Passive Site Remediation for Mitigation of Liquefaction Risk

Patricia M. Gallagher

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

> Doctor of Philosophy in Civil Engineering

Dr. James K. Mitchell, Chair Dr. Thomas L. Brandon Dr. James R. Martin Dr. J. Donald Rimstidt Dr. Mark A. Widdowson

> October 27, 2000 Blacksburg, Virginia

Keywords: Liquefaction, remediation, ground improvement, groundwater modeling, colloidal silica

Passive Site Remediation for Mitigation of Liquefaction Risk

Patricia M. Gallagher Dr James K. Mitchell, Chair Via Department of Civil and Environmental Engineering

ABSTRACT

Passive site remediation is a new concept proposed for non-disruptive mitigation of liquefaction risk at developed sites susceptible to liquefaction. It is based on the concept of slow injection of stabilizing materials at the edge of a site and delivery of the stabilizer to the target location using the natural groundwater flow. The purpose of this research was to establish the feasibility of passive site remediation through identification of stabilizing materials, a study of how to design or adapt groundwater flow patterns to deliver the stabilizers to the right place at the right time, and an evaluation of potential time requirements and costs.

Stabilizer candidates need to have long, controllable gel times and low viscosities so they can flow into a liquefiable formation slowly over a long period of time. Colloidal silica is a potential stabilizer for passive site remediation because at low concentrations it has a low viscosity and a wide range of controllable gel times of up to about 100 days.

Loose Monterey No. 0/30 sand samples ($D_r = 22\%$) treated with colloidal silica grout were tested under cyclic triaxial loading to investigate the influence of colloidal silica grout on the deformation properties. Distinctly different deformation properties were observed between grouted and ungrouted samples. Untreated samples developed very little axial strain after only a few cycles and prior to the onset of liquefaction. Once liquefaction was triggered, large strains occurred rapidly and the samples collapsed within a few additional cycles. In contrast, grouted sand samples experienced very little strain during cyclic loading. What strain accumulated did so uniformly throughout loading and the samples remained intact after cyclic loading. In general, samples stabilized with 20 weight percent colloidal silica experienced very little (less than two percent) strain during cyclic loading. Sands stabilized with 10 weight percent colloidal silica tolerated cyclic loading well, but experienced slightly more (up to eight percent) strain. Treatment with colloidal silica grout significantly increased the deformation resistance of loose sand to cyclic loading Groundwater and solute transport modeling were done using the codes MODFLOW, MODPATH, and MT3DMS. A "numerical experiment" was done to determine the ranges of hydraulic conductivity and hydraulic gradient where passive site remediation might be feasible. For a treatment are of 200 feet by 200 feet, a stabilizer travel time of 100 days, and a single line of low-head (less than three feet) injection wells, it was found that passive site remediation could be feasible in formations with hydraulic conductivity values of 0.05 cm/s or more and hydraulic gradients of 0.005 and above. Extraction wells will increase the speed of delivery and help control the down gradient extent of stabilizer movement. The results of solute transport modeling indicate that dispersion will play a large role in determining the concentration of stabilizer that will be required to deliver an adequate concentration at the down gradient edge. Consequently, thorough characterization of the hydraulic conductivity throughout the formation will be necessary for successful design and implementation of passive site remediation.

The cost of passive site remediation is expected to be competitive with other methods of chemical grouting, i.e. in the range of \$60 to \$180 per cubic meter of treated soil, depending on the concentration of colloidal silica used.

ACKNOWLEDGEMENTS

Many people have contributed to my success at Virginia Tech. I am especially thankful to have had the opportunity to work with Dr. James K. Mitchell. This experience has been one of the highlights of my career. I also appreciate the input and suggestions from the rest of my committee: Dr. Tom Brandon, Dr. Jimmy Martin, Dr. Don Rimstidt and Dr. Mark Widdowson. Special thanks to Dr. Widdowson for his detailed help and guidance on groundwater and stabilizer transport modeling and to Dr. Rimstidt for his geochemical expertise and many conversations about silica.

Financial support was provided by the Charles E. Via, Jr. Fellowship and the Multi-Disciplinary Center for Earthquake Engineering Research. The Via Fellowship included a one-semester instructorship that enabled me to teach an undergraduate soil mechanics course. This opportunity was invaluable in helping me to prepare for an academic career.

