
Chapter 4

Linear Mixed Models

4.1 Model Formulation

The linear mixed model (LMM) is very flexible and capable of fitting a large variety of

datasets. It is widely used for repeated measures data or longitudinal studies where data

are grouped. The form of the LMM that we use is that of Laird and Ware (1982) which

can be considered an extension of the classical linear model. The literature on linear mixed

models will often refer to the collection of data that forms a profile as a “cluster” or “subject”,

depending on the particular application. We use the term “profile” throughout but note that

applications of the methods and analysis presented here apply if the data are represented by

clusters or subjects. The LMM allows us to account for the correlation within profiles and

to consider the profiles as a random sample from a common population distribution, which

may be more realistic in many applications. A good introduction to the LMM can be found

in Verbeke and Molenberghs (2000) or Schabenberger and Pierce (2002).

If we have m profiles of data, each of which has ni measurements, where i refers to the

ith profile, we can fit a separate linear model to each profile. The model fit in matrix form
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is given by

yi = Xiβi + ǫi for i = 1, 2, . . . ,m, (4.1)

where yi is a ni by 1 vector of responses for profile i, Xi is a ni by p matrix of the regressor

variables associated with the fixed effects, βi is the p by 1 parameter vector of fixed effects

for the ith profile, and ǫi ∼ MN(0,Ri) is the ni by 1 vector of errors where Ri is a ni by ni

positive definite matrix. If the errors are assumed to be independent, then Ri = σ2I where

I is the identity matrix and the estimates of the parameters can be easily obtained via least

squares (LS) methods. The estimated parameter vector is given by

β̂i,LS = (X′

iXi)
−1X′

iyi for i = 1, 2, . . . ,m. (4.2)

In contrast, the LMM has random effects in addition to the fixed effects of the classical

linear model and is given by

yi = Xiβ + Zibi + ǫi for i = 1, 2, . . . ,m, (4.3)

where β is a vector of fixed effects that is the same for all profiles, Zi corresponds to a ni by

q matrix of the predictor variables with random effects, bi ∼ MN(0,D) is a q by 1 vector

of random effects for the ith cluster where D is a q by q positive definite matrix. Because

we have written (4.3) in terms of each of the individual profiles, we refer to this particular

model formulation as the “unstacked” form.

The model in (4.3) is flexible enough to allow the errors to be independent or correlated.

If correlated, Ri is often assumed to be a simple form such as compound symmetry (CS)

or autoregressive (AR) in order to reduce the number of covariance parameters that need

to be estimated. For more details on the various types of correlated error structures that

can be assumed for Ri, see Littell et al. (1996) or Schabenberger and Pierce (2002). Similar
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structure can be imposed on D, but here we restrict D to be a diagonal matrix. Thus the

random effects are assumed to be uncorrelated with each other.

In addition, we assume that cov(ǫi,bi) = Ø, where Ø is a n by q matrix of zeros, which

means that the random effects and the random errors are uncorrelated, resulting in the

conditional model given by

yi|bi ∼ MN(Xiβ + Zibi,Ri). (4.4)

Furthermore we assume that Zi is either a subset of or equal to the Xi matrix, so any

columns in the Zi matrix are also contained in the Xi matrix and thus p ≥ q. The case

where Zi = Xi is referred to as the random coefficients model (Demidenko, 2004) because all

the fixed effects have a corresponding random effect. This restriction of Zi being contained

within Xi does not eliminate any of the forms of this model that are in common practice.

For examples of cases where this restriction is used see Waternaux, Laird, and Ware (1989),

Lesaffre, Asefa, and Verbeke (1999), Longford (2001), or Xu (2003).

The corresponding marginal model is given by

yi ∼ MN(Xiβ,Vi) for i = 1, 2, . . . ,m, (4.5)

where Vi = ZiDZ′

i + Ri is a ni by ni positive definite matrix.

The model in (4.3) allows for two levels of correlation for the measurements within a

profile. The first results from the random effects which cause all the measurements within a

profile to be correlated to each other. The second results from the within-profile variance-

covariance matrix, Ri. Vonesh and Chinchilli (1997, p. 256) noted that in some applications

it makes sense to consider both levels and give some references where both levels are used.

