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3.2.3   Flux-Weakening Control Design and Analysis

In order to produce the maximum torque, which main component is proportional to q-axis

component of the armature current [58], Eq.s (12), it is convenient to control the inverter-fed

PMSM by keeping the direct, d-axis, current component to be id = 0  as long as the inverter

output voltage doesn’t reach its limit [42]. At that point, the motor reaches its maximum speed,

so-called rated speed (called also base speed when talking about flux-weakening). Beyond that

limit, the motor torque decreases rapidly toward its minimum value, which depends on a load

torque profile. To expand the speed above the rated value, the motor torque is necessary to be

reduced. A common method in the control of synchronous motors is to reduce the magnetizing

current, which produces the magnetizing flux. This method is known as field-weakening [64].

With PM synchronous motors it is not possible, but, instead, the air gap flux is weakened by

producing a negative d-axis current component, id. Because nothing has happened to the

excitation magnetic field and the air gap flux is still reduced, so is the motor torque, this control

method is called flux-weakening [69]. As a basis for this analysis, the PMSM current and voltage

d-q vector diagrams from the previous section, Figure 26, are used. During flux-weakening,

because the demagnetizing (negative) id current increases, a phase current vector is rotates toward

the negative d-semiaxis. The rotation of the phase voltage vector is determined by a chosen flux-

weakening strategy, but at the end of flux-weakening it always rotates toward the positive q-

semiaxis because of iq current, i.e. vd voltage magnitude decrease. Hence, the voltage-to-current

phase shift decreases to zero and increases in negative direction either to the inverter phase shift

limit (usually 300) [65], or a load torque dictated steady-state (zero acceleration), or to the zero

motor torque condition (no load or generative load). A big concern of flux-weakening control is a

danger of permanent demagnetization of magnets. However, large coercitivity of materials such as

Samarium-Cobalt, allows significant id current which can extend the motor rated speed up to two

times [58, 61-63, 70]. Three commonly used flux-weakening control strategies are:

1) constant-voltage-constant-power (CVCP) control;

2) constant-current-constant-power (CCCP) control; and

3) optimum-current-vector (OCV or CCCV - constant-current-constant-voltage) control.
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3.2.3.1   Constant Voltage Constant Power (CVCP) Control

This strategy is very popular in industry because of its simplicity [63, 69]. It is based on

keeping the voltage steady-state d and q components constant:

( )P T v i v i

v pL i pL I

v k pL i k
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m m d q q
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Values vqb, iqb and Ωb are base voltage, base current and base (rated) speed in the

beginning of the flux-weakening, respectively. Usually, I Iqb s= max .

Reference id and iq currents are derived from (73):
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(74)

Regarding the complexity, this is the easiest flux-weakening control, due to i id q  linearity,

which is obvious from (74).

By this strategy, the voltage vector Vs on the PMSM voltage vector diagram, Figure 26.b,

is supposed to keep a constant position, while the vertex of the current vector, is, moves from

point (0, Iqb) down the slope iq /id, derived from Eq. (74) toward the negative d-semiaxis. The

current and voltage d-q vector tendencies in CVCP flux-weakening control strategy are shown in

Figure 28. However, when the phase current limit, Figure 24, is reached, i.e. after passing the

critical speed, ωcr, the strategy fails and vector Is follows the limitation circle, while vector Vs

naturally rotates toward the vq-axis. The critical speed, where the current reaches its limit is:
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where

       I
k

pLp
t

d

=   and V
L

L
Vd

d

q
d

' = (76)
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Figure 28. PMSM voltage d-q vector diagram for CVCP flux-weakening control
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The derivation of Eq. (75) is given in Appendix B.

If we want to be precise, the phase voltage vector vs doesn’t stay constant at ω ω≤ cr .

Vector vs rotates toward the negative d-semiaxis, in the same direction as the current vector, but

much slower. This rotation of vs occurs because of transients di dtd < 0  and di dtq < 0  in Eq.s

(12). Another, usually neglected, fact is that the active power is not constant either, which can be

seen in the simulation results in Chapter 4. In order to get constant power, the following condition

must be satisfied:

( )Ri Ri RI p L L i id q qb q d q d
2 2 2+ − ≈ − ω (77)

It should also be noticed from Eq. (76) that for one quadrant motor operation, ωcr will

never be reached if Ip ≤ Iqb, which means vqb ≤  vdb, which implies voltage-to-current phase shift

ϕ ≥ 45o . Since that means a poor motor efficiency before the flux-weakening region (small motor

torque versus current ratio), this option, in this application, is of only theoretical character. If a

goal is a speed higher than ω cr , with this control strategy, motor torque Tm would decrease more

rapidly after crossing ω cr , following the current-vector-limit circle, instead of the reference

current ramp of the CVCP control, up to an earlier defined maximum speed. The optimum case is

that ωcr is designed to be close to a desired maximum motor speed.