Numerous organizations provided materials and equipment to carry out the laboratory testing phase of this research. I would like to thank the following people and organizations for their help. Mr. Chris Gause of Master Builders contributed materials for laboratory testing of microfine cement grouts and expertise on all things related to grouting. Dr. Carmine Polito taught me how to run cyclic triaxial tests. Mr. Jim Coffey helped me with the laboratory testing program. Mr. Denson Graham made molds for testing stabilized sands. Mr. Clark Brown fixed many of the things I broke and lent me all kinds of things. Ms. Julie Petruska lent me equipment and provided supplies for the testing program. Ms. Stacey Reubush provided access to and instructions for use of the viscometer. Dr. Ernst Ahrens of Sandia National Laboratory and Mr. Henry Pringer of Blue Circle contributed cement for testing. Mr. Jim Akins of T.E. Byerly provided use of a high-speed shear mixer. DuPont provided a potion of the colloidal silica used in the testing program.

My interactions with colleagues and friends in the civil engineering department made the day-today process enjoyable and stimulating. Thanks to Mia Kannik, Jen Schaeffer, Russell Green, Harry Cooke, C.J. Smith, Alan Rauch, Jesus Gomez, Youngjin Park, Miguel Pando, Afonso Marques, Jeremy Britton, Mary Ruth McDonald, Clark Brown, Sami Arsoy, Chris and Diane Baxter, Carmine Polito, Brendan Sheehan, Ken Huber, Laura Henry, Wayne Herring, Kathy Patterson, Steve Brauner, and Steve Phifer. Naxin Song and Christian Girsang kept me company in Ozawa Library during the long nights of writing my dissertation. Special thanks to Jim Coffey for providing a home for me and my cats during my last few months in Blacksburg. My friends Darleen Pryds, Jane Keppel-Benson, Amanda Serra, Donna Lisker, Chris Zobel, Melody Thomas, Tina Renick, Julie Petruska, Lisa Barroso and Jean Elliott made my life better, happier and a lot more fun. I appreciate your friendship.

My family and friends across the country were supportive of this whole endeavor from start to finish. The list is long: Mary Ellen Gallagher, John Gallagher, Sheila Gallagher, Andrea Bellavia and Joe Jagiello, Brian Gallagher, Tom, Nancy and Kevin Gallagher, Kathy, Lee, Drew and Blair Gatewood, Mary Jane Gallagher, Eleanor and Bill McComas, Holly Anderson, Amanda Alvarado-Anderson, Rickie Ampudia, Miriam Bartha, Cindy Elston, Stefanie Chenkin, Michael McGrorty, Jon and Donna Demarest, Bill Wolfe, and my friends at BBC&M. Thanks for your constant encouragement, support, and love. I am so grateful to have you in my life. Heartfelt gratitude to Tammy Anderson for her enduring support and encouragement throughout this process.

TABLE OF CONTENTS

1.0	INT	RODUCTION	1
	1.1	Statement of the Problem	1
	1.2	Scope of Research	3
• •	DED		ſ
2.0	PER		6
	2.1	Performance Criteria for Potential Stabilizers	6
	2.2	Time required for Stabilizer to Travel through Liquefiable Formation	
	2.3	Performance Criteria for Stabilized Formation	9
	2.4	Conclusion	10
3.0	РОТ	ENTIALLY SUITABLE MATERIALS, DELIVERY SYSTEMS AND	
••••	MO	DELING TECHNIQUES	16
	31	Rheology of Potential Stabilizers	16
	3.2	Penetrability of Cement Grout	17
	33	Microfine Cement Grouts	19
	34	Set-Retarding Admixtures	21
	3.5	Extended Set Control Admixtures	23
	3.6	Colloidal Silica	23
	0.0	3 6 1 Gel Time Control	24
		3.6.2 Strength, Hydraulic Conductivity and Durability Characteristics	
		3.6.3 Pilot and Field Testing Using Colloidal Silica Grouts	
	3.7	Chemical Grouts	
		3.7.1 Sodium Silicate	
		3.7.2 Acrylamide	
		3.7.3 Acrylate	
		3.7.4 Iron Precipitation Grouts	
		3.7.5 Epoxy	
		3.7.6 Polysiloxane	
	3.8	Permeable Reactive Barriers for Controlling Groundwater Contamination	
		3.8.1 Geochemical Reactions Between Zero-Valent Iron and Groundwater	34
		3.8.2 Colloidal Zero-Valent Iron	
		3.8.3 Ferric Cloride	37
	3.9	Biological Materials	38
	3.10	Delivery Systems	41
		3.10.1 Injection or Extraction Wells	41
		3.10.2 Magnetic Fluids	41
		3.10.3 Electrokinetic Processing	42
	3.11	Computer Modeling	43
		3.11.1 Previous Modeling Studies to Design Colloidal Silica and Permeable	
		Reactive Barriers	44
		3.11.2 Codes Considered for Passive Site Remediation	46
		3.11.3 Conclusion	50

