052 
0.590 0 .626 0.648 0.610 0.658 
0.196 0.172 0.150 0.170 0.140 
0.162 0.150 0.144 0.164 0.150 

NN31 (2,6) 0.092 0 .116 0.092 0.098 0.104 
0.368 0. 374 0.384 0.368 0.388 
0.450 0.430 0.454 0.462 0.436 
0.090 0.080 0.070 0.072 0.072 

NN41 (2,6) 0.216 0.214 0.230 0.218 0.212 
0.098 0.094 0.098 0.086 0.104 
0.638 0.652 0.638 0.660 0.654 
0.048 0.040 0.034 0.036 0.030 

NN51 (4,4) 0.090 0.104 0.106 0.104 0.088 
0.472 0. 470 0.464 0.438 0.506 
0.210 0.196 0.190 0.204 0.188 
0.228 0.230 0.240 0.254 0.218 

NN61 (4,4) 0.062 0.146 0.134 0.120 0.100 
0.404 0.314 0. 370 0. 378 0.410 
0.298 0.288 0.262 0.220 0.254 
0.236 0.252 0.234 0.282 0.236 

NN71 (2,6) 0.092 0.118 0.126 0.094 0.108 
0.166 0.120 0.134 0.152 0.146 
0. 714 0.750 0. 718 0.720 0.716 
0.028 0.012 0.022 0.034 0.030 

NN81 (4,4) 0 .118 0.254 0.172 0.224 0.130 
0.238 0.194 0.228 0.220 0.232 
0.304 0.262 0.300 0.282 0.316 
0.340 0.290 0.300 0.274 0.322 
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Table IV .3.3 Remits o( Non-Nonna! Deriate Experiments (continued) 

JA-test: Cases Involving H1 vs H1 , j ,. 2,3 
. 
p Distribution of Disturbance Term . 
(1 TN(O,a~) lm Xf:11 ln(O, aD N(O, an 
Avg. Rank 

NNl1 C4.2) 0.4940 0.5060 0.5000 0.5200 0.4820 
0.0100 0.0220 0.0320 0.0160 0 .. 0260 
9.0140 9.0540 8.9730 9.0350 9.0230 

NNl1 C4.6l 0. 7900 0.8540 0.8580 0.8280 0.8260 
0.0220 0.0220 0.0160 0.0300 0.0220 
6.9580 6.8290 6.8750 6.7890 6 .&850 

NN21 C4,4> 0.9060 0.9160 0.9220 0.8960 0.9220 
0.0220 0.0160 0.0180 0.0240 0.0180 
8.2240 8.2460 8.1800 8.1310 8.2290 

NNZ1 C4,4> 0.9300 0.9260 0.9220 0.9300 0.9260 
0.0200 0.0140 0.0120 0.0120 0.0160 
7. 7180 7.8210 7.8750 7.8140 7.8730 

NN31 (4,2) 0.5940 0.6060 0.5740 0.5960 0. 5660 
0. 0160 0.0200 0.0240 0.0380 0.0220 
9 .. n20 9.3420 9.3640 9.2760 9.3130 

NN31 (4.6) 0.9720 0.9460 0.9480 0.9740 0. 9560 
0.0140 o. 0360 0.0320 0.0220 0.0340 
6.0610 6.1590 6 .1080 6.1240 6.1720 

NN41 C4.2l 0.3380 0.3380 0.3340 0.3220 0.3320 
0.0180 0. 0160 0.0220 0.0340 0.0240 
9.5220 9.4900 9.5590 9.4480 9.5740 

NN41 C4,6> 0.9720 0.9460 0.9480 0.9420 0.9600 
0.0160 0.0220 0.0240 0.0240 0.0260 
5.5110 5.2880 5.3230 5.4000 5.3960 

NN51 C4.4> 0.8900 0.8840 0.8600 0.8600 0.8600 
0.0120 0.0260 0.0260 0.0360 0.0280 
7.1420 7. 0080 7.0470 7.0110 7.0560 

NN51 (4,4) 0.8.500 0.8560 0.8600 0.8700 0.8580 
0.0360 0.0300 0.0300 0.0380 0.0400 
6.7120 6.6740 6.6330 6.8620 6.7350 

.NN61 C4,4) 0.&320 o.&440 0.&260 0.7620 o. 7720 
0.0140 0.0180 0.0280 0.0280 0.0200 
6 .4660 6.4000 6.3570 6.3690 6.5810 

NN61 C4.4) 0.8020 0.8260 0 .8110 0.7940 0. 7900 
0.0180 0.0320 0.0300 0.0220 0.0220 
6.3300 6.1300 6.0310 6.1720 6.2850 

NN71 C4,2) 0.0600 0'.0120 0.0920 0.0640 0.0900 
0.0300 0.0280 0.0240 0.0220 0.0380 
9.6030 9.5270 9.4610 9.6060 9.4910 

NN71 (4,6) 0.4100 0 • .5.580 0.5.500 0.4620 0.4320 
0.0160 0.0230 0.0260 0.0200 0.0320 
.5.9350 6.0540 5.9450 5.9150 6.0450 

NNl1 (4,4) 0.9020 0.9000 0.1740 o.&800 0.&160 
0.0260 0.0180 0.0200 0.0260 0.0180 
.5.1460 5.3030 5.6030 5.6040 5.6800 

NNl1 (4,4) 0.9000 0.9020 0.1710 0.8140 0.1820 
0.0210 0.0160 0.0110 0.0240 0.0200 
5.6920 5.4390 5.6.530 5.5170 5.8400 
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Table IV.3.3 Results of Non-Normal Deviate Experiments (continued) 

JA·tcst: H2 vs HJ 

Reject Both 
Reject Neither 
Reject H2 Distribution of Disturbance Term 
Reject HJ TN(O,cm l(J) Xf2> ln(O, crD N(O, cr~) 

NNl1 (2,6) 0.004 0.006 0.006 0.000 0.006 
0.874 0.878 0.850 0 .874 0.876 
0.056 0.038 0.048 0.052 0.042 
0.066 0.078 0.096 0.074 0.076 

NN21 (4,4) 0.026 0.016 0.014 0.022 0.016 
0.692 0.730 0.746 0.736 0.740 
0.146 0 .126 0 .118 0 .118 0 .122 
0.136 0.128 0.122 0.124 0.122 

NN31 (2,6) 0.012 0.026 0.018 0.012 0.020 
0.684 0.666 0.668 0.660 0 .670 
0 .116 0.126 0.132 0 .142 0 .112 
0.188 0.182 0.182 0.186 0.198 

NN41 (2,6) 0.010 0.016 0.016 0.016 0. 016 
0 .622 0.606 0.596 0.636 0 .602 
0.108 0.124 0.116 0.094 0 .112 
0.260 0.254 0 .272 0.254 0 .270 

NN51 (4,4) 0. 064 0.060 0. 068 0.070 0.052 
0.502 0.450 0.478 0.474 0.492 
0.228 0.218 0.228 0.226 0.218 
0.206 0.272 0.226 0.230 0.238 

NN61 (4,4) 0.052 0.126 0.144 0 .116 0.088 
0.392 0.306 0.328 0.348 0.380 
0.314 0.306 0.258 0.226 0.266 
0.242 0.262 0.270 0.310 0.266 

NN71 C2,6) 0.000 o.ooo 0.000 0.000 0.000 
0.828 0.824 0 .818 0.792 0.820 
0.048 0.036 0.032 0.056 D.036 
0.124 0.140 0.150 0.152 0.144 

NN81 (4,4) 0.130 0.260 0.186 0.222 0.142 
0.230 0.166 0.198 0.212 0.212 
0.302 0.288 0.314 0.290 0.322 
0.338 0.286 0.302 0 .276 0.324 
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Table IV .3.3 Results olNcm-Normal Dmate Experiments (continual) 

NJ-test: Cases Involving H1 vs H1 , J - 2,3 
. 
p Distribution of Disturbance Term . 
C1 TN(O,afl i(J1 Xf:11 ln(O, afl N(O,aD 
Avg. Rank 

NNl1 (4,2) o. 7120 0.7300 0.7380 0.7520 0.7200 
0.0340 0.0380 0.0620 0.0440 0.0560 
7 .1110 7 .1100 7.1290 7.1280 7.1490 

NNl1 (4,6) o.5uo 0.8960 0.8860 0.8660 o.aa20 
0.11540 0.0440 0.0560 0.0640 0.0520 
6.2470 6.1010 6.1540 6 .1150 6.2260 

NN21 (4,4) 0.9600 0.9500 0.9440 0.9340 0.9540 
0.0380 0.0400 0.0400 0.0580 0.0400 
6 .4560 6. 4560 6 .4570 6.3800 6.5320 

NN21 (4,4) 0.9580 0.9500 0.9520 0.9460 0.9640 
0.0420 0.0400 0.0380 0.0420 0.0300 
6.1400 6 .1610 6.2270 6 .1&70 6.1930 

NN3• (4,2) 0.9200 0.9120 0.9080 0.8900 0.9120 
0.0320 0.0440 0.0380 0.0540 0.0380 

.7.1520 7.1070 7.1600 7.1330 7.1610 

NN31 (4,6) 0.9640 0.9220 0.9380 0.9540 0.9260 
0.0340 0.0700 0.0600 0.0440 0.0720 
6.4050 6 .3460 6.4450 6 .3740 6.4970 

NN41 (4,2) 0.8560 0.8640 0.8720 0.8480 0.8700 
0.0580 0.0500 0.0380 0.0620 0.0380 
7.6020 7.5130 7.5120 7.4920 7.5860 

NN41 (4,6) 0.9400 0.9380 0.9320 0. 9180 0.9420 
0.0480 0.0460 o. 0460 0.0480 0.0400 
6.8060 6.6610 6.7620 6.6980 6.8490 

NNS1 (4,4) 0.8920 o.aaoo o .aa20 0.8740 0 .8820 
0.0360 0.0440 0.0400 0.0580 0. 0460 
6.6280 6.5100 6.5720 6.5650 6.6490 

HHS• (4,4) o.8aao 0.8440 0.8400 0.8860 0.8660 
0.0440 0. 0620 0.0700 0.0500 0.0640 
6.1800 6.2270 6.3350 6.2370 6.3460 

NN61 (4, 4) 0.8040 0.8.340 0.8100 0.7360 0.7740 
0.0420 0.0380 0.0520 0.0460 0.0340 
6.8500 6. 7100 6 .6690 6.8090 6.7350 

NN61 (4,4) 0.7900 0.8400 o.uoo 0.7840 0.7700 
0.0420 0.0300 0.0320 0.0460 0.0320 
6.5690 6.4710 6.4670 6.5550 6.6030 

NN71 (4,2) 0.2500 0.4040 0 . .3940 0.3260 0.3040 
0.0460 0.0560 0.0600 0.0320 0.0700 
7.7480 7.7950 7. 7740 7. 7270 7.7350 

NN71 (4,6) 0.3620 0.5300 0.5320 0. 4280 0.3920 
0.0420 0.0460 0.0520 0.0420 o.o58n 
6.6300 6.6540 6.7550 6.6190 6.65&0 

NN&• (4,4) 0.8600 0.8700 0.8440 0.8520 o.8500 
0.0560 0.04&0 o.o5ao o. 058-o 0.0560 
6.9240 6.6.300 6. 7120 6. 7370 6.8070 

NNI• (4,4) 0.8400 0.8840 0.8420 0.8440 0.8560 
0.0720 0.0340 0. 0460 0.0580 0.0460 
6.9460 6 .4840 6.7430 6.6470 6.7450 
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Table IV.3.3 Results of Non-Normal Deviate Experiments (continued) 

NJ-test: H2 vs H3 

Reject Both 
Reject Neither 
Reject H2 Distribution of Disturbance Term 
Reject H3 TN(O, cr~) l(3) X~i ln(O, cr~) N(O, cr;) 

NNl1 (2,6) 0.016 0.016 0.012 0.018 0.016 
0.818 0.842 0.818 0.828 0.834 
0.083 0.062 0. 064 0.078 0. 072 
0.073 0.080 0.106 0.076 0. 073 

NN21 (4,4) 0.032 0.032 0.036 0.022 0.032 
0.638 0.692 0. 718 0.694 0.720 
0.180 0.140 0 .124 0 .144 0.126 
0.150 0.136 0.122 0.140 0.122 

NN31 C2,6) 0.036 0.042 0.040 0.042 0.032 
0.578 0 .572 0.586 0.564 0.590 
0.208 0.200 0.200 0.226 0 .192 
0.178 0.186 0.174 0.168 0.186 

NN41 (2,6) 0.046 0.048 0.054 0.058 0.040 
0.440 0.426 0.436 0.448 0.452 
0. 274 0.288 0.268 0.268 0 .270 
0.240 0.238 0.242 0.226 0.238 

NNS1 (4,4) 0.066 0.080 0.088 0.078 0. 064 
0.462 0.436 0.444 0.434 0. 470 
0.244 0.220 0.238 0.236 0.224 
0.228 0.264 0.230 0.252 0.242 

NN61 (4,4) 0.064 0.146 0.142 0.108 0.092 
0.394 0.294 0.328 0.350 0. 396 
0.298 0.290 0.268 0.232 0.254 
0.244 0. 270 0.262 0.310 0.258 

NN71 (2,6) 0.012 0.008 0.012 0.016 0.008 
0.744 0.686 0 .684 0.700 0.704 
0.122 0.160 0.160 0.152 0.146 
0.122 0.146 0.144 0 .132 0.142 

NN81 (4,4) 0.122 0.244 0.172 0.222 0.138 
0.250 0.176 0.206 0.218 0.234 
0.306 0.284 0.308 0.292 0.312 
0.322 0.296 0.314 0.268 0.316 
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Table IV .3.3 R-11a of N-Nwmal Deriate ~a (cmdnued) 

J'.·test: Cales Involving H1 111 H1 , j • 2,3 
. 
p Distribution of Oisturbam:e Tam . 
CZ TN(O,~ ~ xtJ> ln(O,aD N(O,~ 

Avg. Rank 

NNl• (4,2) 0.9320 0.9320 0.9060 0.9320 0.9360 
0.04IO 0.0400 0.0600 o.o3ao 0.04&0 
7.5210 7.3090 7.2750 7.3900 7.39IO 

NNl• (4,6) o.a4ao o.a5ao o.auo 0.1600 0.1760 
0.0600 0.0420 0.0460 0.0540 0.0480 
7.9840 7.8360 7.&430 7.7900 8.0360 

NN2• (4,4) 0.9760 0.9600 0.94IO 0.9460 0.9540 
0.0240 0.0340 0.0440 0.0520 0. 0460 
7.0590 7.1030 7.2050 7 .0770 7.3310 

NN2• (4,4) 0.94&0 0.9540 0.9640 0.9540 0.9640 
0.0520 0.0440 0.0280 0.0460 0.0360 
6 .1600 6.17IO 6.aa5o 6.9230 6.9190 

NN31 (4,2) 0.9560 0.9620 o .9620 0.9540 0.9580 
0.0440 0.0340 0.0380 0.0440 0.0420 
7.0260 6.7230 6.a220 6.7390 6.9040 

NN3a (4,6) 0.9320 0.9420 0.9400 0.9500. 0.9580 
0.0600 0.0400 0.0400 0.0420 0.0360 
1.4&70 8.0440 8.2410 8.3130 8.2480 

HN4• (4,2) 0.9440 0.9500 0.93IO 0.9210 0.9420 
0.0560 0.0400 o.o5ao 0.0700 0.0540 
6. 7170 6.S5ao 6.7260 6.6.330 6.7830 

NN41 (4,6) 0.8640 0.8860 0.1640 0.8460 0.8580 
o. 0600 0.0460 0.0520 0.0540 0.0400 
9.1160 1.1690 8.9740 8.9240 9.0410 

HHS• (4,4) 0.8200 0.8220 0.1200 o.ao20 0.8080 
0.0420 0. 0.380 0.0400 0.06&0 0.0.380 
8.7230 1.4640 8.48&0 8.5930 8.6490 

HHS• <4.4) o.ao60 0.1260 0.1140 0.8240 o. 7740 
0.0500 0.04IO 0.0500 0.0480 0.0600 
8.1250 7.1760 7.9570 1.02so 8.1810 

NN6• (4,4) o.57-20 0.6560 0.6260 0.5640 0.5560 
0.0520 0.0400 0.04&0 o.o3ao 0. 0360 
9.1530 a. 9460 8.9550 8.9100 1.9240 

NN61 <4.4) 0.5500 0.6620 0.6500 o.sa20 0.5200 
0.0400 0.0360 0.0360 0.0480 0.0460 
a.1150 1.7110 1. 1120 1.1610 8.9590 

NN71 ('t,2) 0 .1610 0.1940 0.1720 0.1600 0.8100 
0.0620 0.0460 0.0440 O.Ott60 0.0540 
7.0360 6.8130 6.1570 7.0330 6.9260 

HH7 • (4,6) 0.17IO 0.2810 G.?920 0.2120 0.1960 
O.Ott60 0.0660 O.Ofl40 0.0520 0. 0460 
8.0990 8 • .3300 8.3790 &.l590 8.1030 

HNI• (4,4) 0.6200 0.7320 0.6180 0.6740 0.6520 
0.0560 0.0520 o. 0460 o. Hoo 0.0560 
9.3470 9.1920 9.2290 9.2220 9.3000 

NN&• (4,4) 0.6620 0.7540 0.7040 0.7040 0.6780 
0.0440 0.04&0 0.0340 0.0440 0.0380 
9 .2110 9.0970 9.1590 9.0400 9 .1170 
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Table IV.3.3 Results of Non-Normal Deviate Experiments (continued) 

F-tcst: H2 vs H1 

Reject Both 
Reject Neither 
Reject H2 Distribution of Disturbance Tenn 
Reject H1 TN(O, a:) t(l) Xf2l ln(O, er;) N(O, cr;) 

NNl1 (2,6) 0.022 0.022 0.024 0.024 0.024 
0.764 0.790 0.79g 0.752 0.800 
0 .136 0 .114 0.104 0.146 0.104 
o.01g 0.074 0.074 0.078 0.072 

NN21 (4,4) 0.056 0.058 0.052 o.o6g 0.058 
0.642 0.684 0.676 0. 658 0.694 
0 .170 0.130 0.130 0 .136 0.124 
0.132 o.12g 0.142 0 .138 0.124 

NN3: (2,6) 0 .136 0.132 0.126 0 .126 0 .112 
0. 462 0.448 0.492 0.456 0.476 
0.330 0.342 0.316 0.346 0.338 
0.072 0. 078 0.066 0.072 0.074 

NN41 (2,6) 0.218 0.218 0.224 0.210 0.198 
0.196 0.160 0.156 0.140 0.168 
o,55g o,59g 0.602 0.614 0.612 
0.028 0.024 0.018 0.036 0.022 

NN5: (4,4) 0.082 0.094 0.102 0.096 0.096 
o.59g 0.594 0.614 0.560 0.630 
0.152 0.150 0.142 0.158 0.1<2 
0 .163 0.162 0.142 o.1g6 0 .132 

NN61 (4,4) 0.048 0.094 o.og6 0. 072 0.058 
0.644 0.600 0. 570 0.624 0.660 
0.164 0.166 0 .170 0.120 0.15(: 
0.144 0.140 0.174 0.184 0 .130 

NN7a (2,6) 0.106 0.126 0.132 0.102 0.112 
0.260 0.174 0.218 0.236 0.270 
0.620 0.692 0.646 0.654 0.608 
0.014 0.008 0.004 0.008 0.010 

NN81 (4,4) 0. 078 0.112 0.098 0.124 0.088 
0.570 0.540 0.548 0.524 0.548 
0.166 0 .188 0.194 0.168 0.188 
0.186 0.160 0 .160 0 .184 0.176 
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Table IV.3.4 Paired T-test on Power for Normal/Non-Normal Distributions 

(µ, - µN) Distribution of Disturbance Term 
t.o, 
p-value TN(O, er:) t(3) XT2i ln(O, crD 
Test: 
N -0.004125 0.002250 0.001625 -0.009500 

-0.80 0.63 0.61 -1.57 
0.4387 0.5362 0.5531 0.1363 

w 0.006250 0.013625 0.008750 -0.003750 
1.23 1.22 0.88 -0.80 

0.2363 0.2399 0.3920 0.4368 

-
N 0.007875 0.003625 -0.000375 -0.006875 

1.80 0.50 0.05 -1.84 
0.0926 0.6260 0.9605 0.0864 

NA 0.004500 0.014000 0.006125 -0.003000 
0.80 1.91 1.01 -0.45 

0.4351 0.0748 0.3262 0.6613 

NL -0.001125 0.005750 0.003625 -0.005375 
-0.27 0.94 0.91 -1.08 

0.7911 0.3607 0.3753 0.2968 

J 0.000875 0.012375 0.007000 -0.004250 
0.17 2.38 1.23 -1.31 

0.8673 0.0311 0.2386 0.2093 

AJ 0.004750 0.009750 0.004375 -0.009625 
0.98 0.96 0.47 -2.48 

0.3433 0.3526 0.6436 0.0257 

JA 0.013250 0.020750 0.009000 -0.001250 
1.96 3.27 1.86 -0.22 

0.0686 0.0051 0.0825 0.8298 

NJ 0.000000 0.024000 0.016250 -0.001625 
0.00 2.13 1.50 -0.28 

1.0000 0.0505 0.1541 0.7863 

F -0.002125 0.035500 0.021625 0.005125 
-0.42 2.93 1.98 0.85 

0.6832 0.0104 0.0667 0.4079 
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V. An Empirical Study: Analysis of Food Spending Patterns 

5.1 Introduction to the Study 

This study of weekly expenditure data from the 1977 -1978 National Food Consumption 

Survey (NFCS) is an example of an empirical situation in which non-nested hypothesis testing 

procedures can be employed for the purpose of selecting the most appropriate model. As previ-

ou~ly stated, the underlying theory may provide the researcher with a set of alternative models, all 

of which, theoretically speaking, are candidates for the "true" (or at least most reasonable) model. 
' 
I 

Particularly in economic applications governed by the general Engel curve, the only structure die-

tated by the theory is the set of independent variables and limited restrictions on the equation's 

mathematical form. In this case, there are several functional forms of the general Engel curve which 
I 

are feasible for modelling the relationship between household expenditure and such explanatory 

va#ables as income, household size and location. The various functional forms represent the 

mathematical form of a particular demand theory. 
I 

Depending on the functional form assumed, the 'goodness of fit' and estimated income 

elasticities (unitless measures of consumer sensitivity in food spending related to income changes) 

m~y be very different. Consequently, it is worthwhile for the researcher to investigate several al-

terpative model specifications to see which theory is supported by the data. This investigation can 

be done by making comparisons on the basis of R2, correlations between predicted and observed 

responses and correct signs of the estimated coefficients. More formally, hypothesis testing can be 

enwloyed to judge whether or not one model has the ability to explain that which another model 

can, as well as "something extra," in terms of the behavior of the response variable. Therefore, the 

situation arises where the non-nested hypothesis testing procedures are useful tools to aid the re-

searcher in the selection of the most appropriate model. 
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Specifically, an empirical study using actual household food expenditure data from the 

1977-78 Nationwide Food Consumption Survey is presented here to discuss the role of non-nested 
; 

hypothesis testing procedures in choosing the most appropriate functional form. For five alterna-
; 

tive functional forms of the general Engel curve, the measures of fit in addition to the test results 

will be examined and employed in the choice of the best equation for modelling weekly household 

food expenditure. 
I 

The basic model layout for the study was taken from Salathe( 1979) in which he examined 

alt~mative functional forms for modelling weekly food expenditure for a subset of data from the 

19~5 USDA Household Food Consumption Survey. His comparisons were based strictly on 

m~asures of fit, theoretical considerations (signs/magnitudes of estimated coefficients) and a 

goodness-of-fit measure based on the correlation between the observed and predicted responses. 
; 

Hdwever, no formal hypothesis testing was used to aid in the determination of the most reasonable 

model specification. This aspect will be added to provide another dimension with which to select 

among alternative functional forms. 

5.2 The General Engel Curve 

· For the study of weekly household food expenditure, the general Engel curve is of the form: 

EXPEND= fl.EDHM, EMPHM, SXHM, Ul, U2, Rl, R2, R4, Sl, S3, S4, RAC, INC, HS, MEALS) 

where 

EXPEND = total weekly food expenditure, 

EDHM = 1 if household manager not college educated; 

0 otherwise (ow), 

EMPHM = 1 if household manager unemployed; 0 ow, 

SXHM = 1 if household manager female; 0 ow, 
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I 

U 1 = 1 if household located in central city; 0 ow, 

U2 = 1 if household located in non-metropolitan area; 0 ow, 

Rl = 1 if household located in Northeast; 0 ow, 

R2 = 1 if household located in Midwest; 0 ow, 

R4 = 1 if household located in West; 0 ow, 

S l = 1 if season spring (April-June, 1977); 0 ow, 

S3 = l if season fall (October-December, 1977); 0 ow, 

S4 = 1 if season winter (January-March, 1978); 0 ow, 

RAC = 1 if household head non-white; 0 ow, 

INC = annual household income (in dollars), 

HS = household size (number of members), 

MEALS = number of meals eaten from household food supply 

per week. 

' The food expenditures will be examined as a total amount spent per week by the household in 

addition to being subdivided into eight food categories. These can be broken down broadly as 

follows: 

(1) Beverages (BEVEM_TO) 

(2) Fats and oils (FATSM_TO) 

(3) Fruits (FRUIM_TO) 

(4) Grains ( GRAIM_ TO) 

(5) Meat and meat alternates (MEATM_TO) 

(6) Milk equivalents (MILKM_TO) 
' 
(7) Sugars and sweets (SUGAM_ TO) 

(8) Vegetables (VEGEM_TO) 

F~r all categories (ALLM_ TO), the response variable, EXPEND, measures in dollars the amount 
; 

spent on foods bought for consumption in the home. In addition, a category for all other food 
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ex~enditures was created: OTHERM_T. Hence, there will be ten dependent variables for which 
I 

to determine the appropriate functional form of the Engel curve. 

5.3 Alternative Functional Forms With Theoretical Comparisons 

For this empirical study of weekly food expenditure, the (1) quadratic, (2) semi-log, (3) in-

verse, ( 4) double-log and. ( 5) log-inverse functional specifications of the general Engel curve will be 

investigated. All models will be linear in the demographic variables with the indicated transf-
i 

odnations on the exogenous variable, EXPEND, and the explanatory variables INC, HS and in 

pafticular cases only, MEALS. The other variables will be included in the model but are binary. 

The purpose of the demographic indicator variables is to model differences across various cross-

sedtions of the population. In this framework, they will be used only in a linear additive manner. 

It ~ay be reasonable to also use the demographic indicators as slope shifters on the continuous 

variables, such as INC and HS. However, if these are added to the model, the anticipated result 

wquld be strong collinearit among the regressors. 

Prior to examining the results from estimating the five alternative models for the different food 

categories, consideration should be given to the structural differences and limitations of these 
! 

functional forms. Table V.1 contains the formulations of the individual functional forms and some 

characteristics of each. Examination of these functional specifications yields some interesting 

comparisons. 
i 
I 

The information provided by the computational formulas for marginal propensities to con-

sume and income elasticities show how different the outcomes can be, depending on the choice of 

furtctional form. These two quantities are of particular interest to the economic researcher. The 

m~ginal propensity to consume (MPC) measures what part of the dollar bill you would spend, 

on' a particular item, given the extra dollar just received. The income elasticity is a unitless measure 

of ~he consumer's sensitivity to income changes. It measures the change in expenditure for a given 
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change in income, both on a percentage basis. Interestingly enough, a person's sensitivity to in-

come changes can depend heavily on his position on the income scale. For making comparisons 

among elasticities, they are generally calculated at mean income and expenditure levels. Of the five 

functional forms considered, the double-log (4) formulation (also called log-linear) is unique in that 

its income elasticity is constant over the entire range of income/expenditure levels. If the double-log 

model proves to be the appropriate model, this constant elasticity has strong implications about the 

consumer's behavior or spending patterns. 

The researcher is more concerned with understanding the consumer's spending patterns than 

in making predictions on the amount to be spent. Consequently, the correct signs on the estimated 

coefficients as well as the MPC and income elasticity (EINc) are of utmost concern to the 

econometrician. Also, an elasticity measure for household size can be constructed in a similar 

manner and measures how sensitive the family manager's food expenditures are to the presence of 

an additional member in the household. 

There are only three continuous regressor variables in this formulation: INC, HS and 

MEALS, all of which will have explanatory capability in terms of amount expended. However, 

they will not be treated in the same way. The MEALS variable is incorporated in the model as a 

separate regressor to explain or "pick up on" the variability in weekly food expenditure which relates 

to the number of meals actually eaten from the household food supply in a particular week. 

Therefore, meals eaten outside the home are not reflected in the expenditure relationships. When 

the appropriate functional form transformations are made on the regressor variables, they are ap-

plied to the INC and HS variables, but not generally to MEALS. In other words, MEALS can 

be considered a multi-level cross-sectional measure of variability from household to household. 

However, in cases involving the natural logarithm of the regressor variables, the transformation is 

also made on MEALS. (This stems from the linearization of a model with a specific error structure, 

such as the Cobb-Douglas production function.) Therefore, the five actual functional specifica-

tions, in terms of the continuous variables only, to be investigated in the current study are given in 

Table V.2. 
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Table V .1 Alternative Spccifk:ttions of the Engel Function 

·~unctional 

Form 

( 1) Quadratic 

(2) Semi-log 

(3) Inverse 

(4) Double-log 

(5) Log-inverse 

where 

Functional 
Specification 

E = r3o + Pt.Y + Pvi2 

E = f3 0 + r3 1 log(y) 

1 E = f3 0 + P1-y 

log(/:) = Po + p1 log(y) 

log(/:) = Po + P1 ~ 

E = f:'Xl'END 
y =/NC 

Marginal 
Propensity to 

Consume 

p1 + 2r3iY 

P. 
y 

r3 1E 
y2 

P.E 
y 

p,E 
y2 

Income 
Elasticity 

. 031 + 2Pi.Y)Y 
E 

P. 
E 

P1 
y2 

r3. 

r3. 
y 

Zero Intercepts 
Observations? with y-Axis 

yes can be negative 

yes positive 

yes positive 

no through origin 

no positive 



N 

"'" ... 

Table V .2 l'tmctional Forms 1-"or the Empirical Study 

where 

Functional 
Form 

(I) Quadratic 

(2) Semi-log 

(3) Inverse 

(4) Double-log 

(5) I .og-invcrsc 

E = EXPl~'ND 
/NCC/IS= INC x l/S 

Functional 
Specification (for continuous variables only) 

E = f>1/NC + fi2JN<Y + y1HS + y2HSl + 01/NCCHS + aMEALS 

E = p1 log(/ NC) + y1 log(l/S) + a log(MEALS) 

E = P1- 1- + y1- 1- + aMEALS 
INC /IS 

log(E) = p1 log(/ NC) + y1 log(l/S) + a log(M EALS) 

. I I 
log(/~) = ~.INC + y1 l/S + aMEALS 



It is clear that the problem of dealing with zero observations on the dependent variable in the 

log models ( 4 and 5) must be handled in some satisfactory manner. Salathe ( 1979) circumvented 

the problem by replacing all zero expenditures with an arbitrarily small value of 0.0 l, or one cent. 

However, a large number of these one cent expenditures can result in estimated log models which 
I 

reflect a distribution of responses which are skewed toward the negative tail. Therefore, the ap-

proach used here, which also has its pitfalls, is to drop all zero observations as if they were missing. 
! 

Clearly, this procedure creates sample selection bias into the study, although the number of ex-

clu~ed observations is relatively small in the context of the data set. Consequently, the percentage 

of zero observations must be given due consideration when evaluating the resulting models. 
! 

SA Model Estimation 

I 
I 

5.4.1 Estimation Considerations 

When the data are a large sample from various cross-sections of a population, a variety of 

concerns arise. In the first place, there is the quantity of data involved. The data from the 1977-78 
! 

Nationwide Food Consumption Survey (NFCS 77-78) represent weekly observations taken from 

over 15,000 households located across the contiguous United States. For this empirical analysis, 

due to variable screening procedures, usable schedules for 9673 housekeeping households are em-

pldyed. A housekeeping household, by definition, eats 10 or more meals at home from household 

foqd supplies in the survey week. Because of such a large amount of data, the degrees of freedom 
I 

associated with the denominators of all tests of hypotheses of interest are exorbitant and the power 

of the tests is greatly increased. Consequently, a tug of war exists between the increased testing 

power and the correspondingly lowered model fitting due to the heterogeneity of the households. 

This issue must be taken into consideration throughout this discussion. 

As a way to keep the influence of the large sample size from adversely clouding the results, 

the. use of standardized p-values or tail-area probabilities are incorporated. Good (1982) proposed 
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a method to obtain p-values associated with hypothesis tests as if they were based on a sample of 

100 observations. Based on the relation that the Bayes factor for a specific tail-area probability is 

approximately inversely proportional to the square root of the sample size, Good proposed a rea-

sonable adjustment. To have all the samples correspond to a set size of 100 observations, the 

stapdardized p-value is given to be the minimum of (0.5, .Jn/ 100 p). Good's adjustments constitute 

a rpore formal way of essentially shrinking the a, or type I error probability, for the test corre-

sp~nding to the magnitude of the sample size. In particular, when the non-nested testing results 

are discussed in this chapter, both the observed and standardized p-values are presented. 

The data for this study are based on information from households representing different sizes 

and income levels in addition to various demographic characteristics. Consequently, it is expected 

that there will be heterogeneous variances on the amount of food expenditure across different 

cla'sses or cross-sections of households. 

Often, the heteroskedasticity systematically reflects the behavior of one of the independent 

variables. Particularly, ine this type of expenditure model, it is common for the variance structure 
I 

to :be proportional to the income level: 

I 

where u; - iidN(O, 1). In order to estimate and test the significance of the parameter, o (being dif-

fer~nt from zero), the Park-Glesjer approach is employed. (See Pindyck and Rubinfeld, 1981, 

pp~150-152). 

All the tests on the estimated 8 parameters from each of the five functional specifications 

within. each of tqe ten food groups were statistically significant. Therefore, 50 transformed models 
I 

wduld need to be investigated, all of which now presented different dependent variables. With this 
I 

in ' mind as well as the magnitudes of some of the ~ values, additional examination of the 

heteroskedasticity was necessary. Plots of the residuals from the initial models against the corre-

sponding INC variable were produced. The various plots indicated that the problem was more one 
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of outliers than of a systematic relationship between the disturbance terms and the income level. 

Cqnsequently, this study employs the five alternative functional specifications as indicated, without 
I 

' 

anr transformations to combat heterogeneity of variances. 

5.4.2 Estimation Procedures 

All model estimation was performed from the Maximum Likelihood (ML) approach which 

corresponds to 0 LS in the case of models which are linear in the parameters. Results from the 

initial estimations (in SAS output form) are provided in Appendix F, while summary information 

m~asuring fit and the estimated model characteristics are given in Table V.3. Examination of the 

initial models indicate that the quadratic and and double-log models tend to fit the data better. 

However, notice the extremely small coefficients of determination. Such small R2's are a common 

phenomena when dealing with such diverse cross-sections of a population (i.e., the households 

th~mselves). 

Since the R2' s are not comparable across models with different transformations on the de-

pendent variable, a direct measure of goodness of fit is the correlation between the observed and 

predicted responses, both in non-logarithmic and logarithmic forms: p{)i,y) and p( logy, logy). 

Of interest, too, are the magnitudes and signs associated with the elasticity measures. Clearly, food 

expenditures will be somewhat insensitive to income changes, at least at certain levels. So, small 

elasticity coefficients, ErNc• are expected and they should be positive based on the a priori questions 

regarding normal goods. For most categories of food and most models this hypothesis gains sup-

port. On the other hand, if consideration is also given to household size elasticity, EHs• other pos-

sibilities exist. In general, household size elasticities are small and positive, except for the meat and 

vegetable categories. In particular, after a certain point of increasing the household size, economies 
I 

of :scale come into play and an actual decrease in per person food expenditure can be expected. 

The influence of such economies of scale is manifested in the elasticities observed for meats and 
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vegetables. For comparison purposes, the magnitude of the positive elasticities for household size 

will generally be smaller than those for income. 

From the initial results on the models, it appears that the real hypothesis testing situation 

will involve the quadratic and double-log models. In fact, they represent two "opposing" theories 
' 

in terms of formulating patterns in food spending. Therefore, it will be interesting to see which one 
i 

th~ data tend to support. On the basis of the measures of fit, there is no substantial reasoning for 

ch9osing one over the other in some of the commodity groups. The non-nested framework is very 
' 

us~ful in such situations because it forces one model to be able to explain the performance of its 
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Table V.3 Initial Model E.stimation: Summary 

Income Household Size . 
Commodity FF R1 ii(y • .Y> p( lny, lny) MPC Elasticity Elasticity 

(l) 0.5394 0.7344 0.7791 5.7E-04 0.1562 0.0096 
(2) 0.5117 0.7157 0.5925 3.4E-04 0.0927 -0.0154 

ALLM TO (3) 0.5243 0.7242 0.7121 7.IE-05 0.0196 l.8E-05 
(4) 0.6178 0.7360 0.7860 5.2E-04 0.1437 0.0051 
(5) 0.5853 0.7070 0.7651 l.IE-04 0.0294 6.6E-05 

(1) 0.0950 0.3083 0.3710 8.5E-05 0.3035 -0.5327 
(2) 0.0828 0.2886 0.2737 6.0E-05 0.2125 -0.3916 

BEVEM_TO (3) 0.0736 0.2713 0.3318 7.IE-06 0.0251 1.IE-05 
(4) 0.1671 0.2759 0.4088 6.6E-05 0.2340 0.1037 
(5) 0.1571 0.2565 0.3963 l. IE-05 0.0387 6.8E-05 

(l) 0.2621 0.5119 0.5575 -7.5E-06 -0.0646 0.0792 
(2) 0.2541 0.5042 0.4984 7.4E-06 0.0642 0.0274 

FATSM TO (3) 0.2590 0.5089 0.5422 l.9E-06 0.0167 2.IE-05 
(4) 0.3165 0.5118 0.5626 l.2E-05 0.1055 -0.0032 
(5) 0.3003 0.4914 0.5480 2.5E-06 0.0213 7.IE-05 

~ 
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Table V.3 Initial Model Estim:1tion: Summary(continucd) 
-- ·- - ·-· 

. . 
Commodity FF R2 p(y,y) 

(I) 0.1853 0.4305 
(2) 0.1755 0.4190 

FRUIM_TO (3) 0.1799 0.4243 

(4) 0.2072 0.4291 
(5) 0.1994 0.4192 

(I) 0.4351 0.6596 
(2) 0.4039 0.6363 

GRAIM TO (3) 0.4238 0.6510 
(4) 0.4907 0.6614 
(5) 0.4774 0.6311 

(1) 0.4075 0.6384 

(2) 0.3918 0.6268 

MEATM TO (3) 0.3949 0.6286 
(4) 0.4897 0.6411 
(5) 0.4554 0.6088 

Income Household Size . p( lny, lny) MPC Elasticity Elasticity 

0.4433 3.6E-05 0.1265 0.0019 

0.3852 2.3E-05 0.0813 -0.0460 

0.4179 7.0E-06 0.0248 7.2E-06 

0.4552 3.7E-05 0.1302 -0.0564 
·0.4466 l.OE-05 0.0364 3.IE-05 

0.6871 l.7E-05 0.0369 0.3844 
0.5141 -8.9E-07 -0.0020 0.3124 
0.6675 l.5E-06 0.0033 2.4E-05 
0.7005 l.7E-05 0.0388 0.3162 
0.6910 2.7E-05 0.0061 8.7E-05 

0.6850 2.7E-04 0.1904 -0.0712 
0.5281 l.6E-04 0.1174 -0.0852 
0.6114 3.3E-05 0.0238 l.9E-05 
0.6998 2.6E-04 0.1894 -0.0890 
0.6748 5.0E-05 0.0356 7.9E-05 
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Table V.3 Initial Model Estimation: Summary(continucd) 
.... --· --·-· .... - ... -· 

Commodity FF R2 p(y,y) 

(1) 0.4258 0.6525 

(2) 0.3809 0.6190 

MILKM TO (3) 0.4105 0.6408 

(4) 0.4477 0.6561 
(5) 0.4379 0.6371 

(l) 0.1335 0.3654 
(2) 0.1217 0.3501 

SUGAM TO (3) 0.1291 0.3594 

(4) 0.2089 0.3640 

(5) 0.2037 0.3389 

(l) 0.2801 0.5292 

(2) 0.2734 0.5229 

VEGEM TO (3) 0.2732 0.5228 
(4) 0.3473 0.5300 

(5) 0.3203 0.5059 

. 
il( In y, In y) 

0.6458 

0.4540 

0.5117 

0.6691 
0.6617 

0.4110 

0.3123 

0.3615 

0.4570 

0.4513 

0.5759 

0.5188 
0.5373 
0.5893 

0.5660 

Income Household Size 

MPC Elasticity Elasticity 

3.5E-05 0.0733 0.3134 

6.2E-06 0.0136 0.2813 

2.IE-06 0.0045 l.4E-05 

2.5E-05 0.0548 0.2765 

4.4E-06 0.0097 7.3E-05 

5.4E-06 0.0521 0.3094 

-6.lE-07 -0.0058 0.2173 

-3.5E-07 -0.0034 1.SE-05 

8.4E-07 0.0080 0.2084 

-l.7E-10 -l.6E-06 6.7E-05 

5.9E-05 0.1347 -0.1254 

3.8E-05 0.0858 -0.1622 
9.9E-06 0.0226 l.OE-05 
6.IE-05 0.1383 -0.1622 

l.5E-05 0.0336 5.IE-05 



N 
VI 
VI 

Table V.3 .Initial Model fatimation: Summary(continucd) 

Commodity FF R2 p(y,y) 

(I) 0.0762 0.2761 
(2) 0.0773 0.2780 

OTHERM T (3) 0.0711 0.2667 
(4) 0.1171 0.2755 
(5) 0.1056 0.2594 

Income Household Size . 
i>( lny, lny) MPC Elasticity Elasticity 

0.3216 3.4E-05 0.1908 -0.1479 
0.3076 2.4E-05 0.1338 -0.1802 

0.2718 5.2E-06 0.0288 1.9E-05 
0.3422 3.2E-05 0.1791 -0.2906 
0.3249 8.IE-06 0.0447 3.5E-05 



coijnpetitor in order to determined "valid." The objective, then, is to come up with the most ap-

propriate functional specification for all commodities or a set of them for various commodities for 
I 

modelling consumer behavior. Once again, it should be kept in mind that it is not unreasonable 

to assume that one of these five specifications under investigation is close enough to the true 
I 

underlying relationship in the data to be considered valid. 

5.5 The Application of Non-Nested Testing Procedures 
I 

In order to test among all five functional forms given, some extensions must be made to the 

linbar regression model procedures discussed previously. In particular, for situations in which the 

two models under test are of the form: 
I 
! 

As. long as the function h(y) is twice continuously differentiable and the transformation does not 

depend on any unknown parameters, the extension can be made in a straightforward manner. 

5.5.1 Handling a Transformed Dependent Variable in the Non-Nested Setting 

When testing between different error specifications, it is essential to have a procedure for 

tes~ing models with transformed dependent variables. The AN procedures can be readily adapted 

to handle the situation. In particular, the extension of the J-test, called the P-test, is as easy to 

compute as the linear version of the J-test, and is based on the following artificial regression model 
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. 
where Fis a matrix whose elements are the derivatives of flP) with respect to p, evaluated at p. 
Therefore instead of fitting the observed y's on the AN model with a single estimate from the al-

ternative model, the residuals from the maintained model are regressed on the difference in predicted 

responses from the two models. The corresponding t-test on /.. yields the asymptotically valid 

N(O,l) P-test. A similar extended version of the JA-test is obtained in the context of the same ar-

tificially nested model but with the JA- appropriate estimator. In this empirical study, the h(y1) is 

log(y1) , which indeed fulfills the requirements of differentiability. 

Although it has not been proved, it is reasonable to assume that the general behavior of the 

two procedures when transformed dependent variables are involved will echo cases discussed pre-

viously. Therefore, not only can the tests be easily performed, but their behavior is at least based 

on the same theoretical concept. There is another procedure proposed by Davidson and 

MacKinnon(1984) which handles the transformed dependent variable situation through the use of 

a double length regression model and a Lagrange Multiplier (LM) test. Mainly on the basis of the 

large data set involved here, this procedure will not be used in the current study. 

5.5.2 Box-Cox Formulation for Transformed Dependent Variables 

Under the more general Box-Cox regression setting, several of the functional forms presented 

here can be considered as nested in that framework: both the semilog and double-log models are 

nested in a more general framework with the dependent variable of the form y>., and A = 0, 1 are just 

two special cases. The same can said for the inverse and log-inverse models. However, in order 

to incorporate the Box-Cox likelihood ratio approach to testing hypotheses on /.., the more general 

model must be estimated to obtain an unrestricted maximized log-likelihood. Difficulties were en-

countered when estimation of unrestricted models was attempted. 

Even in general models involving only a transformation on the dependent variable, maximum 

likelihood estimation would not converge to a solution. (Estimation was attempted using the 
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Bo.xCox procedure in SHAZAM.) To circumvent the problem, various subsamples of the original 

survey data in sizes of 500 and 1000 were employed. However, in these cases, too, the maximized 

unrestricted log-likelihood was not obtainable. (Subsampling was based on stratified sampling 

proportional to size from strata formed from the demographic indicator variables.) 

What was estimable were the coefficients and an observed log-likelihood under set transf-

ormations. With these model estimates, a "simple versus simple" hypothesis test setting seems ap-

propriate. However, since the degrees of freedom based on the number of restrictions associated 

with the large sample x2 procedure would cancel each other out, the test would be invalid. Con-

sequently, the best that the Box-Cox formulation could do in this specific application was provide 

the log-likehoods for the functional forms as another measure of fit. 

The purpose of the study was to select the most appropriate (valid) functional form not just 

the one that better fit the data. Consequently, the Box-Cox methods could not be used. Thus, 

one strength of the general non-nested framework has been highlighted. Estimation problems are 

minimal and all models can be tested under the same general approach even if there are transformed 

dependent variables involved. Also, under the Box-Cox regime, not all hypotheses concerning 

functional form are nested. 

5.5.3 Application of the Tests 

For this study, all of the asymptotically valid procedures were used where applicable: N, NA, 

NL, F, NJ, J and JA (with the AN procedures extended to the transformed cases). Small sample 

modifications were excluded. Since the quality of fit is quite low on the majority of the commodity 

groups and the squared canonical correlations between the various sets of regressors are quite large, 

low power would be expected from all the procedures, if their behavior reflected the small sample 

cases. However, on the basis of sample size alone and its influence on power, the two factors may 

wash each other out and result in reasonable behavior. 
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Therefore, attention is turned to the actual test results. The calculated test statistics for all ten 

commodity groups are provided in Table V.4, along with the p-values for rejecting the maintained 

model in the presence of a given alternative and the standardized p-values, as discussed in Section 

5.4. Once again, it becomes clear that the real heart of testing the model validity involves the 

quadratic and double-log. 

If consideration is given instead to the case of a linear versus a double-log model, another 

testing procedures could be applied to yield additional evidence than that based solely on the ex-

tended AN procedures. Godfrey and Wickens ( 1981) give the specific formulation for testing linear 

versus log-linear models derived from Andrew's approach(l971). (See also Bera and McAleer, 

1983.) For models of the more general form: 

K J 
H1 : Yr = L PJcXrk + L °:jZt} + Ur 

k=l j=l 

H2: In Yr = 

Andrews proposes the use of a Taylor series expansion about A.0 the maintained value of/.... Then 

an artificial variable is created and a t-test on the coefficient of that variable is the resulting test. 

