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Chapter 1.

Introduction

1.1 Background

During the past 30 years, the needs of log processing in the worldwide lumber industry

have changed dramatically. The cost of wood has increased by more than a factor of ten. In

addition, it has become necessary to maintain high throughput rates during wood processing while

maximizing the amount and value of lumber recovered from each individual log. Therefore, new

technology for the lumber industry is needed in order to change the traditional ways of operating

their mills.

In a typical sawmill, logs are de-barked first when they enter the mill. Then they go to the

headrig where a sawyer moves the log repeatedly past a saw to remove boards one at a time.

Sawn boards go through subsequent operations of edging and trimming, where defects near the

edges and/or ends of the boards are removed to increase each board’s grade, and therefore its

value [SCH96]. After grading each board, manufacturers use the high- and medium-grade

hardwood lumber for furniture, cabinets, flooring, millwork, and molding, etc.
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In industrial practice, a log is graded based upon its external appearance. Currently, logs

are still examined by human experts. Experts use bark distortions as surface indicators to infer the

corresponding internal features of a log and use this information to decide an optimum strategy

for processing the log. This procedure often fails to identify all defects in a log because: 1) bark

distortion only provides rough information about internal features to experts; 2) human experts

cannot make quantitative measurements on the internal log features, and their decisions can be

affected by boredom and fatigue, etc.

In modern sawmills, computer controlled sawing systems have been used. There are three

primary uses of computer systems used in wood products manufacturing operations:

1) Collecting and reporting data, such as log diameters, lengths and volume over time, etc.

2) Monitoring and controlling a process with a human operator pulling the levers.

3) Monitoring and controlling a process without operator intervention.

Such systems are designed to analyze data concerning the external shape of the log, or

physical features such as moisture and weight. These kinds of log processing operations can be

handled more accurately and faster by computer-controlled systems than by human operators. But

neither the computer-controlled system nor a human operator can tell what the internal log looks

like before it is cut.

Nondestructive and noninvasive methods for scanning internal defects of logs have been

studied in recent years. These methods of log scanning include magnetic resonance imaging

(MRI) and computed tomography (CT). They have demonstrated successfully to image the

internal features of logs.

The mathematical basis of computed tomography is usually attributed to Radon [RAD17],

who established that a complete set of projection data of some relevant physical variable of an

object could be used to reconstruct an image of that object. An engineer at EMI, Hounsfield

[HOU72], built the first CAT (computerized axial tomography) scanner as a medical diagnosis

tool used to examine human heads. The first commercial CT scanner was quite slow, requiring

about 4 minutes per scan. Since that first scanner, great developments of CT technology in the
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medical area have been made. A new scanner that acquires 34 cross-sectional images per second

has been developed [WAG89].

In recent years, CT scanners have been applied to the study of wood. Some researchers

have studied x-ray CT imagery and successfully established the feasibility of internal defect

detection in logs [DAV92, FUN85, SOM92, ZHU93]. These researchers employed texture-based

techniques, image segmentation methods, and knowledge-based classification to locate, size and

detect  defects. Most of them analyzed a single two-dimensional (2D) CT slice of a single species

only. A feasibility study on using local 3D image analysis for hardwood log inspection has been

reported by Li [LI96]. Using artificial neural networks, this latter method validated classification

accuracy and increased the speed of the classification. However, it analyzes oak images only.

The goal of this thesis is to extend the work of [LI96] to accommodate additional

hardwood species, as well as to develop a family of species-dependent and species-independent

classifiers and to compare performance using 2-D vs. 3-D neighborhoods. These tasks are

expected to provide greater detail on the application of ANN classifiers to labeling internal log

defects and to indicate hour they may be implemented in a future scanning operation.

1.2 Justification For Work

The manufacture of furniture, cabinets, flooring, millwork, and molding, along with

hardwood exports, consumes most of the high and medium grade hardwood lumber in the United

States. Traditionally, a sawing strategy for a log is chosen by human vision using the exterior of

the log. This method is not accurate and cannot provide optimal yield. Some researchers have

demonstrated that potential value gains of 10% ~ 20% can be obtained by sawing under different

log orientations and using different sawing methods. In order to choose the right sawing

orientations and sawing methods we need more knowledge of internal defects of logs.

To achieve these potential improvements, there are several things that must be overcome:

1) Information of location, size, and type of internal log defects must be automated and

provide to sawyers to help them make proper sawing decisions.
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2) The defect identification procedure must be done in real time, so that scanning, image

reconstruction, image interpretation and display can be implemented in sawmills.

3) Sawyers must be helped by computer-analyzed suggestions for the best log breakdown

sequence.

4)  The economics of high-use CT must show improved profits for mill operators.

This research has addressed the first two of the above processing needs. Current work

with various wood product manufacturers and with CT manufacturers is determining the limits of

CT technology and estimating the value of CT to wood processors. Over the past several years,

technological improvements have led to increases of speed and resolution in CT scanners.

Manufacturers have begun to show an interest in developing CT scanners for wood industry.

1.3 Contributions

This research is an attempt to employ artificial neural networks for the inspection of

different species of hardwood log CT images. The main contributions include the following:

1)  The creation of a representative hardwood  image data base for training neural-

networks. This data base includes images of three species of hardwoods: cherry, red

oak and yellow poplar.

2)  An examination of  the relationship between wood physiology and wood CT  image

characteristics, particularly with various defects and their CT image manifestations.

3)  The development and comparison of species-dependent and species-independent

classifiers using 2D neighborhoods.

4)  The development and comparison of species-dependent and species-independent

classifiers using 3D neighborhoods.

5)  A comparison of the classification performance using 2D and 3D neighborhoods.
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1.4 Organization of Thesis

This thesis is organized into five chapters. Chapter 1 is the introduction. Chapter 2 reviews

previous work, and presents the objective of this research. Chapter 3 presents the methodology,

including basic knowledge, general approach, software development, and data base collection.

Chapter 4 describes the results of all developed neural-network classifiers. It includes a

comparison between 2-D and 3-D neighborhood features and the comparison between species-

dependent classifiers and species-independent classifiers. Chapter 5 concludes this thesis.

Appendix A shows the confusion matrices of the classifiers. Appendix B shows all results of the

10-fold cross validation of all classifiers. Appendix C provides a user’s guide for the software

developed in this research.
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Chapter 2

Previous Work

This chapter describes  previous work on the topics related to this thesis. In the first

section, the related research on automatically labeling internal log defects is reviewed. In the

second section, objectives  for this research are identified.

2.1 Literature Review

Researchers have proposed a number of techniques for detecting internal defects in logs

because most defects of interest are internal. Several different sensing methods which can provide

a view of a log’s interior without log destruction have been studied, including nuclear magnetic

resonance [CHA89], ultrasound [HAN92], and x-ray imaging. Various approaches have been

tested to detect defects detection on hardwood log images scanned by CT machines.

Funt and Bryant [FUN87] designed a set of algorithms to automatically interpreted CT-

scan images of softwood in the 1980s. This system classifies clear wood, background, knots, rot,

and holes using 2-D image interpretation techniques, such as density, object shape and growth

ring texture patterns. Their defect labeling method contains several steps. First, it categorizes the
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various regions on the basis of density. The four density ranges from lowest to highest are: 1) air

surrounding the log (background), holes, and cracks; 2) mixed rot and clear wood; 3) entirely

clear wood; and 4) knots. The system uses a frequency-intensity histogram to discover what the

boundaries between these regions should be. Second, this system analyzes the shape and pattern

of each region. Knots have elliptical shape and are near the center of the log. Shape features of

knots can be used to separate knots from clear wood, which may have high density due to

moisture. Because rot breaks down the growth ring structure of wood, low growth ring

uniformity can be used to distinguish rot from clear wood. This approach demonstrated feasibility.

However, the processing speed of this system is still a problem.

Zhu, Conners and Araman [ZHU91] [ZHU93] applied traditional digital image processing

techniques to label log defects. The system they reported on includes image filtering,

segmentation, region detection and merging, 3D region growing and 3D scene analysis. The first

step of this system uses a 3D adaptive least squares filter to smooth the image. In particular, the

filter removes the annual rings of a log  image containing the high frequency noise. The next step

uses a multi-thresholding method to segment the filtered images producing a vaster image where

each pixel belongs to a region type. Then the system employs morphological operations, erosion

and dilation, to detect and merge the segmented pixels into regions. To classify the proper 3D

volumes of potential defects, the system groups pixels of the same graylevel in multiple images

into connected volumes according to the 6- and 18-neighborbood connectiveness in 3D. Finally,

scene analysis, applying the Dempster-Shafer theory of approximate reasoning, distinguishes the

defect types. Image segmentation separates clear wood from potential defect region and scene

analysis labels the type of defect: knots, barks, or splits. In [ZHU96], the researchers developed a

prototype vision system based on this system. However, decay and sapwood are not noted in this

research. The system was tested with two hardwood species: red oak and yellow poplar.

Koivo and Kim [KOI89] used a stochastic method for image texture analysis to classify

surface defects on lumber. Later, Zhu and Beex [ZHU93] [ZHU94] explored the application of a

stochastic texture modeling method for log inspection. It was the first application of Spatial Auto-

Regressive (SAR) modeling to wood grain texture analysis of CT images. The robust algorithm
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used by the system for modeling wood grain texture is based on  stochastic field theory. In their

study, they use a circularly shifted correlation processes to discriminate the circular texture

patterns on cross-sectional CT images, and a minimum distance correlation-classifier to classify an

unknown defect into one of the prototypical defects. The system could recognize clear wood,

knots, decays, and bark. It was an effort toward more efficient defect recognition.

Bhandarkar, Faust and Tang [BHA96] described a system to identify some important

internal log defects via analysis of axial CT images. The system performs segmentation for a

single CT image slice first using area-based multiple thresholds and separates defect-like regions

from defect-free regions using connectivity, shape, orientation and morphological features.

According to correlation analysis across corresponding defect-like regions in neighboring CT

image slices, each defect-like region is classified as a defect or non-defect. This system can

successfully identify knots and cracks in relatively regular CT log images for a variety of

hardwood logs, including red oak, black walnut and hard maple. The researchers reported that it

was not very effective at detecting defects with irregular shapes and other defects such as rot.

Li, Abbott, and Schmoldt [LI96, PEI96] developed an automatic detection system for

hardwood log defects. This system employs a feed-forward artificial neural network (ANN). In

the histogram-based preprocessing step, the system normalizes pixel values in each CT image.