4.0	EVA	ALUATION BASED ON PERFORMANCE CRITERIA	56
	4.1	Cement-based grouts	56
	4.2	Colloidal silica	56
	4.3	Chemical grouts	57
		4.3.1 Sodium Silicate	57
		4.3.2 Acrylamide	58
		4.3.3 Acrylate	58
		4.3.4 Iron precipitation grouts	59
		4.3.5 Epoxy	59
		4.3.6 Polysiloxane	59
	4.4	Zero-valent iron	60
	4.5	Biological Materials	60
	4.6	Delivery Systems	61
	4.7	Groundwater Modeling	62
	4.8	Selection of Materials for Testing, Delivery Systems, and Modeling Codes	63
50	MIC	ROFINE CEMENT CROUT LABORATORY TESTING AND RESULTS	66
5.0	5.1	Introduction	00
	5.1	Microfine Cement Grout Testing Program	00
	5.2	5.2.1 Properties Measured	00
		5.2.1 Moterials	07
		5.2.2 Methods	00
		5.2.5 Niemous	00
		5.2.3.2 Sample Prenaration	00
		5.2.3.3 Stability Testing	00
		5.2.3.4 Rheological Testing	
		5.2.3.5 Measurement of Set Time	70
	53	Microfine Cement Grout Testing Results	72
	5.5	5.3.1 Summary	72
		5.3.2 Stability Testing Results	72
		5.3.2 Stability results Stability Results	75
		5.3.4 Differences in Cements Tested	70
		5.3.5 Set Time Results	//
	54	Conclusion	78
	0.1		, >
6.0	COI	LLOIDAL SILICA AND LABORATORY TESTING RESULTS	91
	6.1		91
	6.2	Colloidal Silica Gel Time and Viscosity Testing	91
		6.2.1 Properties Measured	91
		6.2.2 Materials	92
		6.2.3 Methods	93
		6.2.3.1 Sample Preparation	93
		6.2.3.2 Gel Time Testing	94
		6.2.3.3 Viscosity Testing	96
	6.3	Strength Testing of Stabilized Sands	96
		6.3.1 Properties Measured	99

		6.3.2 Materials	101
		6.3.3 Methods	102
		6.3.3.1 Preparation of Molds and Platens	102
		6.3.3.2 Sample Preparation	103
		6.3.3.3 Testing	105
	6.4	Colloidal Silica Gel Time and Viscosity Testing Results	109
		6.4.1 Summary	109
		6.4.2 Colloidal Silica Gel Time Testing Results	110
		6.4.3 Colloidal Silica Viscosity Testing Results	111
	6.5	Results of Strength Testing of Stabilized Sands	111
		6.5.1 Summary	111
		6.5.2 Cyclic Triaxial Test Results	114
		6.5.2.1 Results for Samples Made by Permeation Grouting	116
		6.5.2.2 Effect of Curing Time on Cyclic Resistance	116
		6.5.2.3 Effect of Different Grades of Colloidal Silica on Cyclic	
		Resistance	117
		6.5.3 Unconfined Compression Test Results	118
		6.5.4 Unconsolidated Undrained Test Results	119
	6.6	Conclusion	120
7.0	GRO	DUNDWATER AND STABILIZER TRANSPORT MODELING	138
	7.1	Introduction	138
	7.2	Conceptual Model	139
	7.3	Numerical Model	140
		7.3.1 Mathematical Models	140
		7.3.2 Grid Design and Boundary Conditions	143
		7.3.3 Layer Definition	143
		7.3.4 Flow System	144
		7.3.5 Water Budget	147
		7.3.6 Colloidal Silica	148
	7.4	Results	149
		7.4.1 Purely Advective Flow	149
		7.4.2 Combined Advection and Dispersion	150
		Case 1: Regional Flow Used to Deliver Stabilizer	152
		Case 2: Stabilizer delivered Via 7 Injection Wells	156
		Case 3: Stabilizer delivered Via 3 Injection Wells	159
	7.5	Conclusion	160