The artificial variables are constructed as indicated: 

H2 : In Yr = 

_ _ K- • • K• 

with q11 = fl.y1) - k~ 1 Pkfix1k) with ./{w) = w 1n w - w + 1 and q12 = g(y1) - k~ 1 pkg(x1k) with 

g(w) = 1/2( 1n w)2 • The usual t-test is an exact procedure for testing the linear versus log-linear 

models. Although it is the quadratic which is of specific interest in this application, the information 

from this test can either support the decision rendered by the other procedures or it can bring to 

light concerns regarding the correct specification. (See Table V.5 for these results.) 
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Table V.4 Non-Nested Test Results for Weekly Food Expenditure• 

teat statistic 
-value COMKODITYt ALLM_TO 

standardized p-value 
FF N-TEST 

(1) vs (2) -2.as5 -10.597 
.0043Dl6 0 
.04Z376Z 0 

(1) vs (3) -43.191 -137 .zz 
0 0 
0 0 

(1) vs (4) 

(1) vs (5) 

CZ> VS <3) -17.745 -3.373 

(2) vs (4) 

(2) vs (5) 

(3) vs (4) 

(3) vs (5) 

0 7.4E-04 
0 . 0073023 

(4) vs (5) -27.215 -17.127 
0 
0 

0 
0 

NA-TEST 

-6. 981 -17.447 
2.9E-1Z 0 
Z.9E-11 0 

4.369 3.397 
1.ZE-05 6.aE-04 
1.ZE-04 .006690.5 

-20.542 2.175 
0 0.004045 
0 .0397129 

5.206 -26.117 
l.9E-07 
l.9E-06 

0 
0 

NL-T!ST 

-300.46 -ZZ3.7 
0 0 
0 0 

603.494 -ua.u 
0 0 
0 0 

-71.946 -315.71 
0 
0 

0 
0 

74.900 -ZD0.52 
0 
0 

0 
0 
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Table V.4 Non-Heated Teat lleaulte for Weekly Food Expenditure• (continued) 

COMMODITY• All"-TO 

J-TEST JA-TEST NJ-TEST F-TEST 

1.016 25.029 6.991 17.712 11.006 ll.091 216.961 
6.7E-16 0 2.9E-l2 0 2.IE-12 0 2.3E-12 0 6.6E-l5 0 2.9E-ll 0 2.7E-ll 0 2.2E-ll 0 

S.419 5.411 -4.369 -3.392 -3.395 6 .736 175.621 
6.1e-01 4.2e-01 l .3E-05 7.0E-04 l .2E-o5 6.9E-04 2.IE-06 0 6 .OE-07 4.lf-07 l.2E-04 .0061514 l .2E-04 .0067179 2.1e-05 0 

6.139 l.636 -9.437 -1. 054 
1.se-12 0 .101172 0 0.291909 l.3E-ll 0.5 0 0.5 

5.107 -1. 962 4.107 l.971 
3.3E-07 .0497912 l.6E-06 .0479571 3.3E-06 0.439703 l.SE-05 0.471665 

19.726 14.034 20. 916 -2.900 -2.921 195.596 107. 550 
0 0 0 0. 00374 0 . 0034994 0 0 0 0 0 .0367131 0 . 0344172 0 0 

11. 269 4.205 -11.921 -4 .159 
0 2.6E-05 0 3.ZE-05 
0 2.6E-04 0 3.2E-04 

11. 706 25.573 -20.401 -10.2u 
0 0 0 0 
0 0 0 0 

7 .601 -1. 555 -9.130 4.711 
3.0E-14 0.119979 0 2.4E-06 
3.0E-13 o.5 0 2.4E-05 

3.169 5.146 -3.311 -14 .. SlO 

.0015344 5.2E-09 7. lE-04 0 
.0150912 5.lE-oa 0. 006952 0 

-3.320 29.515 -5.201 27.927 21.515 19.265 294.500 
9.0E-04 0 1.9E-07 0 1. 9E-07 0 1.9E-12 0 . ooaaa6 l 0 1.9E-06 D l.IE-06 0 l. 9E-11 0 
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Table V.4 Non-Ne•ted Te•t lteeult• for Weekly Food Expenditure• (continued) 

FF 

Cl> VS C2) 

(1) vs (3) 

Cl> vs (4) 

(1) vs (5) 

C2> vs <3> 

(2) vs (4) 

(2) vs (5) 

(3) vs (4) 

<3> VS (5) 

(4) vs (5) 

COMMODITY1 IEVEM_TO 

N-TEST 

-0.155 -4.79l 
0.392613 1.6£-06 

0.5 1.5£-05 

-5.701 -10.112 
1.2E-oa 0 
1.lE-07 0 

-2.161 -0.627 
.0307295 0.530666 
0.275573 0.5 

-l. 701 -1.276 
.0176119 0.202007 

0.5 o.s 

NA-TEST 

-0.308 -9.170 
0.757129 0 

0.5 0 

1.462 2.040 
0 .14372 .0413302 

0.5 0.370631 

-0.976 3.496 
0.321813 4.7E-04 

0.5 .0042301 

2.141 1.734 
.0045019 0.082847 
.0403717 0.5 

NL-TEST 

-1153.1 -'62.56 
0 0 
0 0 

-215.71 -506.11 
0 0 
0 0 

-272.94 -1526.1 

0 
0 

0 
0 

-252.12 -495.16 
0 
0 

0 
0 
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Table V.4 Kon-Neeted Teet Reeulte for Weekly Food Expenditure• (continued) 

COHMODITY1 llEVEH_TO 

J-TEST JA-TEST NJ-TEST F-TEST 

-2.301 10.615 0.301 9.209 9.226 1.879 39.809 
.0210244 0 0.75109 0 0.757942 0 . 0804971 0 
0. la&541 0 0.5 0 0.5 0 0.5 0 

-0.655 7 .001 -1. 460 -2.039 -2.040 2.715 102.067 
0.512487 2.7E-12 0.144329 .41414827 0.144043 .0413379 . 0186155 0 

0.5 2.5E-11 0.5 0.372005 0.5 0. 370707 0 .166939 0 

4.760 7.154 -4.308 -5.990 
2. OE-06 9.2E-13 1. 7E-05 2.2E-09 
l.IE-05 II. 2E-12 l.5E-04 2.0E-01 

-0.663 9 .264 -1. 976 -5.171 
0. 507 35 0 0.048189 2.3E-07 

0.5 0 0.432145 2. lE-06 

1.096 11. 216 0.975 -3.495 -3.517 33.805 61.196 
0.273112 0 0.329S9 4.IE-04 0. 326611 4.4E-04 0 0 

0.5 0 0.5 .0042742 0.5 .0039417 0 0 

4.130 l. 71S -4.490 -3. 637 
3.7E-OS . 0863838 7 .2E-06 2. IE-04 
3.3E-04 o.s 6. SE-OS .0024891 

3.933 10.230 -3.S80 -4.927 
8.5E-05 0 3.5E-04 l.SE-07 
7. 6E-04 0 .0030995 7.6E-06 

8.391 -1. 994 -1. 004 -o .131 
5.6E-17 . 0461858 0. 315409 0.895779 
5.0E-16 0.414182 0.5 0.5 

5.117 0.402 -1..SU -5.643 

2.2E-07 0.687695 0.113917 1.7E-08 
2.0E-06 o . .s 0.5 l.5E-07 

-2.585 11.202 -2.139 -1. 733 -1. 748 1.5. 313 47. 779 

.0097554 0 .0045369 . 0131341 .0044453 . 0805067 6.2E-l0 0 

.0174135 0 . 0406a5S 0.5 .0398641 0.5 S.6E-09 0 
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Table V.4 Non-Nested Test Results for Weekly Food Expenditures (continued) 

FF 

<l) VS <2> 

Cl) vs (3) 

(1) vs (4) 

Cl> VS <5> 

<2> vs (3) 

(2) vs (4) 

(2) vs (5) 

(3) vs (4) 

CJ) vs (5) 

(4) vs (5) 

COMMODITY• FATS"_TO 

N-TEST 

-0.361 -0.923 
0.712711 0.356089 

0.5 0.5 

-12.151 -20.371 
0 0 
0 0 

-2.299 -0.460 
.0214776 0.645666 
0.207656 0.5 

-0.093 -1. 023 
0.926116 0.306195 

0.5 0.5 

NA-TEST 

-4.533 -6.345 
5.IE-06 2.2E-10 
5.6E-05 2.lE-09 

2.616 1.905 
. 0072411 0.056731 
. 0700176 0.5 

-6 .5·01 -0.767 
7.7E-ll 0.443285 
7.4E-10 ~.5 

2.694 7.101 
.0070622 6.lE-15 
.0612111 5.9E-14 

NL-TEST 

-549.07 -424.92 
0 0 
0 0 

127.034 -279.17 
0 0 
0 0 

-171.16 -704.48 
0 
0 

0 
0 

-557.71 -386.12 
0 
0 

a a 
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Table V,4 Non-Nested Test llesults for Weekly Food Expenditures (continued) 

COMMODITY• FATSM_TO 

J-TEST JA-TEST NJ-TEST F-TEST 

.5 • .524 10.467 4 . .533 6.3.54 6.384 .5.310 44.324 

3.4E-o8 0 .5.9E-06 2.2E-10 5.8E-o6 l.8E-10 l.8E-0.5 0 
3.3E-07 0 5.7E-0.5 2.lE-09 5.6E-0.5 1.7E-09 l. 7E-04 0 

3.042 0.895 -2.684 -1. 904 -1. 904 1.179 24.337 

.0023567 0 . .37081 .0072876 .0569409 .0072807 .0569118 .0943686 2.9E-ll 

.0227853 0.5 .0704598 0.5 .070.3934 0.5 0.5 2.8E-10 

5.027 -0.835 0.413 0.112 
5. lE-07 0.403739 0.679616 0.910826 
4.9E-06 0.5 0.5 0.5 

3. 074 -4.889 2 .972 2 .111 
. 0021182 l.OE-06 .0029662 .0347988 
.0204798 l.OE-05 .0286789 0. 3.364.53 

9.954 6.224 10.596 0.766 0.766 41. 271 20.703 

0 .5.lE-10 0 0.443696 0 0.443442 0 2.lE-13 
0 4.9E-09 0 0.5 0 0.5 0 2.2E-12 

7.131 4.148 -7.039 -4.489 
l.lE-12 3.4E-05 2.lE-12 7.2E-06 
l. OE-11 3.3E-04 2.0E-11 7.0E-05 

7.289 13.923 -8.019 -8.313 
3.4E-13 0 l.2E-15 8.3E-17 
3.3E-12 0 l.2E-14 8.lE-16 

5.402 0.260 1.355 3.335 

6.8E-08 0.79487 0.1754.5 8.6E-04 
6 . .5E-07 0 . .5 0.5 . 0082793 

0.443 4.531 0.251 -9 .860 

0.6.57776 .5.aE-06 0.796413 0 
0 • .5 .5.6E-05 0.5 0 

-1.612 U . .575 -2.692 -7.820 -7.896 7 .484 11. 461 
0 .106996 0 .00711.52 5.&E-15 .0070717 3.2E-1.5 .5.3E-05 0 o.s 0 D.068793 5.6E-14 . 0683725 3.lE-14 5.lE-04 0 
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Table V.4 Non-Nested Teet Results for Weekly Food Expenditures (continued) 

FF 

(l) vs <2> 

(1) vs (3) 

<1> vs (4) 

Cl) vs ( 5) 

C2> VS C3> 

(2) vs (4) 

(2) vs (5) 

(3) vs (4) 

(3) vs (5) 

(4) VS (5) 

COMl'IODITY1 FRUIM_TO 

N-TEST 

-1.saa -4.093 
0 .112314 4.3E-05 

0.5 4.lE-04 

-19.354 -24.761 
0 0 
0 0 

-1. 211 -1. 271 

2.ZE-16 0.203694 
2.lE-15 0.5 

-.5.171 -1. 912 
4.3E-09 .0551453 
4.lE-01 0.5 

NA-TEST 

-4.037 D.SOI 
5.4E-05 0.611239 
5.2E-04 D . .5 

4.073 2.590 
4. 6E-05 . 0096114 
4.4E-04 . 0921691 

-1.992 -1.311 

0 0.165126 
0 0.5 

-1.697 1.106 
. 0197543 0.261721 

0.5 t . .5 

NL-TEST 

-142.6.5 -499.02 
D 0 
0 0 

10.411 -347.36 
0 D 
0 0 

-111.79 -1096.1 
0 
0 

0 
0 

-177.97 -724.73 

• 0 
0 
0 
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Table V.4 Hon-Neeted Teet Reeulte for Weekly Food Expenditure• (continued) 

COHMODITY1 FRUIM_TO 

J-TEST JA-TEST NJ-TEST F-TEST 

5.334 10.&23 4.036 -o.501 -0.512 5.658 48. 364 
9.&f-OI 0 5.5£-05 0.611466 5.4E-05 0.608746 7. lE-06 0 9 .4E-07 0 5.3E-04 0.5 5.2E-04 0.5 6.8E-05 0 

-4.062 4.570 -4.072 -2.519 -2.519 3.565 39.265 
4.9E-05 4.9£-06 4.7E-05 .0096407 4.7E-05 .0096358 .0031901 0 4. 7E-04 4.7E-05 4.5E-04 .0924502 4.5E-04 .0924033 0.030592 0 

5.175 2.336 -5.094 2.991 
4.4E-09 .0195127 3.6E-07 0.002788 4.2E-OI 0. 137111 3.4E-06 .0267361 

4.393 1.649 2.527 1.162 
l. IE-05 .0991319 • bll5208 0.245266 l. lE-04 0.5 0.11048 0.5 

1.035 5.186 9.024 l.387 1. 3118 30.031 13.344 
l.OE-15 7.4E-09 0 0.165475 0 0 .1653 0 1.1 E-011 9.IE-15 7. lf-08 0 0.5 0 0.5 0 1. OE-07 

7.971 -3.438 -7.101 2.9as 
l.7E-15 5.9E-04 l. 3E-12 .0028433 l. 6E-14 . 0056447 l.3E-11 . 0272656 

1.553 1.190 -9.749 -1. 721 
0 0 0 .0852845 0 0 0 0.5 

3.566 -0.019 -4.316 -0.426 
3.6E-04 0.929084 1.6E-05 0.670111 .0034936 0.5 1.SE-04 0.5 

1.633 -0.230 -4.123 -1.112 
0 .102503 o.&18097 3.&E-05 . 0700189 

0.5 0.5 3.6f-04 0.5 

l.101 9.6&1 1.695 -1.105 -1.111 1.1.50 31.21111 
0.267191 0 .0901093 0.269189 . 09011611 0.266812 0.327521 0 0.5 0 0.5 0.5 0 . .5 0 . .5 0.5 0 
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Table V,4 Non-Nested Test Resulta for Weekly Food Expenditure• (continued) 

COMMODITY• GRAIM_TO 

FF N-TEST 

(l) vs (2) -1. 445 -6.150 
0 .14837 7. 7E-l0 

0.5 7.6E-09 

Cl) VS (3) -29.467 -77. 279 
0 0 
0 0 

Cl> VS C4> 

Cll VS C5> 

<2> VS C3) -10.849 -1.954 

C2l VS C4) 

(2) vs (5) 

C3> VS C4> 

(3) vs (5) 

C4> VS CS) 

0 . 0506582 
0 0.497344 

-6. 061 -2.701 
l.4f-09 .0069035 
l.3E-oa .0671439 

0.838 
0.402299 

0.5 

-o .657 

0.511111 
0.5 

-19.735 
0 
0 

2.039 

NA-TEST 

20.327 
0 
0 

-9.23.l 
0 
0 

-a.645 
0 
0 

-7.321 
.0414183 2.5E-13 
0.407039 2.4E-12 

NL-TEST 

-397 .61 -310. 98 
0 0 
0 0 

346.057 -lal .&6 

0 0 
0 0 

-133.73 ~475.61 

0 
0 

0 
0 

-83.123 -397.93 
0 
0 

0 
0 
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Table V.4 Non-Nested Test Reaulta for Weekly Food Expenditure• (continued) 

COMMODITY1 GRAIM_TO 

J-TEST JA-TEST NJ-TEST F-TEST 

0. 707 23.107 -o .837 20.7.58 20.874 2.600 182.733 
0.479.584 0 0.402613 0 0.402274 0 .0161343 0 0 • .5 0 0 • .5 0 0 . .5 0 0.1.58.56 0 

-1. .543 12.271 0 .6.56 9.266 9.267 0.611 98 .126 
0.122164 0 0 . .51184 0 0 . .511782 0 0.6916.58 0 0 . .5 0 0 • .5 0 0 . .5 0 0 . .5 0 

2.169 4.836 -8.11.5 0.182 
.Ol01071 1.Jf-06 .5.JE-16 0.8.5.5.587 0.29.5877 1.3£-0.5 .5.2£-1.5 0 • .5 

-1.072 1.693 -3 . .594 -3.991 
0.283747 .0904878 3.3£-04 6.6£-0.5 0.5 0.5 .0032162 6.5£-04 

18.489 6 .878 20 .128 8 .671 8.704 160.770 48.410 
0 6.4£-12 0 0 0 0 0 D 0 6. 3£-11 0 0 0 0 0 0 

11. 786 1.494 -14.005 -0.965 
0 0 .135208 0 0.334569 0 o.s 0 0.5 

11.828 14.066 -17.195 -10.763 
0 0 0 0 0 0 0 0 

3.I03 -2.320 -12.03.5 2.861 
1.4£-04 .0203616 0 .0042322 . 0014136 0.200104 0 .041.5915 

9.437 -4.3.51 -9.097 -8 . .590 

D l.4E-D.5 D 0 
0 1.3E-04 0 0 

-4.113 l.5. 976 -2.0.54 7.33.5 7. 41.5 .5.778 19.464 
3.9£-0.5 0 . 0400026 2.4£-13 . 0398779 1. 3£-13 6.lE-04 0 3.9£-04 0 0.393126 2.4£-12 0.391901 l. 3£-12 . 00.59706 0 
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Table V.4 Non-Nested Teat Results for Weekly Food Expenditures (continued) 

COHHODITY1 MEATM_TO 

FF N-TEST 

(1) vs <2> -3.773 -1 .546 
1.6E-04 0 

.0015156 0 

Cl> VS <3> -31.020 -73.140 
o 0 
0 o 

(1) vs co 

(1) vs (5) 

<i> VS <3> -10.113 -2.679 

<2> VS (4) 

(2) vs (5) 

<3> vs (4) 

C3> VS (5) 

0 . 0073772 
0 .0725361 

<4> VS C5> -17.339 -6.7'1 
0 1. 4E-ll 
0 l.3E-10 

NA-TEST 

-7.640 -11.910 
2.2E-14 0 
2.lE-ll 0 

4.331 1.010 
l.4E-05 l.4E-12 
1. 4E-04 l .4E-ll 

-14.651 5.107 
O 6.4E-09 o 6.2E-01 

1.961 -14.931 
0 o 0 

0 

NL-TEST 

-391.42 -295.55 
0 0 
0 o 

336.124 -192.24 
o 0 o o 

-122.22 -509.11 
0 
0 

0 
0 

-10.334 -421.56 
0 
0 

0 
0 
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Tabla V.4 Non-Heated Teet Results for Weekly Food Expenditurea (continued) 

COMMODITY• MEATM_TO 

J-TEST JA-TEST NJ-TEST F-TEST 

7.150 17 .149 7.656 12.060 12 .166 10.192 107 .507 
4.6E-15 0 2.lE-14 0 2.lE-14 0 4.0E-12 0 
4 • .5E-14 0 2.lE-13 0 2.0E-13 0 4. OE-11 0 

6.114 -0.067 -4.331 -7.092 -7.101 1.497 124.2.51 
6.SE-10 0. 946513 l . .5E-05 l. 4E-12 l.4E-0.5 l.3E-12 4.9E-OI 0 
6.4E-09 0.5 1.4E-04 l.4E-11 1. 4E-04 l.3E-11 4.IE-07 0 

6 .616 2.917 -1.917 -1.643 
3.9E-11 .0021244 0 0.100416 
3.aE-10 0.027771 0 0 . .5 

5.117 5.416 3.774 .5.339 
6.2E-09 6.ze-oa 1.6E-04 9 .6E-08 
6.lE-oa 6. lf-07 .0015891 9. 4E-07 

14.754 11. 316 14.110 -5.112 -5.839 103.935 87. 058 
0 0 0 6.4E-09 0 S.4E-09 0 0 
0 0 0 6.3E-OI 0 5.JE-oa 0 0 

8.001 8.005 -10.424 -7. 7 52 
l.4E-15 l.5E-15 0 9.9E-15 
l.5E-14 l. 3E-14 0 9.8E-14 

8.276 22. 713 -14.2.57 -a .177 
l. 4E-16 0 0 3. lE-16 
l.4E-15 0 0 3.0E-1.5 

9.105 1.429 -6 .349 4.221 
0 0.155057 2.5E-10 2.5E-05 
0 0 • .5 2.2E-09 2.4E-04 

-3.161 9.575 -3.913 -12 . .517 
. 0015771 0 6.9E-05 0 
.0155075 0 6.7E-04 0 

-2.146 27. 029 -1.991 15.093 15.50.5 39.213 258.353 

. 0511978 0 0 0 0 0 0 0 
0.313639 0 0 0 0 0 0 0 
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Table V.4 Non-Nested Test Results for Weekly Food Expenditures (continued) 

FF 

<l> VS CZ> 

<l> VS C3> 

Cl) vs (4) 

(l) vs (5) 

(2) vs (3) 

CZ> VS (Ii) 

C2) VS (5) 

(3) vs (Ii) 

(3) vs (5) 

(4) VS (5) 

COMMODITY• MILKM_TO 

N-TEST 

-1.360 -10.749 
.0628354 0 

0.5 0 

-32.802 -90.098 
0 0 
0 0 

-15.563 -2 .176 
0 0.029588 
0 0.290218 

-9.984 -3.537 
0 4.0E-04 
0 . 0039648 

NA-TEST 

-1. 790 -20.302 
.0735173 0 

0.5 0 

-0.743 -10.462 

0. 4577 39 0 
0.5 0 

-22.407 -6.652 

0 Z.9E-ll o z.8E-10 

-l.872 -5. 743 

.0611601 9.3E-09 
0. 5 9. lE-08 

NL-TEST 

-427.41 -314.26 
0 0 
0 0 

338.590 -179. 9 

0 0 
0 0 

-132.31 -508.37 

0 
0 

0 
0 

-83.256 -408.76 
0 
0 

0 
0 
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Table V,4 Non-Nested Test Results for Weekly Food 'Expenditures (continued) 

COMMODITY• HILKM_TO 

J-TEST JA-TEST NJ-TEST F-TEST 

2.717 27. 416 l. 71& 20.735 21. 070 1.671 253.440 

.0053303 0 .0731075 0 0.07372 0 0 .123664 0 

.0522131 0 0.5 0 0.5 0 0.5 0 

1.054 14.730 -0.742 10.513 10.513 0.267 121.321 

0.291909 0 0.458105 0 0.458017 0 0.9314 0 
0.5 0 0.5 0 0.5 0 0.5 0 

2.070 .5.135 -1.000 0.044 

0.031479 2.9E-07 l.4E-15 0. 964905 
0.377421 2.IE-06 1. 4E-14 0.5 

1.096 2.173 -2. 770 -4.041 

0.273106 .0040749 .0056164 5.2E-05 
0.5 .0399619 .0550194 5.lE-04 

21.531 5.273 22.995 6 .662 6.697 212 .624 49.591 

0 l. 4E-07 0 2.8E-ll 0 2.2E-ll 0 0 
0 l.3E-06 0 2.IE-10 0 2.2E-10 0 o. 

13.5U -3.245 -15.292 3.505 

0 .0011785 0 4 .6E-04 
0 . 0115598 0 .0044991 

14.119 ll.276 -19.157 -6. 7 35 

0 0 0 l. 7E-ll 
0 0 0 l. 7E-l0 

4.537 -3.335 -9.040 2.oaa 

5.&E-06 1.6E-04 0 .0368241 
.5.7E-0.5 . 0033984 0 0.361196 

5.109 -4.121 -7. 536 -5.131 
3.3f-07 l.4E-06 5.3E-14 2.&E-07 
.S.2E-06 l.4E-0.5 5.2E-l.S 2.af-06 

-1.671 13. 041 1.171 5. 747 5.793 6 .1.s1 63.369 
.0933796 0 .0613755 9.4E-09 .0611812 7.lE-09 3.7E-04 0 0 • .5 0 0.5 9.2E-OI 0.5 7. OE-01 .0036069 0 
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Table V.4 Non-Nested Teat Results for Veekly Food Expenditures (continued) 

FF 

Cl> VS <2> 

Cl> VS C3> 

Cl> VS CO 

Cl) VS C5) 

C2) vs (3) 

<2> VS <4> 

(2) vs (5) 

(3) vs C4) 

(3) VS (5) 

(4) VS (5) 

COMMODITY• SUGAM_TO 

N-TEST 

-o.2ao -1.025 
0.779495 0.305361 

0.5 0.5 

_, .296 -9.414 
3.lE-10 0 
2.9E-09 0 

-1.593 -0.214 
0.111121 0.776102 

0.5 0.5 

-0.530 -1.161 
0.596142 0.24213 

0.5 0.5 

NA-TEST 

-0.521 -7.217 
0.597377 3.2E-13 

0.5 3.0E-12 

-1.126 -4.471 
0.260209 7 .6E-06 

0.5 7.lE-05 

-9.171 -2.133 
0 .0046151 
0 .0434307 

2.719 -0.161 
.0052799 0.166412 
.0496716 0.5 

NL-TEST 

-912.22 -719.74 
0 0 
0 0 

-224.56 -432.1 
0 0 
0 0 

-313.75 -1073.9 
0 
0 

0 
0 

-730.33 -461.61 
0 
0 

0 
0 
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Table V.4 Non-Nested Test Results for Weekly Food Expenditures (continued) 

COMMODITY• SUGAM_TO 

J-TEST JA-TEST NJ-TEST F-TEST 

1.512 11.057 0.521 7.305 7.335 l.649 43.476 
0.113615 0 0.597513 3. OE-13 0.597334 2.4E-13 0 .129274 0 0.5 0 0.5 2.IE-12 0.5 2.3E-12 0.5 0 

-0.281 6.337 l.125 4.471 4.471 0. 465 23.737 
0.771717 2.5E-10 0.26062 7 .6E-06 0.260591 7.6E-06 0.102399 5.2E-ll 

0.5 2.3E-09 0.5 7.2E-05 0.5 7 .2E-05 0.5 4.9E-10 

2.413 4.541 -3.794 2.272 
0.015142 5.5E-06 l. 5E-04 . 0231104 
0.149051 5.2E-05 .0014041 0.217447 

a. 566 2.571 -3.903 .2 .832 
0 .0101567 9.6E-05 .0046362 
0 . 0955652 9.0E-04 .0436226 

1.566 2.571 9.213 2.132 2.136 36. 052 10. 919 
0 .0101567 0 . 0046362 0 .0045853 0 3.4E-07 
0 .0955652 0 . 0436226 0 .0431432 0 3.2E-06 

5.651 -1. 616 -7.100 2. 957 
l.6E-08 0.10613 l.3E-12 . 0031147 
l. SE-07 o.s l.3E-ll .0293063 

6.022 7.301 -7.013 -4.165 
l. IE-09 2.9E-13 2.5E-12 l. 2E-06 
l. 7E-OI 2.IE-12 2.4E-ll l. lE-05 

2.776 -0.459 -4.424 2.919 
.0055141 0 .646245 9.IE-06 .0035204 
0.051119 0.5 9.2E-05 . 0331231 

3.214 -1.740 -5 .197 -5.963 

.0010274 .0111931 9.IE-05 7.5E-05 

. 0096671 0.5 9.2E-04 7.0E-04 

-0.159 7 .115 -2.711 0.161 0.169 2.173 22.241 

0 .319453 6.lE-15 . 005510 0.1665&7 .0031573 0.166097 .0341595 2.4E-14 
0.5 5. 7E-14 0.050007 0 . .5 .0362933 0.5 0.327995 2.3f-13 
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Table v.4 

FF 

(1) vs <2> 

(1) vs (3) 

(l) vs (4) 

Cl) VS (5) 

(2) vs (3) 

(2) vs (4) 

(2) vs (5) 

(3) vs (4) 

(3) vs (5) 

(4) VS C!> 

Non-Nested Teet Result• for Weekly Food 

COMMODITY• VEGE"_TO 

N-TEST 

-0.914 -2.157 
0.360952 o.onou 

0.5 0.303905 

-18.515 -28.629 
0 0 
0 0 

-5.383 -1.128 
7.3E-08 0.259251 
7.2E-07 0.5 

-4.816 -2.309 
l.5E-06 .0209565 
l.4E-05 0.205352 

NA-TEST 

-6.U2 -4.950 
8.7E-10 7.4E-07 
8.5E-09 7.3E-06 

4.050 5.887 
5. lE-05 3.9E-09 
5.0E-04 3.9E-08 

-10.779 1.613 
0 0.106788 
0 0.5 

4.062 -0.675 
4.9E-05 0.499853 
4.SE-04 0.5 

Expenditure• (continued) 

NL-TEST 

-547.23 -348.52 
0 0 
0 0 

110 .810 -262.38 

0 0 
0 0 

-143.02 -755.86 
0 
0 

0 
0 

-88.214 -593.44 
0 
0 

0 
0 
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Table V,4 Non-Nested Teat Reaulta for Weekly Food Expenditures (continued) 

COHl10DITY1 VEOEM_TO 

J-TEST JA-TEST HJ-TEST F-TEST 

7.3.51 11.17.5 6.157 4.9.52 4.912 9.036 41.149 

2. OE-13 0 8.7E-10 7.5E-07 l.SE-10 6.4E-07 7.lE-10 0 
2.0E-12 0 8.6E-09 7.3E-06 l.3E-09 6.3E-06 7.0E-09 0 

4.264 -2 • .570 -4.049 -.5.192 -.5.893 3 .631 .5.5.041 

2.0E-05 . 0101848 .5. 2E-0.5 3.9E-09 .5.2E-0.5 3.9E-09 . 0027 3.57 0 
2.0E-04 .0991001 .5.lE-04 3. 9E-01 5.lE-04 3.9E-OI .0268066 0 

7 .496 -2 . .569 -4 .126 -0.331 
7.2E-14 .0102142 3.7E-05 0.73.5371 
7.0E-13 0.100089 3 .6E-04 0.5 

4.396 -4.921 4.323 l. 566 

l. lE-05 8.BE-01 l.6E-05 0 .117 382 
l. lE-04 8.6E-06 l.5E-04 0.5 

10.458 10.881 10.836 -1.612 -1.614 46. 783 47.441 

0 0 0 0.106995 0 0.106599 0 0 
0 0 0 0.5 0 0.5 0 0 

6.594 3.915 -6.791 -4. 647 

4 .5E-ll 9.lE-05 l. ZE-11 3.4E-06 
4.4E-10 ~.9E-04 l.ZE-10 3.3E-05 

7.254 18.994 -10.497 -8.444 
.4. 4E-13 0 0 2.8E-17 
4.3E-12 0 0 2. 7E-16 

7.058 -0.718 -1. 566 2.375 

l. IE-12 0. 430716 0.117312 .0175685 
1.IE-11 0.5 0 . .5 0.172153 

-0.253 5.213 -o. 670 -11.300 

0.800274 l.9E-07 0. 502874 D 
0 • .5 l.9E-06 0 . .5 0 

-2.228 20.305 -4. 062 0.674 0.688 .5.538 137.930 

. 0259036 0 4.9E-05 0.500328 4.9E-05 a. 4912.53 l . .5E-04 0 
0.253129 0 4.8E-04 0 . .5 4.IE-04 0 • .5 • 0013668 0 
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Table V.4 Non-Nested Test Results for Weekly Food Expenditure• (continued) 

FF 

(1) vs (2) 

c1> vs c.n 

(1) vs (4) 

Cl) vs (5) 

CZ) VS (3) 

<2> vs (4) 

C2) VS CS> 

C3> VS (4) 

Cl) VS C5> 

C4> VS (.5) 

COMMODITY• DTHERM_T 

N-TEST 

-0 . .5.52 -1. 420 
0.580937 0.1.5.5708 

0.5 0.5 

-7.572 -7.997 
3. 7E-14 l. 3E-l.5 
3.4E-ll l.ZE-14 

-0.233 -o .139 

0.816013 0.119347 
0.5 0.5 

-z .188 -l.830 
.021683.5 0.067234 
0.261799 0.5 

NA-TEST 

-5.907 l .866 
3.5E-09 . 0620116 
3.3E-o8 0.5 

4.875 3.891 
l. lE-06 9. 7E-05 
l.OE-05 9.lE-04 

-0.522 -0.172 
0.601466 0.163152 

0.5 0.5 

1.815 8.05.5 
.0.593141 1.0E-16 

0.5 7 . .SE-15 

NL-TEST 

-1.551. 7 -564. Zl 
0 0 
0 0 

-199.39 -519.75 

0 0 
0 0 

-249.5 -1921.5 
0 
0 

0 
0 

-536.93 -1062.9 
0 
0 

0 
0 
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Table V,4 Non-Nested Test Results for Weekly Food Expenditures (continued) 

COMMODITY• OTHERM_T 

J-TEST JA-TEST NJ-TEST F-TEST 

4.977 2.341 5.912 -1.165 -1.167 5.911 1.466 
6.6E-07 .0192545 S.5E-09 .0622141 3.SE-09 .0619413 S .6E-06 1. SE-OS 
6.2E-06 0 .130431 3.3E-OI 0.5 3.3E-OI o.s 3.4E-OS l.2E-04 

4.601 1.521 -4.176 -3.191 -3.199 5.222 37 .66S 

4. 3E-06" 0 .121296 l. lE-06 9.IE-05 1. lE-06 9.IE-OS I .6E-05 4. 2E-l7 
4.0E-OS 0.5 l.OE-OS 9.2E-04 l.OE-OS 9.lE-04 I. lE-04 3.9E-16 

5.027 -1.612 -4.942 2.3U 
5.lE-07 0.106991 7. 9E-07 .0207457 
4.IE-06 o.s 7.4E-06 0.194413 

4.677 0.124 2.541 4.342 
3.0E-06 0.409962 .0110707 1. 3E-06 
2 .IE-05 o.s 0.103746 1.2E-05 

0.297 7 .162 0.522 0 .172 0.172 5.909 25. 67 5 
0. 766474 4.2E-15 0.601614 0 .163441 0.601343 0.163315 5.lE-04 1.5E-16 o.s 4.0E-14 o.s o.s 0.5 0.5 .0047332 1. 4E-15 

2.107 0.929 -3.422 -o .67S 
.0351459 0.352915 6.2E-04 0. 500965 
0.329361 o.s 0.005152 0.5 

1.664 10.657 -2.267 -1. 075 
.0961412 0 .0234145 0.212404 o.s 0 0.219423 0.5 

5.&06 -0.643 -1. sos 2.341 
6. 6E-09 0.520241 0.13236 .0192545 
6.2E-O& 0.5 o.s 0 .110431 

0 .464 4.949 -2 .271 -1.614 

0. 642659 7.6E-07 .0231711 0.106563 0.5 7. lf-06 0.217142 o.s 
-0.343 10.9S2 -l .U4 -&.077 -& . 067 4 . .5&4 42. 729 

0.751607 0 0. 059.591 7 .SE-16 .0594645 a.oE-16 .0032797 0 o.s 0 o.s 7 .OE-15 o.s 7. SE-15 . 0307 351 0 
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Table V .! Andrew's Test of Linear vs Log-Linear Models 

t-tcst on parameter A. 
Commodity Linear Maintained Log-Linear Maintained 

i 
p-valuc 

ALLM_TO 13.644 -2.078 
(0.001) (0.038) 

BEVEM_TO 5.195 -6.565 
(0.001) (0.001) 

FATSM_TO 7.254 -0.210 
(0.001) (0.834) 

FRUIM_TO 7.498 0.732 
(0.001) (0.464) 

GRAIM_TO 13.512 1.333 
(0.001) (0.183) 

MEATM_TO 12.649 -3.651 
(0.001) (0.003) 

MILKM_TO 13.516 1.460 
(0.001) (0.144) 

SUGAM_TO 7.231 3.062 
(0.001) (0.002) 

VEGEM_TO 9.042 0.369 
(0.001) (0.712) 

OTHERM_T 6.220 0.337 
. (0.001) (0.736) 
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5.6 Choice of Most Appropriate Model(s) 

In this section, each commodity group will be discussed on an individual basis to determine 

the appropriate inference regarding the selection of an appropriate model. To start, the total weekly 

food expenditure model will be addresed. 

In the case of all food expenditures the results from the non-nested procedures are far from 

clear cut. The only sure thing that can be stated is how out of line the Linearized Cox (NL) pro-

cedure's results are from the expected norm. However, based on the test between (1) and (4), this 

would indicate that the double-log form is the most appropriate model. Extra evidence in this favor 

is supplied by Andrews. Clearly, there are contradictory indicators throughout. In terms of the 

P-test, the double-log was maintained as valid against the inverse, whereas the extended JA-test 

was unable to detect it. 

What is of particular interest here is the behavior of the semilog (2) model. It evidently is 

not as good as the other models in its basic properties, yet it rejects all the models tested against it. 

A non-significant result would be hoped for to indicate its inferiority. However, what is expected 

is tliat it is 0 so far off' from the 0 true0 model that the true model would not reasonably pick up and 

explain the variability in this false model. Therefore, if this is indeed the scenario, the rejections in 

the presence of the semilog model are not unreasonable. 

On the other hand, in the case of examining the expenditures only on beverages, the quadratic 

form could be considered the most appropriate model. In this case, the quadratic model did the 

best at retaining its validity in the presence of the other models. Although, the test of ( 1) versus 

(4) rejected in both instances, the quadratic was less likely to be rejected than the double-log. In 

terms of Andrews' procedure, the beverage commodity group is the only one in which the linear 

model at least held close ground on the double-log model. Also, the quadratic terms are significant 
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in :the initial model. This implies that a comparable version of Andrews' test for the quadratic 

versus the double-log form would yield even more conclusive indication of its validity. 

For the fats and oils group of products, an unusual situation arises in which the inverse and 

double-log models are the frontrunners for being indicated as valid models. However, when these 

two models are tested against one another, the extended AN procedures split their vote across the 

two models. Since the P-test strongly rejected the inverse model when it was maintained, it would 

appear that the double-log provides the more appropriate model. 

Turning to the expenditures on fruit, the oddity of having the inferior semilog model rejecting 

almost all of the viable alternatives was observed. In addition, if all the inferential evidence has beed 

compiled, there is only one possible model which could represent the valid functional form. Based 

on 'the information, although the double-log model is never maintained in the strict sense, it comes 

the closest to being maintained. Specifically, if the adjusted p-values as discussed by Good are 

utilized in this situation, the acceptable type I erorr for all the tests has been made smaller. 

Therefore, the power of these procedures has been reduced in a similar manner. 

The grain commodity is fairly well behaved in terms of testing for model specification on the 

data set. When the quadratic and double-log are tested simultaneously, the P-test rejects the 

double-log model in favor of the quadratic model having more regressors whereas the extended 

JA~test will reject in favor of the double-log model with fewer regressors. Then ~ order to make 

a s¢lection from these two, the strength with which they reject the alternative model is considered. 

When the magnitude of the procedures are examined, the double-log model earns the position of 

most appropriate functional form. In addition, the evidence drawn from the linear versus log-linear 

context also lends support to making the specific choice, paricularly since the IN C2 coefficient was 

deemed insignificant. 

When considering the group of meat and meat alternates, the double-log model again appears 

to be the most appropriate functional specification, even though this result was arrived upon by a 
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process of elimination. Problems still abound with the semilog model rejecting all alternatives. 

Th~ cases of milk and milk equivalents, sugar and sweets, vegetables and other all lead to similar 

sitllations in which the double-log model comes out to be the most appropriate once the confusion 

has settled. This conclusion is drawn even though the double-log model was not capable of 

maintaining itself against all the other models in the non-nested setting. Also, there is nothing 

wrong with using supplemental information about the model to aid in the interpretation of the 

testing results in order to draw a sound inference concerning the models under consideration. 

Consequently, the most appropriate function form for the Engel Curve was selected for each com-

modity grouping based on the non-nested testing results. 

5.7 Conclusions 

Some interesting points have arisen in the context of this study. The first consideration, 

which was not necessarily a surprise, was to find how difficult it is to disentangle the results from 

various procedures, particularly when more than two models are being examined. This study evi-

denced such contrasting behavior several times over in the J and JA test procedures. Part of the 

diffl.culty stems from the apparent contradictions among the testing results. However, if the actual 

criteria used to evaluate the model specification is reviewed for each of the testing procedures, the 

coritradictions can generally be sorted out and reexamined in a more helpful light. This illustration 

is a good example of the practical side of utilizing the non-nested testing procedures for determining 

the most appropriate functional specification. 

Regarding the asymptotically valid tests, it seems rather obvious that the Linearized Cox (NL) 

test is not really worth utilizing in either the large or small sample cases. The remaining proce-

dures, the Cox unadjusted test and the Atkinson AN-test appear to yield test statistics comparable 

to those of the AN and F procedures. Therefore, it seems safe to assume that the asymptotic 

properties of these procedures have been realized in this large sample setting. 
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In general, the weekly food expenditure study resulted in the selection of either the quadratic 

or double-log functional forms. Both of these models are direct realizations of competing economic 

theories for modelling consumer spending patterns. With regard to food expenditure data, in eight 

of the ten groups of commodities the double-log model was the preferred form of the general Engel 

curve. In other words, it was the functional form that the data best supported. Therefore, based 

on its estimation, information about the consumer's spending patterns, specifically income 

elasticity, is readily available to the economic researcher. 
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VI. Conclusions and Future Research 

6.1 Summary 

Throughout this discussion, much useful information has been compiled regarding the use 

of non-nested testing procedures to test functional form specification for linear regression models. 

First, extensive discussion of the approaches to testing hypotheses in the non-nested situation was 

presented. Through theoretical development and simulated work, comparisons of the ten more 

commonly used procedures for linear regression models were made. Incorporated in the compar-

ison was a basic computational outline for generating the test statistics. In addition, a macro using 

PROC MATRIX of SAS was provided for this purpose. 

Based on previous Monte Carlo work due to Godfrey and Pesaran, it was evident that the 

JA-test although exact under the maintained hypothesis was not the most powerful procedure by 

any standard. In particular, its very nature supports the tendency to select a model with fewer 

regressor variables. In order to take advantage of the test's strengths while improving its power, a 

modified version, the NJ-test, was proposed and its properties investigated. Although still a "con-

servative" testing procedure (i.e., unbiased under the maintained hypothesis), it provides larger 

power in cases where k1 > k2 and H1 being the true modei with only k1 regressors. This result was 

confrrmed theoretically as well as empirically by the simulation study. In addition, with a known, 

exact non-null distribution, power can be estimated for both this NJ-test and the Orthodox F-test 

prior to actually performing the tests. Since the NJ-test draws its error variance estimate from the 

comprehensive model approach, it serves as a compromise between the JA-test and the Orthodox 

F-test. In comparison to the F-test, it provides greater power as the collinearity between the 

competing models increases, particularly in cases where the quality of fit on the true model is high. 

Consequently, the modification to the JA-test is indeed simplistic but serves its purposes. 

285 



The main source of practical information was the Monte Carlo study. All ten testing proce-

dures were included and their relative performance investigated. As an outgrowth of the investi-

gation of the results which included cases where both models under test were invalid functional 

forms, some guidelines regarding the practical use of the N-, AJ-, F- and NJ-tests in situations with 

relatively small samples (20,40) were made. It was obvious that the asymptotically valid Cox pro-

cedures were too volatile in terms of significance levels to be useful in small sample applications. 

In addition, consideration of models with non-normal disturbances (both symmetric and skewed 

distributions) showed that all of the procedures were fairly robust to violations of assumptions of 

this type. For the model situations employed, only the presence of errors following the heavy-tailed 

t-distribution revealed any real reductions in power, although they were still not very dramatic. 

In small sample applications, it is recommended to use the N -test as a starting point. Then 

one or more of the conservative procedures - NJ, F, AJ - should be applied to see if there is evi-

dence to support the inference of the N-test. In general the N-test has large power over a wider 

range of model conditions. Therefore, for a given situation (i.e., number of regressors in the models 

as well as the inference from the N-test) one of the three tests listed above should be more stringent 

in terms of rejecting the indicated hypothesis. Thus using the appropriate test forces the indicated 

model to supply even more evidence in its support. Following the guidelines set forth in Chapter 

IV should greatly improve the chances of drawing the correct conclusion from the non-nested tests. 

Turning from the small-sample case to one with a large number of cross-sectional households 

providing observations, the study of food expenditure patterns provided a real data example in 

which non-nested procedures were used to determine the most appropriate functional form of the 

general Engel curve. The classical assumptions are not necessarily maintained (e.g., heteroscedastic 

variances). Just as in a consulting setting, the initial functional forms were investigated to see if 

there were problems with collinearity and/or heteroskedastic disturbances. Also, such a large sam-

ple of data provided an opportunity to employ the Cox procedures without small sample adjust-

ments and thus provide a basis for comparisons with the other testing procedures. Briefly, the 

relation between the Box-Cox family of models and the more general non-nested models was 
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drawn, even though estimation problems eliminated the Box-Cox procedures from practical use in 

this study. 

Perhaps the most worthwhile part of the real data study was the chance it provided for in-

terpreting the results of the testing procedures. In many cases, as in this one, the procedures can 

contradict each other. Therefore, how to utilize the testing results in order to draw the best infer-

ence regarding the validity of a model or set of models is very important. The key to making the 

best judgement about the results is having an understanding of the development of the tests and 

consequently their strengths and weaknesses. 

6.2 Topics for Further Research 

Much information has been obtained regarding the use of the non-nested testing procedures 

in general. Examination of the type of models under consideration has focused on the number of 

regressors (equal or unequal), the quality of fit, sample size and collinearity between competing 

models. A limited set of experimental runs employing non-normal disturbances showed much 

promise for the testing procedures to remain inferentiably sound. However, in the context of 

econometric applications which involve time series and/or cross-sectional data, there are other vi-

olations of the classical assumptions on the disturbances which arise. Often, the time series data 

have serial correlated erorrs which warrant corrective action in the estimation method to improve 

the quality of the resulting parameter estimates. As was noted in the demand study (Chapter V), 

cross-sectional data (household budget data) often violate the homogeneity of variance assumption. 

There is no reason to suppose that such violations in the classical assumptions imply that the 

model is misspecified, or has an incorrect functional form. Consequently, though, since the model 

will be estimated using a more consistent procedure, the tests should be based on these "corrected" 

models. Thornton ( 1985) gives an example of test results both before and after estimation adjust-

ments to correct for autocorrelated disturbance terms were made. However, there are many unan-
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swered questions about when and how to make such adjustments for autocorrelated/heteroscedastic 

disturbances in the context of testing for correct functional form under the non-nested setting. It 

is important that one type of model misspecification not be masked by the detection and/or cor-

rection for another. (See Kennedy( 1985) for an overview of the different types of model misspec-

ification.) In other words, it is essential for the presence of heteroskedastic disturbance terms, which 

are not taken into account by the estimation technique, not to indicate a misspecified model by 

these procedures when indeed it is the appropriate functional form. 

The results of the Monte Carlo study clearly indicate that the small-sample modifications to 

the various testing procedures are quite worthwhile in terms of improving the inferential ability of 

the test. Specifically, the N (and W, to some degree,) adjustment to the Cox test and the AJ ad-

justment to the J-test led to substantial improvement over the associated "parent" test in terms of 

power to make the correct inference. Although the JA-test is exact under the maintained hypoth-

esis, it too was improved upon by utilizing the NJ modification, particularly in situations where the 

JA-test was lacking in power. Therefore, it seems that further developments into making such ad-

justments could prove useful. 

Since the AN procedures are easier to compute than the Cox based procedures, even when 

considering small sample adjustments, investigation should center around the gereral AN familiy 

of procedures discussed by Pesaran(l982b). The properties of this family can be discussed in gen-

eral terms so that small sample adjustments could be proposed and investigated for any of the 

family of procedures in general. Therefore, on the basis of this information, it could be determined 

which of the family of procedures are best in terms of making the correct inference for a given pair 

of models. Recall this family of procedures as defined in equation (2.48) where the consistent linear 

estimator Rf. was employed in the artificially nested model (2.41). In this context and given a 

particular adjustment, the choice of the R matrix can be made to achieve the nmaximumn power. 

Consequently, small sample modifications to the AN procedures could prove useful in real data 

applications. 
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There are an abundance of specific areas of interest into which further work can be applied. 

From the econometric framework, these special cases would concern particular model structures 

such as qualitative choice models (using Logit/Tobit analysis), systems of nonlinear simultaneous 

equations and seemingly unrelated systems of equations (SUR). Situations such as these abound 

and are all of great importance to the researcher. 

However, one broad topic where further research is warranted is the overlap between Box-

Cox formulations and the general non-nested family of models. It was evident from the study in 

Chapter V that there are inherent problems with the maximum likelihood estimation in the Box-

Cox model when the sample was large, and these patterns were not as severe in the non-nested 

setting. However, this empirical study does not provide any information about their relative be-

havior in small-samples. To fully examine their performance under the more common cross-over 

models which would be those with the log of the response as the dependent variable in the specified 

model, an extensive Monte-Carlo would be required and would provide an interesting project for 

future work. 

In conclusion, this research has endeavored to provide meaningful information and practical 

guidelines for using non-nested testing procedures to test model specification under multiple alter-

natives. The information presented here goes a long way toward educating the researcher on the 

appropriate use of the non-nested methodology for linear regression models. However, there will 

always be additional factors which warrant investigation. Additional research in this area should 

pay dividends. 
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Appendix A-. The Work of Graybill and Milliken 

For the development of the distributional properties of the JA- and NJ- tests, it is necessary 

to employ the work of Graybill and Milliken ( 1969) regarding quadratic forms, J!.'AJ:, in which the 

matrix A contains random elements. In particular, Theorems 3.1 and 3.2 from their 1969 paper are 

directly applicable. Therefore, these theorems as well as the proof of the first, are presented here. 

Theorem 3.1 (Graybill and Milliken, 1969, p. 1431) 

Let then x 1 random vector.Ebe such that y - N(!J,, I) . Let K be any non-zero r x n ma-

trix of constants of rank k < n; let L be any non-zero n x n matrix of constants such that the rows 

of Lare in the orthogonal complement of the row space of K. Let A be an n x n matrix with el-

ements aii where aii = fu(K,E), and where /;i ·) is a Borel function of the random vector K,E. The 

random variable w = J!.' A,E is distributed as a noncentral chi-square if the following four conditions 

hold with probability one. 

(l) A = L'AL; 

(2) A is idempotent; 

(3) tr(A) = m; mis a constant positive integer; 

( 4) !!'Al! = A.; A. is a constant. 

PROOF: Define the random variable I! by 

= [Kl.= [KJ!.l = [lit] ll L.f LJ!. ll2 . 

Then !!1 - N(K!!, KK'), !J,2 - N(L!J:, LL') and !J,1 is independent of bh since LK' = 0 (ie. the rows 

of L are in the orthogonal complement of the row space of K). From condition (1) we obtain 

w = J!.'A.E = J!.'L'AL,E = y./Ay.2• Since A depends only on the random vector !J,1 and since !!1 and 

y.2 are independent, the distribution of the conditional random variable w 11!1 = !!1"' is by Lemma 
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2.41 non-central chi-square with m degrees of freedom if conditions (2), (3) and ( 4) hold. But this 

distribution is the same for every allowable value of u.1 •, hence the marginal distribution of w is 

non-central chi-square with m degrees of freedom. 

Theorem 3.2 (Graybill and Milliken, 1969, p. 1432) 

Let g, Kand L be defined as in Theorem 3.1. Let the elements of then x n matrices A and 

B be Borel functions of the vector Kg. The two random variable w1 and w2, where w1 = g'Ag and 

w2 = i Bg, are independent if the following nine conditions hold with probability one: 

(1) L'AL =A; 

(2) L'BL = B; 

(3) A = A2; 

(4) B = B2; 

(5) tr(A) = m1; 

( 6) tr(B) = 1n.2; 

(7) !!'Au = A.1; 

(8) !!'Bu = A.2; 

(9) AB= O; 

where m1, "'2 are constant positive integers, A.1 and A.2 are constants. 