Then, the system extracts pixel values from a small 3D neighborhood, a 3 × 3 × 3 window about

each pixel. These 27 features, along with the radial distance of the pixel from the center of the

log, are used as input to the ANN classifier. Each pixel is classified as knot, split, bark, decay, or

clear wood using the ANN. After initial identification by the ANN, the system post-processes the

image, using the morphological operations of erosion followed by dilation, to refine the shapes of

detected image regions. The samples used by the ANN were selected from two different species

of oak, red oak and water oak. The total number of training/testing samples was 1973. The

topology of this neural network was 28-12-5, which means it was a three layer ANN with 28

nodes in the input layer, 12 nodes in a hidden layer, and 5 nodes in the output layer. 10-fold cross

validation was used to train the neural network and obtain the average accuracy of the

classification. The classification accuracy was about 95%. This system was finally implemented on
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a Macintosh Quadra 650 containing an MC68040/33Mhz processor and tested by a lot of images

of oak. The time to process a single 256 × 256 CT slice is approximately 25 seconds. This system

shows high potential for future industrial application due to its ability to adapt to parallel

processing.

2.2 Objectives

The goal of this thesis is to describe the design of different automatic image interpretation

systems with lower-level processing by artificial neural networks. The major tasks of this research

are listed below:

1)   Compare performance using 2D vs. 3D CT neighborhoods.

2)   Develop a family of species-dependent classifiers.

3)   Develop a general-purpose classifier for several species.

4)  Expand the repertoire of defect types that can be detected.
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Chapter 3

Methodology

This chapter describes the theory and method that are used by the detection systems that

are presented in this thesis. In the first section, some basic knowledge regarding the system design

is presented. It includes the anatomy of hardwoods, CT scanning, and ANN. In the second

section, the general approach for this system is introduced. The third section gives the software

design. The last section describes the database that was used for training and testing the systems.

3.1 Basic Knowledge

3.1.1 Wood Defects

Wood is quite complex. A tree supports a branch and leaf structure, and it conducts water

solutions (sap) to the crown and stores carbohydrates, which are synthesized in leaves and flow as

dissolved sugars down in the inner bark to migrate into the tree’s interior.
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Many grading defects in wood  are simply produced by natural tree growth. For example,

knots arise from tree morphology, and reaction wood develops in response mechanics demands of

the tree’s environment. Other defects are caused by insects and fungi that can attack living trees,

logs, lumber or processed wood products.

Wood  defects include knots, worm holes, stains, mineral streaks, splits, decay, wane

(bark or lack of wood), and others. Some of them, such as knots and wane, are in most wood

species.  Others, only appear in particular types of wood species. For the purposes of this thesis,

the discussion on basic wood anatomy and characterization in CT imagery is limited to the

following  major defects and wood characteristics that affect the grade of lumber.

Knots: Knots appear as cross-sections of limbs embedded in the tree trunk and are

revealed when cutting the tree stem during mill operations. In branches, as in the tree stem, wood

fibers run parallel to the longitudinal axis. Branches often have greater strength than the trunk,

because they must resist winds and support their weight, together  with the weight of rain, snow,

and ice that clings to them. Hence, knot fibers are generally perpendicular to main stem fibers.

Knots are correspondingly dense and hard, a fact that further contributes to their causing

drying defects such as dry checks and warp.  Most hardwoods have knots. Knots are the most

common grading defect that affects many final wood products. The high density of knots makes

sawing, planing, gluing and finishing difficult.

In CT imagery, knot pixels have high CT values. They typically have a round elliptical

shape. Figure 3.1 illustrates a sample CT image with knots.

Bark: Bark is the outermost layer of material in the tree, covering all branches, the trunk,

and large roots.  In a mature tree the bark includes the inner living bark and the external dead

bark. The tissue system of the bark is so complex that its density changes greatly with different

wood species and with different samples of the same species. In CT imagery,  bark is displayed in

a wide range of pixel values, as illustrated in Figure 3.2, Figure 3.3, Figure 3.4,  and Figure 3.5.
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Split (cracks): A split is a longitudinal and radial separation of the wood, due to the

tearing apart of wood cells. Wood is distinctly anisotropic, meaning that its principal

characteristics are different depending on direction. When fibers separate along their directional

orientation, the anisotropy shows spectacularly in splitting. Splitting requires less energy than any

other method of wood disintegration. Wood splits when it is nailed and screwed, and during

planing and dewing veneer processing. Low-density woods tend to split less because large air

spaces and thin cell walls accommodate nails and similar objects without forcing the tissue apart.

In CT imagery, a split appears as a darker, multi-segmented, narrow line and often appears near

the center of a log, as illustrated in Figure 3.1 and Figure 3.3.

Decay: Decay is a disintegration of the wood substance, due to the action of  wood-

destroying fungi. As decay fungi dissolve their way through the wood cell walls, they cause wood

to lose most of its important structural properties.  Decay tends to disrupt wood’s growth  ring

pattern. Any kind of decay has a density lower than clear wood and has varying shape in the tree.

In CT imagery, it has nearly the lowest CT values except background, as shown in Figure 3.2.

Clear wood (sapwood and heartwood): Sapwood is the wood  of pale color close to the

outside of the log. Cross-sections of tree trunks typically show bark, a pale zone of sapwood

surrounding heartwood, and the pith in the center. Sapwood and heartwood are both considered

to be clear wood. All wood is sapwood when a tree is young. As the tree grows, some sapwood

becomes heartwood. But new sapwood is produced to grow in the cambia so that the sapwood

zone keeps almost the same width. Wood in the transition line stops conducting sap and gives up

its food reserves for good; heartwood is defined as wood which no longer participates in the life

processes of the tree [WBK91].  Heartwood is stronger, harder, and shrinks less than sapwood.

In an x-ray CT image of a log, sapwood and heartwood cannot be separated in some

species since they have same range of  CT values. Both of them are considered as clear wood in

these species,  for instance, in red oak (Fig 3.1) (Fig 3.2), yellow poplar (Fig 3.5), and cherry (Fig

3.3). In CT images of yellow poplar, sapwood has higher pixel values than heartwood. This is

visible in Figure 3.4.
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Figure 3.1.  Sample CT image (256 × 256) of a red oak log with knots, a split, and clear wood.
The log rests on a platform that can be ignored. Bright regions of the image represent high density
volumes, and dark regions represent low-density volumes.



14

              

Figure 3.2. Sample CT image (256 × 256) of a red oak log. It is scanned from a different red
oak log, and exhibits decay, bark, splits and clear wood.
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Figure 3.3. Sample CT image (512 × 512) of a cherry log with knots, bark, decay, a split, and
clear wood. It is a good sample because it includes the most important defects in one slice.
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Figure 3.4. Sample CT image (256 × 256) of a yellow poplar log with knots, bark, sapwood,
and heartwood. It is very hard to classify correctly because the CT values of the annual rings are
close to that of splits and the CT values of sapwood are close to that of knots.
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Figure 3.5. Sample CT image (256 × 256) of a yellow poplar log. It is from a different yellow
poplar log  than Figure 3.4 with knots, bark, and clear wood. CT values for each kind of defect
are quite different in this image.
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Annual Rings: Wood cells consist of cell walls and empty cell cavities. In many tree

species the wall-to-cavity  ratio changes during the growing season. First-formed earlywood or

springwood has relatively thin walls and large cavities and is more porous than latewood. In cross

section of logs, earlywood and late wood appear as circular growth layers known as annual rings.

In CT imagery, annual rings have both low and high CT values (Figure 3.4) corresponding

to early- and late-wood bands. Although annual rings are a characteristic of clear woo and

therefore not considered defects, they complicated region classification. Chapter 4 will discuss

this in detail.

3.1.2 Principles of CT Scanning and Image Displaying

    Principles of CT scanning

A CT scanning and image displaying system consists of  essentially four components: 1) a

source of X-rays or gamma-rays of some suitable energy; 2) a means of detecting the transmitted

photons; 3) a computer-controlled mechanical system that synchronizes the motion of the source,

detector and object; 4) some means of processing the massive amount of data to produce a

suitable reconstructed approximation of the linear attenuation coefficient distribution in the object

[DAV92]. Figure 3.6 shows the basic components of CT imaging: a homogeneous object, an

incident beam of x-rays, and a detector.

For a homogeneous material if the initial x-ray intensity is I0  and the transmitted intensity

in the same direction as the incident beam is It , then the intensity at the detector falls off

exponentially with respect to object thickness t

I I tt = −0  e x p ( )µ (3-1)

Transmitted intensity is also affected by µ , the linear attenuation coefficient, which is dependent

on x-ray energy, electron density, and elemental composition of the object.

Since most objects are nonhomogeneous,  equation (3-1) can be modified to the following

form:

I I x dxt

t= − ∫0 0 exp( ( ) )µ (3-2)
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This equation can be linearized by taking the natural logarithms of each side:

ln ( / ) ( )I I x d xt
t

0 0= ∫ µ (3-3)

The line integral is the Radon transform of µ(x) . If a large enough set of x-rays pass through the

object and enough projections are obtained from different angular directions, a 2-D cross-

sectional image can be generated using one of several reconstruction methods: summation,

Fourier transform, on convolution [HER79].

                                                                  t
   Incident beam                       Detector

     Object

Figure 3.6. Attenuation of the energetic radiation by a homogeneous object.

Image Representation

A CT image consists of an array of pixels. Each pixel in each CT image represents the

average attenuation coefficient for a small volume. In most instances, the CT value of a pixel is

given by (3-4). The Hounsfield number H  is called the CT number in normalized units.

H = 1000 ( pixelµ − waterµ ) / waterµ    (3-4)

It is obvious that water has a Hounsfield number of H = 0 and air has a Hounsfield

number about -1000. The advantage of this normalization procedure is that complexities in the

object/x-ray beam interactions due primarily to the use of powered X-ray tubes and the resulting

poly-energetic nature of the incident X-ray beam are overcome [DAV92].

To study CT images of wood, equation (3-3) is often changed as follows:

H = 1000 ( pixelµ − waterµ ) / waterµ + 1000

In this form, the Housfield number of water is 1000, and air is 0. Hence the pixel values of CT

images are nonnegative and represented as unsigned 16-bit numbers. CT images of three kinds of

hardwood log species were examined in this study: red oak, yellow poplar, and cherry. The array
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size of a CT image slice of red oak or yellow poplar is 256 × 256. Cherry images have array size

512 × 512. In the case of red oak and yellow poplar, physical dimensions of image pixels are

2.5cm× 2.5cm× 2.5cm. For cherry images, physical dimensions are 1mm× 1mm× 1mm. Clear

wood (sapwood and heartwood), knots, bark, split, and decay can be displayed clearly in these

CT images.

3.1.3 Artificial Neural Networks

The human brain is the most complex computing device known. The fundamental cellular

unit of the nervous system and the brain is the neuron. Each neuron is a simple microprocessing

unit which receives and combines signals from many other neurons. If the combined signal is

strong enough, it activates the firing of the neuron, which produces an output signal. The path of

the output signal is along a component of the neuron called the axon. Dendrites (input paths) of

other neuron are connected to the axon of a neuron by a junction called a synapse. The synapse,

combined with the processing of information in the neuron, form the basic memory mechanism of

the brain.

One avenue of researchers has sought to create computer models that match the

functionality of the brain. These models are called artificial neural networks (ANN). In ANN, a

neuron is referred to as a processing element (PE). The structure of a PE is shown in Figure 3.7.

