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A B S T R A C T

Drought assessment at local scales needs a reliable framework capturing both local landscape processes and the
watershed-scale hydrological responses. Any such tool, implementable in a near real-time, semi-automated
framework, is largely unavailable for the South Atlantic-Gulf (SAG) region in the Southeastern US (SEUS). In this
study, we evaluate a drought monitoring and forecasting approach using multi-layer, high resolution, simulated
soil moisture for 50 watersheds in the SEUS. Soil and Water Assessment Tool (SWAT) is integrated with me-
teorological drivers (precipitation and temperature) from Climate Forecast System Reanalysis data (CFSR) for
retrospective simulations (January 1982–December 2013), and Climate forecast system model version-2 (CFSv2)
models to obtain the near real-time estimates (January 2014 through mid-March 2017) and 9-month lead
forecasts (mid-March through December 2017) of the hydrologic variables at 12-digit Hydrologic Unit Code
(HUC-12) resolution. Drought assessment is carried out by combining the drought severity estimates of the
weekly percentiles of the surface and total column (TC) soil moisture, aggregated to 4-week and 8-week re-
spectively, following a different severity classification scheme for each layer. Several drought indices and ob-
served drought maps from the U.S. Drought Monitor (USDM) are used to compare the agreement (or dis-
agreement) of the proposed approach with the observed drought conditions in the region. The results show
promising application of the proposed approach for near real-time estimation as the drought estimates show high
(∼80–90%) Index of Agreement (IOA) with the Palmer Drought Severity Index (PDSI) for all drought categories
(mild-exceptional). The retrospective assessment shows that TC soil moisture percentiles have high correlation
(> 0.7) with long-term drought indices. The surface soil moisture percentiles show high correlation (∼0.6) with
Palmer Z Index (ZNDX) and 1-month Standardized Precipitation Index (SPI-1), while longer aggregations in-
crease the association with the long-term drought indices. While the SWAT-CFSv2 based drought estimation is
useful in near real-time mode, higher disagreement between the forecasted drought maps and the observed
drought severity from the USDM is noted for a forecast window of greater than ∼ 4–6 weeks.

1. Introduction

Droughts produce a complex set of transboundary impacts that in-
fluence all components of the hydrologic budget, namely, the supply,
storage, and flux (precipitation, soil moisture, snowmelt, ground and
surface water, and evapotranspiration) and have costly socio-economic
consequences. These calamities are the result of climate variations that
infrequently occur in vast geographic regions (Kang and Sridhar, 2017;
Thilakarathne and Sridhar, 2017; Zou et al., 2017). The Southeastern
U.S. (SEUS) has experienced widespread droughts three times within
past 15 years (Sehgal and Sridhar, 2018). These droughts have not only

caused enormous strain on the agriculture and farms activities in the
region but have also heightened instances of wildfires in the region,
especially in the Appalachian region (Scasta et al., 2016). Increasing
drought vulnerability of the SEUS region is linked to continued in-
dustrial and population growth, leading to increased industrial, agri-
cultural and metropolitan water demand (Manuel, 2008; Pederson
et al., 2012; Seager et al., 2009). It is important to note that the SEUS is
expected to have the largest absolute increase in population compared
to any other region in the U.S. by 2030 (Nagy et al., 2011; U.S. Census
Bureau, 2005). Water is a limited resource, and the threat of water-
related conflict in the region has the potential to grow more intense in

https://doi.org/10.1016/j.wace.2018.100191
Received 10 April 2018; Received in revised form 18 July 2018; Accepted 12 December 2018

∗ Corresponding author.
E-mail address: vsri@vt.edu (V. Sridhar).

Weather and Climate Extremes xxx (xxxx) xxxx

2212-0947/ © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

Please cite this article as: Sehgal, V., Weather and Climate Extremes, https://doi.org/10.1016/j.wace.2018.100191

http://www.sciencedirect.com/science/journal/22120947
https://www.elsevier.com/locate/wace
https://doi.org/10.1016/j.wace.2018.100191
https://doi.org/10.1016/j.wace.2018.100191
mailto:vsri@vt.edu
https://doi.org/10.1016/j.wace.2018.100191


the coming decades (Sehgal and Sridhar, 2018). Hence, utilizing in-
formation from seasonal climate forecast and long-term climate pre-
diction for effective drought monitoring and forecasting has proven to
be of great interest to water planners and decision makers to improve
preparedness towards, and mitigation of impacts due to climatic ex-
tremes (Hansen, 2005; Shafiee-Jood et al., 2014).

Soil moisture has a significant impact on important meteorological
and hydrological processes like (i) the development of mesoscale cir-
culations between land surface patches with differing soil moisture
conditions (ii) the development of deep convection (iii) the growth and
sustainment of large-scale interannual variations such as droughts
(Hain et al., 2011) and (iv) partitioning of precipitation into runoff and
groundwater storage etc. However, accurate estimation of soil moisture
is a challenging task given the spatial heterogeneity in terrain, soil
composition, interaction with vegetation and aquifers, land manage-
ment practices, and so forth. The in-situ soil moisture measurements are
limited, point-based, and show significant spatial variability (Sims and
Raman, 2002). Recently, there has been an increase in the use of re-
motely sensed soil moisture dataset which has been successfully applied
to several studies for drought monitoring and severity estimation
(Ahmadalipour et al., 2017; Martínez-Fernández et al., 2016; Nicolai-
Shaw et al., 2017; Wardlow et al., 2016). However, cloud contamina-
tion, low accuracy over dense vegetation cover, and shallow penetra-
tion (top few centimeters) remain major drawbacks of the remote
sensing approach in understanding the catchment-scale drought dy-
namics (Srivastava et al., 2016).

