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ATPG-based Preimage Computation: Efficient Search

Space Pruning using ZBDD

Kameshwar Chandrasekar

Abstract

Preimage Computation is a fundamental step in Formal Verification of VLSI designs. Con-

ventional OBDD-based methods for Formal Verification suffer from spatial explosion, since

large designs can blow up in terms of memory. On the other hand, SAT/ATPG based meth-

ods are less demanding on memory. But the run-time can be huge for these methods, since

they must explore an exponential search space. In order to reduce this temporal explosion of

SAT/ATPG based methods, efficient learning techniques are needed.

Conventional ATPG aims at computing a single solution for its objective. In preimage com-

putation, we must enumerate all solutions for the target state during the search. Similar

sub-problems often occur during preimage computation that can be identified by the internal

state of the circuit. Therefore, it is highly desirable to learn from these search-states and

avoid repeated search of identical solution/conflict subspaces, for better performance.

In this thesis, we present a new ZBDD based method to compactly store and efficiently search

previously explored search-states. We learn from these search-states and avoid repeating sub-

sets and supersets of previously encountered search spaces. Both solution and conflict sub-

spaces are pruned based on simple set operations using ZBDDs. We integrate our techniques

into a PODEM based ATPG engine and demonstrate their efficiency on ISCAS ’89 bench-

mark circuits. Experimental results show that upto 90% of the search-space is pruned due

to the proposed techniques and we are able to compute preimages for target states where a

state-of-the-art technique fails.
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Chapter 1

Introduction

Growing advances in VLSI technology have lead to an increased complexity in hardware

systems. It is imperative to verify the correctness of these systems right at the design stage.

Bugs in a design that are not discovered in early stages can be extremely expensive to correct

later. The complexity of large designs poses serious challenges to the verification community.

1.1 Design Verification

Design verification is the process of checking if a design implementation conforms to its

specifications of functionality, timing, testability and power dissipation. In [1], functional

verification methods are classified into three categories:

1. Software Simulation

2. Hardware Emulation

3. Formal Verification

1
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Software Simulation has traditionally been used to verify the correct operation of designs.

Since it is not practically feasible to simulate all possible input patterns, an intelligent subset

of test patterns is simulated. Although simulation based methods account for most of the

design errors, they may potentially miss some of the corner-case errors. They are incomplete

since all the test patterns are not simulated.

Hardware Emulation uses Field Programmable Gate Array (FPGA) chips to speed up the

verification process by several orders of magnitude. However, hardware emulators are ex-

pensive and it is time-consuming to map the design to an emulator.

Recently, Formal Methods are gaining importance for verifying hardware correctness. Formal

Methods refer to the application of mathematical reasoning for verification of VLSI circuits

that are considered as Finite State Machines (FSM). Correctness of hardware systems that

are formally verified hold for all input patterns. A wide variety of formal methods have been

proposed for design verification. Two methods that have recieved significant attention are

Equivalence Checking and Model Checking.

• Equivalence Checking: This method aims at checking the equivalence of two designs at

the same or different levels of abstraction, in the design process. To verify the equiva-

lence of two sequential circuits, a miter circuit of the specification and implementation

is formed as shown in Figure 1.1. The corresponding input pairs of the two circuits are

connected together and the output pairs are fed into an XOR gate. The equivalence

of the two circuits can be asserted if the primary output response of the miter circuit

is tautology ‘0’ for any input vector and reachable state. In order to compute the set

of reachable states, Finite State Machine Traversal is performed prior to equivalence

checking.

• Model Checking: Model Checking verifies if a circuit satisfies certain properties or

not. The design specification is modeled as a temporal logical formula, while the
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Specification

Implementation

Inputs
flip−flops

flip−flops

O2

O1

Tautology ’0’?

Figure 1.1: Miter Circuit for Equivalence Checking

implementation is described as a Finite State Machine. Model Checking requires to

verify if a specific property holds in the different states of circuit. This in turn requires

FSM traversal to compute the set of reachable states.

1.2 FSM Traversal

Formal Verification relies on FSM Traversal for both Equivalence Checking and Model Check-

ing. FSM Traversal aims at computing the set of reachable states, starting from a given initial

state for the Finite State Machine. In earlier methods for Formal Verification, the FSM was

explicitly represented as a State Transition Graph (STG). Given a State Transition Graph

for an FSM, the complete set of reachable states can be computed by traversing the STG

in a breadth first or depth first manner. For the STG shown in Figure 1.2, FSM traversal
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Table 1.1: Fixed Point Iteration for Reachable states of FSM Traversal

Iteration States Reached

0. {S0}

1. {S0, S1, S2}

2. {S0, S1, S2, S3, S4, S5}

3. {S0, S1, S2, S3, S4, S5, S6}

4. {S0, S1, S2, S3, S4, S5, S6}

is performed explicitly as shown in Table 1.1. For large number of states, it is difficult to

manage an STG and explicit traversal becomes time-consuming.

S0

S2

S1

S3

S4

S5

S6

Initial State

Figure 1.2: Explicit Method for State Space Traversal

Symbolic methods are proposed as an alternative to explicit methods. The FSM and the

states are represented by logical formulas in these methods. The Transition Relation (T),

present states (X) and next states (Y) that represent the FSM are graphically shown in Figure

1.3. The image/preimage for a set of states are computed by Existential Quantification of

the Transition Relation, with respect to the state variables.
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Transition Relation
T(X, Y)X

Previous
States

Next
States

Y

Figure 1.3: Symbolic Method for State Space Traversal

1.2.1 Image Computation

Given an initial state I(X) and a Transition Relation (T) for an FSM, computation of the

set of next states is called image computation. Image computation is performed iteratively

till a fixed point is reached to compute all the reachable states. The complete image set for

FSM traversal, shown in Table 1.1, is computed using symbolic methods as shown in Figure

1.4. The image set computed for one-iteration becomes present states for the next iteration.

In this way, the next-states are computed iteratively to obtain the complete set of reachable

states.

Mathematically,

Image(Y ) = ∃xT (X, Y ).I(X)

where,

• X represents initial state elements

• Y represents next state elements
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• I(X) is the set of initial states

• T(X,Y) is the Transition Relation

S0

S2

S1
S3

S4

S5

S6

Initial State: S0

Figure 1.4: FSM Traversal - Image Computation

For Equivalence Checking, it is verified that the miter output is always ‘0’ for all combinations

of input vectors starting from the given initial state. For Model Checking, it is verified if the

given property is satisified in the reachable states, depending on the nature of the property.

1.2.2 Preimage Computation

Preimage Computation is the problem of finding the set of all previous states (X) that

can reach a given set of target states (Y). In a sequential circuit, the flip flops are the state

elements and the circuit represents the Transition Relation (T). The graphical representation

of the problem is shown in Figure 1.5. Considering S6 as the target state for the STG in

Figure 1.2, preimage computation is performed iteratively till a fixed point is reached.

The mathematical formulation of the problem is,
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Preimage(X) = ∃yT (X, Y ).I(Y )

where,

• X represents previous state elements

• Y represents next state elements

• I(Y) is the set of target states

• T(X,Y) is the Transition Relation

S6
S3

S5

S2S0

Target State: S6

Figure 1.5: FSM Traversal - Preimage Computation

In Equivalence Checking, the set of preimages are computed with the output of the miter

as ’1’. If no legal states are found in the preimage, then the two circuits are asserted to be

equivalent. For Model Checking, a bad property is asserted as the target state. If no legal

states are found, then the property is satisfied.

In this work, we focus on preimage computation for a gate-level abstraction of the circuit.
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1.3 Previous Work

Symbolic methods based on Reduced Ordered Binary Decision Diagrams (ROBDD) have

widely been used for image and preimage computation. In these methods, the Transition

Relation and the set of states are represented as an ROBDD. Existential Quantification is

performed as a Boolean operation and the preimage is coherently represented as another

ROBDD. However, ROBDD cannot be constructed for Transition Relation of larger circuits

due to the memory explosion problem. These methods are suitable only for small and medium

sized circuits. In [2, 3], partitioned ROBDDs were introduced to represent the Transition

Relation for larger circuits. However, these methods also suffer from peak-memory explosion

problem during existential quantification.

To avoid the memory explosion problem of ROBDDs, alternate techniques were explored.

A Reduced Boolean circuit (RBC) to represent the Transition Relation is proposed in [4]

and certain rules for efficient variable quantification are provided for the RBC. However,

the quantification rules are applicable only for specific formula structures. In the worst

case, they do quantification ∃xf(X) by generating two formulas, fx and fx and taking the

disjunction of the two. The length of these formulas can increase exponentially as well. In

[5], the Transition Relation is represented as a Boolean Expression Diagram (BED). The

quantification procedure in their work is also specific to the structure of formulas.