A processing element has many input paths. Each input path has an associated into a standardized

signal using a transfer function and weight. After summing all input paths, the PE converts the

summation outputs the result to the output path, which can connect to input paths of other PEs.

There are two main phases in the operation of a network: learning and recall. Learning is

the process of adapting or modifying the weights in response to stimuli being presented at the

input buffer. How weights adapt  in response to a learning example  is controlled by a learning

rule. Recall is the application mode where the network processes a stimulus presented at its input

buffer and creates a response at the output buffer.
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        Inputs                Weights  Output

x0  w0

             x1  w1                          sum  transfer
    ·

      ·
   ·

xn  wn

Figure 3.7. The basic structure of a processing element (PE). 

The simplest form of ANN has no feedback connections from one layer to another, and is

called a feedforward network. In this case, information is passed from the input layer, through

intermediate layers, to the output layer. It is a straightforward method using the summation and

transfer function characteristics of the particular network.

In recent years, multilayer neural networks have been increasingly popular for applications

in pattern recognition,  classification,  learning, and function approximation.

A back-propagation network  is a fully connected, layered,  feedforward neural network,

as shown in Fig. 3.8.  Activation of the network flows in one direction only: from the input layer

through the hidden layer, then on to the output layer. The arrows indicate flow of information

during recall. During learning, information about respond success is also passed backward

through the network and used to modify the connection weights.
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                  Input  layer   Hidden layer(s)   Output layer

• • •

     •              •

       •      •              •

       •       •

       •

Figure 3.8. A typical  feed-forward  neural  network.

The back-propagation learning rule is introduced below. To avoid getting confused from

one layer  to another layer, a clear notation is described first:

j
s[ ]X output state of jth node in layer s

ji
s[ ]w connection weight joining ith node in layer (s-1) to jth node in layer  s

j
s[ ]I  weighted summation of inputs to jth node in layer  s

A processing element of a feed-forward network transfers  its inputs as follows:

[ ] [ ]( [ ])j
s

ji
s

i
i
sX f w X= ∑ ⋅





−1   

       = f j
s[ ]I( ) (3-5)

where f  is a transfer function. The function f can be any smooth function for a processing

element. Typically, the sigmoid function is used as the transfer function. Sometimes the hyperbolic

tangent  function may be used also. The sigmoid function is a smooth version of a {0,1} step

function whereas the hyperbolic tangent is a smooth version of a {-1, 1} step function. See the

following Fig 3.9.
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Figure 3.9. Two possible transfer functions for back propagation network are: (1) the sigmoid
function and  (2) the hyperbolic tangent  function.

Suppose the network has some global error function E associated with it which is a

differentiable function of all the connection weights in the network. One possible global function

is given by

E = 0.5 ⋅ kd − ko( )2

k
∑  (3-6)

where kd  denotes the desired output specified by a teacher, ko  denotes the actual output

produced by the network with its current set of weights, the subscript k  ranges over the training

set of total elements.

The local error at each processing element is defined by

[ ]
j
s

j
s

j
s

j
s

j
se

E

I

E

X

X

I
= − = − ⋅

∂
∂

∂
∂

∂
∂[ ] [ ]

[ ]

[ ] (3-7)

The local error of non-output layers can be calculated by

[ ] [ ] [ ] [ ]( )j
s

j
s

i
s

ij
s

i
e f I e w= ′ ⋅ ⋅∑ + +( ) 1 1  (3-8)

For the output layer, the local error can be obtained by

[ ]
k
o

k
o

k

k

k
o

k k k

e
E

I

E

o

o
I

d o f I

= − = − ⋅
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∂
∂

∂
∂

∂
∂[ ] [ ]

( ) ( )     =

(3-9)
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The aim of the learning process is to minimize the global error E  by changing the weights.

The modification for the weight s can be given by

∆ ji
s[ ]w = −γ ⋅ j

s[ ]e ⋅ i
s−1[ ]X (3-10)

where γ  is a learning rate.  The weights are updated with a assumption that the error surface is

locally linear, where locally is defined by the size of the learning rate. The learning rate is used to

avoid divergent behavior.

Based on the mathematical equations described above, a standard back-propagation

algorithm is given as follows:

1) Present an input vector I to the input edge layer of the network, and obtain an output

vector O at the output layer of the network.

2) Set all the summed inputs and output states for each processing element in the

network as this information propagates through.

3) Calculate the scaled local error as given in (3-9) and delta weight using form (3-10)

for each PE in the output layer.

4) Calculate the scaled local error using (3-8) and delta weight using (3-10) for each PE

in the hidden layer.

5)  Update all weights in the network by adding the delta weights to the corresponding

previous weights.

Such a standard algorithm can be changed by using different error functions, or different

transfer functions. This is a very powerful technique for constructing non-linear relationships

between several continuous valued inputs and outputs.

3.2 General Approach

In this research, we have developed species-dependent classifiers and species-independent

classifiers for different neighborhoods in CT images. Both 2-dimensional and 3-dimensional
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neighborhoods have been considered. All of these classifiers contain the same component which

permits realistic comparison. These components are: (1) a preprocessing module, (2) a neural-

network based classifier, and (3) a post-processing module. The preprocessing module separates

wood from background and internal voids, and normalizes the CT density values. The ANN

classifier labels each pixel of the image. The post-processing step removes some of the spurious

misclassifications. The major difference between the various classifiers is that they are trained with

different types of input features and have different sets of ANN weights. Details about the

differences among them will be shown in next chapter.

3.2.1 The Preprocessing Module

Background Segmentation

Segmentation, which separates the wood region (foreground) from the background and

internal voids,  is the first objective of the preprocessing module. This step eliminates portions of

the image from further analysis which can simplify the classification procedure and decrease the

classification time.  There are many methods to solve the problem of segmentation, such as an

empirically determined threshold [SOM93]. This research applies Otsu’s thresholding method

[OTS79].  In [LI96], it is shown that this method works well for segmenting CT images of

hardwood logs. The mathematical model of Otsu’s method will be described below. Some of the

notation is given first:

t:  threshold value

µ: mean of a image histogram

P i( ): statistical frequency of the observed gray value i

w
2σ : weighed summation of group variance

1
2σ ( ):t variance for the group with values less than t

2
2σ ( ):t variance for the group with values greater than t

1q t( ): statistical frequency of the group with values less than t

2q t( ): statistical frequency of the group with values greater than or equal to t
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1µ ( ):t mean of the first group

2µ ( ):t mean of the second group

In Otsu’s method, threshold t  is selected for which the weighted sum of group variances

is minimized. The expression of the weighted sum of group variance  w
2σ  is given:

w t q t t q t t2
1 1

2
2 2

2σ σ σ( ) ( ) ( ) ( ) ( )= ⋅ + ⋅ (3-11)

The total variance 2σ  consists of the within-group variance w t2σ ( )  and the between-group

variance b t2σ ( ) , which is defined by:

( ) ( )b t q t t q t t2
1

2

1 2

2

2σ µ µ µ µ( ) ( ) ( ) ( ) ( )= ⋅ − + ⋅ − (3-12)

Because 2σ  is independent of the threshold, minimizing w t2σ ( )  is the same as maximizing b t2σ ( ) .

The mean µ  used in (3-12) is given by:

µ µ µ= ⋅ + ⋅1 1 2 2q t t q t t( ) ( ) ( ) ( ) (3-13)

From (3-12) and (3-13), we have

b t q t q t t t2
1 1 1 2

21σ µ µ( ) ( ) ( ( )) ( ( ) ( ))= ⋅ − ⋅ − (3-14)

The best threshold t can be calculated by finding the maximum of  b t2σ ( )  using equation (3-14).

Using this segmentation method directly, decay in CT images was found to be thresholded

as background. To avoid this problem, a weighting function is applied to the original image

histogram before applying Otsu’s method. This function is given by

w i
i

x

b

cw

( ) exp= − −
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




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










1 2

2

  (3-15)

where i is the CT number, b  is set to 2047, and cwx  is the clear wood peak value. This function

is multiplied with the histogram function h i( )  before segmentation. Then the best threshold will

be determined by  new histogram function, ′ = ⋅h i h i w i( ) ( ) ( ) .

After segmenting the original CT image, the background region is set to zero, and these

pixels are ignored in the next processing steps.
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Normalization

Normalizing CT image values is the second objective of the preprocessing module. The

values in CT images  are directly related to the density of the object. Because different species and

different moisture contents result in different densities, different ranges of CT values can result.

The histogram normalization step transfers the original CT image values into new values so that

the different value ranges of the CT images have approximately the same range.

The transformation we developed is:

norm
s

s cw

cw
x

x
x

x x
x

x
= +

−

+ ⋅ −























1

1
0

0
2

exp( )α
(3-16)

where 0x  is the original CT value, normx  is the normalized value, cwx  is the original CT value of

the clear wood peak, sx   is an arbitrary selected value that is greater than the CT value of the

clear wood peak. The quantity α  is a  constant and has been set to 10 / cwx .

After histogram normalization, the new value of the clear wood peak in an image

histogram of logs is around 1.0. The modified values of the pixels are used directly by the neural-

network classifiers. Hence, this step is important so that it will affect the training result of a neural

network.

3.2.2 Neural-Network Classifier

The neural-network classifier is the seminal part of this classification system. Using an

ANN, each non-background pixel is labelled. This section describes the procedure of generating a

classifier, which includes extracting the input features for classification from the CT images,

constructing the neural networks for 2-dimensional and 3-dimensional analysis, and training the

ANN.
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3.2.2.1  Feature Extraction

Selecting useful features for an ANN is extremely important because they determine how

well the classify learns and consequently how it will perform in the future. However, it is not easy

to select features for training a neural-network. In this thesis, the features of each pixel that were

extracted from CT image are the histogram-normalized values of the pixels. These pixels belong

to the neighborhood of  the pixel under consideration (the target pixel). For 2-D analysis, a pixel’s

neighborhood contains the pixels within a 5× 5 window; for 3-D analysis, its neighborhood

contains the pixels within a 3× 3× 3 window, i.e. including 3× 3 windows from adjacent CT

images. Additionally, because some defects, such as splits, are near to the center, and some of

them, such as bark and sapwood, are close to the outside edge of the log, the distance from the

center of a log to the target pixel is used as a feature. This distance contains the contextual

information that can improve classification. The neighborhood of a pixel under consideration for

2-D and 3-D analysis is shown in Figure 3.10 and Figure 3.11.

The first step of the method for calculating the distance is to get the centroid of the image

of the log. In the preprocessing module, the image of the log has been separated from the

background. So the log region in the image can be easily found, defined as S. Let A  be the total

log area, x  be the row of each pixel, y be the column of the pixel, and (x y,  ) be the centroid.

