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Abstract

Actuator placement is a major concern in control system designs. Utilizing piezo-
electric actuators increases the complexity of actuator designs, because both actuator
location and dimensions need to be considered. A comprehansive study was con-
ducted in this dissertation on the optimization of piezoelectric actuator designs for

vibration suppression of flexible structures.

The investigation on the optimal piezoelectric actuator designs were grouped into two
parts. Part one covered actuator designs when the same number of actuators as the
controlled modes are used. Approaches were formed to optimally design piezoelectric

actuators which requires least control efforts.

In part two of this dissertation, a method named the Weighted Pseudoinverse Method
was introduced to deal with the cases in which fewer actuators than the controlled
modes are utilized. The weighted pseudoinverse method yields a optimal transforma-
tion from modal control forces into the actuator-moments in phsycal space. Based
on the Weighted pseudoinverse method, the piezoelectric actuator designs were opti-

mized to ensure least-control-effort actuator designs.



A simply-supported beam was used as an example to demonstrate the effectiveness
of the design methods proposed in this dissertation. However, the design methods

are applicable to general cases.
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Chapter 1
INTRODUCTION

“Human beings, guided and influenced by their natural surroundings, almost in-
stinctively perform all functions in a manner that economizes energy or minimizes
discomfort and pain. The motivation is to exploit the available limited resources in a
manner that maximizes output or profit”(Haftka and Kamat, 1985). In engineering
terms, this process may be described as seeking a design which is “the best feasible
design according to a preselected quantitative measure of effectiveness” (Wilde, 1978).
In the current engineering design process, decisions are made based on the best choice
among the various various design parameters, such as weight, cost, safety, etc. This
decision-making process in structural design is called structural optimization. While
the development of structural optimization techniques dates back to the eighteenth
century, the recent applications to the automotive and aerospace industries demon-
strate the modern potential of mathematical optimization methods. Tremendous
increases in computational power now available allows the time-consuming optimiza-
tion algorithms to be more feasible. In the study presented here, the developments
in the field of Etructura,l optimizatior:\'are utilized in treating the piezoelectric actu-

ator design of vibration suppression systems, which are often required in large space

structures and many other applications.



Large flexible structures are found more and more frequently in the age of space.
The advent of a space transportation system makes it possible to design very large
satellites and spacecraft which could be carried into space and be deployed, assem-
bled, or constructed there for various purposes. These structures involve a higher
mechanical flexibility than those which have been previously considered. Often this
is combined with extremely accurate pointing and shape requirements(Balas, 1982).
Another characteristic of these structures is that they must be treated as distributed-
parameter systems, which adds to the degree of the problem complexity. Due to the
precision requirements of these large flexible structures, requirements for suppression
of vibrations are often very stringent. In the course of solving vibratioﬁ suppression
problems, the concept of actively controlled large space structures has been devel-
oped. In these structures, a variety of sensors and actuators are located and operated
through an on-line computer to control the performance and behavior of the sys-
tem. Along with the space structures application, the concept of actively controlled
systems has been used in other applications, such as active structural acoustic trans-
mission loss control(Fuller, Rogers, and Robertshaw, 1989). Many studies have been
conducted on various aspects of flexible structural control (Meirovich, et al., 1983 and
Balas, 1982). This study will try to explore an optimization solution to the design of
these systems. More specifically, based on the control theory and actuator-structure
interaction model presented by many researchers, the question of how to place and

dimension the actuators is addressed.

1.1 Control Theory

Distributed-parameter-systems usually do not admit closed-form solutions. There-
fore, besides control system design and implementation, modeling is an important con-

cern of distributed-parameter-system control problems. Many different approaches
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are available for modelling and control system design. One approach has been to first
discretize the system geometrically to obtain the eigenfunctions. Then the distributed
dependent variable can be expanded into a finite series of eigenfunctions and then
control the discretized system. A reduced number of modes are retained for control,
with the balance of modes left uncontrolled. The two classes of modes are referred
to as controlled and residual modes, respectively. Together, the two classes comprise
the so-called modelled modes. In addition, because discretization implies that only
a finite number of modes are considered, there exist an infinite number of unmod-
eled modes. When a distributed-parameter system admits a closed-loop solution, no
discretization is necessary. Moreover, because all modes are modelled, .there are no
unmodeled modes. However, in this case, there will be an infinite number of residual
modes. In this study, the closed-loop solutions for the eigenvalues and eigenfunctions
are available, and because there are no unmodeled modes, the residual modes will
be the only concern with the modelling aspect. The approaches to be discussed here
are applicable in more complicated distributed parameter systems which may require

discretized models.

Control strategy design follows system modelling. Control theory of distributed-
parameter systems is available in many forms, all of which are one form or another
of modal control. One method of control is the Independent Modal Space Con-
trol(IMSC)(Meirovich, 1977, 1981a,1981b, 1983). As the name indicates, the various
modes are controlled independently. Essentially, a set of independent second order
systems are controlled in parallel. The modal vibrations are obtained by transforming
the vibrations of a distributed-parameter system into the modal space. The modal vi-
brations are decoupled from each other, as they are orthogonal, which enables control

laws to be generated for each of the one degree-of-freeodm modal vibrations instead



of the distributed-parameter system.

Because the control design is conducted in the modal space independently for each
mode, the control forces obtained in the modal space are abstract forces. The phys-
ical control forces can be obtained by an inverse transformation. The result is a set
of physical control forces which are always distributed forces. However, when the
control system is implemented, the designed control forces are realized in this study
by actuating piezoelectric actuators. Because the control forces of actuators are not
distributed and the number of the actuators is usually limited, the physical control
forces may not be exactly the same as the continuously distributed for.ces required.
Therefore, the control forces applied by the discrete actuators will not only control
the ”designed” modes but they will also disturb the modes which the control force
should not affect. This problem is the so-called spillover problem. Another charac-
teristic of Independent Modal Space Control is that implementing the IMSC requires
the number of actuators to be equal to the number of the controlled modes. Without
this requirement, when transformed into the modal control forces, the physical con-
trol forces cannot produce the optimal modal control forces for the controlled modes.
The number of actuators required will pose a limitation if the objective is to reduce
number of actuators due to economical considerations, or physical constraints. For
example, in the case of piezoelectric actuators, the number of actuators used may be
dictated by the structure’s design, i.e., none of the actuators should lay on top of each
other. This problem has received a great deal of attention recently(Lindberg, 1982;
Baz and Poh, 1985).

Lindberg(1982) noted that the principal disadvantage of the Independent Modal

Space Control is the requirement that the number of actuators be the same as the



number of modes in the control system model. To counter this disadvantage, Lind-
berg used the least-squares approach, which is called pseudoinverse to transform the
design modal control forces into the physical space. The key issue is that the trans-
formation between the designed optimal modal control forces and the actual control
forces cannot be exact without a full rank transformation matrix or modal participa-
tion matrix. A full rank modal transformation matrix can only be produced by using
the same number of actuators as the controlled modes. By applying the least-squares
approach, an actual control force can be synthesized from the optimal modal control
forces. The results thus obtained will only be approximations to the optimal ones.
It is argued by Lindberg(1982) that by doing this, the fundamentals of: the optimal
control design were not violated, and the actuator number requirement can be largely
relaxed. This argument is true. However, as will be discussed later, the use of the
pseudoinverse approach in IMSC does have some problems. As mentioned earlier,
this approach is an approximate one. By only using the pseudoinverse method, there
is not much control over how close the results are to the corresponding optimal modal
control forces. As will be shown later, the control effort obtained by using the pseu-
doinverse approach could be concentrated on certain modes, leaving other modes only
slightly controlled. It is the author’s understanding that this phenomenon is depen-

dent on the inherent characteristic of each structure such as its mode shapes.

In another study (Baz and Poh, 1988), a different approach was taken to diminish the
actuator number requirement by Independent Modal Space Control. The scenario of
the method is that the modal vibrations of the flexible system are, first, ranked ac-
cording to their modal energy levels. The actuators are secondly dedicated to control
the modes which possess the highest modal energy levels. After a certain period of

time, the initial controlled modes have been suppressed and their energy levels fall



below the levels of other modes. At this time, the actuators are then directed to
control a new set of modes which now have the highest modal energy levels. Baz
and Poh have referred to this method as Modified Independent Modal Space Control.
The key to this method is the ‘time sharing’ of the actuators between the different
modes by switching the actuator control signals according to the modal energy lev-
els. The difference between the Modified Independent Modal Space Control(MIMSC)
and IMSC is that MIMSC requires extra control logic to determine which modes to
control to compensate for the actuator number requirement. However, we are still
faced with the problem that the effective control of the system over vibration modes
is structurally dependent. It will require different actuator designs to coﬁtrol different

modes efficiently. The MIMSC does not offer the bases for dealing with this problem.

It is one of the purposes of this study to comprehensively study the flexible vibration
control system design and develop a design methodology. That is to take various as-
pects of the system design into consideration, and to find an optimal solution among
the conflicting aspects. The advantageous feature of IMSC should be retained, i.e.,
to do the optimal control design in modal space independently. This feature is vital
for solving a large system. Then the cases, in which fewer actuators than the modes
controled are used, are dealt with. The weighted pseudoinverse method is introduced
to synthesize the modal control forces into the physical space. The synthesized ac-
tual control forces can then be used in an optimization process to determine the best
actuator designs. The goal is to achieve a economical system design under all the

constraints.

The introduction of the weighting matrix is a new method to converting the optimal

modal control forces into actual forces. The IMSC method is used to introduce modal



damping into the system. By doing this, the closed-loop eigenvalues of the system
are controlled, i.e., the eigenvalue positions of the system are relocated. The IMSC
controller will give a new set of locations of the system’s eigenvalues. The locations
are optimal according to index built in optimal control. However, when the pseudoin-
verse method is used, the implemented system will deviate from the design by IMSC.
Each closed-loop eigenvalue of the system will have a distance from its counterpart
in original IMSC design. The pseudoinverse method does very poorly in controlling
the discrepancies between the designed and the realized closed-loop eigenvalues. The
pseudoinverse method may give a very large eigenvalue discrepancy to one mode and
a small eigenvalue discrepancy to another mode. The large discrepanciés will result
in poorer controls over the related modes than it has been designed. The weighted
pseudoinverse method introduced in this research uses an optimization procedure to
search for a set of values for the newly introduced weighting matrix, which will guar-

antee equal control over all the controlled modes.

1.2 Actuator Placement

Determining the actuator locations and the sizes(i.e, shapes) is a very important issue.
The actuator locations can influence the efficiency of the control system. They also
determine if the system is stable or not. Some efforts (Kissel and Lin, 1982; Longman
and Lingberg, 1981; and Viswanathan, et al., 1979) have attempted to address the
problem with very diverse approaches. By eliminating all interaction between the
control system and a set of known residual modes which have been truncated from
the control system model, it is found that a large number of actuators are constrained
to achieve the desired isolation. A small number of actuators are then left available

for realizing the control objective(Kissel and Lin, 1982). In treating the general prob-
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lems, the concept of controllability has been used. Different kinds of controllability
definitions are given by Lindberg (1982). They include controllablity according to
time limit, or according to fuel limit, etc.. The efforts have been directed toward
giving general consideration to the actuator location design. However, the problem

becomes very complex with general cases.