1 Lemma 2.4. Let JI - N(JJ., V), Vis the n x n of rank k, and let A be an n x n matrix with constant ele-
ments. The quadratic form y' Ag is distributed as a non-central chi-squar~ variable with m degrees of 
freedom if and only if H'AH-is idempotent and tr(H'AH) = m where His any n x k matrix of rank k 

such that V = HH. (The non-centrality parameter is ~ J.l'AJ! ). 
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Appendix B: Model Characteristics Under the Monte-Carlo Design 

B.l Variance-Covariance Structure for Xi and X, 

Under the Monte Carlo design, the true and alternative models are generated using N(O,l) 

deviates as the regressor variables in the manner discussed in Section 4.2.3. This construction, 

proposed by Godfrey and Pesaran (1982,1983), provides a method of controlling the amount of 

collinearity between the models. The regressors within the true (and alternative) model are gener-

ated identically and independently and those in the alternative model are generated so that the 

canonical correlation between the sets of regressors in H1 and that in the alternative hypothesis 

(H2 or H3) can be controlled to be a particular value, say p2• 

In particular, for a model H1 with k1 regressors and a model H2 with k2 regressors (ko = 0, no 

overlapping variables or exact collinearities between models), the following variance-covariance 

matrices are obtained: 

[ 
l 2 lk, 

1 - p 

o(~ - k1)x k1 

1 
---21k 2 
1 - p 

with the covariance structure between the two sets of regressors given by: 
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Consequently, using the structure on the regressor variables from each of the models, the 

squared canonical correlations between the sets of variables are the solutions to: 

Making use of the above variance-covariance matrices, 

where s = min(k1, ~). From this formulation, it is clear that A. = p2 are s of the k1 solutions, with 

the remaining (k1 - s) solutions being 0. Therefore, by generating models as indicated in Section 

4.2.3, equations (4.1)-(4.7), the collinearity structure between models can be controlled through the 

parameter p2• 

B.2 The Noncentrality Parameters for the NJ- and F-tests 

In the derivations below, the variance-covariance form of the models will be used in the der-

ivation of the noncentrality parameters. In place of X'~, rij for iJ = 1,2 will be used throughout 

this discussion. 
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Recall the following expression for A.NJ: 

(Ji' 2X' 2P1 P2M1 X2Ih)2 

2cr~ il'22P1P2M1P2P1X2Ih 

where A = [iX'2P1X2Ji2 - [iX'2P1P2P1X2il2 

and B = [iX'2P1P2P1X2Ji2 - [iX'2P1P2P1P2P1X2Ji2 . 

A2 ----
2cr~ B 

For simplification, the case in which k1 = k2 will be considered first. Under the equal k case 

Similarly for the equal k case, 

and using the derivations for A: 

2 k 2 
P r P2j 

j=I 

where Ck = p Ik. Since all the matrices of interest are scalar multiples of the identity, 
( 1 - p2)1/2 

again the result simplifies nicely to: 

299 



4 k 2 
p L P2j. 

j=I 

Therefore, combining A and B together, in the equal k case, 

1 A2 

2cr~ B 2cr~ 

The only difference in the formulation of XNJ when k1 :;e k2, is the form of L12 substituted in 

for X'1X2• Based on the expression for L12 given in B. l, two cases result. If k2 > k1, then only the 

k1 = s = min(k1, ki) Pij 's associated with the non-orthogonal pieces of the X' 1X2 matrix are in-

cluded in the sum. Similarly, if k2 < k1, then all ki = s p2i 's are included in the summation. 

Therefore, in general, 

where s is defined as indicated above. 

B.2.2 Derivation of t..F 

s 2 
L P2j 

= j=I 

2cr~ 

The general form of the noncentrality parameter for the Orthodox F-test is: 

Once again, to see the exact form of the noncentrality parameter, two cases are considered. First, 

assume that k2 ~ k1 and the appropriate formulation of r 12• In this case, 
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which simplifies to 

Then, for the case where k2 > k1, the formulation remains the same since the extra regressors 

in H2 (i.e., k2 - k1) are independent of any of the k1 regressors in H1, as is reflected in both ! 22 and 

! 12 for this case. In other words, by making the proper substitutions, the noncentrality parameter 

is given by: 

[
_1_2/k1 
1 - p 

ok, x (k2 - k1> 

It should be quite clear that the value of A.Fis based on the sum of all the P2/s, and not only on the 

s of the regressors which are correlated with one another as in the case of the NJ-test. 
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Appendix C: Example of Stmulated Results ror n • 40, 500 Y9 1000 Repllcatlons 

The purpose of this example is to illustrate that using only SOO replications within an expcr· 

imental run of the Monte Carlo instead of 1000 does not reduce the accuracy and strength of the 

findings enough to warrant the extra cost of using 1000. This example is based on Experiment 27 

of the normal distribution runs. For this case, n = 40, R2 = 0.90, pJ =- O.SO and 

(k1, "2, k3) = (2,4,6). Below arc the observed power, significance level and average p-value 

rankings for comparison. Diff ercnt seeds were used in each aa the random start t~ generate the two 

samples. 

Test 

N 

w 

NA 

NL 

J 

JA 

NJ 

F 

m=lOOO . 
p 

0.939 
(. 00757) 

0.956 
(. 00649) 

0.958 
(.00635) 

0.948 
(.00702) 

0.949 
(.00696) 

0.965 
(. 00581) 

0.985 
(.00385) 

0.980 
( .00443) 

0.952 
( .00676) 

0.966 
(.00573) -

. 
a Avg. Rank 

0.061 2.5245 
(.00649) 

0.044 7.3300 
(. 00649) 

0.042 2.3605 
(.00635) 

0.052 9.776 
(.00702) 

0.051 4.725 
(.00696) 

0.035 4.8865 
(.00581) 

0.015 6.116 
(.00385) 

0.020 6.468 
(.00443) 

0.048 7.369 
( .00676) 

0.034 3.4455 
(.00573) 

Kendall's W 0.64164 

. 
p 

0.918 
(.01228) 

0.948 
(.00994) 

0.932 
(.01127) 

0.940 
( .01063) 

0.926 
(. 01172) 

0.954 
(.00938) 

0.978 
( .00657) 

0.978 
(.00657) 

0.946 
( .01012) 

0.958 
(.00898) 

m•500 . 
a Avg. Rank 

0.082 2.7450 
( .01228) 

0.052 7.1450 
(.00944) 

0.068 2.6230 
(.01127) 

-0.060 9.7280 
(.01063) 

0.074 4.7950 
(.01172) 

0.046 4.8370 
(.00938) 

0.022 6.3730 
( ,00657) 

0.022 6.3730 
( .00657) 

0.054 7.2840 
( .01012) 

0.042 3.4540 
( .00898) 

0.586124 
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Appendix C: Example or Simulated Results ror n • -40, 300 ~ 1000 Replications( continued) 

m•lOOO H, VS H, m•500 
. 

Test p a Avg. Rank p . 
Avg. Rank a 

N 0.915 0.085 2.488 0.920 0.080 2.5060 
(. 00882) (.00882) (.01214) (.01214) 

w 0.940 0.060 7.7488 0.944 0.056 7.8150 
(.00751) (. 00751) ( .01029) (.01029) 

"' 0.938 0.062 N 2.273 0.942 0.058 2.3090 
( .00763) (.00763) (.01046) ( .01046) 

NA 0.933 0.067 9. 647 0.940 0.960 9.6870 
( .00791) (.00791) (.01063) (.01063) 

NL 0.921 0.079 4.741 0.928 0.072 4. 9280 
(. 00853) (. 00853) ( .01157) ( .01157) 

J 0.932 0.068 4.8755 0.942 0.058 4.7800 
(.00796) (.00796) (.01046) (.01046) 

AJ 0.973 0.027 5.9095 0.974 0.026 S.8080 
(.00513) (.00513) (.00712) (.00712) 

JA 0.967 0.033 6.1895 0.974 0.974 6.2310 
(. 00565) (. 00565) ( .00712) ( .00712) 

NJ 0.940 0.060 7.4875 0.944 0.056 7,4740 
( .00751) (.00751) (.01029) (.01029) 

p 0.944 0.056 3.6405 0.968 0.032 3.4620 
( .00727) (. 00727) (.00788) (.00788) 

Kendall's W 0.64704 0.656564 

It is clear that any differences between these two sets of runs are a result of the different gen· 

crated samples and not primarily of the number of replications. Although this is but one example, 

it supports the choice of using only 500 replications in experiments involving samples of size 40. 
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Appendix D Non-Nested Macro and Monte Carlo Programs 

Non-Nested Macro 

//BO###NN JOB acct#,NNMACRO,TIME= !,REGION= 1024K 

/*LONGKEY ##### 

//STEPO 1 EXEC SAS 

//SYSIN DD+ 

OPTIONS LS= 80 NO DATE; 

PROC MATRIX; 

FETCH Y DATA=YDAT; FETCH Xl DATA=XlDAT; FETCH X2 DATA=X2DAT; 

N=NROW(Y); Kl=NCOL(Xl); K2=NCOL(X2); IN=l(N); R2=J(l,2); 

+CREATE AND INITIALIZE MATRICES FOR TEST STAT VALUES; 

C=J(l,2); W=J(l,2); NO=J(l,2); 

JJ=J(l,2); JA=J(l,2); F=J(l,2); NJ=J(l,2); 

NA=J(l,2); NL=J(l,2); AJ=J(l,2); IN=l(N); 

XlP=Xl'; X2P=X2'; 

XlPXl = Xl'*Xl; X2PX2= X2'*X2; 

Xll = SOLVE(XlPXl,XlP); XI2= SOLVE(X2PX2,X2P); 

Al= Xl *Xll; 

Ml= IN-Al; 

A2=X2*XI2; 

M2=IN-A2; 

B 1 = Xll *Y; B2 = Xl2*Y; 

TRM 12=TRACE(M1 *M2); 

TRA12=TRACE(Al *A2); TRA122= TRACE(Al *A2*Al *A2); 

TRB12= K2 - TRA122 - ( K2 - TRA12 )**2 #/ (N-Kl); 

TRB21 =Kl - TRA122 - ( Kl - TRA12 )**2 #/ (N-K2); 
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SSY=Y'*Y- (Y(+,))**2#/N; 

• OLS AND MLE ON SEPARATE MODELS; R22=J(3,l,l); 

YHI=Xl*Bl; 

El=Y-YHl; 

SSRl = El'*El; 

SlLS = SSRl#/(N-Kl); 

SlML=SSRl#/N; 

R2(,l)= 1 - SSRl#/SSY; 

YH2=X2*B2; 

E2=Y-YH2; 

SSR2= E2'*E2; 

S2LS = SSR2#/(N-K2); 

S2ML= SSR2#/N; 

R2(,2) = 1 - SSR2#/SSY; 

BlM2= Br+Xl'*M2*Xl •Bl; BlMM2= Bl'*Xl'*M2*Ml *M2*Xl *Bl; 

B2Ml = B2'*X2'*Ml •x2•B2; B2MM1 = B2'*X2'*Ml *M2*Ml •x2•B2; 

E21 = M2*Xl *Bl; E12= Ml *X2*B2; 

E211 =Ml *E21; El22= M2•El2; 

•COX TEST; 

021 = (E2l'*E21 + SlLS*TRM12) #/ (N-K2); 

012= (El2'+EI2 + S2LS*TRM12) #/ (N-Kl); 

Sl2ML= S2ML+ B2Ml#/N; Sl2LS= Sl2ML+N#/(N-Kl); 

S21ML= SlML+ BlM2#/N; S21LS = S21ML*N#/(N-K2); 

Cl2N = (N#/2)•LOG(S2ML#/S21ML); 

C21N = (N#/2)•LOG(SlML#/Sl2ML); 

Vl2= SQRT(SlML•BIMM2#/S21ML**2); 

V21 = SQRT(S2ML*B2MM1#/Sl2ML**2); 

C(,l) = Cl2N#/Vl2; 

C(,2) = C21N#/V21; 

*WTEST; 

W(,l)=(N-K2)*(S2LS-021) #/SQRT(2*S1LS**2*TRB12 + 4*SlLS*E211'*E211); 

W(,2) = (N-Kl)*(SlLS-012) #/SQRT(2*S2LS**2*TRB21 + 4*S2LS*El22'*El22); 

*NO TEST; 

T012= 0.5*(N-K2)*LOG(S2LS#/021); T021 = O.S*(N-Kl)*LOG(SlLS#/012); 
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V012= (SlLS#/021 .. 2)+(E21 l'•E21 l + O.S•SlLS•TRB12); 

V021 = (S2LS#/012 .. 2)•(El22'•El22 + o.s•s2LS•TRB21); 

NO(,l)=T012#/SQRT(V012); N0(,2)=T021#/SQRT(V021); 

•ATKINSON'S TEST; 

AD12= SQRT(SlML+Y'•Al •A2•Ml •A2•Al •Y); 

AD21 = SQRT(S2ML•Y'•A2•Al •M2•Al •A2•Y); 

NA(,l) = -(Y'•Ml •A2•Al •Y)#/AD12; 

NA(,2) = -(Y'•M2•Al •A2•Y)#/AD21; 

•LINEARIZED COX TEST---NL; 

NL(,l) = .S•Y'•_(A2-Al •A2•Al)+Y #/AD12; 

NL(,2) = .S+Y'+(Al-A2•Al •A2)•Y #/AD21; 

+J TEST; 

Xl2=XlllYH2; Xl2P=Xl2'; Xl2PX12=Xl2'•Xl2; Xll2=SOLVE(Xl2PX12,Xl2P); 

SSRJl = Y'•(IN-x12•x112)•Y; 

SJl = SSRJl#/(N-Kl-1); 

JJ(,l) = (B2'•X2'+Ml •Y)#/SQRT(SJl •B2Ml); 

X2l=X211YH1; X21P=X21'; X21PX2l=X2l'•X21; X12l=SOLVE(X21PX21,X21P); 

SSRJ2= Y'•(IN-X21 •XI2l)•Y; 

SJ2= SSRJ2#/(N-K2-l); 

JJ(,2) = (B l'•Xt'•M2•Y)#/SQRT(SJ2+B 1M2); 

•ADJUSTED J-TEST:::: AJ; 

Pl2= (K2-TRA12)#/(N-Kl); AY12= YH2-Pl2•El; 

P21 = (Kl-TRA12)#/(N-K2); AY21 = YH1-P21 •E2; 

uucALCULATION OF SIG HAT FOR THE ADJUSTED J-TEST; 

Al2=XIllAY12; A21 =X211AY21; 

Al2P = Al2'; Al2PA12 = Al2'+ Al2; AI12= SOLVE(Al2PA12,Al2P); 

A21P=A21'; A21PA21 =A2I'•A21; AI21 =SOLVE(A21PA21,A21P); 

SA12= Y'•(IN-At2•AI12)•Y #/ (N-Kl-1); 
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SA21 = Y'•(IN-A2I •AI2l)+Y #/ (N-K2-l); 

AJ(,l)= EI'•AY12#/SQRT(SAI2•AY12'•MI •AY12); 

AJ(,2) = E2'•AY21#/SQRT(SA2I •AY2I'•M2•AY21); 

•JA TEST; 

YH12=A2•Al•Y; YH2l=Al•A2•Y; 

Nl2= (Y'•Ml •YH12)#/SQRT(YH12'•Ml •YH12); 

N21 = (Y'•M2•YH21)#/SQRT(YH2I'•M2•YH21); 

•SIGS FOR JA-TEST; 

XJ12=Xl11YH12; XJ21 =X211YH21; 

XJ12P= XJ12'; XJ12Pl2= XJ12'•XJ12; XIJ12= SOLVE(XJ12Pl2,XJ12P); 

XJ21P = XJ21'; XJ21P21 = XJ21 '•XJ21; XIJ21 = SOLVE(XJ21P21,XJ21P); 

SJA12= Y'•(IN-XJ12•XIJ12)•Y#/(N-Kl-1); 

SJA21 = Y'•(IN-XJ21 •XIJ21)•Y#/(N-K2-l); 

JA(,l)= Nl2#/SQRT(SJA12); 

JA(,2)= N21#/SQRT(SJA21); 

•CLASSICAL F-TEST; 

Xl2=X111X2; Xl2P=Xl2'; Xl2PX12=X12'•XI2; XI12=SOLVE(Xl2PX12,Xl2P); 

Ml2= IN-x12•x112; SIG12=(Y'•Mt2•Y)#/(N-Kl-K2); 

SSREG12= Y'•(IN-Ml2)•Y; 

F(,l) = (SSREG12-Bl'•Xl'•Y)#/(SIG12•K2); 

F(,2) = (SSREG 12-B2'•X2'•Y)#/(SIG 12•Kl); 

•NEW JA TEST; 

NJ(,l) = Nl2#/SQRT(SIG12); 

NJ(,2) = N21#/SQRT(SIG 12); 

•• I 
•CALCULATE P-VALUES; 

CP12= ( 1- PROBNORM(ABS(C(,1))))•2; 

CP21 = ( 1- PROBNORM(ABS(C(,2))))•2; 
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WP12= ( 1- PROBNORM(ABS(W(,1))))"'2; 

WP21 = ( 1- PROBNORM(ABS(W(,2))))"'2; 

NOP12= ( 1- PROBNORM(ABS(N0(,1))))*2; 

NOP21 = ( 1- PROBNORM(ABS(N0(,2))))"'2; 

NAP12= ( 1- PROBNORM(ABS(NA(,1))))"'2; 

NAP21 = ( 1- PROBNORM(ABS(NA(,2))))"'2; 

NLP12= ( 1- PROBNORM(ABS(NL(,1))))"'2; 

NLP21 = ( 1- PROBNORM(ABS(NL(,2))))"'2; 

JP12= ( 1 -PROBT(ABS(JJ(,l)),N-Kl-1))"'2; 

JP21 = ( 1 -PROBT(ABS(JJ(,2)),N-K2-1))"'2; 

AJP12= ( 1 -PROBT(ABS(AJ(,l)),N-Kl-1))"'2; 

AJP21 = ( 1 -PROBT(ABS(AJ(,2)),N-K2-1))"'2; 

JAP12= ( 1 -PROBT(ABS(JA(,l)),N-Kl-1))"'2; 

JAP21 = ( 1 -PROBT(ABS(JA(,2)),N-K2-1))"'2; 

NJP12= ( 1 -PROBT(ABS(NJ(,l)),N-Kl-K2))"'2; 

NJP21 = ( 1 -PROBT(ABS(NJ(,2)),N-K2-Kl))"'2; 

FP12= 1 - PROBF( F(,l),Kl,N-Kl-K2); 

FP21=1 - PROBF( F(,2),K2,N-Kl-K2); 

IF (CP12 LE 0.05) THEN DO; 

IF (CP21 LE 0.05) THEN CCODE= 11; ELSE CCODE= 10; END; 

ELSE IF (CP21LE0.05) THEN CCODE=Ol; ELSE CCODE=OO; END; 

IF (WP12 LE 0.05) THEN DO; 

IF (WP21 LE 0.05) THEN WCODE= 11; ELSE WCODE= 10; END; 

ELSE IF (WP21LE0.05) THEN WCODE=Ol; ELSE WCODE=OO; END; 

IF (NOP12 LE 0.05) THEN DO; 

IF (NOP21 LE 0.05) THEN NOCODE= 11; ELSE NOCODE= 10; END; 

ELSE IF (NOP21 LE 0.05) THEN NOCODE = 01; ELSE NOCODE = 00; END; 

IF (NAP12 LE 0.05) THEN DO; 
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IF (NAP21LE0.05) THEN NACODE= 11; ELSE NACODE= 10; END; 

ELSE IF (NAP21 LE 0.05) THEN NACODE=Ol; ELSE NACODE=OO; END; 

IF (NLP12 LE 0.05) THEN DO; 

IF (NLP21LE0.05) THEN NLCODE= 11; ELSE NLCODE= 10; END; 

ELSE IF (NLP21LE0.05) THEN NLCODE=Ol; ELSE NLCODE=OO; END; 

IF (JP12 LE 0.05) THEN DO; 

IF (JP21LE0.05) THEN JCODE= 11; ELSE JCODE= 10; END; 

ELSE IF (JP21LE0.05) THEN JCODE=Ol; ELSE JCODE=OO; END; 

IF (AJP12 LE 0.05) THEN DO; 

IF (AJP21 LE 0.05) THEN AJCODE = 11; ELSE AJCODE = 10; END; 

ELSE IF (AJP21LE0.05) THEN AJCODE=Ol; ELSE AJCODE=OO; END; 

IF (JAP12 LE 0.05) THEN DO; 

IF (JAP21LE0.05) THEN JACODE= 11; ELSE JACODE= 10; END; 

ELSE IF (JAP21LE0.05) THEN JACODE=Ol; ELSE JACODE=OO; END; 

IF (JAP 12 LE 0.05) THEN DO; 

IF (JAP21LE0.05) THEN JACODE= 11; ELSE JACODE= 10; END; 

ELSE IF (JAP21 LE 0.05) THEN JACO DE= 01; ELSE JACO DE= 00; END; 

IF (NJP12 LE 0.05) THEN DO; 

IF (NJP21LE0.05) THEN NJCODE= 11; ELSE NJCODE= 10; END; 

ELSE IF (NJP21LE0.05) THEN NJCODE=Ol; ELSE NJCODE=OO; END; 

IF (FP12 LE 0.05) THEN DO; 

IF (FP21LE0.05) THEN FCODE= 11; ELSE FCODE= 10; END; 

ELSE IF (FP21LE0.05) THEN FCODE=Ol; ELSE FCODE=OO; END; 

PRINT CCODE WCODE NOCODE NACODE NLCODE JCODE AJCODE JACODE NJCODE 

FCODE; 

RETURN; 
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End of Non-Nested Macro 

Normal Deviate Case: Simulation Program 

//BO###ND JOB acct#,NORMAL,TIME= ll,REGION=3072K 

/**TIME= 11 FOR N=20,TIME=23 FOR N=40 

/*LONGKEY ##### 

/*PRIORITY IDLE 

/*JOBPARM LINES= 5 

//STEP! EXEC FORTVC 

//FORT.SYSIN DD * 

c 
C ***This program illustrates calling a FORTRAN Function from SAS. 

c 
INTEGER FUNCTION MATSUB( NARG, ARGS ) 

INTEGER *4 NARG 

INTEGER *4 ARGS( 1 ) 

INTEGER*4 MIN, MAX, ROW, COL, ILOC, OLOC, NTOTAL 

C IARRAY is an input array passed from SAS to FORTRAN. 

C OARRAY is an output array generated by FORTRAN and returned to SAS. 

REAL *8 IARRA Y( I ), OARRA Y( 1 ) 

C The following Declarations are used in the implementation of 

C the IMSL Subroutine GGNML: 

C XX is a single precision vector used to contain the values 

C generated by GGNML. These values are then assigned to 

C output matrix OARRA Y. 
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C NOTE: SAS programs expect passed arrays to be declared 

C as REAL+8 variables. Although this program 

C links in the IMSL Double Precision library, 

C Subroutine GGNML returns Single Precision values. 

C DSEED is a double precision number used as the seed for the 

C random number generator. 

REAL +4 XX( 10000) 

DOUBLE PRECISION DSEED 

DATA DSEED/40687.DO/ 

c++ TEST TO ENSURE THAT ONLY ONE ARGUMENT IS PASSED.TO THIS PROCEDURE 

IF( NARG.NE. l ) THEN 

MATSUB = 5 

RETURN 

ENDIF 

c 
c++ TEST TO ENSURE THAT THE ONE ARGUMENT IS A MATRIX 

C (i.e. the input value is at least a 1 X 1 array) 

c 

CALL ARG( ARGS(l), ROW, COL, ILOC, IARRAY) 

MIN= MINO( ROW, COL) 

IF(MIN.LT.l) THEN 

MATSUB= 6 

RETURN 

ENDIF 

c++ DEFINE THE OUTPUT MATRIX 

c 
C-- Routine SETUP defines the output matrix and has the form: 

c 
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C CALL SETUP(IRES,NROWS,NCOLMS) 

c 
C where IRES is a result number -- can use l. 

C NROWS is the number of rows in the output matrix. 

C NCOLMS is the number of columns in the output matrix. 

c 
C -- Use the following with ZRPOLY: 

C MAX= MAXO( ROW,COL) 

C CALL SETUP(l,MAX-1,2) 

C -- Use the following with GGNML: 

CALL SETUP(l,ROW,COL) 

c 
C -- Subroutine ARG is used to get the dimensions and location of 

C the matrices according to their symbol table number IARG(I): 

c 

c 

CALL ARG( l, ROW,COL, OLOC, OARRAY ) 

IF( ROW.EQ. 0 .OR. COL.EQ.O ) THEN 

MATSUB= 1 

RETURN 

END IF 

C --- Call the desired IMSL Subroutine: 

c 
C - GNML is a Gaussian (Normal) random deviate generator: 

C XX is used as a temporary 'array' for storing the 

C generated random deviates which are then placed 

C in array OARRAY which is passed from FORTRAN to SAS 

C (indexing into OARRAY starts at location OLOC). 
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NTOTAL = ROW+ COL 

CALL GGNML( DSEED, NTOTAL, XX ) 

IJ = 0 

DO 1000 I= l,ROW 

DO 1000 J = l,COL 

IJ=IJ+l 

1000 OARRAY(OLOC+ IJ-1) = XX(IJ) 

RETURN 

END 

1+ 

II+ STEP0002 EXEC PGM=IEWL,PARM='MAP,LIST' 

I ISTEP0002 EXEC PGM = IEWL 

llSYSPRINT DD SYSOUT=A 

llSYSUTl DD UNIT=SYSDA,SPACE=(TRK,(40,40)) 

I ISYSLIB DD DSN = SYS2.SAS.SUBLIB,DISP = SHR 

II DD DSN=SYS2.SAS.LIBRARY,DISP=SHR 

11 DD DSN = SYS2.PLIBASE,DISP = SHR 

II DD DSN=SYS2.R3.VFORTLIB,DISP=SHR 

11 DD DSN = VPl.IMSL.DP ,DISP = SHR 

11+ In the lines which follow: 

/I+ The SETSSI statement describes the characteristics of the input 

11 + function. The values in positions 3 and 4 specify the number 

// + of arguments passed to the function; these should be equal. 

jj+ If all arguments are numeric, the last four digists are zero. 

// + For additional information regarding this statement, see: 

IJ+ Teclmical Report: P-139. SAS Programmers Guide Version 5. 

JI+ The NAME statement specifies the name used to call the function 

// + from within the SAS program. The R designates that any previous 
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11 • function having this name will be replaced. 

//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE,DELETE) 

II DD• 

INCLUDE SYSLIB(MATMAIN) 

ENTRY MATMAIN 

SETSSI BFllOOOO 

NAME XXXXXX(R) 

1• 

11• IN THE 

I ISYSLMOD DD DSN = &LIBRAR Y,DISP = (NEW,PASS,DELETE), UNIT= SYS DA, 

11 SPACE= (CYL,( 10,20,20),,CONTIG) 

I ISTEP0003 EXEC SAS 

llSYSIN DD• 

OPTIONS NODATE LS=80; 

PROC MATRIX; TITLE 'MONTE-CARLO FOR NORMAL DEVIATE CASE'; 

TITLE3 'EXPT ##'; 

•+++++++++++SET SIMULATION CONTROL VARIABLES••++++••++++•••••++; 

NITER=####; N= ##;Kl=#; K2= #; K3= #; R21=0.##; P21=0.##; 

•PRINT R21 P21 N NITER Kl K2 K3; 

PARMTRS= NllR2111P2111Kl11K2llK3llNITER; PRINT PARMTRS; 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ' 
+++++++++++ SET CRITICAL VALUES FOR TESTS ++++++++++++++++•++••; 

++++++• NN= 1-4 FOR N=20, NN=S-8 FOR N=40 ++++++++++++++++++•++; 

••++•++ 1,5 FOR 246, 2,6 FOR 426, 3,7 FOR 624, AND 4,8 FOR 444••; 

NN=#; 

++•++++SET UP CONSTANT VALUES AND CALCULATE MODEL CONTROLS•++•; 

IN= l(N); VARI= Kl •(l-R2l)#IR21; LB= SQRT(P21#1(1-P21)); 

•PRINT VARI LB; 
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BETAl=J(Kl,1,1); BETA2=J(K2,l,l); BETA3=J(K3,l,l); Y=J(N,1,1); 

++++++++SET UP CHECKING VECTORS FOR TEST RESULTS +++++++++++++++; 

RO=O O; Rl=O l; R2= 1 O; R3= 1 l; 

+++++++++CREATE AND INITIALIZE THE P-VALUE AND RANK MATRICES; 

PV12=J(NITER,10,0); PV13=J(NITER,10,0); 

RK12=J(NITER,10,0); RK13=J(NITER,10,0); 

++++++++++ INITIALIZE COUNTERS FOR POWER AND TYPE 1 ERROR PROBABILITIES; 

CPC12= O; CEC12= 0; CPC13= O; CEC13= O; 

CPW12=0; CEW12=0; CPW13=0; CEW13=0; 

CPN12=0; CEN12=0; CPN13=0; CEN13=0; CPNJ12=0; CENJ12=0; 

CPNA12=0; CENA12=0; CPNA13=0; CENA13=0; 

CPNL12= O; CENL12= O; CPNL13= O; CENL13= 0; 

CPJ12=0; CEJ12=0; CPJ13=0; CEJ13=0; CPNJ13=0; CENJ13=0; 

CPAJ12= O; CEAJ12= 0; CPAJ13= O; CEAJ13= 0; 

CPJA12=0; CEJA12=0; CPJA13=0; CEJA13=0; 

CPF12=0; CEF12=0; CPF13=0; CEF13=0; 

+++++++++++++VECTORS TO HOLD NCP VALUES: E FOR ESTIMATED; 

NCPT = J(NITER,2,0); 

NCPF = J(NITER,2,0); 

++++++VECTORS TO HOLD POWER VALUES; 

PT= J(NITER,2,0); PF2 = J(NITER,2,0); 

+++++++++++++++++++++++++++++. 
' 

++++++++INITIALIZE CRITICAL VALUE VECTORS; 

+ F (J AND JA TOO) CRITICAL VALUES ARE ONLY APPROX FOR N=40; 

VC95=J(1,6, 1.9600); 

VJ95= 2.110 2.110 2.131 2.1312.1602.160 I 

2.131 2.131 2.110 2.110 2.160 2.160 I 

2.160 2.160 2.110 2.110 2.131 2.131 I 
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2.131 2.131 2.131 2.131 2.131 2.131 I 

2.042 2.042 2.042 2.042 2.042 2.042 I 

2.042 2.042 2.042 2.042 2.042 2.042 / 

2.042 2.042 2.042 2.042 2.042 2.042 / 

2.042 2.042 2.042 2.042 2.042 2.042; 

VF95 = 3.11 3.00 3.74 3.22 3.89 3.48 I 

3. 74 3.22 3.11 3.00 3.48 3.89 I 

3.89 3.48 3.oo 3.11 3.22 3. 74 I 

3.26 3.26 3.26 3.26 3.26 3.26 I 

2.69 2.42 3.32 2.42 3.32 2.69 I 

3.32 2.42 2.69 2.42 2.69 3.32 I 

3.32 2.69 2.42 2.69 2.42 3.32 I 

2.69 2.69 2.69 2.69 2.69 2.69; 

VNJ95= 2.145 2.179 2.145 2.228 2.179 2.228 I 

2.145 2.228 2.145 2.179 2.228 2.179 I 

2.179 2.228 2.179 2.145 2.228 2.145 / 

2.179 2.179 2.179 2.179 2.179 2.179 I 

2.042 2.042 2.042 2.042 2.042 2.042 I 

2.042 2.042 2.042 2.042 2.042 2.042 / 

2.042 2.042 2.042 2.042 2.042 2.042 I 

2.042 2.042 2.042 2.042 2.042 2.042; 

++++++CREATE AND INITIALIZE MATRICES FOR TEST STAT VALUES; 

C = J(NITER,6,0); W = J(NITER,6,0); NO= J(NITER,6,0); 

JJ = J(NITER,6,0); JA = J(NITER,6,0); F = J(NITER,6,0); NJ= J(NITER,6,0); 

NA= J(NITER,6,0); NL= J(NITER,6,0); AJ = J(NITER,6,0); 

+++++++CREATE AND INITIALIZE COUNTER VECTORS FOR# OF SIG TEST STATS; 

CC95=J(l,6,0); CW95=J(l,6,0); CN95=J(l,6,0); 
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CJ95=J(l,6,0); CJA95=J(l,6,0); CF95=J(l,6,0); CNJ95=J(l,6,0); 

CNA95=J(l,6,0); CNL95=J(l,6,0); CAJ95=J(l,6,0); 

++u++ 0 +R2 COUNTER INITIALIZATIONS; 

SR2=J(3,l,O); SUSR2=J(3,l,O); 

++++++++SETUP FOR KENDALL'S COEF OF CONCORDANCE --ADJUST FOR TIES; 

TIECK=J(l,10,1); SUMTIE12=0; SUMTIE13=0; 

+++++INITIALIZE 2X2 COUNT MATRIX FOR TESTS OF MODEL 2 VS 3; 

CNT23=J(10,4,0); 

+. , 

++++++GENERATE MATRICES TO BE SENT TO IMSL FOR RANDOM NORMAL DEVIATES; 

XlH=J(N,Kl,l); X2H=J(N,K2,l); X3H=J(N,K3,l); ERRH=J(N,1,1); 

+++++++++++++++BEGINNING OF ITERATIVE LOOP+++++++++++++++++++; 

DO M = 1 TO NITER; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· , 

++++++++++GENERATE X VALUES AND ERROR TERMS AND y+++++++++++; 

Xl =XXXXXX(XlH); X2=XXXXXX(X2H); X3=XXXXXX(X3H); 

IF K2> =Kl THEN X2(,l:Kl) = LB+Xl + X2(,l:Kl); 

ELSE X2= LB+ Xl(,l:K2) + X2; 

IF K3 >=Kl THEN X3(,l:Kl) = LB+Xl + X3(,l:Kl); 

ELSE X3= LB+ Xl(,l:K3) + X3; 

ERR= XXXXXX(ERRH); ERR= SQ R T(V AR 1) +ERR; 

Y=Xl+BETAl +ERR; 

++++++++++++COMPUTE NECESSARY MODEL ESTIMATION PIECES+++++++++; 

XlP=Xl'; X2P=X2'; X3P=X3'; 

XlPXl=Xl'+Xl; X2PX2=X2'+X2; X3PX3=XJ'+XJ; 

Xll = SOLVE(XlPXl,XlP); XI2= SOLVE(X2PX2,X2P); Xl3= SOLVE(X3PX3,X3P); 

Al= Xl +Xll; 

Ml= IN-Al; 

A2=X2+XI2; 

M2=IN-A2; 

A3=XJ+Xl3; 

M3=IN-A3; 
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B 1 = Xll +Y; B2 = Xl2"'Y; 

TRM12= TRACE(Ml "'M2); 

TRM 13=TRACE(M1 "'M3); 

TRM23 = TRACE(M2"'M3); 

TRA12= TRACE(Al "'A2); TRA122=TRACE(Al "'A2"'Al "'A2); 

TRA13=TRACE(Al "'A3); TRA132=TRACE(Al lf<A3"'Al "'A3); 

TRA23 = TRACE(A2"' A3); TRA232 = TRACE(A2"' A3+ A2+ A3); 

TRB12=K2-TRA122- ( K2-TRA12 )"'"'2 #/ (N-Kl); 

TRB21 =Kl - TRA122 - ( Kl - TRA12 )++2 #/ (N-K2); 

TRB13= K3 - TRA132 - ( K3 -TRA13 )++2 #/ (N-Kl); 

TRB31 =Kl - TRA132 - (Kl - TRA13 )++2 #/ (N-K3); 

TRB23= K3 - TRA232 - ( K3 - TRA23 )++2 #/ (N-K2); 

TRB32= K2 - TRA232 - ( K2 - TRA23 )++2 #/ (N-K3); 

SSY = Y'+Y - (Y( + ,))++2#/N; 

+ OLS AND MLE ON SEPARATE MODELS; R22=J(3,l,l); 

YHl=Xl"'Bl; 

El =Y-YHl; 

SSRl = El'"'El; 

S lLS = SSRl#/(N-Kl); 

SlML= SSRl#/N; 

R22(1,) = l - SSR 1#/SSY; 

YH3=X3"'B3; 

E3=Y-YH3; 

SSR3 = E3'"'E3; 

S3LS = SSR3#/(N-K3); 

S3ML= SSR3#/N; 

R22(3,) = 1 - SSR3#/SSY; 

YH2=X2"'B2; 

E2=Y-YH2; 

SSR2= E2'"'E2; 

S2LS = SSR2#/(N-K2); 

S2ML= SSR2#/N; 

R22(2,) = 1 - SSR2#/SSY; 
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
t 

++++++++++++++++COUNT UPDATES FOR R2; 

DO I= 1 TO 3; SR2(1,) = SR2(1,) + R22(1,); 

SUSR2(1,) = SUSR2(I,) + R22(I,)++2; END; 

+++++++++++++++++++++++++ E(YHJ) UNDER HI +++++++++++++++++++++· 
' 

YH12=A2+AI+Y; YH2l=Al+A2+Y; YH13=A3*Al+Y; YH3l=Al*AJ+Y; 

YH23=A3*A2*Y; YH32=A2*AJ+Y; 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
' 

E21 = M2*YH1; El2= Ml +YH2; 

E31 = M3+YH1; E13=MI+YH3; 

E32= M3+YH2; E23 = M2+YH3; 

E211 =Ml +E21; El22= M2+E12; 

E311 = M 1 + E31; El33= MJ+El3; 

E322 = M2*E32; E233 = M3+E23; 

B 1M2= E21'+E21; B 1MM2= E21 l'+E211; 

BlMJ= E3l'*E31; B1MM3= E31 l'+E311; 

B3M2 = E23'+E23; B3MM2 = E233'+E233; 

B3Ml = El3'+El3; B3MM1 = E31 l'+E311; 

B2Ml = E12'+E12; B2MM1 = E122'+EI22; 

B2M3 = E32'+E32; B2MM3 = E322'+E322; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
' 

++++++++CALCULATION OF TEST STATISTICS+++++++++++++++++; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++. 
' 

+++++++++++++++++ COX TEST+++++++++++++++++++++++++++++; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
' 

021 = (B1M2 + S1LS+TRM12) #/ (N-K2); 

031 = (BlM3 + S1LS+TRM13) #/ (N-KJ); 

032= (B2M3 + S2LS+TRM23) #/ (N-K3); 
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012=(B2Ml + S2LS+TRM12) #/ (N-Kl); 

013=(B3Ml + S3LS+TRM13) #/ (N-Kl); 

023= (B3M2 + S3LS+TRM23) #/ (N-K2); 

S12ML= S2ML+ B2Ml#/N; S12LS = S12ML+N#/(N-Kl); 

S13ML= S3ML+ B3Ml#/N; S13LS = S13ML+N#/(N-Kl); 

S23ML = S3ML + B3M2#/N; S23LS = S23ML +N#/(N-K2); 

S21ML= SlML+ B1M2#/N; S21LS= S21ML+N#/(N-K2); 

S31ML= SlML+ B1M3#/N; S31LS = S31ML+N#/(N-K3); 

S32ML= S2ML+ B2M3#/N; S32LS = S32ML+N#/(N-K3); 

C12N = (N#/2)+LOG(S2ML#/S21ML); 

C13N = (N#/2)+LOG(S3ML#/S31ML); 

C23N = (N#/2)+LOG(S3ML#/S32ML); 

C21N= (N#/2)+LOG(S1ML#/S12ML); 

C31N= (N#/2)+LOG(SlML#/S13ML); 

C32N = (N#/2)+LOG(S2ML#/S23ML); 

V12= SQRT(SlML+BlMM2#/S21ML++2); 

V13=SQRT(SlML+B1MM3#/S31ML++2); 

V23 =SQ R T(S2ML +B2MM3#/S32ML + +2); 

V21 = SQRT(S2ML+B2MM1#/S12ML++2); 

V31 = SQRT(S3ML+B3MM1#/S13ML++2); 

V32 = SQ R T(S3ML +B3MM2#/S23ML + +2); 

C(M,l) = C12N#/V12; 

C(M,2) = Cl3N#/Vl3; 

C(M,4) = C23N#/V23; 

C(M,3) = C21N#/V21; 

C(M,5) = C31N#/V31; 

C(M,6) = C32N#/V32; 

++++++++++COMPARE TO CRITICAL VALUES; 
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CH95=ABS(C(M,)) > =VC95; 

CC95 = CC95 + CH95; 

+ POWER AND TYPE 1 ERROR COUNTS; 

CH9513=CH95(,1 3); CH9525=CH95(,2 5); 

IF ALL(CH9513 = Rl) THEN CPC12= CPC12+ 1; 

ELSE IF ALL(CH9513= R2) OR ALL(CH9513= R3) THEN CEC12= CEC12+ l; 

IF ALL(CH9525 = Rl) THEN CPC13= CPC13+ 1; 

ELSE IF ALL(CH9525= R2) OR ALL(CH9525= R3) THEN CEC13= CEC13+ 1; 

+COMPARE AND COUNT FOR 2 VS 3; 

IF (CH95(,4 6) = R3) THEN CNT23(1,l) = CNT23(1,l) + l; 

ELSE IF (CH95(,4 6) =RO) THEN CNT23(1,2) = CNT23(1,2) + 1; 

ELSE IF (CH95(,4 6) = Rl) THEN CNT23(1,3) = CNT23(1,3) + 1; 

ELSE CNT23(1,4) = CNT23(1,4) + 1; 

+ + + + + + + + + ++ + + ++ + + +W TEST+++++++++++++++++++++++++++++++++++++•; 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++. . ' 

W(M,l) = (N-K2)+(S2LS-021) #/SQRT(2+s lLS++2+TRB 12 + 4+s1Ls+B1MM2); 

W(M,2)=(N-K3)+(S3LS-031) #/SQRT(2+s1Ls++2+TRB13 + 4+SlLS+BlMM3); 

W(M,4) = (N-K3)+(S3LS-032) #/SQRT(2+s2Ls++2+TRB23 + 4+s2LS*B2MM3); 

W(M,3) = (N-Kl)•(SlLS-012) #/SQRT(2+s2Ls++2+TRB21 + 4+s2LS*B2MM1); 

W(M,5)=(N-Kl)*(SlLS-013) #/SQRT(2+S3LS++2*TRB31 + 4+S3LS+B3MM1); 

W(M,6) = (N-K2)+(S2LS-023) #/SQRT(2*S3LS++2+TRB32 + 4+S3LS*B3MM2); 

+++*++*******COMPARE TO CRITICAL VALUES; 

WH95 = ABS(W(M,)) > = VC95; 

CW95 = CW95 + WH95; 

+POWER COUNTS; 

IF ALL(WH95(,l 3) = Rl) THEN CPW12= CPW12+ 1; 

ELSE IF ALL(WH95(,l 3) = R2) OR ALL(WH95(,1 3)= RJ) 

THEN CEW12= CEW12+ 1; 
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IF ALL(WH95(,2 5) = Rl) THEN CPW13=CPW13+ l; . 

ELSE IF ALL(WH95(,2 5) = R2) OR ALL(WH95(,2 5) = R3) 

THEN CEW13=CEW13+ l; 

+COMPARE AND COUNT FOR 2 VS 3; 

IF (WH95(,4 6)=R3) THEN CNT23(2,l)=CNT23(2,l)+ l; 

ELSE IF (WH95(,4 6) = RO) THEN CNT23(2,2) = CNT23(2,2) + 1; 

ELSE IF (WH95(,4 6) = Rl) THEN CNT23(2,3) = CNT23(2,3) + l; 

ELSE CNT23(2,4) = CNT23(2,4) + 1; 

+ +++ ••• +++++•++++•NO TEST+++++++++++++++++++++++++++++++++•; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· , 

T012= 0.5•(N-K2)+LOG(S2LS#/021); T021 = O.S•(N-Kl)•LOG(SlLS#/012); 

TO 13 = 0.5•(N-K3) •LOG(S3LS#/03 l ); T03 l = 0.5•(N-K 1)•LOG(S1LS#/013); 

T023 = 0.5•(N-K3)+LOG(S3LS#/032); T032= 0.5•(N-K2)•LOG(S2LS#/023); 

V012= (SlLS#/021°2)•(BlMM2 + 0.5•SlLS•TRB12); 

V013= (SlLS#/031 ++2)•(BlMM3 + 0.5•SlLS•TRB13); 

V023= (S2LS#/032••2)•(B2MM3 + 0.5•S2LS•TRB23); 

V021 = (S2LS#/012°2)•(B2MM1 + 0.5•S2LS•TRB21); 

V031 = (S3LS#/013°2)•(B3MM1 + 0.5•S3LS•TRB31); 

V032= (S3LS#/023••2)•(B3MM2 + 0.5+S3LS+TRB32); 

NO(M,l) = T012#/SQRT(V012); NO(M,3) = T021#/SQRT(V021); 

NO(M,2) = T013#/SQRT(V013); NO(M,5) = T031#/SQRT(V031); 

NO(M,4) = T023#/SQ RT(V023); NO(M,6) = T032#/SQ R T(V032); 

+++++COMPARE TO CRITICAL VALUES; 

NH95 = ABS(NO(M,)) > = VC95; 

CN95 = CN95 + NH95; 

+POWER COUNTS; 

IF ALL(NH95(,1 3)=Rl) THEN CPN12=CPN12+ 1; 

ELSE IF ALL(NH95(,l 3)=R2) OR ALL(NH95(,l 3)=R3) 
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THEN CEN12=CEN12+ 1; 

IF ALL(NH95(,2 5) = Rl) THEN CPN13= CPN13+ 1; 

ELSE IF ALL(NH95(,2 5) = R2) OR ALL(NH95(,2 5) = R3) 

THEN CEN13=CEN13+ 1; 

"'COMPARE AND COUNT FOR 2 VS 3; 

IF (NH95(,4 6) = R3) THEN CNT23(3, 1) = CNT23(3, 1) + 1; 

ELSE IF (NH95(,4 6) =RO) THEN CNT23(3,2) = CNT23(3,2) + 1; 

ELSE IF (NH95(,4 6) = Rl) THEN CNT23(3,3) = CNT23(3,3) + 1; 

ELSE CNT23(3,4) = CNT23(3,4) + 1; 

"""""""'""""'""""""""""' "'ATKINSON'S TEST"'"""""""'""""'"""""""'"'"""""""'""""'"""; 

............................................................................................................................................................................ 

' 
AD12= SQRT(SlML"'YH12'"'Ml "'YH12); 

AD21 = SQRT(S2ML"'YH21'"'M2"'YH21); 

AD13= SQRT(S1ML"'YH13'"'Ml "'YI-113); 

AD31 = SQRT(S3ML "'YH31'"'M3"'YH31); 

AD23 = SQRT(S2ML"'YH23'"'M2"'YH23); 

AD32 = SQRT(S3ML "'YH32'"'M3"'YH32); 

NA(M,l) = -(El'"'YH12)#/AD12; 

NA(M,3) =-(E2'"'YH21)#/AD21; 

NA(M,2) =-(El'"'YH13)#/AD13; 

NA(M,5) = -(E3'"'YH31)#/AD31; 

NA(M,4) = -(E2'"'YH23)#/AD23; 

NA(M,6) = -(E3'"'YH32)#/AD32; 

"'COMPARE TO CRITICAL VALUES; 

NAH95 = ABS(NA(M,)) > = VC95; 

CNA95 = CNA95 + NAH95; 

"'POWER COUNTS; 

IF ALL(NAH95(,l 3) = Rl) THEN CPNA12= CPNA12+ 1; 
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ELSE IF ALL(NAH95(,l 3)= R2) OR ALL(NAH95(,l 3)= R3) 

THEN CENA12=CENA12+ l; 

IF ALL(NAH95(,2 5)=Rl) THEN CPNA13=CPNA13+ 1; 

ELSE IF ALL(NAH95(,2 5) = R2) OR ALL(NAH95(,2 5) = R3) 

THEN CENA13 = CENA13 + 1; 

"'COMPARE AND COUNT FOR 2 VS 3; 

IF (NAH95(,4 6)=R3) THEN CNT23(4,l)=CNT23(4,l)+ 1; 

ELSE IF (NAH95(,4 6) =RO) THEN CNT23(4,2) = CNT23(4,2) + 1; 

ELSE IF (NAH95(,4 6) = Rl) THEN CNT23(4,3) = CNT23(4,3) + 1; 

ELSE CNT23(4,4)=CNT23(4,4)+ 1;. 