Chi and Reinsel (1989) also recommended the use of both levels of correlation where needed.
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If a particular application has only the first level of correlation, so that the errors are un-

correlated but random effects are still present, the model in (4.5) reduces to yi ∼ MN(Xiβ,Vi)

where Vi = ZiDZ′

i + σ2I. If the application only uses the second level of correlation (that

is, a fixed effects model where D is a null matrix and Ri is non-diagonal) then a time series

model can often be fit to account for serial correlation among the responses. Time series

models can be more restrictive because they often require equally spaced data. A LMM that

uses neither of the two levels of correlation so that we have a model with uncorrelated errors

with no random effects then (4.5) reduces to the general linear model in (4.1) because Zi = 0

and ǫi ∼ MN(0, σ2I).

4.2 Correlation in the Errors

Autocorrelated data are very common for time ordered data, such as data representing the

price of a stock over time. These time series models for autocorrelated data are usually

applied to situations where there is a single profile of data. On occasion, a time series model

will be fit to multiple profiles but such models often require a large number of observations

per profile to ensure that the model obtained will be representative of the data. On the

other hand, the LMM is usually preferable when there are multiple profiles and there are a

smaller number of observations per profile which may/or may not be time ordered. With

the LMM one seeks to pool information from multiple profiles in order to improve estimates

and subsequent inference while with a time series model one does not usually attempt to

pool information. As a result, correlated errors in the LMM may appear different when

graphically displayed than a graphical display of autocorrelated time series data.

For example, consider the top panel of Figure 4.1 which shows 5 randomly generated
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profiles from a LMM with no correlation in the errors. The raw data points are shown along

with the simple linear regression fits for each profile. The profiles each have 5 measurements

with β = [0, 1], D =

[
.1 0

0 .1

]
, Xi = Zi =





1 .2

1 .4

1 .6

1 .8

1 1




, and Ri = σ2 I where σ2 = .1.

Figure 4.1: Randomly generated profile data along with simple linear regression fit with no
correlation and correlation in the errors.

Notice that the data points appear at random on either side of the fitted profile. This

is because the independent errors are just as likely to cause a point to be above the line as

below the line. Now consider the same scenario but now with correlated errors following an
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AR(1) structure. Thus

Ri = σ2





1 ρ ρ2 ρ3 ρ4

ρ 1 ρ ρ2 ρ3

ρ2 ρ 1 ρ ρ2

ρ3 ρ2 ρ 1 ρ

ρ4 ρ3 ρ2 ρ 1




,

where ρ is some number between 0 and 1 and measures the strength of the correlation.

Contrast with the top panel the bottom panel of Figure 4.1 which shows the profiles with

correlated errors where ρ = .95.

Because of the strong correlation and the smaller number of observations per profile, the

errors tend to be similar to each other thus dampening the jagged effect of uncorrelated

errors. As a result, the fitted profiles tend to appear more similar to each other when there

is higher amounts of correlation in the errors. This dampening due to correlated errors will

help explain our results in Chapter 5.

4.3 Data Scenarios

Profile monitoring data can be classified into several different scenarios depending on the

number of observations per profile and where those observations are located within the profile.

For example, all of the profiles can have measurements that are equally spaced along the

profile and at the same location for all profiles. We refer to this data type as the balanced,

equally spaced data. This implies that ni = n for i = 1, 2, . . . ,m, and that the values of

the regressors (and consequently, Xi and Zi) are the same for all profiles. This does not

necessarily mean that Xi = Zi although as mentioned in Section 4.1 it is often assumed that

they are equal to each other. Balanced, unequally spaced data will occur when Xi and Zi

are the same for all the profiles but the observations within Xi and Zi may not necessarily be
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equal distance from each other. This type of scenario would occur where more measurements

for a particular profile occur in the middle than at the edges.