Recently, SAT/ATPG based methods are gaining importance in formal verification. Com-

pared to OBDD, SAT/ATPG trades off time with space. In SAT based methods, the Transi-

tion Relation is represented in Conjunctive Normal Form (CNF). Existential Quantification

is performed by invoking a SAT solver and finding all the satisfying assignments for the

CNF. SAT methods were integrated with ROBDDs in [6]. The Transition Relation is rep-

resentated as a CNF and the set of states are represented by BDD. A SAT solver performs
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high-level decomposition of the search-space and BDD is used to compute all solutions below

intermediate points in SAT decision tree. This method still falls into the framework of par-

titioned BDDs. McMillan showed that pure SAT based methods are suitable for Unbounded

Model Checking, in [7]. The efficiency of these methods lies in learning from the satisfy-

ing assignments and conflicts encountered during the search. On the other hand, structural

information added to pure SAT based methods showed significant results for image computa-

tion in [8]. The structure of the circuit guides the decision engine of SAT to make intelligent

decisions and avoids unnecessary variable-assignments.

In ATPG based methods, the Transition Relation is represented by a levelized circuit. Exis-

tential Quantification is performed by finding all solutions that can justify the target state.

The set of all solutions forms the complete preimage, at the end. In [9], the authors show

that ATPG based techniques outperform SAT, when considering very large designs over

multiple timeframes, for Bounded Model Checking. The structural information is already

available to an ATPG engine and the decisions are made, based on a simple backtrace [10]

algorithm. In SAT/ATPG based techniques, learning plays a very important role to prune

the search-space. The knowledge can be in the form of implications [11], assertions [12] or

conflict clauses [13, 14, 15]. In [16], the authors show that SAT based methods are more

suitable for conflict analysis and conventional conflict-driven learning in ATPG is compli-

cated. Efficient learning techniques and manipulation of knowledge, is required to reduce

the overhead in storing and using the knowledge base.

In [17], ’Success-driven learning’ efficiently prunes the search-space for ‘ATPG based preim-

age computation’, based on identical solution-subspaces. After each decision, an internal

cut-set of the circuit is identified as a search-state. Equivalent search-states that lead to the

same solution subspace are identified to avoid exploring the same search-space again. The

Decision Tree obtained during solution-search is stored as a BDD that represents the com-

plete preimage set. Since solution subspaces heavily overlap during preimage computation,
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considerable savings is obtained in terms of time and memory.

1.4 Contribution

In this work, we explore ATPG based preimage computation and present efficient learning

techniques to prune the search-space. The Transition Relation is represented as a levelized

sequential circuit. Existential Quantification is performed by invoking a PODEM-based

ATPG algorithm to find all solutions that justify the target state. The Decision Tree obtained

during the search is stored as a Free BDD to represent the complete preimage set at the

end. We present learning techniques, based on the state of the circuit after each decision, to

facilitate faster Existential Quantification and sharing of subspaces in the Decision Tree.

The contribution of this thesis is three-fold:

1. We identify partially-equivalent search-states as soon as possible during the search

process and assign necessary additional input values to quickly reach the equivalent

search-state.

2. As a dual of pruning solution subspaces, we employ search-state based conflict driven

learning to prune the conflict subspaces of the Decision Tree.

3. A Novel ZBDD based method is proposed for compact storage of search-states and to

manipulate them, for efficient search-space pruning.

1.5 Thesis Organization

The rest of the thesis is organized as follows.
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• Chapter 2 introduces the preliminary concepts and the terms used in the sequel.

• Chapter 3 describes the concept of ‘Augmented Success Driven Learning’ that is used

to learn from previous solutions obtained during ATPG.

• Chapter 4 explains the concept of ‘Search State based Conflict Driven Learning’ that

is used to learn from conflict subspaces of the search-space.

• Chapter 5 integrates success-driven and conflict-driven approaches and shows signifi-

cant search-space pruning for preimage computation.

• Chapter 6 concludes the thesis with a few recommendations for future work.



Chapter 2

Background

Symbolic methods to solve the problem of preimage computation include Reduced Ordered

Binary Decision Diagrams (ROBDD), Satisfiability (SAT) and Automatic Test Pattern Gen-

eration (ATPG). We focus on ATPG based preimage computation. For a detailed introduc-

tion to ROBBD and SAT based methods, the reader is referred to [18, 19, 20, 7, 21]. In this

Chapter, we present the background pertaining to ATPG and our work. The basics of ATPG

based preimage computation are explained. We describe Success Driven Learning for efficient

preimage computation [17]. The technical terms used to explain the rest of the thesis are

introduced. Finally, a brief overview on Zero-Suppressed Binary Decision Diagrams (ZBDD)

is presented.

2.1 ATPG based preimage computation

An ATPG algorithm implicitly explores the entire search-space to generate a solution. For

preimage computation, after a solution is found we must backtrack and search for the next

solution. Each decision is considered a node in the Decision Tree and the entire search-

12
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space is explored incrementally, to find all solutions. The solution set forms the complete

preimage at the end. Efficient learning techniques help to prune the search-space and improve

the performance of the ATPG engine. The prototype ATPG algorithm used in this work is

PODEM [10]. A naive PODEM algorithm to compute preimage is shown in Figure 2.1(A).

// step 1. Terminal Conditions
if (objective_satisfied()) {

function preimage() {

update_solution_BDD();

}

if (objective_violated()) return;

imply();
decision_node = backtrace();

imply();
flip_decision(decision_node);

preimage();

preimage();

// step 2. get new decision node

// step 3. explore other branch

return; 

}

dec1

dec2

dec3

dec4

Solution

Conflict

(A) Algorithm (B) Decision Tree

Figure 2.1: Naive Algorithm for Preimage Computation

The target state is the ATPG objective. Decisions are chosen based on a simple backtrace

from the objective. The logic implications of each decision are deduced. If the objective

is satisfied, the input assignments form a solution. The solution is stored and then we

proceed to find the next solution. If the objective is violated, the input assignments form a

conflict. We flip the most recent decision and search for a solution. Otherwise, we decide

on another input and continue the search, until the entire search-space is explored. The

corresponding Decision Tree is shown in Figure 2.1(B). The entire search-space under the

tree is explored to find all the solutions. Conventionally, ATPG performs fault justification

and fault propagation. However, in preimage computation it is sufficient to justify the target

state and we are not concerned with fault propagation phase. Unlike conventional ATPG,
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we backtrack even after a solution is found, as shown in Step 2. In this way, all solutions

are found, which form the complete preimage set at the end. An example is shown in Figure

2.2.

The objective of the ATPG engine is to justify z = 1. We backtrace through gate g and

make a decision d = 1. The logic implications of d = 1, is recorded. Since the objective is

neither satisfied nor violated we continue the search. The search process is tabulated in the

Table in Figure 2.2(B).

a

b

c

d

g

f

h

z

e

(A) Circuit

obj: z=1

Decisions Logic Implications

b = 0
d = 1

a = 1

g = 1
f = 1
e = 1, h = 1, z = 1
Solution found

a = 0 e = 0, h = 0, z = 0
Conflict 

b = 1
.........
.........

.........

.........

(B) ATPG

Figure 2.2: PODEM based ATPG

2.2 Success Driven Learning

Efficient learning techniques are required to speed up ATPG, since it is inherently limited

in time. Conventional learning techniques include implications [11], dependency directed

backtracking [22] and conflict analysis [15]. Certain learning techniques for ATPG like X-

Path check and Unique Point Sensitization are not suitable for preimage computation, since

they are incorporated in the fault propagation phase. Recently, Success Driven Learning has

been proposed for ‘ATPG based preimage computation’, in [17]. A few terms are introduced,
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before explaining the concept of Success Driven Learning.

1. Decision Tree: The Tree obtained by the branch-and-bound procedure of ATPG, with

input assignments as internal decision nodes, is called the Decision Tree. Each node

has two branches. The left and right branches of each decision node represent 1 and 0

input-assignment respectively. Two terminal nodes, TERMINAL-1 and TERMINAL-

0, represent solution assignment and conflict assignment for the corresponding path in

the Decision Tree.

2. Search-State: After each decision, logic simulation of the partial input assignment

forms a decomposition in the circuit. The internal state of the circuit after each input

assignment is considered a search-state in the Decision Tree.

3. Cut-set for search-state: Each search-state can be uniquely represented by a cut-set

of the circuit. A simple backtrace from the ATPG objective can identify this unique

internal circuit state. Essentially, the first frontier of specified nodes, encountered

during backtrace, is the search-state representative.