Due to the aforementioned factors, the application of simulated soil
moisture in drought studies is a viable alternative. Previously, Dai et al.
(2004) established a strong correlation between observed soil moisture
content (within the top 1m depth) and Palmer Drought Severity Index
(PDSI) during warm-season months for Illinois, Mongolia, China, and
Russia. Wang et al. (2011) developed a multi-modal land-surface model
approach to study soil moisture drought over China from 1950 through
2006. Otkin et al. (2016) studied the evolution of the extreme flash
drought in 2012 using several models, and satellite-derived drought
metrics sensitive to soil moisture and vegetation conditions. Sheffield
and Wood (2008) provided a global evaluation of drought trends using
soil moisture from a hybrid reanalysis–observation forcing dataset.
Thober et al. (2015) developed drought forecasting framework using
simulated soil moisture based on a combination of the meteorological
forecasts from the North American Multi-Model Ensemble (NMME) and
the mesoscale hydrologic model (mHM) for Europe. Sehgal et al. (2017)
proposed a statistical ensemble of two Land-Surface Models (LSM)-
Noah and Mosaic using the in-situ soil moisture data for drought ana-
lysis for the Contiguous U.S. The study proposed use of the multi-layer
soil moisture percentiles in identifying the transient components (onset)
of drought from the long-term, severe components (propagation). Li
et al. (2016) combined irrigational and reservoir operation in the VIC
model to derive soil moisture based drought index for the Tarim River
basin, China. Recently, Xu et al. (2018) combined Noah LSM derived
soil moisture dataset and retrievals from space-borne Soil Moisture
Active Passive (SMAP) soil moisture to develop a standardized soil
moisture index for drought monitoring in the Southeastern U.S.

However, most of the studies discussed above employed either
large-scale continental (or global) models, or point-scale soil moisture
analysis for quantification of drought severity, thus ignoring the in-
tricacies of drought dynamics at a watershed/catchment scale. Accurate
soil moisture simulations are essential for reliable drought severity es-
timations. The variability in soil moisture, accentuated with seasonal
variations and influence of hydroclimatology, makes it challenging to
estimate droughts using soil moisture accurately. Watershed-scale
analysis is crucial to understand the drought dynamics, since the
drought generating meteorological conditions propagate from the at-
mosphere to the hydrological system, and cause a loss of soil moisture,
followed by streamflow and groundwater depletion (Mishra and Singh,
2010; Van Loon and Van Lanen, 2012; Van Loon, 2015) Several aspects

of drought dynamics like pooling, attenuation, lag, and lengthening
manifest at watershed and sub-watershed scales and are significantly
influenced by the catchment controls (Eltahir and Yeh, 1999; Peters
et al., 2003; Van Lanen et al., 2013). Most large-scale studies miss the
variability in the watershed and sub-watershed characteristics that in-
fluence the interrelationship between drought and its manifestation in
the water balance of the watershed. Recently, Sehgal and Sridhar
(2018) used SWAT-simulated water balance components at sub-wa-
tershed scale for analyzing the influence of large-scale climatic tele-
connections on drought predictability in the SEUS, thus providing im-
petus to watershed scale drought analysis, in a region like SEUS, with
burdened water resources.

This study addresses the existing gap in drought analysis literature
by proposing a drought severity assessment approach at watershed-
scale by using high-resolution, multi-layer simulated soil moisture from
calibrated SWAT models implemented at HUC-12 resolution for 50
watersheds of the Southeastern U.S. The study proposes a multi-scale
drought severity assessment using percentiles of stratified soil moisture
aggregated to different temporal scales. Furthermore, the study de-
monstrates the integration of high-resolution SWAT models with the
global-scale, short-term meteorological forecasts from CFSv2 for near
real-time drought monitoring, and forecasting with a lead of 9-months
for 50 watersheds comprising the South-Atlantic Gulf region of
Southeastern US. The objectives of this study can be summarized as
follows:

a) To implement a stratified drought analysis approach for drought
severity estimation. The top soil layer is used for analyzing the
transient and low-intensity droughts, and total column soil moisture
for long-term, severe droughts, using sub-watershed scale (at HUC-
12 resolution) soil moisture dataset obtained by implementing
SWAT models for 50 watersheds across the South-Atlantic gulf re-
gion of the Southeastern US.

b) To develop a real-time drought monitoring and forecasting frame-
work using high-resolution SWAT based simulated soil moisture,
initialized using climate drivers from CFSv2, with a lead-time of up
to 9 months, at a weekly time step.

c) To establish the reliability of the proposed approach by comparing
the soil moisture based drought severity assessment with a variety of
drought indices like PDSI, Palmer Hydrological Drought Index
(PHDI), ZNDX and SPI-1, 6, 9 and 12 and observed drought condi-
tions from the USDM.

2. Study area

This study is focused on the South Atlantic-Gulf (SAG) region in the
Southeastern US (SEUS) which includes Florida, South Carolina, and
Alabama, Georgia, Louisiana, Mississippi, North Carolina, Tennessee,
and Virginia in parts (USGS, 2017). The region is listed with a 2-digit
Hydrologic Unit Code (HUC) of 03 and consists of 18 sub-regions, each
listed with the 4-digit HUC codes ranging from 0301 through 0318.
Each HUC-4 basin is further divided into smaller watersheds for this
study, totaling 50 for the entire SAG region (Fig. 1), each of which is
modeled using SWAT to delineate sub-watersheds matching the HUC-
12 resolution as provided by the National Hydrology Dataset plus (NHD
+). Table 1 provides the complete list of the 18 basins in the SAG re-
gion; each referred to by its HUCe 4 identifier with list and name of the
sub-watersheds with the outlet U.S. Geological Survey (USGS) stations.
Note that the authors provide the watershed numbers only for easy
referencing and identification of these watersheds in the study and
should not to be confused with the watersheds at HUC-6 which are
larger than these watersheds in most cases. Climatology of the region is
provided in Table S1 of the supplimentary material.
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3. Methodology