Unbalanced data refers to the scenario where Xi and Zi are not necessarily the same

for all the profiles. They may not even have the same number of rows per profile, which

indicates an unequal number of observations per profile.

For many control chart applications, where the profiles occur at regular time periods,

the data collection is well controlled as if from a designed experiment. Thus the number of

measurements per profile will often be the same and at the same locations along the profile.

Thus we believe that profile monitoring applications are more likely to have balanced data

Nonetheless, we will consider both balanced and unbalanced data in our simulation studies

of Chapter 5. It should be noticed that our choice of terminology for balanced and unbalanced

is slightly different than that often used in the literature. The literature uses balanced

and unbalanced to denote differences in sample sizes per profile. In order to simplify our

comparisons, balanced and unbalanced data will both have the same number of observations

for all the profiles, that is ni = n for i = 1, 2, . . . ,m.

4.4 Matrix Form

The model in (4.3) can be written in matrix form as

y = Xβ + Zb + ǫ, (4.6)

where y is a N by 1 stacked vector containing the responses for all the profiles with N =
∑

ni,

X is a N by p stacked matrix of the X′

is, β is the p by 1 vector of fixed effects, Z is a N

by mq = r block diagonal matrix such that Z = diag(Zi), b ∼ MN(0,B) is a mq = r by
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1 vector of random effects with B = diag(D), and ǫ ∼ MN(0,R) is the N by 1 vector of

errors with R = diag(Ri) and cov(ǫ,b) = 0. Note that R and B are both symmetric block

diagonal matrices.

The corresponding marginal model in matrix form is y ∼ MN(Xβ,V) where V = ZBZ′+

R = diag(Vi) is a N by N positive definite matrix. The matrix form of the marginal model

is an alternative form of expression that we denote the stacked form that is useful to show

certain results. Note that the conditional model in matrix form is y|b ∼ MN(Xβ +Zb,R).

4.5 Estimation

Under the distributional assumptions of the marginal model in (4.5), the fixed-effect param-

eter estimators representing the population average of all the profiles is given by β̂MIX , and

the estimates of the random deviations from that population average vector are given by

b̂i for i = 1, 2, . . . ,m. If Vi (and consequently D and Ri) are assumed known then it can

be shown that

β̂MIX =

(
m∑

i=1

X′

iV
−1

i Xi

)
−1 (

m∑

i=1

X′

iV
−1

i yi

)
, (4.7)

and the best linear unbiased predictors (”blups”) are

b̂i = DZ′

iV
−1

i

(
yi − Xiβ̂MIX

)
. (4.8)

If we are working with the stacked form of the LMM, and we assume that V (and as

a consequence B and R) are known and if the model is correctly specified, then the fixed

parameter estimators are given by

β̂MIX =
(
X′V−1X

)
−1 (

X′V−1y
)
, (4.9)
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and the vector of estimated random effects is given by

b̂ = BZ′V−1

(
y − Xβ̂

)
. (4.10)

Note that the estimator in (4.9) is a generalized least squares estimator (Vonesh and

Chinchilli, 1997, p. 238) and that the expressions in (4.7) and (4.9) are equivalent. It is easy

to show that β̂MIX in (4.9) is unbiased and using (4.10) that E(b̂) = 0. In addition it can

be shown that

V ar(β̂MIX) = (X′V−1X)−1. (4.11)

With the additional assumption of multivariate normality it can be shown that β̂MIX ∼

MN
[
β, (

∑m

i=1
X′

iV
−1

i Xi)
−1

]
or alternatively, β̂MIX ∼ MN [β, (X′VX)−1] (Schabenberger

and Pierce, 2002).

Laird and Ware (1982) noted that

V ar(b̂) = V ar
[
BZ′V−1(y − Xβ̂

]

= V ar
[
BZ′V−1(I − X(X′V−1X)X′V−1)y

]

= BZ′V−1
[
I − X(X′V−1X)X′V−1

]
V ar(y)

[
I − X(X′V−1X)X′V−1

]
V−1ZB′

= BZ′V−1[V − X(X′V−1X)X′ − X(X′V−1X)X′ +

X(X′V−1X)X′]V−1ZB′

= BZ′V−1
[
V − X(X′V−1X)X′

]
V−1ZB′

= BZ′V−1ZB − BZ′V−1X(X′V−1X)−1X′V−1ZB′. (4.12)

However, as noted by Laird and Ware (1982, p. 966), Verbeke and Molenberghs (2000, p.