The total log area can be calculated by

A =  the total number of pixels in log area (3-17)

Then, the centroid is given by

( )
x

A
x

x y S
= ⋅ ∑

∈

1

,
(3-18)

( )
y

A
y

x y S
= ⋅ ∑

∈

1

,
(3-19)

Let R  be the radius of the ideal round cross-section. It can be obtained by

R
A

= π (3-20)
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Hence, the normalized distance r of the pixel from the log center  is given as

r
x x y y

R
=

− + −( ) ( )2 2

. (3-21)

Since the 2-dimensional classifiers use a 5 × 5 window, the features are defined as

F
N x y i

r ii

i D

i

=
=

=


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, ( , ) .....
2

1 25

26

                      

                                    
. (3-22)

The 3-dimensional classifiers use a 3 × 3 × 3 window, the features of each pixel are defined as

F
N x y i

r ii

i D

i

=
=

=

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, ( , ) .....
3

1 27

28

                      

                                    
(3-23)

In both (3-22) and (3-23), i  is the feature number, Fi  is the network input feature vector, and

N x yi( , )  is the neighborhood vector of the pixel. Given a pixel, there are 25 items in its 2-D

neighborhood vector Ni (x, y). These items are the normalized values of  the corresponding pixels.

So the total number of features for each target pixel for 2-D analysis is 26. The 26th feature is the

radial distance. For 3-D analysis, the total number is 28.

3.2.2.2  Neural-Network Classifiers

Topology

The topology of a neural network has an effect on the speed of convergence during

training, and on the accuracy of the classification. Based on prior results [LI96], the number of

hidden nodes was chosen to be 12. In different families of species-dependent and species-

independent classifiers, there are different defects to be labelled. For example, red oak classifiers

detect five classes: clear wood, knots, bark, splits, and decay. Yellow poplar and red oak

combined classifiers identify six classes: heartwood, knots, bark, splits, decay, and yellow-poplar

sapwood. Therefore, the output nodes are not the same for different classifiers. In 2-D classifiers

the topology is 26-12-5 or 26-12-6, which means that the structure of the neural network has 26

input nodes, 12 hidden nodes, and 5 or 6 output nodes. In 3-dimensional classifiers the topology

is 28-12-5 or 28-12-6, which means they have 28 input nodes, 12 hidden nodes, and 5 or 6 output

nodes.
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Input layer
with 26 nodes

        Mapping
   Current               Resulting label for
   slice                                                                                                                   output image

                    Max

A 5 × 5 window

  Pixel under consideration

                       The distance r

Figure 3.10. An illustration of a 2-D window. The top left pixel is the input of the first node in
the ANN. The distance r is the last input in the ANN.

         Input layer
       with 28 nodes

 Subsequent slice

     Current slice
 Resulting label for

     Max   output image
     Previous
         slice

  A 3 × 3 × 3 window
                      Pixel under consideration

                   The distance r

Figure 3.11. An illustration of a 3-D window. The top left pixel in the previous slice is mapped
to the input for the first input node of the ANN.

Data Preparation

After selecting different neural network structures, samples for training and testing are

collected from CT images of hardwood logs. The generalization capability of the neural network
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will be poor if too few samples are used. On the other hand, the training time will increase if too

many samples are used. We found the reasonable number of the samples needed for each

hardwood species is around 1000. The distribution of samples of three hardwood species is

discussed in Section 3.4.

There are two steps for preparing the data: 1) creating a primary sample file and 2)

creating a file of neural-network input data vectors from the primary sample file.  The primary file

specifies the location of each sample in its corresponding CT image file and its defect type. Using

the location and type of a sample, its feature vector can be obtained in the second step. We have

two separate code modules for these two steps of data preparation. The design of these modules

are shown in Section 3.3.

Training and Testing

As mentioned above, an entire training/testing set of one hardwood species consists of

approximately 1000 samples. 10-fold cross validation was used to evaluate the accuracy of each

classifier. This means that the training set was randomly divided into 10 mutually exclusive test

partitions of approximately equal size. For each of the 10 training sessions, one set of the test

partitions was used as the test set, and the samples in other partition were used to train the neural

network. The average classification accuracy of all 10 classifiers was reported as the cross-

validated classification accuracy.

In this research, all the neural networks were trained using the delta rule, which is a

learning rule that specifies how connection weights are changed during the learning process.

Momentum and learning rate parameters affect the operation of the learning rule. In particular,

they affect the speed of convergence of the ANN.  With a small learning rate, the neural network

converges very slowly. A momentum term is added to the delta rule to solve this problem. This

momentum term accelerates learning by increasing weight changes when they are repeatedly in the

same direction. Based on Li’s [LI96] results, a small learning rate 0.1 and the medium momentum

term 0.6 were selected as the learning parameters for all neural-network training of hardwood log

CT images. Random values were assigned to the initial weights for each network training session.
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3.2.3  Post-processing

Because classification features are primarily based on local neighborhoods, spurious

misclassifications tend to occur at isolated points. A post-processing module is used to remove

these small regions, and therefore improve overall system performance. The module includes two

mathematical morphological operations: erosion and dilation.

Let  I x y( , )  denote a digital image, and let E x y( , )  denote a structuring element. The

shape of E  is a “+” sign as shown in Figure 3.12.

              (-1,0)

          (0, -1)      (0,0)     (0,1)

              (1,0)

Figure 3.12. The shape of a structuring element. This represents a 5-point structuring element.

In general,  gray-level erosion is defined as:

{ }( )( , ) min ( , ) ( , )|( , ) ;( , )I E s t I s x t y E x y s x t y S x y SI EΘ = + + − + + ∈ ∈ (3-24)

where SI  is the domain of the digital imageI , SE  is the domain of the structuring element E .

This equation shows that the erosion operation chooses the minimum value of ( )I E−  in a

neighborhood defined by the shape of the structuring element. In our study, we defined the

structuring element to have all zero values. Then the equation (3-29) becomes below

{ }( )( , ) min ( , )|( , ) ; ( , )I E s t I s x t y s x t y S x y SI EΘ = + + + + ∈ ∈ (3-25)

As the element E  scans the labelled image I, each pixel is replaced by the minimum value of I  in

the neighborhood. The erosion operation deletes isolated misclassified pixels.

The gray-level dilation is defined as:
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{ }( )( , ) max ( , ) ( , )|( , ) ; ( , )I E s t I s x t y E x y s x t y S x y SI E⊕ = − − + − − ∈ ∈ (3-26)

If we again define the structuring element to contain all zero values, equation (3-31) becomes

{ }( )( , ) max ( , )|( , ) ; ( , )I E s t I s x t y s x t y S x y SI E⊕ = − − − − ∈ ∈ (3-27)

Then the dilation operation selects the maximum value in the pixel’s neighborhood and replaces

the pixel value.

After passing though a neural network classifier, a CT image is labelled and treated as a

gray-level image. Then the image is post-processed by the morphological operations of erosion

followed by dilation. In a CT image, splits appear close to the center of a log image, and its

appearance after classification is a narrow line. If the split is post-processed, it will be deleted by

the erosion operation. Hence, in our study for all classifiers, an entire image is not post-processed,

only the edge area of an image is post-processed. The range of the post-processing edge area of

an image is selected manually. The pixel whose distance r is bigger than ¾ times of the ideal log

radius is chosen to be post-processed. This approach can delete the misclassified small area at the

edge area as well as keep important information (like splits) near the center of the log. Figure 3.13

illustrates the results of post-processing a whole image and a part of an image.
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(a) (b)

(c) (d)

Figure 3.13. Comparison of the results of different post-processing methods. (a) An original CT
image; (b) the result of a neural network classifier without post-processing; (c) the result of the
same classifier with post-processing of the whole image; (d) the result of the same classifier with
post-processing of the edge area of the image only. It is shown that the split is classified correctly
and the misclassified edge in (b) around the bark is corrected.
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3.3 Software Development

In our research, we designed and developed software packages to implement the general

approach. There are three software packages: 1) Data-location package; 2) Features package; 3)

Classifier package. All of three packages were written in C as code resources that execute within

the image processing software DIPStation.

The data-location package is used to collect the training/testing samples. This package

creates a data file which records the total number of samples in this file, the slice number and the

class of each sample, and the row and column of each sample. The data file will be used by the

features package. Accurate identification of sample pixels will affect the performance of the neural

network. Hence, experts in the hardwood logs are needed to identify the kind of the defects and

select pixels for the sample files using a mouse pointer. The C code file name of this package is

Datalocation.c.  The flow chart of the data-location package is shown in Fig 3.14. The details of

how to use this package are shown in Appendix C.

The features package is used to prepare a training data file of  input features for the neural

network. This package reads each sample’s location and class from the data file created by the

data-location package, extracts the pixel values from the currently active image, and saves these

features in a data file. The source file names are Feature_2D.c and Feature_3D.c. The methods

used to extract the features are shown in Section 3.2. Its flow chart is illustrated in Fig 3.15. The

details of using this package are shown in Appendix C.

In this thesis, each class is specified by a number coding. Clear wood and heartwood are 1,

knots are 2, bark is 3, splits are 4, decay is 5, and sapwood is 6. These numbers are used by the

data-location package and by the output of the neural network. For training, a neural network

reads a features file as its input. The training process produces in weight vectors for each node of

the neural network. These weight vectors will be used in the classifier package. Different

classifiers have different weight vectors.
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   start

     open an image file

        create a new empty data file

     select a slice of the current image

          select the class of a sample

         record the location of the sample by a mouse

           write these information into the data file

no
    click QUIT button?

   
yes

     end

Figure 3.14. The flow chart of the data-location package.
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       start

                                                      open an image file

           
              open the corresponding data-location file

      get the threshold of the image using Otsu’s method

           separate the log image from the background

   create a new file for storing the features

           get a sample’s information: slice number, class, row, column

         calculate the center of the image

            normalize the image histogram

          extract the features of a sample

        save the features into the new file

  no
                        end-of-file?

yes
        end

Figure 3.15. The flow chart of the package of extracting features.
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A classifier package is used to identify the defects in hardwood log images with a neural

network that has been trained. There is some difference between 2-dimensional and 3-dimensional

classifiers due to the need for adjacent slices in the 3D case. The flow chart of 2-D classifier

packages is illustrated in Fig 3.16. The flow chart of 3-D classifier packages is shown in Fig 3.17.

The user’s guide (Appendix C) specifies show how to use each module.

  start

  open an image file and get a slice of current image
               pre-processing

   calculate the threshold of the current slice

  separate the image from the background

  normalize the image histogram

   determine the center of the image

  select the first pixel of the image

     select next pixel          get the features for that pixel

  go through the trained neural-network and compute the
   the classification result; place that in the output image

 no                  end-of-file?

           yes
  post-process the classified image

  display the classified image

  end

Figure 3.16. The flow chart of 2-D classifier module.
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  start

  open an image file and get a slice of current image

   go to the previous slice of the current image

pre-process this image

  go to the slice of the current image

   pre-process the current image

   determine the center of the image

   go to the next slice of the current image

   pre-process this image

select the first pixel of the current image

    select next pixel       get the features for that the pixel

  go through the trained neural-network and compute the
classification result; place that in the output image

            no
  end-of-file?
           yes

  post-process the classified image

display the classified image

  end

Figure 3.17. The flow chart of 3-D classifier module.
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3.4  Data Base

One of the contributions of this research is  a data base of representative hardwood CT

images for red oak (ro), yellow poplar (yp), and cherry, respectively. The seven files used for

collecting training samples are named rk01.des, rk12.des, yp01.des, yp4.des, yp6.des,

cherry_512.des, and cherry_170.des. Tables 3.1~3.4 show which slices were selected and how

many samples were chosen from each of these slices.