3.1. A brief description of the SWAT models

SWAT is a process-based, comprehensive, semi-distributed, con-
tinuous-time model (Arnold et al., 2012; Gassman et al., 2007; Neitsch
et al., 2011). SWAT is an open-source code simulation model and has
been extensively used in hydrological modeling community across the
globe with applications in studies ranging from catchment to con-
tinental scales (Abbaspour et al., 2015). SWAT simulations incorporate
weather, hydrology, sedimentation, soil temperature, plant growth,
nutrients, pesticides and land management (Arnold et al., 1998). The
model uses weather (precipitation, radiation, and temperature), ele-
vation, soil, land cover/use data to simulate surface and subsurface
hydrology and various chemical, biological and sediment fluxes. Hy-
drologic cycle simulations by SWAT are based on the concept of water

balance that closes the budget at the chosen time step.
The ArcSWAT 2010 interface is used to setup and parameterize the

model. Sequential Uncertainty Fitting-2 algorithm (Abbaspour et al.,
1997, 2004, 2015) is used to calibrate model parameters for each wa-
tershed using SWAT-CUP (calibration/uncertainty or sensitivity pro-
gram) interface for SWAT. A set of 24 parameters are chosen for cali-
bration to address various hydrologic components of the watershed.
These parameters include surface runoff (Curve number, soil and plant
evaporation, surface runoff and Manning's coefficient, and available
soil water capacity, etc.), baseflow (Groundwater “revap”, aquifer – soil
interaction, depth of water in the shallow aquifer, time for water
leaving the root zone to reach the shallow aquifer, deep aquifer per-
colation), stormwater (Channel hydraulic conductivity, surface runoff
lag time etc.), snow (snowmelt rate, snow temperature) etc. The choice
and effect of these parameters are very well documented in SWAT lit-
erature (Abbaspour et al., 2015; Arnold et al., 2012; Feyereisen et al.,
2007; Jin and Sridhar, 2012; Liu et al., 2008; Uniyal et al., 2015; Van
Liew et al., 2005; Wang et al., 2008) and the selected parameters are
consistent with the aforementioned studies. For a detailed description
of the watershed models, model calibration and validation for the
SWAT models used in this study for obtaining various hydrologic
variables at HUC-12 resolution, the readers are referred to (Sehgal,
2017).

The basic drivers for SWAT are the U.S. Geological Survey (USGS)-
derived Digital Elevation Model (DEM), STATSGO soil layer and land
use/cover data from National Land Cover Data (NLCD) 20011 (Homer
et al., 2015). One USGS station for each watershed is chosen for cali-
brating and validating the streamflow generated by the SWAT models.
SWAT models are calibrated from1st January 2000 through 31st De-
cember 2010 with three years of warm-up period (2000 through 2002)
and are validated from 1st January 2011 through 31st December 2013
using the weather data (Precipitation and temperature) from the Na-
tional Centers for Environmental Prediction (NCEP) Climate Forecast
System Reanalysis (CFSR) product (Dile and Srinivasan, 2014; Kang and
Sridhar, 2018). The performance assessment of SWAT models is carried
out by comparing the SWAT-simulated discharge at the selected outlet
with the observed discharge data from the USGS stations using three
statistical performance indices, namely, Coefficient of determination
(R2), Normalized Root mean square error (NRMSE) and Willmott's
Index (WI) (Willmott et al., 2012, 2015). Watershed-scale performance
evaluation of the SWAT models and description of the statistical per-
formance indices is provided in the supplementary material of the
paper.

3.2. Integrating SWAT models with CFSv2 data

CFSR has been extended as an operational, real-time product into
the future which provides estimates of the atmospheric variables with a
lead time of nine months and is initialized at multiple times a day, and,
different days of a month (Table 2). Fig. 2 provides a schematic of data
assimilation for the study. The precipitation and temperature time
series is obtained from CFSv2 data from 1st April 2011 through 19th
Dec 2017 by using the first output of CFSv2 models from 1st April 2011
through 12th March 2017, and 9-month forecast data is then obtained
from the latest initialization (12th March 2017 in this study). The red
ellipse highlights the model run for each initialization which is used for
SWAT model implementation with a total number of K initializations
from 1st April through 12th Match 2017. The calibrated SWAT models
are integrated with CFSv2 drivers from April 2011–December 2017
with a warm-up period of 3 years thus providing simulation outputs
from Jan- 2014–December 2017. Combining the retrospective model
simulations from SWAT-CFSR integrated models, and the CFSv2 in-
tegrated SWAT models, seamless daily simulation outputs are obtained
from January 1982–December 2017. A schematic of the entire model
setup is provided in Fig. 3.

Fig. 1. Map showing the location of the study area. The watersheds in the South
Atlantic- Gulf (SAG) region are highlighted in grey shade. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

Table 1
List of the 18 basins in the South Atlantic- Gulf region identified with 4-digit
Hydrologic Unit Code with name and a 6-digit identification number (not to be
confused with HUC-6) for the constituent watersheds, and, respective outlet
USGS stations.

Basin Watershed River/basin Basin Watershed River/basin

0301 030101 Roanoke 0309 030902 Caloosahatchee
030102 Dan 0310 031001 Peace
030103 Nottoway 031002 Alafia

0302 030201 Tar 031003 Withlacoochee
030202 Neuse 0311 031101 Suwannee

0303 030301 Lumber 031102 Alapaha
030302 Black 0312 031201 Ochlockonee
030303 NE Cape fear 0313 031301 Chattahoochee

0304 030401 Pee Dee 031302 Flint
030402 Lumber 031303 Apalachicola
030403 Lynches 0314 031401 Yellow

0305 030501 Catawba 031402 Choctawhatchee
030502 Congaree 031403 Conecuh
030503 Edisto 0315 031501 Coosa (Rome)

0306 030601 Savannah 031502 Coosa (Childersburg)
030602 Barrier Creek 031503 Alabama
030603 Ogeechee 0316 031601 Noxubee
030604 Canoochee 031602 Black warrior

0307 030701 Oconee 031603 Tombigbee
030702 Ocmulgee 0317 031701 Chickasawhay
030703 Ohoopee 031702 Tallahala
030704 Satilla 031703 Red Cr.