78), and Schabenberger and Pierce (2002, p. 431), the expression in (4.12) is not the correct

expression of variability of the predictor because it ignores the variability in the random
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effects, b. Thus a more appropriate expression of variability is given by

V ar(b̂ − b) = B − BZ′V−1ZB + BZ′V−1X(X′V−1X)−1X′V−1ZB′ (4.13)

= B − V ar(b̂).

In the unstacked form for each profile (4.13) is given by

V ar(b̂i − bi) = D − DZ′

iV
−1

i ZiD + DZ′

iV
−1

i Xi(X
′

iV
−1

i Xi)
−1X′

iV
−1

i ZiD
′ (4.14)

= D − V ar(b̂i) for i = 1, 2, . . . ,m.

The above expression was derived under general conditions by Harville (1976) as an exten-

sion of the Gauss-Markov theorem to estimate linear combinations of both fixed and random

effects. In Appendix A, we derive this expression in (4.13) using the variance operator and

the properties of linear combinations of random variables.

In practice, V is not known and therefore must be estimated prior to obtaining β̂MIX and

b̂i. The matrix V can be estimated via maximum likelihood (ML) or restricted maximum

likelihood (REML) and an iterative algorithm. REML is often preferred (Schabenberger and

Pierce, 2002, p. 437) because it produces estimators with less bias than estimators obtained

using ML. The estimates obtained from ML and REML are often very similar to each other

and can sometimes be asymptotically equivalent (Demidenko, 2004, p. 146). Nonetheless,

we utilize REML for all of our simulation studies.

Once the solution is obtained, V̂−1 and D̂ are then placed in (4.7) and (4.8) to obtain

the parameter estimates. If a consistent estimate of V is used, the distribution of β̂MIX will

be asymptotically normal (Demidenko, 2004), that is β̂MIX

a
∼ MN

[
β, (

∑m

i=1
X′

iV
−1

i Xi)
−1

]
.

The blups from (4.8) are referred to as estimated best linear unbiased predictors (“eblups”)

when an estimated variance-covariance matrix is used.
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4.6 Properties of Blups

As noted by Verbeke and Lesaffre (1996) and Ritz (2004), the distribution of the eblups

does depend on the distribution of both the bi’s and the ǫi’s. In particular, the eblups

will be normally distributed as long as the random effects and errors follow a multivariate

normal distribution, although the distribution of the eblups is not necessarily the same as

that of the blups. Even if the random effects do not have a normal distribution, Jiang (1998)

showed that the eblups will converge to their true distribution as long as both the number

of profiles and number of observations per profile are increasing asymptotically (i.e. m → ∞

and n → ∞). In addition, the blups for different profiles will have different distributions

unless Xi and Zi are the same for all profiles.

The blups are not independent of each other even if V is known because they all use

the same β̂MIX in their calculation. In fact, as shown in Appendix B, there are some cases

where the blups sum to zero, thus implying correlation, because if m− 1 of them are known,

the last one is given.

Finally, we note that the blups are examples of shrinkage estimators. They are a function

of the observed data and the overall average profile given by Xiβ̂MIX . As a weighted average

of the data and the overall profile, they are “shrunken” toward the overall profile (Verbeke

and Molenberghs, 2000, pp. 80-85). The shrinkage toward the overall profile is more severe

if the within profile variability is large compared to the between profile variability. As a

result of the shrinkage, a histogram of the individual elements of b̂i corresponding to a

particular random effect has less variability than that of the random effect itself contained

in bi. Verbeke and Lessafre (1996) give an example where data were generated such that

the bi followed a bimodal distribution and a histogram of the elements of b̂i was unimodal.
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4.7 Other Issues

Two other issues arise when fitting the LMM; zero estimates and non-convergence. Zero

estimates occur when a negative estimate of a diagonal component of the variance-covariance

matrix is obtained by the maximum likelihood algorithm. Because it cannot be negative,

it is set to be zero, thus causing the estimated variance-covariance matrix to be singular.