In this study, the focus concentrates on a specific problem of finding the locations
and sizes of the piezoelectric actuators for control systems applying the Independent
Modal Space Control method. As discussed earlier, with the application of IMSC,
the control design is decoupled from the implementation. However, cc;nverting the
modal control forces to physical commands is not as straightforward as it seems to
be. The amount of energy used during the control action must be considered in the
design of actuator locations. The point force actuator placement problem has been
studied by Baruh (1981) and Lindberg (1982). As pointed out by Lindberg(1982), the
consequences of improperly chosen actuator locations can be disastrous. It is a simple
matter to generate examples which demonstrate that the forces or moments required
of a given actuator can grow without bound as the actuator location approaches a
position for which the system is uncontrollable. However, thorough studies of piezo-
electric actuator designs are few in the present literature. This study will address the
search for the systematic method of designing piezoelectric actuator systems which

perform most efficiently and effectively.

Hence, there are two primary objectives in optimizing the actuator design: firstly, to
find feasible designs which require minimum control efforts with minimum spillover
into the uncontrolled modes and secondly, to find the least-control-effort-requirement

actuator designs for the systems of using fewer actuators than modes controlled.



Even though the controller design and the implementation are independent of each
other in IMSC, this study will show that the optimal actuator design is still case
sensitive. In other words, an optimal design for a system under certain vibration con-
ditions may not be an optimum when the conditions change, i.e., initial conditions.
Therefore, an optimal design for universal situations may be hard to find. There
are two options: either confine the solutions to a narrow band of cases, or reach a
compromise which is the optimal design according to the statistical mean of all the
possible cases. While methods adopted in this dissertation would be suitable for the
first option, the second option is emphasized. The second option yields .solutions for

more general cases, and is more difficult to solve.

1.3 Actuators

Actuator characterization is not the main concern of this study. Actuator modeling,
however, constitutes the foundation of the control system. Thus, it is necessary to

choose a well formulated actuator model to conduct the study.

Many studies have been made on point-force type actuators. The actuators used
in this study are called induced strain type actuators. Induced strain type actua-
tors are able to generate strains due to stimulus other than mechanical stress. The
strains can be regulated by adjusting the intensiveness of the stimulus signal. Induced
strains occur in many materials. Thermal expansion can be considered as such an
induced strain. However, due to the small induced strain range and difficulties to be
controlled, usual materials are not of much use as actuators in this regard. Shape

memory alloy (Rogers, 1988) has been used as an induced strain actuator. Shape
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memory alloy(SMA) possesses not only the properties of induced strain but also the
ability to change its mechanical properties over a very large range. SMA fibers have
been embedded in composite structures to form an integrated entity, capable of struc-
tural modification (Rogers, Liang, and Jia, 1989), structural acoust control (Rogers,
Liang, and Fuller, 1989), and damage control. The structure can adapt to various
environments to render the optimal performance by adjustment of the actuator’s tem-
perature. However, shape memory alloy actuators have a large time constant, which

is a disadvantage when used in high frequency response situations.

Another family of materials able to generate induced strains are pieZ(-)electric and
electrostatic materials. These materials are mechanically deformable continua that
are electrically polarizable. Piezoelectric materials can generate negative or positive
induced strains when a voltage is applied along or against the polarization. Piezo-
electric materials have relatively small time constants and can be actuated in the kHz

region.

The characteristics of piezoelectric materials have been studied by Todda and Joh-
son(1979), Cross(1980), and many others. Systems using this kind of actuator have
been studied by Bailey and Hubbard, (1985), Anderson and Crawley, (1989), Wang
and Rogers(1111), and many others in the past five years. Forward(1981) has used
piezoelectric actuators to control the bending modes in a cylindrical mast-experiment.
In his very recent work, Anderson(1989) summarized various models describing the
interactions in the substructure between the structure and bonded actuators. Finite
element method has been used to check with the theoretical models. Crawley and de
Louis(1989) and Im (1989) have both proposed mechanical models for piezoelectric

actuators bonded to beam-like structures. The actuator model used in this study is

10



based on the results of Crawley and de Louis(1989).

1.4 Optimization

The optimization method used in this study is a numerical search technique. This
technique starts from an initial design and proceed in small steps, which intends to
improve on the values of the objective function and on the degree of compliance with
the constraints. The search is terminated when no more progress can be made in

improving the objective function without violating some of the constraints.

Trying to find the optimal actuator locations and sizes results in a global optimization
problem of multivariables with a nonlinear objective function and linear inequality
constraints. Global optimal solutions for nonlinear systems that contain several local
minima are relatively difficult to find. Searching for a global optimal point is still a
matter of active research in the optimization realm. Systematic approaches for global
optimization are rare for most general cases. Therefore, the choice of which is the
global optimum among a set of local optimums is made in this study according to

engineering understanding and some mathematical rules.

The optimization in this study can be divided into two parts. One part is to find the
optimal weighting matrix under preset actuator locations and sizes. The second opti-
mization procedure is to use the weighted pseudoinverse method to find the optimal
actuator designs. The actuator designs are then fed back into the first optimization

procedure. This iteration will be repeated until a convergency criteria is reached.

11



1.5 Scopes of Study

This investigation has been grouped into the following two sections:

e Study the approaches to determining the optimal actuator designs with or with-

out the spillover consideration, under the

Condition: an equal number of actuators are used to control an equal number

of modes of modes; and

Assumption: all modes are equally likely and uncorrelated.

e Study the approaches to determining the optimal actuator designs with or with-

out the spillover consideration, under the
Condition: fewer actuators are used than the modes to be controlled; and

Assumption: all modes are equally likely and uncorrelated.

In this second section, the weighted pseudoinverse method will be introduced.

12



Chapter 2

INDEPENDENT MODAL
SPACE CONTROL

The Independent Modal Space Control method was devised to generate a control law
for large dimensional systems(Meirovich,1981b). This control method can be utilized
in several different categories of structural vibration control. The are of interest for

this study is linear regulator systems.

Consider a distributed-parameter system whose behavior can be described by the

following equation of motion

2
Lu(P,t) + m(P) % = f(P) (2.1)

subjected to the boundary conditions
B;u(P,t) = 0 (z=1,2,...,n). (2.2)

Here L is a linear, self-adjoint differential operator of order 2n, u(P,t) is the dis-

placement, as a function of the position P and time t, m(P) is the distributed mass,

13



and f(P;t) is a distributed control force. The B;’s are also linear-differential opera-
tors. The solution of the associated eigenvalues for such a system is an infinite set
of eigenvalues Ay = wi? and corresponding eigenfunctions ¢x(P) (k = 1,2,...). The

eigenfunctions are orthogonal and can be normalized so as to satisfy

[ m(P)¢x(P) $u(P)dD = 84 (2:3)

| (P L&(P)dD = wi? b | (2.4)

where 6y is the Kronecker delta and the subscription D is the physical domain the
system occupaies. By making use of the modal expansion theorem(Meirovich, 1967),

the displacement of the structure can be expressed as

(oo}

u(Pt) = 3 $u(P)wk(t) (2.5)

k=1

where uy is the normal modal displacements. Introducing the above equation into the
equation of motion, multiplying both sides of the result by ¢,(P), and integrating over

region D, we obtain the open-loop modal ordinary differential equations of motion
uk(t) + wk2 uk(t) = fk(t), k= 1,2,... (26)

where

filt) = /D &u(P) f(P,1)dD, k=1,2,.. (2.7)
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are generalized modal control forces, and
ur(t) = /D Su(P)u(P,t)dD, k=1,2,--- (2.8)

are the modal displacements. An auxiliary variable v(¢) may be introduced and

defined as
vk(t) = dk(t)/wk k= 1,2, cee (29)

By introducing the two-dimensional modal state vector wi(t) and the associated con-

trol vector W(t) in the form

0 (2.10)
Wi(t) =
KO { e )
k=1,2,
and introducing the 2x2 coefficient matrix
Ac=| O @] ko1 (2.11)
—w 0 y &y 9

the modal vibration equations can be written in the modal state form

wi(t) = Argwe(t) + Wi(t) k=1,2,--- (2.12)

In Independent Modal Space Control, it is assumed that Wy depends on wy alone,

15



ie.,

Wi = Wi(we) k=1,2,--- (2.13)

Independent Modal Space Control permits both linear and nonlinear control. Linear

feedback is the case considered here,

Wk(t) = Fk wk(t) k= 1,2, e (2.14)
where
F, = [ ;‘;; ;‘;Z l k=1,2,--- (2.15)

is the 2x2 modal gain matrix. Substituting Eqs.(2.14) into Eq.(2.10), the following

equation can be obtained,

— fklluk(t) + fk]g’l)k(t)

0
{ Felwx } B { frnuk(t) + fea2vr(t) } k=12, (2.16)

which can be satisfied only if fy11 = fi2 = 0 (k=1,2,...), and from which it follows

that the modal gain matrices have the form

0 0
F, = k=1,2,--- 2.17
¢ [ frar frz ] (217)
Therefore, Eq.(2.7) has the form
Fi(t) = Wi fezmur(t) + frazva(t)] = frmwiun(t) + frooue(t) k=1,2,---  (2.18)

16



so that the modal control force f; is proportional to both the modal displacement
uy and the modal velocity v;. For optimal control, these gains can be determined by

minimizing a quadratic cost function of the form

J=> Uk (2.19)
k=1
where -,
t
Jp = A ! (w;{kak -+ WERka) dt (220)

is the modal cost function, and ¢y is the final time. Q)x and R, are weighting matrices.
Because W, depends on w; alone, the modal cost functions are independent. The J,
therefore, can be minimized by minimizing each modal cost function J; independently.

Minimization of Ji leads to

Wk = —R;lKk(t)wk(t) (221)

where the elements of the 2x2 symmetric matrix Ky (t) are the solutions of the matrix

Riccati equation (Kirk, 1970)

K = —k Ay — ATK, — Qi + Ky R\ K, (2.22)

Here Qi = w?I is chosen. Since the feedback solution, Eq.(2.21), must yield a gen-
eralized force vector of the form specified in Eq.(2.10), a further restriction on Ry is
imposed. Expanding the second term in the modal cost function gives wf Rywy =

(fi(t)/wr)?Riga, from which we can see that only the Ry, term from Rj influences

17



the cost function. The form of Wi(t) in Eq.(2.10) can be obtained by required the
first row of R;' of Eq.(2.21) to be zero. Therefore, by symmetry the remaining off

diagonal elements are zero. That is
(2.23)

The steady state solution is our interest. For convenience in later use, the gains

factors are redifned as

g = fin = —wi® +wp [wi + (1/7')]1/2
he = frog = {—2wi2 + (1/7) + 2wy [wi? + (1/1‘)]1/2}1/2 (2.24)
k=1,2,--
The above results can be interpreted as the optimum to keep the state vector as close
to the origin of the state space as possible with minimium control effort, and without

increasing the total energy of the open loop system. In this case, the final state is

fixed, and the final time follows according to the minimal principal.