Table 3.1.  Distribution of training/testing samples taken from cherry_170.des.
The first column indicates a slice number. The remaining columns tabulate the
numbers of samples that were selected for each defect type. Sapwood is not
included here because it is not used as a separate class in cherry.

slice clear wood knots bark split decay

3 33 9 11 6 5

5 13 9 10

6 11 7 6 6 7

9 33 7 9 7 7

11 14 14 10 10

12 13 7 8 7 6

15 33 10 9 8 8

17 14 8 6 8 7

20 33 7 8 7 5

22 12 6 8 6 6

25 35 9 8 6 7

26 15 8 7 5 5

36 36 8 10 5 7

38 32 9 6 4 7

66 21 15

70 36 16

72 33 16

percentage 47% 16% 15% 11% 11%
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Table 3.2.  Distribution of training/testing samples taken from cherry_512.des.
The first column indicates a slice number. The remaining columns tabulate the
numbers of samples that were selected for each defect type. Sapwood is not
included here because it is not used as a separate class in cherry.

slice clear wood knots bark split decay

1 32 15 13 8

3 23 6 6 8

4 31 15 11 20 5

8 35 9 10 8 11

20 22 7

25 5 9 10 6

27 8 7 3

29 5

39 17 10 10

41 7 8

43 43 10 12 9 12

52 19 11 11 6 11

61 15 9 15 9 7

74 22 9 10 5

77 33 9 13 4 8

80 9 6

85 29 8 11 4

88 27 10 9 5 9

99 3 2

100 29 10 10 5

107 39 11 10 3 10

121 26 9 9 4 9

125 28 10 10 3 7

percentage 43% 16% 17% 12% 12%
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Table 3.3.  Distribution of training/testing samples taken from red oak logs. The
first column indicates the log name. The second column indicates a slice number.
The remaining columns tabulate the numbers of samples that were chosen for
each defect type. Sapwood is not included here because it is not used as a
separate class in red oak.

image slice clear

wood

knots bark split decay

rk01 1 26 13 11 11

rk01 2 9 15 10

rk01 4 16 10

rk01 5 22 16 11 11

rk01 8 12 10

rk01 11 20 11 11 11

rk01 12 10

rk01 16 21 11 11 11

rk01 18 3 10

rk01 20 12

rk01 22 21 11 11 11

rk01 24 9 11

rk01 28 21 10 12 11

rk01 30 12 12

rk01 34 23 12 10 11

rk01 39 20 11 11 11

rk12 1 27 9 26

rk12 2 27 10 21

rk12 4 26 17 29

rk12 6 22 11 20

rk12 7 26 11 23

rk12 8 31 13 25

rk12 9 26 12 30

percentage 38% 13% 16% 17% 16%
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Table 3.4.  Distribution of training/testing samples taken from yellow poplar. The
first column indicates the log name. The second column indicates a slice number.
The remaining columns tabulate the numbers of samples that were chosen for
each defect type. Decay is not included here because there is no decay in our
yellow poplar images.

image slice

number

clear

wood

knots bark split sap-

wood

yp1 2 42 23 5

yp1 7 40 31 6

yp1 12 41 26

yp1 16 20 27 4

yp1 17 30 8

yp1 20 31 31 7

yp1 26 36 21

yp1 30 21 13

yp1 43 21 9

yp1 44 10

yp1 45 31 11

yp1 46 20 10

yp1 47 21 11

yp4 2 10 20 33

yp4 6 14 24 30

yp4 10 17 21 30

yp4 13 12 10

yp4 15 20

yp6 2 20 24 26

yp6 5 23 23

yp6 9 27 28 30

yp6 12 20 33

yp6 15 20

yp6 17 16 30

percentage 46% 15% 15% 5% 19%



44

This data base includes three species of hardwoods: red oak, cherry, and yellow poplar. It

includes six classes: knots, bark, split, decay, clear wood (or heartwood), and sapwood. It is used

for two purposes: 1) training and testing the neural networks of the  species-dependent and

species-independent classifiers which will be described in the next chapter, and 2) training new

classifiers that will combine this data and data collected from other hardwood species.
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Chapter 4

Results

This chapter presents results of the following species-dependent and species-independent

classifiers: 1) red oak (RO) classifiers; 2) cherry (CH and CH_512) classifiers; 3) yellow poplar

(YP) classifiers; 4) red oak and cherry combined classifiers (CH_RO); 5) red oak and yellow

poplar combined classifiers (RO_YP); 6) cherry and yellow poplar combined classifiers (CH_YP);

7) three species combined classifiers (CH_RO_YP). A statistical analysis of the classifiers’

accuracy is given at the end of this chapter. Confusion matrices for all of the classifiers are given

in Appendix B. All results in this chapter have been postprocessed, as described in section 3.2.3.

The classifiers used in this chapter for producing the labelled images resulted from training out to

100,000 cycles, and are not represented in the statistical analyses.

4.1  Species-Dependent Classifiers

4.1.1 Red Oak Classifiers

 

We have two red oak image files: one is “rk01.des” which includes clear wood, knots,

bark, and splits; another one is “rk12.des” which includes clear wood, bark, and decay. Some



46

results of the 2-dimensional and 3-dimensional classifiers are shown in Figure 4.1. The results are

good because all defects in the images are labelled correctly even very small defects, for instants,

the split in (b) is classified clearly. The network topology is 26-12-5 for the 2-D classifiers, and

28-12-5 for the 3-D classifiers. Both types of classifiers were trained to label each non-

background pixel as one of the following 5 classes: clear wood, knot, bark, split, and decay. The

average accuracy of all 2-D and 3-D classifiers is given in Table 4.1, and the results for red oak

appear in the 1st column. It can be seen that the accuracy of the 2-D classifier is slightly higher

than the 3-D classifier for this case.

 Table 4.1 was obtained by 10-fold cross-validation, for each classifier, as will be described

further in section 4.3.

Table 4.1. Comparison of 2-D and 3-D classifiers, for species-dependent and species-
independent defect detection. This is the average accuracy of each classifier. In this table, for
example, the ch170 means the classifier for ch_170.des.

red oak ch170 yellow

poplar

ch512 ch_ro ch_yp ro_yp ch_ro_yp

2-D 0.9574 0.9716 0.9634 0.9637 0.9650 0.9047 0.9414 0.9198

3-D 0.948* 0.9695 0.9427 0.9679 0.9713 0.9219 0.9532 0.9209

*From [LI96].
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(a)        (b)

(c)       (d)

(e)               (f)

                         
(g)     Background  Clear wood       Knot           Bark            Split         Decay        Sapwood

Figure 4.1. Two examples of CT images of red oak logs processed by  2-D and 3-D classifiers:
(a) an original image of log rk12.des; (b) an original image of log rk01.des; (c) the result of image
(a) labelled by the 2-D classifier; (d) the result of image (b) labelled by the same 2-D classifier; (e)
the result of image (a) labelled by the 3-D classifier; (d) the result of image (b) labelled by the
same 3-D classifier. (Images (e) and (f) were generated by [LI96] and used a different
postprocessing method.) (g) The legend of all grey levels is for all images in this chapter. Clear
wood is used for YP to designate heartwood. Sapwood is only used for YP images.
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4.1.2 Cherry Classifiers

All images from a cherry log are stored in a CT image file, named cherry_512.des. The

size for each CT slice is 512 × 512, and pixel represents a volume of 0.94 mm × 0.94 mm × 0.94

mm. The resolution of cherry images is approximately three times higher than that of other images

used in this thesis. In order to compare the classifiers of different CT images of hardwood logs in

the same resolution the cherry images have been resampled. Each pixel value of the resampled

image is the average value of the pixels in a neighborhood of a 3 × 3 × 3 window from the original

set of CT slices. The new image is named cherry_170.des and has a size of 170 ×  170. The

resolution of these new images is almost the same as the images from the other two species of

logs (2.8 mm× 2.8 mm× 2.8 mm). The size of the images shown in Fig. 4.2 is smaller than the

other hardwood images. The new images are also used for the combined classifiers.

Figure 4.2 shows the results of the 2-D and 3-D classifiers for a slice from log

cherry_170.des. Its original image has knots, bark, a split, and decay. Both of the classifiers work

well for detecting the four defects. However, the 2-D classifier has less misclassified regions than

the 3-D classifier. Figure 4.3 shows the results of the 2-D and 3-D classifiers of an image of log

cherry_512.des. Its original image also has knots, bark, split, and decay. Visually, the 2-D

classifier has better performance than the 3-D classifier.

The original image of log cherry_512.des has more noise than that of the cherry_170.des

because cherry_512.des has higher image resolution. Hence, the results of the classifiers for log

cherry_170.des demonstrate higher accuracy than that for  log cherry_512.des. This can be

observed from the accuracy of the classifiers listed in Table 4.1.
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(a)

(b) (c)

Figure 4.2. The results of cherry_170 classifiers: (a) an original image from cherry_170.des;
(b) the result of the original image labelled by the 2-D classifier; (c) the result labelled by the 3-D
classifier. In this case, the 2-D classifier has better results than the 3-D classifier.
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(a)

       

     (b)      (c)

Figure 4.3. The results of cherry_512.des classifiers: (a) an original image of cherry_512.des;
(b) the result of the original image labelled by the 2-D classifier; (c) the result of the original
image labelled by the 3-D classifier.
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4.1.3 Yellow Poplar Classifiers

The images of yellow poplar logs are stored in three CT image files: yp1.des, yp4.des, and

yp6.des. As shown in Fig. 4.4 (a), there is no sapwood in yp1.des. In the initial attempts to

process yellow poplar, the topology of the 3-D neural network was chosen as 28-12-4, which

means that the preliminary 3-dimensional classifier had four outputs: clear wood, knots, bark and

split. (Recall that decay is not present in our yellow poplar images). It can be seen from Fig. 4.4

(b) that this classifier has good performance. However, most yellow poplar logs have both

heartwood and sapwood. Because CT image values of heartwood and sapwood are very different,

the classifier may fail. An example is given in Fig. 4.4 (c) and (d) for image file yp4.des, which

contains both heartwood and sapwood regions. It can be seen that this classifier mislabels

sapwood as bark. Therefore, it is necessary to distinguish sapwood from clear wood in order to

develop  accurate yellow poplar classifiers.