Finally, the power factor, cosϕ, can be calculated from:
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q
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(78)

where ϕ θ,  and ψ are vector phase shifts from Figure 26. Eq. (78) can be used for determination

of the speed when cosϕ reaches its minimum tolerable value, determined by the inverter

limitation.



87

3.2.2.2   Constant Current Constant Power (CCCP) Control

A characteristic of this method is that neither iq, nor id current depends on the motor

parameters. The iq current has the same expression as in the previous strategy, due to keeping the

power constant [66]. That implies that vd voltage is also constant, Figure 29. However, the phase

voltage q-axis component, vq, depends on both, motor parameters and the current q-axis

component base value, Eq.s (12) and (79).

The references for this control method are:
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From Eq.s (12) and (79), reference id and iq currents for the current control loops are:
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The d-q voltage equations in steady-state, extracted from Eq.s (12) and (79) are:
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(81)

By applying this strategy, the phase current vector is rotates around its origin, and phase

voltage vector vs, vertex moves along the v pL Id q b qb= − ω line, Figure 29. The prevailing speed,

ωp, where voltage vq passes its minimum is

ω p
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where V
L

L
Vd

d

q
d

' =  and V kqb t b= Ω .

A critical speed when voltage vs reaches its maximum value is the same as in the previous

example, but now the phase current is reaches its limit:
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Figure 29.   PMSM voltage d-q vector diagram for CCCP flux-weakening control
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When ω ω= cr , the phase voltage reaches its limit and stays constant under higher speed.

It causes a rapid decrease of current iq , what implies the decrease of the motor torque, Tm, Eq.s

(12). Detailed mathematical derivations are given in Appendix B.

Because transient elements diq/dt and did/dt from the d-q voltage equations from Eq.s (12)

cancel each other in Eq. (79), active power Pm remains constant during the flux-weakening period

until the critical speed is reached. It is characteristic for both constant power control methods that

the d-axis steady-state voltage component remains constant as long as both voltage and current

don’t reach their limits. In comparison with the constant voltage strategy, this strategy is more

complex because of the reference id/iq non-linearity. Its advantages are constant phase current and

constant power in flux-weakening region between Ω b  and ωcr . Different torque slopes, obtained

after ω ω= cr , are consequences of applied strategies, as well as of applied voltage limitation

methods. The same method doesn’t produce the same effect on both strategies (see Table 2).

How strong the effect is, how big the difference is, and what profiles the motor torque obtains

after ω ω= cr , also depends on motor characteristics and current and speed base values, as well as

the load torque profile (Table 2). This investigation remains for future work.

3.2.3.3   Optimum Current Vector (OCV) Control

Unlike the constant power flux-weakening control strategies, where phase voltage or

current were reduced in order to keep constant active power, in this method the active power is

allowed to change with a change of the power factor, cos ϕ , while the magnitudes of phase

current and phase voltage vectors are set to their maximum values [51, 65]:

i I I

v V V

s qb s

s qb s

= =

= =
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max

= const.

= const.
(84)

In other words, by this control strategy the maximum allowable apparent power is used,

although the active power is not constant. Hence, both vector trajectories are along their limiting

circles, Figure 24 and Figure 25. The superimposed current, voltage and flux vector diagrams are

shown in Figure 30. The expressions for the abovementioned conditions are:
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The consequent expressions for reference currents id and iq, derived in Appendix B, are:

i I K

i I K

d qb
b

q qb
b

= − −








= − −


















1

2

2

1

2

2

2

1

1 1

Ω

Ω

ω

ω

(86)

where   K
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for non-salient PMSM, where Ld = Lq = L, and
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for a salient machine, where
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Steady-state voltage equations of the salient PMSM when this strategy is applied are:
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Figure 30.  PMSM voltage d-q vector diagram for OCV flux-weakening control
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The minimum vq votage is reached at a prevailing speed ωp:
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All equation derivations are given in Appendix B.

It should be noted from Figure 30 that when Ω b p≤ ≤ω ω , normalized -id current (relative

to Iqb) increase is higher than the normalized speed increase ωb, which is, on the other side, higher

than the normalized iq current decrease. Consequently, the phase voltage vector vs rotates toward

the negative d-semiaxis. At higher speed these relations are inverse, so that vs rotates in the

opposite direction, i.e. toward the positive q-semiaxis. This observation is useful for the

determination of the phase voltage limitation method, discussed earlier in Section 3.2.2.