Substituting Eq.(2.24) into Eq.(2.18), and then the result into Eq.(2.6), we obtain

the closed-loop modal equations

ﬁk(t) + hk‘dk(t) + (wk2 + gk)uk(t) =0, k=1,2,--- (225)

Figure 2.1 shows the open-loop and closed-loop eigenvalues. It can be clearly seen
that the control strategy is to influence the system characteristics. The control forces

relocate the eigenvalues of the system. The control has little influence on the imagi-
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Figure 2.1: Open-loop and closed-loop eigenvalues
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nary part of the eigenvalues, and gives nearly equal shift of the eigenvalues over the
real axis. This shift means that the controlling time for each of these modes will be
nearly the same. Due to the damping effect of the control, the closed-loop natural
frequencies will be changed. The change ratios in this aspect vary from mode to

mode, because the original open-loop eigenvalues are quite different.

20



Chapter 3

SUBSTRUCTURE MODELLING
OF PIEZOELECTRIC
ACTUATOR SYSTEMS

An introduction to piezoelectric materials, which are used as the actuator material of
the present study, are given in the first section. In the second section, a mechanical
model of piezoelectric actuators when used in beam-like structures is derived accord-
ing to Crawley and Javier(1987). The incorporation of the actuators into the control

system follows in the third section.

3.1 Piezoelectric Materials

Piezoelectricity is the ability of certain crystalline materials to develop an electric
charge proportional to a mechanical stress. The prefix of piezoelectric, piezo, is a
Greek word meaning “to press”. External stress of one kind or another on crystals
of these classes will cause an electrical polarization. The converse is also true in the
same materials. An applied electric voltage will generate a geometric strain (defor-
mation) proportional to the voltage applied. A thorough and absorbing review of the
early piezoelectric crystals can be found in the works by W. G. Cady(1946), Henry
(1969), or Mason (1971).
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Certain crystal structures result in the appearance of dipoles. Dipoles are positive-
negative pairs: equal and opposite electric charges or magnetic poles separated by
small distances. For the piezoelectric interaction to exist, certain axes of the medium
must possess intrinsically polarity. Although this polarity is inherent in the sym-
metry of some crystal classes, it is absent in principle in other crystal classes and
in isotropic bodies. Until 1944, Ceramic materials, being either oxides or mixtures
of oxides, were not considered as possessing piezoelectricity (Jaffe, 1971). A pro-
cess, called “poling”, was found to generate the polarity to an originally isotropic
polycrystalline ceramic. This poling is more or less permanently accomplished, by
a temporary application of a strong electric field. The poling process is analogous
to the magnetizing of a permanent magnet. Piezoelectric ceramics will be our main
concern for this study. However piezpelectric polymers and rubber composites do
exist, piezoelectric ceramics can transfer more strain energy for a given field due to

their relatively high modulus(Anderson, 1989).

To maintain consistency with other literature on the piezoelectrics, the nomenclature
used in this section will be according to the IEEE standard and will differ from the
counterpart in mechanics. However, the differences will be explained, and use of this
nomenclature will be confined to this section. Beyond this section, the results will be

converted into general mechanical engineering terminology.

For the special case of a piezoceramic, the constitutive equations take the following

22



form (Jaffe, 1971 and Crawley, 1989)

( D, ) [ 0 0 0 0 0 0 dis 07 (E;)
D2 0 Cg 0 0 0 0 d15 0 0 Eg
D3 0 0 Cg d31 d31 d33 0 0 0 E3
Sl \ — 0 0 d31 SIEI SlEz S13 0 0 0 T] \ (3 1)
S 0 0 dy 5 5 5 0 0 0 || T '
S3 0 0 d33 3{;3 Sg 853 0 0 0 T3
Sy 0 dys O 0 0 0 sE o0 o T,
Ss ds 0 0 0 0 0 0 sZ o Ts
[ S6 | | 0 0 0 0 0 0 0 0 s&| (T )

where T and S are mechanical stress and strain, respectively; E and D are electri-
cal field and electrical displacement. The s’s are the mechanical compliance matrix
elements, €'s are the dielectric matrix elements, and d’s are the electromechanical
coupling matrix elements. The superscript T and E mean, respectively, that the
quantities are taken at constant (or zero) stress and constant (or zero) field (also

known as “short circuit”).

The emphasis is placed on the one-dimensional effects of piezoelectric materials, be-
cause the application will be for beam-like structures. For this reason, only the portion

of the constitutive relation required for this application is discussed further.

Let us first assume that the direction in which we orient the beam is z,. For the

piezoelectric strain in the z; direction, the constitutive relation becomes

S] = d31E3 + SﬁTl + SﬁT2 + .Sﬁ;T;; (32)

where FEj is the electrical field applied perpendicular to the piezoelectric surfaces.
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The quantity E3 is renamed V, i.e., the voltage applied. The quantity dz; is the
“piezoelectric strain coefficient”. The piezoelectric strain coeflicient, ds;, characterizes
strain perpendicular to the poling direction due to the electric field (Es, or V) aligned
with the poling direction. T is the stress induced by mechanical forces. T; and T3 are
the stresses in the other two directions. s¥ is the inverse of the piezoelectric stiffness
and s;2 and s;3 are the coupling terms between the stress in other directions and
the strain in z; direction. Figure 3.1 shows the coordinate system of a piezoelectric
actuator. Here we assume that there is no stress in any direction except the z;
direction. That is, let T, = T3 = 0. Thus, the piezoelectric constitutive relation

reduces to
Sl = d31E3 + Sf’;Tl . (3.3)

Now, writing the above equation in mechanics terminology, letting ¢, be the piezo-
electric strain in z, direction, V the voltage applied at z; direction, E, the Young’s

modulus of the piezoelectric, and o, the piezoelectric stress at x; direction, we have
1

€& = duV + T O & = A+ —o0,. (3.4)
1 4

The term A = d3;V is the induced strain under stress free conditions. The properties
ds; and E, are not constants. They are dependent on the applied electric voltage.
But the associated nonlinearity has been excluded from this study. Both ds3; and E,
are treated as constants independent of the magnitude and frequencies of the applied

mechanical stresses and electric field.
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3.2 Mechanical Model

In this section, the mechanical model for the interaction between the actuator and
the structure is derived from the work of Crawley and Javier(1987). Figure 3.2 shows
the geometry of piezoelectric actuators bonded symmetrically by two finite-thickness
bonding layers to two sides of an elastic structure. It is assumed that the voltages
will be applied in opposite directions on the top and bottom piezoelectric actuators
to initiate bending deformation in the structure. In this case, one of the actuators
will expand and the other contract. They will cause a zero extension effect and an

enhanced bending effect in the structure.

Figure 3.3 gives the assumed strain profile through the cross-sections of the actu-
ators and the substructures. It should be noted that a uniform stress distribution
throughout the actuator thickness has been assumed. The effects of this assumption

are described in detail by Anderson and Crawley(1989).

First, let us take an infinitesimal length element of the structure, dx, as shown in
Figure 3.2. The following two relationships can be derived for the displacement and

strains in the actuators and on the surface of the beam, respectively,

du
& = d_:: ’ (35)
du’
s = 2 3.
¢ =3 (36)

The superscript s denotes that the quantity is on the surface of the bean structure.
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Subscripts p and s denote the piezoelectric actuator and strucuture, respectively. For
example, u} denotes the displacement on the surface of the beam. By assuming pure
one-dimensional shear in the bonding layer, the shear strain in the bonding layer has

the form

: (3.7)

The equations of motion for an element of the actuator or that of the substructure

are

do, T
—_——— — = 3-8
dz t, 0 (38)
do aT

= = 3.9
dx + ts 0 (3.9)

where o is a constant depending on the assumed beam strain distribution. For a

linear Bernoulli-Euler distribution, a = 6.

The stress-strain relationship for the piezoelectric actuator was found in the last

section to be

op = Ep(e, — A) . (3.10)
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For the beam and the bonding layer, the isotropic stress-strain relations are

o) = E,€] (3.11)

T = Gy. (3.12)

Up = U C3.13)

Then, combining the above equation into Eq. (3.8) and (3.9) yields

do, G
- _ = —u®) = 14
d.’E tbtp (uP us) 0 (3 )

do® oG
et —(up,—ul) = 0. 3.15

Substituting Eq.(3.10) into Eq. (3.14) and Eq.(3.11) into Eq. (3.15), we obtain the

equations of motion in terms of displacements and strains:

de, G o
Ep% - E(UP bt us) = 0 (316)
de¢ oG
2 —ul) =0. 1
et o) = 0 (3.17)
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Differentiating the above equation, then substituting Eq.(3.5) and Eq. (3.6) into the

results, we obtain the equations of motion in terms of strains only,

d’¢, G

Z P e —€) =0 3.18
d26§+aG( 5) = 0 (3.19)
a2 T e, —€) = 0. .

By manipulating Eqs. (3.18) and (3.19), the following relation can be found:

aE,d’, _  E,d’¢
t, dr? t, dr?

(3.20)

Equation (3.20) gives the coupling between the two strains, €, and €]. Next, we want
to decouple the two equations of motion. Again, the Eq.(3.18) and Eq.(3.19) are

differentiated twice, and then substituting Eq.(3.20) yields

d'e, G aEpt,\ d%e
—_— - 1 #> —2 =90 3.21
dzt i, E, ( + E;t, /) dz? ( )
d‘¢: oG Ejzt,  d*e

2 _ )2 % . 22
o B T Erd) a0 (3.22)

According to the coordinate system given in Figure 3.2, we can nondimensionalize the
x axis by letting T = z/c. The two end-coordinates of the piezoelectric are 1 and -1,

respectively. Equations (3.21) and (3.22) can be transformed into the nondimensional
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coordinate form,

d"ep_ Gc? (1 aEptp) d’e,
dzt 4t FE, E,t, /) dz?

d‘¢  ac’G E.t, d*e
— — 1+ )=
dzt it E, E,t,o’ dz

Next naming

r? — Gc? (1+aE,,tp)
tht, E, Et,

and

we have the equations of motion in the decoupled form:

ﬁ 2& =0
dz4 dz?
ﬁ 2@ =0
dz4 dz?2 "’

and the Boundary conditions are

=0

=0.

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)



Because the actuators have free edges, the strains of the actuators are equal to the
free induced strain on the boundary. The terms €2~ and €* are the strains present
without the piezoelectric actuators. They give a nonlinear boundary condition when

used in the dynamic boundary situation.

The general solutions of Eq. (3.27) and (3.28) are

e, = A} + A5z + AL sinh 'z + A} cosh 'z (3.30)

€; = A] + A3 + A3sinh I'z + AjcoshI'z . (3.31)

Making use of the relationship given in Eq.(3.20), the second partial of beam surface

strain with respect to x can be written as

Lo, _ _¢84

dz? =~ adz?’