8.0	FEA	SIBILTY OF PASSIVE SITE REMEDIATION	
	8.1	Introduction	
	8.2	Will Colloidal Silica Grout Adequately Stabilize the Soil?	
	8.3	Can the Stabilizer be Delivered to the Formation?	
	8.4	How Much Will it Cost?	
	8.5	How Long Will it Take?	
	8.6	Conclusion	
9.0	SUN	IMARY AND RECOMMENDATIONS FOR FUTURE WORK	
	9.1	Key Findings	
	9.2	Recommendations for Future Work	
10.0 REFERENCES			
API	PEND	DIX 1 - MICROFINE CEMENT GROUT TESTING RESULTS	
API	PENE	DIX 2 - COLLOIDAL SILICA VISCOSITY TESTING RESULTS	
API	PEND	DIX 3 - STABILIZED SAND SAMPLE DETAILS AND CYCLIC TE	STING
RES	SULT	`S	
VIT	Ά		

LIST OF TABLES

Table 2-1	Performance Criteria for Stabilizer Candidates	7
Table 3-1	Grouting Ratios for Most Liquefiable Soils	18
Table 4-1	Evaluation of Grouts with Respect to Performance Criteria	65
Table 5-1	Components of Representative Mixes	74
Table 5-2	Pressure Filtration Coefficients for Representative Mixes	75
Table 5-3	Comparison of Results between Rheocem-900 and NewCem Slag Cement	77
Table 5-4	Comparison of Results between Rheocem-900 and Type V Premium Cemen	nts 78
Table 6-1	Properties of Ludox Colloidal Silica Sols	93
Table 6-2	Colloidal Silica Samples for Gel Time Curves	94
Table 6-3	Gel States of Colloidal Silica	95
Table 6-4	Index Properties for Monterey Sand	102
Table 7-1	Typical Values of Hydraulic Conductivity for Sands	144
Table 7-2	Typical Values of Porosity for Sands	145
Table 7-3	Example Variation in Hydraulic Conductivity by Layer for Dispersion	146
Table 7-4	Travel Times for Advective Flow	162
Table 7-5	Travel Times and Delivery Widths for Advective Flow	162
Table 8-1	Cost of Ludox-SM Based on Concentration	200