Setting the value to zero produces biased estimates of the variance-covariance matrix and

is the multivariate analog of a similar problem that can occur with estimation of variance

components in ANOVA models discussed in Searle, Casella, and McCulloch (1992, Section

3.5.c). See Verbeke and Molenberghs (2000, Section 5.6) for further discussion.

If only of some of the diagonal variance components of the D matrix are estimated to be

zero, a T 2 statistic can still be computed. This is done by dropping out the null row and

column (where all the elements are zero because we assumed that D is a diagonal matrix)

of the variance-covariance matrix and the corresponding element of the estimated vector of

coefficients. The T 2 statistic is computed using the remaining elements in the vector and

variance-covariance matrix. On a rare occasion all the variance components are estimated to

be negative. This situation occurs when the profiles are so similar to each other that there is

no significant difference between them. If this occurs the T 2 statistic is set to be 0 indicating

that none of the profiles is considered to be different from each other.

Non-convergence occurs when no estimates are obtained because of the difficulty of maxi-

mizing the likelihood. For most simple problems non-convergence is rare but is more common

when the data are unbalanced, the variance components in V are small and/or the model

has been misspecified (Verbeke and Molenberghs, 2000, Section 5.6). For all our simulation

studies we tracked the frequency of non-convergence and found it to be small or zero. To

reduce the frequency of non-convergence, it is often recommended to use good starting values
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for the fixed parameters and components of the variance-covariance matrix. These starting

values can be obtained via graphical methods (Schabenberger and Pierce, 2002).

An alternative method is to use the standard least squares estimates to obtain starting

values. For example, if one needs a starting value for the fixed intercept parameter in a

simple linear regression problem, separate simple linear regressions can be fit for each profile

via LS. Then the average of the individual profile intercepts will serve as a good starting

value for the overall intercept parameter. For the simulation studies that we performed in

Chapter 5, starting values were not needed when considering in-control data because the

frequency of non-convergence was low. However, starting values were needed when some of

the data are out of control. For our purposes, it was not feasible to consider graphical or

other methods to determine different starting values for each randomly generated dataset.

To overcome the infeasibility in situations where the non-convergence was more likely to

be present, we used in our simulations the known parameter values used to generate the data

as starting values of the iterative algorithm as was done by Hartford and Davidian (2000)

for nonlinear models. This reduces the frequency of non-convergence just as would occur if

a knowledgeable researcher were to spend a sufficient amount of time exploring, cleaning,

and appropriately analyzing a single dataset.

4.8 Residuals

As noted by Verbke and Molenberghs (2000, p. 151), it is not obvious which residuals to use

in order to assess goodness of fit or detect outliers in the LMM. Because Xiβ̂MIX represents

the overall profile, we have yi − Xiβ̂MIX representing the deviations of the observed data

from the estimated population average (PA) profile. We denote these deviations (residuals)
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by the term “PA residuals”. The estimated random effects can also be thought of as a type

of residual and are equal to the PA residual pre-multiplied by a matrix as shown in (4.8).

Thus Zib̂i represents the deviations of the subject specific (SS) profiles from the PA profile.

Finally, the SS residuals, given by yi −Xiβ̂MIX −Zib̂i, represent the vector of deviations of

the observed data from their corresponding SS profile. The relationship between the random

effects, SS and PA residuals for linear profiles is shown in Figure 4.2.

Figure 4.2: Diagram illustrating the PA and SS profiles along with the random effects, PA
and SS residuals.

To determine if profiles are outlying, the random effects could be used. However, because

of the shrinkage that was mentioned in the previous section, the estimated random effects

can be conservative. Because our focus is determination of outlying profiles, our methods

will be based on the estimated random effects. We do not believe this will negatively impact

our results because our method will take into account the reduced variability of b̂i.
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To determine if observations within a profile are outliers, the SS residuals have been

recommended by Verbeke and Molenberghs (2000, pp. 151-152). Alternative methods will

be discussed in Section 4.10.