(3.32)

By substituting Eq. (3.30) and (3.31) into Eq.(3.32), the number of arbitrary con-
stants can be reduced to
AL = —y/ad; = —Y/ads
Al = —¢/aAl = —¢/aAy
(3.33)
AV = A} = A

A3=A;=A2
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Therefore, the general solution becomes

€ = Al + AQJ_I - A3% sinh 'z — A4% coshT'z (334)

€ = A1 + A2Z + A3sinhT'z + AycoshT'z . (3.35)

Substituting the boundary conditions into Eqs.(3.34) and (3.35), the arbitrary con-

stants can be determined

A= _'/: ~ (‘5+ ; 63_) (3.36)
= ﬁ _ (6:+ . s _ %A) (3.37)
=T ac; sinh T <e;+ 3 I A) (3:38)

Substituting the strains into Equations (3.5) and (3.6), then integrating the results,

the displacements of the actuator and beam surface are calculated. The displacements
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are used to find the shear stress as given in Eq.(3.12),

(3.40)

T =

Ge | (et — €~ r coshI'z 4 et + e~ sinh 'z
I 2 sinhT 2 coshT

which is the shear stress distribution in the bonding layer. Figure 3.4 shows the profile
of the shear stress throughout the interface between the actuator and the beam under
different values of T'. It should be noted that when the bonding layer becomes thin
and the value of I' becomes larger, the distribution becomes concentrated on the two
edges of the actuator. That means that the actuator begins to act as a concentrated

force on the beam surface at the actuator edges.

In this study, the bonding between the actuator and the substructure is very thin
and stiff. That is to say that ' — oo. By performing the following calculation, the
forces exerted by the actuator at the two edges and the strains of actuators at the

beam surface can be determined

€ = Ierrolo 6(T,z) (see Eq.3.34) (3.41)
€ = lim €(I',z) (see Eq.3.35). (3.42)

In this special case, the two strains are equal,

d) 6.~7+ + C.s— 63+ _ 63— _
— 5 — s s s ] . 343
CP 63 d’ + a 2 + 2 T R ( )
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And

c

F=lm [ —7(Z)dz. (3.44)

I'—oo Jo

By taking this limit, the entire shear force is effectively transferred to a concentrated

force at the ends of the piezoelectric actuator. This force applied at Z = +1, is

Bt (€T +€ + et — 6:_:17: Ek.,t,bA

Y+a 2 2 Y4a (3.45)

F

Because the actuators have been arranged symmetrically and excited in opposite

directions, the following moment is applied to the beam
M = Ft,. (3.46)

The voltage required to induce a desired moment applied on the beam is

1 vy+a 1 ej++e§‘+ej+—ej_

1 _ L z| 3.47
do B2 dy | 2 7 (347)

In Eq.(3.47), the second term is merely the representation of the additional passive
stiffness added by bonding a reinforcement to the surface. It will be neglected, because

it is not significant when the beam deformation is small.

3.3 Determination of Modal Control Forces

In the last section, It was shown that one-dimensional piezoelectric actuators can be
modelled as a pair of moments acting on the beam at the two ends of the actuator

under the assumption the bondings are very thin. The objective of this section
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is to use this model to represent the control forces in Independent Modal Space
Control systems. To include the moments into the equation of the beam vibrations,
the moments are approximated in terms of two pairs of equal but opposite forces,
thereby creating a couple. The forces in the same pair will have a distance dz between
them(see Figure 3.5, b.). Figure 3.6 shows a beam system with n piezoelectric actuator
pairs bonded to it. In this system, there are n pairs of moments which can be excited
to satisfy the control requirement. Therefore, the forcing term in the equation of
motion, Eq.(3.1), with n actuators in the system, can be written as
f(z,t) = £io FQ@)[ 8(a; — ¢; — Az) — §(a; — ¢;) +

(3.48)
5(a_,~ + C; + Ail') — 6(aj + Cj)] .

The modal control forces are obtained by transforming Eq. (3.48) into modal space
by following the same procedure used in Chapter 2. The modal control forces thus
obtained are:

fe(®) = Jo Tiey de(2;)F5[ 6(a; — ¢; — Az) — b(a; — ¢;) +
(3.49)

6(0,]' + ¢ + A:ZI) — 5(0,]' + cj)]d.?:

where § is the Kroneker Delta. Integrating over the a length from 0 to 1, the modal

forces are found

fi) = Tio Fil éela; +¢; + Az) — dila; + ¢;) —
(3.50)

or(a; — ¢;) + dr(a; — ¢; — Az)].
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Noting that the moment M; = F;Az,

fit) =20 M [du(a; + ¢; + Az) — di(a; + ¢;)]/Az—

(3.51)
M; [¢i(a; — ¢;) — di(a; — ¢; — Az)]/Az .
By taking the limit as Az — 0, we obtain
fil®) = 30 M;[8(a; + ) — dila; — ¢;)]. (3.52)

=1

Therefore, the relationship between the optimal modal control forces and the actual

control moments exerted by the piezoelectric actuators is:

’ f] 3\ ’ M1 p
f2 Bll BIZ ot Bln M2

I Al I A (353)
. Bml Bm2 ot an )

\fm Vs \ Mﬂ- 7

Here m is the number of the controlled modes and n is the number of actuators.
The matrix B is called the modal participation matrix. The matrix B determines
how much each mode will be affected by the actuators. By naming n; = a; — ¢; and

(; = aj + ¢j, the matrix B has the form

B = [By] = ¢4(¢) — ¢in;) - (3.54)

If m # n, i.e., if the number of actuators is not the same as that of the controlled

modes, then the B matrix will not be square and the inverse of B cannot be found.
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Chapter 4

OPTIMAL PIEZOELECTRIC
ACTUATOR LOCATIONS AND
DIMENSIONS

In this chapter, the problem of finding the optimal locations and dimensions of the
actuators will be formulated and results presented, based on the fundamentals in-
troduced in the proceeding chapters. This chapter deals with optimal piezoelectric
actuator designs when the number of actuators is equal to the number of modes con-

trolled.

The objective of this chapter is to formulate a methodology to search for the optimal
design of the piezoelectric actuator systems which requires the least control effort,
i.e., the polarization voltages to activate the actuators. Chapter 3 has shown that the
polarization voltage is proportional to the required control moments. Therefore, the
control moments can be used as the equivalent quantities to the polarization volatges
in the optimization objective function. Because the moment terms appear directly in
the equations of motion, the formulation using control moments will be simpler than

using control voltages.
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4.1 Introduction

Independent Modal Space Control decouples the distributed structural vibrations into
a series of one degree of freedom modal vibrations. Each of the control laws are de-
signed in the modal space. The modal control forces obtained by IMSC in modal
space will be shown to be a deterministic function of time for each specific initial

condition.

By utilizing IMSC, the controlled vibrations of each mode can be described by
ﬁk(t) + hpug(t) + (wk2 + gk)uk(t) =0, k=1,2,---. (4.1)

Name wi = \/gx + w} and & = ﬁ, where superscript ¢ denotes that the quan-

tity is modified by adding the control forces. Equation (4.1) can then be written

as
() + 26wiin(t) + (W) u(t) = 0, k=1,2,---. (4.2)

The solution of the above equation with an initial displacement uo and initial velocity

'L.lko 1s

Ugo + Eewi“Uko sin (e )] (4.3)

e!

up(t) = e~ uyg cos(wit) +
s

where w;® = wi°+/1 — €2. The optimal modal control force, as described in Chapter
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Te(t) = grwrui(t) + hrix(t). (4.4)

Figure 4.1 (a) shows vibrations of the first three modes. Figure 4.1 (b) shows the op-
timal modal control forces corresponding to the modal vibrations generated by initial
displacements. These two figures demonstrate that the abstract modal control forces
for each modal vibration of specific initial conditions are deterministic-function of
time for each specific initial condition. Therefore, IMSC produces a vector of modal

control forces, elements of which are state functions of time.

In chapter 3, the moments exerted by the piezoelectric actuators and the modal

control forces were found to be related to each other by the following relationship:

( fl ) ( M1 )
f2 By By, - - - By, M,
I B A IR B (4.5)
. Bni Bn, - - - Bpn )
\ fm P, \ Mﬂ p,

Here Matrix [B] is the so-called modal participation matrix, which is determined by

the actuator location and dimensions.

Because vector { M} is the actual moment exerted by the actuators, the magnitude of
its components will be the main concern. Two arguments can be made at this point.
The first argument is that the modal participation matrix directly affects how large

the actual control moments must be to produce the abstract modal control forces {f}.
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The second argument is that the modal participation matrix has different effects on

different distributions of the modal vibrations.

The second argument can be visualized by refering to in Figure 4.2. In figure 4.2,
the first two modal control forces are assumed to fall in the circle, shown at the left
of the figure. Each point inside the dark circle will correspond to a possible modal
control force vector(here, only for the first two modes). Then by choosing different
modal participation matrices B, the modal control forces are transformed to different
actual actuator moments, each of which falls into one of the three oval domains in
the M; and M, coordinate systems, corresponding to the matrix B. A s.peciﬁc point
marked by the circle is translated into three points in the actual control moment co-
ordinates by different modal participation matrix B. In two cases, referring to the top
and bottom oval domains, the modal control forces are enlarged; in the middle case,
the modal control forces are reduced. It is shown clearly that the modal participation
matrix affects to a great extant the translation of the modal control forces into the

real control moments.

The modal participation matrix will have a very complex effect on the translation
from modal control forces into actual control moments. The tranformation effects are
dependent on the type of combinations of modal forces. As pointed out earlier, the
top case in Figure 4.2 shows enlarged actual control moments for the point marked
by the circle; however, the point marked by the square is reduced. A conclusion can
be reached that the transformation function of the modal participation matrix varies

with respect to the different modal control force vectors.

Because the modal control force vector depends on the initial conditions, which are
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not deterministic, and time, the modal control forces are treated as random variables,
which randomly distributed in the modal forces domain according certain probability
intensity function. As functions of the modal control forces, the actual control mo-

ments are also random variables.

The modal participation matrix plays as a parameter in the function relating these
two sets random variables: the modal control forces and actual control moments. The
final objective of this study is to find the optimal actuator locations and dimensions.
The optimal actuator design will yield a modal participation matrix which requires

minimal mean actual control moment to implement the design control.

4.2 Minimization of Control Effort
4.2.1 Objective Function

The last section demonstrated that the actuator locations and sizes affect the magni-
tude of the actual control efforts required to realize the modal control forces designed
by Independent Modal Space Control. In this section, the derivation will be conducted
to formulate the objective function for minimizing the control effort by properly lo-
cating and sizing the actuator. The search of the actuator locations and dimensions
should be in a manner such that the design constraints of the piezoelectric actuators
are satisfied. Defined in chapter 3, the vector {M} is a collection of the moments
generated by the piezoelectric actuators. The smaller the elements of {M} are, the
lower control efforts are. Although terms in {M} can be either positive or negative,
it is the magnitudes of their elements that are of greatest concern. Therefore, it is

natural to use the norm of the vector, {M}7{M}, as the quantity to minimize.
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As mentioned before, the IMSC approach requires that the number of the controlled
modes be equal to the number of actuators (nact=modc). This implies that the
modal participation matrix will be a square matrix. An inverse of the matrix will
exist,, if the system is controllable This requirement of equal number of actuators as
controlled modes will be complied with in this chapter. Using Eq. (3.53), the actual

control moment vector can be found

{M}=B"{f}. (4.6)

Therefore, the norm of the control moment vector is

{MYT{M} = {f}'B~T B7'{f}. (4.7)

The matrix B~! can be decompose into the product of two unitary orthogonal ma-

trices and a diagonal matrix:
B ' =v\VT (4.8)
where [);] is a diagonal matrix, and J; is the ith eigenvalue of matrix B~'. V is an

orthogonal matrix consisting of the eigenvectors of B~!. Substituting Eq.(4.8) into

Eq. (4.7), the norm of the control moment vector becomes

{MYT{M} = {FYTVINVT VIMVT{S}. (4.9)
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Because of the orthogonality of matrix V, VIV =1,
{MYT{M} = (Y VINIVT{f) (4.10)

As discussed earlier, {f} is assumed to be random. Therefore, the mean value of the

control efforts is used
E[{M}"{M}] = E[{f}Y'VA’VT{[}]. (4.11)
Next, we define another vector {F},
{F}=VT{f} (4.12)

where the terms in vector {F'} are

nact

Fi=3% Vi (4.13)

Therefore, by defining this new vector, Eq. (4.11) will take a simpler form of

E{MYT (M) = 3 X2E[F] (414

=1

Here J; is the ith eigenvalue of matrix B~1. The problem now is to find the solution
of E[F?].
In order to obtain the mean values in Eq. (4.14), the following assumptions are made

concerning the modal control forces:

e each modal control force considered will be within the range from -b to b;
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o the modal control forces considered are uncorrelated with each other;

¢ each modal control force is uniformly distributed in the range from -b to b.