++++++++++++++•LINEARIZED COX TEST---NL++++++++++++++++++++++; 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ' 
NL(M,1) = 0.5"'(YH2'"'YH2 - YH12'"'YH12) #/AD12; 

NL(M,3) = 0.5"'(YH1'"'YH1 - YH21""YH21) #/AD21; 

NL(M,2) = 0.5"'(YH3'"'YH3 - YH13'"'YH13) #/AD13; 

NL(M,5) = 0.5"'(YH1'"'YH1 - YH31'"'YH31) #/AD31; 

NL(M,4) = 0.5"'(YH3'"'YH3 - YH23'"'YH23) #/AD23; 

NL(M,6) = 0.5"'(YH2'•YH2 - YH32'"'YH32) #/AD32; 

+COMPARE TO CRITICAL VALUES; 

NLH95 = ABS(NL(M,)) > = VC95; 

CNL95 = CNL95 + NLH95; 

"'POWER COUNTS; 

IF ALL(NLH95(,13)=Rl) THEN CPNL12=CPNL12+ l; 

ELSE IF ALL(NLH95(, 1 3) = R2) OR ALL(NLH95(, 1 3) = R3) 

THEN CENL12=CENL12+ 1; 

IF ALL(NLH95(,2 5)= RI) THEN CPNL13=CPNL13+ 1; 

ELSE IF ALL(NLH95(,2 5) = R2) OR ALL(NLH95(,2 5) = R3) 

THEN CENL13= CENL13+ 1; 
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+COMPARE AND COUNT FOR 2 VS 3; 

IF (NLH95(,4 6)=R3) THEN CNT23(5,l)=CNT23(5,l)+ l; 

ELSE IF (NLH95(,4 6) =RO) THEN CNT23(5,2) = CNT23(5,2) + l; 

ELSE IF (NLH95(,4 6) = R 1) THEN CNT23( 5,3) = CNT23( 5,3) + l; 

ELSE CNT23( 5,4) = CNT23( 5,4) + l; , 

++ +++ + ++ + +++ ++++ + +++ J TEST++++++++++++++++++++++++++++++++++++; 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++. 
' 

Xl2= XlllYH2; X12P= Xl2'; X12PX12= X12'+Xl2; Xll2= SOLVE(X12PX12,Xl2P); 

SSRJl = Y'+(IN-x12•x112)•Y; 

SJl = SSRJl#/(N-Kl-1); 

JJ(M,1) = (B2'+X2'+Ml +Y)#/SQRT(SJl +B2Ml); 

X21 = X211YH1; X21P= X21'; X21PX21 =X21'+X21; XI21 = SOLVE(X21PX21,X21P); 

SSRJ2= Y'+(IN-X21 +XJ21)+Y; 

SJ2= SSRJ2#/(N-K2-1); 

JJ(M,3) =(Bl '+X l'+M2+Y)#/SQRT(SJ2+B 1M2); 

X13= X111YH3; X13P= X13'; X13PX13=X13'+X13; Xll3= SOLVE(X13PX13,X13P); 

SSRJl = Y'+(IN-X13+XI13)•Y; 

SJl = SSRJl#/(N-Kl-1); 

JJ(M,2) = (B3'+X3'+M 1+Y)#/SQRT(SJ1 +B3M l); 

X31 = X311YH1; X31P= X31'; X31PX31 = X31'+X31; Xl31 = SOLVE(X31PX31,X31P); 

SSRJ3= Y'+(IN-X31 +XI31)+Y; 

SJ3 = SSRJ3#/(N-K3-l); 

JJ(M,5) = (Bl'+Xl'+M3+Y)#/SQRT(SJ3+B1M3); 

X23 = X211YH3; X23P = X23'; X23PX23 = X23'+X23; XI23 = SOLVE(X23PX23,X23P); 

SSRJ2 = Y'+(IN-X23+XI23)+Y; 

SJ2= SSRJ2#/(N-K2-l); 

JJ(M,4) = (BJ'+X3'+M2+Y)#/SQRT(SJ2+B3M2); 
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X32= X311YH2; X32P= X32'; X32PX32= X32'*X32; XI32= SOLVE(X32PX32,X32P); 

SSRJ3= Y'*(IN-X32*Xl32)*Y; 

SJ3 = SSRJ3#/(N-K3-l); 

JJ(M,6) = (B2'*X2'*M3*Y)#/SQRT(SJ3*B2M3); 

*COMPARE TO CRITICAL VALUES; 

JH95 = JJ(M,) > = VJ95(NN ,); 

CJ95= CJ95+JH95; 

*COUNT FOR POWER AND TYPE! ERROR; 

IF ALL(JH95(,l 3)= RI) THEN CPJ12= CPJ12+ I; 

ELSE IF ALL(JH95(,l 3) = R2) OR ALL(JH95(,l 3) = R3) 

THEN CEJ12=CEJ12+ I; 

IF ALL(JH95(,2 5)= RI) THEN CPJ13=CPJ13+ I; 

ELSE IF ALL(JH95(,2 5) = R2) OR ALL(JH95(,2 5) = R3) 

THEN CEJ13=CEJ13+ I; 

*COMPARE AND COUNT FOR 2 VS 3; 

IF (JH95(,4 6) = R3) THEN CNT23( 6, I)= CNT23( 6, I)+ I; 

ELSE IF (JH95(,4 6) = RO) THEN CNT23( 6,2) = CNT23( 6,2) + I; 

ELSE IF (JH95(,4 6) = RI) THEN CNT23( 6,3) = CNT23( 6,3) + I; 

ELSE CNT23( 6,4) = CNT23( 6,4) + I; 

"'*"'*"'**"'"'"""*"""*"'*ADJUSTED J-TEST:::: AJ*"'*"'"'"'*"'""""'"'"'"'"'"'"'"'*"'*; 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ' 
P12= (K2-TRA12)#/(N-Kl); AY12=YH2-Pl2*El; 

P21 = (Kl-TRA12)#/(N-K2); AY21 = YH1-P21 *E2; 

P 13 = (K3-TRA13)#/(N-K 1 ); A Y 13=YH3-P13 *El; 

P31 = (Kl-TRA13)#/(N-K3); AY31 = YH1-P31 *E3; 

P23= (K3-TRA23)#/(N-K2); AY23= YH3-P23*E2; 

P32 = (K2-TRA23)#/(N-K3); AY32 = YH2-P32*E3; 

*"'**CALCULATION OF SIG HAT FOR THE ADJUSTED J-TEST; 
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A12=X11!AY12; A21=X2llAY21; A13=X111AY13; A31=X31!AY31; 

A23 = X21 IA Y23; A32 = X31 IA Y32; 

Al2P=A12'; Al2PA12=Al2'"'Al2; AI12= SOLVE(A12PA12,Al2P); 

A21P=A21'; A21PA21 =A21'"'A21; AI21 = SOLVE(A21PA21,A21P); 

Al3P= A13'; A13PA13= A13'"'A13; AI13= SOLVE(Al3PA13,A13P); 

A31P=A31'; A31PA31 =A31'*A31; AI31 = SOLVE(A31PA31,A31P); 

A23P=A23'; A23PA23=A23'"'A23; AI23= SOLVE(A23PA23,A23P); 

A32P= A32'; A32PA32=A32'*A32; AI32= SOLVE(A32PA32,A32P); 

SA12= Y'*(IN-Al2*AI12)"'Y #/ (N-Kl-1); 

SA21 = Y'*(IN-A21 *AI21)"'Y #/ (N-K2-l); 

SA13= Y'*(IN-Al3*Al13)*Y #/ (N-Kl-1); 

SA31 = Y'*(IN-A31 *Al3l)*Y #/ (N-K3-1); 

SA23=Y'*(IN-A23"'AI23)"'Y #/ (N-K2-l); 

SA32=Y'*(IN-A32*Al32)"'Y #/ (N-K3-l); 

AJ(M,1) = El'"'AY12#/SQRT(SA12"'AY12'*Ml *A Yl2); 

AJ(M,3) = E2'*AY21#/SQRT(SA21 *AY2l'*M2*AY21); 

AJ(M,2)= El'*AY13#/SQRT(SA13*AY13'*Ml *AY13); 

AJ(M,5) = E3'*AY31#/SQRT(SA31 *AY3l'*M3*AY31); 

AJ(M,4) = E2'*AY23#/SQRT(SA23*AY23'*M2*AY23); 

AJ(M,6) = E3'*AY32#/SQRT(SA32"'AY32'*M3*AY32); 

*COMPARE TO CRITICAL VALUES; 

AJH95=AJ(M,)> =VJ95(NN,); 

CAJ95 = CAJ95 + AJH95; 

*COUNT FOR POWER AND TYPE! ERROR; 

IF ALL(AJH95(,1 3) =RI) THEN CPAJ12= CPAJ12+ 1; 

ELSE IF ALL(AJH95(,1 3)= R2) OR ALL(AJH95(,l 3)= R3) 

THEN CEAJ12= CEAJ12+ l; 

IF ALL(AJH95(,2 5)=Rl) THEN CPAJ13=CPAJ13+ 1; 
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ELSE IF ALL(AJH95(,2 5) = R2) OR ALL(AJH95(,2 5) = R3) 

THEN CEAJ13= CEAJ13+ l; 

*COMPARE AND COUNT FOR 2 VS 3; 

IF (AJH95(,4 6) = R3) THEN CNT23(7,l)= CNT23(7,l) + l; 

ELSE IF (AJH95(,4 6) =RO) THEN CNT23(7,2) = CNT23(7,2) + 1; 

ELSE IF (AJH95(,4 6) = Rl) THEN CNT23(7,3) = CNT23(7,3) + l; 

ELSE CNT23(7,4) = CNT23(7,4) + l; 

++++++++++++ ++++++++ JA TEST+++++++++++++++++++++++++++++++; 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· , 

N12= (Y'*Ml *YH12)#/SQRT(YH12'*Ml *YH12); 

N13 = (Y'*Ml *YH13)#/SQRT(YH13'*Ml *YH13); 

N32= (Y'*M3*YH32)#/SQRT(YH32'*M3*YH32); 

N23 = (Y'*M2*YH23)#/SQ RT(YH23'*M2*YH23); 

N21 = (Y'*M2*YH21)#/SQRT(YH21'"'M2*YH21); 

N31 = (Y'*M3*YH31)#/SQRT(YH31'*M3*YH31); 

*SIGS FOR JA-TEST; 

XJ12= XliiYH12; XJ21 = X211YH21; 

XJ13=Xli1YH13; XJ31 = X311YH31; 

XJ23 = X211YH23; XJ32 = X311YH32; 

XJ 12P = XJ 12'; XJ 12P 12=XJ12'*XJ 12; XIJ 12=SOLVE(XJ12P 12,XJ 12P); 

XJ21P = XJ21'; XJ21P21 = XJ2l'*XJ21; XIJ21 = SOLVE(XJ21P21,XJ21P); 

XJ13P= XJ13'; XJ13Pl3= XJ13'*XJ13; XIJ13= SOLVE(XJ13Pl3,XJ13P); 

XJ31P= XJ31'; XJ31P31 = XJ3l'*XJ31; XIJ31 = SOLVE(XJ31P31,XJ31P); 

XJ23P = XJ23'; XJ23P23 = XJ23'*XJ23; XIJ23 = SOLVE(XJ23P23,XJ23P); 

XJ32P= XJ32'; XJ32P32= XJ32'*XJ32; XIJ32= SOLVE(XJ32P32,XJ32P); 

SJA12= Y'*(IN-XJ12*XIJ12)*Y#/(N-Kl-1); 

SJA13 = Y'*(IN-XJ13*XIJ13)*Y#/(N-Kl-1); 

SJA23 = Y'*(IN-XJ23*XIJ23)*Y#/(N-K2-l); 
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SJA32 = Y'*(IN-XJ32*XIJ32)+Y #/(N-K3-1 ); 

SJA21 = Y'*(IN-XJ21 *XIJ21)*Y#/(N-K2-1); 

SJA31 = Y'*(IN-XJ31 *XIJ3l)*Y#/(N-K3-l); 

JA(M,l) = N12#/SQRT(SJA12); 

JA(M,2) = N13#/SQRT(SJA13); 

JA(M,3)= N21#/SQRT(SJA21); 

JA(M,4) = N23#/SQRT(SJA23); 

JA(M,5) = N31#/SQRT(SJA31); 

JA(M,6) = N32#/SQRT(SJA32); 

*COMPARE TO CRITICAL VALUES; 

JAH95=JA(M,) > =VJ95(NN,); 

CJA95 = CJA95 + JAH95; 

*COUNT FOR POWER AND TYPE! ERROR; 

IF ALL(JAH95(,l 3) = Rl) THEN CPJA12= CPJA12+ l; 

ELSE IF ALL(JAH95(,l 3) = R2) OR ALL(JAH95(,l 3) = R3) 

THEN CEJA12= CEJA12+ 1; 

IF ALL(JAH95(,2 5)=Rl) THEN CPJA13=CPJA13+ l; 

ELSE IF ALL(JAH95(,2 5) = R2) OR ALL(JAH95(,2 5) = R3) 

THEN CEJA13 = CEJA13 + l; 

*COMPARE AND COUNT FOR 2 VS 3; 

IF (JAH95(,4 6)=R3) THEN CNT23(8,l)=CNT23(8,l)+ l; 

ELSE IF (JAH95(,4 6) =RO) THEN CNT23(8,2) = CNT23(8,2) + 1; 

ELSE IF (JAH95(,4 6) = R 1) THEN CNT23(8,3) = CNT23(8,3) + l; 

ELSE CNT23(8,4) = CNT23(8,4) + l; 

** * * * * * * * * * **********CLASSICAL F-TEST* * * ** * * ** * * * * * * * * * * * * * * *; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
' 

Xl2= Xl11X2; Xl2P= Xl2'; Xl2PX12= Xl2'*Xl2; XI12= SOLVE(Xl2PX12,Xl2P); 
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Xl3= XlllX3; Xl3P= Xl3'; Xl3PXl3= Xl3'*X13; XIl3= SOLVE(Xl3PXl3,Xl3P); 

X23=X211X3; X23P=X23'; X23PX23=X23'*X23; Xl23=SOLVE(X23PX23,X23P); 

Ml2= IN-Xl2*XI12; SIGl2= (Y'*Ml2"'Y)#/(N-Kl-K2); 

M13= IN-Xl3*Xl13; SIGl3 = (Y'*Ml3*Y)#/(N-Kl-K3); 

M23= IN-X23*Xl23; SIG23= (Y'*M23*Y)#/(N-K2-K3); 

SSREG12= Y'*(IN-Ml2)*Y; 

SS REG 13=Y'*(IN-M13) *Y; 

SSREG23= Y'*(IN-M23)*Y; 

F(M,I) =(SS REG 12-B l""Xl'*Y)#/(SIG 12*K2); 

F(M,3) = (SSREG12-B2'*X2'*Y)#/(SIG 12*Kl); 

F(M,2) = (SSREG13-B l'*Xl'*Y)#/(SIG 13*K3); 

F(M,5) =(SS REG 13-B3'*X3'*Y)#/(SIG 13*K I); 

F(M,4) = (SSREG23-B2'*X2'*Y)#/(SIG23*K3); 

F(M,6) = (SSREG23-B3'*X3'*Y)#/(SIG23*K2); 

"'"'"'"'"'"'"'"'"'"'"'"'"'*"'"'"'"'"'*"'"'"'*****************"'*"'****************· ' 
****COMPUTE TRUE NCP'S FOR F-TEST; 

NCPF(M,l)= BETA1'*Xl'*M2*Xl *BETA1#/(2*VAR1); 

NCPF(M,2) =BET Al '+X l'*M3*X 1 *BETA1#/(2*V AR 1 ); 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
' 

*COMPARE TO CRITICAL VALUES; 

FH95 = F(M,) > = VF95(NN ,); 

CF95 = CF95 + FH95; 

*COUNT FOR POWER AND TYPE 1 ERROR; 

IF ALL(FH95(,I 3) =RI) THEN CPF12= CPF12+ l; 

ELSE IF ALL(FH95(,1 3)=R2) OR ALL(FH95(,l 3)=R3) 

THEN CEF12=CEF12+ 1; 

IF ALL(FH95(,2 S)=Rl) THEN CPF13=CPF13+ 1; 

ELSE IF ALL(FH95(,2 5) = R2) OR ALL(FH95(,2 5) = R3) THEN CEF 13=CEF13 + l; 
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•COMPARE AND COUNT FOR 2 VS 3; 

IF (FH95(,4 6) = R3) THEN CNT23( 10, 1) = CNT23( 10, 1) + 1; 

ELSE IF (FH95(,4 6) =RO) THEN CNT23(10,2)= CNT23(10,2) + 1; 

ELSE IF (FH95(,4 6) = R 1) THEN CNT23( 10,3) = CNT23( 10,3) + 1; 

ELSE CNT23( 10,4) = CNT23( 10,4) + 1; 

++++++++++++++++++++NEW JA TEST ++++++++++++++++++++++++++++++; 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
' 

NJ(M,1)= N12#/SQRT(SIG12); 

NJ(M,2) = N 13#/SQRT(SIG 13); 

NJ(M,3) = N21#/SQRT(SIG 12); 

NJ(M,4) = N23#/SQRT(SIG23); 

NJ(M,5)= N31#/SQRT(SIG13); 

NJ(M,6) = N32#/SQRT(SIG23); 

+++++++++++++++++++++++++++++++++++++++++++++++++++++· 
' 

++++COMPUTE NCP'S FOR NJ TEST; 

NCPT(M,l) = (BETA1'"'Xl""M2"'Al "'A2"'Y)##2#/ 

(Y'"'A2"'Al "'M2"'Al "'A2"'Y#2#VAR1); 

NCPT(M,2) = (BETA1'"'Xl'"'M3"'Al "'A3"'Y)##2#/ 

(Y'"'A3"'Al "'M3"'Al "'A3"'Y#2#VAR1); 

"'""""""NCPT EVALUATED AT El (Y) """"'""""'""""'; 

ENCPT(M,l) = (BETAI""Xl'*M2"'Al *A2"'Xl "'BETA1)##2#/ 

(BETA1'"'Xl'"'A2"'Al "'M2"'Al "'A2"'Xl "'BETA1#2#VAR1); 

ENCPT(M,2) = (BETAl'"'Xl'"'M3"' Al"' A3"'Y)##2#/ 

(BETA1'"'Xl'*A3"'Al "'M3"'Al "'A3"'Xl "'BETA1#2#VAR1); 

•++++++•+++++++++++++•+++++++++++++++++•+++++++++++++++. 
' 

+++++++++++++++++++++++++••····································· ' 
.................................................................................. 

' 
*COMPARE TO CRITICAL VALUES; 
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NJH95 = ABS(NJ(M,)) > = VNJ95(NN ,); 

CNJ95 = CN195 + NJH95; 

"'POWER AND TYPE l ERROR COUNTS; 

IF ALL(NJH95(,l 3) = Rl) THEN CPNJ12= CPNJ12+ l; 

ELSE IF ALL(NJH95(,l 3)= R2) OR ALL(NJH95(,l 3)= R3) THEN 

CENJ12=CENJ12+ l; 

IF ALL(NJH95(,2 5)=Rl) THEN CPNJ13=CPNJ13+ l; 

ELSE IF ALL(NJH95(,2 5) = R2) OR ALL(NJH95(,2 5) = R3) THEN 

CENJ13= CENJ13+ l; 

"'COMPARE AND COUNT FOR 2 VS 3; 

IF (NJH95(,4 6)=R3) THEN CNT23(9,l)=CNT23(9,l)+ l; 

ELSE IF (NJH95(,4 6) =RO) THEN CNT23(9,2) = CNT23(9,2) + l; 

ELSE IF (NJH95(,4 6) = R 1) THEN CNT23(9,3) = CNT23(9,3) + 1; 

ELSE CNT23(9,4) = CNT23(9,4) + l; 

................................................................................................................................................................ 

' 
"'CALCULATE P-VALUES ASSOCIATED WITH REJECTING FALSE MODEL; 

................................................................................................................................................................... 

' 
IF CH95(,l)=O THEN PV12(M,l)=(l-PROBNORM(ABS(C(M,3))))"'2; 

ELSE PV12(M,l) = l; 

IF WH95(,l) = 0 THEN PV12(M,2) = (1-PROBNORM(ABS(W(M,3))))"'2; 

ELSE PV12(M,2) = l; 

IF NH95(,l) = 0 THEN PV12(M,3) = (1-PROBNORM(ABS(NO(M,3))))"'2; 

ELSE PV12(M,3)= l; 

IF NAH95(,l) = 0 THEN PV12(M,4) = (1-PROBNORM(ABS(NA(M,3))))"'2; 

ELSE PV12(M,4) = l; 

IF NLH95(, l) = 0 THEN PV12(M,5) = (l-PROBNORM(ABS(NL(M,3))))"'2; 

ELSE PV12(M,5) = l; 
IF JH95(,1) = 0 THEN PV12(M,6) = (l-PROBT(ABS(JJ(M,3)),N-Kl-1))"'2; 
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ELSE PV12(M,6)= 1; 

IF AJH95(,l) = 0 THEN PV12(M,7) = (l-PROBT(ABS(AJ(M,3)),N-Kl-1))"'2; 

ELSE PV12(M,7)= l; 

IF JAH95(,l) = 0 THEN PV12(M,8)= (l-PROBT(ABS(JA(M,3)),N-Kl-1))"'2; 

ELSE PV12(M,8) = 1; 

IF NJH95(,1)= 0 THEN PV12(M,9)= (l-PROBT(ABS(NJ(M,3)),N-Kl-K2))"'2; 

ELSE PV12(M,9)= l; 

IF FH95(,l)= 0 THEN PV12(M,IO)= 1-PROBF(F(M,3),K2,N-Kl-K2); 

ELSE PV12(M,10) = l; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++. 
' 

+RANK P VALUES WITHIN EACH ITERATION (ROW); 

RK12(M;) = RANKTIE(PV12(M,)); 

"'COUNT TIES FOR ADJUSTMENT ON KENDALL'S C.C. ; 

TIES12 = (PV12(M,)=TIECK); 

NTIES12 = TIES12(, + ); SUMTIE12= SUMTIE12+ (NTIES12*"'3-NTIES12)#/12; 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
' 

+CALCULATE P-VALUES ASSOCIATED WITH REJECTING FALSE MODEL--13; 

IF CH95(,2) = 0 THEN PV13(M,l) = (1-PROBNORM(ABS(C(M,5))))"'2; 

ELSE PV13(M,l) = 1; 

IF WH95(,2) = 0 THEN PV13(M,2) = (1-PROBNORM(ABS(W(M,5))))"'2; 

ELSE PV13(M,2)= I; 

IF NH95(,2)= 0 THEN PV13(M,3)= (1-PROBNORM(ABS(NO(M,5))))"'2; 

ELSE PV13(M,3) =I; 

IF NAH95(,2) = 0 THEN PV13(M,4) = (1-PROBNORM(ABS(NA(M,5))))"'2; 

ELSE PV13(M,4) = l; 

IF NLH95(,2) = 0 THEN PV13(M,5) = (1-PROBNORM(ABS(NL(M,5))))"'2; 

ELSE PV13(M,5)= 1; 

IF JH95(,2) = 0 THEN PV13(M,6)= (l-PROBT(ABS(JJ(M,5)),N-Kl-1))"'2; 
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ELSE PV13(M,6) = l; 

IF AJH95(,2) = 0 THEN PV13(M,7) = (l-PROBT(ABS(AJ(M,5)),N-Kl-1))+2; 

ELSE PV13(M,7) = l; 

IF JAH95(,2) = 0 THEN PV13(M,8) = (l-PROBT(ABS(JA(M,5)),N-Kl-1))+2; 

ELSE PV13(M,8)= l; 

IF NJH95(,2) = 0 THEN PV13(M,9) = (l-PROBT(ABS(NJ(M,5)),N-Kl-K3))+2; 

ELSE PV13(M,9) = l; 

IF FH95(,2) = 0 THEN PV13(M,10) = 1-PROBF(F(M,5),K2,N-Kl-K3); 

ELSE PV13(M,10)= l; 

++++++++++RANK P VALUES WITHIN EACH ITERATION (ROW); 

RK13(M,) = RANKTIE(PV13(M,)); 

+COUNT TIES FOR ADJUSTMENT ON KENDALL'S C.C. ; 

TIES 13 = (PV 13(M,) =TIECK); 

NTIES13 = TIES13(, + ); SUMTIE13= SUMTIE13+ (NTIESIJ++J-NTIES13)#/12; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++· , 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++. , 

*****TAKE CARE OF POWER COMPUTATIONS+++++++++++++++++••••••++•; 

++++++++++++++++++•••••••++++++++++++••••••••••+++•+•••••+++••· , 

**FOR F: 2 VS l; R= Kl; DF2= N-Kl-K2; CV=VF95(NN,3); L= NCPF(M,l); 

PF2(M, 1) = l-FPROB(CV,R,DF2,L); 

**FOR F: 3 VS l; R =Kl; DF2= N-Kl-K3; CV= VF95(NN,5); L= NCPF(M,2); 

PF2(M,2) = l-FPROB(CV,R,DF2,L); 

+++•POWER COMPUTATIONS FOR NJ TEST++++; 

**FORT: 2 VS 1; R= l; DF2=N-Kl-K2; CV=VNJ95(NN,3)##2; L=NCPT(M,l); 

PT(M,1) = 1-FPROB(CV,R,DF2,L); 

**FORT: 3 VS l; R= l; DF2=N-Kl-K3; CV=VNJ95(NN,5)##2; L=NCPT(M,2); 

. PT(M,2)= l-FPROB(CV,R,DF2,L); 

•••+++++++++NJ POWER BASED ON EXPECTED VALUE OF Y UNDER Hl *****; 
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"""FORT: 2 VS 1; R= 1; DF2= N-Kl-K2; CV=VNJ95(NN,3)##2; L= ENCPT(M,l); 

EPT(M,1) = 1-FPROB(CV,R,DF2,L); 

++FORT: 3 VS 1; R= 1; DF2= N-Kl-K3; CV=VNJ95(NN,5)##2; L=ENCPT(M,2); 

EPT(M,2) = 1-FPROB(CV,R,DF2,L); 

++++++++POWER SUMS AND SS CALCULATIONS FOLLOWING THE LOOP; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
' 

+END OF ITERATIVE LOOP; 

END; 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
' 

++++++++++++POWER COMPARISONS AND AVG POWER CALCS+++++++++; 

SUMPF2= PF2( + ,); SUMPT= PT(+,); 

AVGPF2= SUMPF2#/NITER; AVGPT= SUMPT#/NITER; 

SSF2= (PF2#PF2)( + ,); SST= (PT#PT)( + ,); 

STDERPF2 = (SSF2-SUMPF2#S UMPF2#/NITER)#/(NITER-l); 

STDERPT= (SST-SUMPT#SUMPT#/NITER)#/(NITER-1); 

SUMEPT = EPT( + ,); 

AVGEPT = SUMEPT#/NITER; 

SSET = (EPT#EPT)( + ,); 

STDEREPT= (SSET-SUMEPT#SUMEPT#/NITER)#/(NITER-1); 

HF= AVGPF2'11STDERPF2'; HT= AVGPT'llSTDERPT'; HET = AVGEPT'llSTDEREPT'; 

++++++++++COMPUTE A SSE FOR DEVIATIONS BETWEEN POWER T AND E(POWERT) 

ITERATION BY ITERATION +++++++++++++++++++++++++++++++++; 

DIFFPT= PT-EPT; SSDIFFPT= (DIFFPT#DIFFPT)( + ,); 

A VG2DIFF = SSDIFFPT#/NITER; 

DIFFT= SSDIFFPT//AVG2DIFF; 

+++++++++ITERATION BY ITERATION COMPARISON OF POWER++++++++; 

COMPF2T = (PF2 > PT); 
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AVGCOF2T = ( COMPF2T( + ,) )#/NITER; 

POWRCOMP= HF//HT//AVGCOF2T//HET//DIFFT; PRINT POWRCOMP; 

++++++++++++++++++++++++++••··································· 
' 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++•· 
' 

++++CREATE VECTORS FOR STORING POWER,STND ERR, IERROR, STND ERR; 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ' 
C12=J(l,4,0); W12=J(l,4,0); N12=J(l,4,0); NA12=J(l,4,0); NL12=J(l,4,0); 

C13=J(l,4,0); W13=J(l,4,0); N13=J(l,4,0); NA13=J(l,4,0); NL13=J(l,4,0); 

Jl2=J(l,4,0); AJ12,,.,;J(l,4,0); JA12=J(l,4,0); NJ12=J(l,4,0); 

J13=J(l,4,0); AJ13=J(l,4,0); JA13=J(l,4,0); NJ13=J(l,4,0); 

Fl2=J(l,4,0); 

F13=J(l,4,0); 

•NEED TO COMPUTE POWER AND TYPE 1 ERROR PROBABILITIES; 

C12(, 1) = CPC12#/NITER; Cl2(,3) = CEC12#/NITER; 

C13(,l) = CPC13#/NITER; Cl3(,3) = CEC13#/NITER; 

C12(,2)=SQRT((CPC12-CPC12°2#/NITER)#/(NITER•(NITER-l))); 

Cl2(,4) = SQRT((CEC12-CEC12°2#/NITER)#/(NITER •(NITER-1))); 

C13(,2) = SQRT((CPC13-CPC13°2#/NITER)#/(NITER •(NITER-1))); 

C13(,4)= SQRT((CEC13-CEC13°2#/NITER)#/(NITER •(NITER-1))); 

Wl2(,l) = CPW12#/NITER; Wl2(,3) = CEW12#/NITER; 

W13(,l) = CPW13#/NITER; W13(,3) = CEW13#/NITER; 

W12(,2) = SQRT((CPW12-CPW12••2#/NITER)#/(NITER •(NITER-1))); 

W12(,4) = SQRT((CEW12-CEW12°2#/NITER)#/(NITER +(NITER-I))); 

W13(,2) = SQRT((CPW13-CPW 13••2#/NITER)#/(NITER •(NITER-1))); 

W13(,4)=SQRT((CEW13-CEW13°2#/NITER)#/(NITER•(NITER-l))); 

N 12(, 1) = CPN 12#/NITER; N 12(,3) = CEN 12#/NITER; 

N 13(, 1) = CPN 13#/NITER; N 13(,3) = CEN 13#/NITER; 

N 12(,2) = SQRT((CPN 12-CPN 12••2#/NITER)#/(NITER •(NITER-1))); 
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N I2(,4) = SQRT((CENI2-CENI2**2#/NITER)#/(NITER *(NITER-I))); 

N13(,2) = SQRT((CPNI3-CPN13**2#/NITER)#/(NITER *(NITER-I))); 

N13(,4)=SQRT((CEN13-CEN13**2#/NITER)#/(NITER*(NITER-I))); 

NAI2(,I) = CPNAI2#/NITER; NAI2(,3) = CENAI2#/NITER; 

NA13(,I) = CPNAI3#/NITER; NA13(,3) = CENA13#/NITER; 

NAI2(,2) = SQRT((CPNAI2-CPNAI2**2#/NITER)#/(NITER *(NITER-1))); 

NAI2(,4) = SQRT((CENAI2-CENA12**2#/NITER)#/(NITER *(NITER-1))); 

NAI3(,2) = SQRT((CPNAI3-CPNA13**2#/NITER)#/(NITER *(NITER-1))); 

NA 13(,4) = SQRT(( CENA I 3-CENA 13 **2#/NITER )#/(NITER*( NITER- I))); 

NL12(,I) = CPNL12#/NITER; NL12(,3) = CENL12#/NITER; 

NL13(,I) = CPNL13#/NITER; NL13(,3) = CENL13#/NITER; 

NL12(,2) = SQRT((CPNL12-CPNL12**2#/NITER)#/(NITER *(NITER-I))); 

NL12(,4) = SQRT((CENL12-CENL12**2#/NITER)#/(NITER *(NITER- I))); 

NL13(,2) = SQRT((CPNL13-CPNL13**2#/NITER)#/(NITER *(NITER-1))); 

NLlJ(,4) = SQRT((CENL13-CENL13**2#/NITER)#/(NITER *(NITER- I))); 

112(,I) = CPJ12#/NITER; 112(,3) = CEJI2#/NITER; 

113(,I)= CPJ13#/NITER; 113(,3)= CEJ13#/NITER; 

112(,2) = SQRT((CP112-CPJI2**2#/NITER)#/(NITER *(NITER-I))); 

112(,4)= SQRT((CEJI2-CE112**2#/NITER)#/(NITER *(NITER-I))); 

113(,2) = SQRT((CPJ13-CPJI3**2#/NITER)#/(NITER *(NITER-I))); 

J 13(,4) = SQRT((CEJ13-CE113**2#/NITER)#/(NITER *(NITER-I))); 

AJI2(,l) = CPAJ12#/NITER; AJI2(,3) = CEAJ12#/NITER; 

AJ13(,l) = CPAJ13#/NITER; AJ13(,3) = CEAJI3#/NITER; 

AJI2(,2) = SQRT((CPAJI2-CPAJI2**2#/NITER)#/(NITER *(NITER-I))); 

AJI2(,4) = SQRT((CEAJI2-CEAJ I2**2#/NITER)#/(NITER *(NITER-I))); 

AJI3(,2) = SQRT((CPAJ 13-CPAJ13**2#/NITER)#/(NITER *(NITER-I))); 

AJ13(,4) = SQRT((CEAJ13-CEAJ13**2#/NITER)#/(NITER *(NITER-I))); 

JA12(,1/ = CPJAI2#/NITER; JAI2(,3) = CEJAI2#/NITER; 
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JA13(,l) = CPJA13#/NITER; JA13(,3) = CEJA13#/NITER; 

JA12(,2) = SQRT((CPJA12-CPJA12**2#/NITER)#/(NITER +(NITER-1))); 

JA12(,4) = SQRT((CEJA12-CEJA12++2#/NITER)#/(NITER +(NITER-1))); 

JA13(,2) = SQRT((CPJA13-CPJA13++2#/NITER)#/(NITER +(NITER-1))); 

JA13(,4) = SQRT((CEJA13-CEJA13++2#/NITER)#/(NITER +(NITER-1))); 

NJ12(,1) = CPNJ12#/NITER; NJ12(,3) = CENJ12#/NITER; 

NJ 13(, 1) = CPNJ 13#/NITER; NJ 13(,3) = CENJ I3#/NITER; 

NJ12(,2) = SQRT((CPNJ12-CPNJ12+*2#/NITER)#/(NITER +(NITER-1))); 

NJ 12(,4) = SQRT((CENJ12-CENJ12*+2#/NITER)#/(NITER +(NITER-1))); 

NJ13(,2) = SQRT((CPNJ13-CPNJ13++2#/NITER)#/(NITER *(NITER-1))); 

NJ13(,4) = SQRT((CENJ13-CENJ13+*2#/NITER)#/(NITER *(NITER-1))); 

F12(,1)= CPF12#/NITER; Fl2(,3) = CEF12#/NITER; 

F13(,l) = CPF13#/NITER; F13(,3) = CEF I3#/NITER; 

F 12(,2) = SQRT((CPF 12-CPF 12*+2#/NITER)#/(NITER +(NITER- I))); 

F 12(,4) = SQRT((CEF12-CEF12**2#/NITER)#/(NITER +(NITER-I))); 

F13(,2) = SQRT((CPF13-CPF13++2#/NITER)#/(NITER +(NITER-1))); 

F13(,4) = SQRT((CEF13-CEF 13++2#/NITER)#/(NITER +(NITER-1))); 

+PRINT C12 W12 N12 NA12 NL12 J12 AJ12 JA12 NJ12 F12; 

+PRINT C13 W13 N13 NA13NL13113 AJ13 JA13 NJ13 F13; 

TESTS12= C12//W12//N 12//NA12//NL12//J 12//AJ 12//JA12//NJ 12//F 12 ; 

TESTS 13=Cl3//W13//Nl3//NA13//NL13//J13//AJ 13//JA13//NJ13//F13 ; 

+++HOLD TEST RESULTS TO COMBINE WITH AVG RANKS FURTHER DOWN; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
' 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
' 

+++++CALCULATE MEAN AND STND ERROR OF R2 FOR 'ALL 3 MODELS; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
' 

MR2=SR2#/NITER; SER2=J(3,l,O); 

DO I= 1TO3; 
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SER2(1,) = SQRT((SUSR2(1,)-SR2(I,)++2#/NITER)#/(NITER +(NITER-1))); 

END; R2INFO = MR211SER2; PRINT R21NFO; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
' 

+++++++CALCULATE KENDALL'S COEFFICIENT OF CONCORDANCE--KW12; 

SUMRK12= RK12( + ,); RBAR =J(l,10,(NITER +6)); 

RKB = SUMRK12-RBAR; 

WSUM12= (RKB#RKB)(, + ); 

KW12= 12+WSUM12#/(99Q+NITER 0 2 - NITER +SUMTIE12); 

+++CALCULATE THE AVERAGE RANKING OF EACH TEST FOR THIS RUN; 

AVRANK12= SUMRK12#/NITER; 

TESTS12=TESTS12JIAVRANK12'; PRINT TESTS12; 

+++CALCULATE THE P-VALUE ASSOCIATED WITH CORRES S FOR KENDALL'S W; 

Sl2= NITER +9+KW12; 

SIGW12= l-PROBCHl(Sl2,9); 

+PRINT SUMRK12 AVRANK12; KENDAL12=WSUM12JIKW1211S1211SIGW12; 

PRINT KENDAL12; 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++. , 

++++++CALCULATE KENDALL'S COEFFICIENT OF CONCORDANCE--KW13; 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· , 

SUMRK13= RK13( + ,); RBAR=J(l,10,(NITER +6)); 

RKB=SUMRK13-RBAR; 

WSUM13= (RKB#RKB)(, + ); 

KW13= I2+WSUM13#/(990+NITER ++2 - NITER +SUMTIE13); 

+++CALCULATE THE AVERAGE RANKING OF EACH TEST FOR THIS RUN; 

AVRANK13 = SUMRK13#/NITER; 

TESTS 13=TESTS1311AVRANK 13'; PRINT TESTS13; 

+++CALCULATE THE P-VALUE ASSOCIATED WITH CORRES S FOR KENDALL'S W; 

S13= NITER +9+KW13; 
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SIGW13= l-PROBCHI(Sl3,9); 

"'PRINT SUMRK13 AVRANK13; KENDAL13=WSUM1311KW131iS131iSIGW13; 

PRINT KENDAL13; 
.,..,..,..,..,..,. .. .,. . .,. ... .,. .. .,. .. .,..,. . .,. . .,. ... .,. ........ .,..,. ... .,..,. .. .,..,. .. .,..,. . .,..,..,..,. .. . 

""""'CALCULATE AND PRINT% FOR MODEL 2 VS 3; 

PCNT23 = CNT23#/NITER; 

PRINT PCNT23; 

.,. . .,. ............................................. .,. ......... . 
' 

' 

•••••••••••••••••••••++THE END•••••••••••••••••++•••••••; 

.............................. .,. ........................... . 
' ,. 

II 

Non-Normal Deviate Case: Simulation Program 

//BO###NND JOB acct#,NONNORM,TIME= 15,REGION=3072K 

/"'LONGKEY ##### 

/"'PRIORITY IDLE 

/"'JOBPARM LINES=5 

//STEP! EXEC FORTVC 

//FORT.SYSIN DD "' 

c 
C •++This program illustrates calling a FORTRAN Function from SAS. 

c 
INTEGER FUNCTION MATSUB( NARG, ARGS ) 

INTEGER •4 NARG 
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INTEGER +4 ARGS( 1 ) 

INTEGER+4 MIN, MAX, ROW, COL, ILOC, OLOC, NTOTAL 

C IARRAY is an input array passed from SAS to FORTRAN. 

C OARRAY is an output array generated by FORTRAN and returned to SAS. 

REAL +g IARRA Y( 1 ), OARRA Y( 1 ) 

C The following Declarations are used in the implementation of 

C the IMSL Subroutine GGNML: 

C XX is a single precision vector used to contain the values 

C generated by GGNML. These values are then assigned to 

C output matrix OARRA Y. 

C NOTE: SAS programs expect passed arrays to be declared 

C as REAL +g variables. Although this program 

C links in the IMSL Double Precision library, 

C Subroutine GGNML returns Single Precision values. 

C DSEED is a double precision number used as the seed for the 

C random number generator. 

REAL+4 XX(lOOOO) 

DOUBLE PRECISION DSEED 

DATA DSEED/28217.DO/ 

c++ TEST TO ENSURE THAT ONLY ONE ARGUMENT IS PASSED TO THIS PROCEDURE 

IF( NARG.NE.1) THEN 

MATSUB = 5 

RETURN 

END IF 

c 
C++ TEST TO ENSURE THAT THE ONE ARGUMENT IS A MATRIX 

C (i.e. the input value is at least a 1 · X 1 array) 

CALL ARG( ARGS(l), ROW, COL, ILOC, IARRAY) 
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c 

MIN= MINO( ROW, COL) 

IF(MIN.LT.l) THEN 

MATSUB= 6 

RETURN 

END IF 

c++ DEFINE THE OUTPUT MATRIX 

c 
C-- Routine SETUP defines the output matrix and has the form: 

c 
C CALL SETUP(IRES,NROWS,NCOLMS) 

c 
C where IRES is a result number -- can use 1. 

C NROWS is the number of rows in the output matrix. 

C NCOLMS is the number of columns in the output matrix. 

c 
C -- Use the following with ZRPOL Y: 

C MAX = MAXO( ROW,COL) 

C CALL SETUP(l,MAX-1,2) 

C -- Use the following with GGNML: 

CALL SETUP(l,ROW,COL) 

c 
C -- Subroutine ARG is used to get the dimensions and location of 

C the matrices according to their symbol table number IARG(I): 

c 
CALL ARG( l, ROW,COL, OLOC, OARRAY) 

IF( ROW.EQ. 0 .OR. COL.EQ.O ) THEN 

MATSUB= 1 
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c 

RETURN 

END IF 

C --- Call the desired IMSL Subroutine: 

c 
C - GNML is a Gaussian (Normal) random deviate generator: 

C XX is used as a temporary 'array' for storing the 

C generated random deviates which are then placed 

C in array OARRAY which is passed from FORTRAN to SAS 

C (indexing into OARRAY starts at location OLOC). 

NTOT AL = ROW + COL 

CALL GGNML( DSEED, NTOT AL, XX ) 

IJ = 0 

DO 1000 I= l,ROW 

DO 1000 J= l,COL 

IJ=IJ+l 

1000 OAR RA Y(OLOC + IJ-1) = XX(IJ) 

RETURN 

END 

1+ 

II+ STEP0002 EXEC PGM=IEWL,PARM='MAP,LIST 

I ISTEP0002 EXEC PGM = IEWL 

llSYSPRINT DD SYSOUT=A 

llSYSUTl DD UNIT=SYSDA,SPACE=(TRK,(40,40)) 

llSYSLIB DD DSN= SYS2.SAS.SUBLIB,DISP= SHR 

II DD DSN=SYS2.SAS.LIBRARY,DISP=SHR 

II DD DSN=SYS2.PLIBASE,DISP=SI-IR 

II DD DSN=SYS2.R3.VFORTLIB,DISP=SHR 
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II DD DSN=VPI.IMSL.DP,DISP=SHR 

11 • In the lines which follow: 

I 1 • The SETSSI statement describes the characteristics of the input 

11• function. The values in positions 3 and 4 specify the number 

11 • of arguments passed to the function; these should be equal. 

11 • If all arguments are numeric, the last four digists are zero. 

11 • For additional information regarding this statement, see: 

11• Technical Report: P-139. SAS Programmers Guide Version 5. 

11• The NAME statement specifies the name used to call the function 

11•· from within the SAS program. The R designates that any previous 

11• function having this name will be replaced. 

I ISYSLIN DD DSN = &&LOADSET,DISP = (OLD,DELETE,DELETE) 

II DD• 

INCLUDE SYSLIB(MATMAIN) 

ENTRY MATMAIN 

SETSSI BFllOOOO 

NAME XXXXXX(R) 

1• 

11• IN THE 

//SYSLMOD DD DSN= &LIBRARY,DISP= (NEW,PASS,DELETE),UNIT= SYS DA, 

II SPACE= (CYL,(10,20,20),,CONTIG) 

l/STEP3 EXEC FORTVC 

llFORT.SYSIN DD • 

c 
C •••This program illustrates calling a FORTRAN Function from SAS. 

c 
INTEGER FUNCTION MATSUB( NARG, ARGS) 

INTEGER •4 NARG 
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INTEGER *4 ARGS( 1 ) 

INTEGER*4 MIN, MAX, ROW, COL, ILOC, OLOC, NTOTAL 

C !ARRAY is an input array passed from SAS to FORTRAN. 

C OARRAY is an output array generated by FORTRAN and returned to SAS. 

REAL*8 IARRAY( 1 ), OARRAY( 1 ), WORK2( 1 ), WORK3( 1) 

REAL *4 TN(20), XX(20), CHI(20), T(20) 

DOUBLE PRECISION DSEED 

DATA DSEED/39441.DO/ 

C** TEST TO ENSURE THAT ONLY ONE ARGUMENT IS PASSED TO THIS PROCEDURE 

IF( NARG.NE.1 ) THEN 

MATSUB = 5 

RETURN 

ENDIF 

c 
C** TEST TO ENSURE THAT THE ONE ARGUMENT IS A MATRIX 

C (i.e. the input value is at least a 1 X 1 array) 

c 

CALL ARG( ARGS(l), ROW, COL, ILOC, IARRAY) 

MIN= MINO( ROW, COL) 

IF(MIN.LT.1) THEN 

MATSUB= 6 

RETURN 

ENDIF 

CALL SETUP(l,ROW,COL) 

CALL ARG( 1, ROW,COL, OLOC, OARRA Y) 

IF( ROW.EQ. 0 .OR. COL.EQ.O ) THEN 

MATSUB= 1 

RETURN 
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END IF 

c 
C --- Call the desired IMSL Subroutine: 

c 
NTOTAL =ROW I 4 

CALL GGNML( DSEED, NTOTAL, XX ) 

1499 DO 1500 K= l,NTOTAL 

HOLD= GGNQF(DSEED) 

IF(ABS(HOLD).GE.(1.6449)) GOTO 1499 

TN(K)=HOLD 

1500 CONTINUE 

DO 1620 K= l,NTOTAL 

CALL GGCHS(DSEED,2,WORK2,CHl(K)) 

CALL GGCHS(DSEED,3,WORK3,CHI3H) 

T(K) = XX(K)ISQRT(CHl3Hl3) 

1620 CONTINUE 

DO 1000 I= l,NTOTAL 

OARRAY(OLOC+ 1-1) = TN(I) 

OARRAY(OLOC+ NTOTAL+ 1-1) = T(I) 

OARRAY(OLOC+2*NTOTAL+l-l) = XX(I) 

OARRAY(OLOC+3*NTOTAL+I-l) =CHI(!) 