4.9 Checks of Goodness of Fit and Model Assumptions

When a parametric model is fit to profile data, it is important to know if the model fits the

data well and if the model assumptions are met. For example, Copt and Victoria-Feser (2006)

noted that ML and REML is not robust to departures from the assumption of normality

of the response variable. If the model fits well and the assumptions are adequately met,

then the parameter estimates obtained will be a good representation of the profile and the

estimates can then be used to determine if the Phase I data are in control. Goodness-of-fit

techniques and other checks of the model assumptions for the LMM such as those discussed

in Verbeke and Molenberghs (2000, Chapter 4) and Demidenko (2004) can be used. If there

is a not a good fit of the LMM to the data, then determining which profiles are outlying

is at best a risky activity and should be used with caution. Previous literature on profile

monitoring has has assumed that the right model has been fit to the data and not considered

that the choice of model may be incorrect.

4.9.1 Goodness of Fit

Verbeke and Molenberghs (2000, Section 4.3) proposed to assess the goodness of fit for LMM

by calculating a coefficient of multiple determination for each profile, denoted by R2

i . They

also noted that when the number of observations per profile is small, the R2

i values will be

very high. In fact, when the number of observations per profile is 2, then R2

i = 1. As a
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result, they recommended the use of scatterplots of R2

i vs. n to account for the number of

observations per profile. An overall measure of goodness of fit can be obtained by combining

the information from the individual profiles.

Xu (2003) proposed several R2 like measures to measure the amount of variation explained

by the LMM when the errors are uncorrelated. These measures focus on the amount of

variation explained by the SS curve and are based on the SS residuals rather than the PA

residuals. The emphasis here is to obtain and overall measure of fit for prediction purposes

rather than goodness of fit of the individual profiles.

4.9.2 Existence of Random Effects

Demidenko (2004, Section 3.5) proposed a hypothesis test of H0 : D = 0 as a prior check to

see if it is necessary to model the random effects. A likelihood ratio test (LRT) is proposed,

however it is noted that the value of the null hypothesis lies on the boundary of the parameter

space. Thus the LRT statistic does not necessarily have a χ2 distribution but modification

of the test is discussed by Demidenko (2004, Section 3.5).

4.9.3 Normality of Random Effects

A check of the assumption of normally distributed random effects can be done by plotting a

histogram of the estimated random effects, but this check will be misleading because of the

shrinkage that occurs (Verbeke and Lessafre, 1996; Verbeke and Molenberghs, 2000, Section

7.8). Similarly misleading are the normal probability plot and scatter plot of random effects

that were proposed by Pinheiro and Bates (2000, Section 4.3.2).

Zeger, Liang, and Albert (1988) determined that to get consistent inference for fixed
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effects of the LMM, correct specification of the random effects distribution is not required.

Only correct specification of the mean structure is required. However correct specification

of the mean structure and the random effects distribution is required to ensure that the

standard errors of the estimators are appropriate.

Lange and Ryan (1989) proposed to assess the normality of the random effects distribution

through a weighted normal probability plot of the random effects. Ritz (2004) used the

results of Lange and Ryan (1989) to derive a goodness of fit test to check the assumption

that the blups are normally distributed. This is an overall test of normality and does not

show whether or not individual profiles have been fit well by the LMM.

An early study by Butler and Louis (1992) found that the misspecification of the random

effects distribution in linear mixed models does not adversely impact the inferences of fixed

effects. Inferences on the fixed effects were found to be similar across different methods of

obtaining those effects such as ordinary least squares (OLS), REML, or a non-parametric

maximum likelihood procedure.