Based on these assumptions, the density function for the probability of n modes

considered is (see Fig. 4.3)

p(f1, e fa) = o) (4.15)

Therefore, the mean value of the control efforts is, (Mendenhall, 1986),

BE=f . [ (= ,.fJ) G s e (416

Expanding the summation term inside the integration and performing the integration

yields

b2 nact 2

E[F?] = Z _ (4.17)
Substituting Eq.(4.17) into Eq. (4.14), the mean value of the control moments are
found

b2 nact

E{MY {M}] =3 3 X (4.18)

=1

From Eq. (4.18), it can be determined that to minimize th control efforts, one must

minimize the sum of the squared eigenvalues of B~!.

b2 nact

Min (E[{M}T{M}]) = Min.( Z 2. (4.19)
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Because a constant number will not influence the minimization process, the objective

function becomes

nact
Min (E[{M}T{M}]) = Min.(>_ )%). (4.20)

i=1

4.2.2 Constraints

The structure used as an example in this study is a beam simply-supported at two
ends, which is shown by Figure 3.6. In this figure, the actuators and parameters
describing a actuator are shown too. The design variables for each actuator are
the location of its mid-point, a@;, and half its width, ¢;, as shown in Figure 3.6.
Each actuator consists of two patches symmetrically bonded on the top and bottom
surface of the beam to eliminate the force of the actuators in lateral direction. The
constraints on the the placement and size of m piezoelectric actuator on a uniform

simply-supported beam are stated:

o The two actuators at both ends of the beam must be confined to the beam

region. That is

Gzh=a1—c 20; (4.21)

and

G(m)nact-i-l = L - (am + C‘m) 2 1; (422)

where L is the beam length.
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e Two adjacent actuators can not overlap. Thus, the constraints can be written

as

G(z); = (a5 —c

4.2.3 Optimization Method

A summary of the derivation up to now and a comprehensive mathematical statement

of the optimization problem are given as:

Design variables:

a; ag ...... Anact
(8] Co eeuee Cnact
¢ Objective function:
nact
Min (E[{M}T{M}]) = Min.(>_ A?); (4.24)
=1
e Constraints:
G(z) =a, —c¢ >0
G(z); = (a; —¢j) — (¢j-1—¢j-1) 20 5 =2,3,....,nact;

G(x)nact+] =L- (am + Cm) _>_ 1’

Side bounds on the design variables

=]
IAIA
y)

A

&~



It is shown that this is an optimization problem of a nonlinear objective function
with multiple design variables, with linear constraints, and side bounds on the design

variables.

In the optimization process, Newton’s method(Cooper, 1970) with approximate sec-
ond derivatives is used in the direction finding of the unconstrained minimization. An
extended interior penalty function formulation is used for the inequality constraints.
A brief discription of the algorithm is given in the following section. More detailed

theory and the numerical methods are found in reference of Thareja and Haftka

(1985), Haftka (1985), and (Kavlie, 1971).

Extended Interior Penalty Function Method The idea of the penalty func-
tion method is to solve a constrained minimization problem by solving a sequence of
unconstrained minimization problems. A modified objective function, therfore, must

be defined which in some way incorporates the constraints.

The simplest way of doing this is to ensure that the new objective function becomes
large when the constraints are violated or approached. By adding terms which have
this behavior, multiplied by weighting factors which are successively reduced as the
calculation proceeds. The sequence of unconstrained minima approaches the con-

strained minimum point of the design variables under certain conditions.

4.2.4 Structure Parameters

The simply-supported beam is used to demonstrate the effectiveness of the opti-

mization procedures in this study. This beam has a length of 1m, Young’s modulus
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E = 6.9 x 10'°Pa, and cross-sectional area moment of inertia I = 1.125 x 10~1°m4,

4.2.5 Actuator Locations and Dimensions

First the optimal designs are presented. The discussion of these designs follows at
the end of this section. One notation should be explained here. An actuator i is
denoted as (a;, ¢;). Here the two numbers inside the parenthesis are the mid-point

coordinate and the half length of the actuator.

Figure 4.4 shows the single actuator system designs when used to control the first,
second, and the third mode. For controlling the first mode, the optimization opti-
mization process gives only one design, (0.5,0.5), which means to cover the whole
beam. For controlling the second mode, there are two optimal designs, (0.25,0.25),
or (0.75,0.25). For controlling the third mode, three optimal designs, (0.167,0.167),
(0.5,0.167), or (0.833,0.167). It should be noted that the optimal actuator length
covers a whole lobe, in case of one actuator design. This is because the B matrix,
now with only one element, has the maximum value when the actuator ends are at
the two adjacent nodes of the controlled mode. More intuitively, the actuator has the
most authority over the controlled mode when it can exert a moment pair of opposite
direction at the nodes of the mode shpae. The distance between the two moments
should be as great as possible, as long as they can still enhance each other. If a
actuator length covers beyond the lobe, the moments exerted at the two ends of the

actuator will have cancelling effect on each other in controlling a specific mode.

Figure 4.5 is the optimal design for two actuators when used to control two modes.
The cases shown control the first and second mode, the first and third mode, and

the second and third mode. Figure 4.6 shows the optimal designs for three actuators
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used to control two different sets of modes. The first three, and the second, third
and forth modes. In these designs, it can be seen that the actuators cover most if
not all of the beam. This agrees with the previous observation that the length of the
actuators determine their authority. However, when some modes are skipped, as first
and second modes showed in Fig. 4.5, and the first mode showed in Fig. 4.6, there

are will be some areas of the beam which the actuators do not cover.

The optimal actuator design should yield higher control efficiency. Figure 4.7 demon-
strates this effect. For certain modal control forces be realized, various actuator
designs require the piezoelectric to apply different moments. It is clea.rly shown in
Fig. 4.7 that the optimal design has a significantly smaller actuator moment than
those of the non-optimal ones. It is interesting to observe that the moments become
very large as the length of the actuator becomes shorter. The design of (0.5,0.1) needs

a moment which is almost five times as large as the optimal design.

In two actuator cases, the number of involved parameters increases. Comparing the
performance of the optimal and non-optimal designs is not so straightforward. A
different approach is used to compare the performances of the optimal and non-
optimal designs. Figure 4.8(a) shows the domain in which the modal control forces
f1 and f, fall. The actual control moment applied by the actuators are obatined by
transforming the points in this modal force domain into another domain of coordinates
consisting of actual control moments M; and M,. Because the modal participation
matrix B is full rank, the translation is 1 on 1. This means that for every single
point in the modal domain there is one and only one image point in the real control
moment domain. The reverse is also true. The dark skewed rectangular area in Fig.

4.8(b) shows image for the square domain of the modal control forces in Fig. 4.8(a),
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using the optimal designs, (0.25,0.25) and (0.75,0.25). Also in Fig. 4.8(b), the two
quadrilateral areas bordered by lines are the actual control moment domains when
two non-optimal designs are used. Both moment domains of the non-optimal designs
have larger areas than the optimal design. Therefore, the same modal control forces
non-optimal design will more likely require a larger moment than the optimal design.
One thing must be pointed out, not every actual control moment in the optimal de-
sign is smaller than the non-optimal counterpart. To demonstrate, in Fig. 4.8(b), the
domain indicated by dark rectangular has two corners beyond one of the domain of
the non-optimal design. As mentioned in the introduction, the optimal design sought
is for a general situation in which all of the points in the modal domain.are assumed
equally likely to appear or to have uniform probability distribution in the specified
modal control force domain. As long as the mean value of the moment of the optimal
design under various conditions are superior to those of the non-optimal ones, the

optimal design will satisfy the requirements.

Demonstrations of performances of three actuator designs will require a 3-dimensional
figures which cannot be viewed clearly. Therefore, to present a comparison between
control efforts required by various designs, the area of actual control moment domain
is used as index for the corresponding to the actuator system design. Figure 4.9 shows
the comparison between the applied moment’s domain area from an optimal design
and a non-optimal designs for a three actuator system. The bar shows the volume of
the moments domain for different actuator designs. The optimal design has a smaller
domain volume. Thus the optimal design will more likely generate smaller actuator

moments than the non-optimal designs.

To give a better description of the effects of the optimal design, Figs. 4.10 and 4.11
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are drawn. These two figures are the time history of the moments applied by the
actuators. Each mode has been given one centimeter initial displacement. For the
one actuator and two actuator systems, Figs. 4.10 and 4.11,, respectively, indicate

that the optimal designs yield smaller moments than the non-optimal ones.

Figures 4.12 and 4.13 introduce the subject which will be studied in the next section.
In Fig. 4.12, only an initial displacement is given to the first mode. All other modes
are set to have zero initial conditions. However, when controlling the first mode, the
third mode is excited. The thick line in the figure represents the third mode. In
figure 4.13, two actuators are used to control the the first two modes. Other modes
should have no vibration. The first two modes are controlled, but the third mode is
also excited. The following section investigates how the spillover can be reduced by

adjusting the actuator locations and sizes.

4.3 Minimization of Control Effort With Spillover
Consideration

As discussed in the last section, due to the discrete nature of the actuators, the con-
trol energy will not go exclusively into the controlled modes. The uncontrolled modes
are also affected. This effect is known as control spillover. We want to determine the
actuator locations and sizes such that the energy dumped into the residual modes
is minimized. However, by taking into consideration the spillover, more constraints
to finding the most efficient actuator designs for the control effort are added. The
spillover consideration and the control efficiency are two conflicting design goals, and

need to be balanced.