1000 CONTINUE 

RETURN 

END 

I* 

11* STEP0004 EXEC PGM = IEWL,PARM ='MAP ,LIST' 

I ISTEP0004 EXEC PGM = IEWL 

llSYSPRINT DD SYSOUT=A 
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llSYSUTl DD UNIT= SYSDA,SPACE= (TRK,(40,40)) 

I /SYS LIB DD DSN = SYS2.SAS.SUBLIB,DISP = SHR 

II DD DSN=SYS2.SAS.LIBRARY,DISP=SHR 

11 DD DSN = SYS2.PLIBASE,DISP = SHR 

II DD DSN=SYS2.R3.VFORTLIB,DISP=SHR 

II DD DSN=VPl.IMSL.DP,DISP=SHR 

llSYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE,DELETE) 

II DD+ 

INCLUDE SYSLIB(MATMAIN) 

ENTRY MATMAIN 

SETSSI BF 110000 

NAME GENERR(R) 

I* 

II* IN THE 

I ISYSLMOD DD DSN = &LIBRAR Y,DISP = (MOD,PASS,DELETE), UNIT= SYS DA, 

11 SPACE= (CYL,( 10,20,20),,CONTIG) 

I ISTEP0005 EXEC SAS 

llSYSIN DD+ 

OPTIONS NODATE LS= 80; 

PROC MATRIX; TITLE 'MONTE-CARLO FOR NONNORMAL DEVIATE CASE'; 

TITLE3 'EXPT #'; 

++++++++++++SET SIMULATION CONTROL VARIABLES+++++++++++++++++++; 

NITER= 500; N= 20; Kl=#; K2= #; K3= #; R21=0.##; P21=0.##; 

PARMTRS = NllR21llP2111Kl11K211K311NITER; PRINT PARMTRS; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++. 
' 

+++++++++++SET CRITICAL VALUES FOR TESTS+++++++++++++++++++++; 

+++++++ NN = 1-4 FOR N = 20 +++++++++++++++++++++· 
' 
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+++++++ 2 FOR 426 AND 4 FOR 444++; 

NN=#; 

+++++++SET UP CONSTANT VALUES AND CALCULATE MODEL CONTROLS ++++; 

IN= I(N); VAR!= Kl "'(l-R21)#/R21; LB= SQRT(P21#/(l-P21)); 

ONE=l(N,1,1); 

++++TO COMPUTE LOG-NORMAL DEVIATES--GO AND Gl; 

G02= LOG(0.5 + 0.5#SQRT(l + 4#VAR1)); 

G 1 = EXP(0.5#G02); GO= SQRT(G02); 

++++++++++++++· 
' 

BETA1=1(Kl,l,l); BETAlM=l(Kl,5,1); Y=l(N,5,1); 

++++++++SET UP CHECKING VECTORS FOR TEST RESULTS +++++++++++++++; 

RO=O O; Rl=O l; R2= 1 0; R3= 1 l; 

+++++++++CREATE AND INITIALIZE THE P-VALUE AND RANK MATRICES; 

PV12= l(NITER "'5,10,0); PV13 = l(NITER "'5,10,0); 

RK12=1(NITER "'5,10,0); RK13=1(NITER "'5,10,0); 

++++++++++INITIALIZE COUNTERS FOR POWER AND TYPE 1 ERROR PROBABILITIES; 

CPC12=1(5,l,O); CEC12=1(5,l,O); CPC13=1(5,l,O); CEC13=1(5,l,O); 

CPW12=1(5,l,O); CEW12=1(5,l,O); CPW13=1(5,l,O); CEW13=1(5,l,O); 

CPN12=1(5,l,O); CEN12=J(5,l,O); CPN13=1(5,l,0); CEN13=J(5,1,0); 

CPN112=1(5,l,O); CEN112=1(5,l,O); 

CPNA12=J(5,1,0); CENA1_2=1(5,l,O); CPNA13=1(5,l,O); CENA13=1(5,l,O); 

CPNL12=1(5,l,O); CENL12=1(5,l,O); CPNL13=1(5,1,0); CENL13=1(5,l,O); 

CPJ12=J(5,1,0); CE112=1(5,l,O); CPJ13=1(5,l,0); CEJ13=J(5,1,0); 

CPNJ13=1(5,1,0); CENJ13=1(5,1,0); 

CPAJ12=1(5,l,O); CEAJ12=J(5,l,O); CPAJ13=J(5,l,O); CEAJ13=J(5,l,O); 

CPJA12=1(5,l,0); CEJA12=1(5,l,O); CPJA13=1(5,1,0); CE1Al3=J(5,l,O); 

CPF12=J(5,l,O); CEF12=J(5,l,0); CPF13=J(5,l,0); CEF13=1(5,l,O); 

++++++++INITIALIZE CRITICAL VALUE VECTORS; 
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• F (J AND JA TOO) CRITICAL VALUES ARE ONLY APPROX FOR N = 40; 

VC95=1(5,6, 1.9600); 

VJ95= 2.110 2.110 2.131 2.1312.1602.160 I 

2.131 2.131 2.110 2.110 2.160 2.160 I 

2.160 2.160 2.110 2.110 2.131 2.131 I 

2.131 2.131 2.131 2.131 2.131 2.131 I 

2.042 2.042 2.042 2.042 2.042 2.042 I 

2.042 2.042 2.042 2.042 2.042 2.042 I 

2.042 2.042 2.042 2.042 2.042 2.042 I 

2.042 2.042 2.042 2.042 2.042 2.042; 

VF95 = 3.11 3.00 3. 74 3.22 3.89 3.48 I 

3.74 3.22 3.11 3.00 3.48 3.89 I 

3.89 3.48 3.00 3.11 3.22 3.74 I 

3.26 3.26 3.26 3.26 3.26 3.26 I 

2.69 2.42 3.32 2.42 3.32 2.69 I 

3.32 2.42 2.69 2.42 2.69 3.32 / 

3.32 2.69 2.42 2.69 2.42 3.32 I 

2.69 2.69 2.69 2.69 2.69 2.69; 

VNJ95= 2.145 2.179 2.145 2.228 2.179 2.228 I 

2.145 2.228 2.145 2.179 2.228 2.179 J 

2.179 2.228 2.179 2.145 2.228 2.145 I 

2.179 2.179 2.179 2.179 2.179 2.179 / 

2.042 2.042 2.042 2.042 2.042 2.042 I 

2.042 2.042 2.042 2.042 2.042 2.042 I 

2.042 2.042 2.042 2.042 2.042 2.042 I 

2.042 2.042 2.042 2.042 2.042 2.042; 

*****CREATE MATRIX 5 + 6 CRITICAL VALUES FOR THE F AND NJ TESTS; 

VF95M=VF95(NN,) II VF95(NN,) II VF95(NN,) II VF95(NN,) II VF95(NN,); 
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VNJ95M=VNJ95(NN,) II VNJ95(NN,) II VNJ95(NN,) II VNJ95(NN,) llVNJ95(NN,); 

+++++++++++++++CREATE JH95, AJH95 AND JAH95 FOR FILLING IN ROW BY ROW; 

JH95 = J(5,6,0); AJH95 = J(5,6,0); JAH95 = J(5,6,0); 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++. , 

++++++CREATE AND INITIALIZE MATRICES FOR TEST STAT VALUES; 

C = J(NITER +5,6,0); W = J(NITER +5,6,0); NO= J(NITER +5,6,0); 

JJ = J(NITER +5,6,0); JA = J(NITER +5,6,0); F = J(NITER +5,6,0); NJ= J(NITER +5,6,0); 

NA= J(NITER +5,6,0); NL= J(NITER +5,6,0); AJ = J(NITER +5,6,0); 

+++++++CREATE AND INITIALIZE COUNTER VECTORS FOR# OF SIG TEST STATS; 

CC95=J(5,6,0); CW95=J(5,6,0); CN95=J(5,6,0); 

CJ95=J(5,6,0); CJA95=J(5,6,0); CF95=J(5,6,0); CNJ95=J(5,6,0); 

CNA95 = J(5,6,0); CNL95 = J(5,6,0); CAJ95 = J(5,6,0); 

+++++++++R2 COUNTER INITIALIZATIONS; 

SR2 = J(3,5,0); SUSR2 = J(3,5,0); 

++++++++SETUP FOR KENDALL'S COEF OF CONCORDANCE --ADJUST FOR TIES; 

TIES12=J(5,10,0); TIES13=J(5,10,0); 

NTIES12=J(5,l,0); NTIES13=J(5,l,O); 

TIECK=J(l,10,1); SUMTIE12=J(5,l,O); SUMTIE13=J(5,l,O); 

+++++INITIALIZE 2X2 COUNT MATRIX FOR TESTS OF MODEL 2 VS 3; 

CNT23=1(50,4,0); 

+· , 

+++•++GENERATE MATRICES TO BE SENT TO IMSL FOR RANDOM NORMAL DEVIATES; 

XlH=J(N,Kl,l); X2H=J(N,K2,l); X3H=J(N,K3,l); ERRH=J(N+4,l,l); 

+++++++++++++++BEGINNING OF ITERATIVE LOOP+++++++++++++++++++; 

DOM= 1 TO NITER; LOC=(M-1)+5+ l; 

+++LOC FOR START POSITION TO PLACE APPROP. DEVIATES IN TEST STAT LISTS++; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· , 

++++++++++GENERATE X VALUES AND ERROR TERMS AND y+++++++++++; 
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Xl = XXXXXX(XlH); X2= XXXXXX(X2H); X3 = XXXXXX(X3H); 

IF K2> =Kl THEN X2(,l:Kl) = LB*Xl + X2(,l:Kl); 

ELSE X2= LB* Xl(,l:K2) + X2; 

IF K3 >=Kl THEN X3(,l:Kl) = LB*Xl + X3(,l:Kl); 

ELSE X3= LB* Xl(,l:K3) + X3; 

ERR= GENERR(ERRH); SIGMA!= SQRT(VAR 1 ); 

ERR!= ERR(l:N,l)#SIGMAl#/SQRT(0.6230336); * !--TRUNCATED NORMALS; 

ERR2= ERR(N + 1:2*N,l)#SQRT(VAR1#/3); * 2--STUDENT T-S; 

ERR3 = EXP(ERR(2*N + 1:3*N, l)#GO)-ONE#G 1; + 3--LOGNORMALS; 

TWO =J(N,1,2); 

ERR4= (ERR(3*N + 1:4*N,l)-TWO)#SIGMA1#/2; + 4--CHI-SQUARES; 

ERR5=ERR(2*N+ 1:3*N,l)#SIGMAI; + 5--NORMALS; 

TRUEY= Xl *BET Al; 

Y(,l)=TRUEY + ERR!; Y(,2)=TRUEY + ERR2; 

Y(,3)=TRUEY + ERR3; Y(,4)=TRUEY + ERR4; 

Y(,5) =TR UEY + ERRS; 

++++++++++++COMPUTE NECESSARY MODEL ESTIMATION PIECES+++++++++; 

XlP= Xl'; X2P= X2'; X3P=X3'; 

XlPXl = Xl'*Xl; X2PX2= X2'*X2; X3PX3 = X3'*X3; 

XI 1 =SOL VE(X 1 PX l ,X 1 P); XI2 = SOL VE(X2PX2,X2P); XI3 = SOL VE(X3PX3,X3P); 

Al= Xl *XII; 

Ml= IN-Al; 

A2=X2*XI2; 

M2=IN-A2; 

Bl=Xll*Y; B2=XI2*Y; 

TRM 12=TRACE(M1 *M2); 

TRM 13=TRACE(M1 *M3); 

TRM23 = TRACE(M2*M3); 

A3=X3*Xl3; 

M3= IN-A3; 

B3=XI3*Y; 

TRA12= TRACE(Al *A2); TRA122= TRACE(Al *A2*Al *A2); 
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TRA13=TRACE(Al "'A3); TRA132=TRACE(Al "'A3"'Al"'A3); 

TRA23 = TRACE(A2"' A3); TRA232 = TRACE(A2"' A3"' A2"' A3); 

TRB12=K2-TRA122- ( K2-TRA12 )"""2 #/ (N-Kl); 

TRB21 =Kl - TRA122 - ( Kl - TRA12 )"""2 #/ (N-K2); 

TRB13= K3 - TRA132 - ( K3 - TRA13 )"""2 #/ (N-Kl); 

TRB31 =Kl - TRA132 - ( Kl - TRA13 )"""2 #/ (N-K3); 

TRB23= K3 - TRA232 - ( K3 - TRA23 )"""2 #/ (N-K2); 

TRB32= K2 - TRA232 - ( K2 - TRA23 )"""2 #/ (N-K3); 

YSUM = DIAG(Y( + ,)); 

SSY=Y'+Y - YSUM##2#/N; 

+ OLS AND MLE ON SEPARATE MODELS; R22=J(3,5,l); 15=1(5); 

YHl=Xl+Bl; YH2=X2+B2; 

El=Y-YHi; E2=Y-YH2; 

SSRl = El""El; SSR2= E2'+E2; 

SlLS = SSRl#/(N-Kl); S2LS = SSR2#/(N-K2); 

SlML= SSRI#/N; S2ML= SSR2#/N; 

R22(1,)=VECDIAG(I5 - SSRI#/SSY)'; R22(2,)=VECDIAG(I5 - SSR2#/SSY)'; 

YH3=X3+B3; 

E3=Y-YH3; 

SSR3 = EJ'+EJ; 

S3LS = SSR3#/(N-K3); 

S3ML= SSR3#/N; 

R22(3,) = VECDIAG(IS - SSR3#/SSY)'; 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++. 
' 

++++++++++++++++COUNT UPDATES FOR R2; 

DO I= I TO 3; SR2(1,) = SR2(1,) + R22(1,); 

SUSR2(1,) = SUSR2(1,) + R22(1,)##2; END; 

+++++++++++++++++++++++++ E(YHJ) UNDER HI +++++++++++++++++++++. 
' 
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YH12=A2*Al +Y; YH21 =Al +A2*Y; YH13=A3+Al +Y; YH31 =Al +A3+Y; 

YH23=A3+A2+Y; YH32=A2+A3+Y; 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· , 

E21 = M2*YH1; El2= Ml +YH2; 

E31 = M3+YH1; El3= Ml +YH3; 

E32= M3+YH2; E23= M2+YH3; 

E21 l =Ml +E21; El22=M2*El2; 

E3ll=Ml+E31; El33 = M3+ElJ; 

E322 = M2+E32; E233 = M3+E23; 

BlM2= E2l'+E21; BlMM2= E2ll'+E21 l; 

BlM3 = E3l'*E31; BlMM3 = E31 l'+E31 l; 

B3M2= E23'+E23; B3MM2= E233'+E233; 

B3Ml = El3''-'El3; B3MM1 = E31 l'+E31 l; 

B2Ml = El2'+El2; B2MM1 = El22'+E122; 

B2M3 = E32'+E32; B2MM3 = E322'*E322; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++· , 

++++++++CALCULATION OF TEST STATISTICS+++++++++++++++++; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++· , 

+++++++++++++++++ COX TEST+++++++++++++++++++++++++++++; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++· 

021 = (BlM2 + SlLS#TRM12) #/ (N-K2); 

031 = (BlM3 + S1LS#TRM13) #/ (N-K3); 

032= (B2M3 + S2LS#TRM23) #/ (N-K3); 

012= (B2Ml + S2LS#TRM12) #/ (N-Kl); 

013= (B3Ml + S3LS#TRM13) #/ (N-Kl); 

023= (B3M2 + S3LS#TRM23) #/ (N-K2); 

Sl2ML= S2ML+ B2Ml#/N; Sl2LS = Sl2ML#N#/(N-Kl); 

Sl3ML= S3ML+ B3Ml#/N; S13LS = Sl3ML#N#/(N-Kl); 

' 
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S23ML= S3ML+ B3M2#/N; 'S23LS = S23ML#N#/(N-K2); 

S21ML= SlML+ BlM2#/N; S21LS= S21ML#N#/(N-K2); 

S31ML= SlML+ BlM3#/N; S31LS = S31ML#N#/(N-K3); 

S32ML= S2ML+ B2M3#/N; S32LS = S32ML#N#/(N-K3); 

Cl2N = LOG(VECDIAG(S2ML#/S21ML))#(N#/2); 

C 13N = LOG(VECDIAG(S3ML#/S3 l ML))#(N#/2); 

C23N = LOG(VECDIAG(S3ML#/S32ML))#(N#/2); 

C21 N = LOG(VECDIAG(S lML#/S 12ML))#(N#/2); 

C3 l N = LOG(VECDIAG(S lML#/S 13ML))#(N#/2); 

C32N = LOG(VECDIAG(S2ML#/S23ML))#(N#/2); 

Vl2= (VECDIAG(S lML#B 1MM2#/S21ML##2))##0.5; 

Vl3= (VECDIAG(SlML#BlMM3#/S31ML##2))##0.5; 

V23 = (VECDIAG(S2ML#B2MM3#/S32ML##2))##0.5; 

V21 = (VECDIAG(S2ML#B2MM1#/Sl2ML##2))##0.5; 

V3l=(VECDIAG(S3~L#B3MM1#/S 13ML##2))##0.5; 

V32 = (VECDIAG(S3ML#B3MM2#/S23ML##2) )##0.5; 

C(LOC:LOC + 4,1) = Cl2N#/Vl2; 

C(LOC:LOC+ 4,2) = Cl3N#/Vl3; 

C(LOC:LOC + 4,4) = C23N#/V23; 

C(LOC:LOC+ 4,3) = C2IN#/V21; 

C(LOC:LOC+ 4,5)= C31N#/V31; 

C(LOC:LOC + 4,6) = C32N#/V32; 

u++++++++COMPARE TO CRITICAL VALUES; 

CH95 = ABS(C(LOC:LOC + 4,)) > = VC95; 

CC95 = CC95 + CH95; 

+ POWER AND TYPE l ERROR COUNTS; 

CH9513=CH95(,1 3); CH9525=CH95(,2 5); 

DO J= 1 TO 5; 
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IF ALL(CH9513(J,) = RI) THEN CPCI2(J,) = CPCI2(J,) +I; 

ELSE IF ALL(CH9513(J,) = R2) OR ALL(CH9513(J,) = R3) 

THEN CEC12(J,)=CECI2(J,)+ I; 

IF ALL(CH9525(J,) = RI) THEN CPC13(J,) = CPCI3(J,) +I; 

ELSE IF ALL(CH9525(J,) = R2) OR ALL(CH9525(J,) = R3) 

THEN CECI3(J,) = CECI3(J,) + l; 

+COMPARE AND COUNT FOR 2 VS 3; 

IF (CH95(J,4 6) = R3) THEN CNT23(J,l) = CNT23(J,1) + 1; 

ELSE IF (CH95(J,4 6) =RO) THEN CNT23(J,2) = CNT23(J,2) +I; 

ELSE IF (CH95(J,4 6) =RI) THEN CNT23(J,3) = CNT23(J,3)+ l; 

ELSE CNT23(J,4) = CNT23(J,4) + 1; 

END; 

++ + + ++ + + + + + ++ + + + ++w TEST++++++++++++++++++++++++++++++++++++++; 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++. 
' 

W(LOC:LOC+4,l)=VECDIAG(S2LS-02I)#(N-K2) 

#/(VECDIAG(S ILS##2#2#TRB I2 + S ILS#B IMM2#4))##0.5; 

W(LOC:LOC + 4,2) = VECDIAG(S3LS-031 )#(N-K3) 

#/(VECDIAG(SILS##2#2#TRB13 + SILS#BIMM3#4))##0.5; 

W(LOC:LOC + 4,4) = VECDIAG(S3LS-032)#(N-K3) 

#/(VECDIAG(S2LS##2#2#TRB23 + S2LS#B2MM3#4))##0.5; 

W(LOC:LOC + 4,3) = VECDIAG(SILS-OI2)#(N-KI) 

#/(VECDIAG(S2LS##2#2#TRB21 + S2LS#B2MMI#4))##0.5; 

W(LOC:LOC + 4,5) = VECDIAG(SILS-OI3)#(N-Kl) 

#/(VECDIAG(S3LS##2#2#TRB3I + S3LS#B3MM1#4))##0.5; 

W(LOC:LOC + 4,6) = VECDIAG(S2LS-023)#(N-K2) 

#/(VECD IAG(S3LS##2#2#TRB32 + S3LS#B3MM2#4) )##0.5; 

+++++++++++++COMPARE TO CRITICAL VALUES; 

WH95 = ABS(W(LOC:LOC + 4,)) > = VC95; 
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CW95 = CW95 + WH95; 

*POWER COUNTS; 

DO 1= 1 TO 5; 

IF ALL(WH95(J,l 3) = Rl) THEN CPW12(J,) = CPW12(J,) + 1; 

ELSE IF ALL(WH95(J, 1 3) = R2) OR ALL(WH95(J, 1 3) = R3) 

THEN CEW12(J,) = CEW12(J,) + 1; 

IF ALL(WH95(J,2 5) = Rl) THEN CPW13(J,)=CPW13(J,)+ 1; 

ELSE IF ALL(WH95(J,2 5) = R2) OR ALL(WH95(J,2 5) = R3) 

THEN CEW13(J,)=CEW13(J,)+ 1; 

*COMPARE AND COUNT FOR 2 VS 3; 

IF (WH95(J,4 6)=R3) THEN CNT23(5+J,l)=CNT23(5+J,1)+ 1; 

ELSE IF (WH95(J,4 6)=RO) THEN CNT23(5+J,2)=CNT23(5+J,2)+ 1; 

ELSE lF (WH95(J,4 6)=Rl) THEN CNT23(5+J,3)=CNT23(5+J,3)+ 1; 

ELSE CNT23( 5 + J ,4) = CNT23( 5 + J ,4) + 1; 

END; 

* * * * * * * ** * * *******NO TEST**********************************; 

***********************************************************• ' 
T012= LOG(VECDIAG(S2LS#/021))#0.5#(N-K2); 

T021 = LOG(VECDIAG(SlLS#/012))#0.5#(N-Kl); 

T013= LOG(VECDIAG(S3LS#/031))#0.5#(N-K3); 

T031 = LOG(VECDIAG(SlLS#/013))#0.5#(N-Kl); 

T023 = LOG(VECDIAG(S3LS#/032))#0.5#(N-K3); 

T032= LOG(VECDIAG(S2LS#/023))#0.5#(N-K2); 

V012= VECDIAG((SlLS#/021##2)#(BlMM2 + S1LS#TRB12#0.5)); 

V013=VECDIAG((S1LS#/031##2)#(B1MM3 + S1LS#TRB13#0.5)); 

V023 = VECDIAG((S2LS#/032##2)#(B2MM3 + S2LS#TRB23#0.5)); 

V021=VECDIAG((S2LS#/012##2)#(B2MM 1 + S2LS#TRB21#0.5)); 

V031 = VECDIAG((S3LS#/013##2)#(B3MM1 + S3LS#TRB31#0.5)); 
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V032 = VECDIAG((S3LS#/023##2)#(B3MM2 + S3LS#TRB32#0.5)); 

NO(LOC:LOC + 4,1) = T012#/V012##0.5; NO(LOC:LOC + 4,3) = T021#/V021##0.5; 

NO(LOC:LOC + 4,2) = T013#/V013##0.5; NO(LOC:LOC + 4,5) = T031#/V031##0.5; 

NO(LOC:LOC + 4,4) = T023#/V023##0.5; NO(LOC:LOC + 4,6) = T032#/V032##0.5; 

+++++COMPARE TO CRITICAL VALUES; 

NH95 = ABS(NO(LOC:LOC + 4,)) > = VC95; 

CN95 = CN95 + NH95; 

+POWER COUNTS; 

DO J= 1 TO 5; 

IF ALL(NH95(J,l 3)=Rl) THEN CPN12(J,)=CPN12(J,)+ 1; 

ELSE IF ALL(NH95(J,l 3)=R2) OR ALL(NH95(J,l 3)=R3) 

THEN CEN12(J,)=CEN12(J,)+ 1; 

IF ALL(NH95(J,2 5)= RI) THEN CPN13(J,)= CPN13(J,) + 1; 

ELSE IF ALL(NH95(J,2 5) = R2) OR ALL(NH95(J,2 5) = R3) 

THEN CEN13(J,) = CEN13(J,) + 1; 

+COMPARE AND COUNT FOR 2 VS 3; 

IF (NH95(J,4 6)=R3) THEN CNT23(10+J,l)=CNT23(10+J,l)+ 1; 

ELSE IF (NH95(J,4 6)=RO) THEN CNT23(10+J,2)=CNT23(10+J,2)+ l; 

ELSE IF (NH95(J,4 6)= RI) THEN CNT23(10+J,3)=CNT23(10+J,3)+ I; 

ELSE CNT23(10+J,4)=CNT23(10+J,4)+ l; 

END; 

+++++++++++++++ +ATKINSON'S TEST+++++++++++++++++++++++++; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
' 

ATD12=VECDIAG(YH12'+Ml'•YH12); 

ATD21 = VECDIAG(YH21'+M2'+YH21); 

ATD13=VECDIAG(YH13'+Ml'+YH13); 

ATD31 = VECDIAG(YH3I'+MJ'+YH31); 

ATD23 = VECDIAG(YH23'+M2'+YH23); 
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ATD32 = VECDIAG(YH32'*M3'*YH32); 

AD 12 = (VECDIAG(S lML)#ATD 12)##0.5; 

AD21 = (VECDIAG(S2ML)#ATD21)##0.5; 

AD 13 = (VECDIAG(S lML)#ATD 13)##0.5; 

AD31 = (VECDIAG(S3ML)#ATD31)##0.5; 

AD23 = (VECDIAG(S2ML)#ATD23)##0.5; 

AD32 = (VECDIAG(S3ML)#ATD32)##0.5; 

NA(LOC:LOC+4,l)=-VECDIAG(El'*YHI2)#/ADI2; 

NA(LOC:LOC + 4,3) = -VECDIAG(E2'*YH21)#/ AD21; 

NA(LOC:LOC+4,2)=-VECDIAG(El'*YH13)#/AD13; 

NA(LOC:LOC+4,5)=-VECDIAG(E3'*YH31)#/AD31; 

NA(LOC:LOC+4,4)=-VECDIAG(E2'*YH23)#/AD23; 

NA(LOC:LOC + 4,6) = -VECDIAG(E3'*YH32)#/AD32; 

*COMPARE TO CRITICAL VALUES; 

NAH95 = ABS(NA(LOC:LOC + 4,)) > = VC95; 

CNA95 = CNA95 + NAH95; 

*POWER COUNTS; 

DO J= I TO 5; 

IF ALL(NAH95(J,l 3)=Rl) THEN CPNA12(J,)=CPNA12(J,)+ l; 

ELSE IF ALL(NAH95(J,l 3)=R2) OR ALL(NAH95(J,l 3)=R3) 

THEN CENA12(J,)=CENA12(J,)+ I; 

IF ALL(NAH95(J,2 5)=Rl) THEN CPNA13(J,)=CPNA13(J,)+ I; 

ELSE IF ALL(NAH95(J,2 5)= R2) OR ALL(NAH95(J,2 5)= R3) 

THEN CENA13(J,) = CENA13(J,) + I;. 

*COMPARE AND COUNT FOR 2 VS 3; 

IF (NAH95(J,4 6)=R3) THEN CNT23(15+J,l)=CNT23(15+J,l)+ I; 

ELSE IF (NAH95(J,4 6)=RO) THEN CNT23(15+J,2)=CNT23(15+J,2)+ I; 

ELSE IF (NAH95(J,4 6)=Rl) THEN CNT23(15+J,3)=CNT23(15+J,3)+ l; 
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ELSE CNT23(15+J,4)=CNT23(15+J,4)+ 1; 

END; 

+++++++++++++++LINEARIZED COX TEST--- NL++++++++++++++++++++++; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++. 
' 

NL(LOC:LOC+ 4,1) = VECDIAG(YH2'*YH2 - YH12'*YH12)#0.5#/AD12; 

NL(LOC:LOC + 4,3) = VECDIAG(YI-Il'*YHI - YH21'*YH21)#0.5#/AD21; 

NL(LOC:LOC + 4,2) = VECDIAG(YH3'*YH3 - YH13'*YH13)#0.5#/AD 13; 

NL(LOC:LOC+ 4,5) = VECDIAG(Yl-ll'*YHl - YH31'*YH31)#0.5#/AD31; 

NL(LOC:LOC + 4,4) = VECDIAG(YH3'*YH3 - YH23'*YH23)#0.5#/ AD23; 

NL(LOC:LOC+ 4,6) = VECDIAG(YH2'*YH2 - YH32'*YH32)#0.5#/AD32; 

*COMPARE TO CRITICAL VALUES; 

NLH95 = ABS(NL(LOC:LOC + 4,)) > = VC95; 

CNL95 = CNL95 + NLH95; 

+POWER COUNTS; 

DO J= 1 TO 5; 

IF ALL(NLH95(J,l 3) = Rl) THEN CPNL12(J,) = CPNL12(J,) + 1; 

ELSE IF ALL(NLH95(J,1 3)=R2) OR ALL(NLH95(J,l 3)=R3) 

THEN CENL12(J,)=CENL12(J,)+ 1; 

IF ALL(NLH95(J,2 5) = Rl) THEN CPNL13(J,) = CPNL13(J,) +I; 

ELSE IF ALL(NLH95(J,2 5) = R2) OR ALL(NLH95(J,2 5) = R3) 

THEN CENL13(J,) = CENL13(J,) + 1; 

*COMPARE AND COUNT FOR 2 VS 3; 

IF (NLH95(J,4 6)=R3) THEN CNT23(20+J,l)=CNT23(20+J,1)+ l; 

END; 

ELSE IF (NLH95(J,4 6) =RO) THEN CNT23(20 + J,2) = CNT23(20 + J,2) +I; 

ELSE IF (NLH95(J ,4 6) = R 1) THEN CNT23(20 + J ,3) = CNT23(20 + J ,3) + l; 

ELSE CNT23(20+J,4)=CNT23(20+J,4)+ 1; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++. 
' 
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+++u MATRIX CALCULATIONS FOR F-TEST,NJ-TEST ++++++++++++++; 

Nl2=VECDIAG(Y'*Ml*YH12)#/ATD12##0.5; *NUM FOR JA AND NJ TESTS; 

N13= VECDIAG(Y'*Ml *YH13)#/ATD13##0.5; 

N32 = VECDIAG(Y'*M3*YH32)#/ATD32##0.5; 

N23 = VECDIAG(Y'*M2*YH23)#/ A TD23##0.5; 

N21 = VECDIAG(Y'*M2*YH21)#/ATD21##0.5; 

N31 = VECDIAG(Y'*M3*YH31)#/ATD31##0.5; 

P12= (K2-TRA12)#/(N-Kl); AY12= YH2-El#P12; +AJ TEST ADJUSTED Y2HATS; 

P21 = (Kl-TRA12)#/(N-K2); AY21 = YH1-E2#P21; 

Pl3 = (K3-TRA13)#/(N-Kl); AY13 = YH3-El#Pl3; 

P31 = (Kl-TRA13)#/(N-K3); AY31 = YH1-E3#P31; 

P23 = (K3-TRA23)#/(N-K2); A Y23 = YH3-E2#P23; 

P32= (K2-TRA23)#/(N-K3); AY32= YH2-E3#P32; 

+++++++++++++++++++++CLASSICAL F-TEST** +++++ ++++ ++++ ++++++++ "'; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++. 
' 

X12= XljjX2; X12P= Xl2'; Xl2PX12= Xl2'"'X12; XI12= SOLVE(X12PX12,Xl2P); 

Xl3= XljjX3; Xl3P= Xl3'; Xl3PX13= Xl3'"'X13; XI13= SOLVE(Xl3PX13,Xl3P); 

X23 = X21!X3; X23P = X23'; X23PX23 = X23'"'X23; XI23 = SOLVE(X23PX23,X23P); 

Ml2= IN-Xl2"'XI12; SIG12= (Y'*Ml2*Y)#/(N-Kl-K2); 

Ml3 = IN-X13"'XI13; SIG13= (Y'"'M13"'Y)#/(N-Kl-K3); 

M23 = IN-X23*Xl23; SIG23 = (Y'"'M23*Y)#/(N-K2-K3); 

SSREG12= Y'"'(IN-Ml2)"'Y; 

SSREG13 = Y'"'(IN-Ml3)"'Y; 

SSREG23 = Y'*(IN-M23)*Y; 

F(LOC:LOC + 4, 1) = VECDIAG((SSREG 12-B l'"'X l'*Y)#/(SIG 12#K2)); 

F(LOC:LOC + 4,3) = VECDIAG((SSREG 12-B2'*X2'"'Y)#/(SIG 12#Kl)); 

F(LOC:LOC + 4,2) = VECDIAG((SSREG 13-Bl""Xl""Y)#/(SIG 13#K3)); 

F(LOC:LOC + 4,5) = VECDIAG((SSREG 13-B3'"'X3'*Y)#/(SIG 13#Kl)); 
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F(LOC:LOC + 4,4) = VECDIAG((SSREG23-B2'+X2'+Y)#/(SIG23#K3)); 

F(LOC:LOC + 4,6) = VECDIAG((SSREG23-B3'+XJ'+Y)#/(SIG23#K2)); 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
t 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++. 
' 

+COMPARE TO CRITICAL VALUES; 

FH95 = F(LOC:LOC + 4,) > = VF95M; 

CF95 = CF95 + FH95; 

+COUNT FOR POWER AND TYPE 1 ERROR; 

DO J= 1 TO 5; 

IF ALL(FH95(J,l 3)=Rl) THEN CPF12(J,)=CPF12(J,)+ l; 

ELSE IF ALL(FH95(J,l 3)=R2) OR ALL(FH95(J,l 3)=R3) 

THEN CEF12(J,)=CEF12(J,)+ l; 

IF ALL(FH95(J,2 5)=Rl) THEN CPF13(J,)=CPF13(J,)+ l; 

ELSE IF ALL(FH95(J,2 5) = R2) OR ALL(FH95(J,2 5) = R3) 

THEN CEF13(J,)=CEF13(J,)+ l; 

+COMPARE AND COUNT FOR 2 VS 3; 

IF (FH95(J,4 6) = R3) THEN CNT23(45+ J,l) = CNT23(45+J,l) + l; 

ELSE IF (FH95(J,4 6) =RO) THEN CNT23(45+ J,2)= CNT23(45+ J,2) + l; 

ELSE IF (FH95(J,4 6)=Rl) THEN CNT23(45+J,3)=CNT23(45+J,3)+ l; 

ELSE CNT23(45+J,4)=CNT23(45+J,4)+ l; 

END; 

++++++++++++++++++++NEW JA TEST++++++++++++++++++++++++++++++; 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++. 

NJ(LOC:LOC + 4,1) = Nl2#/(VECDIAG(SIG 12))##0.5; 

NJ(LOC:LOC+ 4,2) = Nl3#/(VECDIAG(SIG 13))##0.5; 

NJ(LOC:LOC + 4,3) = N21#/(VECDIAG(SIG 12))##0.5; 

NJ(LOC:LOC + 4,4) = N23#/(VECDIAG(SIG23))##0.5; 

NJ(LOC:LOC + 4,5) = N3l#/(VECDIAG(SIG13))##0.5; 

t 
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NJ(LOC:LOC + 4,6) = N32#/(VECDIAG(SIG23))##0.5; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++. 
' 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++. 
' 

+COMPARE TO CRITICAL VALUES; 

NJH95 = ABS(NJ(LOC:LOC + 4,)) > = VNJ95M; 

CNJ95 = CNJ95 + NJH95; 

*POWER AND TYPE 1 ERROR COUNTS; 

DO J= 1 TO 5; 

IF ALL(NJH95(J,l 3) = Rl) THEN CPNJ12(J,) = CPNJ12(J,) + l; 

ELSE IF ALL(NJH95(J,l 3) = R2) OR ALL(NJH95(J,l 3) = R3) THEN 

CENJ12(J,) = CENJ12(J,) + l; 

IF ALL(NJH95(J,2 5) = Rl) THEN CPNJ 13(J,) = CPNJ 13(J,) + 1; 

ELSE IF ALL(NJH95(J ,2 5) = R2) OR ALL(NJH95(J ,2 5) = R3) THEN 

CENJ13(J,) = CENJ13(J,) + l; 

*COMPARE AND COUNT FOR 2 VS 3; 

IF (NJH95(J,4 6) = R3) THEN CNT23(40+J,l) = CNT23(40+ J,l) + l; 

ELSE IF (NJH95(J,4 6)=RO) THEN CNT23(40+J,2)=CNT23(40+J,2)+ l; 

ELSE IF (NJH95(J,4 6)=Rl) THEN CNT23(40+J,3)=CNT23(40+J,3)+ l; 

ELSE CNT23( 40 + J ,4) = CNT23( 40 + J ,4) + 1; 

END; 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
' 

++DUE TO RECONSTRUCTING REGRESSOR VECTORS TO INCLUDE VARIOUS 

++ Y HATS IN THE J- AJ- AND JA-TESTS --THEY ARE COMPUTED 

++FOR EACH Y DISTRIBUTIONS SEPARATELY .... LOOP FORK= l T05; 

+ + + ++ + + + + + + + + + + + + + + + J TEST+++++++++++++++++++++++++++++++++++*; 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
' 
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DOK= 1TO5; 

Xl2= Xll1YH2(,K); Xl2P= Xl2'; Xl2PX12= Xl2'*Xl2; Xll2= SOLVE(Xl2PX12,Xl2P); 

SSRJI = Y(,K)""(IN-Xl2*XI12)"'Y(,K); 

SJI = SSRJl#/(N-Kl-1); 

JJ(LOC + K-1,l) = (B2(,K)'*X2'*Ml *Y(,K))#/SQRT(SJl *B2Ml(K,K)); 

X21 = X211YH1(,K); X21P= X21'; X21PX21 = X2l""X21; XI21 =SOLVE(X21PX21,X21P); 

SSRJ2= Y(,K)""(IN-X21 *XI2l)"'Y(,K); 

SJ2 = SSRJ2#/(N-K2-l); 

JJ(LOC + K-1,3) = (Bl(,K)'"'Xl'"'M2"'Y(,K))#/SQRT(SJ2"'BlM2(K,K)); 

X13=X111YH3; X13P= Xl3'; Xl3PX13= Xl3'*Xl3; Xll3= SOLVE(X13PX13,Xl3P); 

SSRJ 1=Y(,K)'*(IN-X13*Xll3)*Y(,K); 

SJl = SSRJl#/(N-Kl-1); 

JJ(LOC + K-1,2) = (B3(,K)'*X3'*M 1*Y(,K))#/SQRT(SJ1 *B3M l(K,K)); 

X31 = X311YH1(,K); X31P= X31'; X31PX31 =X3l""X31; XI31 = SOLVE(X31PX31,X31P); 

SSRJ3 = Y(,K)""(IN-X31 "'XI3l)"'Y(,K); 

SJ3 = SSRJ3#/(N-K3-l); 

JJ(LOC + K-1,5) = (Bl(,K)'*Xl'*M3*Y(,K))#/SQRT(SJ3*B 1M3(K,K)); 

X23= X2llYH3(,K); X23P= X23'; X23PX23= X23'*X23; XI23= SOLVE(X23PX23,X23P); 

SSRJ2= Y(,K)'*(IN-X23"'Xl23)*Y(,K); 

SJ2= SSRJ2#/(N-K2-l); 

JJ(LOC + K-1,4) = (B3(,K)""X3'*M2*Y(,K))#/SQRT(SJ2*B3M2(K,K)); 

X32 = X311YH2(,K); X32P = X32'; X32PX32 = X32'*X32; XI32 = SOLVE(X32PX32,X32P); 

SSRJ3 = Y(,K)""(IN-X32"'XI32)"'Y(,K); 

SJ3 = SSRJ3#/(N-K3-l); 

JJ(LOC + K-1,6) = (B2(,K)""X2'*M3*Y(,K))#/SQRT(SJ3*B2M3(K,K)); 

*COMPARE TO CRITICAL VALUES; 

JH95(K,)=JJ(LOC+ K-1,) > =VJ95(NN,); 

+ CJ95=CJ95+JH95; 
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+COUNT FOR POWER AND TYPEl ERROR; 

IF ALL(JH95(K,l 3) = Rl) THEN CPJ 12(K,) = CPJ12(K,) + l; 

ELSE IF ALL(JH95(K,l 3) = R2) OR ALL(JH95(K,1 3) = R3) 

THEN CEJ 12(K,) = CEJ12(K,) + 1; 

IF ALL(JH95(K,2 5)=Rl) THEN CPJ13(K,)=CPJ13(K,)+ 1; 

ELSE IF ALL(JH95(K,2 5) = R2) OR ALL(JH95(K,2 5) = R3) 

THEN CEJ13(K,)=CEJ13(K,)+ I; 

+COMPARE AND COUNT FOR 2 VS 3; 

IF (JH95(K,4 6)= R3) THEN CNT23(25+ K,l) = CNT23(25+ K,l) + 1; 

ELSE IF (JH95(K,4 6) =RO) THEN CNT23(25+ K,2) = CNT23(25+ K,2) + 1; 

ELSE IF (JH95(K,4 6) = R 1) THEN CNT23(25 + K,3) = CNT23(25 + K,3) + 1; 

ELSE CNT23(25 + K,4) = CNT23(25 + K,4) + 1; 

+++++++ ++++++++++ADJUSTED J-TEST:::: AJ++ + +++++ +++++++++++++; 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
' 

++++CALCULATION OF SIG HAT FOR THE ADJUSTED J-TEST; 

A12= Xli1AY12(,K); A21 = X2JJAY21(,K); Al3= X1JJAY13(,K); A31 = X3JJAY31(,K); 

A23=X21JAY23(,K); A32=X3llAY32(,K); 

Al2P=A12'; Al2PA12= A12'+A12; Al12= SOLVE(Al2PA12,Al2P); 

A21P=A21'; A21PA21 =A21'+A21; AI21 = SOLVE(A21PA21,A21P); 

Al3P=Al3'; Al3PA13=Al3'+Al3; AI13= SOLVE(Al3PA13,Al3P); 

A31P=A31'; A31PA31 =A3l'+A31; AI31 = SOLVE(A31PA31,A31P); 

A23P=A23'; A23PA23=A23'+A23; AI23=SOLVE(A23PA23,A23P); 

A32P = A32'; A32PA32 = A32'+ A32; Al32 =SOL VE(A32PA32,A32P); 

SA12= Y(,K)'+(IN-A12+AI12)+Y(,K) #/ (N-Kl-1); 

SA21 = Y(,K)'+(IN-A21 +AI21)+Y(,K) #/ (N-K2-l); 

SA13=Y(,K)'+(IN-Al3+AJ13)+Y(,K) #/ (N-Kl-1); 

SA31 = Y(,K)'+(IN-A31 +AIJl)+Y(,K) #/ (N-K3-1); 

SA23= Y(,Ky+(IN-A23+AI23)+Y(,K) #/ (N-K2-l); 
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SA32= Y(,K)'*(IN-A32*Al32)*Y(,K) #/ (N-K3-l); 

AJ(LOC + K-1,1) = El(,K)'*AY12(,K)#/SQRT(SA12*AY12(,K)'*Ml *A Yl2(,K)); 

AJ(LOC+ K-1,3) = E2(,K)'*A Y21(,K)#/SQRT(SA21 *AY21(,K)'*M2*AY21(,K)); 

AJ(LOC+ K-1,2) = El(,K)'*AY13(,K)#/SQRT(SA13*AY13(,K)'*Ml *AY13(,K)); 

AJ(LOC+ K-1,5)= E3(,K)'*AY31(,K)#/SQRT(SA31 *AY31(,K)'*M3*AY31(,K)); 

AJ(LOC+ K-1,4) = E2(,K)'*AY23(,K)#/SQRT(SA23*AY23(,K)'*M2*AY23(,K)); 

AJ(LOC + K-1,6) = E3(,K)'* A Y32(,K)#/SQR T(SA32* A Y32(,K)'*M3* A Y32(,K)); 

*COMPARE TO CRITICAL VALUES; 

AJH95(K,)=AJ(LOC+ K-1,) > =VJ95(NN,); 

+ CAJ95 = CAJ95 + AJH95; 

*COUNT FOR POWER AND TYPE! ERROR; 

IF ALL(AJH95(K,l 3)=Rl) THEN CPAJ12(K,)=CPAJ12(K,)+ l; 

ELSE IF ALL(AJH95(K,1 3) = R2) OR ALL(AJH95(K, 1 3) = R3) 

THEN CEAJ12(K,)=CEAJ12(K,)+ I; 

IF ALL(AJH95(K,2 5) = Rl) THEN CPAJ 13(K,) = CPAJ13(K,) + l; 

ELSE IF ALL(AJH95(K,2 5) = R2) OR ALL(AJH95(K,2 5) = R3) 

THEN CEAJ13(K,)=CEAJ13(K,)+ l; 

*COMPARE AND COUNT FOR 2 VS 3; 

IF (AJH95(K,4 6)=R3) THEN CNT23(30+K,l)=CNT23(30+K,l)+ I; 

ELSE IF (AJH95(K,4 6) =RO) THEN CNT23(30 + K,2) = CNT23(30 + K,2) + 1; 

ELSE IF (AJH95(K,4 6)= RI) THEN CNT23(30+ K,3) = CNT23(30+ K,3) + 1; 

ELSE CNT23(30 + K,4) = CNT23(30 + K,4) + I; 

+ ++++++++ ++++++ +++++ JA TEST+++++++++++++++++++++++++++++++; 

+ + + + ++ + + + + + + + + + + + + + + + + + + + + +·+ + ++ + + + + ++ + + + + + + + + + + + + + + + + + + + + .... 
' 

"'SIGS FOR JA-TEST; 

XJ12= XIllYH12(,K); XJ21 = X211YH21(,K); 

XJ13= Xl11YH13(,K); XJ31 = X311YH31(,K); 

XJ23= X211YH23(,K); XJ32= X311YH32(,K); 
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XJ 12P = XJ 12'; XJ 12Pl2=XJ12'+XJ 12; XIJ 12=SOLVE(XJ12P 12,XJ 12P); 

XJ21P= XJ21'; XJ21P21 = XJ2I'+XJ21; XIJ21 = SOLVE(XJ21P21,XJ21P); 

XJ13P= XJ13'; XJ13PI3= XJ13'+XJI3; XIJ13= SOLVE(XJ13Pl3,XJI3P); 

XJ31P= XJ31'; XJ3IP31 = XJ3I'+XJ31; XU31 = SOLVE(XJ31P31,XJ31P); 

XJ23P= XJ23'; XJ23P23= XJ23'+XJ23; XIJ23= SOLVE(XJ23P23,XJ23P); 

XJ32P= XJ32'; XJ32P32= XJ32'+XJ32; XIJ32= SOLVE(XJ32P32,XJ32P); 

SJA12=Y(,K)'+(IN-XJ12*XIJ 12)+Y(,K)#/(N-K 1-1 ); 

SJAI3=Y(,K)""(IN-XJ13+XIJ13)*Y(,K)#/(N-Kl-l); 

SJA23 = Y(,K)""(IN-XJ23+XIJ23)+Y(,K)#/(N-K2-l); 

SJA32= Y(,K)'+(IN-XJ32+XIJ32)+Y(,K)#/(N-K3-I): 

SJA21 = Y(,K)'+(IN-XJ21 +XIJ2I)+Y(,K)#/(N-K2-1); 

SJA31 = Y(,K)'*(IN-XJ31 +XIJ3I)+Y(,K)#/(N-K3-l); 

JA(LOC+ K-1,1)= Nl2(K,)#/SQRT(SJA12); 

JA(LOC+ K-1,2)= Nl3(K,)#/SQRT(SJA13); 

JA(LOC+ K-1,3) = N2l(K,)#/SQRT(SJA21); 

JA(LOC + K-1,4) = N23( K,)#/SQ R T(SJA23); 

JA(LOC+ K-1,5) = N3l(K,)#/SQRT(SJA31); 

JA(LOC + K-1,6) = N32(K,)#/SQRT(SJA32); 

+C0!\1PARE TO CRITICAL VALUES; 

JAH95(K,)=JA(LOC+ K-1,) > =VJ95(NN,); 

+ CJA95 = CJA95 + JAH95; · 

*COUNT FOR POWER AND TYPE! ERROR; 

IF ALL(JAH95(K,l 3)=RI) THEN CPJA12(K,)=CPJA12(K,)+ I; 

ELSE IF ALL(JAH95(K,l 3)= R2) OR ALL(JAH95(K,l 3)= R3) 

THEN CEJA12(K,) = CEJA12(K,) + 1; 

IF ALL(JAH95(K,2 5) =RI) THEN CPJA13(K,) = CPJA13(K,) +I; 

ELSE IF ALL(JAH95(K,2 5) = R2) OR ALL(JAH95(K,2 5) = R3) 

THEN CEJA13(K,) = CEJA13(K,) + I; 
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+COMPARE AND COUNT FOR 2 VS 3; 

IF (JAH95(K,4 6)= R3) THEN CNT23(35+ K,l) = CNT23(35+ K,l) + l; 

ELSE IF (JAH95(K,4 6) =RO) THEN CNT23(35 + K,2) = CNT23(35 + K,2) + I; 

ELSE IF (JAH95(K,4 6) =RI) THEN CNT23(35+ K,3) = CNT23(35+ K,3)+ I; 

ELSE CNT23(35 + K,4) = CNT23(35 + K,4) + 1; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++. 
' 

END; ++++ END OF K FROM 1 TO 5 LOOP; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++. 
' 

+CALCULATE P-VALUES ASSOCIATED WITH RELECTING FALSE MODEL; 

++++++++++++++++++++++++++++++++++++++++++++++++++++++. 
' 

DO L = 1 TO 5; 

+++++++++++++++++++++++· 
' 

IF CH95(L,l)= 0 THEN PV12(LOC+ L-1,1)= (1-PROBNORM(ABS(C(LOC+ L-1,3))))+2; 

ELSE PV12(LOC+ L-1,1)= I; 

IF WH95(L,l)= 0 THEN PV12(LOC+ L-1,2) = (1-PROBNORM(ABS(W(LOC+ L-1,3))))+2; 

ELSE PV12(LOC + L-1,2) = 1; 

IF NH95(L,l)= 0 THEN PV12(LOC+ L-1,3) = (1-PROBNORM(ABS(NO(LOC+ L-1,3))))+2; 

ELSE PV12(LOC+ L-1,3)= 1; 

IF NAH95(L,l) = 0 THEN PV12(LOC + L-1,4)= (l-PROBNORM(ABS(NA(LOC+ L-1,3))))*2; 

ELSE PV12(LOC+ L-1,4)= l; 

IF NLH95(L,l)= 0 THEN PV12(LOC+ L-1,5)= (1-PROBNORM(ABS(NL(LOC+ L-1,3))))+2; 

ELSE PV12(LOC+ L-1,5)= 1; 

IF JH95(L,l) = 0 THEN PV12(LOC + L-1,6) = (1-PROBT(ABS(JJ(LOC + L-1,3)),N-Kl-1))+2; 

ELSE PV12(LOC+L-l,6)= I; 

IF AJH95(L,l)= 0 THEN PV12(LOC+ L-1,7) = (1-PROBT(ABS(AJ(LOC+ L-1,3)),N-Kl-1))+2; 

ELSE PV12(LOC+L-l,7)= l; 

IF JAH95(L,l)= 0 THEN PV12(LOC+ L-1,8) = (1-PROBT(ABS(JA(LOC+ L-1,3)),N-Kl-1))+2; 

367 



ELSE PV12(LOC+ L-1,8) = l; 

IF NJH95(L,l) = 0 THEN PV12(LOC + L-1,9)= (1-PROBT(ABS(NJ(LOC+ L-l,3)),N-Kl-K2))*2; 

ELSE PV12(LOC+L-l,9)= l; 

IF FH95(L,1) = 0 THEN PV12(LOC+ L-1,10)= 1-PROBF(F(LOC + L-1,3),K2,N-Kl-K2); 

ELSE PV12(LOC+ L-1,10)= 1; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++. 
' 

+RANK P VALUES WITHIN EACH ITERATION (ROW); 

RK12(LOC+ L-1,) = RANKTIE(PV12(LOC+ L-1,)); 

+COUNT TIES FOR ADJUSTMENT ON KENDALL'S C.C. ; 

TIES12(L,) = (PV12(LOC+ L-1,) =TIECK); 

NTIES 12(L,) = TIES 12(L, + ); SUMTIE12(L,) = SUMTIE12(L,) 

+ (NTIES12(L,)##3-NTIES 12(L,))#/ 12; 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
' 

+CALCULATE P-VALUES ASSOCIATED WITH REJECTING FALSE MODEL--13; 

IF CH95(L,2)= 0 THEN PV13(LOC+ L-1,1) = (1-PROBNORM(ABS(C(LOC+ L-1,5))))*2; 

ELSE PV13(LOC+ L-1,l)= l; 

IF WH95(L,2)= 0 THEN PV13(LOC+ L-1,2)= (1-PROBNORM(ABS(W(LOC+ L-1,5))))*2; 

ELSE PV13(LOC+ L-1,2) = l; 

IF NH95(L,2)= 0 THEN PV13(LOC + L-1,3)= (1-PROBNORM(ABS(NO(LOC+ L-1,5))))*2; 

ELSE PV13(LOC+L-l,3)=1; 

IF NAH95(L,2) = 0 THEN PV13(LOC+ L-1,4)= (1-PROBNORM(ABS(NA(LOC + L-1,5))))*2; 

ELSE PV13(LOC+ L-1,4)= l; 

IF NLH95(L,2)= 0 THEN PV13(LOC+ L-1,5)= (1-PROBNORM(ABS(NL(LOC+ L-1,5))))*2; 

ELSE PV13(LOC+L-l,5)= l; 

IF JH95(L,2) = 0 THEN PV13(LOC + L-1,6) = (1-PROBT(ABS(JJ(LOC + L-1,5)),N-Kl-1))*2; 

ELSE PV13(LOC+ L-1,6) = 1; 

IF AJH95(L,2) = 0 THEN PV13(LOC+ L-1,7)= (1-PROBT(ABS(AJ(LOC+ L-1,5)),N-Kl-1))*2; 
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ELSE PV13(LOC+L-l,7)= l; 

IF JAH95(L,2) = 0 THEN PV13(LOC + L-1,8) = (1-PROBT(ABS(JA(LOC + L-1,5)),N-Kl-1))+2; 

ELSE PV13(LOC+ L-1,8) = l; 

IF NJH95(L,2)= 0 THEN PV13(LOC+ L-1,9) = (1-PROBT(ABS(NJ(LOC+ L-l,5)),N-Kl-K3))+2; 

ELSE PV13(LOC+L-l,9)= l; 

IF FH95(L,2) = 0 THEN PV13(LOC+ L-1,10) = 1-PROBF(F(LOC+ L-l,5),K2,N-Kl-K3); 

ELSE PV13(LOC+ L-1,10)= l; 

++++++++++RANK P VALUES WITHIN EACH ITERATION (ROW); 

RK13(LOC+ L-1,) = RANKTIE(PV13(LOC+ L-1,)); 

+COUNT TIES FOR ADJUSTMENT ON KENDALL'S C.C. ; 

TIES13(L,) = (PV13(LOC+L-l,)=TIECK); 

NTIES 13(L,) = TIES 13(L, + ); SUMTIE 13(L,) = SUMTIE 13(L,) 

+ (NTIES 13(L,)##3-NTIES 13(L,))#/ 12; 

++++++++++ 

END; END; +++END OF P-VALUE AND RANK LOOPS; 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
' 

++++++++POWER SUMS AND SS CALCULATIONS FOLLOWING THE LOOP; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
' 

+END OF ITERATIVE LOOP; 

END; 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
' 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
' 

++++CREATE VECTORS FOR STORING POWER,STND ERR, !ERROR, STND ERR; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
' 

Cl2=J(5,4,0); W12=J(5,4,0); N12=J(5,4,0); NA12=J(5,4,0); NL12=J(5,4,0); 

Cl3=J(5,4,0); W13=J(5,4,0); Nl3=J(5,4,0); NA13=J(5,4,0); NL13=J(5,4,0); 

112=1(5,4,0); AJ12=J(5,4,0); JA12=J(5,4,0); NJ12=J(5,4,0); 

J13=J(5,4,0); AJ13=J(5,4,0); JA13=J(5,4,0); NJ13=J(5,4,0); 
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F12=J(5,4,0); 

F 13 = J(S,4,0); 

*NEED TO COMPUTE POWER AND TYPE 1 ERROR PROBABILITIES; 

C12(,l)=CPC12#/NITER; C12(,3)= CEC12#/NITER; 

C13(,l) = CPC13#/NITER; C13(,3) = CEC13#/NITER; 

C12(,2) = SQRT((CPC 12-CPC12##2#/NITER)#/(NITER#(NITER-1 ))); 

C12(,4)= SQRT((CEC12-CEC12##2#/NITER)#/(NITER#(NITER-1))); 

C 13(,2) = SQRT((CPC13-CPC13##2#/NITER)#/(NITER#(NITER-1))); 

C13(,4) = SQRT((CEC13-CEC13##2#/NITER)#/(NITER#(NITER-1))); 

W12(,l) = CPW12#/NITER; Wl2(,3) = CEW12#/NITER; 