For a circuit in Figure 2.3(A), a portion of the Decision Tree is shown in Figure 2.3(B).

The sets along the branches (eg. {g} and {g, f, b̄}) are the cut-sets for the correspond-

ing search states. For the last branch (b=0), the cut-set {g, f, b̄} is denoted by the

dotted line in the circuit.

4. solution/conflict branch: A branch in the Decision Tree that has at least-one/no

solution below it.

5. solution/conflict cut-set: A cut-set for the search-state in the solution/conflict

branch.

6. solution/conflict subspace: A search subspace below a solution/conflict branch.
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Figure 2.3: Preliminaries

Solution subspaces heavily overlap during preimage computation. In order to avoid searching

the same solution subspaces again, Success Driven Learning has been introduced. After each

decision, a cut-set for the current branch in the Decision Tree is identified. If a solution is

found below that branch, the corresponding cut-set and the link to branch in Decision Tree

is recorded in a Hash-table. In future, after every decision, the current cut-set is searched

in the Hash-table for equivalence. If we detect a Hash-hit, the corresponding link in the

Decision Tree is connected to the current branch. The Decision Tree forms a BDD that

becomes a complete representation of the preimage, at the end. This technique learns from

solution subspaces and prunes the search-space. An example for Success Driven Learning is

illustrated in Chapter 3, before introducing the idea of Augmented Success Driven Learning.

2.3 Set manipulation using ZBDD

In [23], Minato introduced ZBDDs to efficiently represent sets of combinations. ZBDDs

overcome the spatial explosion problem of ROBDDs and are known for their compact rep-

resentation of sparse sets. In [23], efficient algorithms were also presented to perform set
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operations. Originally, they were used to solve unate covering problems, graph optimization

problems and logic minimization problems. Recently, ZBDD based methods are gaining

importance in SAT-solvers [24, 25] and path delay computation [26] also.

Sets of combinations S = {{a,b}, {a,c}, {c}} are represented in a ZBDD as shown in Figure

2.4(A). Each path from the root to TERMINAL-1 represents a set in the ZBDD. The left

branch represents the 1-edge and the right branch represents the 0-edge for every node. A

1-edge from a node denotes the presence of the element in the set and a 0-edge denotes its

absence in the set. The number of paths from the root to TERMINAL-1 denote the number

of sets stored in the ZBDD. It may be verified that the number of paths from the root to

TERMINAL-1, in Figure 2.4(A) is 3, which is the cardinality of S.

{a, b},
{a, c},
{c}

Sets:

(A) An Example

a

b

c

1 0

(B) Representation of cutsets

01

f

b

g {g},
{g, f, b}

Cut−sets:

Figure 2.4: ZBDD

In our work, we use ZBDDs to store the cut-sets. Logic-0 and Logic-1 values of a gate are

stored using separate variables. The cut-sets are added to the ZBDD using union operation

on sets, based on the algorithm presented in [23]. The ZBDD representation of the cut-sets

obtained in Figure 2.3 is shown in Figure 2.4(B). It may be noted that separate variables

are used to store the positive and negative literals. For instance, b = 0 is represented as b.
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Augmented Success Driven Learning

Solution subspaces heavily overlap during preimage computation. In this Chapter, we intro-

duce the concept of Augmented Success Driven Learning, to learn from solution subspaces

and prune them, based on partially equivalent search-states. A Mutli-Terminal ZBDD (MT-

ZBDD) is used to store the solution cut-sets, obtained during ATPG. A traversal algorithm

is presented to find a superset of the current cut-set, from the MT-ZBDD. Based on the

algorithm, a path to an equivalent search-state is identified earlier in the Decision Tree. The

remaining decision nodes, to reach the equivalent search-state, are identified by a simple

Upward Traversal of the Decision Tree. These inputs are appropriately added to the De-

cision Tree and then the current branch is linked to the solution subspace. Multiple-input

assignment makes use of previously encountered solution subspaces, avoids certain iterations

for the decision engine of ATPG and speeds up preimage computation.

18
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3.1 Basic Idea

Figure 3.1 shows a portion of the Decision Tree for one of the ISCAS ’89 benchmark circuits

obtained by a conventional PODEM algorithm [10], without learning. The nodes represent

the decisions taken by a backtrace algorithm using Distance based Testability Measure. Let

SSx, SSy, SSz represent the cut-sets at the corresponding branches in the Decision Tree,

explored in the order: SSx < SSy < SSz.

SSx{g5,g10,
g12,g21}

Upward
Traversal Multiple−Input

 Assignment

3

4

6

5 7

2

2

7

5

6

4

1 1

conflict subspace

solution subspace

SSx − {g5, g10, g12, g21}

SSy{g12,g21}

g12,g21}
SSz{g5,g10,

SSy − {g12, g21}

SSz − {g5, g10, g12, g21}

Figure 3.1: Decision Tree - Augmented Success Driven Learning

In the Figure 3.1, we see that the solution subspaces below SSx and SSz are identical. This

can be learnt from the corresponding equivalent cut-sets. When SSz is reached, we learn that
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SSz ≡ SSx and the current branch is simply linked to the solution subspace of SSx. This is

the concept of Success Driven Learning, which avoids searching the same solution subspace

again. It is seen that, although we are on a path to an equivalent search-state, we have to

wait for an exact equivalence. However, it is possible to identify partially equivalent cut-sets

and justify the remaining gates to obtain equivalence, based on the following observation.

previous cutset
current cutset

SSx

SSx is a superset of SSy

SSy

Figure 3.2: Relationship among solution cut-sets

Consider SSy as the current cut-set in the Decision Tree shown in Figure 3.1. It may be seen

that SSy is a subset of SSx. The decisions made in between SSy and SSz justify the gates

in the difference of cut-sets (SSx - SSy); i.e. {g5 = 0, g6 = 0} justify {g5 = 0, g10 = 0}. In

Figure 3.2, it is observed that the inputs in the difference of cones (Cone SSx - Cone SSy), can

justify the gates in the difference of cut-sets (SSx - SSy). When SSy is reached, we learn that

assigning {g5 = 0, g6 = 0} leads to an equivalent cut-set, SSx. Multiple-input assignment is

made and the current branch is linked to the solution-subspace of SSx. By forcing multiple-

input assignment, the ATPG makes use of previously encountered solution subspaces. A

path to equivalent solution cut-sets is identified in the Decision Tree and multiple-input

assignment reduces the iterations for backtrace() [10] in ATPG. This effectively speeds up

preimage computation.
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The other branches (i.e. g5 = 1, g6 = 1) of the mutliple-inputs still need to be searched for

potential solutions, since we do not learn anything about those subspaces. This maintains

the completeness of the approach. We call this approach, augmented success-driven learning.

imply();

// step 3. get new decision node
decision_node = backtrace();

imply();

// step 4. explore other branch
flip_decision(decision_node);

// step 5. store search state
if (success_counter() > 0)

update_solution_BDD();
update_success_counter();

// step 1. Terminal Conditions
if (objective_satisfied()) {

}
return;

if (objective_violated()) return;

function preimage() {

preimage();

preimage();

// step 2. reuse knowledge learnt before

if (result == EQUIVALENT) {

update_success_counter();
return;

} else if (result == SUPERSET) {

update_success_counter();

}
return;

}

// contd...

update_sZBDD();

update_solution_BDD();

result = findSupSet_sZBDD(current_cutset));
current_cutset = find_search_state();

update_solution_BDD();

multi_inputs();

Figure 3.3: Algorithm - Augmented Success Driven Learning

The above idea is incorporated into PODEM algorithm as shown in Figure 3.3. It may be

seen that two additional steps - Step 2 and Step 5 - are added to the algorithm. In Step

2, we search for a superset or an equivalent of the current cut-set, in the stored solution

cut-sets. If a superset exists, we find the inputs in the difference of cut-set cones. Then

the multiple-inputs are added to the Decision Tree and the current branch is linked to the

corresponding solution subspace of the superset. If an equivalent is found, we directly link

to the solution subspace and continue to search for the next solution. In Step 5, we store

the solution cut-sets. A counter is defined for every node in recursion to keep track of the
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number of solutions below the current node. If the counter is greater than zero, then we

store the current cut-set.

3.2 Solution-ZBDD

The cut-sets in the solution branches of the Decision tree are stored in a Multi-Terminal

ZBDD called the solution-ZBDD(sZBDD). The links to the solution subspaces are stored

as the Terminal Nodes. The number of paths in the ZBDD corresponds to the number of

solution cut-sets in the Decision Tree.