LIST OF FIGURES

Figure 1-1	Passive treatment for mitigation of liquefaction risk	5
Figure 2-1	Viscosity of an ideal grout	. 11
Figure 2-2	Grain size ranges for most liquefiable soils	. 12
Figure 2-3	Hydraulic conductivity versus time required for water to travel 200 feet	. 13
Figure 2-4	Effect of treatment on liquefaction potential	. 14
Figure 2-5	Cyclic triaxial behavior of loose and dense sands	. 15
Figure 3-1	Rheological laws for (1) Newtonian fluid and (2) Bingham body	. 51
Figure 3-2	Rheological behavior of typical grouts	. 52
Figure 3-3	Formation of siloxane bonds as colloidal silica particles gel	. 53
Figure 3-4	Behavior of colloidal silica particles at different pH's	. 54
Figure 3-5	Layout of injection and extraction wells in sandbox experiment	. 55
Figure 5-1	API Filter press and cell assembly, exploded view	. 80
Figure 5-2	Chart to determine apparent viscosity from Marsh viscosity and cohesion	. 81
Figure 5-3	Marsh funnel and Lombardi plate cohesion meter	. 82
Figure 5-4	API mud balance	. 83
Figure 5-5	Bleed versus time, mixes with single stabilizer	. 84
Figure 5-6	Bleed versus time, mixes with two stabilizers	. 85
Figure 5-7	Marsh viscosity versus time, mixes with one stabilizer	. 86
Figure 5-8	Marsh viscosity versus time, mixes with two stabilizers	. 87
Figure 5-9	Cohesion versus time, mixes with one stabilizer	. 88
Figure 5-10	Cohesion versus time, mixes with two stabilizers	. 89
Figure 5-11	Apparent viscosity versus time, all mixes	. 90
Figure 6-1	Cyclic resistance curve for untreated Monterey sand, $D_r = 22\%$	121
Figure 6-2	Grain size curve for Monterey #0/30 sand	122
Figure 6-3	Stainless steel mold, platen and PVC mold for forming stabilized sand	
	samples	123
Figure 6-4	Triaxial testing system	124
Figure 6-5	Ludox-SM 10% concentration gel time curves	125
Figure 6-6	Ludox-SM 7.5% concentration gel time curves	126
Figure 6-7	Ludox-SM 5% concentration gel time curves	127
Figure 6-8	Ludox-HS gel time curves	128
Figure 6-9	Ludox-TM gel time curves	129
Figure 6-10	Evolution of viscosity, 15% Ludox-HS	130
Figure 6-11	Cyclic stress-strain behavior of Monterey sand, $D_r = 22\%$, CSR=0.27	131
Figure 6-12	Cyclic stress-strain behavior of Monterey sand treated with 10% Ludox SM,	
	$D_r = 22\%$, CSR=0.27	132
Figure 6-13	Percent Ludox-SM versus strain during cyclic loading at CSR=0.40	133
Figure 6-14	Unconfined compressive strength of stabilized sands	134
Figure 6-15	Unconfined compressive strength of stabilized sands after cyclic loading	135
Figure 6-16	Undrained strength versus strain during cyclic loading	136
Figure 6-17	Strain during cyclic loading for samples of different ages	137
Figure 7-1	Model domain and boundary conditions	163
Figure 7-2	Lower and upper limits for travel time	164

Figure 7-3	Case 1-1: Regional flow used to deliver stabilizer. Constant concentration delivered through infiltration trench $k_{-1} = k_{-1}$	165
Figure 7-4	Case 1-2. Regional flow used to deliver stabilizer Constant concentration	105
i iguio / i	delivered through infiltration trench. $k_{TA} = \frac{1}{2} k_{R}$	167
Figure 7-5	Case 1-1: With extraction wells. Constant concentration = 100 g/l ,	
U	delivered through infiltration trench, $k_{TA} = k_R$	169
Figure 7-6	Case 1-2: With extraction wells. Constant concentration = 100 g/l ,	
-	delivered through infiltration trench, $k_{TA} = \frac{1}{2} k_R$	169
Figure 7-7	Case 1-3: Regional flow used to deliver stabilizer. Profiles through	
	centerline. Constant concentration = 100 g/l , delivered through infiltration	
	trench, variable k, $k_{TA} = k_R$	170
Figure 7-8	Case 1-3: Regional flow used to deliver stabilizer. Constant concentration	
	= 100 g/l, delivered through infiltration trench, variable k, $k_{TA} = k_R$. Layers	
	1-5 after 100 days	171
Figure 7-9	Case 1-3: Regional flow used to deliver stabilizer. Profiles through	
	centerline. Constant concentration = 150 g/l , delivered through infiltration	
	trench, variable k, $k_{TA} = k_R$	172
Figure 7-10	Case 1-3: With extraction wells. Regional flow used to deliver stabilizer.	
	Profiles through centerline. Constant concentration = 100 g/l , delivered	
	through infiltration trench, variable k, $k_{TA} = k_R$. Extraction wells withdraw	
D: 7.11	7500 cfd	173
Figure /-11	Case 1-3: With extraction wells. Regional flow used to deliver stabilizer.	
	Profiles through treatment area. Constant concentration = 100 g/l ,	
	delivered through inflittation trench, variable K, $K_{TA} = K_R$. Extraction wells	174
Figure 7 12	Withdraw /500 cfd.	1/4
Figure 7-12	ta deliver stabilizer. Drofiles through treatment area. Constant	
	to deriver stabilizer. Fromes through the athent area. Constant concentration = 100 g/l delivered through infiltration trench variable k	
	$k_{m,r} = k_{p}$. Extraction wells withdraw 7500 cfd	175
Figure 7-13	$K_{IA} = K_R$. Extraction wells Regional flow used to deliver stabilizer	175
riguie 7-15	Profiles through treatment area. Constant concentration = 100 g/l	
	delivered through infiltration trench variable k $k_{TA} = \frac{1}{2} k_{\rm B}$ Extraction	
	wells withdraw 7500 cfd	176
Figure 7-14	Case 1-4. With extraction wells Regional flow used to deliver stabilizer	170
	Profiles through treatment area. Constant concentration = 150 g/l .	
	delivered through infiltration trench, variable k, $k_{TA} = \frac{1}{2} k_{R}$. Extraction	
	wells withdraw 7500	177
Figure 7-15	Case 2-1: Stabilizer delivered via 7 injection wells delivering 7000 cfd	
C	total. Extraction wells extract 7000 cfd total, Constant concentration	
	$= 100 \text{ g/l}, \text{k}_{\text{TA}} = \text{k}_{\text{R}}$	178
Figure 7-16	Case 2-1: Stabilizer delivered via 7 injection wells delivering 7000 cfd	
	total. Extraction wells extract 7000 cfd total, Constant concentration	
	$= 150 \text{ g/l}, k_{TA} = k_R$	179
Figure 7-17	Case 2-2: Stabilizer delivered via 7 injection wells delivering 7000 cfd	
	total. Extraction wells extract 7000 cfd total, Constant concentration,	
	$k_{TA} = \frac{1}{2}k_R$	180