Wl3(,l)= CPW13#/NITER; Wl3(,3)= CEW13#/NITER; 

Wl2(,2) = SQRT((CPW12-CPW12##2#/NITER)#/(NITER#(NITER-1))); 

W 12(,4) = SQRT((CEW 12-CEW 12##2#/NITER)#/(NITER#(NITER-1 ))); 

Wl3(,2) = SQRT((CPW13-CPW13##2#/NITER)#/(NITER#(NITER-l))); 

Wl3(,4) = SQRT((CEW13-CEW13##2#/NITER)#/(NITER#(NITER-l))); 

Nl2(,l) = CPN12#/NITER; Nl2(,3) = CEN12#/NITER; 

N 13(, 1) = CPN 13#/NITER; N 13(,3) = CEN 13#/NITER; 

Nl2(,2) = SQRT((CPN 12-CPN12##2#/NITER)#/(NITER#(NITER- l))); 

N 12(,4) =SQ R T((CEN 12-CEN 12##2#/NITER)#/(NITER#(NITER-1 ))); 

N13(,2)=SQRT((CPN13-CPN13##2#/NITER)#/(NITER#(NITER-l))); 

N13(,4)=SQRT((CEN13-CEN13##2#/NITER)#/(NITER#(NITER-1))); 

NA12(,l) = CPNA12#/NITER; NA12(,3) = CENA12#/NITER; 

NA 13(, 1) = CPNA 13#/NITER; NA13(,3) =CENA I 3#/NITER; 

NA12(,2) = SQRT((CPNA12-CPNA12##2#/NITER)#/(NITER#(NITER-1))); 

NA12(,4) = SQRT((CENA12-CENA12##2#/NITER)#/(NITER#(NITER-1))); 

NA13(,2) = SQRT((CPNA13-CPNA13##2#/NITER)#/(NITER#(NITER-l))); 

NA13(,4) = SQRT((CENA13-CENA13##2#/NITER)#/(NITER#(NITER-l))); 

NL12(, 1) = CPNL12#/NITER; NL12(,3) = CENL12#/NITER; 
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NL13(, 1) = CPNL13#/NITER; NL13(,3) = CENL13#/NITER; 

NL12(,2) = SQRT((CPNL12-CPNL12##2#/NlTER)#/(NlTER#(NITER-l))); 

NL12(,4) = SQRT((CENL12-CENL12##2#/NITER)#/(NITER#(NITER-l))); 

NL13(,2) = SQRT((CPNL13-CPNL13##2#/NITER)#/(NITER#(NITER-l))); 

NL13(,4) = SQRT((CENL13-CENL13##2#/NITER)#/(NITER#(NITER- l ))); 

Jl2(,1) = CPJ12#/NITER; Jl2(,3) = CEJ 12#/NITER; 

Jl3(,l) = CP113#/NITER; 113(,3) = CEJ13#/NITER; 

J 12(,2) = SQRT((CPJ12-CPJ 12##2#/NITER)#/(NITER#(NITER-l))); 

J 12(,4) = SQRT((CEJ12-CEJ12##2#/NITER)#/(NITER#(NITER-l))); 

J 13(,2) = SQRT((CPJ 13-CPJ 13##2#/NITER)#/(NITER#(NITER-l))); 

113(,4) = SQRT((CEJ 13-CEJ 13##2#/NITER)#/(NITER#(NITER-1))); 

AJ12(,l) = CPAJ12#/NITER; AJ12(,3) = CEAJ12#/NITER; 

AJ13(,l) = CPAJ13#/NITER; AJ13(,3) = CEAJ13#/NITER; 

AJ 12(,2) = SQRT((CP AJ12-CPAJ 12##2#/NITER)#/(NITER#(NITER-1))); 

AJ 12(,4) = SQRT((CEAJ 12-CEAJ 12##2#/NITER)#/(NITER#(NITER-l))); 

AJ13(,2) = SQRT((CP AJ13-CPAJ13##2#/NITER)#/(NITER#(NITER-1))); 

AJ 13(,4) = SQRT((CEAJ13-CEAJ 13##2#/NITER)#/(NITER#(NITER-l))); 

JA12(,1) = CPJA12#/NITER; JA12(,3) = CEJA12#/NITER; 

JA13(,l) = CPJA13#/NITER; JA13(,3) = CEJA13#/NITER; 

JA12(,2) = SQRT((CPJA12-CPJA12##2#/NITER)#/(NITER#(NITER-l))); 

JA12(,4) = SQRT((CEJA12-CEJA12##2#/NITER)#/(NITER#(NITER-1))); 

JA13(,2) = SQRT((CPJA13-CPJA 13##2#/NITER)#/(NITER#(NITER-l))); 

JA13(,4) = SQRT((CEJA13-CEJA13##2#/NITER)#/(NITER#(NITER- l ))); 

. NJ 12(, 1) = CPN112#/NITER; N112(,3) = CENJ 12#/NITER; 

NJ 13(, 1) = CPNJ 13#/NITER; NJ 13(,3) = CENJ 13#/NITER; 

NJ12(,2) = SQRT((CPNJ 12-CPNJ 12##2#/NITER)#/(NITER#(NITER-1))); 

NJ12(,4) = SQRT((CENJ°12-CENJ12##2#/NITER)#/(NITER#(NITER-1))); 

NJ 13(,2) = SQRT( (CPNJ 13-CPNJ 13##2#/NITER)#/(NITER#( NITER-1 ))); 
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NJ13(,4)=SQRT((CENJ13-CENJP##2#/NITER)#/(NITER#(NITER-l))); 

F 12(, 1) = CPF 12#/NITER; F 12(,3) = CEF 12#/NITER; 

Fl3(,l) = CPF13#/NITER; Fl3(,3) = CEF13#/NITER; 

F 12(,2) = SQRT((CPF 12-CPF 12##2#/NITER)#/(NITER#(NITER-l))); 

Fl2(,4)=SQRT((CEF12-CEF12##2#/NITER)#/(NITER#(NITER-l))); 

Fl3(,2)=SQRT((CPF13-CPF13##2#/NITER)#/(NITER#(NITER-l))); 

F 13(,4) = SQRT((CEF 13-CEF 13##2#/NITER)#/(NITER#(NITER- l))); 

+PRINT Cl2 Wl2 Nl2 NA12 NL12 Jl2 AJ12 JA12 NJ12 F12; 

+PRINT Cl3 W13 Nl3 NA13 NL13 Jl3 AJ13 JA13 NJ13 F13; 

TESTS 12= Cl2//Wl2//Nl2//NA12//NL12//J 12//AJ12//JA12//NJ12//F 12 ; 

TESTS 13=C13//W13//Nl3//NA13//NL13//Jl3//AJ13//JA13//NJ13//F 13 ; 

+++HOLD TEST RESULTS TO COMBINE WITH AVG RANKS FURTHER DOWN; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
' 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++. 
' 

+++++CALCULATE MEAN AND STND ERROR OF R2 FOR ALL 3 MODELS; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++· , 

MR2= SR2#/NITER; SER2=J(3,5,0); 

DO I= 1TO3; 

SER2(I,) = ((SUSR2(I,)-SR2(1,)##2#/NITER)#/(NITER +(NITER-1)))##0.5; 

END; R2INFO = MR2!!SER2; PRINT R2INFO; 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· , 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· , 

++++++CALCULATE KENDALL'S COEFFICIENT OF CONCORDANCE--KW12 AND 13; 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· , 

SUMRK12=J(5,l0,0); SUMRK13= J(S,10,0); RBAR =J(S,10,(NITER +6)); 

ONE5=J(5,l,l); 

++OBTAIN 5 INDIVIDUAL SUMS OF RANKINGS; 

DO M = 1 TO NITER; LOC = (M-1)*5 + l; 
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SUMRK12= SUMRK12+ RK12(LOC:LOC + 4,); 

SUMRK13 = SUMRK13 + RK13(LOC:LOC + 4,); 

END; 

RKB 12=SUMRK12-RBAR; RKB13= SUMRK13-RBAR; 

WSUM12= (RKB12##2)(, + ); WSUM13= (RKB13##2)(,+ ); 

KW12=WSUM12#12#/(0NE5#990#NITER ++2 - SUMTIE12#NITER); 

KW13 = WSUM13#12#/(0NE5#990#NITER 0 2 - SUMTIE13#NITER); 

+++CALCULATE THE AVERAGE RANKING OF EACH TEST FOR THIS RUN; 

AVRANK12= SUMRK12#/NITER; 

AVRANK13= SUMRK13#/NITER; 

++++STACK RANKINGS BY TESTS AND DISTRIBUTIONS WITHIN EACH TEST TO 

+++u+ MATCH WITH OTHER TEST STAT INFO ++u++++uu++uuuu++; 

ARK12= AVRANK12(,l)//AVRANK12(,2)//AVRANK12(,3)//AVRANK12(,4)// 

AVRANK12(,5)//AVRANK12(,6)//AVRANK12(,7)//AVRANK12(,8)// 

AVRANK12(,9)//AVRANK12(,10); 

ARK13 = AVRANK13(,l)//AVRANK13(,2)//AVRANK13(,3)//AVRANK13(,4)// 

A VRANK 13(,5)// A VRANK 13(,6)// A VRANK 13(, 7)// A VRANK 13(,8)// 

A VRANK 13(,9)// A VRANK 13(, 10); 

+++++COMBINE ALL TEST STAT DATA TOGETHER FOR 1VS2 AND 3 

TESTSI2=TESTS1211ARK12; PRINT TESTSI2; 

TESTS13=TESTS1311ARK13; PRINT TESTS13; 

++++. 
' 

+++CALCULATE THE P-VALUE ASSOCIATED WITH CORRES S FOR KENDALL'S W; 

Sl2= KW12#NITER#9; Sl3= KW13#NITER#9; 

SIGW12=J(5,l,0); SIGW13=J(5,l,0); 

DO J = 1 TO 5; 

SIGW12(J,) = 1-PROBCHI(S 12(1,),9); 

SIGW13(J,) = 1-PROBCHI(Sl3(J,),9); 

END; 
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KENDAL12= KW1211S1211SIGW12; 

KENDAL13= KW1311S1311SIGW13; 

PRINT KENDAL12 KENDAL13; 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++. 

+++CALCULATE AND PRINT% FOR MODEL 2 VS 3; 

PCNT23 = CNT23#1NITER; 

PRINT PCNT23; 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
I 

I 

+++++++++++++++++++++++ THE END ++++++++++++++++++++++++++; 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++· 
I 

1• 

II 

374 



Appendix E: ANOV A Results for Equal k Cues 

'This section presents the analyses for cases involving samples of size 20 as well as an equal 

number of regresson in the competing models. Although the assumptions for the analysis have 

been violated strictly speaking, the results indicate the efi'ec:ts of R2 and p2 on both the observed 

power and significance level of the testing procedures. In both cases, the two-way ANOV A for each 

procedure is presented. When the effects are significant, further information is given by Duncan's 

Multiple Range Test on the appropriate means. 

E. I. Observed Significance Level 

Cox (N): DEPENDENT VARJAILE• CA 

SOURCE DF SUM OF SllUHES "UN SllUARE F VALUE 
MD DEL 15 0. 0.723197 O.ODS102' 10.99 . 

ERR DR Zti 0. OD6'77DG 0 .00021654 PR > F 
CORRECTED TOTAL 39 0.05411591 O.DDQl 

R-SllUARE c. v. ltDOT NSE CA "UN 
0.872921 14.ti3til 0. 01692754 D.11727500 

SOURCE DF TYPE J SS F VALUE PR > F 

112 3 0. 0Ztill093 21.36 0.0001 n 3 0. 012001"5 13." 0.0001 
lt2•P2 9 D. 01015659 4.21 0.0023 

SOURCE DF TYPE JJJ SS F VALUE PR > F 

112 3 0.02014613 23.4" 0. 0001 
P2 l o. 0125<o664 14.60 0.0001 
R2•P2 9 0. 01015659 4.21 0.0023 

DEPENDENT VARIABLE• NA 
W-test: SOURCE DF SU" OF SllUARES NUN SllUARE F VALUE 

"ODEL 15 0. 001.57122 0. 00011521 2.21 
ERROii Zti 0. OOUOl75 0. 00004620 l'R > F 
CORRECTED TOTAL 39 0. 00261691 0.0349 

R-SllUARf c.v. ROOT NS£ NA "CAN 
0. 517 361 II. 3124 0.00679690 0.03"7500 

SOURCE OF TYPE I SS F VALUE PR > F 
R2 3 0.00126306 '.11 0.0003 P2 3 0. 00004101 0.35 0. 7920 R2•P2 9 0. 00026715 0.64 0.7501 

SOURCE DF TYPE JJJ SS F VALUE PR > F 
R2 l 0. 0011,,510 1.26 0.0006 1'2 l 0. 00006260 0.,,5 0. 7115 lt2•P2 9 0.00026715 D.64 0. 7 501 
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\, Hl'r:NKJlt YAllUU• llTA 
fl-test: SOUICC ., MM OF stUUH MAii stuur ' vuvr 

llOHL u 1.Hl7HU .... 111774 2.71 , .. .,. 24 l.HUl7M l.HHOZJ ,. > , 
CORltr:CTfl TOJAl St l.I02HUI 1.1ut 

•-seuau c.v. HOT IUI[ llTA llUll 
l.UH41 u. 7'16 t.HU74H l.U14HH 

SOURCE "' TYPE I SS P YALU! ,. > , 

•2 l l.H04Hl4 S.77 t.IZSI 
1'2 l t.toO.SIHI 2.tt I.UH 
U•l'2 ' l.ODOlllH 2.21 t.U14 

SOURCll! DF TYPE Ill SS P YALU( ... > , 

•2 l •. 00054161 4.11 a.nu 
1'2 l 0.000251'1 

l. '" 
1.1511 

RZ•l'Z ' t.000111t6 2.21 1.1514 

DEPENDENT YAllIAll E • llAA 
NA-test: SOURCE DF SUM OF S9UAIU:S 

"ODEL 
"fAH SllUARE VALUE 

15 0.00272572 
ERROR 

0.00011171 l.7J 
24 0.00252125 0. 00010505 l'R > F CORRECTED TOTAL l9 0.00524691 

0.ll21 
It-SQUARE c.v. ROOT llSE NU "EAN 
0.519415 1.5. 4906 0.01024949 0. 07 597500 

SOURCE DF TYl'E l SS F VALUE PR > F RZ 5 0. 00060377 pZ 5 1.92 0.1540 
RZ•PZ 0.00014415 0. 46 o. 7146 9 0.00197711 2.09 0. 0721 
SOURCE DF TYPE Ill SS F VALUE PR > F 
lt2 5 0.000J6411 pZ 5 l.16 0. 3464 RZ•P2 o. ooou10J 0.45 0. 7 lOI 9 0.00197711 Z.09 0. 07ZI 

DEPENDENT VARI AILE• llLA 

NL-test: SOURCE DF SUM OF SQUARES KEAN SOUAIE F VAL Uf 

"ODEL l.S 0.02955523 0. 001970JS 10 .15 

ERROR 24 0.0006775 I. 00011199 P'R > F 
CORRf ClED TOTAL 59 0.13392291 •. 0001 

R-SOUAltf c. v. ROOT l'ISE NLA llEAN 
0 .1712~5 H. DISS •. 01349035 I. otS7750D 

SOURCE DF TTl'E l SS F VALUE P'R > F 
RZ 3 0.01477J9J 27 .16 0.0001 n J 0.00912531 1'. 71 0.0001 
R:Z•PZ 9 0. 00565591 J.45 0.0073 

SOURCE DF TYPE Ill SS F VALUE P'R > F 
RZ J 0. 0119936' 21.'7 0. 0001 
P2 3 0.01001103 11.J~ 0.0001 
112•2 9 0. 00565591 J.~5 0. 007 3 

376 



DEl'ENDCNT VARJ.UlE• JA 

SDURCf DF SUll DF SOUARU NUN SOUAI£ F VAlUf 
J-test; ND DEL 15 0.0210226.5 0.001UllJ 20.19 

ERROR 2" 0. I021"'25 o.oooono rtt > F 

CORRECTED TDTAl 39 0.0301'790 O.IOOl 

1-SllUHE c.v. IDDT NSE JA NEAii 

o.•211u 16.1717 •. 009,56.59 0. OSOSOOf 

SDURCf DF TYPE l SS F VALUE "t > f 

12 .s O.OOIS9UI SZ.05 O.OOOl 
f'2 .s 0.115U9l9 51.41 0.0001 
IZ•f'Z ' O.IO.S75271 "·" 0.0012 

SOURCE DF TYPE JU SS F VALUE PR > f 

R2 3 0. 00779221 29.05 0.0001 n .s 0.01611153 '°. 32 0. 0001 
R2•f'2 ' 0. OO.S75271 "·" 0.0012 

Dfl'EllDfllT 'tHJAIU• AJA 
AJ-test: SDUICf ., SIM DF SIUAIU NUii SOUHf , 'tAlUf 

NDDl!l u t.HU~U7 l.IOOOUH 1.75 

l!HDtt 24 1.IH7JHI l.HIUl44 f'I > F 

COIUClfD TOTAL H 1.1111101 l.71H 

1-SOUARE c.v. ltOOT Jaf AJA NUN 

l • .S20.SZ3 22.tJU 1.11551712 1.1207510 

SOURCE IF TYPE I SS , VALUE f'I > F 

112 J l.HIOUl7 l.U 0. '126 
1'2 J 1.0111202 0.2' t.1319 
12•"2 ' 1.H12UU 1.9' 0. 4916 

SOUICf DF TYf'f JJJ SS , VALUE l'I > F 

12 .s 1.HOl'69' •. 7J l.5U4 
1'2 3 1.01102.su 1.25 0 .1511 
12KP2 ' 0.0112'1'9 

0 ·" 0. "" 

JA-test: DEPENDENT VAllUllf• JU. 

SOURCE DF 5"" DF SQUARES NUN SQUARE F VALUE 
llDDEl u 0. 0003'797 0.00002120 • ·'° 
ERROR 2" I. OOOIS200 •. I00055.50 "' > , 
CORRECTED TOTAL 59 0. 0011'991 0.107 

I-SQUARE c.v. IOOT HS£ JU. HEAH 
0.271779 25 .1'11 0. 00595119 0.02572500 

SOURCE DF TTP£ I SS VALUE PR > F 
112 5 0. 00003164 0.30 0 1271 P2 3 0.00002455 0.23 0.IHZ R2•P2 ' 0.0002'179 0.12 D .60<o3 

SOURCE DF TYP£ Ill SS VALUE f'R > F 
112 5 0. 00002Z75 O.Zl D .1160 n 3 0. 00001132 0. l 7 0.91"Z llZ•PZ 9 0. 000261?9 o. a2 0. 6 043 
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D£1'£NDENT VAIUAIL £I llJA 

NJ-test: SOURCE DF SUM OF SQUARES MEAN SQUARE F YALU£ 

MODEL 15 0.0007090 0. 0000073 O.t? 

ERROR 24 O.IOlZlOO 0. 00005144 Pit > F 

CORRECTED TOTAl 39 0. 001910fo0 0.51'2 

II-SQUARE C.Y. ROOT 115£ llJA llEAN 

O.l?UO U.Z5U O.Ol7171H l.t5030000 

SOURCE DF TnE I SS F VALUE l'R > F 

112 3 O.IOU1U2 z.o5 0.1332 
P2 3 O.OOOOU5l 1.10 0.9519 
llZ•PZ 9 0.001foll55 0.19 0.5455 

SOURCE DF TTP£ UJ SS VALUE PR > F 

R2 3 O.OIOZIU4 1.12 0.1702 
P2 3 0.00001919 o.u 0.94120 
R2•PZ ' 0.00041555 0.19 0.5455 

D£P£ND£NT VARIABLE< FA 

F-test: SOURCE OF SUM OF SQUARES MEAN SQUARE F VALUE 
MODEL 15 0.00061210 0.00004011 0.79 
ERROR 24 0.00124350 0. 00005111 PR > f 
CORRECTED TOTAL 39 0. 00115560 0.6791 

II-SQUARE C.Y. ROOT NSE FA 11£AN 
0. 329866 14 .2119 0. 0071'109 0.05040000 

SOURCE DF ln£ I SS F VALUE PR > F 
112 3 0. 00012631 PZ 0.11 0. 4994 
RZ•PZ 3 0. 0002336' I. 50 0. 2 390 9 0.00025212 0 . .54 0.1304 

SOURCE DF TYPE III SS VALUE PR > F 
R2 l 0. 00011711 l'2 0 . 7 5 0. 5309 
R2•P2 3 0. 00024~79 I . .51 0 2199 9 0. 00023212 0 .54 0 1304 
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Duncan's Multiple Range Test on Mean Observed Significance Levels: 

IUllCAll'S llULTJ'U UllO( TOT 'OI YAIJAll(1 CA 
llOTE1 TMJS TEST COMTIOlS TNE ,..,,E J COlll'AIJSOtlCJSE [llOI UTE. 

llCIT TN( U,(IJ"UIT1CJSE RIOlt un 
ALPllA•t.tl 11'•14 llSE•2.tE•t4 

llAINJllCh ctLL SJZD Al:[ IOT ftUAl. 
llAltltOllJC RIAi! ., CELL SJZES•t,, 

lllMl[I OF "'""' 2 S 4 CltJTJc:AL UNO( t.tlStSl6 t.tl67S7 1.tl72t21 
lllillS NITN TNE SAR( LfTTP aar ICDT SJGllJFJCAlfTL T DJff(l:[lfT. 

DUIM:AN OHUl'JJCO "'111 11 12 
A 1.157110 I '·' • l.UU7S I 1.7 
c I. lot•U7 12 1.75 
D l.llt251 12 '·' cox (N)-test 

DUNCAN'S ..UlTil'lE RANGE TEST FOR VAIIAllf• NA 
NOTE• THIS TEST COHTIOlS THE TYPE I COllPARISOllNJSE ERROR RATE, 

MOT THE CXPERI"EHTHISf ERROR UTE 
All'HA•0.05 DF•24 llSE•4.6E-05 

HARNlllG• CEll SIZES ARE NOT EOUAl. 
llAMOHIC llEAN OF en L SIZES••. 6 . 

NUPllER OF MEANS 2 3 4 
CRJTitAl UMOE .00639659 0.0067204 .D0694SS6 

MEANS MITH THE SAllf LETTER ARE llOT SIOHIFJCANTlT DIFFERENT. 

DUNCAN'S IWlTJl'lf RANGE TEST FGa VARJAllf• NTA 

DUNCAN GROUPING 
A 
A 
A 
A 
A 

• 
NOTE• THIS TEST CONTROLS THE TYPE I COllPARJSONHISE ERROR RATE, 

NOT THE EXPERl"EHTHISE EIROI UTf 
All'HA•0.05 DF•Z~ 11Sf•4.Sf-05 

NARNINO• CEll SJZES Alf NOT EOUAl. 
HARMONIC MEAN OF CELL SJZES•9.6 

lll/l!lfR OF MEANS 2 3 4 
CRITICAL RANGE .00611765 .10650011 .00671'7' 

HEANS NITH THE SANE LETTER Alf NOT SIGNIFICANTLY DIFFERENT. 
DUNCAN GROUPING MEAN N R2 

A •. 053175 I .0.7 
A 
A 0.053,.17 12 0. 75 
A 
A 0.052333 12 0.9 

• 0.0U500 • 0.5 
'\, 

N-test 

W-test 

HU.H 
0. 041917 
0.00000 
0.035250 
0.026750 

11 12 

12 '·' 
12 0. 75 

• 0. 7 

• 0.5 
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DUNCAN'S llUlTI,lf llANGE TEST FOi VAIIAllf• llAA 
NOTE• THIS TEST CONTIOlS THE TY'E I COHPAIISONNISE EllOI RATE, 

NOT THE EX'EIIMENTNISE ERROR llATE 
Al,llA•0.05 DF•Z4 MSE•l.lE-14 

MARllING1 CEll SIZES ARE NOT fQUAl. 
HARMONIC MEAN OF CEll SIZ£S•9., 

NUMIER OF MEANS 2 3 4 
CRITICAL IAHGE .00964514 1.0101341 0.0114706 

MEANS MITH THE SAHE LETTER ARE NOT SIGNIFICANTLY DIFFERENT. 
DUNCAN GROU,ING llEAN II 12 

A 
A 

0.083375 • 0.7 

• A 0.075250 • 0.5 I A • A • 0. 075013 12 0.75 

• 0. 072417 12 0.9 

NA-test 

DUNCAN'S l!UlTirLE RANGE TEST FOR VARIAILE• llLA 
NCTE• THIS TEST CONTROLS THE TYPE I COHPARISONNISE EllOR RATE, 

NOT THE EXPERJllENTNJSE ERROR RATE 
ALPllA•0.05 DF•Z4 llSE•l.IE-04 

MARNINOo CELL SIZES AIE NOT EQUAL. 
NARllONIC MEAN OF CELL SIZES•9.6 

llUlllER OF MEANS Z l 6 
taJTICAl llANGE 1.11~695& 0.0133315 0.0137114 

llEANS NJTH THE SAllE LETTER ARE NOT SIGNIFICANTLY DIFFERENT. 

DUNCAN'S MULTIPLE RANGE TEST FOR YARIAILE• JA 
NOTE• THIS TEST CONTROLS THE TYPE ( COKPARISONNISf ERROR RATE, 

NOT THE EXPERJllENTNJSf ERROR llATE 
ALPllA=0.15 DF•24 115£=1.tE-05 

llARNINGo CELL SIZES ARE NOT EQUAL. 
HARl10NIC llEAN OF CEll SlZES•9.6 

NUMIER OF NCANS 2 3 4 
CRITICAL RANGE .00119963 .00935015 .00966064 

KEANS NJTH THC SAME lfTT£R AR£ NOT SIGNIFICANTLY DIFFERENT. 
DUNCAN GR DUPING NUN II R2 

A . 071625 • o.s 

• 0. 063175 • 0.7 

c 0.054000 12 1.75 

D 0.037131 12 0.9 

J-test 

DUNCAN GROUPING MEAN N 12 

A •. 127375 0.5 
0.105250 • 0.7 

c 1.090167 12 0.75 

D l.OHOOO 12 0.9 

NL-test 
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IUtlCA•'S lllLTl,LI IAllOf TfST POI VAllAILI• CA IOTI• T•IS TlST COllTIOlS •I TTf'I I COflPAIJSOleQSI latlOI IATI, 
•T TMl IUOllllllTMISI UIOI IATI 

ALPllA•l.11 IP•l4 RSl•l.11•14 
'"'"Ill OP lllAllS I S 4 CllTICAL 1A1101 1.115'117 1.1161111 1.1161414 

MEA•S NITM TMl SARI LlTTU &al llOT Sl .. IFICAllTLT llFflll•T. 
DUMCA• llllUPI• llU• I '2 

A 1.144111 ll I.ZS 
I 1.111211 ll l.J • 1.UUH ll 1.75 I 
c t.115511 ll I.I 

Cox (N)-test 

DUNCAN'S KULTIPLf RANGE TEST FOR VARIAllfr NTA 
NOTE• THIS TEST CONTROLS THE TYPE I COMPARISONNISE ERROR RATE. 

NOT THE fXPERIMfNTNISf ERROR RATE 
ALPKA•0.15 DF•Z4 MSE•,.lf-05 

NUMIER QF KEAMS Z 3 4 
CRITICAL RANGE .10606264 .00636954 .00651105 

KEAMS NJTK TKf S~E lfTTEll Alf NOT SIGNIFJCAHTLY DJFFEREHT. 
DUNCAN GROUPlllO 

A •· I A 
I A 
I A 
I 
I 

"' N-test 

DUNCAN'S KULTIPlf RANGE TEST FOR YARIAILE• JA 
NOTE• THIS TEST CONTROLS THE TYPE I COHPARISONWISE ERROR RATE. 

NOT THf fXPERlMENTNISf ERROR RATE 
ALPHA=0.05 DF•Z' MSE•l.9£-05 

NUMlfR OF MEANS 2 J ~ 
CRITICAL RANGf .00171913 .0091612' .009~65'5 

MEANS WITH THE SAHE LETTER ARf NOT SlGNlFlCANTlY DIFFERENT. 
DUNCAN GROUPING MUN N P2 

A 0.011600 10 0.25 

• 0.055,00 10 0.5 
c O.D,500 10 0.75 
D 0.03000 10 0.9 

J-:-test 

KEAN • 1'2 

0.056300 1D •. 75 
0.051300 10 0.9 
0.050100 10 0.25 
0.0~7900 10 0.5 
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E.2. Observed Power 

J!PIJl)CJIT YAIJAILlo a 
Cox(N)"!'test: SOUICI 

., SU11 OP stUAUS MAii SIVAU F YALft .... lJ l.,H.52411 1.14"21'1 H.44 ..... " l ... 177UJ .... 174161 ,. > , 

aaucro TOTAL Jt l.7JUIUI 1.1111 

1-MUMI c.v. IDOT llSt Cl' llfAll 

•.t"2tS• S.U2' 1.14172141 ••• 1217511 

S&IUICI 
., TYPI I SS f VALUE ,.. > , 

lZ 3 l.J4HUl1 "·" .... 11 
l'2 s t.11759J1' 35.92 t.HOJ 
IZllP2 ' 0.15306611 t.77 O.IHl 

~ 
If' YWt III SS F VALUE l'I > F 

fl 3 t.32796659 62.H O.IOtl 
3 1.223''2'7 •2.u t.Hll 

lCZlll'2 • 1.15316611 t.77 t.Hll 

DEl'l!IDENT YAltIAILE• WI' 
W-test: SOURCE DF SUM OF SllUAUS llEAN SQUARE f YALU!i. 

llODEL 15 2 .57651637 t.J717'776 25.18 

ERROR Zli 0. l637'ito00 O. D0612267 PR > F 

CORRECTED TOTAL 39 2.7'1026031 I.DOOi 

R-SllUAllE c.v. IOOT M$E NI' llU• 

0.9402H 11.2552 O.OIZ599U t.13517500 

SOURCE DF TYl'E I SS F VALUE PR > F 

112 3 1.607177'7 71. 56 0.0001 
P2 s 0. 76401112 57. 33 0.0001 
R2•PZ 9 0.20455059 S.33 0. 00119 

SOURCE DF TYPE lll SS F VALUE PR > F 

R2 3 2. 52132'i01i 7to. ll 0.DOOl 
P2 3 0. 71129032 .sa .17 0. 0001 
R2•P2 ' 0.204155059 3.33 I. ODl9 
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DE,ENDENT VARIAll£ I Ill, 

DF SUM OF SQUARES llUN SlllJARE F VALUE 

"' )OURCE N-test: lS l .IOD73DS2 •. 120Dlol7' 34.06 
MODEL 

o. 0&45912.5 1.Hl.52W4 ,. > f 
ERROi 2li 

1.11.532171 0.0001 
CORRECTED TOTAL 39 

c.v. IOOT MSE llTP MEAN 
R-SQUARE 

1.saos D. D593U'4 •• 7'317500 
0.955132 

DF TYPE I SS F VALUE PR > F 
SOURCE 

3 l. 09319019 103 .J9 0.0001 
R2 J 0.,,9991101 47 .21 0.0001 
P2 0 .20762932 6 .SS 0.0001 
R2•P2 ' 

DF TYPE Ill SS F VALUE PR > F 
SOURCE 

3 l.OS0,,1046 99 .3li 0.0001 
R2 3 0. 54617931 51. 72 D.0001 
P2 ' 0. 20762932 6. 5.5 0.0001 
R2•P2 

Kl'fllDflfT VAIJAIU1 llAI' 

NA-test: souact ., SUfl W studD MAii Stu.lit ' YALUf 
llODfl 1J l.701901 l.llUStU 24.tt 

PIOll 24 l.1U7HH .... 40541 ... > , 
CORllfCTtD TOTAL St I .15'12441 l.UOl 

1-HUAlf c.v. IOOT NSf ...., llLUI 

l.t39121 9.52.54 I. Nl2S14' l.71UHH 

SOURCE DF TTrf I SS , VALUf PR ) , 

12 s 1.JSS5U94 u.u I.IOU 
P2 3 l.2H227Z7 21.14 I.Hot 
l21PZ ' •-116334'9 Z.71 0.02Zl 

SDUICf DF mt JU SS , VALUf ,. > , 

12 3 1.241375'7 ..... I.DODI 
PZ 3 1.31175121 22.zs 1.0001 
lt2•1'2 9 1.116.534'9 2.71 I .0221 
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DEl'ENDENT VARUILE• llU' 
NL-test: SOURCE DF SUfl OF seuAIES "UN SllUARE F VALUE 

llODEL 15 1.15114727 0.07012lU Z.5.H 

EHOlt Zli '·"".5151 t.11271"' I'll > F 

CORRECTED TOTAL St l.11179171 D. DDOl 

R-SllUARE c.v. IOOT "5f Jill' MEAN 

0.901.51 6 .S617 1.15211711 0.11"92.500 

SOURCE DF TYPE I S$ F VALUE l'R > F 

R2 l O.UU7'57 SS . .5' 0.0001 
P2 l 0.39912712 0.71 D.DOOl 
R2•P2 ' 0.205li'2U 1.11 0.0001 

SOURCE OF TYPE III SS F VALUE l'R > F 

R2 J D.41777172 0.92 0.0001 
pZ J 0. ""6'9725 .SJ .... 0.0001 
R2•P< 9 O. Z0.544219 a.11 0.0001 

DEPENDENT VARIABLE• JI' 

J-test: SOURCE DF SUl'I OF SllUARES "fAN SllUAlf F VALUE 

MODEL 15 } .$4371237 D .10291"16 2'1.22 

ERROR 2li •• 10191100 0. 00420.50 l'I > F 

CORRECTED TOTAL 39 1.64.571031 l.IOOl 

R-SllUARE c.v. IOOT ICIE JI' "[All 

D. 9.SID21 ..... 2 1.16.51111' 1.11417500 

SOURCE DF TTl'E J SS F VALUE l'R > F 

RZ 3 t.711.570 .. .5.5 .o.s l.IOOl 
P2 3 0 . .5729113' ........ t.0001 
R2•P2 ' I .2U22'91 7. Oli 0.0001 

SOURCE DF TYPE Ill SS VALUE Pit > F 

R2 3 0."310U .52.02 0.0001 
s 0.63439964 0.7' 0.0001 P2 9 D .26922691 7. Oto O.DOOl R21P2 
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DEPENDENT VAR IA ILE• AJP 

AJ-test: SOURCE DF SUM Of SQUARES llU.N SllUARE f VALUE 
llODfl u 2. 42994197 0.1'1996'0 21 .09 

ERROR 24 I .13142UI o. 00576775 l'R > F 
CORRECTED TOTAL 39 2.SH.5701 0.0001 

R·SllUARE c.v. ROOT IGf AJP "EAN 
0. 946104 10.lt;17 t.17.59071 t.7S57HOO 

SOURCE Df TYPE J SS F VALUE ,. > , 

12 s l.S2Hl3U 11.54 0.0001 
P2 s 0.78114115 '°· 9.S 0.0001 
12•'2 9 0. lUlHlt 3.72 O.OOt,I 

SOURCE DF TYPE Ill SS VALUE PR > F 
R2 .s 1.44124571 &3.29 0.0001 n 3 0.73219632 42. 36 0.0001 
R2•P2 9 0.19lll6&9 l. 72 0.00"' 

JA-test: tuDllOT YAtlAILE• JAi' 
SOUie! If SIM OF SllUARU llUll StUAtE , VALUE 

lllKL u z.zzeznsz l.14UlHS u.11 
ma. 24 l.UOHU t.H6UU4 l'R > ' 

COUECTH TOTAL St Z.SHUIU .... 01 

l·StuAH c.v. ROOT llSf Jll N[All 

t.U49'7 11.ZllS 1.11119741 t.7UJ2.511 

souaa If TYPE l SS F VALUE ... > , 

12 .s 1. 77399'23 n.•• t.1111 
P2 s 0. SSHS&90 17.55 I.IHI 

12"'2 ' 0.1176UO 1.16 1.ltH 

souacr If TYl'E Ill SS F YALU[ pt> F 

R2 s 1.,06097 15.0 t.toll 
P2 l O.S4ftlll24 17.17 t.HOl 
12•1'2 ' 0 .10764440 1.H 1. llH 
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D£PEMDEMT YARlAILE• MJP 

NJ-test: SOURCE IF SUM OF SQUARES MEAN SQUARE F VALUE 

MODEL 15 2.505914'5 l.1Sl7S231 25.St 
ERROii 24 0.14419575 1.1101117 PR > F 

CORUCTED TOTAL l9 2. 45D171'oD .... Dl 

R-SllUARE C.Y. ROOT MSE IJP MEAN 

1.941150 10.1151 0.07751176 l.71'70IOO 

SDllRCE DF TTl'E I SS F VALUE PR > F 

RZ s 1.64572727 91.31 I.IDOi 
P2 s 0.5ZHUll Z9.S4 0.1101 
RZ•P2 • O.ISUU55 2 ... 3 0.1400 

SOURCE DF TYPE lJI SS F YALUE Pl > F 

RZ J 1.54314311 15 .65 0.0001 
P2 l 0 . .S<.203603 30.07 0.0001 
RZ•PZ 9 0. l.51 .5435.5 2.43 0.0400 

DEf'EMDEMT VARUILE• Fr 
F-test: SOURCE DF SUM OF SOUARES "UN SOUARE F YALU£ 

ltODEL 15 3.391U290 t.22'5421' .51.55 
ERROR 24 0.1723050 •. 11711123 PR > F 
CORRECTED TOTAL st 3. 57141240 0.0001 

1-SOVARE c.v. IDOT MSE FP llEAN 
l.'5172, l.S. 5004 •• 01474211 1.62771111 

SOURCE DF TYPE J SS , VALUE Pl > F 
IZ 3 1.11144161 17 .33 1.1101 PZ 
12•PZ l I. 34li69.520 62.42 I. IDOi 9 0.17199109 2.'6 t.1261 

SOURCE DF TYPE Ill SS , VALUE Pl > F 
12 l l.64179UO 76. 53 1.1001 P2 l 1.27674432 59.26 I. IOOl R2•PZ 9 0.17199109 2." 1.1261 
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Appendix F: Initial Modcls utlmation: Weekly Food Expenditures 

This appendix contains the SAS Proc Reg output for initial model estimation for each indi-

vidual food categories. It is clear from the values of the variance inflation facton, VIF's, that 

collinearity within the models is not severe enough to merit a biased estimation technique. 

F .1. All Food 
!!!A!!!!TlC !!!!R'~ 

DP' Ylll.UL1!1 EXPl!llD 
AUL nlS OI' YllJAllCI! 

SIM OF llUI 
SOURCI! " seuaau StllARI! f YALU! l'llOl>f 

llDDl!L 11 SHll14.62 Z17614.U 621. 197 1.1111 
ERROR "" SltZU5 . .'6 SS0.65626 
C TOTAL H72 HS0471.11 

IOOT llSf 11.1U96 •·sauaae l.J394 
DfP llUll 45.U71t ADJ a-sa 1.5315 
c.v. Jt.Ull3 

,AltAllETER UTI"'TU 

,HAllETU STANDARD T FOR Hi URUllCE 
YAIUUU llf" ESTI"'TE fUOR ,AltAll[T[R•I ,ROI > ITI lNFLATlOll 

IllTUCU' 1 .'126ZZH 1.19Sl325S 6.377 1.0001 I 
fD""l 1.19114456 I. 4.S65'577 Z.7o4 l.IKl l. 13171'55 
fll1'5Hll2 ·l.4554115' 1.40726555 ·J.52.5 0.0004 1.lU&Utl 
SXHll ·5. 00161113 •• 757410'1 ·J. 963 1.1111 I. l17'4'5t 
Ul 1.11137996 0.41542111 Z.2'0 0. 0221 !. 459722.Sl 
U2 -l.1510I045 •• 45170271 •4.135 I.HO! l .l9154626 
11 6.49047'16 1.51351664 lZ.IH 1.1111 1.l72S34&t 
12 0.295050l5 0.50076760 l.5H 1.5557 l.351'7Z2' •• 0.37402911 1.57154921 1.656 1.5121 1.31157111 
51 ·1.Ul451U 1.540llU3 -1.921 1.05•• 1.5010657 
SS -o. ll 005111 1.5245''2• -•.591 1.5545 1.51176131 
s• 1.23153771 l.5Z741411 I.OZ 1.011 l.574&9751 
UC ·t.1I2S7S41 1.57573419 •1.lU 1.145.S 1.2~97402 

INC I. OIOS7'7'5 1t.:mm: s. 747 1.0002 17 .4'1S5719 
MS 0.117UIU 1.796 l.07Z5 l9.6'9Jl411 
llULS 1 . .57447549 1.01544561 37. ltl I. IOll 7 .Uff4457 
lNCZ -4.27771[•09 S. 20S9U•tt ·!..SSS 1.1119 16. HZ21411 
NSZ ·I. l297S107 •. 0•029011 -7 .•• , 0. 0001 u. 71173230 
lllCCHS o. 00009107 •. 000016391 

6 ·"" 
0.0001 10. 9'444'11 

~Ulll llSI SR'~ 
DU VHJULE• EXP!llD 

AllAI. TSIS OP 'IA•IAllCI 
SIM OI' llUI 

SOUICf .. S9UHD S9UAU F 'IALUf ,ROl>f 

llODt:L 15 S5"'Slf .64 UUZ5.91 674.671 l.IHl 
UHR tU7 S314011.J4 J.51.4Z77Z 
C TOTAL ff7Z H31471.l& 

ROOT llSI! 11. 71971 1-seuaa' 1.5117 
llUllUll O.U71t ADJ l•Se I.SUI c.v. 41.127'4 

'llWIO'DI !STt"'TU ,. .... [?,. STAllDAID T FOR Mio 'IHIAllCf 
YARIAILE DI' !STI"'TE fUOI "ltAllfT U•I ,ROI > ITI INFlATIOll 

lllTERC!P •l01.1S411 •. ltl44H6 ·Z6.4zt •. 1001 I 
[Dtllll l.519tZ12S I. 44131721 1.JU 0.1112 1.1Z1175&5 '"''1912 •l.7111633' 1.4ZHS221 -4. "' I.toll 1.11141192 
SXIGI -6. t4'SISZS I. 7121716' -1.111 1.0001 l .1Z47'7U 
Ul l.ZZIUIU l.49tS'5'5 z.•st 1.1139 1.•571120 
UZ -z .15011305 1.47211121 •4.J4Z I. 0001 l.l97113'4 
II 6.1120193 1.511145'2 IS.JU o. 1001 l.l706127 
IZ I. tlS"715 l.J1•""7 l.'11 1.ISU l .l415S'60 .. l.S47'4Zll 1.517001 1.stz 1.5531 1.32001425 
Sl •l .11717411 l.55U'41S -z.us 1.Uzt 1 . .5391201 
S3 •t.75071ZH 1.Sl944US •1. lf2 1.1641 l.5172U6S 
S4 ·0.21215975 t.S421117Z ·l.S74 1.7113 1.57041375 
UC •t.H7tslll2 1 • .5191273' •t.IU I.tits 1.2.SUllU 
LillC 4.ZZlllSU l.l21511zt lS.ltZ 1.0001 1.5904446 us -1. 71412571 l.'404991 -t.70 1.060 1.1167101 
lllfALS SI. 2.5111 tH l.t10651Sl S4."I I.toll 7 .7Slt41H 

I 

387 



1gq1g •m 
PllP VAllAILI• IXPllll 

AllAL TSll W VAlllAllCa 

,... " """ SllUllCI ., MUAIU SllUUI , VALUI 'HI>' 
JllllllL II JUMU.ff 2'12'4.41 719.JH ..... , 
UIOI MS7 Jzt61M,ll Ml.SHH 
C: TOTAL f671 HJl471. a 

IDOT 1111 11.41674 l•S1911All l.JZU 
Drl lllAll o.unt All.I l•H l,JZJ6 c:.v. 41.4tSIS 

PAIAllrTll UTlllATD 
PAUllrTO STAMDAll T 'Clll NI• VAIUllC! VAllAIU ., !STlllATI [UGI PHMETU•t P'IOI > ITI lllFUTIOll 

IllUIC!I' 1 26 • .HUSSSt 1.4Zl2it4' ll.JM 
[-1 
OIPSHllZ 
SXllll 
Ul 
U2 
11 
IZ 
14 
Sl 
SJ 
S4 
UC: 
lllVlllC 
lllVllS 
llULS 

DU VAIJAUI• Ll!lll' 

DEP VAIUILE• Lt:XP 

l 
l 
1 
l 
1 
1 
l 
l 
l 
l 
l 
1 
l 
1 
l 

-t.%1461761 
·Z.1ttt27tl 
•S.JIUU1' 

1.55627772 
-Z.5111617' 
6,t4HZ544 
t.tl4U5lt 
1.6011147 

-1.H421UJ 
•l.lt51'2U 

l • .SH7JSU 
•l. 715SIZJ7 

•l12H.S61H 
•lt,144HU1 

1.51165751 

SDUICt: Df 

llODl!L IS 
EIROI tH7 
C: TOTAL t672 

IODT 1151 
DEP' RUii c:.v. 

t.OOtU4 -t.411 
1.40ZZt5ZZ -5.4'1 
t.714Jt574 .... ,16 
l.4UtStll l.Ul 
l.U4Ut74 •5,JH 
l.5Ut077 IS.574 
l.ll7UH2 '·"' 1.J7t1SIH l.lH 
t.JOUlU -1.7'2 
t.S.S244Z14 •t.742 
l.5SSDl4H l.57S 
t.S7UZJIZ -Z.t5' 
l455.414tS •7.7SI 
1.17'4U7S -1.us 

l.IHJZZIH 54.117 

PAUlll-lM •an 
AllAL TSIS If VAIUICZ 

SUll Of llUll 
stUAHS S1911Alt: ' VALUI 

ZlU.UtU 145.72265 1141.714 
UU.1Ht7 l.14tl21U 
SSJl.Ut4t 
1.J7"1t4t l•StuAll 1.U71 
J.Ul"11 ADJ l·H 1.6172 
11.ZUH 

PAUllETU UTlllA Tt:S 

PAUllETl!ll STAllDAID T '01 Kl• 
VAllAUI ., HTlllATt: UIDll P'AIUllETl!l•I 

lllUICIP •t.J'7SZ5JI t.1117152 .. -4.1'1 
ED Hiil t.Hl4'Hl7 l.llHUS49 1.IU 
EllPSllllZ ·t.U44Z'7U t.Hl411U4 ..... , 
SXllll •t.lt47HJI t.IUUJZ4 •6.IU 
Ul t.Ut01JS t.IH912HI .s.uo 
U2 •t.UtH75l l.ltt4J1SS6 .... 197 
11 l.ISH11J2 t.tlU71J9 U.172 
12 t.111616571 1.1112'116 '·'" 14 t.D1ZS4'JI t.1117'7'4 I.OH 
Sl •t.t•UNH 1.tll12JS7 -..u .. 
SJ -t.119'7191 1.llt7Ult •l.IH 
S4 -1.IH01t72 t.llllJ714 •t.HZ 
IAC: ·t.1141t11SI t.tU7tlZ7 -t.•lJ 
LlllC 1.!'SHllt t. tHUHJZ 22.424 
LMS 1.115117771 t.11111194 1.zn 
LllULS •• 72416167 l.llHIJ57 fol.Z2fo 

LOCl=l"YfQC Mpn 

AllAL YSIS Of VAllAllCt: 

SUll OF llUM 
SDUIC:t: DF stUAIES stUAllt: F YALUt: 

llODU 15 Zl71.IHll lSl.UtU "'·'" ERROi 9657 14'7 .14JU t.UltzJO 
C: TOTAL 9412 SSSl.OSOO 

IOD1 llSE t.SH77U 1·5'UAll! 1 . .515.S 
DEP MAii S.Ul•ll ADJ l·SI I.JIU c:.v. 11.67441 

PAI MET ti !S 1IM Tt:S 

,AUllE1EI STAllDAID 1 FOi NI• 
VAllAILE ., ESTlllATE UIOI P'AUllE11!1•1 

lllTHCt:P' S.7SZZZ2" l.UllZHI 124 .JSt 
EDKlll ·1.ll2U7ZI l.ttt1'Jll2 -1.Jll 
£11PSHllZ ·l.1277ZllZ l.119'16617 •S.ZH 
SXllll -t.11521111 1.IUJUZZ -5.10 
Ul l.llt617tS 1.lllJ71U l.HO 
U2 •I. lfo'IOISJ 1.Ht7HUI ........ 
II t.1fo74l714 l.tll7tt71 u.u1 
12 1.IZZ7110 •.• 111110 z.122 ... t.tZUIZtfo 1.1122u11 Z.255 
Sl -1. 1471'712 l.lll.51Ul _,,. 17" 
SS ·I. IZ1Sfo25" t.IU2J2U -1.n1 
Sfo ·l.HllZOOl4 1.11121716 ·I.Oto 
IAC •I. OUOIOU 1.11215712 •Z.tH 
INVlllC •Ut.2714' S0. 71lfoll51 •12. IZI 
lllVMS -1.un•u• t.12"1717 ·U.foH 
llULS 1.H7Jl1t7Z t.Hllt6'U J7. SU 

l.IOtl • t.U76 l.tlJZ64'7 ..... l l.Ht16U4 
l.llll l.1UU'26 •.zsaz l.4SZ17Jl4 
1.1111 l.llU.SU4 ..... l 1..S75HIH 

'·"" 1.l052tl6 
t.Z67S l.JltoOHZ 
t.t7JZ i. unu.sa 
1.4511 1.J771tt4l 
1.56'5 l.57IOU75 
t.llSl l.21211144 
1.1111 l.545'6171 
1.1001 S.IUJlZN 
1.1111 Z.J7Z47Stl 

P'IDI > ITI 
..... 1 
1.1715 
t.Hll ..... , 
t.HZS 
t.1111 
O.Hll 
l.foUO 
t.2156 
• .... l 
1.1577 
t.U5t 
0.6779 
t.tODl 
t.717' 
..... 1 

PIOl>f 

I.IHI 

P'IOI > ITI 

t.1111 
1.u12 
I.IOU 
t.1111 
0.0517 
I. 0001 
1.0011 
I.IS.SI 
t.12'Z 
I.Diil 
I. D.551 
O.tZID 
l.IOSO 
I.OHi 
t.0111 
O.HOl 
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F.2. Beverages 

WADIATJC NIKI. 
t1:P YAllAILI• ICIPllll 

AllAL nu OP YHIAllCI 

s• OP llUI 
SOUllCf "' stUHO 5'UAH F YALUI ,IOl>P 

llODrl 11 11217.llSH 1115.t44U 46.HI 1.1111 
9101 HH 174U7.U Zl. 717ZSl71 
C TOTAL 1141 ltZ444.1Z 

IDOT llS! 6.Utlll 1-S.UAH I.IHI 
DU ll!All S.7470t AD.I 1-M I.HSI c.r. 114.SZIS 

,HAll!TP ISTJllATIS 

"llAllf:TH STAHAID T Fllll 1111 YHIAllCI! 
VAllAIU IF l!STIMH flllOI "Ull!TEJl•I ,.OI > ITI lllFLATIOll 

llTOCU' 1 Z.14124161 l.SSZ511t9 .. .,. I.IHI • E-1 1 -l.1SS74574 1.12121711 -1.111 l.2HZ l.lUtZSH 
EMPSllllZ 1 •l • .SHSS114 1.11255175 -S.451 1.1116 1.14Ul7" 
SDI! l -Z.ZS271174 l.ZZl5ztlt -t.770 t.llOl l.US61612 
Ul l -1.11410516 l.U5H4'7 -1.141 t.6011 1.44576257 
U2 l -t.4101211 1.121201SS -S.2ll t.Hll 1.J6llt127 
II l t.5611.5161 t.14045551 S.tt6 I.IHI 1.l'1761J6 
IZ 1 t.22654040 1.14166'44 l.Jtt 1.1100 l.J77U254 .. l O.JIH2125 t.16106120 Z.4ll 1.1151 l.lZ02'U 
SI 1 o.t77'4726 t.15111656 l.51S I.HU 1.5J41113l 
SS 1 -0.6Ul9'0l 1.147211'7 •J.160 1.111' 1.l6141Ul 
S4 l ·t.Z5Dll521 l.141ZD451 -1.HZ 1.0906 1.56225111 
IAC 1 -o .1415'120 0.16402754 -o. 906 D.J651 1.24707275 
INC 1 O.OD0074t47 D.DOD0211U 2.397 0.0094 17 .11461274 
HS 1 -t.J00'75'l D.lll51241 -z .171 o.osoo 19.J21ll635 
!IE.US I 0.06492677 t.004J.5SJ51 15.6l2 0.0001 '.6111tl59 
INC2 I 4.54Jl71!-U 1.141111!·10 D.514 D.607S 1'.1'4737'5 
HSZ I -o. 04941454 D.11251407 -s. '54 •. 0001 11.0IOIJU 
lNCCHS I -4. 9060'1!-07 .OI00045JU5 -1.111 I.fl.SI I0.93446112 

Jl!!I ~RI !!Ill~ 
Dl!P YAIUIU 1 !XPEID 

AllAL TSIS OF VHJAllC! 