{a}
{a, b, c}

Stored Cutsets:

0

a

b

c

T1 T2

2

1

0

(B) Solution ZBDD

int gate_id;

typedef struct _ZBDD_SNODE {

_ZBDD_SNODE * highNodePtr;
_ZBDD_SNODE * lowNodePtr;
int max_gates_below;

} ZBDD_SNODE;

(A) Solution ZBDD Node

Figure 3.4: Solution-ZBDD Node

A solution-ZBDD node is defined as shown in Figure 3.4(A). The first member in the node

refers to a gate in the cut-set. The second and third members are links to the children of

the node. The last member identifies the ’maximum number of included nodes’, below this

node, of all the paths that lead to a NON-ZERO terminal. For instance, in Figure 3.4(B),

max spec below for every node is shown. This field is updated when a new cut-set is added

to the solution-ZBDD. It may be noted that the number specifies only the nodes whose

1-edge leads to a non-zero terminal.
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3.2.1 Storing Solution Cutsets

A cut-set is added to the ZBDD by union operation on sets. A ZBDD is built for the cut-set

to be added. An algorithm to perform union operation between two ZBDDs is presented in

Figure 3.5.

function recursive_union(node1, node2){

// Step 1. Terminal conditions
if ((node1 == node2)  || (node1 == TERMINAL_0)

return node2;

return node1;
if (node2 == TERMINAL_0)

// Step 2. Perform recursive union based on ZBDD order
if (node1−>gate_id < node2−>gate_id){

else if (node1−>gate_id > node2−>gate_id){

lowNodePtr = recursive_union(node1−>lowNodePtr, node2);

return (index, highNodePtr, lowNodePtr, max_spec_below);

index = node1−>gate_id;
highNodePtr = node1−>highNodePtr;

max_spec_below = max(node1−>max_spec_below, node2−>max_spec_below);

index = node1−>gate_id;

} else {

return (index, highNodePtr, lowNodePtr, max_spec_below);
max_spec_below = max(node1−>max_spec_below, node2−>max_spec_below);
lowNodePtr = recursive_union(node1, node2−>lowNodePtr);
highNodePtr = node2−>highNodePtr;
index = node1−>gate_id;

max_spec_below = max(node1−>max_spec_below, node2−>max_spec_below);
return (index, highNodePtr, lowNodePtr, max_spec_below);

highNodePtr = recursive_union(node1−>highNodePtr, node2−>highNodePtr);
lowNodePtr = recursive_union(node1−>lowNodePtr, node2−>lowNodePtr);

}

}

// Recursive union

// Add a cutset to the solution−ZBDD

// Step1. Convert the current cutset to ZBDD form
curr_root = getZBDD(cutset);

// Step 2. Add the cutset ZBDD to solutionZBDD
return (recursive_union(curr_root, ZBDD_root));

}

function update_sZBDD(curr_cutset){

Figure 3.5: Algorithm to add solution cut-sets



Chapter 3. Augmented Success Driven Learning 24

3.2.2 Search for Supersets

As explained in section 3.1, we search for a superset in the set of solution cut-sets, at every

branch of the Decision Tree. This search is performed by a simple traversal of the solution-

ZBDD, as shown in the algorithm in Figure 3.6.

// The ZBDD and the cutset are in the same order

cs_ind=0; global_counter=0;

if(global_counter==0)
return EQUIVALENCE;

else
return SUPERSET;

}

if(link != 0){

}else

// Step 1. Search the ZBDD

// Step 2. Identify Equivalence or superset

// cs − cutset

num_csNodes=length(curr_cutset);

link = search_sZBDD(root, cs_ind);

return 0;

return link;

return 0;

return 0;
if (curr_node−>max_gates_below < num_csNodes−cs_ind)

// Step 1. Terminal conditions

if (curr_node==TERMINAL_0 || curr_node==TERMINAL_NZ)

if (cs_index>=num_csNodes && curr_node==TERMINAL_NZ)

return 0;

}

// Step 2. Traversal

return link;
−−cs_index;
return 0;

// This node exists in the cutset

}

global_counter−−;
return link;

global_counter++;
return link;

// This node does not exist in the cutset

if (curr_node−>gate_id < cutset[cs_ind])

function search_sZBDD(curr_node, cs_ind) {

if (curr_node−>gate_id == cutset[cs_ind]){

}else{

if ((link=search_sZBDD(curr_node−>highNodePtr, ++cs_ind)>0)

if ((link=search_sZBDD(curr_node−>lowNodePtr, cs_ind)>0)

if ((link=search_sZBDD(curr_node−>highNodePtr, cs_ind)>0)

function findSupSet_sZBDD(curr_cutset) {

Figure 3.6: Algorithm to search for a superset

Efficient heuristics are incorporated in the algorithm to find a super-set earlier, based on the

following facts:

• The ZBDD is ordered and we can search for the elements in the cut-set one by one, by

traversal.
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• If a node exists in the current set, only the 1-branch of the node needs to be searched.

• If a node does not exist in the current set, both the branches of the node needs to be

searched. The 0-branch of the node is traversed first. This gives preference to exact

matches over super-sets.

• If all elements in the cut-set are exhausted, it means that a superset exists and we tra-

verse to the nearest NON-ZERO TERMINAL and return the solution subspace-link.

• If ’max spec below’ of a ZBDD node is less than the number of remaining nodes in the

current set, no super-set exists below the current searching node. This step helps to

avoid traversing a large number of cut-sets and hence the worst-case complexity.

An equivalent cut-set or superset is distinguished by using a global counter during traversal.

If we traverse the 1-branch of any ZBDD node that is not in the current cut-set, the counter

is incremented as shown in Step 2 of the algorithm. The counter is decremented if both

branches of that node is searched. At the end of a successful search, if the counter value is

greater than zero, then it denotes superset; otherwise it denotes an equivalent set.

3.2.3 Multiple Input Assignment

When a superset of the current cut-set exists in the solution-ZBDD, search sZBDD() traverses

the smallest possible superset and returns the link to the solution subspace. The inputs

required to justify the gates in the difference of cut-sets need to be identifed. They can lead

to an equivalent cut-set and facilitate sharing of solution subspaces.
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We know that the superset is justified by the decisions above the corresponding search-space

in the Decision Tree. An upward traversal in the Decision Tree can identify these inputs.

However, some of these inputs lie inside the cut-set cone of the current branch. These inputs

are blocked by the current cut-set and may potentially justify a few gates in the current cut-

set. The cut-sets at every decision branch are identified using a simple backtrace algorithm

as explained in Chapter 2. Simultaneously, the unassigned inputs outside the cut-set cone

are marked in the circuit. During upward traversal, only the marked inputs are chosen for

multiple-assignment. These inputs are guaranteed to justify the gates in the difference of

two cut-sets and lead to the equivalent search-state. It may be noted that the chosen inputs

lie in the difference of the two cutset-cones.

3.2.4 Order of Multiple-input Assignment

For Multiple-Input Assignment in Figure 3.1 at SSy, (x5 = 0 and x6 = 0) need to be

assigned. Figure 3.7 shows the Decision Tree fragments for the two possible input-orders. It

is seen that the number of backtracks and number of nodes depend on the order of input

assignments. This is analogous to the size of a BDD depending on the order of its variables.

In most cases, multiple input-assignment in the same order as before gives good results, since

it was previously determined by PODEM.

5

6

N2 C N3

6

55

N2 C N2 N3

(A) Order: {5, 6} (B): Order: {6, 5}

Figure 3.7: Order of Multiple Input Assignment
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3.2.5 Choice of Parents

The Decision Tree becomes a Directed Acyclic Graph (DAG) due to sharing of equivalent

solution subspaces. All parents of a node have a link to that node. All parents that share

the same solution subspace have equivalent cut-sets. During upward traversal of the Decision

Tree, we can traverse any one of the parents, to find multiple inputs. So, it is sufficient to

store any one parent in each node. A typical Decision Tree is shown in Figure 3.8. It may

be seen that cut-sets SSb and SSc share the same solution subspace.

a

b

e h

d
k

e

k

f

l
SSc

Common
Inputs

Solution Subspace

Conflict Subspace

SSb
SSa

Figure 3.8: Choice of Parents

It is desirable to choose a parent that leads to lesser number of input assignments during

upward traversal. This will help to reach the equivalent search-state faster than other parents.

In the current branch, the most recent parent of the solution subspace is most likely to have

maximum number of decisions common with the current search-state, due to the nature
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of branching. Consequently, this will lead to a minimal number of multiple-inputs during

upward-traversal. Based on this fact, only the most recent Parent, is stored in each of the

Decision Tree nodes.