0308 030801 St. Johns
(Geneva)

0318 031801 Pearl (Carthage)

030802 St. Johns
(Buffalo bluff)

031802 Pearl (Monticello)

0309 030901 Arbuckle Cr. 031803 Pearl (Bogalusa)
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3.3. Capturing variability in soil moisture using the appropriate distribution
function

Fine-scale heterogeneity in the soil moisture is often parameterized
using the variance of the soil moisture data and assuming a particular
type of probability density function (PDF) (Famiglietti et al., 2008). In
previous studies, normal (Kim et al., 2015), lognormal (Li and Avissar,
1994; Sivapalan and Wood, 1986), gamma (Entekhabi and Eagleson,
1989; Famiglietti and Wood, 1994), extreme value (Brabson et al.,
2005) distributions, among others, have been effectively used to esti-
mate the variability in soil moisture data.

A discretized approach is employed in this study to select the sui-
table distribution function for capturing the soil moisture variability in
drought assessment, with the flexibility to account for the seasonal and
sub-seasonal, geographic and inter-layer variability at a sub-watershed
scale as shown in Fig. 4. This study uses a selection of four distribution
functions namely, normal, gamma, lognormal and extreme value to
capture soil moisture variability for each layer for each calendar week.
Daily soil moisture data is obtained for each sub-watershed (at HUC-12
resolution) for a period of January 1982–December 2013 and averaged
over each calendar week. The distribution function with the lowest log-
likelihood for weekly soil moisture is chosen for (i) fitting the dis-
tribution of the soil moisture data from the respective week, (ii) cal-
culations of the cumulative distribution function and, (iii) percentile
estimation for that week of the watershed. A comparison of log-like-
lihood values for the four distribution functions of soil moisture data for
each calendar week, averaged over entire watershed for Roanoke, Sa-
tilla, Coosa, and Pearl watersheds is provided in Fig. S2 of the supple-
mentary material. It can be observed that the best choice distribution

function changes from week-to-week and watershed-to-watershed,
which is effectively accounted in the proposed discretized approach of
selection of distribution function for estimating weekly soil moisture
percentiles.

3.4. Severity classification of the soil moisture percentile

This study uses soil moisture from two soil layers, namely surface
layer (typically extending up to a few centimeters from the ground
surface) and the total rooting depth (can extend up to around 2.5 m).
Soil moisture from these two profiles has very distinct behavior re-
garding the persistence and hence their relative response to drought
(Sehgal et al., 2017). While the soil surface interacts with the wind,
solar radiation, and several other transient weather patterns and pro-
vides a platform for the soil-atmospheric interaction, deeper strata in-
teract with the groundwater and are pivotal in surface-groundwater
interaction. These factors, when combined with significant hetero-
geneity in the watershed characteristics like soil type, vegetation, and
land use, lead to high spatial variability in the soil moisture from the
surface and total column soil moisture and thus, the ability of these
strata to respond to drought stress.

The estimated drought severity is tested against the drought severity
assessment provided by the US drought monitor (USDM, Svoboda et al.
(2002)). USDM provides a county-level, weekly drought assessment of
current drought conditions for the US, and is often used as a reference
for various socio-economic and agricultural needs, and a popular
benchmark for validation other research products for drought mon-
itoring (Hao et al., 2016; He et al., 2015; Wang et al., 2009; Xia et al.,
2014).

Here we follow the stratified approach of drought severity assess-
ment from multiple soil layers as proposed by Sehgal et al. (2017)
where drought severity estimation using the surface and the total
column soil moisture is classified differently. In this study, the drought
classification is carried out for the surface, and total column soil profile
using the classification provided in Table 3 and drought severity clas-
sification from the two layers is compared. While surface soil moisture
is used only to capture transient drought conditions, severe and long-
term droughts are captured using soil moisture percentiles from total
column soil moisture. The top surface percentiles are used to identify
droughts in the D0-D3 category only, while, total column soil moisture
is used to identify D0 to D4 (all classes) droughts. The highest value
among the two layers is then selected as the drought severity for the
sub-watershed. For example, assume that the moisture percentile for
both layers of a sub-watershed is observed between 5th and 2nd per-
centile, then the drought severity is classified to be D4 (Extreme
drought), however, if top surface soil moisture percentile is less than

Table 2
CFSv2 monthly ensembles with respective initial day of the month for four
members initialized at 00Z, 06Z, 12Z, and 18Z. (McEvoy et al., 2015).

Initialization Month Total Members Initialization Days

January 28 1, 6, 11, 16, 21, 26, 31
February 20 5, 10, 15, 20, 25
March 24 2, 7, 12, 17, 22, 27
April 24 1, 6, 11, 16, 21, 26
May 28 1, 6, 11, 16, 21, 26, 31
June 24 5, 10, 15, 20, 25, 30
July 24 5, 10, 15, 20, 25, 30
August 24 4, 9, 14, 19, 24, 29
September 24 3, 8, 13, 18, 23, 28
October 24 3, 8, 13, 18, 23, 28
November 24 2, 7, 12, 17, 22, 27
December 24 2, 7, 12, 17, 22, 27

Fig. 2. Data assimilation scheme for precipitation and temperature from the CFSv2 dataset.
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30th percentile while total column soil moisture percentile is still above
the 30th percentile, then the drought severity is assessed to be D1
(Abnormally dry).

3.5. Temporal aggregation of the soil moisture percentiles

Suitable aggregation (cumulative value over the period) of soil
moisture is important to characterize drought on a range of timescales.
Several drought indices, such as SPI, are defined at various time scales
to capture long and short-term anomalies. Since the persistence of the
surface and the total column soil moisture differ significantly, suitable
aggregation of soil moisture from the two layers will be of importance
to capture various forms of droughts (transient or long-term; meteor-
ological or hydrological, etc.) in the proposed stratified approach.
Shorter temporal aggregation of soil moisture data preserves transient
changes in soil moisture while longer aggregation of data smoothens
out the percentiles and represent only long-term variations in the data.
This study evaluated aggregation of soil moisture to a range of time
scales (4-, 8-, 12- 16- and 20 weeks) to select the best aggregation for
characterizing drought using a combination of surface and total column
soil moisture. Three recent droughts are considered in evaluating the
suitability of various aggregations in capturing both transient and long-
term drought characteristics effectively at a sub-watershed scale.
Chronology of the selected droughts includes 2000–2002, 2006–2009
and 2011–2012.