A sapwood class was then added to the output of the 3-dimensional classifier of yellow

poplar. The new topology of this neural network is 28-12-5. The new classifier was applied to

detect images of yp1.des, yp4.des and yp6.des.  The results are shown in Fig. 4.5. Comparing Fig.

4.4 (b) and Fig. 4.5 (a), it can be seen that the results for yp1.des do not change greatly for the

two classifiers, except the bark area on the left of the image Fig. 4.5 (a) is labelled as sapwood

and a little clear wood area on the right of it is labelled to be bark. Comparing Fig. 4.4 (b) and Fig

4.5 (b), we find that the labelling is significantly improved for yp4.des. However, it can be seen

from Fig. 4.5 (b) and (d) that the annual rings near the center area of the image are incorrectly

labelled as splits.

In order to solve this problem, more clear wood samples were collected from the annual

ring region and were added to the training samples. Examples of the final 3-D and 2-D classifiers

for yellow poplar are shown in Fig. 4.6 and 4.7, respectively. Annual rings near the center are

now correctly identified as heartwood. There are still some mis-classified regions in the bark area

for yp1.des. Some bark regions with high  CT image values are labelled as sapwood, and clear

wood near the bark region is labelled as bark. But overall, the 2-D classifier has higher accuracy
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than the 3-D classifier as shown in Table 4.1. The yellow poplar classifiers were not trained to

recognize decay because our yellow poplar data set does not have decay.

    (a)     (b)

    (c)     (d)

Figure 4.4. Examples of yellow poplar logs processed by the first 3-D classifier, with four
outputs that do not differentiate between heartwood and sapwood: (a) an original image of log
yp1.des without sapwood; (b) the classified image (a) labelled by this classifier; (c) an original
image of log yp4.des with sapwood; (d) the classified image (c). Image (d) shows that the four-
output classifier incorrectly labels sapwood as bark. Also, some annual rings are mislabelled as
splits, as are a narrow ring of points at the outside of the log.
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     (a)                (b)

       (c)      (d)

Figure 4.5. Examples of the second 3-D classifier for yellow poplar with five outputs which
labels heartwood and sapwood separately: (a) the labelled image of Fig. 4.4 (a); (b) the labelled
image of Fig. 4.4 (c); (c) an original image of log yp6.des; (d) the labelled image of the image (c).
Both (b) and (d) show that the annual rings of logs are incorrectly labelled as splits.
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(a)  

(b)

(c)

Figure 4.6. Examples of the updated 3-dimensional classifier for yellow poplar: (a) the result
obtained from the image in Fig. 4.4 (a); (b) the result obtained from the image in Fig. 4.4 (c); (c)
the result obtained from the image in Fig. 4.5 (c). Annual rings are labelled correctly as
heartwood.
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(a)

(b)

(c)

Figure 4.7. Examples of the 2-dimensional classifier for yellow poplar: : (a) the result obtained
from the image in Fig. 4.4 (a); (b) the result obtained from the image in Fig. 4.4 (c); (c) the result
obtained from the image in Fig. 4.5 (c).
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4.2 Species-Independent Classifiers

4.2.1 RO_YP Classifiers

The topology of the ANN for the red oak and yellow poplar combined classifiers is 28-12-

6 (3-D) and 26-12-6 (2-D). The outputs of the classifiers are clear wood, knots, bark, split, decay

and yellow poplar sapwood because red oak has decay and yellow poplar has sapwood. The

results of the classifiers are shown in Fig 4.8 (2-D) and Fig 4.9 (3-D). In these five examples, the

two classifiers are able to label pixels of all defects that are presented.

We find obvious differences between the two classifiers from these images: 1) the bark

region of log yp1.des (Figure 4.8 (c)) is more correctly labelled by the 3-D classifier than by the 2-

D classifier; 2) the size of the knot region of log yp6.des (Figure 4.8 (e)) classified by the 3-D

classifier is closer to the actual size than that classified by the 2-D classifier; 3) the annual rings

are more correctly labelled by the 3-D classifier than by the 2-D classifier for both log  yp4.des

and log yp6.des.
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(a)     

  (b)  (c)  

(d)  (e)  

Figure 4.8. Examples of the 2-D RO-YP combined classifier: (a) the result obtained using the
image in Fig. 4.1 (b) (rk01.des); (b) the result obtained using the image in Fig. 4.1 (a) (rk12.des);
(c) the result obtained using the image in Fig. 4.4 (a) (yp1.des); (d) the result obtained using the
image in Fig. 4.4 (c) (yp4.des); (e) the result obtained using the image in Fig. 4.5 (c) (yp6.des).
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         (a)  

(b)  (c)  

(d)   (e)  

Figure 4.9. Examples of the 3-D RO-YP combined classifier: (a) the result obtained from the
image in Fig. 4.1 (b) (rk01.des); (b) the result obtained using the image in Fig 4.1 (a) (rk12.des);
(c) the result obtained using the image in Fig. 4.4 (a) (yp1.des); (d) the result obtained using the
image in Fig. 4.4 (c) (yp4.des); (e) the result obtained using the image in Fig. 4.5 (c) (yp6.des).
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4.2.2 RO_CH Classifiers

The RO_CH classifiers were developed by training using red oak and cherry_170 samples.

Because neither red oak nor cherry have sapwood, the topology for the 2-D classifier is 26-12-5

and 28-12-5 for the 3-D classifier. The results of the classifiers are shown in Fig. 4.10 and Fig.

4.11.

In these three examples, the 2-D and 3-D classifiers are able to recognize all defects that

are presented. There are five kinds of defects in the cherry images: clear wood, knot, bark, split,

and decay. Both of the classifiers labelled all classes clearly. However, it is obvious that spurious

misclassifications exist in these examples. For example, at the right top of image (a) in both Fig.

4.10 and Fig. 4.11, a large area of clear wood which is near the bark is labelled as bark.
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      (a)           

(b)

(c)

Figure 4.10. Examples of the 2-D CH-RO combined classifier: (a) the result obtained from the
image in Fig. 4.2 (a) (cherry_170.des);  (b) the result obtained from the image in Fig. 4.1(b)
(rk01.des); (c) the result obtained from the image in Fig. 4.1(a) (rk12.des).
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(a)         

(b)

(c)

Figure 4.11. Examples of the 3-D CH-RO combined classifier: (a) the result obtained from the
image in Fig. 4.2 (a) (cherry_170.des); (b) the result obtained from the image in Fig. 4.1 (b)
(rk01.des); (c) the result obtained from the image in Fig. 4.1 (a) (rk12.des).
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4.2.3 CH_YP Classifiers

Because the cherry images have decay and the yellow poplar images have sapwood, the

topology of the neural network for the 2-D classifier is 26-12-6 and is 28-12-6 for the 3-D

classifier. The results of the cherry and yellow poplar combined classifiers are shown in Fig. 4.12

and Fig. 4.13.

As shown in Table 4.1, the accuracy of the CH_YP classifiers is lower than CH_RO and

RO_YP classifiers. In Fig. 4.12, the split of the cherry image is recognized more clearly by the 3-

D classifier. In Fig. 4.13, the bark of log yp1.des is more clearly classified by the 3-D classifier.

This indicates that the 3-D classifier performs better than the 2-D classifier in this case.

(a) (b)

Figure 4.12. Examples of  cherry_170.des logs detected by CH_YP classifiers: (a) the result
obtained from the image in Fig. 4.2 (a) labelled by the 2-D classifier; (b) the result obtained from
the image in Fig. 4.2 (a) labelled by the 3-D classifier.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13. Examples of yellow poplar images detected by the CH_YP classifiers: (a) the result
obtained using the image in Fig. 4.4 (a) labelled by the 2-D classifier; (b) the result obtained using
the image in Fig. 4.4 (a) labelled by the 3-D classifier; (c) the result obtained using the image in
Fig. 4.4 (c) labelled by the same 2-D classifier; (d) the result obtained using the image in Fig. 4.4
(c) labelled by the same 3-D classifier; (e) the result obtained using the image in Fig. 4.5 (c)
labelled by the same 2-D classifier; (f) the result obtained from the image in Fig. 4.5 (c) labelled by
the same 3-D classifier.
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4.2.4 CH_RO_YP Classifiers

These classifiers combine samples for all three species of hardwood logs. We trained a 2-

D classifier with a 26-12-6 neural network, and a 3-D classifier with a 28-12-6 neural network.

They were trained to identify each pixel as one of six classes: clear wood, knots, bark, splits,

decay, and yellow poplar sapwood. Results from these 2 combined classifiers appear in Figure

4.14 and Figure 4.15. In Table 4.1, the average accuracy of the 3-D classifier is higher than the 2-

D classifier. Comparing the 2-D and 3-D classifiers’ results, we see that both of them have good

performance. Small decay area and split in image cherry_170.des, small split in image rk01.des,

sapwood and annual rings in both images of yp4.des and yp6.des are mostly labelled right.  
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   (a)     (b)

(c) (d)

(e) (f)

Figure 4.14. Examples of the 2-D CH_RO_YP classifier: (a) the result obtained using the image
in Fig. 4.2 (a) (cherry_170.des); (b) the result obtained using the image in Fig. 4.1 (b) (rk01.des);
(c) the result obtained using the image in Fig. 4.1 (a) (rk12.des); (d) the result obtained using the
image in Fig. 4.4 (a ) (yp1.des); (e) the result obtained using the image in Fig. 4.4 (c) (yp4.des);
(f) the result obtained using the image in Fig. 4.5 (c) (yp6.des).
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(a)    (b)

(c) (d)

(e) (f)

Figure 4.15. Examples of the 3-D CH_RO_YP classifier: (a) the result obtained using the image
in Fig. 4.2 (a) (cherry_170.des); (b) the result obtained using the image in Fig. 4.1 (b) (rk01.des);
(c) the result obtained using the image in Fig. 4.1 (a) (rk12.des); (d) the result obtained using the
image in Fig. 4.4 (a ) (yp1.des); (e) the result obtained using the image in Fig. 4.4 (c) (yp4.des);
(f) the result obtained using the image in Fig. 4.5 (c) (yp6.des).
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4.3 10-fold Cross-validation Results

Classification accuracies of the neural-network classifiers are used to evaluate the

performance of the classifiers. Accuracy is computed as the ratio of the number of correctly

classified pixels to the total number of pixels that are used. A general single train-and-test

experiment splits the samples into two parts: the training set and the testing set. The training set is

used to determine the weights of the classifier. The testing set is used to measure the accuracy of

the classifier. This only provides a single estimate of classifier accuracy. In order to obtain a better

measurement of a classifier, the multiple train-and-test method is used. The estimated accuracy is

chosen as the average of the accuracy for classifiers derived for independently and randomly

generated test partitions [WEI91]. 10-fold cross-validation is used to study the estimated

accuracy.