Consider the Decision Tree in Figure 3.8. Let the search-states SSa, SSb, SSc be explored in

the order SSc < SSb < SSa and SSb ≡ SSc. Our current state is at SSa and we obtained

a superset match with SSb and SSc. It is seen that SSa has more Decision Tree nodes in

common with SSb than SSc. If we choose SSb over SSc, then only a few inputs need to be

assigned, since a major part of the Decision Tree is common for SSb and SSa. Since this

situation is more likely to occur, we store only the recent parent in the Decision Tree Node

for upward traversal.

3.2.6 Algorithm Complexity

The worst-case complexity of the proposed algorithm is 2n−k + k, where

• k is the number of elements in the current cut-set and

• n is the maximum depth of the ZBDD.

The maximum depth of the ZBDD corresponds to the longest solution cut-set obtained so

far, depending on the ZBDD variable order. Experiments show that the length of cut-sets

are very small compared to the number of gates in the circuit. Efficient heuristics help to

avoid a large number of cut-sets and identify the superset earlier during the search.
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3.3 Solution Explosion

For large designs, huge number of states are obtained that can reach the target state in one

or more transitions. It becomes difficult to represent the complete preimage as an array

of states, since the array may become very huge. Conventional ROBDDs potentially suffer

from the Memory explosion problem. The problem of representing the set of preimage states

in a compact data-structure is called Solution Explosion problem.

In our method, we represent the Decision Tree as a free BDD that represents the complete

preimage set. Due to sharing of solution subspaces, it becomes a compact representation

for the set of states. On the other hand, Augmented Success Driven Learning further forces

the ATPG engine to make use of previously explored solution subspaces. As a result, more

solution subspaces are shared that facilitate the storage of states in a more compact structure.

Thus our technique inherently addresses the Solution Explosion problem to represent the

complete preimage set. In some cases, the number of solutions found by our technique may

exceed the number of solutions found by Success driven learning alone. However, the number

of equivalent/superset solution subspaces indicate better sharing of nodes and lesser number

of nodes to store the complete preimage set.

3.4 Experimental Results

The above technique is integrated into the conventional PODEM algorithm and implemented

in C++. Simliarly, Success Driven Learning alone is implemented in PODEM algorithm. A

backtrack limit of 1,000,000 is set for both the ATPG engines. Experiments are conducted

on a 1.8 GHz, Pentium 4 machine with 512 MB RAM. Random conjectures of target-states

are chosen for each circuit and the 1-cycle preimages for these states are found. The two

techniques are compared and the results are tabulated for ISCAS ’89 benchmark circuits in
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Tables 3.1 and 3.2. The complete preimage set is computed for the target states.

The first column denotes the circuit. Columns 2 to 5 represent the number of solutions,

number of backtracks, number of equivalent cut-sets and the time taken by Success Driven

Learning alone. Columns 6 to 10 represent the number of solutions, number of backtracks,

number of equivalent cut-sets, number of supersets and time taken for our technique.

In Table 3.1, the results for small and medium-sized circuits are tabulated. For these circuits,

the time taken to compute the preimage is very less. The techniques can be compared based

on the number of backtracks, number of supersets and number of equivalent cut-sets. It is

seen that a considerable number of supersets occur in these circuits. There is no significant

time overhead for these circuits. Due to the increased number of supersets and equivalents

identified, a large number of solution subspaces are shared. This results in a compact BDD to

store the preimage set. Generally, the number of backtracks decrease due to the identification

of supersets. On the other hand, for circuits s526 and s953, we witness an increase in the

number of backtracks. This is due to the inappropriate order of Multi-Input Assignment,

after the identification of supersets.

The experimental results for large ISCAS ’89 benchmark circuits are tabulated in Table 3.2.

A large number of supersets are identified for s9234, s9234.1 and s15850. It is seen that

significant savings in time is also obtained for s9342, s13207 and s15850. Similar to smaller

circuits, the number of backtracks are reduced in most of the circuits. Due to the Order of

Multiple-input assignment, it is possible that the number of backtracks increase as explained

in Section 3.2.4. Supersets are identified in all the circuits, which results in more sharing of

solution subspaces.

In order to verify the consistency of the approach, random target states are generated and

representative results for the two techniques are tabulated in Table 3.3 for the same circuit.

The experiments are conducted for the benchmark circuit - s5378. It is seen that significant
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Table 3.1: Preimage Computation for ISCAS ’89 circuits - I

Success Driven Learning[17] Augmented Success Driven Learning

ckt #soln #bcktrck #equiv time(s) #soln #bcktrck #equiv #supersets time(s)

s298 32 56 7 0.08 32 56 5 2 0.07

s344 22 78 10 0.07 20 71 6 1 0.04

s349 22 65 8 0.05 22 63 6 2 0.04

s382 64 53 12 0.08 64 13 13 4 0.06

s386 52 83 13 0.08 52 82 10 4 0.01

s400 40 61 13 0.06 40 46 10 1 0.07

s420.1 36 111 13 0.06 36 111 12 1 0.03

s444 20 139 10 0.07 20 140 7 3 0.06

s510 10 83 5 0.05 10 83 5 0 0.05

s526 28 101 12 0.05 28 118 9 3 0.04

s641 762 8939 188 0.24 784 9499 191 19 0.24

s713 3696 205 88 0.06 2312 185 63 17 0.02

s820 49 222 16 0.05 49 222 15 1 0.03

s832 54 225 18 0.04 54 225 15 3 0.03

s838.1 3320 239 32 0.06 1720 246 37 6 0.03

s953 5852 4030 1556 0.24 6032 4104 1432 238 0.28

s1196 35 158 22 0.04 35 151 20 2 0.01

s1238 118 275 88 0.05 118 275 88 0 0.04
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Table 3.2: Preimage Computation for ISCAS ’89 circuits - II

Success Driven Learning[17] Augmented Success Driven Learning

ckt #soln #bcktrck #equiv time(s) #soln #bcktrck #equiv #supersets time(s)

s1423 10.3M 121298 1634 4.92 8.4M 120318 1548 53 5.86

s1488 43 204 10 0.08 44 204 11 1 0.02

s1494 57 116 14 0.07 57 115 13 1 0.04

s5378 1.9M 303378 291 17.41 1.8M 303313 246 15 13.09

s9234 1.6G 272229 38219 73.71 2.9M 173289 32446 8863 44.82

s9234 1.2G 143460 13478 20.01 238M 132637 10469 5023 20.19

s9234.1 135M 48680 7388 7.12 2.2G 48179 6698 1213 6.34

s9234.1 2.7G 10127 1411 1.62 1.1M 10951 1745 448 2.58

s13207 355M 738867 2056 106.43 3.6G 742361 3096 356 76.97

s13207.1 1.8M 427680 1028 58.44 1.8M 428261 1296 323 42.52

s15850 1.3M 57029 26115 17.46 3.8M 62953 25945 4215 16.25

s15850.1 45M 31134 4014 7.72 50M 31883 4029 22 6.61

s35932 1.3G 26986 100 6.29 1.3G 27002 96 4 3.49

s38417 1.9G 1769 435 1.17 1.3G 3650 415 139 1.49

improvement in time is obtained for the first three target-states. The results are in line with

previous observations and supersets are obtained for most of the target states.
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Table 3.3: Preimage Computation for 10 targets of s5378

Success Driven Learning [17] Augmented Success Driven Learning

S.No #soln #bcktrck #equiv time(s) #soln #bcktrck #equiv #supersets time(s)

1. 1.9M 303378 291 17.41 1.8M 303313 246 15 13.09

2. 34K 153183 211 8.75 43K 153515 221 16 6.19

3. 1.3G 15079 1243 1.48 1.3G 15077 1240 2 1.16

4. 9.9G 13468 7746 1.29 8.7G 17623 10287 1002 1.54

5. 62M 4899 2817 0.55 62M 4602 2318 202 0.43

6. 856M 603 375 0.15 755M 610 302 25 0.15

7. 58K 26981 295 1.69 58K 26211 209 38 1.40

8. 65M 4899 2817 0.55 65M 4602 2318 202 0.43

9. 1.6G 655 287 0.14 1.6G 562 245 6 0.13

10. 4.05G 2917 1239 0.39 1.9G 4652 1650 394 0.37



Chapter 4

Conflict Driven Learning

In this chapter, we explain the concept of Search-State based Conflict Driven Learning. Un-

like conventional conflict-driven techniques, we learn from the search-states of the circuit. As

a dual of pruning solution subspaces, the conflict subspaces in the Decision Tree are pruned,

by learning from the conflict cut-sets. Cut-sets in the conflict branches of the Decision Tree

are stored in a ZBDD. Unlike the search problem in solution-ZBDD, we encounter a decision

problem in case of a conflict-ZBDD. A similar traversal algorithm is proposed for efficient set

manipulation. Finally, experimental results are presented that demonstrate many conflict

subspaces occur during preimage computation and the proposed technique prunes significant

number of conflict subspaces.