A similar conclusion was found by Verbeke and Lesaffre (1997a). They showed that

the fixed effects and the covariance parameter estimators are consistent and asymptotically

normally distributed when obtained via ML under the assumption of normality of the random

effects. Consistency and asymptotic normality holds even when the random effects are

not normally distributed. Their results are an extension of classical maximum likelihood

theory which says that the maximum likelihood estimators are asymptotically normal as

the distribution (and hence the likelihood) is correctly specified. However, their results

showed that the rate of convergence does depend on the correctness of the assumed random

effects distribution. Thus a nearly correct specification of the random effects distribution

for a given sample size will be closer to the asymptotic normal distribution than a poorly
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specified distribution. When the assumption of normality of the random effects is not a

viable assumption, Verbeke and Lesaffre (1997a) recommended use of a robust sandwich

type estimator in order to obtain better estimators of the standard errors for the fixed

effects and components of the variance-covariance matrix.

In contrast, the estimators of the random effects are sensitive to their assumed distribution

of random effects as discussed in Verbeke and Molenberghs (2000, Section 7.8.2). Thus a

check of the normality assumption of the random effects distribution is recommended. If the

normality assumption is not tenable an alternative method is to model the random effects

distribution as a mixture of normal distributions (See Verbeke and Lesaffre, 1996 or Verbeke

and Lessafre, 1997b for more details).

4.9.4 Normality of Errors

Pinheiro and Bates (2000, Section 4.3.1) checked the assumption of normally distributed

errors with mean zero and the variance equal to σ2 for the LMM. To do so, they utilized the

“within-group residuals” which are equivalent to our SS residuals. They considered various

graphical methods such as boxplots of the residuals by profile, a scatterplot of residuals

versus the fitted values, and normal probability plots of the residuals. Their approach is

very similar to the classical approach of regression residual diagnostics.

Jiang (2001) proposed a goodness of fit to check the distributional assumption of either the

random effects or the errors. It would be more difficult to implement in practice because it

would have to be implemented using Monte Carlo (MC) methods. In addition, the simulation

study presented is limited because of its focus on the situation where there are small numbers

of observations per profile.
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Houseman, Ryan, and Coull (2004) proposed to assess the assumption of normally dis-

tributed errors via graphical methods. They noted that the approach of Pinheiro and Bates

(2000) can be misleading because of the shrinkage of the estimated random effects. House-

man, Ryan, and Coull (2004) proposed to rotate the PA residuals (yi−Xiβ̂) by premultiply-

ing them by the Cholesky decomposition of the inverse of the estimated variance-covariance

matrix. The rotated residuals can then be displayed on a Q-Q plot to determine normality.

4.9.5 Presence of Correlation

Dawson, Gennings, and Carter (1997) proposed graphical methods to determine the appro-

priate structure of the covariance matrix of errors for the LMM. After centering and scaling

the data, they created a draftman’s display and a parallel axis plot, which are complementary

plots to determine the amount of correlation between successive observations and whether

or not that amount is constant. Dawson, Gennings, and Carter (1997) also gave examples

of the appearance of the two plots for independent data as well as data that follows an AR

or CS structure. The two plots give similar results and while these plots appear to be easily

interpretable for smaller dimensions, they get more unwieldy as p increases.

Demidenko (2004, Section 4.3.4) proposed a LRT to test if the autocorrelation of within

profile measurements is zero. A LMM with uncorrelated errors (i.e. Ri = σ2I) is nested

within a LMM with an AR(1) error structure. Thus, both models can be fit and the difference

in the likelihoods forms the basis of the LRT test. Demidenko (2004, Section 4.3.4) shows

an example of this test and found that when the autocorrelation is small, little difference

will exist for the estimates obtained by modeling the autocorrelation versus ignoring the

autocorrelation. Chi and Reinsel (1989) proposed a score test of correlation of the errors.
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4.10 Diagnostics in LMM

Diagnostic methods to detect outliers and influential points have been proposed in LMM but

they are not well developed. The need for better or more utilized diagnostics for models with

random effects and/or correlated errors has been noted by a number of authors, including,

Ghosh and Rao (1994), Verbeke and Molenberghs (2000), Tan, Ouwens, and Berger (2001),

Houseman, Ryan, and Coull (2004) and Haslett and Dillane (2004). Diagnostic methods

are needed to detect outlying profiles as well as outlying observations within profiles. The

goodness-of-fit methods discussed in the previous section are more appropriate for deter-

mining if observations within a profile are similar to each other and well described by the

selected model. Our focus is determining outlying profiles rather than observations within a

profile. As noted by Langford and Lewis (1998), once the outlying profile is determined, it

can be examined for outlying observations.