Fig. 5 provides soil moisture percentiles for Pearl River for the three
selected drought periods. For the most part of the three drought

periods, the soil moisture percentile for surface and the total column
soil moisture can be observed to be less than 30%, as shown in Fig. 5.
The effect of different aggregations is evident where higher aggrega-
tions (12 and 20 weeks) possess higher persistence and often respond to
long-term conditions in soil moisture change with a longer lag. Also, the
different response of top surface and total column soil moisture to
short-term moisture conditions is evident. For example, from December
2001 through July 2011, surface soil moisture percentiles show three
distinct peaks with moisture falling low in the months of February 2011
and May 2011. However, corresponding percentiles from total column
soil moisture do not reflect these transient changes. For this study,
aggregation of 4 weeks for the top surface soil moisture and 8 weeks for

Fig. 3. Schematic of the conceptual framework of forecasting hydrologic variables using the CFSv2 dataset in conjunction with SWAT models for the South-Atlantic
Gulf region.

Fig. 4. Schematic for soil moisture percentile calculation at sub-watershed scale.

Table 3
Classification of drought based on layer-wise soil moisture percentiles proposed
in this study.

Layer-wise classification of drought severity

Soil Moisture
Percentile

Interpretation USDM
classification

Top layer Total
column

Normal Normal D0 D0 D0
Less than 30 Abnormally dry D1 D1 D1
Less than 20 Moderate Drought D2 D1 D2
Less than 10 Severe Drought D3 D2 D3
Less than 5 Extreme Drought D4 D2 D4
Less than 2 Exceptional

Drought
D5 D3 D5
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total column soil moisture is found to be appropriate prior to calcula-
tion of soil moisture percentiles to preserve both short and long-term
drought signals.

3.6. Accuracy assessment of the estimated drought severity

For performance evaluation, the soil moisture percentiles for the
total column and the surface soil moisture with multiple aggregations

are compared with several other drought indices provided by National
Climatic Data Center (NCDC) repository for 53 climatic divisions in the
SAG region. PDSI, PHDI, ZNDX, and SPI for 1, 6, 9, and 12 months are
chosen for the comparison with the estimated soil moisture percentiles.
The weekly soil moisture values are averaged for the respective month
for the sub-watersheds within a climatic division, and a time series of
the soil moisture percentile is obtained at a monthly time step for
comparison with the NCDC drought indices of the respective climatic

Fig. 5. Comparison of percentiles of the total rooting depth and the surface soil moisture with 4-, 8-, 12-, 16- and 24- weeks aggregation for the three selected drought
periods for Pearl watershed.
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division. Three performance matrices are used in this study to quantify
the agreement between PDSI and total column soil moisture percentile
(8-weeks aggregated) at the watershed scale for different multiple se-
verity conditions. The matrices are:

a) Index of agreement (IOA):

Number of months soil moisture percentiles correctly captured
drought severity per total months the watershed experienced a drought
of a given severity.

b) Drought prediction failure (DPF):

Number of months soil moisture percentiles failed to capture
drought severity per total month the watershed experienced a drought
of a given severity.

c) False alarm (FA):

The number of months soil moisture percentiles reported drought in
the absence of actual drought per the total number of months eval-
uated.

Note that IOA and DPF are complementary to each other and add up
to 100%. FA is calculated based on 384-month climatology (January
1982–December 2013). An illustration of DPF, IOA, and FA is provided
in Fig. 6. It can be observed that low PDSI values are not reciprocated in
retrospective soil moisture percentiles for the 1992–1993 period (DPF).
While the year 1998 and 2005 are classified as drought-hit by the
proposed approach, the drought conditions are not corroborated by
PDSI and SPI-1 (FA). On the other hand, the proposed approach, PDSI,
and SPI-1 are in tandem over severe drought in 2000, 2007 and 2013
(Agreement).

4. Results

4.1. Performance evaluation of the reconstructed drought severity

4.1.1. Comparison with PDSI, PHDI, palmer Z index and SPI-1, 6, 9 and 12
Fig. 7 provides a comparison between PDSI, PHDI, Palmer Z index,

SPI-1, SPI-6, SPI-9 and SPI-12 with monthly percentiles of the area
averaged total column and surface soil moisture aggregated at 4-, 8-,
24-, 36-, 52- weeks, and without any aggregation for the SAG region
expressed as correlation coefficient. It can be observed from Fig. 7 that
the total column soil moisture percentile has a higher correlation with
long-term drought indices (PDSI, PHDI, SPI-6, SPIe 9 and SPI-12) while
surface soil moisture percentiles have a higher correlation with palmer
Z-index and SPI-1 when no aggregation is used. Increase in aggregation
leads to small increase in the correlation between the total column soil

moisture with PDSI, PHDI, SPI-6,9 and 12 while the correlation de-
creases with Z index and SPI-1 with increasing aggregation of total
column soil moisture. However, for surface soil moisture, increasing
aggregation leads to increase in correlation of soil moisture percentiles
with the long-term drought indices, with the highest correlations be-
yond 24-weeks of aggregation. Due to the shorter response time of Z-
index and SPI-1, increasing aggregation has an adverse effect on the
correlation with Z-index, and SPI-1 of soil moisture percentiles of both
layers. A comparison of the values of PHDI, SPI-6, and Z index and SPI-1
with the total column and surface soil moisture percentiles for a period
between January 2000 and December 2013 is provided in Fig. 8. It can
be observed from Fig. 8 that the soil moisture percentiles obtained from
the SWAT models are able to capture the drought in the study region.