4.1 Basic Idea

Consider a portion of the Decision Tree shown in Figure 4.1. It represents preimage com-

putation for one of the ISCAS ’89 benchmark circuits, obtained by a conventional PODEM

algorithm [10], without learning. In the Figure 4.1, let SSa and SSb represent the cut-sets

34
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at the corresponding branches in the Decision Tree, explored in that order.

conflict subspace

solution subspace
3

1

6

5 7

2

2

5

6

7 1

4 4

SSa{g5,g6,
g21}

SSb{g5,g6,
g12,g21}

Figure 4.1: Decision Tree

Figure 4.1 shows that the subspace below SSa is a conflict subspace. In the corresponding

circuit in Figure 4.2, it can be argued that all possible input assignments, after cut-set SSa is

reached, will lead to a conflict. Any assignment to the gates outside the cone of SSa will still

lead to a conflict. When an equivalent or a superset of SSa is encountered, we can backtrack,

since the search-subspace below the current branch is guaranteed to be a conflict subspace.

For instance, it can be verified in the Decision Tree that SSb is a superset of SSa and leads

to a conflict subspace. Considering SSb as the current cut-set, we learn that a subset of
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the current cut-set previously lead to a conflict. We can immediately backtrack and avoid

searching a conflict subspace. We call this search-state based conflict-driven learning.

SSb

SSa

current cutset

previous cutset

SSa is a subset of SSb

Figure 4.2: Relationship among conflict cut-sets

The idea is incorporated into a recursive PODEM algorithm as shown in Figure 4.3. At every

branch of the Decision Tree, we search the stored conflict-cutsets for subsets or equivalents. If

one exists, we learn that the current branch will lead to a conflict subspace and immediately

backtrack to prune the conflict region in the search-space. All the cut-sets in the conflict

branches of the Decision Tree are stored in a conflict-ZBDD as shown in Step 5 of the

algorithm. Before exploring a search-space, we search the stored conflict cut-sets for subset

or equivalent in Step 2 of the algorithm. Unlike Augmented Success Driven Learning, we are

not concerned with the link to the Decision Tree. This is a decision problem and we can

backtrack when we find a previous conflict subset.

In previous conflict driven techniques, the cause for a conflict is analyzed. Based on the

cause, extra information is added to the ATPG engine to avoid reaching the same conflict

again. In these techniques, there is an extra overhead to analyze the conflicts and store the

conflict-information. On the other hand, we use the cut-set as a representation for a conflict

subspace. This helps to prune many conflicts and hence is more powerful than conventional
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// step 2. reuse knowledge learnt before

update_solution_BDD();
update_success_counter();

// step 1. Terminal Conditions

if (objective_violated()) return;
}
return;

function preimage() {

current_cutset = find_search_state();

return;

// step 3. get new decision node
decision_node = backtrace();
imply();

// step 4. explore other branch
flip_decision(decision_node);
imply();

// step 5. store search state
if (success_counter() == 0)

}

preimage();

preimage();

if (objective_satisfied()) {

update_cZBDD();

if (subSetExists_in_cZBDD(current_cutset))

Figure 4.3: Algorithm - Conflict Driven Learning

conflict driven techniques. Note that this learning is different from conventional conflict

analysis, since we learn from the search-states during search.

4.2 Conflict-ZBDD

Cut-sets in the conflict branches of the Decision Tree are stored in a conflict-ZBDD (cZBDD).

The ZBDD nodes represent the cut-set elements and a path to TERMINAL-1 denotes a

conflict cut-set in the Decision Tree. The number of paths in the ZBDD represents the
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number of conflict cut-sets encountered during ATPG.

A conflict-ZBDD node is defined as shown in Figure 4.4. The first three members are similar

to that of solution-ZBDD. The last member identifies the ’minimum number of included

nodes’ below the node, of all the paths that lead to TERMINAL-1 in the ZBDD. Similar to

solution-ZBDD, this field is updated when a new cut-set is added to the conflict-ZBDD.

_ZBDD_CNODE * lowNodePtr;
_ZBDD_CNODE * highNodePtr;
int gate_id;

} ZBDD_CNODE;

int min_gates_below;

typedef struct _ZBDD_CNODE {

Figure 4.4: Conflict-ZBDD Node

4.2.1 Algorithm

Each cut-set in the conflict branch of the decision tree is added to the ZBDD by a simple

union operation [23]. The algorithm to store a cut-set in the conflict-ZBDD is same as that

of a solution-ZBDD, as shown in Section 3.2.1. The algorithms proposed in [23] were not

suitable to find the existence of a subset. This is a decision problem and the algorithms in

[23] aim at computing sets. We propose a simple traversal algorithm as shown in Figure 4.5

to determine if a subset exists or not. The members of each node and the current cut-set

facilitate efficient traversal of the ZBDD.

The algorithm is an exact dual to that of solution-ZBDD and hence the following heuristics
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// step 1. Terminal conditions
if (curr_node == TERMINAL_1) return true;
if (curr_node == TERMINAL_0) return false;
if (curr_node−>min_gates_below > num_csNodes−cs_ind)

return false;

// step 2. Traversal for subset

// This node exists in the cutset
temp_ind=cs_ind; temp_root=curr_node−>highNodePtr;

}else

return true;

return true;
cs_ind = temp_ind;

// This node is absent in the cutset

cs_ind=temp_ind; temp_root=curr_node−>lowNodePtr;

function search_cZBDD(curr_node, cs_ind) {

while (curr_cs[++cs_ind] < temp_root−>gate_id);

while (curr_cs[++cs_ind] < temp_root−>gate_id);

if (search_cZBDD(temp_root, cs_ind))

if (search_cZBDD(temp_root, cs_ind))

if (curr_node−>gate_id == curr_cs[cs_ind]){

}
return (search_cZBDD(curr_node−>lowNodePtr, cs_ind));

cs_ind=0; num_csNodes=length(curr_cs);

// step 1. Discard unnecessary gates
while (curr_cs[++cs_ind] < root−>gate_id);

// step 2. Search the ZBDD

}
return (search_cZBDD(root, cs_ind));

// The ZBDD and the cutset are in the same order
// cs − cutset

function subSetExists_in_cZBDD(curr_cs) {

Figure 4.5: Algorithm to find a subset

are incorporated:

• The ZBDD is ordered and we can search for the elements in the cut-set one by one, by

traversal.

• If a node does not exist in the current set, only the 0-branch of the node needs to be

searched.
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• If a node exists in the current set, both branches of the node needs to be traversed.

The 1-branch of the node is traversed first. This gives preference to exact matches over

sub-sets.

• If we reach the 1-TERMINAL during traversal, it means that a subset exists and we

return SUCCESS.

• If the ’minimum number of specified nodes’ below the current ZBDD node is greater

than the remaining elements in the current set, no sub-set exists below the current-

node. This step helps to avoid traversing a large number of cut-sets and to avoid the

worst-case complexity.

4.2.2 Algorithm Complexity

The worst-case complexity of the proposed algorithm is 2k + n− k, where

• k is the number of elements in the current cut-set and

• n is the maximum depth of the ZBDD

It may be noted that k is usually very small, when compared to the number of gates in the

circuit. Hence the subsets can be identified very early. Efficient heuristics facilitate faster

traversal of the ZBDD and early identification of the subset, if one exists. The members

of the ZBDD node and the ordered elements of the cutset facilitate faster traversal and

identification of subsets.
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4.3 Experimental Results

The proposed approach helps search-space pruning, only if large number of conflict subsets

occur during preimage computation. In order to assess the occurence of conflict subspaces,

it is necessary to conduct experiments and verify the requirement of the approach. Search

state based conflict driven learning alone is integrated with PODEM as shown in Algorithm

4.3. The algorithm is implemented in C++ and experiments are conducted on a 1.8 GHz, P4

machine with 512 MB RAM operating on Linux. A backtrack limit of 1,000,000 is set for the

ATPG engine. Similar to the previous experiments, random conjectures of target-states are

chosen for ISCAS ’89 benchmark circuits and the results are compared with Success Driven

Learning alone.

Table 4.1 lists the results for small and medium-sized circuits. The first column lists the name

of circuits. Columns 2-5 report the number of solutions, backtracks, conflicts, equivalent

cut-sets obtained by the Success Driven Learning alone. Column 6 shows the time taken for

the ATPG engine to compute the preimage. Columns 6-9 report the number of solutions,

backtracks, conflicts and subsets obtained by conflict driven learning technique. The last

column reports the time taken by our technique to compute the preimage for the circuit.