Figure 7-18	Case 2-3: Stabilizer delivered via 7 injection wells delivering 7000 cfd total. Extraction wells extract 7000 cfd total, Constant concentration	
	= 100 g/l, variable k, $k_{TA} = k_R$. Profiles through treatment area	32
Figure 7-19	Case 2-3: Stabilizer delivered via 7 injection wells delivering 7000 cfd	
	total. Extraction wells extract 7000 cfd total, Constant concentration	
	= 150 g/l, variable k, $k_{TA} = k_R$. Profiles through treatment area	33
Figure 7-20	Case 2-4: Stabilizer delivered via 7 injection wells delivering 7000 cfd	
	total. Extraction wells extract 7000 cfd total, Constant concentration	
	= 100 g/l, variable k, $k_{TA} = \frac{1}{2}k_R$. Profiles through treatment area	34
Figure 7-21	Case 2-4: Stabilizer delivered via 7 injection wells delivering 7000 cfd	
	total. Extraction wells extract 7000 cfd total, Constant concentration	
	= 150 g/l, variable k, $k_{TA} = \frac{1}{2}k_R$. Profiles through centerline	35
Figure 7-22	Cases 3-1 and 3-2: Stabilizer delivered via 3 injection wells delivering	
	7500 cfd total. Extraction wells extract 7500 cfd total, Constant	
	concentration = 100 g/l , uniform k	36
Figure 7-23	Case 3-3: Stabilizer delivered via 3 injection wells delivering 7500 cfd	
	total. Extraction wells extract 7500 cfd total, Constant concentration	
	= 100 g/l, k_{TA} = k_R , variable k. Profiles through centerline	38
Figure 7-24	Case 3-3: Stabilizer delivered via 3 injection wells delivering 7500 cfd	
	total. Extraction wells extract 7500 cfd total, Constant concentration	
	= 100 g/l, k_{TA} = k_R , variable k. Layers 1-5 after 102 days, k_{TA} = k_R	39
Figure 7-25	Case 3-3: Stabilizer delivered via 3 injection wells delivering 7500 cfd	
	total. Extraction wells extract 7500 cfd total, Constant concentration	
	= 100 g/l, k_{TA} = k_R , variable k. Profiles through treatment area) 0
Figure 7-26	Case 3-3: Stabilizer delivered via 3 injection wells delivering 7500 cfd	
	total. Extraction wells extract 7500 cfd total, Constant concentration	
	= 100 g/l, k_{TA} = ½ k_R , variable k. Profiles through centerline)]
Figure 7-27	Case 3-4: Stabilizer delivered via 3 injection wells delivering 7500 cfd	
	total. Extraction wells extract 7500 cfd total, Constant concentration	
	= 100 g/l, k_{TA} = ½ k_R , variable k. Layers 1-5 after 102 days) 2
Figure 7-28	Case 3-4: Stabilizer delivered via 3 injection wells delivering 7500 cfd	
	total. Extraction wells extract 7500 cfd total, Constant concentration	
	= 100 g/l, $k_{TA} = \frac{1}{2} k_R$, variable k. Profiles through treatment area) 3