In the following discussions, it will be assumed that the first n modes are controlled.
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The energy spilled into other modes beyond the n controlled modes can be shown to

be

fn+l A{r

fas2 Bt Bgiz - - ° B -

. = | Bns2t B2z - - - Brion S (4.25)
\ Mﬂ J

In short form, if the subscription s is used to denote the spillover,
{f}s = B,{M}. | (4.26)
The norm of the spilled control efforts into the uncontrolled modes is
{£1."{r}s = {MY" BT B,{f}. (4.27)

Substituting Eq. (4.6) into the above equation, norm of the spilled control efforts

becomes

{14} = (/Y (B.B)B,B*{f}. (4.28)

For convenience of derivation, the matrix G, is defined
G, = (B,BY)"B,B™! (4.29)

Following the same derivation as in the last section, minimization of the sum of the
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eigenvalues of G,,

modc

Min{f}'{f.} = Min.[z: Xi(GY)), (4.30)

should give an actuator design which spilled minimal control effort into the residual
modes. However, the reduction of the energy pumped into the controlled modes
may yield a design which requires an increased control effort {M}T{M}. Thus,
there may be a conflict between maximizing the efficiency of pumping energy into
the controlled modes and reducing the energy spilled into the residual modes. The

following composite objective function is used to reach a compromise

nact nact

Min (MY {M} +a{f}T{f},] = Min>" A +a 3 A(B)] (4.31)

=1 i=1
Here a is a weighting parameter which determines the relative weighting of the
spillover reduction and the control over the controlled modes. In actual practice,
the number of modes considered as residual modes will be one or a few modes beyond

the controlled modes instead of infinite number.

The following are three example cases demonstrating the minimization of the resid-
ual mode vibrations. Figure 4.14 gives the actuator design for a one actuator case
controlling only the first mode with residual second and third modes. The designs
are shown in Fig. 4.14 for various spillover weighting factors. It is clearly shown that
when the weighting factor approaches zero, the actuator design becomes the optimal
designs without spillover consideration. Figure 4.15 shows the actuator design of
two actuators controlling the first and second modes with residual third and forth

modes. Figure 4.16 is the actuator design for the same case as in Fig. 4.15 except

71



WEIGHTING FACTOR

(050,0.33)

(0.50,0.33)

10 g e s L
(0.50,0.34)

1 0.4 i s
(0.50,0.35)
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0 01 02 03 04 05 06 07 08 09 1
BEAM LENGTH

Figure 4.14: The actuator designs with different weighting
factor when one actuator controlling first mode
with second and third modes as residual
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Figure 4.15: The actuator designs with different weighting
factor when two actuator controlling first two modes
with the third and forth modes as residual
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0 01 02 03 04 05 06 07 08 09 1
BEAM LENGTH

Figure 4.16: The actuator designs with different weighting
factors when two actuator controlling first two
modes with the third mode as residual
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with only the third mode as residual.

The actuator length in the designs with spillover considerations is shorter than with-
out spillover considerations. It has been discussed in last section that a shorter
actuator has less control authority than a longer actuator. However, the shorter ac-
tuator is the result of compromising between reducing the spillover into the residual
modes and increasing the control efficiency over the controlled modes. As pointed
out earlier, the spillover reduction by actuator location design comes at the expense
of increasing the control efforts. This will be shown more clearly in Figs. 4.18 and

4.20.

The performances of actuator designs with spillover considerations are demonstrated
in Figs. 4.17 and 4.19. Figure 4.17 shows the third mode vibration due to the spillover
when only the first mode has an initial displacement. The magnitude of the third
mode vibration is reduced by a large factor in the actuator designs with the spillover
considerations. When one actuator is used to control first mode, the actuator is al-
ways place at the middle of the beam. At this position, the actuator is not able to
excit the second mode. This is why only the third mode is shown here. The same
trend of results are shown for the two actuators controlling the first two modes with

a residual third mode in Fig. 4.19.

Figures 4.18 and 4.20 show the actual control moments with and without spillover
considerations, for one actuator and two actuator systems, respectively. It can be ob-
served that the control moments have large values when the spillovers are considered
than when they are not considered. This is due to the shorter actuator lengthes as

a result of compromising the minimization of the control effort with the reduction of
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Figure 4.20: Comparison of control moments between designs

with and without spillover consideration for two actuators
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spillover into the residual modes.

The methodlogies derived in this chapter have been shown to be very effective by the
simulated numerical results. The csae study of one, two, and three actuator designs
have been given. The results show that the optimal actuator designs tend to have
the largest length possible. However, the consideration of spillovers into the residual
modes will make the actuators shorter, which reduces the actuator control authority
over the controlled modes and spillover into the residual modes. The optimal designs
give the best compromising combination of these two objectives according to the

weighting factor specified to the spillover into the residual modes.
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Chapter 5

FEWER ACTUATORS THAN
CONTROLLED MODES

It has been discussed in the previous chapters that a limitation using IMSC is that
the number of actuators required is equal to the number of controlled modes. The
actuator number requirement can become a serious obstacle when a relatively large
number of modes are required to be controlled such that the structural design can
not accommodate the required number of actuators. In this chapter, this actuator
number problem will be addressed. Approaches will be formulated and addressed to

alleviate this stringent actuator requirement of IMSC.

The existence of the actuator requirement is a result of transforming the IMSC de-
signed modal control forces into the actuator applied moments. From a mathematical
point of view, this problem is due to a linear transformation from a smaller dimension
space into a larger dimension space and is not a one-to-one transformation. It is the
main concern of this chapter to study the transformation between the modal control
forces and the actual actuator moments when the number of actuators is smaller than
the number of the controlled modes. Therefore, the formulation and discussions in

this chapter will assume that the number of actuators, nact, is smaller that that of

/
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the controlled modes modec.

5.1 Introduction

Three theorems of matrix theory and algebra, which will be referred to very frequently
in this chapter, will be given and briefly described. A detailed introduction to the
matrix algebra used in this chapter can be found in Foesythe (1967) and Halmos

(1974).
Statement 1: If matrix U is unitary and real and UTU = I, where I is unit matrix, U

is called an orthogonal matrix. A transformation Y=UX is then called an orthogonal

transformation. Here both Y and X are vectors.

THEOREM 1: (Hohn, 1964, p255) In E,, a linear transformation Y=AX leaves the

length of all vectors invariant if and only if it is a orthogonal transformation.

THEOREM 2: (Hohn, 1964, p255) em In E,, the inner product XTY is invariant

under an orthogonal transformation.
Here E,, denotes a n-dimensional space.
THEOREM 3: Singular Value Decomposition (Lawson, Hanson, 1974, p18)

Let A be an mxn matrix of rank k. Then there is an mxm orthogonal matrix U, an

nxn orthogonal matrix V, and an mXxn diagonal matrix § such that

UTAV =S8, A=USVT. (5.1)
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Here the diagonal entries of S can be arranged to be non-increasing; all of these entries

are non-negative and exactly k of them are identically positive.

The diagonal entries of S are called the singular values of A, which are invariant for

each matrix B.

The relationship between the modal control forces {f} and the actual moments { M}

applied by the piezoelectric actuators was derived in Chapter 2 and is repeated here

{f}modc = B‘modcxnact{M}nact (52)

where B is the modal participation matrix. Terms of B are functions of the actuator
location and dimensions as well as the modes controlled. Since an assumption has
been made in this chapter that nact < modc, the modal participation matrix is modc

by nact, a non-square matrix.
Applying the singular value decomposition theorem quoted at the beginning of this
section to the modal participation matrix, the modal participation matrix can be

decomposed into

T
Bmodcx nact — Umodcxmodcsmodcxnact Vnact Xnact (53)

83



where

oo 0 0 0 0
0 g9 0 0 0
Smodexnact =] 0 0 0 .. o .. 0 [, (5.4)
0 0 O 0 0
00 0 .. 0 .. 0]

The element o; are the singular values of the modal participation matrix B, and o; > 0

and ¢ < nact. Substitution of Eq.(5.3) into Eq.(5.2) gives
{FYmode = UnmodexmodeSmodexnact Vaetx nact {M Ynact- (5.5)
Multiply both sides by U7 and define
{FY=UT{f} {M}=VT{M}, (5.6)
then
{F} =UTUS{M}. (5.7)
From the fact that both U and V are unitary orthogonal, the above transformation
will leave the lengths of the two vectors invariant. What happens, geometrically,

is that the coordinate systems are rotated without changing the actual existence of

{f} or {M}. Through these transformations, the following form of the relationship
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between modal control forces and actuator forces is derived:
{F} = S{M}. (5.8)

The two orthogonal transformations introduced in Eq. (5.6) rotated the orientations
of coordinates in the modal space and the actual moment space. Because the singular
value matrix S is a diagonal matrix, Eq. (5.8) will show clearly the problem when
fewer actuators are used to control more modes. It needs to be pointed out that the
maximum vlaue of the number of the singular values k in Eq. (5.4) is act, i.e., the

number of the actuators. Substituting Eq.(5.4) into Eq.(5.8),

( O'IMI )
Fl 02M2
F2 .
= 9 O‘kMk (5 9)
0
Fmodc .
\ 0 7

Therefore, no {M} can be found to satisfy the above equation if the number of actua-
tors is less than the number of controlled modes. Because {M} = V{M}, no vector of
piezoelectric actuator moments can make the two sides of the above equation exactly
equal. In other terms, it can be said that, when a fewer number of actuators are used
than the controlled modes, the actuators can not realize exactly the control forces in

the modal space as designed by control theories.

Two remarks can be made at this point, first, the full advantages of nact actuators
can be taken only when the modal participation matrix has a rank of nact, which

will produce nact singular values. Secondly, since the relationship between the modal
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control forces and moment applied by the actuators possesses the unequal nature as
is shown by Eq. (5.9), the modal control forces cannot be exactly realized by acting
the actuators. However, it is logical to assume that different methods of controlling
the actuator moments will yield varying discrepancies from the designed modal forces
when transformed into modal space. It can be further argued that there should be
a set of actuator applied moments which give the minimal discrepancies between the
designed modal forces and the realized ones than any other set. For the remainder of
this chapter, the approaches to finding this optimal solution of the actuator control

moments are investigated to lower the actuator number requirement.

5.2 Pseudoinverse Method

5.2.1 Introduction to Pseudoinverse Method

As shown in the last section, a fewer number of actuators than the number of con-
trolled modes cannot realize exactly the modal control forces designed by IMSC.
However, a specific set of the actuator control moments can be sought to yield the
closest modal control forces to the designed modal control forces. This specific set of
actuator moments is the compromise point. At this point, the control efforts from
the actuators give certain control to all of the controlled modes even though none of

the modes receives the control effort that is optimal.

With the above argument in mind, the norm of error vectors between the designed

modal control forces and the realized modal control forces by piezoelectric actuators
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are formulated:

® = {e}"{e} = {{f} - B{M}}"{{f} - B{M}}. (5.10)

By differentiating ® with respect to {M},

0o T T
WZ_B {{r} - B{M}} - {{f} - B{M}}" B, (5.11)
and letting
0o
W = {0} (5.12)
which yields
— BT{{f} - B{M}} - {{f} - B{M}}"B = {0} (5.13)
- BT{{f} - B{M}} = {0} (5.14)
BTB{M} = BT{f}. (5.15)

To take full advantage of the actuators, the rank of B is retained to be nact which
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yields an inverse of BT B. Therefore, control moments are

{M} = (BTB)'BT{f}. (5.16)
The actuator moments thus obtained are the least squares solution of the equation
system relating the modal control forces and the actuator applied moments. The

expression derived above is a type of inversion of a singular system of linear equations

and is called the pseudoinverse. We define B* to be the pseudoinverse of B,
B*Y = (BTB)'BT (5.17)

This solution has been adopted by Lindberg(1982) to treat the fewer number of ac-

tuators than controlled modes case.