S_. OF lll!All 
SDUICI! " StllAllES stUHf F VALUE PIOl>F 

llODl!l 15 1.5941.UlZS 1161.79555 41.JZI 1.0001 
!RRDI 1126 176511.11 21.HUOUt 
C TOTAL 1141 ltz444.1Z 

IDOT llSf "·""'" 1-StUARI! 1.1121 
DEi' llEAll J. 747Ut ADJ I-St 1.1111 c.v. llS.lllZ 

,.UllltTEJI ESTillA TIES 

'HA"fTEI ST&MDHD T FDI HI• VAIUllC! 
VHJAIU llf ESTJllAT! Ellll PAl.UIETU•I Piii > ITI lllFLATJOll 

JllT[IC!P ·U.74264711 l.U4ZSU1 ·It.SSS I.IHI • E-1 •t.ZS06175S t.12172l47 •l.tll 1.1561 1.1174677' 
EMPSllllZ -t.JUlztlS 1.11362156 •S.J74 t.IH7 l.1411121J 
SXllll •2.JU74'74 1.Zlt51421 -11.zss I.IHI 1.UllHU 
Ul •t.12417H9 l.ll65144t •t.tol l.JU7 1.4051711 
U2 -o.06ZHH l.121tH'6 ·S.JIJ t.1117 I .J6177711 
11 '·"°'"" 1.14141179 4.17' I.IHI 1.Jt21515S 
12 t.Z5tJ1411 l.141141Zt 1.IS7 I.HU l.l7Sl40" •• l.Jtl51052 t.1'211104 Z.414 1.1151 1.J2H642J 
$1 •• 16037411 1.1519H42 1.lt7 1.012 1.5JZ24t12 
SJ •O. SJl6ttl6 1.14791507 •J.SU I.HU l.S'4455DI 
S4 •O.JlOIJl7 1.14195021 ·Z.111 1.uo l.S57U5S7 
IAC •t.16425151 l.16417l55 •I. IOI l.Jl71 l.ZJJ15U7 
LINC t.79'5'214 t.11116167 I.tu 1.1111 1.41515070 
LMS ·l.46761772 1.25702'55 •9. 711 1.0001 7. J4SllllJ 
LllULS J.11HIU7 1.24467521 12.7.U 1.1111 7.05U715J 
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IV YAIJAIUo aPIJll 

YAIJAIU 
JMTEICU 
fDHlll 
Oll'SltflZ 
SXllll 
UI 
U2 
11 
IZ •• SI 
SS 
S4 
IAC 
IMVJllC 
IllVNS 
llE.US 

HP YHJAILI!• UXI' 

DEP YAIJAILE• LEXI' 

lll\IEIH llOIU 

AUL YSJS OP YWAllCI 

Siii OP llWI 
SllUICI ... stUAIU HUAll r YALUI l'llOl>r 

MllL IS 141,..HlU t0.79111 41.417 1.1111 
U:IOI llH 171217.U IZ.IU6t7U 
C TOTAL ... , 1'2444.12 

IOOT "II 4.7Ul41 l•Seuall 1.17,. 
HP llUll J.70Ut ADJ l•SI 1.1711 
c.v. 1H.7'2J 

PAllAllfTU UTJlllTU 

PAIAlllT!I STAMDAll T FOi Ill• YAIJAllCI ... UTJllATE UIOI PAIAlllTU•I P'IOI > ITI IMfLATUlll 

1 4.t42HS51 1.41191171 12.117 
I •t.J72246'S 1.lltot7J.J ·S.116 
1 -t.446'14'4 1.1110106 •4.IU 
1 •l.ZlHHlt t.ZJ574t22 -t . .J77 
1 -t.21722171 1.1Ht7211 ·l. 51S 
l •t • .S01H7H t.JZ'1Zll5 •S.117 
1 t."IUH7 1.14202'1' 4.U4 
I t • .SU5771t l.1U6'97' Z.J55 
1 t.4U4Z776 t.16ZU747 J.'4Z 
1 l.1'5Hlt6 l.1SZ751H l.UO 
1 -t.52141605 t.14172451 •J.SN 
1 •t.Z71H7zt 1.141"111 •1.1'4 
I -1.47550151 l.1'J2247' -z.tu 
1 • 1251. 7t711 421 • .51565 -z.tn 
l -1.571"77" l.J4S.Jtl5S •l."I 
1 t.UZ512St l.IOZ54t41S 12.74' 

pgYlll•lM FUl 

AllAL YSJS Of YAIJAllCE 

SUll Of ll!All 
SDUICE DI' 5'UAIES 5'UAIE 

llDDEL 15 1706.IZIU IU.71114 
[RROll 1126 UD7. llt71 I. UH4514 
C TOTAL 1141 IOZU.'4DJ4 

ROOT llS! 1. OZt5J6 1-SIUAll! 
DEP' llEAll 1.747IOSI ADJ l•st 
c.v. U7.6741 

PAIAlllTEI ESTillATl!S 

P'.lllAllfTfl STHDAlll 
VAlllAILE DF UTIMTE EllllDI 

lllTEllCEI' I -z. '"""zt 1.Z4t0117l 
EDKlll I -0.05112611 D.02'5U7t 
f .... 5""2 I •O .11 J5•1ZZ 0.124'4'1' 
5X ... I •t. 655049.52 t.051H51t 
UI 1 t.DOOIU7t l.OZ9tl5'4 
uz I -0.107260.16 I. 121J1Zlt 
111 1 1.ZDIUtU t.IS114415 
12 1 0.07176476 1.ISHl711 •• I 1.116266.59 l.DJ5H544 
51 I ·t.H271151 1.UJ.57115 
SJ 1 ·0.1563113' O.UZ4111.S 
54 I •O.HIZ5177 t.UZ7H7• 
llAC I ••• 05644177 t.03604211 
LUIC I t.ZlJHl74 I. llHll.54 
LK5 I 1.lDJH'U t.1564210 
LllEALS I o • .ssouzu t.05l71Ul 

Loa-1wes1 "°!!' 

1.1111 • 1.1111 l.17"771.J 
t.1111 l.1147ZU5 
..... 1 1.1S77HH 
1.Ul4 I. 4.572120 
1.1111 1.l516't72 
1.1111 l.JUl.5171 
I.UH l.Hts56tl 
t.1114 l.S2S4H71 
'·"71 1.JllHIO .... ., 
1.HZ4 
t.HH 
t.HJO 

'·"" 1.1111 

F VALUE 

117 .J5J 

D.1'71 
0.1'56 

T FOii KO• 
PAllA"ETER•O 

-11.u.s 
•l. '55 
-4.552 

•IZ.9U 
D.136 

-J.711 

'·'" z.n, 
J.2U 

·Z.711 
•4.111 
-J. 005 
•l.SH 
11.tu 

J .l.S7 
11.zs• 

1..SUJll44 
1..S5'7U7' 
l.ZH74SU 
1.ZtllOZI 
Z.UttHH 
Z.4'UU1Z 

PIOl>f 

1.1001 

PllOI > ITI 
1.1111 
1.0516 
O.DIOl 
1.0011 
D.H1' 
D.OHZ 
0.0011 
l.OZH 
0.0011 
1.0054 
1.0001 
l.IDZ7 
1.1174 
•. 0011 
I.HU 
D.0011 

ANAL TSJS Of" VAIJAllCE 
$1111 OF llEAll 

SOUllCE DF SllUAll!S SIUAIE 
llODEL 15 1'14.1455' IN.'4.Sl.ti 
UIOR 112' 1619.79471 1.0727.57'5 
C TOTAL 1141 1121.J. t40S4 

IOOT 1151 I. ll57JI 1•5'UAI! 
DEP' llEAll 0.74711JI AD.I 1•$8 c.v. Ul.51J1 

PAIWIETEI ESTIMATES 
P'AIAllETO 5THDAllD 

VAIJAILE DI' ESTJllATE 9101 

IllTtllCEI' I 1.UOOJ27Z t.llftHl2 
E-1 I -t.ttl19J71 t.IZU?Zot 
Oll'SltflZ 1 •0.1Jlllt7' 1.120tH7 sx ... 1 •0.674ZS4H 1.05111411 
UI 1 -o.1157''51 t. DJDIDOJO uz 1 -0.12573750 1.DZU7U6 
11 1 •• 22121176 D.Ul21145 
IZ I O.H7•051 O.UlllZU 
114 I O.lllSZ19J 1.U571toU 
SI 1 -0.09022111 l.Ul5'777 
SJ 1 •0.15Z511Sto 1.UZHZ77 
54 1 •O.Dl7'4'11 t.U2HH1 
IAC 1 •O .11512614 O.OJ51'92' 
lllVJllC 1 -514.63722 tZ.Sl7'14Z2 
l11VK5 1 -o. 90711440 0.075461l7 
llEALS 1 t.DOU5'UO •. 00056025' 

F VALUE 

tt.nz 

1.1571 
D.1555 

T FOii 1101 
P'AIA"ETEll•O 

II.HZ 
-s.su 
•5.662 -u. 015 -o. 525 
•4.UI 

7.117 
J.UD 
J.IU 

·Z.611 
·4.6H 
·l.'14 
•J.ZU -s. 551 

·IZ. O.SO 
10.919 

PllDI > ITI 

1.1111 
I.lot• 
l.OHl 
t.1111 
I.SH? 
1.1001 
D.0001 
0.1111 
I.IHI 
D.1172 
1.0001 
O.I075 
I.DOU 
0.1011 
D .DOOi 
D.0001 
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F.3. Fats and Oils 
!UA!!!AT!C 9'01U 

DU VHJAILf• aJ'[lll 
AllAL TSIS Of VAIJAllC! 

SIM OF ll!AI 
souaci DI' S.UAllH Stu.\U f YALU! PlOI>' 

llODEL 11 3271.JZJJT 111.'9SH 114.167 I.HU 
fHOI U29 tztl.IU41 l.tl7UUI 
C TOTAL tS47 1247' .. SlH7 

ROOT llU 1.ttS5J76 l·stUAI! 1.2621 
DU llUll l.4'7S~ AD.I l•H l.ZH7 c.v. '7 .711SI 

PAUll[TU fSTJllATD 

PAIAllETU STAllDAID T FOii "'' VAIJAllCf 
VARJAIU DI' UTillAU: tllDI PAILUIETD•t PIDI > ITI lllFUTIDll 

lllTEICa 1 1.llSIUlZ l.H711Sll I.JS• 1.lZJI I 
EDIOll 1 1.l27IOZll l.t24ltt2' J.Zll o. 0001 1.lZ14tS4t 
DIPSllllZ 1 •l.020HSl4 l.OZZ'9Z" ..... , 1.S7SI 1.16121145 
SXJlll 1 l.U721114 1.1011411 1.au I.SHI 1.1117501 
Ul 1 l.145S2ZU 1.126'610 1.611 I.HU 1.4519014 
uz 1 1.1491'711 •. 12542717 I.ts• 1.0532 1.5909920 
11 l 1.US4Z211 1.127'4'4' 4.774 I. 1001 1.5747217' 
l2 I I. 12172555 1.1271211' 1.711 1.4549 l.lU144SS 
14 l -1.12155142 l.0317191S -0.'42 1.5210 l .ll911121 
Sl l -1.Ut7151Z o.U02Dt31 ·4.JZ9 0. ODDI 1.534029'9 
SS l ·I. ISIU271 •• 02tOl340 -1. 999 0. 0457 1.51196312 

'" l -o. 04ll55'1 D. DZ925092 -1.414 0 .1574 I. 57641006 
HC l 0. 05651995 O. OJZ52474 1.125 D. 2606 I. 24770269 
lllC l 0. 000010086 . 00000564226 l.711 0. 07 39 17 .51365230 

"' l o. 09064406 •• 0274106' J.291 •. 0010 It .55621360 
"UlS l o.auaosto I. OGOl54625 11. 779 0. DODI 7 .165599'5 
!NC2 I -1 .1790lf-ll I. 77577E·IO -o .455 0.601 u. 09960537 
HS2 I -o. 01192305 0. OD244'1U -<o.161 0. ODO! 10.'3716934 
INCCHS l . OOD001550l4 9. lOH7E·07 1.712 0. Oll7 ID. 93546029 

~~!LOO ..OD!l 

DU VAIJAIU• ~EllD ANAL TSIS " VAIJAllCE 

SUll O' "Ull 
souaci IF seuHC$ stUHE , YALU( 'IDl>f 

l!ODfL 15 Jl71.UJ51 zu.u2:u 211.940 o. 0001 
UHi usz n11.su•1 l.tt746H4 
C TOTAL uu 1247'. JSlt7 

IOOT M! 1.91172'7 1-seuur t.2541 
DU MUii I. 4'73J4 ADJ 1•51 0.2529 
c.v. 61.16423 

,AUMTCI f$T111AT!S 

PAllAllt:TD STANDARD T FOi NI• YHUNCt: 
YHUIU ... UTlllATt: fUDI 'AllAllETIEI • t ,.DI > ITI lllFUTIOll 

lllTnc!P ·Z.9154412' 1.z2zaau1 •U.l9' 0.0001 I 
t:-1 l.llll5JZ4 1.124270~ 4.576 0. 0001 1.12335031 
Ull'SllllZ •t.'2H71H 1.122711'7 -1.212 I.ZOSS 1.1'74H7l 
SXllll •t.lllUH7 1.1044197 •1.IU o. 0625 l.ll6'021t 
Ul 1.Ulllt4" l.IZ7t7U5 l.UJ O.IUt 1.4050919 
U2 1.14J24UZ O.IU5S3'2 1.6'2 0.1906 l .J90JZ4SI 
11 I .14114721 I. 02111544 •.tU 0. 0001 l.37"7253 
l2 1.ll&UZlZ 1.12793261 1.3'4 D.172' 1. J5'Ul6 7 
14 •0.12Z2Hlt t.UlHSZI -··'" o ..... I. 32143961 
Sl •t.USIZlll t.IJU523' -4.475 0. 0001 1.)3253514 
SJ -0.16916031 I. 12920312 -z. lt2 0. 0161 I . 5715<oal2 
s• -t.15427245 1.0293614' -1.••• 0. 0646 I. 57194911 
UC 1.10116'9 1.ll2522Jt l .l2S D.IUJ I. Zl451562 
LJNC 1.H42U04 I. U7'51l4 s.•OJ 0. 0001 1.56136065 
LNS I. D41Z14SJ •. 15127534 0.714 D.029 7. ,_136240 
L"EAlS l.tot5'14J O.l .. t2Zl2 11.592 0. 0001 7 .57714651 
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..1.11nm m&L 
DI' VAllUL(o (XP(llD AUL TSJS 0, VAIJlollCf 

SIM ff IUH 
souac:r " stUAHS HUAIC ' VALUI! l'WOI>' 

MOHL u JZJ1,71t0 us.02n Zl7 .4zt l.IHl 
!1101 usz '247 .S4HZ l.HttSH4 
C TOTAL U41 1Z47t. Jllt7 

IOOT llS! t.tt5464t l·HUAlf 1.2stt 
D9 llUll 1.4'1SJ4 ADJ 1•5' 1.2511 
c.v. 61.1417S 

PAIWllTEl !STillATU 

PAIAllETH STAllDARD T FOi Kio VAUAllC! 
VAllAIL! DF UTillATl fllDI l'AIAll£TU•I 1'1101 > Ill INflATID• 

INT!ICl!I' I. 75S257U t.17HZSll t.544 1.1101 • 
El>Hlll O. tt712.S24 •. 0Zl7'tll ..... I. ODDI I. DIS5t57t 
[)ll'SH1112 -o.u5u2n 1. 022os.s•• ·l.Ut 1.1177 1.IHUl52 
SXHll 1.1u·us11 l.143911tt l.J.S7 •• 7362 1.U19'Ut 
UI I. U3'SIS1 D.DZOSS71 1.249 I. 211' 1.US51171 
U2 t.ossn2u 1.1253'502 1.lt5 t.162' l.'711441' 
Ill 1.142121'1 I. 1210lll4 '·'" D. ODDI 1.l75425D4 
IZ •• 15411721 1.127U677 1.2tt t.1'41 l.l5l47177 ... -O.IU275'7 1.Ul771t4 •t.411 0.6517 l. 31'777'5 
Sl -l.129'46tl 1.UOZ52" -4.ZtS 0.1101 1.53251415 
SS -o. 06051426 0.02'10146 ·Z.17' O. U77 1.S71.SUOI ,. -o. 040425'6 I. IZ,2U29 -I.Jal 1.1'72 1.57171067 
UC I .I05759'H O.U2H7Sl O.llO 0.1575 I. 20,.717' 
INV INC -Sll .5055.S 12.lSUlOlt -s.1n 1.0002 I .l550Sll4 
INVMS -O.ll247H7 1.H5UIU •S.17Z o. 0001 z. 97745611 
llEAU l.01417t67 I. OOO.Sl05Z7 2'.146 I. IOOl 2 • .54715112 

QOUllMRO llOPCl 

D9 YAIUAIL!o LEXI' 
AllAL 'l'SJS OF YAIU.llCI 

SUll OF 11!.lll 
SOUllCI! DF SQUUl!S S.UAIE F VALUE l'llDl>F 

llODEL IS 2266.21257 151. 01551 ZH.12' o. 0001 
ERROii UJZ 4191.39"2 1.520'7SS 
C lOTAL U47 71.5t.'714t 

IOOT llU •• 720321 I-SQUAii! 0.31'5 
D£P "UN •• 0"11731 AllJ l•st l.J1S4 
c.v. 1094. '" 

l'AIAllETU £STlllATD 

l'AIA"fTEl STANDARD T FOi Kio 
VARIAILE DF UTlllATE EUOI ,_RAM£TEl•O "°' > Ill 
INTERC!I' 1 -5. 91655424 t.1'UOU7 -z4 ·"' I. 1001 
fllHMl I 0. 06J.SSlll •• 0175'72' s.uz o. ooos 
EMl'SMllZ I -o.02osaos 1.11651114 -1. 244 0 .2127 
5X"" 1 O. D4'7ZZS2 l.UlS1211 1.413 t.llll 
Ul 1 O. D0740J425 •• 01'65411 0.377 0.7061 
uz 1 1.01312915 1.011527'5 0.7H 0.47'6 
11 1 t.onun• I. 120.51519 •.702 I. 0001 
IZ 1 0. OZ'644'2 I. 12025261 1.IH 0.200 .. I -o. 02117414 l.12JIZ571 -0.94, 1.3442 
SI 1 -1. UZ.U7Z2 I. IZ2DD7ll ·4. OIS 0. 0001 
SJ L -o. 04174515 I. IZ11741Z -z .302 1.1214 
$(o 1 -0. UJ72245 1.121211'4 -1.sa• O.lUZ 
UC 1 0.0"741421 1.12551147 2.0I• 0. 0441 
LINC 1 t.10546170 l.Ol2U31S 1.355 I. ODOl 
LHS 1 ·I. HS24530 I. OS7177S5 -0.117 0. '304 
LMULS 1 0.1745JU6 1.U547U4 21.154 0. 0001 

UHi-JllXEl:S~ 111111'& 

AllAL YSIS OF VAIIAllCt: 
SUll Of ll(All 

SOURCE DF SQUAlt:S 5'UAIE F VALUE PIOl>F 

llODEL 15 215D.1UJ7 14S.l44U 2'7 .ozt I.DOOi 
ERROR UJZ .SOot.SUU t.Sl611154 
C TDTAL U47 7Ut.'7Ut 

ROOT llS! D. 7326154 1-seUARE I. JOOS 
DEi' llUll •. 04'117ll ADJ l·SQ 0 .29'Z c.v. 1106.'7 

l'AIAlll!T El EST lllA TES 

l'AHll!TEI STANDARD T FOii HOo 
YAR!AllE DF tsTlllAT! fHOI l'AltA"fTU•O 1'1101 > Ill 

lllTUC!I' 1.01130216 1.uaottn l.ltS 0.1457 
El>H"l •. 06053134 I. 01741Hl J.462 O.IOD5 
fMl'SMllZ -•. 00060706' 1.tl'2U14 ·O.Ol7 0. '701 
SXHM 0. 05264477 I. 1323715' 1.626 0 .1Dl9 
Ul -1.00017201 I. 11912504· -o. 009 0. 9931 
U2 •. 0140175 0.0116'H5 0. 776 .. "" 11 O.l04SllSI 0. 020'1UI .S.073 0. 0001 
u 0. OJU599' •. 02046610 I. 7"7 0. 0106 
14 -•. 007 31"54 t. 02531377 -0. 313 0. 754(o 
SI -o .13471141 0. 022266.SZ _,. 053 0. 0001 
53 -o. 05216137 0. 02142416 -z.os 0. Olfo9 
54 -o. 03215377 I. 121S.Ja12 -l.493 O. ll55 
UC o. 02475270 0. 02361644 l.041 0. 2946 
INVlllC -zn. 74557 .... 645201 -·. 461 0. 0001 
INVHS -o. 90397156 0. 04794462 -11.155 0. 0001 
llEALS 0. 007Z92'90 0. OOOJ7S75J 19.401 0. 0001 
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F.4. Fruits 
IUADllATJC llODCL 

AllAL nu °' VAIJAllC! 

SIM 0, llflll 
SOUltC! DI' S41UAIU stUAIE , VALUE ~•ot>f 

llCIDEL II U426.Z7'Sl 157.11.531 lU.tH t.Hll 
UROll '177 671U.0445 7.Jlt70H 
C TOTAL nu U24l.tn76 

IOOT llSE 2. 711409 1-stUARE t .115S 
DE, llUll J.J7U74 ADJ •-se l.l&S7 
c.v. 7'.nu 

PAIAllfTfW !STIMTU 

PARAllf:TU STANDARD T FOi Mio VUIAllC! 
VAIJAIU: DI' !STIMT! flt I DI PAIAllfTU•t PIOI > ITI lllFLATIOll 

lllT!ltC!' 1.S51172'7 1.11U44tl 1.251 t.0001 • !Dlllll -0.52972011 t.0Uzt052 -1. ttl 1.0001 1.12726171 
£1U'S""2 t.129'2'76 t.U24U45 2.077 I. 0571 1.l'19'7U 
SXllll t.27ZZS9U t.llUl2H Z.277 1.0221 1.10111906 
Ul 0. 09197'76 •• 17425407 1.JSS 0 .1125 I. 45417147 
U2 -0.177S2US l.t70S7547 -1. Ott 1.2719 I. J905SS2l 
11 O.&l901U7 1.07707121 I0.'27 0. 0001 l. S17HlS7 
12 1.16211744 •• 0705110 2.101 0.0550 1.J6Ul71l 
H I. 9671370 •• 08709450 11.104 I. 0001 1.13305740 
51 -0.4147U24 0.01313276 -4.919 I. 0001 I. 3l16J224 
SJ -o. 55045015 I. 010l97'9 _, .147 0. 0001 1. Jl222SJI 
$4 -0.5112050 0. 0&076047 _,. 417 0.0001 I. J771'19' 
lAC -0.01519039 0. 0191GD50 -o .171 0.1515 1. 25171760 
INC . D00004274'5 •. 000015609 0.274 0.7U2 17 .64H5560 
HS -a. 09444115 0. 175Ul4S -1.245 0. 2112 1'. J45ZOJ55 
llULS 0. DJJ5Z15J l.002J5544J 14.212 0.0001 7 .17511991 
!NCZ -S. 51145£-10 4. 92579!-IO -0.7H 0.051 U. JZl9'9'9 
HSZ -O.Ol2lS5JI O.OOU046U -I .Ill I. 0699 10.69121194 
INCCHS 0. OOOD1Jl'7 . OOOOOZSZ'7 J S.J02 0. 0001 ll .llH6116 

Sfnl L QO "OPEL 

W VAllAILlo Dr£11D 
AUL TSJS OF VAIJAllC! 

SIM Of 
SOUICE Df seYA11s 

llU• 
$9UARl f VALUE PllOl>f 

llODfL u 14617 .IH77 t7J.15SSI tso.2ss o. tool 
!IROI n11 H6J4.UHt 7 .47UHH 
C TOTAl nu UZ41.,07' 

•DOT llU Z.7J4Sl7 1-seuAllE 1.1755 
Df' MUii S.S7U74 ADJ I-st 0.1741 
c.v. 76.457U 

rAUMETIDI ESTIMTl!S 

PAllAllfTU STANDARD T fllll Nlo VAllJAllCE 
VillAIL[ Df [STJllAT! uaoa PAllAllETU•I raoa > ITI JllFUTlOll 

JllT!IC!' I -6. 2271 '25' 1.UU2417 -10.011 0. 0011 • !DHlll I -0.SSUSlll l.HOSSH -1.ltl I. 0001 1.123ot440 
£11'5""2 I 1.1254U7' 1.1'19'UI 1.fU •. 0500 l.16177lll 
SXllll I t.117't7U t.IZIUSll 1.149 0 .1114 1.115lJf1' 
Ul I O. Jl2Sl7JO 1.17461579 I.SDI O. UIS 1.45ZIZ54Z 
uz I -o. 01121ZS4 1.17077402 -1.246 0. 2127 I .JfOOlOI~ 
II I O.UZf6ZtS •• 077'740S 10. 7JI I. 0001 I. ll91SUI 
12 l O.Z07717Z2 I. 177215Zl 2.61t 0. 0072 I .US424U .. I O.t5JOl7Zt 0.017'4l24 11.175 I. 0001 1. ll424'11 
Sl I -0.415Ul56 I. OISS759' -•.t7J 0. 0001 I .Sl71SUI 
SS I -O.J7SU6ZO l.01177ftl -7 .104 0. 0001 J. 57177116 
s• I -o. S4l6'll1 •. Oil IZ451 _,. 702 0. OIOI l.S7Z'561Z 
lAC l -o .11040250 l.Oltll071 •0.117 1.9071 1.2394'270 
LINC I O.ZHl1157 t.1414Z4ot '.006 I. ODDI l .1111SUS 
LHS l -o .1'4lJSt5 t.1417113' -1. IH O.Z46Z I. OOSJSl7' 
LllULS I 1.'3747US t.lSSts21' l4.J46 0. 0001 1. '1USZl6 
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ll!Xl•H !!!IKL 
MP VAllAIU• DPUI AllAL TSIS O' Y.UIAllCI 

'Ill 0, JIUI 
SOlllCI ., HUA HS stUAll! ' YALUI! ,.OJ., 
MOHL 1J 14'71.S17U ttl.S'711 U4.ZH 1.1111 
HltH nu 6UU.UZ7Z 7.U6USH 
C TOTAL nu UZ41.,.f7' 

ROOT llSI! z. 7Z6tZ2 1-SfU/oltl! t.17H 
DI!, llUI J . .SHZ74 ADJ I-st t.1716 
c.v. 76.Z.5U7 

,AIWl[Tl!I ESTIMTl!S 

,u.lJl£T n STANDARD T FOil NO• VAIUNCf 
YAltUlll! Df fSTIMTE EltltOlt 'AIWIETH•I ,1101 > ITI INflATIOll 

INTDCE, 1 ,.11t042S5 1.21711116 lt.151 •• 0001 • 
EDHlll 1 - .'97J20S l.IUZOUI -•.1'1 ..... 1 l .IU7ZS17 
Oll'SHllZ 1 t. lOS.57571 I. 06D&7U.5 1.711 '·"" l.HIHl2S 
SXlll I 1.2457%526 I .1Z211H7 z.nz t.144Z l.1014UZ 
Ul I t.t7004H7 t.17426121 t.tU t.106 J.4471Ja15 
uz I -t.11152717 t.1712'505 -1. 517 0.112' l.l7'42115 
11 I t.12950511 t.17755117 It. 72.S I.Diil 1.1061471 
ll2 I O. ltl01229 t.17702626 Z.571 t.OllZ 1.161'5112 
ll4 I •• 9'209524 •• Ol7S7172 IJ. 111 t.tDOl l .SlS416'2 
SI 1 -o.40505623 l.OISlOU -4.10 1.1001 J.51615716 
SJ I -l • .S.5l54.UI 1.1105'41.5 1.171 1.0001 1.5700416 
$4 1 -o • .51551'64 t.OIHU47 1.l7Z I.IHI 1 • .s121nu 
UC l -t.U237J4Z t.01103141 -1.IU t.240 1.21421214 
lllVlllC I -1129.571.59 226.91742 -•. t71 t.0001 I. 161'42'2 
lllVllS I -t.JlOUUl t.17955244 -1.u• l.U61 2.99552277 
NULS 1 O. Olll&Hl l.10140H44 22.2u o. 0001 2.S54HOI 

211w1u-u111 !!llat;L 
DfP YARJULf• LEXP 

ANAL TSJS OF YAIUNCf 

SUll OF NUii 
SDUltCf DF SQU.lltES 5'UARE F VALUE "Dl>F 

NO DEL IS !SH.26493 ti .'50995'5 !St. '60 0. 0001 
ERROii '111 5254. 0541.5 0.572Sl7U 
C TOTAL nu "27. l1'71 

llOOT llSE 1.7565297 l-5QUAU 1.2012 
DEP NUii 1.959'U ADJ ll-Sf 0. 20.59 
c.v. 71.IJU6 

P&ltloN[Tfll ESTill.lTES 

PAHN[Tfl STANDAllD T FOil 110• 
VARUllf DF UTJIUTE ERROi PAIWIETH•O PllOI > ITI 

IMTERCEP' I -Z.44017415 0.171077'4 •14 .264 I. ODDI 
fDHHI I •0.17517505 o. 01141'4l ·•. 551 0. 0001 
fMP5""2 I 0. 065149'4 •. 01742013 J.740 0. 0002 
sx"" I 0.1230675 t.U337724 J.711 0.0002 
UI I 0.0.572901' t.0206446' 2.775 I. 0055 
U2 I -0.0lltSOS 0. 01951175 ·0. "7 O. JSJ5 
u I 0 .21477614 I. 0214'll.5 U.26' o. 0001 
12 I 0.11597919 o.02uuz4 5. 424 o. 0001 ... I 0.29690511 O. Ol4Z4909 12.244 0. 0001 
51 I -O.l241l701 o. 02312l76 -5.161 0. 0001 
SS I •O.l26H214 0.02ll!OU ·5.•ll 0. 0001 
$4 I -0. I OS23Sl7 0.02244550 •4.599 0.0011 
UC I o. 0011n16' 0.02467441 t.047 0. 9622 
LINC I O. IJOl770l l.Olllt7'6 t.716 O. OIOI 
LHS ' I -0.05'41521 0 .15921151 -1.459 o.uu 
LNULS 1 t.551'1117 O.U7S6'17 14.770 f.0011 

LOO-JllYUSE llODU 

DEP Y&llULf• LEXP' All.ll 'nlS OF Y&ltUNCf 

Siii' OF 11011 
SOUltCf Df stU.lltU SllU&ltf F YALU[ PIOl>r 

llOOU 15 IS21.52526 11.111usa1 152.02 0. 0001 
ERROR tllO 5505. 79452 0 .57797326 
C TOTAL '195 '627 .11971 

•OOT 115' o. 7602455 1-SQUAR[ 0.1'94 
DfP' NUN 1.'59'U ADJ I-st O.ltll 
C.Y. 79.22411 

P .lRAl!fHI ES Tl 11.l TES 

PAIAN[T!I ST.lNDAltD T FOil Mio 

Y.lltJUU or UTIMT£ EltlOlt , AllAllET fl• I PllOI > ITI 

INTUCEP I 0. 7190505 t. 06172UI 11.157 0.1101 
EDHMI I ·0.11711141 0.01117765 ·ll.JJ2 I. DOOi 

ENPSHllZ I 0. 16691197 0. OU172U J.t42 o. 0001 

SXHN I 0.1504lU4 0. Ol404577 4 .419 0.0001 

Ul I 0. 04740571 0. 0217 0542 2.21t •. 1221 

U2 I -t.02l24190 0.01Ut717 ·1.116 0.2555 

II I 0.211•230 0. OZI 5'615 U.l5D 0. 0001 

12 I 1.12177191 I. 021U4l4 5 .•71 I. 1001 

14 I 1.J042'1IO 0. 02HU53 12 ... 1 o. 0001 

SI I ·0 .1235420 0. D2l2SS'7 ·5.lll 0. OIOI 

SS I ·O .125550l0 o. 02246011 ·5.590 0. 0001 

54 I ·0. 0017605 I. 02255521 -·. l97 0. 0001 

UC I ·0. 024Jt2'5 0. 02'54222 ·O. H4 0. J205 

INVIMC I ·•6l. 7UJ4 6J.26001151 ·7. Jll 0. 0001 
INVHS I •O. •OOJ0l51 0. 050057&7 -7 .H7 o. 0001 

NULS I 0. OO•J90011 0. 000l9Jll2 16 .25' O. DOOi 
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F.5. Grains 
tuepg11c nppcL 

AllAL TSU 0, VAUAllCE 

SIM 0, llUW 
SOURCE ., seua1u seuuE ' VALUE ,llOl>f 
llODfL 11 llUl.40l7J 017.240S 412.41' t.0011 [HOit ,.,, 105S4S.l4 ll.tZllH74 
C TOTAL tU7 IH47S.tS 

llOOT llS[ S.lHll7 1-seuAu t.4S51 0[, llEAll s.unza ADJ 1-se t.4l41 c.v. Sl.41.516 

rAUll!TU UTlllAT!S 

VHIUU Df 
rARAl![T!R STANDARD T FOii NOo VAllUllC! [STlllAT! [HOR "IAllETU•O PllOI > ITI IllFUTIOll 

IllTUCE, I t.47939017 t.Z174111t Z.ZH 1.0275 • EDIOll I t.llll325t •• 17t45tlt 1.0J •• 1.520 l.lllHUS WSllll2 I -0.211tU11 1.174125&1 -5. 7to t.OOOZ I .1'40Ul4 Sxtll I -0.45536011 t.Ull5517 -J.2tl I.IOU 1.11734411 UI I l.HOl77U t.OIU3'04 t.123 t.taZI I .45t04tll uz 1 -0.31Z7U51 t.0&345151 -J.74t 1.0002 l.l9765Zt4 u 1 l.J641HZI O.ot1UU7 14.Ht 0. 0001 l.37244402 12 1 1.$031105 •• otlll.511 .5.l2' O. OIOI I .l5235711 114 I 0.046'3H6 0.1UU444 0.449 0.4535 1.31124179 SI I -o. J323307S 0. Otl40616 -l. l4S 0.1717 1.54050675 S3 l 0.131112'1 o. 095421'6 1.05 0.145' l.510l7756 $4 I .... ouzo 0. Ot'9S'23 5.07' 0. 0001 l .5H5016l RAC 1 -0.60210776 0.1004154 -5. 7 l7 0. 0001 1.25037123 INC I -·. 000051tll •• 000011454 -s .192 0. 0014 17 .51994049 
HS l 0.'5272316 0. 019tot1' ' ...... 0. 0001 19 .'6083122 llfAlS l 0. 05669006 0. 0021D7931 20 .119 0. 0001 7 .27595237 
INC2 l 4. 72016[· 10 5.12919[-10 0.110 0. 4111 16. 06 353226 
HS2 I -o. 06571607 0. OOID59544 -· .154 0. 0001 ID. 720455'1 
INCCHS I O. 0000212.SZ . OOODD291l7t 7 .114 o. 0001 10. '5126054 

~'1:!1~22 ~gg~~ 

DU YAIIUU • fX'fND 
OF YHUllCf AllALTSIS 

SIM OF "Ull 
SOURCE Ill' SCIUAUS SCIUARE F YAlUE 'llOl>F 

llOD!L lS 75317 .171'6 5021.ltltl 455.$53 0. 0001 
ERROR HU 1111.56.17 ll. 5Zl3ZGIZ 
C TOTAL tU7 116473.tS 

llOOT 115! 3.l'5331 1-seuau 0.039 
DE, llUll 5.659221 ADJ I-Se 0.4030 
c.v. 59.tt64t 

"IAllETU [STillATES 

rau11nn STANDARD T FOR KO• YHUNCE 
VUUIU, Ill' ESTillATE EHOI r&IAllETER•t ,ROI > ITI IllflATIOll 

IllTERCU 1 -7 .lotllttl •. 7001730 •t.U7 t. ODDI I 
EDMlll 1 •• 17367145 •. 1110275 t.to5 O .l'55 l .125S7t47 
flll'SHllZ I ·t.2'730S7S t.176S7ltl ·J.IU I.DOOi 1.17146446 
SX191 I •l.OOUOlll t.14Z23tsl -7.ttl 1.1001 l.12442"J 
UI I 1.12045411 I. HOU71S 1.226 I.UIS 1.457U4S& 
uz l -e.UHJIU t. H5UJSZ -s.t51 I.ODDI l.3t6121Z7 
11 1 1.41651917 l.tt41'17' 1S.04l I. 0001 I. 3740103 
12 1 O.fl021t24 t.OtS4'll6 6.JZ9 0.0001 1.3096711 
14 1 t.15055749 l.1H71S31 0.474 0.6l57 I. 3lt779Zt 
Sl 1 ·t.l41HJ61 I .10111611 -1. 474 0.106 l .5llt205Z 
SJ l t.ttll2077 .... 7 .. 112 o .tsa t.l41J I. 57665311 
54 1 0.4427to62 t.Otl3tl07 4.500 0. 0001 1.s•n•1'7 
IAC I -•. 51312946 1.10721275 -5.4to2 0. 0001 1.23167062 
lillC I -0.01116432 •. 051229ll -o. I tZ o ....... I. 5'591'04 
lltS I I. 76117491 1.17142342 10. Jl4 0. 0001 1.01664763 
UIULS 1 S.1000507 0.16l4S252 11.tU 0.0001 7. 707900ll 
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•U YAllHLf• Ol'OI 

YAIJHU " JMT!ICU 1 
f-1 I 
EllP'SllltZ I 
SXM 1 
UJ 1 uz I 
11 I 
R2 I 
14 1 
SI 1 
S.J 1 
S4 1 
llAC l 
INYJllC 1 
JNVHS 1 
llULS J 

DEr YAAJAIU• UXP 

DEr YARJAIU• uxr 

lllVfHr llODrL 

AllAL TSJS OP VAIJAllCf 
SUll OP llfH 

SDUICf ., StllAHS SIUAH , YALUf rRol>' 
llOD!L IS 7tllt.4ZHI 5217 ·"1" 47Z.6H 1.1111 

11704.SZ UIDI '64Z U.l444ZZJI 
C TDT&L tU7 ll647S.tS 

aooT llH J.JSUH 1-seuur l.4ZSI 
"' llfAll S.UtZZI ,.., 1-se l.Uzt c.v. Jl.tHll 

rAIAllnO fSTJlllATlS 
raaA11nfl STANDARD T FDR Kl• 
UTllUTf UIOI rAIWl[JU•I rRDI > ITI 

Z.Ul714JJ 1.zsuzu1 t.•u I.DOii 
1.03575511 0.17151414 •.• 55 0.6491 

•0.JU773'Z 1.17276245 -5.274 1.0001 
-0.411''471 0.142H7S7 -J.ltz 1.0007 
·0.14'2Ul9 l.0Ht7J"' •I.SU 1.5112 
•l,JltUUJ 1.llll715J •4.640 1.0001 
l.l147lt75 1.otZSSIOt U.tu I.HO! 
1.54514615 1.19171125 5.Ut 1.0001 
0.11U5'U 0.104161'4 0.175 0.1610 

•0.11lt5H1 O.ltUZIS7 -1.126 I.JOU 
l.lOJSZH l.H'257t4 1.761 1.0712 
l.5ZtUZ77 1.0t67Zt4J 5.471 0.1001 

-t.64954421 1.11440415 -6.ZZJ 1.0001 
·UJ.IHH 2U.SllU -···" 1.l75t 

•l.H1422H l.2U00'27 -1. 974 0.0001 
1.07505451 .... 1'14754 44.54' 0.0001 

R!l!llU-~!!! ..ODfL 

AMAL YSJS OF VARIANCE 

SUll OF llEAll 
SOURCE " SIUARES StllARE F VALUE 

llODEL u J146.tl.UO 2Dt.791t0 '19.2U 
fHOR 9642 JZH.41711 1.JS1777tl 
C TOTAL 9657 64U.471SZ 

HOT llSf 1.512005 l•SIUARE 0.4907 
Dir NUii I. 4(o2541 AD.I •·H 0.4199 
c.v. 40.l414J 

rARMnEI ESTlMTlS 

P'HAMETEI STANDARD T FOi MO• 
YAIUILt: " £STJllA7f ElllOI rARAllfTER•I 

JNTERCEP I •1.UZZZ431 1.127S71'7 ·IS.207 
EDllMl I ·O. OOlZZU71 O.Oll95'46 ·O. 231 
£111'51912 1 •O.U1716Z4 O.Olll9119 -z.110 
SXllM 1 -0.1436004 1.02UIJ37 -5.119 
UJ 1 1.0116947' 1.1155425' O. 75Z 
uz 1 •l.OS509021 1.01661416 ·Z.J90 
•1 1 0.22715691 1.016141'7 14. 073 
u I O.Dl4'55Jt l.01UZZOJ 5.21" .. l -1.ozzst4t4 l.0112'1t6 -1.zz• 
Sl l •O.U4ZZ124 1.UUUIO -1. t77 
SS I 1.03425541 I. 0167120 Z. O(ol 
S4 I. 1.0090071 I. IUl"H 4.144 
llAC 1 -t.11444711 1.DIU9ot4 -6.ZZJ 
LJllC I 1.0Sl7UU l.H9tllt24 l.IH 
LllS I l.l1'1tf06 1.129Sl6Z4 10. 760 
LllEALS 1 1.0112444 1.IZH1'41 ZS.SlZ 

~-·lllVllll !!Ill' 
ANAL YSJS OF YAllAllCt: 

SUll OF llE.AN 
SOURCf DF HUAIES HUARE f VALUE 

llODEL 15 lH2.H57J Zl4. IS17Z 517 .J05 
ERROR 9642 ll51.40551 1.1475107 
t TOTAL "" 641S.47UZ 

aOOT llSE I. 519562' a•StUARf 0.4114 
DEP' NUii 1.441541 ,.., •-se 1.4766 
c.v. 41.HUS 

rAIWIETH ESTIMATES 

rAIAMETU STAllDAID T FOa MO• 
YAIJHU IF ESUllATE ERROi rHAN£TU•I 

lllT!:RCt:r 1.51447716 l.145'H17 32. 971 
EDHMl -0.001551511 I. 01l17UZ -0. llZ 
EMl'S""2 -o. D25'7115 I. 01ZU11' ·I .HI 
SXHll •0.12U4tZ7 1.02509500 -s.u• 
UI l.005ZUJtl I. 11571Sll a.JS6 
UZ ·O.U51SU7 I. DUl1217 ·2.l72 
u 1.ZSlOtlll 1.11634474 l4. ll9 
12 O.Dl9tSU4 O.OUZllH 5.541 •• -o.ouut42 O.OllSZOZS -0.1'8 
n ·O.DSS59'H 0.1175400 -1. 916 
SS O.OS646UI 0.016'995' 2 .145 
S(o 1.0704911 l.Ol7H21Z •. 46' 
IAC •O.llltZZIS O.OllUU4 -· .450 INVINC "" .63691416 66.50SHIZ9 ·1.641 
lNVHS ·I. OlllS6H •. 13761711 ·21. ,., 
NULS D. ODtOOZllO •• 0002'7'35 la. zsa 

VAIUAllC! 
JllFUTIDI 

• 1. Ol4t4J01 
I. JDOOD631 
I. lUUtot 
1.45156147 
1.JUU754 
l.J7l712tl 
l.J45UD04 
l.JIH4610 
l.5lHltlS 
1.57665605 
1.5061752 
l.2U51'71 
1.su5on 
S.0105727 
2.36165711 

P'RDI > Ill 
•. 0001 
0.1110 
0.0040 
I.DOOi o. •511 
0.0169 o. 0001 
1.0001 
0.2209 
0.0411 
•. 041S 
0.0001 
•. 0001 
0.0001 
0.0001 
•• 0001 

PRDl>F 

0. 0001 

raoa > ITI 
I. DOOi 
0. tll 0 
1.0451 
0.0001 
0.7367 
0 .1177 
0. DOOi 
0.0001 
0 .JOO 
•. 0555 
O.OJZO 
0. DODI 
•. 0001 
0.09'4 
0. 0001 o. 0001 
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F.6. Meat and Meat Alternates 
!UADIATI; !!!llr;L 

DU VAllUU• !XP!ND 
ANAL TSIS O' VAIJAllCI 

SUll OF llUN 
SOUllCI w SQUH[S SQUAii!'. F vuur rllDl>F 
llDDEL II UOIZ9.J7 U.s7t.fZIJI · SH.6" 1.1111 
EllDI tut 175Ul.67 H.'4ll6llt 
C TOTAL '"1 1'74461.ZJ 

IDOT llSE t.JlSSlZ 11-seuur 1.4175 
DEP ll!H 17 .l07t5 AD.I l•st .... '4 c.v. 54.34155 

rAIWlf:Trl UTJllAT!S 
rHAllETEI STANDHD T FDR NI• VHJAllCE 

VAIJAIU ., UTJlllTE ElllOll PAllAll£T9•0 PllDI > ITI INFUTJOll 
INTEICU l 1.67959115 1.61511125 1.117 1.1771 I 
EDHlll I l.llSS4.5lt 1.12151755 7.HI 1.1111 l.1Sl4Sl76 
E"'SHllZ I -t.12'll277 1.zu202n •S.175 1.0011 l.l'4Hf7S SXIOI I ·l.5052.SH l • .st614515 -s. t.sz 1.1001 l.117,.1'5 
Ul l l.206.SUU l.Z5417SO f.741 0.0001 1.UtZHH uz I -t.97'20211 1.24001111 -4.17' 1.0001 l .3911.SOtJ Ill 1 Z.141USH 1.2U5UU 1.151 0. 1801 l.l721425' '2 1 •0.HSS5117 l.2'207131 -s.•ot I. 0007 1.JJ2121U •• I -1.14215455 1.29162670 ·S.127 0. 0001 1.3115'717 SI I O.fl97640f l.2UOSl17 1.730 0. 0156 l.541l4012 s.s I l.U50"0.S 0.2701725 S.170 0. 0002 I. 51156751 54 1 l.02161341 O .27'01tOl4 3. 701 0. 0002 I .. S741SltSI UC 1 3.55656915 O.lOUUZ2 11.&04 0.0001 1.24921261 INC 1 •. 0002771.50 •. 000053047 5.225 0. 0001 17 .4921UU 
MS 1 -0.0.5374123 0.25160711 -o. uo D.19U It. "153090 11Ul$ I 0.2S919otl 0. OOIOll 7Z6 zt.us 0. 0001 7 .21603205 !NCZ I -2 .56417[-ot 1.67677£-ot -1.510 0.1261 16. 05562191 MS2 I -o. !0041120 t. OZSllOZS •4.ll2 t.GOOI 10. 71161609 INCCHS 1 0.000017572 . OOOOOl51Jl4 2. 0"7 •.007 ID. 9'624061 

U!!ILOO NOD~L 

DU VAUULE• £XrEND 
ANAL TSIS Of VARIANCE 

SUll OF 111!'.AN 
SOUIC! ., seu.-.u seuaar F YALU[ rtDl>F 

NO DEL 1J 577H7 .17 SUU.ISI05 •1•.522 0.0001 
ElltOll 9652 '"7'4.16 tZ.toK7ZH 
C TOTAL 9H7 1474461.Z.S 

IOOT llSI t.UHH l•stUAIE O.ltll 
orr 1101 17 . .517'5 ADJ l•H O.l90t c.v. 55.15 .. 