It is seen that conflict subspaces occur in most of the circuits. Significant number of conflict

subsets are identified in circuits - s444 and s953. Similarly equivalent solution subspaces are

present in these circuits. The solution subspaces also contain some conflict branches. As a

result, equivalent solution subspaces inherently prune some of the conflict subspaces. This

is reflected in the number of backtracks for the circuits. It may be seen that the number

of backtracks, for circuits with more equivalent solution subspaces, is lesser in the previous

technique than our technique.

The results for large circuits is tabulated in Table 4.2. Conflict subspaces overlap heavily for
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unjustifiable target states. For these targets, success driven learning aborts and significant

speed up is obtained by adding conflict driven learning. On the other hand, for targets,

with huge number of solutions, success driven learning obviously outperforms conflict-driven

learning. It is shown that this phenomenon is common to most of the ciruits. Results for

large circuits, demonstrate the necessity to integrate both success-driven and conflict-driven

techniques in the ATPG engine. A symmetric treatment of both success and conflict-driven

techniques is required to learn from the solution and conflict subspaces in the Search-Space.

Experimental results for 10 random targets of s5378 are tabulated in Table 4.3. It may be

generally seen that the number of conflicts are more in some of the circuits as compared

to the previous technique. In success driven learning solution subspaces are pruned, which

may include conflicts. As a result, inherently some of the conflicts are also pruned. In

conflict-driven learning alone, we depend only on conflict subspaces that do not contain

solution subspaces. As a result, there is a necessity to integrate both these approaches for a

symmetric treatment of solution and conflict subspaces.
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Table 4.1: Preimage Computation for ISCAS ’89 circuits - I

Success Driven Learning [17] Conflict Driven Learning

ckt #soln #bcktrck #conf #equiv time(s) #soln #bcktrck #conf #subsets time(s)

s298 28 154 133 17 0.06 28 193 160 6 0.02

s344 9 49 41 6 0.05 9 63 55 0 0.06

s349 14 155 149 5 0.05 14 110 87 10 0.02

s382 21 53 46 5 0.04 21 79 55 4 0.04

s386 36 62 30 7 0.04 36 71 34 2 0.03

s400 81 73 55 15 0.05 81 383 283 20 0.04

s420.1 24 86 77 9 0.06 24 227 182 22 0.03

s444 41 179 158 20 0.07 41 277 176 61 0.04

s510 10 83 74 5 0.09 10 88 76 3 0.07

s526 45 141 126 11 0.05 45 269 211 14 0.08

s641 None 557 558 0 0.07 None 192 162 31 0.04

s713 200 112 78 34 0.06 200 808 570 39 0.02

s820 50 223 179 16 0.10 50 192 127 16 0.04

s832 8 167 161 2 0.06 8 127 103 17 0.05

s838.1 54 117 103 14 0.06 54 496 419 24 0.05

s953 52 1154 1119 43 0.15 52 887 700 136 0.11

s1196 75 412 353 39 0.07 75 490 400 16 0.04

s1238 101 423 360 59 0.05 101 742 612 30 0.04
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Table 4.2: Preimage Computation for ISCAS ’89 circuits - II

Success Driven Learning [17] Conflict Driven Learning

ckt #soln #bcktrck #conf #equiv time(s) #soln #bcktrck #conf #subsets time(s)

s1423 None 2424 2425 0 0.32 None 2012 1879 134 0.25

s1488 43 204 175 10 0.08 43 194 129 23 0.03

s1494 5 110 106 4 0.07 5 87 73 10 0.03

s5378 Abt 1M 1M 0 56.90 None 1K 698 673 0.13

s5378 40K 167 101 66 0.08 40K 194K 145K 8K 5.45

s9234 None 124K 124K 0 27.03 None 509 191 319 0.19

s9234 236K 1.4K 992 399 0.32 236K 806K 561K 8K 38.62

s9234.1 Abt 1M 1M 0 290.96 None 13K 9K 4770 5.09

s9234.1 469M 2K 988 1222 0.43 287K 1M 549K 162K 55.06

s13207 None 40981 40K 0 11.13 None 730 448 283 0.33

s13207 25K 72 35 37 0.16 25K 109K 84K 0 7.51

s13207.1 None 1.3K 136K 0 2.92 None 126 73 54 0.12

s13207.1 133K 146 73 71 0.18 133K 258K 125K 0 16.21

s15850 29K 340 260 80 0.31 29K 111K 81K 0 10.11

s15850.1 None 26K 267K 0 13.66 None 11K 11K 289 6.17

s15850.1 1.6M 4K 4K 754 1.32 160K 1M 426 0 139.36

s35932 65K 112 59 53 0.26 65K 345K 279K 0 38.68

s38417 Abt 1M 1M 0 2153.13 None 25K 21K 4K 60.99

s38417 3G 782 115 666 0.79 315K 1M 683K 1K 185.56
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Table 4.3: Preimage Computation for 10 targets of s5378

Success Driven Learning [17] Conflict Driven Learning

S.No #soln #bcktrck #conf #equiv time(s) #soln #bcktrck #conf #subsets time(s)

1. Abt 1M 1M 0 87.56 None 11K 5.8K 5.3K 1.30

2. None 10K 10K 0 1.62 None 757 652 106 0.14

3. None 11K 11K 0 1.30 None 1.2K 1.1K 93 0.16

4. Abt 1M 1M 0 95.40 None 529 273 257 0.09

5. None 354K 354K 0 25.95 None 791 434 358 0.11

6. 6.9K 1087 925 162 0.20 6.9K 450K 377K 3.5K 13.01

7. 3G 4.3K 2.9K 1480 0.54 142K 1M 857K 0 27.26

8. Abt 1M 1M 0 54.71 None 3.3K 1.6K 1.7K 0.40

9. 10M 743 648 95 0.12 199K 1M 800K 97 27.17

10. Abt 1M 1M 0 56.90 None 1.3K 698 673 0.13
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Symmetric Learning

We saw that solution and conflict subspaces heavily overlap during preimage computation. It

is necessary to learn from both subspaces for faster preimage computation. In this chapter,

we integrate Augmented Success Driven Learning and Search-State based Conflict Driven

Learning to provide a Symmetric treatment for both subspaces during the search.

5.1 Algorithm

Both the learning techniques are incorporated into a PODEM algorithm [10] as shown in

Figure 5.1. Cutsets in the solution branches are stored in a solution-ZBDD (sZBDD) and

those in the conflict branches are stored in a conflict-ZBDD (cZBDD). Two distinct features

of our contribution are in Step 2. In Step 2a, we search the conflict-ZBDD database for

equivalent or subset of current search-state. Likewise, Step 2b searches the solution-ZBDD

database for equivalent or superset of current search-state. In Step 5, we store the cut-set in

the solution-ZBDD, if the subspace below has a solution. Otherwise the cut-set is stored in

the conflict-ZBDD.

46
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update_success_counter();
update_solution_BDD();

if (result == EQUIVALENT) {

// step 2b. search stored solution cutsets

return;

// step 2. reuse knowledge learnt before

current_cutset = find_search_state();
// step 2a. search stored conflict cutsets

if (subSetExists_in_cZBDD(current_cutset))

return;

result = findSupSet_sZBDD(current_cutset));

function preimage() {

// step 1. Terminal Conditions
if (objective_satisfied()) {

update_solution_BDD();
update_success_counter();

}
return;

if (objective_violated()) return;

}

imply();

// step 3. get new decision node
decision_node = backtrace();

imply();

// step 4. explore other branch
flip_decision(decision_node);

else

// step 5. store search state
if (success_counter() > 0)

preimage();

preimage();

update_sZBDD();

update_solution_BDD();
update_success_counter();

multi_inputs();

return;
}

else if (result == SUPERSET) {

}// Contd...

update_cZBDD();

Figure 5.1: Algorithm - Symmetric Learning

5.2 Experimental Results

The Experimental Results for ISCAS ’89 benchmark circuits are tabulated in Tables 5.1,

5.2 and 5.3. The experiments are conducted in the same environment as before. The first

column denotes the target state, for the particular circuit. The total number of solutions,

backtracks, conflicts, equivalents obtained for success-driven learning are reported in columns

2-5. Column 6 shows the time-taken by the ATPG engine for previous technique. Columns

7-12 report the number of solutions, backtracks, conflicts, equivalents, supersets, subsets and

time taken by our technique. We can observe that supersets and subsets are obtained for

most of the circuits, which demonstrates the necessity to learn from them.
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The number of backtracks are generally reduced for most of the target states in smaller

circuits. For larger circuits, a significant improvement in time is obtained for s5378, s9234

and s15850.1. The reduction in number of backtracks show that more than 90% of the search

space is pruned for these circuits. The presence of many equivalents and supersets, for these

circuits is interpreted as the sharing of many nodes in the preimage set. As a result, the

preimage can be represented in a more compact manner.