Although its algorithm is more complicated than those of the constant power flux-

weakening control strategies, the advantages regarding the maximum torque profile, maximum

exploited power, maximum extended speed for the same amount of energy and keeping constant

voltage and constant current amplitudes during the whole period of flux-weakening, without any

critical speed point, strongly recommend this strategy against the former ones, whenever the

constant active power is not a strong prerequisite. Comparative examples of the discussed

methods, applied in a PMSM starter/generator drive are given in Chapter 4.

3.2.3.4   Flux-Weakening Control Small-Signal Models

In order to satisfy assigned power requirements, it can be seen that current references

coming from all three mentioned flux-weakening methods must depend on the speed feedback

signal. Hence, the additional control loops should be closed and control design becomes much

more complex. In order to simplify the analysis of flux-weakening control small-signal models, the

following assumptions were made:

1)  The speed loop is closed and not saturated; and

2)  Small-signal control design is done properly, so that speed follows its reference signal.

These two assumptions allow the flux-weakening input signal to be the speed-reference instead of

the speed-feedback signal. In other words, the additional feedback loops are avoided, which
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preserves the earlier discussed control design procedure. Nevertheless, a brief small-signal

analysis of the mentioned flux-weakening techniques still leads to some interesting conclusions

regarding the local stability of the flux-weakening control model.

Let’s take a look first at the small-signal derivations (Appendix B) of the constant power

control strategies. In order to conserve constant active power through the flux-weakening (speed)

region as long as possible, the q-axis reference current, iq, must follow Eq. (74):

i Iq qb
b=

Ω
ω

(94)

Following the small-signal linearization approach, explained in Chapter 2, or simply from

iq current first derivative over speed, its small-signal response to the speed perturbation is:

          ~ ~i Iq qb
b= −

Ω
Ω 2 ω (95)

where Ω is a speed operating point. Such a kind of response is satisfactory, since it is stable in the

relative (“per unit”) sense, and it follows the flux-weakening control principle: the higher the

speed, the lower the torque, i.e. iq current. However, the current gain is smaller at higher speed,

which makes the control less susceptible to speed change. The analysis of id current shows a

significant difference between the CVCP and CCCP control strategies. The simplicity of the

constant voltage control is the linear relationship between id and iq currents, derived from Eq.s

(74) and (76):
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Consequently, id current small-signal response is:
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The conclusions are the same as for the iq current.

On the other side, the constant current control implies the non-linear id current vs. iq

current relation Eq. (80). That leads to the following id current small-signal equation:
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Again, the flux-weakening control principle is obeyed: the higher the speed, the higher the

(negative) id current, the lower the iq current, i.e. the bigger the flux-weakening. Also, again, the

perturbation response is lower at a higher speed. However, it is unstable at Ω Ω= b , because of

the infinity gain in Eq. (98). In order to get a stable response, some tolerable id current must exist

before applying this flux-weakening control method. It can be achieved either by entering the flux-

weakening region with some other control strategy, like CVCP, until the speed when the gain in

Eq. (98) is within tolerable boundaries, or by applying a certain id current before the rated speed,

i.e. out of the flux-weakening region, like the one for achieving maximum torque control with

salient PMSM, calculated from the motor-torque equation in Eq. (12) [70]. Another possibility is

to limit the id current either to a certain value (it can still result in torque oscillations), or

dynamically, with reference to the iq current, Eq. (80). If none of the above is applied, the high id

current response at the output of the flux-weakening controller means a high id current reference

for the current controller, which would saturate the voltage limiters at the controller output, and

leave the motor working in an open-loop for a while, what could be intolerable in some

applications. The conclusion of this discussion is that, when applying this flux-weakening control

strategy, the signal flow should be designed in such a way that the iq current reference follows

from the id current reference, nevertheless the iq current obeys Eq. (94), i.e. the constant power is

preserved, at every operating point, or not.

The optimum current vector control small-signal equations, derived from Eq.s (86) and

(88) are:
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for a non-salient machine, and
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for a salient machine, respectively.

In both cases, the small-signal response of the id current is satisfactory regarding the

stability in a relative (“per unit”) sense, and it follows the flux-weakening control principle: the

higher the speed, the higher the -id current. However, the current gain is smaller at higher speed,

which, as in constant power strategies, makes the control more difficult.

Regarding the iq current small-signal response, it has a pole at the speed:
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for the non-salient machine, and
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(104)

for the non-salient machine, where K2 and Ip
’ are defined by Eq.s (89) and (91), respectively. The

Eq.s (103) and (104) should serve as guidance for the motor drive design when this flux-

weakening strategy is chosen, so that speed Ω∞ is higher than a desired maximum speed. A

deeper analysis of the flux-weakening small-signal relations extends the frame of this work. The

purpose of given analysis was to take a designer’s attention to several aspects of the small-signal

behavior of the discussed flux-weakening control strategies, which has usually been overlooked in

flux-weakening control design.