5.2.2 Essence of Pseudoinverse Method

Define
{f} = B{M} (5.18)

which is the realized modal control forces by applying the actuator moments {M}.

Substitute the pseudoinverse results (Eq. 5.17) into the above equation

{f} = BB*{f} = B(B"B)"'BT{f} ; (5.19)
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where { f } is the designed modal control forces according to IMSC.

Application of the pseudoinverse theorem cited earlier gives

B=USVT: BT =vsTyT,

Substitution of the above equations into Eq.(5.19) yields

{fy=UsvT (vSTUT usvT)-t vSTUT{f}.

Considering the fact that for unitary orthogonal matrices U and V

vt =vTu =1, vvl=VvTv =1,

and

{f}=UsvT (vsTsvT)' vSTUT {f}.

Making use of the definition of matrix S in Eq. (5.4) yields

STS = [diag(aiz)]nactxnact; (STS)_l = [diag(l/ag?)]nactxnact

{f} =USVT (Vdiag(e})]VT)™ VSTUT{f}.
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Because both V and [diag(c?)] may be inverted and V- = V7,

{7} =USVT V]diag(1/o?)VT VSTUT{f} (5.26)

{7} = USldiag(1/o})|STUT{f}. (5.27)

Expanding S[diag(1/0?)]ST, Eq.(5.27) becomes

1 0 0 0
1 0 0 0
(=00 0 0 .. 1 ... 0 |UT{f} (5.28)
0 0 0 0 0
000 0 .. 0 0 |

The above equation can be written as

nact modc

{f}= {Z > Uz’jUjkfk} (5.29)
7=1 k=1

The Eq.(5.29) demonstrates that the realized modal control forces are linear combi-

nations of the designed modal control forces. The realized modal control forces are

determined by the actuator moments from the pseudoinverse method. This linear

combination gives a minimal value of ® as defined by Eq.(5.9).

Equation 5.28 shows a linear transformation which is a one-to-one when the rank of
the transformation matrix is equal to the number of the controlled modes. However,

when the transformation is not full rank, the dimension of the image vector space
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will be smaller than that of the original space. This can be seen clearly in Figure
5.1. Figure 5.1 shows the design modal control force domain and the domain of the
realized modal control forces by using the pseudoinverse method when one actuator
is used to control the first two modes. The realized modal control forces fall within a

subspace of one dimension.

5.2.3 Problems of the Pseudoinverse Solution

To demonstrate the problems of the pseudoinverse approach, a case study involv-
ing a one-actuator design: (0.25,0.25), to control the first two modes will be used.
The actual control moment of the actuator is determined by using the pseudoinverse
method. Figure 4.1 has shown the controlled vibrations of the first two modes when
an equal number of actuators to the controlled modes is used. For comparison with
Fig. 4.1, Fig. 5.2 shows the vibrations of the first two modes when using one actuator

and the pseudoinverse method.

In Fig. 5.2, the vibration of the second mode is well controlled. The controlled vibra-
tion of the second mode is very close to controlled vibrations shown in Fig. 4.1 which
is under the optimal control according to IMSC. However, the control over the first
mode is not as satisfactory as the control over the second mode and is in fact very
poor. This phenomena is not limited to this specific case. Figures 5.3 and 5.4 show
cases of one actuator controlling the first three modes and two actuators controlling
the first three modes, respectively. In Fig. 5.3, the control over the first mode is the
poorest, and control over the second mode is poorer than the control over the third
mode. In figure 5.4, the control over the second mode becomes better because one

more actuator has been added, but the first mode is still poorly controlled.
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1.0

-1.0

\J 1.0

designed modal control forces domain === realized modal control forces domain

Figure 5.1: Designed modal control forces domain
and the realized modal control forces domain

by using pseudoinverse method
one actuator, (0.177,0.177), controlling two modes
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Further insight may be gained by looking at the closed-loop eigenvalues when the
pseudoinverse method is used. It has been shown, in Chapter 2, that the Independent
Modal Space Control determines the modal control forces which shift the closed-loop
eigenvalues of the system. Because of the fact that fewer actuators can not implement
these designed modal control forces, the shifts of the eigenvalues should not be the

same as that of the optimal ones.
Write the Eq.(2.25) in vector form,
(i} + [B1{i} + (fo] + oD {u} = 0 o ea0)
where
{@} = {fi1, ey timode } T3 {8} = {Htgy ey Umoac } 3 {u} = {2y oy Umoac )T (5.31)
and
[h] = [diag(hi)];  [w] + [g] = [diag(w:)] + [diag(g:)] - (5.32)
From the linear equation system, Eq.(5.30), the designed eigenvalues can be deter-
mined. In the case of fewer actuators than controlled modes, the modal control forces

are given by:

{f} = BB*{f} = B(B"B)"'B"{f}. (5.33)
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Substituting {f} = —[A]{u} — [¢]{u} into the above equation,
{f} = BB*{f} = B(B"B)™'B" (= [A]{u} — [g]{u})- (5.34)

Using these approximate modal control forces, the close-loop modal vibration equa-

tions become
{@} + B(B"B)™'BT[h]{u} + (B(BTB)™' BT[g] + [w]){u} = 0. (5.35)

Where K = B(BTB)'B7([g] + [v]) and C = B(BTB)~'BT[A]. It is shown in

Appendix 1 that the eigenvalues of the above equations can be solved from

0 I

_K —C —[diag\)] |~ * (5.36)

Figure 5.5 shows the comparison between the designed closed-loop eigenvalues and
the closed-loop eigenvalues when using the pseudoinverse method. Figure 5.5 (a),
(b), and (c) correspond to the actuator designs showed by Figs. 5.2, 5.3, and 5.4,
respectively. Figure 5.2 shows the controlled modal vibrations when one actuator is
used to control the first two modes; Fig. 5.3 shows the vibrations when one actuator
is used to control the first three modes; Fig. 5.4 shows the vibrations when two
actuators are used to control the first three modes. It can be seen that the realized
eigenvalues will have a very large deviation from the designed close-loop eigenvalues
when the modes are poorly controlled. For example, the first mode in all the cases

has a large discrepancy from its designed counterpart.
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5.2.4 Analysis of the Problem -

The error measure used in deriving the pseudoinverse is defined as

{e} = {{f} - B{M}}. (5.37)

The following scalar quantity is used as the index to be minimized to derive the

pseudoinvers,

modc

{e}T{e} = 2 e . (5.38)

where € = f,‘ - z?iclt B,‘ij.
By letting the derivatives with respect to {M} be equal to zero, the following linear

equation systems result

Bllel+ B2162+ -t Bmodc 1€modc = 0
Bl2el+ BZ2e2+ .t Bmodc 1€modc = 0 (539)
Bl nact€1+ BZ nact€2+ ...+ Bmodc nactmodc = 0.

By solving the above equation, the pseudoinverse results are found for vector M.
Inspecting the above equation, it can be seen that the ith error component has co-
efficients from the ith row of the modal participation matrix, which is calculated by
Eq.(3.54), and dependent only on the ith eigenfunction. It can be shown that the
values of the elements in the ith row of the modal participation matrix are always
larger than those in row i-1. This means that the error components, which indicates
the error for each corresponding mode, are treated unequally in the pseudoinverse

method because of the inherent characteristics of the error formulation for this spe-
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cific problem. By emphasizing certain modes in the error measure, more attention
is given to those modes. This results in more control effort being given to the em-
phasized modes, and less effort to the other modes. Because of this characteristic,
the lower modes are always poorly controlled, and the closed-loop eigenvalues of the

lower modes always have larger deviations from the designed values.

5.3 Weighted Pseudoinverse Method

From the analysis in the last section, it has been shown that a problem with the pseu-
doinverse method is that the errors of the control over different modes are weighted
differently because of special properties of the modal participation matrix. To counter
this problem, a weighting matrix is proposed in constructing the error index used to

find the actuator applied moments.

To avoid the problems discussed earlier with the pseudoinverse method, another error

index can be constructed:

® = {c}"Q{e} = {{f} - B{M}TQ{{sf} - B{M}}. (5.40)

where Q is a diagonal wieghting matrix introduced here to adjust the emphasis one
each of the error components. For the convenience of later derivation, Q) is represnted

by the product of another positive definite diagonal matrix R,

Q = RR = [diag(q;)] (5.41)
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where

l_ 0 0o .. Qmodc
and the elements of R are larger than 0, i.e., ¢; > 0.

Differentiating ® with respect to {M} yields

0o

500 - —BTQ{{f} - B{M}} - {{f} - B{M}}"QB.

Letting

0P
ooy =0

yields the equation:

— BTQ{{f} - B{M}} - {{/} - B{M}}"QB = {0}

which is equivalent to

— BTQ{{f} - B{M}} = {0}.

Equation (5.46) ca be further arranged into the form:

BTQB{M} = B"Q{f}.
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The rank of B is assumed to be nact. Thus BTQB may be inverted. Therefore, the

control moments can be found by
{M} = (B"QB)'B"Q{f} (5.48)

which differs from the previous pseudoinverse solution given by Eq. (5.16). Equation

(5.48) can be rewritten as
{M} =G{r} | (5.49)
where
G = (BTQB)'BTQ. (5.50)

In the present study, G is named the weighted pseudoinverse.

5.3.1 Essence of Weighted Pseudoinverse Method

Substituting Q=RR into the weighted pseudoinverse G,
G = (B'R RB)"'BTRR. (5.51)
Because R is diagonal, RT = R, then

G = ((RB)T (RB))"(RB)T R. (5.52)
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By representing RB with another matrix P, i.e., P=RB, G can be written in the

following form:
G=(PTP)'PTR=P*R (5.53)

When the weighted pseudoinverse method is used, the relationship between the real-

ized modal control forces and the designed modal control forces is

{f} = BG{f} = BP*R{f} | (5.54)

where { f } is the designed modal control forces according to IMSC. Premultiply a

unit matrix, ] = R™'R, in the above equation,

{f} = R"'R BP*R{f}, (5.55)

{f} = R'PP*R{f}. (5.56)

Decomposing P by using singular value decomposition
P=U'SVT (5.57)
where U’ and V' are orthogonal matrices, and S’ is the diagonal matrix consisting of

the singular values. The number of nonzero singular values will still be nact, because

the rank of P remains at nact. Utilizing the properties of the orthogonal matrices U’
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and V' as in section 5.2.2, the following expression can be obtained

(F}=R0'|0 0 0 .. 1 .. 0|UTR{f) (5.58)

The above equation can be written as

() = {Z'"E UL }  659)
=k B

It can be seen that the weighted pseudoinverse method also yields modal control

forces as linear combination of the designed modal control forces. However, in the

expression of the linear combinations of the weighted pseudoinverse method, a factor,

%"F, 1s added. Intuitively, by adjusting these weighting factors, certain modal control

forces can be given more or less attentions. The next step is to determine the weighting

factors to arrive at the best results.

5.3.2 Determination of Q Matrix

In earlier discussions, it was shown that the pseudoinverse method has an unequal
control effort distribution among the controlled modes. It also was shown that the un-
equal control effort distribution causes poor control over certain modes. The unequal
control effort distribution is because larger deviations exist between the designed
close-loop eigenvalues and the realized eigenvalues of these poorly controlled modes.
Introduction of the weighted pseudoinverse method gives the capability of adjusting

the control effort distributions among the controlled modes into the transformation

104



process of the modal control forces to actuator moments. The next step is to find
the matrix Q which produces equal deviations between the optimal and non-optimal

closed-loop eigenvalues of the controlled modes.