There is a wide variety of methods for determining outlying profiles in LMM. In our review

of the diagnostic methods for LMM, we found four methods for determining influential

or outlying data in the LMM which we label the case deletion approach, local influence

approach, bootstrap approach, and the distance approach.

Banerjee and Frees (1997) extended the case deletion diagnostic approach for linear re-

gression (Cook, 1977) to the LMM. While this extension does not allow for complete deletion

of a subject, it does allow for determination of the partial influence of a subject on the esti-

mated parameters. The measure of partial influence on the fixed parameter estimates defined

by Banerjee and Frees (1997, equation 11) is a distance measure and will have a similar form

as our T 2 statistic to be shown later in (5.2) and (5.5). Tan, Ouwens, and Berger (2001)

considered a Cook’s distance measure for the LMM and found that it does not work well in

determining the correct outlying profile. Thus they proposed that Cook’s distance be calcu-
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lated conditional on the obtained random effects and showed that the modification improves

the effectiveness of the measure.

Alternatively, Demidenko and Stukel (2005) developed methods of detecting influential

profiles and/or outliers by deriving a form of leverage and Cook’s distance measures for

the LMM. While these measures could be computationally difficult, Demidenko and Stukel

(2005) showed how the measures can be more easily computed with an updating formula if

the variance-covariance matrix of the random effects were known. If the variance-covariance

matrix is not known, it can be replaced by its estimate obtained via ML. Asymptotic results

ensure that the diagnostic measures will still work well as long as the number of profiles

is sufficiently large. Once the influential profiles are identified, they can be examined for

influential observations within the profiles.

The local influence approach was proposed by Lesaffre and Verbeke (1998) and is the

extension of ideas from Cook (1986) to the LMM. A local influence approach gives weights

to each profile and determines the change in parameter estimates as the weights change.

In contrast, a global influence approach corresponds to a method that completely removes

an outlier to determine its effect, as is the case for many case deletion schemes. The local

influence measure reflects how much the log likelihood changes due to a particular profile.

It also has the advantage of being decomposable into interpretable components. These

components relate the influential point to how well it is predicted by the model, how well

the covariance structure is model, the size of the random effects, or how large the PA residuals

are. A case study of the local influence approach can be found in Lesaffre, Asefa, and Verbeke

(1999).

A parametric bootstrap approach was proposed by Longford (2001). Once the model has

been fit to the real data, simulated datasets based on the model fit were generated and a
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comparison is made of the real dataset to the simulated datasets. If the real dataset is not fit

well by the model, then it will stand out when compared to the simulated datasets. Longford

(2001) proposed to do this with a global influence approach where a LRT statistic is used

to assess outlying profiles. However, like other one-at-a-time deletion schemes this approach

will not work well when multiple outliers are similar to each other and mask each other.

The final approach determines outlying profiles based on the distance of the estimated

parameter vector from the center of the group of estimated parameter vectors. It was used

by Waternaux, Laird, and Ware (1989), who proposed detecting outlying profiles by using

the Mahalanobis distances of the eblups. They proposed to calculate

T 2

varbi,i = b̂i
′V ar(b̂i − bi) b̂i for i = 1, 2, . . . ,m, (4.15)

where V ar(b̂i − bi) is calculated from the expression in Harville (1976) or Laird and Ware

(1982). Waternaux, Laird, and Ware (1989) proposed to use a Q-Q plot of the values for

T 2

varbi,i to detect outliers. We calculate the Mahalanobis distance as in (4.15) with different

estimators of the variance-covariance matrix. We will evaluate the method of Waternaux,

Laird, and Ware (1989) in our simulation studies of Chapter 5 to determine its efficacy.
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