For one classifier, there are n total samples to be randomly divided into 10 partitions. At

each stage of the ten-step process, one of the partitions is reserved for testing, the classifier is

trained on the remaining 9 partitions, and after training is complete the classifier is tested on the

reserved partition. This process is repeated 10 times, with testing performed each time with a

different partition. The average accuracy  over all 10 partitions is considered as the estimated

accuracy of this classifier. Table 4.1 shows the final accuracy of each classifier. Figure 4.16 shows

a graphical depiction of the final accuracy values appearing in Table 4.1. The results of all

partitions of all classifiers are shown in Appendix A. Figure 4.17 shows an accuracy graph of

classifier results appearing in Appendix A. In all of the cases we tested, we found that 2-D

classifiers are better than the 3-D classifiers for single species and 3-D classifiers are better than 2-

D classifiers for multiple species.
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Figure 4.16. The graphic of average classification rate. This is the same data as given in Table
4.1.

Confusion matrices for the three species combined classifier are shown in Table 4.2 and

Table 4.3. The number of correct classifications for each class is on the diagonal of each matrix.

All other numbers are the number of errors for a particular type of misclassification. For example,

the total number of clear wood testing/training samples in Table 4.2 is 1333. Of these, 43 were

misclassified as bark, 22 of them were misclassified as split and 30 of them were misclassified as

decay. In addition, we can see that a lot of splits were misclassified as clear wood because we

retrained the neural network to remove the misclassification of the annual ring for yellow poplar,

as mentioned in section 4.1.3.  The confusion matrices of other classifiers are shown in Appendix

B.



69

      

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

RO

CH

YP

CH_512

CH_RO

CH_YP

RO_YP

COMB

RO

CH

YP

CH_512

CH_RO

CH_YP

RO_YP

COMB

0.85 0.9 0.95 1

Classification Accuracy

Figure 4.17. The accuracy graphic of 10-fold cross validation classifications. The box ends are
25th and 75th percentile ranges, respectively.  The whiskers represent the 10th and 90th
percentiles, respectively.  The line within the box is the median, and the cross is the mean. The
boxes above the line are 3-D classifiers’ accuracy; the others are 2-D classifiers’ accuracy.

Table 4.2. A confusion matrix of  the three-species combined classifier (CH_RO_YP) for 2-D
analysis.

classified as
clear wood

classified as
knot

classified as
bark

classified as
split

classified as
decay

classified as
sapwood

clear wood 1238 9 16 132 27 4
knot 0 402 0 0 2 1
bark 43 3 448 0 0 1
split 22 0 0 181 19 0

decay 30 0 1 5 223 0
sapwood 0 30 13 0 0 226

total 1333 444 478 318 271 232
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Table 4.3. A confusion matrix of  the three-species combined classifier (CH_RO_YP) for 3-D
analysis.

classified as
clear wood

classified as
knot

classified as
bark

classified as
split

classified as
decay

classified as
sapwood

clear wood 1266 16 36 85 23 1
knot 3 389 0 0 2 2
bark 45 7 425 0 0 3
split 11 0 0 226 10 0

decay 8 0 2 7 236 0
sapwood 0 32 15 0 0 226

total 1333 444 478 318 271 232

4.4. Statistical Analysis

Because ten-fold cross-validation was used, each trained classifier has 10 estimates of

classification accuracy, resulting from the accuracy rates from each partition of the data sets.

These estimates can be used as samples in statistical Analysis of Variance (ANOVA). In our first

test, we separate the classification rates in Table 1 and Table 2 of Appendix A into two groups:

dimensionality which includes two-dimensional and three-dimensional classifiers, and cardinality

which includes single (species-dependent) and multiple (species-independent) classifiers. ANOVA

treatments, in this case, are single and multiple cardinality, and are blocked on the dimensionality

of the classifiers (2-D or 3-D). The F-ratio results for the dimensionality and cardinality are 0.055

(P=0.815) and 27.4 (P<0.001), respectively. It is clear that the F ratio of the cardinality is much

higher than that of dimensionality (the latter F-ratio is not significant), which indicates that

differences exist between the mean classification rates for the single- and multiple-species

classifiers. The interaction of dimensionality and cardinality is also significant, indicating a

combined effect. This can be seen in the average classification rates of Table 4.1, where 2-D rates

are generally higher for single-species classifiers and 3-D rates are generally higher for multiple-

species classifiers. To determine which means are significantly different for cardinality and

dimensionality,  post-hoc pair-wise T-tests were performed. The probability values associated
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with those tests are shown in Table 4.4. 2-D multiple classifiers have significantly different

classification rates from 2-D single and 3-D single classifiers. 2-D single classifiers have

significantly different classification rates from 3-D multiple classifiers. 3-D multiple classifiers are

not significantly different from 3-D single classifiers.

Table 4.4. A matrix of pair-wise T-test probability values for different classification rates of
two groups.

2-D multiple 2-D single 3-D multiple 3-D single

2-D multiple 1.000

2-D single 0.000 1.000

3-D multiple 0.347 0.001 1.000

3-D single 0.002 0.301 0.187 1.000

To understand greater details about the differences between dimensionality and cardinality,

we performed ANOVAs for single- and multiple-species classifiers separately. For the single-

species classifiers, ANOVA treatments are species (CH, RO, and YP) and dimensionality (2-D

and 3-D) is used for blocking. F-ratio values for species and dimensionality are 11.4 (P<0.005)

and 9.53 (P=0.003), respectively. Probability values associated with post-hoc T-tests are shown in

Table 4.5. Table 4.5 shows that the classification rates for the cherry-specific classifiers are

significantly different from both those of the red oak- and the yellow poplar-specific classifiers.

However, there is no significant difference between the red oak and yellow poplar single-species

classifiers.
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Table 4.5. A matrix of pair-wise T-test probability values for the classification rates of cherry,
red oak and yellow poplar single classifiers.

CH RO YP

CH 1.000

RO 0.000 1.000

YP 0.001 0.995 1.000

For the multiple-species classifiers, ANOVA treatments are species (CH_RO, CH_YP,

CH_RO_YP, RO_YP) and dimensionality (2-D and 3-D) is used for blocking. F-ratio values for

species and dimensionality are 39.3 (P<0.005) and 4.97 (P=0.032), respectively. Probability

values associated with post-hoc T-tests are shown in Table 4.6. Table 4.6 indicates that the

CH_RO classifier has significantly greater accuracy than the other 3 multiple-species classifiers.

Also, the RO_YP classifier has greater accuracy than the two, lowest accuracy classifiers,

CH_RO_YP and CH_YP. Each of those 2 classifiers contains cherry and yellow poplar samples,

which seem to create classification problems. T-tests indicate that CH_RO_YP and CH_YP are

not significantly different from one another.

Based on the obvious classification problems stemming from combining cherry and yellow

poplar samples, we performed our original ANOVA again. This time, treatments were cardinality

again, but only CH_RO and RO_YP were included in the multiple-species classifiers (no cherry

and yellow poplar combinations). Also, the fine resolution (1mm) cherry classifier (CH_512) was

excluded from the single-species classifiers. As before, we blocked the ANOVA on dimensionality

(2D and 3D). The F-ratio value for cardinality is 0.050, which indicates that there is no difference

between  single- and multiple-species classification rates when cherry/yellow poplar combinations

are removed.

Finally, we perform analysis of variance to compare the effect of CT resolution on

classifier performance.  Table 4.7 shows the T-test probability values for single-species

classification rates. We found that the finer resolution cherry classifier has no significant by

different classification rate over the coarser resolution cherry classifier in our study.
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Table 4.6. A matrix of pair-wise T-test probability values for the classification rates of cherry,
red oak and yellow poplar multiple classifiers.

CH_RO CH_YP COMB RO_YP
CH_RO 1.000
CH_YP 0.000 1.000
COMB 0.000 0.606 1.000
RO_YP 0.004 0.000 0.000 1.000

Table 4.7. A matrix of pair-wise T-test probability values for the classification rates of cherry,
cherry_512, red oak and yellow poplar single classifiers.

CH CH_512 RO YP
CH 1.000

CH_512 0.790 1.000
RO 0.003 0.043 1.000
YP 0.004 0.053 1.000 1.000
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Chapter 5

Conclusions and Future Work

This thesis has empirically investigated a variety of ANN classifiers for defect labeling in

CT images of logs. Several species-dependent and species-independent  classifier modules have

been developed. Half of the classifiers used 2-D information and half used 3-D information.

Classification modules have been tested using CT images from six hardwood logs representing

three different species.

The kernel of this automatic recognition system is an artificial neural network.  For 2-D

and 3-D image analysis, there are different numbers of nodes in the first layer of the network

corresponding to the local features: features extracted from a 5 × 5 window for 2-D and from a

3 × 3 × 3 window for 3-D. All of the networks utilize 12 nodes in the middle layer. The number of

output nodes varies for different species classifiers. Some classifiers have six nodes and others

have five nodes.

Five species-dependent classifiers have been trained using both 2-D and 3-D image data.

Two classifiers are applied to yellow poplar images. One classifier is applied to red oak and the

other two are applied to cherry. The accuracy of all five classifiers is above 95%.

Six, two-species classifiers have also been trained using both 2-D and 3-D image data.

Two of them are red oak and yellow poplar combined classifiers, two of them are red oak and
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cherry combined classifiers and two rest are cherry and yellow poplar combined classifiers. Their

accuracy is 90%-97%.

Finally, combined three-species classifiers (red oak, yellow poplar and cherry) were

generated for 2-D and 3-D analysis. These two classifiers identified six kinds of defects: clear

wood, knot, bark, split, decay and yellow poplar sapwood. Their accuracy is about 91%-92%.

In comparison between 2-D and 3-D analysis, the performance of 2-D species-dependent

classifiers is better than that of 3-D species-dependent classifiers. The performance of 3-D

species-independent classifiers is better than that of 2-D classifiers. In comparing species-

dependent classifiers and species-independent classifiers, the performance of the former is better

than that of the latter when cherry-yellow poplar combinations are used. All of these accuracies

are good for industrial use. Higher resolution images do not seem to have a significant difference

on performance.

The performance of all classifiers is based on training the ANN. The most important thing

for training the ANN is selecting training samples. In our research, for example, the performance

of the CH_YP classifiers is as accurate as other classifiers. We can see from the confusion matrix

(Appendix B) of the 2-D CH_YP classifier that about half of the split samples are misclassified as

clear wood. The reason of the misclassification is that the number of the split samples is small and

the annual ring samples are added in the clear wood  samples for yellow poplar. That is also one

reason which CH_RO combined classifiers and RO_YP combined classifiers have better

performance than CH_YP combined classifiers. If we can obtain more split samples from both

these species, we  may be able to improve the performance of their combined classifiers. As an

example, we were able to eliminate the mis-classification of heartwood annual rings as splits in the

yellow poplar classifiers by selecting additional training examples.