Experimental results for 10 random targets of s5378 are reported in Table 5.3. The back-

tracks are reduced significantly for most of the target states, eg: 4, 9, 10, 11. Significant

savings in time is obtained for targets - 9, 10, 11. For target state 6, we witness an increase

in the number of backtracks for our techniques. This is due to the order of multiple-input as-

signment discussed in Section 3.2.4. However, the overhead in using the proposed techniques

is generally low as seen in most of the target states.
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Table 5.1: Preimage Computation for ISCAS ’89 circuits - I

Success-Driven [17] Symmetric Learning

ckt #sln #btrck #conf #eqv t(s) #sln #btrck #conf #eqv #sps #sbs t(s)

s298 28 154 133 17 0.08 28 128 99 19 1 5 0.01

s344 5 51 47 3 0.08 5 43 36 3 0 3 0.04

s349 22 157 147 4 0.07 20 74 56 2 1 11 0.06

s382 30 50 39 10 0.05 30 40 31 7 1 0 0.03

s386 29 35 13 5 0.05 29 35 13 5 0 0 0.06

s400 81 73 55 15 0.05 81 69 47 15 0 4 0.02

s420.1 20 93 81 11 0.07 17 97 79 6 6 5 0.02

s444 9 87 81 4 0.07 5 76 69 2 2 3 0.01

s510 20 116 106 7 0.06 20 106 90 6 2 5 0.02

s526 45 141 126 11 0.03 45 113 85 10 1 13 0.01

s641 98 198 164 34 0.05 92 186 154 27 3 2 0.03

s713 64 854 835 19 0.07 64 303 234 19 0 50 0.02

s820 50 223 179 16 0.06 49 161 106 15 1 12 0.05

s832 8 167 161 2 0.06 8 117 95 2 0 16 0.03

s838.1 54 117 103 14 0.08 27 164 138 8 12 6 0.01

s953 52 1154 1110 43 0.11 54 725 558 43 1 122 0.09

s1196 75 412 353 39 0.05 74 386 314 37 1 14 0.04

s1238 101 423 360 59 0.06 101 376 297 57 2 16 0.02
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Table 5.2: Preimage Computation for ISCAS ’89 circuits - II

Success-Driven [17] Symmetric Learning

ckt #sln #btrck #conf #eqv t(s) #sln #btrck #conf #eqv #sps #sbs t(s)

s1423 513M 37K 34K 3.1K 1.90 494M 7.7K 3.6K 3.3K 83 663 0.42

s1488 43 204 175 10 0.05 44 154 106 11 1 18 0.02

s1494 5 110 106 4 0.08 5 80 67 4 0 9 0.04

s5378 96K 38K 38K 209 2.70 77K 1.2K 756 213 9 265 0.13

s9234 Abt 1M 1M 0 94.68 None 580 171 0 0 410 0.16

s9234.1 3.7G 62K 15K 47K 16.36 3.8G 57K 11K 37K 9K 617 12.33

s13207 47K 2K 18K 190 0.51 48K 1K 789 183 41 25 0.26

s13207.1 3120 78 37 41 0.18 3312 74 25 39 8 2 0.09

s15850 3.5G 2.7K 911 1807 1.18 3.3G 2.9K 984 1.9K 67 6 0.99

s15850.1 3.9G 71.5K 70K 1494 12.03 686M 2.5K 461 1.7K 148 96 0.59

s35932 83 75 55 20 0.25 83 75 55 18 2 0 0.16

s38417 None 26K 26K 0 48.54 None 141 76 0 0 66 0.56
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Table 5.3: Preimage Computation for 10 targets of s5378

Success-Driven [17] Symmetric Learning

ckt #sln #btrck #conf #eqv t(s) #sln #btrck #conf #eqv #sps #sbs t(s)

1. 153M 2.9K 2029 950 0.36 153M 2K 1047 850 31 87 0.18

2. 972 45 25 20 0.08 972 45 25 20 0 0 0.09

3. 10M 231K 230K 180 15.17 10M 523 184 182 2 155 0.09

4. 995K 1238 1043 195 0.18 995K 375 146 195 4 30 0.07

5. 163K 636 202 433 0.12 203K 1.1K 264 744 74 0 0.15

6. 61M 332 161 171 0.13 61M 287 107 171 0 9 0.06

7. 59M 730 523 207 0.15 67M 455 231 199 8 17 0.08

8. 4.7M 998K 997K 281 50.37 4.7M 1.3K 868 261 20 181 0.11

9. 447M 551K 548K 3.5K 31.58 432M 6.9K 1.7K 3.6K 265 1237 0.58

10. None 121K 121K 0 10.98 None 867 265 0 0 603 0.12
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Conclusion

6.1 Conclusion

We presented a framework for ATPG based preimage computation. Conventional ROBDD

based methods were sensitive to the memory limitation problem and cannot be used for

larger circuits. It was shown that ATPG based methods overcome the memory limitation

problem and results for large circuits were presented. Efficient learning techniques were

presented to overcome the inherent time limitation of ATPG.

We identified that both solution and conflict subspaces overlap during ATPG based preimage

computation. Efficient search-state based techniques were presented to learn from the solu-

tion and conflict subspaces during preimage computation. We learn from solution supersets

to make use of previously identified solutions. Multiple input assignment is forced to reach an

equivalent search-state and a previously explored solution subspace is pruned. We presented

a technique to identify the multiple-inputs necessary to reach an equivalent search-state by

Upward Traversal of the Decision Tree. We showed that the order of multiple-input assign-

ment affects the performance of ATPG. We use the order previously generated by PODEM
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to obtain better results. On the other hand, we learn from conflict subsets to make use of

previously encountered conflicts. Early backtracking helps to avoid large conflict subspaces

during the search. Integrating both success driven and conflict driven learning showed that

our techniques prune upto 90% of the search space and computes preimage for states where

a state-of-art learning technique failed.

The search states were stored in ZBDDs and new algorithms were presented to identify

supersets/subsets in solution/conflict-ZBDD. Efficient heuristics were integrated into the

algorithm for early identification of subsets/supersets. The ZBDD-based techniques were

integrated into a conventional ATPG engine to generate all the solutions. The set of solutions

form the complete preimage for the target state at the end. Experimental results showed

that only a small overhead is incurred in implementing the proposed techniques.

6.2 Future Work

The cut-sets in all branches of the Decision Tree are stored in ZBDDs. However, all the

cut-sets are not useful to the ATPG engine. It is necessary to identify cut-sets that are likely

to be useful in the future and store them in the knowledge-base. This will lead to a more

compact ZBDD and also reduce the time taken to search for subsets or supersets.

Preimage computation is a basic step in Model Checking and Equivalence Checking appli-

cations. In our method, the preimage set may be represented as a Reduced Boolean Circuit

instead of a free BDD. It can act as a monitor circuit for the previous time-frame of the It-

erative Logic Array (ILA) model of the sequential circuit. In this way, the proposed method

can be extended to multiple timeframes with very little overhead.

In SAT, the array representation of clauses consumes huge memory for large CNFs. In

[25, 24], Aloul et al. and Cathalic et al. studied the suitability of ZBDDs to represent
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CNFs and proposed elegant algorithms for Boolean Constraint Propagation (BCP). Our

techniques can be extended to ZBDD-based SAT by representing search-states as ZBDD

nodes. Since ZBDDs perform set-operations efficiently, equivalents, subsets and supersets

can be easily identified. It may be noted that no extra overhead is required in identifying

the search-states and storing them.

Considerable work has been done in the field of identifying suitable Testability Measures

for an ATPG engine. Many heuristics were presented to identify a solution earlier during

ATPG. However, all these heuristics aim at identifying a single solution faster. In preimage

computation, we aim at finding all the solutions for the target state. Conventional Testability

Measures are local to each solution. New Testability Measures are required to compute the

complete set of solutions faster. No work has been done so far in this direction.

During preimage computation, Equivalent Search States will definitely lead to identical so-

lution subspaces. However, the vice-versa is not true. It is seen that identical solution

subspaces exist for search-states that are not equivalent. Since these subspaces are not

pruned by success-driven learning, it is necessary to identify these search-states and further

speed up preimage computation.

None of the ideas discussed above have been explored yet, and hold good potential for future

research.
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