Fig. 9 shows the IOA, DPF, FA assessment for four drought seve-
rities, namely mild (PDSI< 1 and soil moisture percentile < 0.3),
moderate (PDSI< 2 and soil moisture percentile < 0.2), severe
(PDSI< 3 and soil moisture percentile < 0.1) and exceptional
(PDSI< 4 and soil moisture percentile < 0.05). Categorization of
these indices based on drought severity classes helps in understanding
the relative accuracy of soil moisture percentiles in capturing PDSI of a
given severity range. For example, IOA for mild drought gives the
agreement values between PDSI and soil moisture percentile when both
PDSI and the soil moisture percentile classified drought severity under
the mild category for the respective month. It can be seen from Fig. 9
that IOA between PDSI and total column soil moisture percentiles
(aggregated to 8-weeks) varies among watersheds and severity classi-
fication. Overall, IOA is seen to be above 50% for majority watersheds
for mild and moderate droughts. However, IOA is high for the water-
sheds in Mississippi and Alabama states. While for some of the water-
sheds especially in the tip of Florida peninsula (watersheds 20–30) the
IOA is seen to fall low. This is because of differences in the accuracy of
SWAT models for the respective watersheds. Watersheds with a rela-
tively low accuracy while calibrating the SWAT model are expected to
show higher disagreement (DPF) with PDSI for the respective wa-
tershed. Also, IOA values are lower for most watersheds compared to
respective values for lower severity values. This can be attributed to the
observation that for most watersheds, low soil moisture percentiles
predate PDSI values with similar drought severity, which is more no-
ticeable in higher severity values. Overall, FA is less than 15% of total
climatology (384 months) for all watersheds across drought severity
values.

4.1.2. Comparison with USDM drought maps
The reconstructed drought maps are compared with the respective

USDM drought severity maps to ascertain the accuracy of the proposed
drought assessment approach. Fig. 10 provides a comparison of the
reconstructed and USDM drought severity maps for two drought per-
iods, February–August 2007, and, May–November 2011. It can be ob-
served from Fig. 10 that the reconstructed drought maps generally
predate drought compared to its USDM counterpart, especially during
the onset of drought. However, the proposed approach also retains
drought persistence longer than the USDM maps owing to the influence
of the total column soil moisture with long aggregation (8-weeks). The
reconstructed drought maps corresponded well with the area experi-
encing drought stress. However, overestimation of drought stress can be
seen in some of the regions especially in the northeast part of the study
area.

4.2. Drought assessment and forecasting using SWAT-CFSv2 integrated
model outputs

After having established the accuracy of the proposed stratified
approach for retrospective drought analysis using SWAT generated sub-
watershed scale (HUC-12 resolution) soil moisture dataset, the ap-
proach is expanded to forecast drought severity for 9-months lead time
using SWT-CFSv2 integrated hybrid models. SWAT-CFSv2 hybrid

Fig. 6. Illustration of the Index of agreement (IOA), Drought Prediction Failure
(DPF) and False Alarm (FA) for a selected watershed. The values of PDSI and
SPI-1 are compared with 8-week aggregated total column soil moisture per-
centiles for January 1982–December 2013.
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models provide hydrologic variables from January 2014 through March
2017 in near real-time while the forecasted values are available for 9-
months lead, through the third week of December 2017. Soil moisture
percentiles are calculated as described in previous sections.

Fig. 11 provides the time series of precipitation (P), change in soil
storage (ΔS ΔT/ ), Potential Evapotranspiration (PET) and Actual Eva-
potranspiration (ET) for January 2014–December 2017 using SWAT-
CFSv2 integrated models. It can be seen from Fig. 11 that the SWAT-
CFSv2 integrated models are able to capture a recent drought in the
region in 2016. The period of June–October 2016 is seen to have low
soil moisture and precipitation while above normal PET and ET. Time
series of weekly soil moisture percentiles from the top and total column
soil moisture from SWAT-CFSv2 integrated models is provided in

Fig. 12 for the Jan 2014–Dec 2017 period. Fig. 13 provides IOA, FA and
DM values between PDSI and total column soil moisture from the
SWAT-CFSv2 integrated model (aggregated to 8-weeks) for the January
2014–March 2017 period. Results indicate that high IOA exists between
the PDSI and estimated drought severity. For majority watersheds (26
of 45 watersheds in mild category, 34 of 38 in moderate, 18 of 14 in
severe and all 7 watersheds in exceptional drought categories respec-
tively), IOA is found to be greater than 60%. Some of the watersheds
did not experience any drought in a particular severity class in the
period of evaluation and hence no IOA or DM values are assigned to
such watersheds (For example 1–10 watersheds in severe drought ca-
tegory). The IOA values increase with increasing severity class in-
dicating that the simulated soil moisture percentiles are very effective

Fig. 7. Comparison between area-averaged reconstructed drought severity and PDSI, PHDI, Palmer Z index, SPI-1, SPI-6, SPI-9 and SPI-12 at different aggregations
for 2000–2013, expressed as correlation for the SAG region.

Fig. 8. Comparison of (a) 8-weeks aggregated total column soil moisture percentile with PHDI and SPI-6 (b) 4-weeks aggregated surface soil moisture percentile with
Palmer Z-index and SPI-1 between 2000 through 2013.
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in capturing severe and extreme drought in near real-time mode using
SWAT-CFSv2 model outputs. However, a higher number of FA is ob-
served especially for the mild and moderate drought categories due to
higher sensitivity of soil moisture percentiles to transient droughts for
these watersheds.

Fig. 14 shows USDM drought maps and the maps generated using
SWAT-CFSv2 modeled soil moisture percentiles both computed at a
weekly scale, between March 21st and July 6th, 2017. The USDM and
simulated drought severity maps have a reasonable degree of spatial
association for 1st month (21st March- 18th April). However, the dis-
agreement between the USDM and simulated drought increases with
increasing lead time of the forecast. Conditions similar to June–October
2016 are forecasted to occur in mid-2017 leading to drought conditions
in the region. Fig. 15 shows the drought severity map for the SAG re-
gion showing forecasted drought conditions from April–December

2017. While precipitation of the range of 100mm in most part of the
region is expected to provide relief from drought conditions, moisture
deficit during late July and August is forecasted to contribute to
building up of dry conditions in Alabama, Georgia, most parts of Florida
and parts of Louisiana.