The eventual goal of this research is to develop a commercial automatic detection system

that identifies defects from clear wood within logs and uses this information to help sawmill and

veneer mill operators to improve the quality of products and preserve natural resources. This

study has shown that several important defects of different species of logs can be reasonably

identified automatically using CT data. Because of the success of the species-dependent and
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species-independent neural network classifiers, we feel confident that it is possible to develop

general classifiers that can be used with all kinds of hardwood logs.

This system is currently implemented on a Macintosh PowerPC with a 66 MHz processor.

The time for analyzing a single 256 × 256 CT slice is about 300 seconds. If implemented on a

parallel processor, we would expect it to complete in 5-10 seconds. This will make the system

viable for real-time industrial implementation.
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   Appendix  A 10-Fold Cross Validation Accuracy

This appendix contains all 10-fold cross validation accuracies for all ANN classifiers.

Table A.1. 10-fold cross-validation accuracies for species-dependent defect detection.
* From [LI96].

Partition
number

red oak
2-D

red oak
3-D*

ch_170
2-D

ch_170
3-D

ch_512
2-D

ch_512
3-D

yellow
poplar

2-D

yellow
poplar

3-D
1 0.9793 0.9679 0.9705 0.9770 0.9503 0.9815 0.9527 0.9460
2 0.9572 0.9392 0.9808 0.9613 0.9464 0.9765 0.9552 0.9423
3 0.9357 0.9412 0.9746 0.9571 0.9830 0.9544 0.9795 0.9635
4 0.9684 0.9485 0.9779 0.9600 0.9711 0.9759 0.9452 0.9213
5 0.9347 0.9043 0.9818 0.9829 0.9419 0.9833 0.9631 0.9488
6 0.9611 0.9463 0.9624 0.9713 0.9882 0.9733 0.9661 0.9366
7 0.9553 0.9799 0.9555 0.9645 0.9809 0.9689 0.9825 0.9514
8 0.9662 0.9399 0.9746 0.9818 0.9857 0.9820 0.9795 0.9457
9 0.9646 0.9628 0.9804 0.9709 0.9608 0.9715 0.9567 0.9311
10 0.9515 0.9497 0.9574 0.9684 0.9284 0.9154 0.9543 0.9404

average 0.9574 0.9478 0.9716 0.9695 0.9637 0.9679 0.9634 0.9427

Table A.2. 10-fold cross-validation accuracies for species-independent defect detection.
Partition
number

ch_ro
2-D

ch_ro
3-D

ch_yp
2-D

ch_yp
3-D

ro_yp
2-D

ro_yp
3-D

ch_ro_yp
2-D

ch_ro_yp
3-D

1 0.9556 0.9625 0.9380 0.9023 0.9636 0.9392 0.9142 0.9443
2 0.9867 0.9765 0.8826 0.9301 0.9126 0.9541 0.9305 0.9434
3 0.9361 0.9778 0.8825 0.9053 0.9627 0.9695 0.9424 0.9136
4 0.9749 0.9701 0.9206 0.9236 0.9682 0.9380 0.9280 0.9322
5 0.9756 0.9771 0.9038 0.9250 0.9103 0.9508 0.9273 0.9129
6 0.9524 0.9679 0.8903 0.9029 0.9679 0.9743 0.9112 0.9096
7 0.9748 0.9795 0.8774 0.9248 0.9405 0.9424 0.9292 0.9144
8 0.9691 0.9636 0.9147 0.9021 0.9327 0.9583 0.8701 0.8974
9 0.9510 0.9657 0.9110 0.9689 0.9407 0.9317 0.9079 0.9025
10 0.9741 0.9722 0.9263 0.9342 0.9251 0.9739 0.9374 0.9391

average 0.9650 0.9713 0.9047 0.9219 0.9414 0.9532 0.9198 0.9209
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Appendix  B Confusion Matrices of the Classifiers

This appendix contains all confusion matrices of all 2-D and 3-D classifiers.

Table B.1. A confusion matrix of the 2-D classifier for log  cherry_170.des.
classified as
clear wood

classified as
knot

classified as
bark

classified as
split

classified as
decay

total

clear wood 401 3 4 2 1
knot 0 135 0 0 0
bark 3 0 122 0 0
split 0 0 0 92 2

decay 0 0 1 0 94
total 404 137 127 94 97 859

Table B.2. A confusion matrix of the 3-D classifier for log  cherry_170.des.
classified as
clear wood

classified as
knot

classified as
bark

classified as
split

classified as
decay

total

clear wood 398 2 2 3 2
knot 0 136 0 0 2
bark 6 0 125 0 0
split 0 0 0 91 6

decay 0 0 0 0 87
total 404 137 127 94 97 859

Table B.3. A confusion matrix of the 2-D classifier for log  cherry_512.des.
classified as
clear wood

classified as
knot

classified as
bark

classified as
split

classified as
decay

total

clear wood 463 11 6 6 15
knot 4 162 0 0 0
bark 2 0 175 0 0
split 1 0 0 120 6

decay 0 0 0 1 114
total 470 173 181 127 135 930
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Table B.4. A confusion matrix of the 3-D classifier for log cherry_512.des.
classified as
clear wood

classified as
knot

classified as
bark

classified as
split

classified as
decay

total

clear wood 455 13 5 6 17
knot 4 160 0 0 1
bark 11 0 176 0 0
split 0 0 0 119 6

decay 0 0 0 2 115
total 470 173 181 127 135 930

Table B.5. A confusion matrix of the 2-D classifier for red oak log.
classified as
clear wood

classified as
knot

classified as
bark

classified as
split

classified as
decay

total

clear wood 383 5 16 12 0
knot 8 124 0 0 0
bark 3 5 155 0 0
split 2 0 0 155 1

decay 0 0 0 6 173
total 396 134 171 173 174 1048

Table B.6. A confusion matrix of the 2-D combined classifier for red oak  and cherry log.
classified as
clear wood

classified as
knot

classified as
bark

classified as
split

classified as
decay

total

clear wood 781 10 16 10 4
knot 6 253 2 0 2
bark 9 9 279 0 0
split 4 0 0 246 19

decay 0 0 1 11 246
total 800 272 298 267 271 1907

Table B.7. A confusion matrix of the 3-D combined classifier for red oak  and cherry log.
classified as
clear wood

classified as
knot

classified as
bark

classified as
split

classified as
decay

total

clear wood 782 11 17 7 5
knot 4 245 2 0 2
bark 13 15 277 0 0
split 1 0 1 253 12

decay 0 1 1 7 252
total 800 272 298 267 271 1907
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Table B.8. A confusion matrix of the 3-D classifier for yellow poplar.
classified as
clear wood

classified as
knot

classified as
bark

classified as
split

classified as
sapwood

total

clear wood 516 0 1 10 1
knot 0 155 0 0 0
bark 15 0 165 0 0
split 2 0 0 41 0

sapwood 0 17 14 0 231
total 533 172 180 51 232 1168

Table B.9. A confusion matrix of the 2-D classifier for yellow poplar.
classified as
clear wood

classified as
knot

classified as
bark

classified as
split

classified as
sapwood

total

clear wood 526 0 5 6 2
knot 0 150 0 0 0
bark 6 0 172 0 0
split 0 0 0 45 0

sapwood 1 22 3 0 230
total 533 172 180 51 232 1168

 Table B.10. A confusion matrix of the 3-D combined classifier for cherry and yellow poplar.
classified as
clear wood

classified as
knot

classified as
bark

classified as
split

classified as
decay

classified as
sapwood

total

clear wood 916 0 13 55 2
knot 1 284 0 0 23 0
bark 17 0 284 0 2 0
split 1 0 0 90 1 0

decay 1 0 2 0 67 0
sapwood 1 26 8 0 0 230

total 937 310 307 145 97 232 2027

Table B.11. A confusion matrix of the 2-D combined classifier for cherry and yellow poplar.
classified as
clear wood

classified as
knot

classified as
bark

classified as
split

classified as
decay

classified as
sapwood

total

clear wood 915 1 25 68 23 3
knot 1 282 0 0 3 0
bark 17 3 270 0 0 0
split 1 0 0 77 8 0

decay 2 0 0 0 64 0
sapwood 1 24 12 0 0 229

total 937 310 307 145 97 232 2027
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Table B.12. A confusion matrix of the 2-D combined classifier for red oak and yellow poplar.
classified as
clear wood

classified as
knot

classified as
bark

classified as
split

classified as
decay

classified as
sapwood

total

clear wood 895 8 17 62 2 1
knot 1 248 0 0 0 0
bark 27 5 325 0 0 0
split 4 0 0 155 0 0

decay 0 0 0 7 172 0
sapwood 2 45 9 0 0 231

total 929 306 351 224 174 232 2216

Table B.13. A confusion matrix of the 3-D combined classifier for red oak and yellow poplar.
classified as
clear wood

classified as
knot

classified as
bark

classified as
split

classified as
decay

classified as
sapwood

total

clear wood 872 11 14 46 1 1
knot 3 260 0 0 0 0
bark 44 6 331 0 0 0
split 10 0 0 171 0 0

decay 0 0 0 7 173 0
sapwood 0 29 6 0 0 231

total 929 306 351 224 174 232 2216
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Appendix  C Software User’s Guide

In the course of this study, we used two software packages: DIP Station (for image

processing) and NW2 (for neural networks). DIP and NW2 are general packages with versatile

functions. Only parts of these packages were used in this study. The procedure of using these two

packages is listed below. The users are suggested to refer the user’s manual of the software for

more detailed information.

1. Open DIP Station.

1.1 Collecting samples

• From the File menu, open a CT image file.

• From the Module menu, select Datalocation module. A dialog box  will show

up. Input <filename>.dat below the Save As. Click OK. Another dialog box

will appear.

• Input the type number of a defect that you want to select in the dialog box,

then move the mouse into the image window. Click the mouse to select the

pixels that represent the defect. If you want to change the type of the defect,

repeat this step and input a different number for another defect.

• After selecting samples, click QUIT from the dialog box.

1.2 Getting features

• From the Module menu, select the Features_xxx module. The xxx means the

image size. For example, if the size is 256× 256, you select the Features_256.

• In the dialog box, open the <filename>.dat file. Then save the <filename>.dat

file into the <filename>.nna file using Save As.

1.3  Quit the DIP Station.

2.  Open NW2
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• Create a new neural network. Select the <filename>.nna to be the input data file.

• Training the neural network (please refer the software user’s manual for details).

• Save the weight vectors.

• Quit NW2.

 

3.  Programming

• Open Think C object management.

• Implement the trained neural network in Think C. Several programs are in the

Woodneural direction. The important thing is to use new weight vectors you got to

replace previous ones.

• Compile the C program.

• Create a resource code in the Module direction of the DIP Station.

• Quit Think C.

 

4.  Open DIP Station

• Open the CT image file from the File menu; Select a slice of the image.

• From the Module menu, select a classifier module. For example, the “cherry_170_2D”

is a 2-D classifier for cherry_170 single species. So the file you open in previous step

must be the cherry_170.des.

• A classified image will display on the screen.
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