Let A; be the realized closed-loop eigenvalues and A; be the designed close-loop eigen-
values. Since the eigenvalues are complex numbers, we use Re();) to denote the real

part, and Im();) the imaginary part. The following index is used

¢ = mZ% [(Re“};eaﬁe(i‘))? + (Im(Age?A{)m (X")ﬂ ._ (5.60)

=1

The objective function is then

Min.(89(Q)). (5.61)

It should be pointed out that the determination of Q) is dependent on the B matrix
which is a function of the actuator locations and dimensions. Therefore, finding the
optimal Q) is based on the results from finding the optimal actuator designs. On the
other hand, optimal actuator designs are not independent of Q. Thus an iteration
process is needed to search for both the optimal q and optimal actuator designs.

Figure 5.6 show the flow chart of the process.

5.4 Optimal Actuator Designs

With the application of the weighted pseudoinverse method, the transformation from

designed modal control forces into the actuator moments has the form

{M}=G{f}. (5.62)
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INITIAL GUESSES:
(a(i),c(l) & Q(1,)

SEARCH FOR
OPTIMAL Q

QI‘I
SEARCH FOR
OPTIMAL (a(l),c(l))

n-th ACTUATOR DESIGNS

Qn-Q < 1TOLERANGE'I

|

FINAL VALUES:
(a(l),c(1)) & Q1))

Figure 5.6: Program structure for finding the
optimal Q and actuator designs
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As in the case where an equal number of actuators to controlled modes are used, the

norm of the actuator applied moments is constructed
{MY'{M} = {f}TGTG{f}. (5.63)

Utilizing singular value decomposition and properties of the unitary orthogonal ma-
trix, the objective function for finding the optimal actuator designs based on the

weighted pseudoinverse method can be derived:

nact .
Min (E[{M}T{M}]) = Min.(}_ A2). (5.64)

=1
The quatities ); is the singular values of the matrix G. It should be noted that G is

not a full rank matrix. Even though G is modc x modc, the rank of G is less than or

equal to nact.

5.5 Results and Analysis

5.5.1 Actuator Designs

Figure 5.7 shows the optimal designs for one actuator systems, using the weighted
pseudoinverse method. The designs for controlling two, three, and four modes are
shown when one additional work is considered the residual. It is apparent that the
actuator length becomes shorter when more modes are controlled. This is because
the controllable region for more modes are narrower than for fewer actuators. It can
also be observed that the values of the entries in the weighting matrix, Q, decreases

from Q(1,1) to Q(n,n), which increases the control over the lower modes.
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One actuator controlling the 1st four modes, 5th residual
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Figure 5.7: One actuator controlling more modes
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Figure 5.8 shows the optimal actuator designs for two actuators using the weighted
pseudoinverse method to control three, or four modes. In Fig.” 5.8, one additional
mode beyound the controlled modes is considered as residual. Again, it can be ob-
served that the lengths of the actuators becomes shorter and shorter when the number
of controlled modes becomes larger. The weighting matrix entries have descending

values from Q(1,1) to Q(n,n).

Figure 5.9 (a) shows the controlled modal vibrations when one actuator is used to
control the first two modes. For comparison, the controlled modal vibration are shown
in figure 5.9 (b) when pseudoinverse method is used. From figure 5.9~ (a) and (b),
it can be seen thz;,t the extremely poorly controlled first when using pseudoinverse

method are well under control by utilizing weighted pseudoinverse.

Figure 5.10 demonstrates the actuator moments. The darker line represents the
results by utilizing the weighted pseudoinverse method. The lighter line represents
the actuator moments when pseudoinverse method is used. It can be noticed that the
control moments for weighted pseudoinverse are smaller than the control moments
for pseudoinverse for a period of time in the beginning. Then the weighted gives
larger control moments than pseudoinverse does. In weighted pseudoinverse method,
the actuator applied moments are synthesized from the modal control forces of the
control modes by equal percentage. Therefore, the modes are equally controlled
in pseudoinverse method. But because each mode is given equal percentage of the
control effort, the control force over each of them is only corresponding percent of
the designed modal control force. In pseudoinverse method, the second mode is given
more control effort than equal share. Thus the second mode is controlled quickly.

Generally, the modal control forces for the second mode is larger than the control
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Two actuators controlling the 1st four modes, 5th residual
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Figure 5.8: Two actuators controlling several modes
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force of the first mode. Therefore, the control moments for pseudoinverse, when con-
trol effort is given to the second mode in the starting period of time, are larger than
the control moments of the weighted pseudoinverse method. After the second mode
is under control, only a small portion of the first modal control forces is reflected
in the actuator control moment. However, in weighted pseudoinverse method, the
control over both of modes are stretched over the process, which explains why the
control moments of weighted pseudoinverse are larger than the control moments by

using pseudoinverse method.

In figure 5.11, the modal vibrations of the first three modes, in one z;mctuator sys-
tems, are shown. Figure 5.11 (a) shows the weighted pseudoinverse method. Figure
5.11 (b) shows the results from pseudoinverse. Figure 5.12 demonstrates the actuator
moments by using the two different methods. Figure 5.11 shows the same trend of
comparison between the actuator control moments by using weighted pseudoinverse

and pseudoinverse.

In two actuator systems, some results are shown in figure 5.13 and figure 5.14.
The actuator control moments are smoothed out throughout the control process by
weighted pseudoinverse method. The sharp peeks in pseudoinverse method are avoid

in weighted pseudoinverse method.

5.5.2 Closed-Loop Eigenvalues

As shown in figure 5.5, some of the closed-loop eigenvalues by pseudoinverse devi-
ates very much from the designed closed-loop eigenvalues. Figure 5.15 shows the
closed-eigenvalues by using weighted pseudoinverse method. It can be observed that

the distance between the designed and realized closed-loop eigenvalues are evenly
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distributed. The even deviations from the designed closed-loop eigenvalues guaranty
the equal control over the control modes. In figure 5.15 (a) and (b), it can be-ob-
served that weighted pseudoinverse method does not change the imaginary value of
the closed-loop eigenvalues. For one actuator controlling two modes, weighted pseu-
doinverse gives half of the designed value in the real axis. When controlling modes,
one third of the designed value in real axis is given. In two actuator case, which is
shown in figure 5.15 (c), second closed-eigenvalue is kept the same as the designed; the
first and the third have the same imaginary value as the designed closed-eigenvalues

and halve of the designed real value.

5.5.3 Modal Control Forces Domains

It has been pointed out that, when fewer actuators are used, the realized modal control
forces constitute a subspace of the designed actuator control moments. The subspace
has fewer dimensions than the original space. Figure 5.16 shows the designed modal
control forces domain and the realized modal control force domains by using weighted
pseudoinverse and pseudoinverse method, respectively. It can be observed that the
realized modal control forces are tilted toward f; more, when pseudoinverse is used,
than when weighted pseudoinverse method is used. The tilt angle demonstrates why
first mode gets more control when weighted pseudoinverse method than when pseu-

doinverse method is used.

Utilizing the weighted pseudoinverse bears its disadvantages. Figure 5.17 shows that

there will be control forces applied to the modes which are not vibrating. Rewrite
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Figure 5.16: Designed modal control forces domain
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designed modal control forces domain === realized modal control forces domain

Figure 5.17: The control over each of the modes will spillover
into the other modes when pseudoinverse or
weighted pseudoinverse method is used
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Eq. (5.7)

nact modc

{fy = {Z Z Zur, U'kfk} (5.65)
=1 k=1 ‘

It can observed that f; will not be zero, even if f; is zero. This is very much like

spillover problem, and more serious. Figure 5.18 demonstrates the control excited

modal vibrations when the weighted pseudoinverse method is used. The excited

vibrations have to be controlled, which needs extra control effort.
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Chapter 6

CONCLUSIONS AND
RECOMMENDATIONS

6.1 Conclusions
Two major conclusions can be drawn from this study:

o Approaches for optimally designing piezoelectric actuators in vibration control
systems for flexible structures have been formulated; the results of using the
proposed approaches both with or without spillover considerations are shown

to be very effective by numerical simulation.

e The weighted pseudoinverse method has been proposed. Combined with opti-
mization procedures for finding optimal Q) matrix, this method can effectively

allievate the actuator number requirements by IMSC.

This study did some preliminary work to constitute the foundation for further inves-

tigation of optimal design of piezoelectric actuators in vibration control systems.

6.2 Discussions and Recommendations

An approach to optimizing the piezoelectric actuators has been presented in this

study. This approach is suitable to the vibration suppression systems. The specific
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cases of beam like structures has been used as example to demonstrate the results of
the optimal designs. In more complex structures, what will be needed is approximate
eigenfunctions from the discretized model of the structure. The approaches in this
study will be appropriate in applications in any other systems. However, the com-
putation time could be dramatically increased if the discretized structure mode are
used. In the discretized model, the structure eigenfunctions needed to be solved for
each optimization step. A great deal of efforts should be given to reach the least time

consuming computation algorithm.

The mechanical model of piezoelectric actuators in this study has sufficient accuracy
for many applications. For better precision, a more accurate nonlinear actuator model

can be used.

Dealing with two dimensional structures may be one of the research tasks following
this study. Expansion of the approach in this study into two dimensional structures,
will require quite large amount of work in the optimization formulation. In two di-
mensional case, the characterization of the piezoelectric actuators needs dimensions,
shapes, and orientations. Defining a set of appropriate parameters to describe the
actuators will be the first step. The formulation of constraints on the actuators, such
as non-overlay, within the structural boundaries, etc., is the second step in the opti-
mization formulation. The actuators can be limited to be some specific shapes, such

as squares, rectangular, etc., to simplify the problem.

The statistical model used in this study is relatively simple. A better way is to obtain
the probability distribution with respect to the initial modal displacements and veloc-

ities by experiments under the working circumstances. The statistical derivation will
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be base on the experimental data. Designs thus obtained will suit the real problem

better.

Sensing system, which is an equal important part in the system, is not studied in
this research. Piezoelectrics can also be used as sensors. The piezoelectric sensor
designs are subject to optimization to yield best results. At the same time, there
will be structural constraints applied on the piezoelectric sensors. Therefore, system
designs need to optimized by taking into consideration of the piezoelectric actuators

and sensors together.
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APPENDIX A: EIGENVALUES
OF DAMPED SYSTEMS

Let {z} be a vector of dimension n. The equations of motion of n degrees of freedom

system, with mass matrix M, damping matrix C, and stiffness matrix K, are:
M{z}+ C{z} + K{z} = {0} (6.1)
Assume
{z} = {X}e¥, (6.2)
where A is a complex number. Differentiate Eq.(2),
{£} = MX}eM = Mz} (6.3)
Rewrite the equations of motion in the following form

— MY (C{z} + K{z}) = Mz} (6.4)
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Combining the Eqgs.(3) and (4), we have

[ YRV ] { : } = A{ ; } (6.5)

here I is unit matrix. The eigenvalues of the system can be solved from the matrix

0 I
[ ~M-'K -M-'C l (6.6)
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