5. Discussion

5.1. Need for a watershed-scale, multi-layer approach for soil moisture
based drought assessment

A layer-wise approach is necessary for capturing the dynamics of the
surface and subsurface fluxes in the soil column due to the difference in
the response time of deeper and surface soil profiles to changing me-
teorological conditions leading to drought. Moisture availability in the

Fig. 9. For all 50 watersheds: Index of Agreement (IOA), Drought prediction failure (DPF) and False Alarm (FA) between PDSI and total column soil moisture
(aggregated to 8 weeks) for four drought categories namely mild, moderate, severe and exceptional based on January 1982 through December 2013 climatology.

Fig. 10. Weekly drought severity maps for SAG region using the proposed stratified approach compared with the USDM maps, calculated for each first week of the
month in February–August 2007 and May–November 2011.
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rooting zone indicate water availability for plant uptake, aquifer re-
charge, and baseflow; and displays variability corresponding to longer
time scales, ranging from sub-monthly to seasonal scales. However, the
near-surface soil moisture responds to rapid changes in atmosphere
related to evaporation and precipitation, thus captures the flash
drought scenarios indicating the susceptibility of the watershed to other
natural hazards like wildfire (D'Odorico et al., 2000; Sehgal et al., 2017)
often at sub-weekly to monthly time scales.

5.2. Seasonal dynamics of soil moisture

Translation of drought-inducing meteorological factors into various
hydrological components of the watershed scale water-budget depends
on the interaction between several governing factors like vegetative and
canopy growth, soil composition, interaction with groundwater,
freezing, and thawing of soil, evapotranspiration, etc. While some of
these factors (ET, freeze/thaw cycles, etc.) concern only the soil surface,
other interactions take place in deeper soil columns thus linking the
meteorological fluctuations to soil storage and groundwater. The in-
terplay of the mean and variance of the soil moisture time series for
different part of a year is important in selecting the right distribution
function to capture soil moisture variability effectively. Furthermore,
the variability in soil moisture can be affected by scale (spatial and
temporal), season and hydroclimatology of the study region, and can
significantly alter the choice of the distributions to estimate the varia-
bility in the data. Seasonal and geographical variations in soil moisture
variability can be attributed to a combination of factors like hydro-
climatology (precipitation, evapotranspiration, transpiration), surface
characteristics (soil texture, topography, vegetation, land use and land
surface properties, drainage etc.) and infiltration-runoff processes of the
study region (Famiglietti et al., 2008; Kim and Barros, 2002; Oldak
et al., 2002; Peters-Lidard and Pan, 2002; Teuling and Troch, 2005).

An analysis is carried out in this study to analyze the relationship
between the mean and variance of soil moisture for each calendar week
for the 50 watersheds which in turn, reflects on the choice of the dis-
tribution function to estimate soil moisture variability at the watershed
scale. The mean and variance for each week is calculated using the

historical simulation (January 1982–December 2013) and later divided
by the maximum value for each watershed in order to obtain a com-
parable range of values across different watersheds. Two distinct phases
of the relationship between the mean and variance of week-wise soil
moisture are observed (Fig. 16):

a) Increase in mean soil moisture with decreasing variance:

This part of the year is marked by increasing mean soil moisture
with subsequent weeks whereas the variance in soil moisture is seen to
decrease. Empirical fit to this phase shows that an exponential curve
can be used to satisfactorily explain the process where the variance in
soil moisture for the week is a factor of mean soil moisture through the
following relationship:

= ′ −Variance a e ‵b Mean( ) (1)

Where a` and b` are constants.

b) Decrease in mean soil moisture with increasing variance:

This is a complementary process to (a) where the mean soil
moisture decreases whereas the variance in soil moisture increases over
the weeks. Empirical fir to the data reveals that the interrelationship
between variance and mean of soil moisture follows a second-order
polynomial function as follows:

= + +Variance aMean bMean c2 (2)

Where a, b and c are constants for the respective sub-watershed.

5.3. Limitations of the study and future work

The proposed methodology of drought analysis and forecasting is
comparable to USDM in its representation of drought categories for
easy understanding and interpretation of drought conditions by pol-
icymakers and water planners. However, the proposed approach and
the USDM are different in terms of the data, climatology and inter-
pretation of the respective drought categories. USDM drought maps
generally involve many other factors like county-level information on

Fig. 11. Area-averaged values of mean monthly precipitation (P), actual evaporation (ET), potential evapotranspiration (PET) and change in soil water storage
(ΔS ΔT/ ) for the study region using SWAT- CFSv2 integrated models. The dotted black (vertical) line demarcates the SWAT-CFSv2 model warm-up (January 2014
through 12th March 2017) from model forecast period (March through December 2017).

Fig. 12. Weekly percentiles of the area averaged soil moisture for SAG region using 8-weeks aggregated total column soil moisture (shaded in gray), and 4-weeks
aggregated surface soil moisture.
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drought, reservoir levels, snowpack and groundwater (Sehgal et al.,
2017; Svoboda et al., 2002) which may lead to different interpretation
of drought at local scales. Hence, the hydrological manifestations of the
drought representation from the proposed approach may be different
from that represented by USDM. In this study, the water deficit, and
thus the drought conditions, are estimated by calculating the deviation
of the natural conditions of soil moisture from the historical normal
values for the respective month or week. However, these extremes may
be exasperated by several anthropologic interventions. The difference
in the hydrologic/soil moisture/meteorological extremes and the peo-
ple's perception of drought can be linked to the availability of water for
several applications like public water demand, agricultural practices,
industrial utilities, recreation, etc. Hence, similar meteorological con-
ditions in one watershed may trigger a different perception of drought
in that region compared to another watershed with different geographic
conditions, public water needs and/or agricultural applications, etc.