rAIWIETEI ESTZllATO 

rAUllETEI STANDARD T FOii NI• VARIANCE 
VAllAIL~ ., !STZll&TE EUOll r.11u11rn••• PROI > ITI tllFLATZOll 

tllTEICEr I ·4'.'575 .. U 2.117557'5 -U.71• O.llOI I 
!-1 I 1.S2Ul745 t.ZS1t04'6 6.UJ t.HOl l.1ZS75Ul 
Elll'S- I -t.t7stZtl4 t.Zl"61J5 -4.05 I.IDOi 1.1714ttt4 
SXllll 1 •S.157117N 1.flSZlltl -7 .Ill t.1111 1.12416'2.SZ 
Ul l l.2HHSlf 1.257207'5 4.tH l.tlll l.07SH44 
U2 I •l.14'HIU l.2•Jlll41 -4.Jlt t.1001 l.St75Z5JJ 
II I Z.2'211271 t.26724111 1.467 1.0001 l.J744tU7 
12 I -t.60tt1Z• l.2'514791 -2.f21 1.1155 l.l•lltt40 
14 I •I • I 4ZZS5ZZ 1.SOZ67171 -s.n• l.OHZ 1.311HllS 
Sl 1 t.4ZZt•IS.S t.2165'116 1.47' 0.1411 l..55'71655 
s.s I t.15Htltl 1.27714115 J.162 0.0022 1.57711.SH ,. I •• 15792551 1.27925115 s.001 0.0027 l.57U50l 
HC I 3.62167613 t.515754'7 u ... , 0. DOOi 1.2.5717711 
LillC I 2.15615'7' 1.1Ult2S3 12.05 0. DODI 1.59'571'4 
lMS I •I .Olltl7S .... '45114 ·S.H6 o. oozz 1.112'25'1 
LllULS I U.12f71H7 t.4639730• 21.291 •. 0001 7. 7ZH73tl 
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lllVllU llOHL 
HP VAIUIUo O:Prll 

AUL TSIS IP YAIJ.AllCI 

SUlll IP 
SOUllCI .. StuAIU 

llUI 
stUAIC , VALur rlOI>' 

IOHL lJ 51ZH4.tl SllH.lffll 41t.tl7 1.IHl 
91DI HN ltZZN.ZI tl.4S741UI 
C TOTAL H67 1474461.U 

IDOT llSI ••• 1444 l•stUAlf I.SI ... 
HP llUll 17 .. Sl7tl ADJ l•st l.Sl41 
C.Y. 54. 11471 

rAllANTU !STINTU 

rA1&11nn STAllDAll T FDI Ill• VARJAllCI 
VAIUIU ., lSTJllATI fllDll rAUllnU•I , ••• > 111 lllHATIOll 

lllTUCrP I t.ZUUJl4 1.745741'1 IZ.Ot 1.1111 • EDHlll I l.1711ZH• 1.zzn1u2 s.112 •• llOl 1.1150600 
flll'SllllZ I •l.1456UH 1.Zot4'Zl7 •S.411 l.IOll l.HHotU 
SXlll I •l.IUU'12 1.41172217 •4.'17 1.1101 1.16107562 
UI I l.H4ZH7' 1.256161'1 l.llS 1.1001 1.45177157 
U2 I ·I. ZZ91ZSS1 1.241040 •!1.IU 1.1001 l.Sl56124Z 
11 I Z.J6UZZll l.2"46171 I.Iii O.I001 1.37344144 
12 1 ·l.5UOllU l.Z,41710 -z.zo 1.1241 l.lOUUZ 
14 1 •l.174'5751 1.31171711 -s.zsi l.HlZ 1.l1HZ7t7 
SI I 0.4171SUt 1.zuuau 1.7'7 1.0171 I . .SSt7411S 
SJ I I. 1711'4H 1.27714126 S.517 I.HU 1.5771021 
S4 I 1.12611511 1.Z714t1'2 l.617 0.1112 1.57013146 
IAC 1 Z.IU5'HI l.2HHt71 t.514 I.DOil 1.ZIU75Zl 
lllVlllC 1 •5Z4Z.SH41 757.45211 -t.IZl l.IOOi l.lUIUtol 
lllVllS 1 •4 .13551251 1.612461" -t.752 1.1111 s. 112•nzo 
lllEAU l 1.11u1us 1.00415U42 41 • .SZS l.IOOl Z.57U017S 

nullf•l99 MHL 

AMAL TSIS OF VAIUllCI 

SUll OF lllEAll 
SOUIC! ., 5'UAl£5 5'UAU F VALUE l'IOl>F 

llOD!L 15 ZHl.Ht7t J7t.UU2 617 .545 0.0001 
[RROI IUZ ZllZ.26157 1.ZIUU61 
C TOTAL tH7 5511.ZSll' 

IOOT llSI 1 • .SSl7U l•stUAU ..... 7 
Dir lllEAll Z.'11292 AIJ l•Se 0 ..... 
c.v. Zl.61514 

rAIAlllTlll f5TINTES 

rHAllrTfl STAllDAID T FOi MO• 
VAllAllE ., ESTlllATI [RROI rAllAlllUR•I PROI > ITI 

lllHRCEP 1 -2.35412'21 t.11HU42 -u. n2 I.IOU 
LD""l I · o. U4ot761 1.11ZU061 1.050 •. 1001 
£11'511112 1 ·0.041001'2 1.0IZU307 -J.'56 1.0001 
SXlllll 1 -o.uztua. •• 02251417 -5.117 1.0001 
Ul I 1.0UIU7Z t.l1460SU S.744 l.OOOZ 
uz 1 •1.Hlt2lll 1.ll3615St ·4.476 l.IOOl 
11 l t.11172169 I. 014t655S '· 791 1.1101 
12 l •O.IS752'4t 1.11414131 •J.'74 o. 0001 .... I ·t.17115SSI t.IUl5Dl4 ·4.UI •. 0001 
Sl 1 t.I024tol27 o.nu••u O.J.55 1.17'7 
SJ l 1.0SH12Zt 0.11555117 Z.JU •. 0207 
S4 1 1.1577956'4 O.OU6S01 J.6" •. 0002 
IAC I 1.Zl4tOS61 l.017110Sl 1Z.6Sto 0.1001 
UllC 1 t.llUl4t7 t.ID9245115 Z0.616 1.0001 
LllS I ·t.OIH5111 I. 02724171 -s.zu I.IOU 
llllEAlS 1 o.unuu 1.ozstaus JS.157 0.0001 

LOO-INVERSE llODIL 

OEP VHIAILE• LEXI' 
AllALTSJS OF VAIJ&llCI 

SIM OF lllAW 
SOURCE ., SeUAIU seuAIE F VALUE rlOl>F 

llOD!l J5 25ot.617S7 167 .JlZSO 5l&.IZS 1.0011 
[1101 '652 SOil.SOU l.Jl0t76U 
C TOTAL "" 55U.2Jl5' 

IODT llSf O .. S57UZS l·SOUAIE 0.6SS4 
DEP lllEAll Z.'11292 ADJ l·st 0.65'5 
C.V. 21.ZtlS.S 

rAIAllETEI ESTlllATt:S 

r&IAllrTH STAllDAID T FOi MO• 
VAIJAILE ., fSTlllATf [RIOI rAIAllETEl•t r101 > ITI 

lllTflCEP Z.7'173'4'5 l.14JUlll 64. 121 I.DOOi 
fDlllll 1.11577US 1.11Jll5U 6 .S40 0.0001 
DIPSllllZ ·t.UUHZ6 1.0121'5'9 -s.oo l.OOZS 
SX"" •t.JSH9144 O.tZS71U2 -5.761 o. 0001 
Ul t.16UUU 1.114151'2 z.1os 1.0051 
uz ·I. t65S7US O. OU007H •<o.667 0.0001 
11 1.lll049S5 0.01545560 7 .6JI 0. 0001 
12 •t.UU5ZU 0. Ol.5SZZ71 -z. J'6 0.0110 
16 -l.04I02Jot I. 11750412 -2. 746 •. 00'1 
S1 •f.IOOUIHZ l.OIUH24 ·0.060 O.HU 
SJ 1.llZD155' 0.1160707 1. HZ •. O<o64 
S4 0.0061512 O.DUl.5215 S.757 0.0002 
UC 1.172951" t.Ol73HSt •. ttol 0.0001 
lNVlllC -••7. 2115' U. U30701 •JD.Ill 0. 0001 
JNYHS -o . "228046 O. OS55Z416 ·Z7. US 0. ODO 
llULS 0. I07147t7l · O.OOOlllJH ZS.OS 0.0001 
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F. 7. Mille Eauivalents 
tUADUTIC llOD(~ 

HI' VAlUIL!• Ul'[lll ANAL TSJS OF VAlUNC( 

SUll OF llUN 
SOURCE Df' SllU.HES SllUAU F YALU( l'•Ol>f 

llODrl II UlU.17772 4'29. lDUZ l'5.JJO t.otOl 
£Hoa "IZ 112177. JZ U .7DJ55lll 
C TOTAL '621 lt57tl .Jt 

IOOT laf s. 421D46 1-SllUAlf 1.4251 
Dfl' llEA• 5. 75'U ADJ I-Sii 1.4247 
c.v. 5'.Jt4'1 

rAUllfTH UTllVITU 

l'UAllHH STAND.HD T Foa HO• VHUNCf 
VAlIAllf Df ESTJIVITf fltlOl l'AlAllfTU•t l'lOI > ITI INFUTJOll 

IllTEJICfl' I .15&04244 t.225927'4 1.224 t. ODll • 
f-1 -0.$9911711 I. Ot229J61 -4.U9 O. IODl 1.U17DH2 
DU'SltlCZ -1.12002921 o. 076121'7 -1 • .562 I.UH l .1U7'57J 
SXHll -0.54715161 t.100553 -J.112 I.DOil 1.11654171 
Ul -O.US77H9 I. otl4'4'S -1.442 0 .1431 l.45510U 
U2 -O. l.5601724 •. 0164012 -1.115 o. 0711 1.$9511920 
11 I. 09S711Sl o. 0904275 11. .521 0. OODI I .J7291670 
12 O.J05547SI 0.09445'" J.235 l.OD12 l.JS212SH 
14 1.79744$35 0.107'U55 7 .411 0. ODOl l.Jl920'5 
Sl -t.Sl77SISI 0.1D20077 -5.114 0. ODlt I. 54191101 
SS -o.DUOl541 o. 0919635' -I .111 0.9114 1.51151572 
$4 0.02903166 o. 0995001 o.n2 0. 7704 I .5755911D 
RAC -1. J91SS051 0. ID90S999 -12.126 0. ODDI 1.24517215 
INC -o. 000065461 0. OODDUIJD -J. 422 0. 0006 17. 41715719 
HS 0. J209'60I 0. 09$27$70 J. 441 0. DOD6 

19 ·"°'""° llfALS 0. 05192022 0. OD29120ll 2D .2SJ 0. DOOi 7 .2&014141 
fNC2 J.61722f-IO 6. OJ911f-10 0.566 D. 571' U.05H2945 
KS2 ·O. Ol'61J'6 D. OOIJ46 522 -1.9'7 0. 049$ I 0. 7 00&4062 
INCCMS 0. ODODJD126 . DOODOJD9502 9. 7$6 0. DOOi I0.9'Sl4571 

Sfllll 00 llODfl 

DEi' VAlUIU• QPfND AllAl TSU or VUUNCf 

SUll OF llUN 
SOUlC:f DF S8UAHS SllUUf F VALUE l'ROl>F 

llODfL 15 74.550.1120 4970. 00750 5'4.127 '· 0001 
EIROl "u 121151.ZI 12.6US5571 
C TOTAL '621 195701.lt 

IOOT llSE S • .5.51.52' R-SllUUf '·"°' DEi' llEAN 5. 7.5tU AD.I •-SI t.JIOO 
c:.v. n .'6031 

PAILUlfTEI fSTJllATES 

rAUllfTEJI STANDHD T FOR NO• YHIANCE 
VHUIL~ DF fSTillATf £HOl l'HAllfTfl•t 1'101 > ITI IllflATION 

INTEICD' I -7 .51147506 o. 77912525 -9.761 0. DODI 0 
EDHlll I -t.44a5UOI t.tl5ZZ407 -5.ZU I. OODl l.125lll II 
EW'SllllZ I -t.1$51915' o.oaoonu -1.01 o.on5 1.17121647 
SXlll I -1.2Z2'Ull 0 .14'4SZ2' -1.1u •• .,01 l.12SJHU 
Ul I -1.1161025' O.H02"15 -1.223 l.2ZlS 1.45400747 
uz I -t.116011U I. 0197$723 -2. 071 0.0$12 1.J9425'50 
R1 I l.147SS744 0.09164534 11.Ul 0. 0001 I. J751HS5 
az I 0.444'SISI 0.1979$'51 4 . .540 0. 0001 I .JUS50.5.5 
14 I o.1n1asu 0.11l71195 7.155 •. 0001 1.l20751H 
Sl I -t.32.501242 t.105117" -s. '" l.I022 I .540S4JH 
SJ I -•. 15024677 1.11262!11 -o. 490 0 .6264 1.571121!4 
$4 I -t.I07ZZ1012 0.10ll.51SS •G.070 O.tU2 1.571204'9 
UC I -1 . Jl407 05' 0 .11263040 -12.219 0.0001 1.2$219442 
LJllC I 0. 071105$$ 0. 0609717' 1.211 O.ZOOl 1.51454769 
LMS I 1.62049452 1.179774'5 '. 014 0. 0001 •. '7171009 
LllUlS 1 J.21514546 O.l71UI04 11. 757 0. 0001 7 .09.522$1 
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DU VHUIU• Dl'!•D 

YAltUIU Of 

!llTUCU 1 
fDNll1 l 
~PSlllU 1 
SXHll l 
Ul 1 
U2 I 
11 1 
12 I 
14 l 
Sl l 
SJ 1 
S4 l 
ltAC 1 
lllVlllC 1 
lllYNS I 
llULS 1 

DEi' VAIIAlll• lfXP 

DEi' VAllUILE• LEXI' 

mran !Sm 
AllALTSU 0, VHlAllCI 

SW! 0, llUll 
SOUICI ., StUAHS stUHI , VALUI 1'101>' 

llODU IS HUS.t7Ut SJSS. 7Sl4t 40.HS ..... 1 
fllOI "" ussu.u 1Z.tUt7571 
C TOTAL tut 1tS7U.lt 

IOOT Ml S.4UUS l·S.UHI t.Ots 
DEi' llU• S. 75tU ADJ •·st t.40'6 
c.v. U.16ttS 

PAUllfTla fSTlllATIS 

l'AIAllETEI STANDARD T FOi NI• 
HTlllATE fHOlt l'AIWIETIA•I 1'101 > ITI 

Z.'47'7246 1.202u11 t.IS6 .... 01 
•O.S206407S l.OIUSJO -..J7' 0. 0001 
·0.27S2%SS4 0.0750771 -J.611 l.OOU 
-0.'111Ul7 1.l412U27 -4.171 t.f001 
-·. 20761 '76 t.09244164 -z. 2'6 f .tz47 
-•.2579476' l.H7Z122f -z. ,,. t.OOS1 
1. l2Slt1Zl t.DtUZZSS 11.611 I.IHI 
O.J7Hl47Z 0.09545152 J.9'8 o. toOl 
•. 7726004J 1.l09UJU 7.H4 f.0001 

-t.27ZS7117 t.l0l326'l -t.63' t.tOl4 
t. D.515210 1.10014411 t . .Sl5 t.7015 
l.HUZUI t.100U6U t.907 t.3'4J 

-l.50'1419' t.lOlllll9 -u.10 o.oou 
·JU.51'15 Z7S.IH17 :i~m 

t.2535 
-l.03'3011.S t.2217'133 t.0001 

t.OI091111 •• 101751179 46.25' o. 0001 

DOUILMpg !!!!P!'.L... 

AllALTSIS Of YAIUAllC! 
SUll OF ""'" SOURCE Df StUAIU StUARE F VALUE 

!IDDll IS 2927 .22127 195.14155 51'.ttl 
EUOI 9'05 SU0.1119' O.l75U774 
C TOTAL "20 UJl.llDZS 

IOOT 1151 t.6UU7' l·stUHE ••• 477 
DEP "UN I..,, .. ADJ l•S. t.4469 
C.Y. 42.lUU 

l'AllAllEUll ~STlllATES 

'11tA"ETEI $TANDAllD T FOlt HI• 
VAllUILI IF UTillATE UROI l'ARAllETD•I 
INTEICU 1 -l.60Ut772 t.13400'5 -11.tsl 
EDHlll I -0.1027SZJ1 O.OIOUU _,. 914 
£11~SHllZ I -o. 034165'7 I. Ol.5112IO -2.474 
SXHll 1 -o .12671244 t.02579116 -4.914 
UI 1 -0.02029277 •• 01631717 •1.231 
U2 1 -O.U56Dl'2 0.0150221 -2.291 
11 1 0.111640.1 o. 11702913 11. 077 
12 1 l.D517'4Z7 •• 01"1711 l.477 
14 I 0.12&05411 t.01t2911t •• 636 
SI 1 -t.17223552 •• 01121155 -s. 951 
SJ I t.003477212 t.01771737 0.19' 
S(o 1 o. Ol'261141 l.Ol71HJO t.J52 
ltAC 1 -0.29562941 •. 019'4457 -15.204 
llNC 1 l.0541USI •. 11052741 s.211 
LH5 I 0 .27652511 t.0311560 &. tlO 
lllEALS l 0.6437930 0.02959117 21. 751 

LIHi-lllXD~I SR&L 

ANALYSIS OF VAIUANC[ 

51111 OF llU• 
SDUICI DF StUAIES stUAIE F VALUE 

llDDU IS ZIU.71411 1n.nzsz 491.761 
fllROR "" 1675.32545 O . .Sl2'471l 
C TOTAL 9620 '5.51.11 OZ5 

IOOT IOS( l.'115141 l·SllUAIE 0.'379 
DEi' "UN 1.45516 ADJ 1•511 o. 4370 
c.v. 42.41931 

l'AllAllET U ES TIM TES 

~ARAllETEll STANDHD T FOi KO• 
YAlllUll DF fSTtllATE flllGlt 'AllAllfT [R •• 

lNTEICEI' 1. 52514291 1.0410510 31.740 
ED,.111 -o. l 0716552 0. 01457'20 -7. J5l 
flOl'S""2 -o. OJ077126 0. DIUOO(o -z. 27' 
SXHll -0. 09'79520 D. 02645257 -s. 77 s 
Ul -o. 029352'2 0. 01'50111 -1. 77' 
U2 -0.03936672 •• 01556657 -2. szt 
11 t.192772'2 o. 0171701 11.224 
ll o. 163201' 0. 01703124 s. 712 ... O. llSI0414 D. 01946119 '.175 
SI -0.07014140 0. 011442'1 •S.IO(o 
Sl O. 007 lll2ZI D. 01717'51 O.•U 
S4 o. Ol4l9t4l t.Ol790t(o I.IOI 
RAC -o. JOl21012 0. 01942291 -15.161 
INVINC -121. '7160 •1.11561111 ·Z. 495 
INV"S ·0.9Ull6U D. OstSl71t -ZS.H7 
IOfALS 0. D0957 l40I 0. 000112512 lD. 614 

VAIUllCE 
l•fUTlOll 

I 
1. H46tSJ7 
1. DHl1214 
1.lUSZHt 
l.441JDS71 
l.31292211 
l.J741016 
I. J4UZ.51' 
l. .SlH2674 
1.54021541 
1.57119455 
1.57H271Z 
1.21151144 
1.JS5777S5 
3.001'1241 z. 564.519~-

PIOl>F 

0. DODI 

~IOI > ITI 

D. ODOI 
0. 0001 
•. 01.S4 
O.ODOI o. 2156 
0. 021' 
0. 0001 o. 0005 o. 0001 o. 0001 
1.1444 
0. 7252 
O. ODDI 
O.ODOI 
l.IODI 
0. ODDI 

l'IOl>F 

0.0111 

1'101 > ITI 

t. ODDI 
O.ODOI 
I. 0227 
0. 0002 
1.0753 
1.1115 
t. ODDI 
0. ODOZ 
1.0011 
•. 0001 
1.,79' 
0. 4229 
0.0001 
•• 012' 
0. OOOI 
0. DOOi 
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F.8. Sugars and Sweets 

eUADIA TIC llODfl 

OU VAIJAILf• DP!lll 
ANAL TSZS OF YAIUNCI! 

SUfl OF "UN 
SCllllCI! "' 5'UAID SQUAii! F YALU[ ,IOl>F 

llODrL 11 S4'7 .JJ7'4 19%.62917 75.6U 1.0111 
UIOI HS4 2209. 212'9 Z.54611732 
C TOTAL HSZ 25"6. '4HS 

HOT "51! l.5Uat7 l•stUAIE t.lJlJ 
OU' llUll l.lSll26 ADJ t·SQ 1.Ull 
c.v. llt.1717 

,AUllETl!I l!STJllATU 

,AIAllETr:JI STANDARD T FOi HD• YAIUNCE 
YARUILI! Df lSTlllATI! l!lllOI ,AllA,.ETEll•t PIOI > ITI lNFlATlON 

INT!ICl!P 1 l.27SUS17 1.1126923' 2.u1 1.0152 I 
l!Dlllll 1 l.'1$60746 l.t400SUt O.Jtl 1.6"7 1.12742671 
O!'SHllZ 1 -•. 01211650 1.t572SZ1t -0.325 t.701 l.U4SOS& 
SXll'I 1 -1.0tl2D075 1.07S&IS16 •l.32t l.llSI l .l07452JI 
Ul 1 -t.159075'4 t. D4467SDD ·5.S61 D.0004 1.45554414 
uz l t.11426407 t.04141594 Z.721 t.0°'4 1. J9ll764t 
11 1 l.OSUS17t •• 04611571 D. 712 0.4l4S 1. JUIOOS& 
H 1 o. 0915510 •• 14571799 Z.152 O.DJ14 l .J55U797 

•• 1 D. Ol9'2SS4 0. 0526401 1. 702 0.0117 l.Jl06J710 
Sl 1 D.164Ulll 0. 050111J7 S.219 0.0010 l.SS6DJ651 
SJ 1 0 .15209941 o.ouasoao S.167 o. 0015 I. 59241353 
54 I 0.12711027 0.041217H 2.641 0. 0011 I. 51592250 
UC 1 -o. 30317 J06 O.OS.517776 -5. 714 0. DODI I. 25721 Oil 
INC 1 - . 0000071277 . 0000093597' -a. 762 0. 4464 17 .'172.5J71 
HS 1 a. Hl23467 D. 0450010 1.150 D. 06 44 19. 46 314J92 
"E.US 1 D. 01225643 0. DOl.513290 1.ua 0. 0001 '. 97091957 
INC2 1 ·3.IJ61l[·ID 2.941UE·IO -1. J04 a .1922 1' .2059l890 
HS2 1 -a. 0000"0 0.00000904 -1. 710 D. 0173 10 .12769153 
INCCNS 1 . 00000721114 . DOOODI \951' 4 .123 0. 0001 11. I D546535 

UllI L 00 llODEL 

DEP YAIIAIU • O:Pt:llD AUL TSIS OF VAIIANCI! 

SIM OF HUN 
SOUllC[ "' SOUAUS SOUAI[ F VALUE ,ROl>F 

llODfl IS llU.'2617 211. 70146 U.647 D. 0001 
fltlOI llJ7 Z2I05.tU3' Z.S&l7JIZ7 
C TOTAL HSZ 259". 54121 

IOOT llSf 1.606465 a-s•uau 0.1217 
DEi' llt:All l.JJll26 ADJ 1•5' D .1202 
c:.v. 121.6'65 

'llt.lllUD ESTJllATES 

,AIAl!Elfll STANDARD T FOii "O' VAIUHC:f 
YAIIOLE Df fSTillATE fltlOI ,AUllETU•O ,IOI > ITI INFLATION 

INTEICl!P 1 •1.714H7H t.3'166431 -4 .64' I. ODOI • 
fDMll 1 t.tlt26lJ75 t.04011172 0.231 t.1177 1.121'9541 
EJll'51t11Z 1 ·1.12l7U72 t.unuss -0.05 1.5449 1.16142640 
SX!tll I -t.24613'51 l.t70'576 •J.llO O.DOOt l.IU21711 
Ul I •t.USZSllZ 1.1403627 •J. 454 t.0016 I. 45J4l71' 
UZ I l.1t07667 1.04214106 2 • .517 t.0119 1.lH17Dl6 
11 1 t.047'5'14 I. 04644619 1. on t.lOZI l.30HUJ 
az 1 t.12711112 1.0461270 2.771 t. 8055 1.35139232 
14 1 t.ltllt176 t.053027'1 1.701 I.OHO 1.31232175 
51 I t.16'1U4' t.t.504230 3.2'4 0.1010 1.53440509 
SJ 1 l.1'7722'5 I. 04121610 3. 05' I. D022 I . .SllHOIO 
54 I 1.12177754 I. 041SJJ79 2.509 •. 0121 I. .Sil I UZI 
UC I •0.30'65514 I. 05323713 -5 .117 I. DOOi 1. 2430517 
LJNC 1 •t. I0772401Z 1.12191941 -· .2'6 I. 71'9 I. 51 S504J6 
lHS 1 t.2H34U2 1.11449123 J. 424 •. D006 7 .49'2'117 
lllfALS 1 o.75251057 l.OIH4115 9.lOI D. 0001 7. 35071'60 
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lllVfllSC llOKl 

D" WHUIU1 UPHD 
AUL nn or v11uict 

SIM 0' MUI '9101>, SDUICC ., StuAIU Stu.UC f YAlUC 

llODfl u su2 . .suu tzJ.4'124 17 .ll4 t.ttll 
, .. Ott IU7 2204.17171 z.sJtU2'7 
C TOTAL 1152 Z5'U.J41U 

aooT llH l .JHHI l•StUAH I.IHI 
D" MUii J.lJUU Al.I •• ,. t.JZ7' 
c.v. 121.IJIZ 

PAIAll(TU DTJllATU 

'lUllO!I STAllO&al T 'Ott Ml• VAIUMC! 
VAIUIU Of DTllllTE 910lt l'AIAllVU•t r101 > Ill lllflATIOll 

INTERC!I' 1.46095276 0.13205911 J.4'0 I. 0005 0 
!D""l ·t.llZOO.St'7 l.UUU17 ·t.151 1.959.5 J.Oll3692t 
Elll'SHllZ •t.D440U5t t.UU4Z5t •J.ZU t.ZZ5Z I. 19461476 
SXllll •t.1H9H44 l.17501H •J.457 1.1451 J.U0717U 
Ul ·O.J7lt91IO l.144U7J9 •5.151 t.otll l .447U.57t 
U2 1.ot3'72U 0.0417155' 2.zo 0. 1245 l.J77945SI 
11 t.04554052 o. 04'2Jl'2 t.942 l.J46lt 1. 36711372 
12 t.JU51U4 •• 04577142 z.4ao O. Oll2 J .J47730'5 
14 t.OIU2107 l.U2775ZZ J.6J6 1.1020 1.JJOllZH 
SI t.1741J257 t.15021277 J.41l O.OIOS 1.55390011 
Sl t.16559217 o.1011tSJ J.4U t.ota7 I • .5&117551 
54 1.1042671 t.141JZ254 2.tN 1.0057 1.SI047U2 
UC ·O.l.S4JZIU 0.052451" ,.374 O. OOGI 1.21639311 
INVINC 57 .22755216 U5.0U.S 1.422 1.,727 1.357200'6 
INYNS ·0.244517.56 1.JG91914l ·Z.244 0. 0249 z. 93417115 
MULS •• 01671725 t. 001151115 21.211 0. OIDI 2.50J9UID 

DOUIL!·•- llOD£l 

D£P VAIUAILf• LUP lNAl TSIS Of V&aUllCf 

51111 Of 11011 
SOUIC[ Df StUAIU StUAlf F YALU£ l'IOl>f 

llODfL IS Zllt.15452 117 .Z707 155.!J2 •. 0001 
!RIDI 1137 l 0'40. '7 525 l.Z04104U 
C TOTAl 115Z U449.IZ977 

IOOT 115£ 1.H7Sl7 l•StUAlf O.ZOl9 
DfP llUN •I. JOl5'4 ADJ l·SI O.Z075 
c.v. -J.5S.'21 

PAIWl[T[I 6TlllATU 

PAIAM[HI SlANDAID T FDR HO• 
VAlllAIL! Df ESTIMATE ERROi l'AIAllETfR•O 1'101 > ITI 

INTfllCEP •J . .SD29JIJ5 0.25112111 ·15.910 0. DDOl 
fDHlll ·0.UlZ3457 O.OZH4597 ·l .Zll 1.2260 
EllPSllllZ -o. 016'"65 I. 12567177 .,_, .. 0. 5163 
SXHM •O.IDOU7l O.ISOU.S12 ·Z. 044 0.0410 
UI •t.12959277 1.UOUUJ ·4.222 D. 0001 
U2 1.11234706 l.OZl71971 J. HZ 0. 0001 
II ·O. 08202991 o. 03172512 ·Z . .516 0. 0097 
12 I. 026705'0 1.031439" 0.149 0. 3957 
14 D. OJOS9t0 0. 03'22120 0.•07 O .U,I 
51 0. OJ21D041 O.U44420 1.uz O.JSlt 
Sl 1.13797395 0.03291294 4. lll 0. DOOi 
S4 o. 0959141' •• ·~3151'5 Z.195 0. DOJI 
UC ·0.llZZ1195 0.03'36432 ·5. 011 0.0001 
LINC I. Oot035737 1.0191010 o.•06 0.6&49 
LHS O.Zot42112 0.0.57717'3 J.'11 0. OOOl 
UIUlS •• 76'79145 O.OSSZZ417 15.11.S •. 0001 

LOG•lllVUSE llCIDf~ 

DfP VAIJAILf • l fXP AllAl T$IS Of YAIUNCf 

SUll DF llfAN 
SDUICE Df stUAIU StUAlf F VAlUf l'llOl>F 

l'IDOEl 15 2739.21112 112.045' I.SO.HD D. 0001 
£1101 1137 10710.0095 l.Z1201119 
C TDTAl 115Z IJ40.12977 

IDOT llSE l.ID0917 l·stUAlf 0. ZDl7 
DEP llUN ·0. 301564 ADJ l·St 0 .Z023 
c.v. -556.711 

PAIAllETEI fSTlllATU 

rAllAll!Hll STAllDAID T 'Oii HO• 
VAIUILf Df UTillATE 91DI PllAllETEl•O PllOI > ITI 

INHIC!I' l -o. 52745075 0.09011405 ·5.104 0. ODOl 
!DHlll l -o. 0215102 0.0271U57 ·I. 057 0.2906 
fllPSH"2 I ·0. 00145774' 0 .12511103 ·0. 051 0. 9535 
SXHft l -o. 05922101 o. 05195371 -1.140 0.2544 
Ul I •0.13555755 I. ll07Jl37 -4.41' 0. 0001 
U2 l 1.11351635 0 .02175'9' S.90 •. 0001 
11 l -o. Olllll44 0.03111127 -2. 552 0. 0107 
12 l o. 02us3a l.Ul5H04 0. 155 0. J926 

'" I 0. 01913094 0 .Ol4320D9 o.5•6 0. 5151 
SI I 0. 03231211 0. 03454972 0. 935 O.J497 
SJ I O. l4117Z05 O.Ullll.50 •. 26' 0. DOOi 
S4 I 0.102674'9 O. Ul2.5573 J. 0'7 0. 0020 
IAC l ·0.119057Z 0. OJ601Jl5 ·5. 252 0. 0001 
INV INC I ZI. 005Z17l '3.22301412 O .ZZ6 0 .1214 
INVHS I -o .15907 JU o. 07563245 -11. J.59 0. 0001 
"fALS I 0.01072313 0 .000571907 11. 750 0. 0001 
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F.9. Yegetabl~ 

euADUTIC llOHl. 
Dl!r VAIJAIU. o:rrw1 

AllAL nJS D' VAii.UiCi 

SDUllCI 
Slit 0, llUll 

Ill' SeUAID seuui , VALUE rao1>' 
llOD!L 11 S'64' .Zltt4 ZZH . .U717 Zl7.llt I.HU 
UIOI nu lOlltl.at lf,UJZt714 
C TDTAl "" 14U45.ll 

IDDT llS! J.20174 1-seuu1 I.Ziil 
DO llUll S.J41Z41 AD.I I-SI 1.Z717 c.v. sa.u1t1 

r.uM!Tl!lt UTJllATD 

YAIJAILI Ill' 
rHAlll!T!I STAllDAllD T FOR NI• YAIJAllC[ 

DTlllAT! fUDI r.U.lllt:TU•t r101 > ITI lllFUTlOll 

IllTDCQI 1 1.UOZUH l.21H5U7 1.,'1 1.1001 I 
Dlllll 1 -·. l 12lS424 l.17UJ112 •l.JU 1. lt2S 1.Ultl6H 
Oll'SHllZ 1 -0.12211224 1.173.S2Nl -t • .SOl l.7Ul l.IU7114t 
SXlll 1 l,41217U2 t.1.SUU71 J.415 I.HU 1.11104451 
Ul 1 1.11971274 l.Ol73t5U 2.172 I. OZH 1.457'2719 
U2 1 ·1.IUUtU 0.01251732 -0.lJt l.17S5 l.lt7202U 
l1 1 t.Ut5J774 t.otOSHO 1.761 1.11u l.J7S5Jl41 
12 I -l.l7t4275' t.HIU442 -1. "1 •. 04'5 1.J529294t 
14 I -t.475442JJ 1.11274953 -4.'27 •. 0011 l .Jl924071 
Sl 1 •0.6U74J.S4 t.ot7S'2.St -7. 041 0.0011 l .J40SS4U s.s 1 ·0.761100tl 0.09440262 -1.13' •. 0001 1.5119293' 
S4 1 ·0.13367557 I. 09490427 -1. 714 O.OHl 1.575143,2 
HC I ·O.Jl'15701 0.IOJ7S142 -5.722 0. 0002 I. 24942524 
INC 1 •• 000075014 •. 000011269 4.110 o. 0011 17 . 55.Sl 5121 
NS I ·O. 09310035 0.0lltl7ll ·I.OU 1.2951 1'.'129'737 
llUlS 1 0.0619400 0. 002776124 24.13' 0. 0001 7 .24641607 
INC:Z 1 ·t.55101f·IO 5. 762091!•11 •1.4.SI I .0914 1' .11675150 
NSZ I ·0.02111357 •. 007951500 -5.620 o.oou 10. 7021'5.SO 
lllCCHS I . 00000273.Sll .00000294732 •• ,27 O.J.5l7 10. '2721761 

Sl!llllOO llDDEL 

DEr VAUAIU • l!XP!llD AllAL TSJS O' YAIJAllCI 

SUll OF llUll 
SOUllCl Ill' 59UAll!S SIUAllf F YALUf P•Ol>f 

llODEL 15 3Utl.t.slt7 Z57t.4UH 240.400 0. 0011 
,1101 9516 lOZISS.11 U.7Zt521Z6 
C TOTAL 9601 141545.11 

IOOT llSI! J.Z755'5 l·SIUAllf l.27S4 
DfP llUll 5.540241 ADJ 1-se 1.2722 
c.v. 5'.1216' 

PAUll!TO DTJllATD 

rAIAlll!TD STAllDAID T FOi NO• VUI&NCI! 
YAIJAIU °' DTJMT! EIRoa PAIAllUU•t r•o• > ITI IllFUTIOll 

JllTl!ICE' 1 •12.UH7US 1.7Z27SJSS -17 .279 t.1111 I 
~1 1 -t.1'957792 1.11111.saa •Z.154 t. IS12 1. lZ71tS75 
fllf'SIMZ I •t.16'6UU l.t7JHS2l -t.902 '·"" 1.17111221 
$XIII 1 t.t71zt2.SS 1.U'57Zll t.5'1 t.57 .. 1.11740776 
Ul 1 l.ZUHJ7' 1.1111zua Z.413 I.USO 1.055265' 
U2 1 -t.1211'51' l.Ol21SIJ2 -t.J40 I.TS.St 1.39647164 
u I 1.llUOHl O.otlOllZ5 2.161 O.UH l.J750225.S 
12 1 -t.12526412 t.ltf<Ulll -1 • .sa5 t.1661 1.J49'077 
•4 I •t.47U4U4 l.1U27Slt •4.631 I.toll l .J2077H4 
SI I -·. 7 0644154 t.19771194 -7 .225 o. 0001 1.55197613 
s.s l -0.11551119 I. H472520 -1.609 O. IOOl 1.57747714 
S4 1 •l.11176111 l.ot51'961 ·t.ZU •. 0111 1.57075111 
UC I ·O.J5900426 O.IU71576 •S.461 0.1105 1.ZS7'79'1 
LJllC I •. 47543477 •. 15'41t41 1.427 I. llOI I .5931UU 
LNS I •0.19116514 0.1'64176' -5.402 0.0111 l.lllHIH 
LllULS l J. tz2.St145 l.151tt<ilt 24.671 I. IODl 7 .701J0514 
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KP ¥AllAILI• DPClll 

Y&llAIU tr 
lllTEICU 1 
!11141'1 I 
OIPSHllZ I 
SXIM I 
UI 1 
UZ 1 
11 1 
U I 
14 I 
SI I 
SJ I 
S4 I 
UC I 
lllVlllC I 
lllVllS I 
llUU I 

D[P YHIAILI• LOI' 

ltP ¥.lllllL!• LEXI' 

mcm •IA 

&ML Tiii If f&lllllCI 

SllUICI IP 
•Hl U 
CUOI HH 
C TOTAL ffll 

,... .. llUll 
StUAIU stUAU 

SIUl.1416' ZS71.HOI 
112114.Z• H.1JUltM 
14150.11 

r YALU( 
20.zz• 

rlOl>P 

t.tlll 

IOOT Ml 
'" llUll '·'· 

J , ZUtS I• stUAll 
S.S4U41 Al.I l•st 

1.zuz 
t.zn1 

, ... .,.nu 
UTIMTI 

S.SJSl7Mt 
•t.Zl72t0t 
•t.IUZUU 
t.UlllUZ 
t.lUlUU 

•t.UHUl6 
t.ltUl4ZS 

•t.lZUIZlt 
•t.44tUHl 
•t.OS'675' 
•t.7'6JJS7J 
•t.UIZlUI 
•t.SSSH1'6 
·U71.lt4Z6 
·t.7ZUU'2 
t.UZIOtl 

st.12111 
PllAll!TU 

STAllOlll , ... 
1.zs4"111 
1.e11z .. n 
1.111uos 
1.14167616 
l.H75HU 
l.llUIUS 
l.ltU7ZZ4 
l.lttJHH 
l.1U2411S 
l.H77t444 
t.lt472H4 
l.ltS1tU4 
t.1127U'4 

26Z.Z6417 
1.ZOHUZZ 

1.111uuu 

UTlllATU 

' '" "'' PA-TU•I 

U.111 
•Z.'12 
-t.617 
J.t4S 
l.71S 

-•.sts 
z.111 

•I. SH 
•4.ZH 
•7.196 
-1.416 
•t.tSZ 
•S.lt5 
-6.lll -s. 471 
Sl.tl• 

llOUIL!•UO llOHL 

llllL TSIS Of YAU IMC[ 

SOUllCI! IF 
llOD!l lS 
lUOI 9516 
C TOTAL ffll 

llOOT M! 
ff" llUll c.v. 

SUll OF 
StUllU 

llZS • .605' 
SOl.7tZl4 
5ZS6.017S 

1.st12'4Z 
l.477HS 
41.SUU 

""'" S8UAI[ 

Ill .71t71 
1.»71H11 

l•SIUIH 
ADJ l·SI 

'UMITH fSTlllATD 

PAIM£Trl STAllDHD 
YllJAIL[ DF UTJllAT! RIOI 

JllT£1Cl!P I •Z.700Hltl l.U1Hl72 
CDHlll l •t.15.SllH• 1.114S7HS 
CllPSllll2 I 1.11.aun.s t.tll4tSH 
$11111 I l.17'tUll 1.IZS4'111 
Ul I I. l'ZS1t72 1.IUIZZl7 
uz 1 •t.0Zt1U71 l.tUUZtl 
II I t.OSZU'41 I. 116'l471 
IZ I •t.IZtUUl 1.11651611 •• I -t. H71UIZ 1.1111'141 
SI I •t.IUHIZl 1.tl7UISI 
SS I •t.llZSU17 t.111SHS1 
S4 I •t.Ul7Z6'7 I. U7Sl"7 
UC I •t.1673!444 1.tllt4ZSZ 
LJllC I 1.UUJlt7 1.tltJl427 
UIS I -1.uzun• l.tSlstZ17 
Llll!.IU I 1.71112116 1.IZHSUZ 

1 oo- ucv~a' lllllL 

'101 > ITI 
t.1111 
t.H4t 
t.SJ7Z 
1.1124 
t.1747 
l.JSJl 
I.Ult 
1.1646 
1.1111 
1.1111 
I.IHI 
I.IHI 
I.IHI 
I.IHI 
I.IOU 
O.Olll 

F VALU( 

140.171 

•. J47S 
1.l46S 

T ,01 Ml• 
PAIAll[Ul•O 

-zo. 661 
-J. 74t 
o.l57 
6.127 
Z.UI 

-1.tu 
J.16• 

•I.JU 
•J.JU 
•1.UI 

-4 ·'" •1. "' ·J.SU 
ll.425 -s . .su 
Z6.lt6 

AlllL TSJS Of HllllCE 

SUit OF 11(111 
SDuet:I! ., SIUAIU stUAll , ¥ALU! 

llODCL IS UU.71471 IJZ.147'5 Sii .11S 
(IROI .,., JS7Z. 7Zl02 t. l7271Zl7 
C TOTAL tUI SU6.U77l 

IOOT llH t.6110$4 l•StuAIE 1.lZll 
Dl,. ""'" l.6770U &DJ 1-st I.JIU c.v. 61 . .S.SJZ• 

PAIM[T(I !STllllTl!S 

PAIAllUfl STHDllD T fOI Mio 
YlllAIU If HUNTE UIOI PAIAll[Tft•I 

llTHCEP 1 1.lt14115' t.1470'57 Zt.'67 
tDMlll I -•. 16061117 t.11441257 •4.ZOI 
!""SllllZ I I. Ul57.UJ t. tUJS.541 I. 765 
S.11111 I 1. lt1'411t l.IZUIUI 7 .ZZI 
Ul I 1.UUU5' 1.1101747 z.111 uz I •t.IZtUtl7 I. tlSJ77SS ·I. tZt 
ll I l.IU.57116 I. llU71t1 l.61' 
11 I •t. 1Ult471 l.tUUIU ·I.HJ 
14 I •t.ISUUH t.IUUt71 -1.1 S6 
SI I •t.127'041 t.11111471 ·7.IU 
SS I •I .116•1Zl7 l.U7USU ... , .. 
$4 I •O.UIZUll t.11173111 ·7 "' UC I -·. 1'577621 t. lltUIU ·t.11• 
l11¥111C I ·4ZS. Z5UI 6l.17'UUI •l.•U 
lllVNS I ·t.6Sl1'ZZ4 I. IJUJJ57 ·U. lDI 
"uu I 1.1067Ut,. t.IOIS017H ZJ.'75 

YllUllCI! 
·lllfLlfl'* 

• l.llUSlll 
1.llUll17 
1.UlZIHJ 
l.401l7H 
1. ll•IH4Z6 
l.S7'Z6122 
1.J47UIO 
1.Slt617U 
I • .5SHS4Sl 
1.snsusz 
J.SOttHI 
1.zuuzss 
l . .Uttl141 
Z.tlUStM 
Z • .SSU4221 

Ptal>f 

t.1001 

r101 > ITI 
I.IOU 
1.IHZ 
l.7lll 
I.IHI 
I.HU 
1.1415 

'·"" '·"'' I.HU 
1.0001 
t.1111 
t.1001 
1.1114 
1.1111 
1.1111 
.... 11 

PIOl>f 

I.IHI 

PIOI > ITI 
l.ltll 
1.llOI 
1.1175 
1.1111 
l.USI 
1.IU7 
I.HIS 
1.JU7 
I.HU 
• 1111 
1.1111 
I llOI 
•. 1001 
l.tlll 
I. IHI 
0.1111 
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F.10. Other Items 

tUAMATIC llODfl 

DtP YAllAILf• DP!llD 
AllALTSIS D, YUUllC[ 

5Ull 0, NUN 
50UllCf D' 5QUAUS 5'UAllE F VALUE PIOl>F 

llOD!l II Jl'7 .3S6'1 214.15203 41.176 1.0001 
ERROi 1763 46162.2526' S.34774011 
C TOTAL 1711 S07Zt.SIUI 

ROOT l!S[ 2 .llZSll R•SQUU[ 1.07'2 
DEP NUN Z. lll006 ADJ 11•5' l.074J 
c.v. lH.1011 

PAIWIETU UTJllATU 

PAllAll!Tt:I STANDAID T FOR NI• YARUNC[ 
YUUILI! DF UTillATI! fllDI PAllAllETU•O PIOI > ITI lllFLATIOll 

lllTEltCl!P 1 0.7140tatl 1.lUJOOO 4.llt 1.0001 I 
!-1 1 1.41145570 1.05121971 1.260 1.1001 l.lZ7SlllJ 
EllPSllllZ 1 0.04696'21 1.054U56' 1.166 1.3164 1.15311571 
511111 1 0.022llt1Z 1.11753775 1.2H 1.1370 1. 19'7ZU3 
Ul 1 •0.11117Ut 1.065DU71 ·I.Ill 1.0691 I. 43651925 
uz 1 •O.Dt'22'7' 0.0606'Ut ·l.516 1.1127 1.3115'1'3 
t1 I -o. 05915955 1. 06'71150 -0.197 0. 369' 1. 37121652 
112 l •O .11213123 0.06'5205' •2.70 1.0060 1..55356010 
114 1 •0.2179053' 0.0772Ull ·2 .IZl 0.000 1 • .507790" 
SI 1 0. 06119091 •. 07291277 1.1$9 0. 4014 1.334192'4 
S3 l 0. 07745714 0. 0017'11 1.109 1.2677 I. 5190l&54 
54 l 0 .13542711 o. 07114917 l. 931 0. 0536 l. 51.541269 
RAC I -o. 706.52617 O. HOO.SIDI -· .125 0, 0001 1.2157006 
INC l 0. 000041034 0. 00001J597 .s. 011 0. 0026 17. 7072116 
HS l ·0 .03642136 0. 06772062 -o. 531 0. 5907 20. 4901 .. 51 
llUlS I o. 02022571 0. 00203151' 9. 922 0. 0001 1. 0951066' 
1NC2 l ·l .27612£·10 4. 26911£· 11 -o .299 t.1650 16. 37673'93 
HS2 1 -0.01053'36 0. 00622032 -1.693 0.09U 11.5475921' 
INCCHS l - . 0000011051 . 00000219165 -o. 505 0. 61J9 11. 07579170 

SEllH 00 llODfl 

OEP YAIUll!• DP!llD 
All&l TSU OF YAllAllCE 

51111 O' NUii 
30URC£ DF '8UAIES StUU! F YALU! ,ROl>F 

llDDfL 15 JUD. tUS4 2U .J975' 41.UJ o. 0001 
fHOR 176' 46111.625" S. Jl97U06 
C TOTAl 1711 50729.,.UI 

ROOT "5! z.J111" R·stUAlt[ l.077J 
0£P NEAii 2.310006 ADJ R·St 0.0757 c.v. 100. U44 

'AllAllflU fSTJllAT!S 

'AIAllflU STANDARD T FOR MO• YAllANC£ 
VARI AIU DF fSTlllAT£ flROI PAIAllET£1•0 '101 > ITI INFLATION . 
IMTEICl!P -4.1617••53 1.5U710S -•. 074 0.0001 I 
[D""l o. -••12431 1.05106624 7 .661 1.0001 1.12141577 
EllP31111Z o. 026113'2 1.1543016 1.410 0.6309 I .U05tUI 
SXllll ·l.HOllUI 1.11761011 -0.144 l.J917 1.11216151 
Ul -t.11772111 l.IUtlHI •l.IU I.DUI 1.4JU"l7 
UZ •t.10671562 1.06061416 -1.761 0.0714 1.31123955 
u •l.1524JH1 l.06'7USS -•. 716 0.01' l .3&01205 
112 -0.16116542 •• 06'310tl -z. 5~4 0.011• l.J019202 
14 ·0.Z22Z2lt7 l.1772Jl75 ·Z.177 0.0040 l .J092101 
51 •• 15741226 0.172127'6 t.711 0.4JOS l .SJ3'0l37 
SS I. 062HSto •. 16974471 O.ltt l . .SU7 1. 31550131 
54 0.12036156 0.07000515 l.7lt O.H5' I .579US93 
RAC ·O. 7027101 •. 07953070 -1.13' 0. 0001 I .ZD21Z6" 
llNC O.J0901792 0. 04202122 7 .J5J 0. OODI I. 5791JOS2 
LMS ·l.4U2UZ2 1.12221711 -J. 406 0. 0007 7. 90220525 
LllULS I .Jt4212tl 1.11054'9 11. 2•~ D. 0001 7 .50~21117 
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IV YHIUU1 flrllll 

YAIUILl 

IMTEllCfr 
fDHMl 
El.,5""2 
SX"" 
Ul 
U2 
11 
12 
14 
SI s.s 
S4 
IAC 
INV111C 
lllVHS 
MfALS 

Dfr YAII.lllf• LEXI' 

DU VAR!Ulf1 LUI' 

l11Vt1sr !!!Bi 

AUL nu °' YAllAllCI 

Siii °' llU• sower ., HUAHS S411Ur , V&LUI ,RDl>F 

llOHL u SU4.HSS7 Z41.JH11 44.719 t.1001 
!UDI 176' 47l24.7U1S s . .suuu1 
C TDlAL 1711 Jl7Z9.JHSI 

IODT llS! Z.JllSll 1-seu•ar l.'711 
Dfr llUll J.JIH" ADJ 1-5' ..... J 
c.v. IH • .S7U 

rAIWlfTH fSTlllAUS 

""'"fTfl STANDARD T FOi MO• ., UTIIUT! flltDI ,A1t.ucnu•• r101 > ITI 
0. 0001 
0. 0001 
1.4739 
0.'71' 
1.u22 o. 0502 
0.4.S<o2 
0. 0301 
0. 0154 
l.ODZ 
0. Sl50 
I. 0707 
O. ODOI 
l.IODl o. oaos 
0. 0001 

VAl!lANCf 
IMflATIOI 

I 
l 
1 
I 
1 
I 
I 
I 
1 
1 
1 
I 
l 
I 
1 
1 

1.942077!16 t.lt247IOI II.HO 
I. 40267Ul •.u122s11 7.U7 
1.12227124 I. '5294411 t.421 

-l.t46l924J t.lot5Ut7 -t.424 
•l.1SU1512 t.'6499179 •Z.142 
-t. llH.Sl71 o. 10571'7 ·LU9 
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