Watershed-scale drought prediction skill is strongly influenced by
the SWAT model calibration and the accuracy of the climate drivers. A

satisfactory calibration of SWAT models for each watershed ensures
model accuracy and the ability to capture the hydrologic variability of
the watershed. While the SWAT models perform satisfactorily for the
inland watersheds, the calibration performance of the models is rela-
tively weak in the coastal wetlands, especially for the Florida peninsula
due to strong tidal influence on the streamflow gaging station used for
the model calibration. Extensive basin management and regulated
streamflow also influence the performance of the SWAT models nega-
tively, thus limiting the drought predictive skill of the simulated hy-
drologic variables. However, the performance of the SWAT model is
better for larger watersheds due to reduced intermittency and sustained
flow regimes. It is worth noting that since all watersheds in the study
area (total 50) are independently calibrated and parameterized, the
sensitivity of the simulated hydrologic variables to drought generating
meteorological conditions may be different, which should be accounted
for by the user while implementing the model outputs for drought as-
sessment. The forecasted meteorological drivers from CFSv2 also entail
significant uncertainty, which depreciates the drought forecasting

Fig. 13. Same as Fig. 10, but using SWAT-CFSv2 integrated model outputs in near real-time mode for January 2014–March 2017 period.

Fig. 14. Comparison of the USDM and simulated drought severity maps using SWAT-CFSv2 integrated models in the forecast mode from 21st March 2017 through
6th June 2017.
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ability of the proposed framework, especially for longer lead-time (> 1
month). While the near real-time drought estimates by the models are
reasonably accurate and useful for decision in the study area, the
drought forecasts for multi-month lead requires further uncertainty
assessment prior to implementation. This study is a proof-of-the-con-
cept for a near real-time, stratified soil moisture based drought mon-
itoring and forecasting framework, by combining a watershed-scale
hydrologic model with global-scale climate drivers for regional ana-
lysis. Hence, a detailed investigation of the aforementioned limitations
remains a topic of future studies.

High-resolution watershed-scale models are helpful in under-
standing the local-scale hydrologic variability and complex interactions
of various bio-physical components. While the application of a multi-
layer soil moisture based drought assessment is demonstrated in this
study to capture the hydrologic response of watersheds to drought,
other hydrologic variables simulated by the models like evapo-
transpiration, streamflow etc. can as well be used to enhance the scope
of application of this study and provide a wholistic view of the response
of watersheds under drought. This would be an obvious advantage
focussing of a single hydrologic variable and can provide a multi-di-
mensional (in application and scope) assessment of drought at local
scales.

6. Conclusion

This study provides a retrospective drought analysis and a near real-
time drought forecasting framework using simulated hydrological
variables by SWAT- CFSv2 integrated models for the South-Atlantic
Gulf region of the Southeastern US. Retrospective analysis is carried out
for a period of 1982 through March 2017, and drought forecasts are
provided for a period of March through December 2017 at a weekly
time step. The study uses a stratified approach to capture drought onset
and persistence using surface soil moisture to characterize low-intensity
droughts and total rooting depth soil moisture to capture persistence
and severity of severe droughts. The accuracy of the proposed approach

is established by comparing the simulated drought maps with those of
US drought monitor and other drought indicators provided by NCDC
(PDSI, PHDI, Palmer Z index and SPI-1, 6, 9, and 12) for the region. The
study finds that the soil moisture percentiles for total rooting depth and
surface soil moisture with various aggregations are in good agreement
with other long and short-term drought indices provided by NCDC. The
important findings of this study are:

a) A stratified approach of using multi-layer soil moisture percentiles
for drought severity assessment is helpful in capturing different
characteristics of drought. While the surface soil moisture responds
to transient drought conditions and captures the onset and spatial
propagation of drought, the total rooting depth soil moisture cap-
tures the persistence (or sustenance) and vertical propagation
(across soil profile) of severe droughts. A combination approach of
multi-layer drought assessment provides flexibility (and sub-
jectivity) in better the capturing the space, time and severity aspects
of drought.

b) Selection of the suitable temporal aggregation in the development of
a multi-layer soil moisture based drought assessment has an im-
portant role in determining the sensitivity of the soil moisture per-
centile to long- or to short-term drought conditions. With longer
temporal aggregation (8–24 weeks), the surface soil moisture shows
high (> 0.7) correlation with long term drought indices like PDSI
and PHDI, similar to the total column soil moisture. This under-
standing can be of application to the remotely sensed soil moisture
as well, where satellite-retrievals are limited to only top few cen-
timeters and is a topic of future research. While there may be some
other factors influencing the response of soil profiles to drought,
like, soil composition and texture, topography and vegetation etc.,
which are beyond the scope of this study.

c) Near real-time drought estimation using the SWAT-CFSv2 models,
provide promising results for application to the study region, and
shows high agreement with PDSI across the study region for all
drought categories. Spatial agreement between the USDM and

Fig. 15. (Top) Drought severity maps for the South-Atlantic Gulf region using the stratified soil moisture percentile approach using SWAT-CFSv2 integrated soil
moisture percentiles for top and total column soil profiles (Bottom) Drought severity-area plot for the forecast period (Third week of March through third week of
December 2017 using SWAT-CFSv2 integrated model soil moisture percentiles.
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proposed approach has some obvious discrepancies in classification
of the drought into same severity classes. This can be attributed to
(i) the formulations of the drought estimation approach using both
surface and total column soil profile, which leads to higher sensi-
tivity to developing drought conditions (ii) Calibration accuracy of
the SWAT models for the respective watersheds, which vary due to
several factors including suitable parameterization and calibration
of the model, watershed characteristics, etc.

d) The drought forecasting ability of the SWAT-CFSv2 models require
attention, as there is large disagreement between observed drought
maps from the USDM and the estimated drought severity, especially
with lead-time over 1-month. These brings into light the uncertainty
associated with the global-scale weather forecasts for the study re-
gion, especially for a long lead-time.
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