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CHAPTER 2

 

Aircraft loads

 

Consider an airplane moving through calm air. Particles of air affected by the airplane are accelerated and the 
reaction of the accelerated particles is felt over the surfaces of the airplane as a distribution of pressures. The 
pressure distribution acting on the surfaces of the airplane can be resolved into the total lift and drag forces. In 
addition to the aerodynamic forces of lift and drag, there are so-called inertia loads resulting from the accelera-
tion of the airplane. Other loading conditions such as landing loads, ground-handling loads, horizontal and verti-
cal tail loads, and monocoque body loads are discussed in detail by Lomax (1996). 

 Load analysis is important in aircraft design, and a design cannot proceed without information on loads. The 
aircraft loads analysis presented in this chapter is used in preliminary design, which is defined in the next section. 
In this chapter we define load factors, discuss the aerodynamic data required for structural analysis, develop the 
basic maneuver V-n diagram, and discuss gust load factors used in design.

 

 

 

2.1 Aircraft design process

 

Phases of the aircraft design may be divided into a concept formulation, a concept design, a preliminary design, 
and a detail design. Concept formulation is where the basic requirements for new aircraft are developed. Require-
ments are developed by a combination of market and customer surveys, and statistical analyses. Concept design 
begins with the basic requirements and sizes the aircraft. Only the most simple analysis methods and historical 
data are used. In preliminary design the sized conceptual baseline aircraft is further developed. Increased level of 
analysis is used to define the aerodynamics, performance, weight, propulsion, acoustic and cost parameters of the 
design. Detailed design is where the various parts of the aircraft are designed for fabrication. Part and assembly 
drawings are developed for manufacturing. 

 

2.2 Inertia loads

 

The maximum load on any part of the airplane structure occurs when it accelerates. In preliminary design, inertia 
force calculations are usually based on rigid body dynamics of the airplane. Once these loads are determined they 
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are imposed on the airplane, and the structural design proceeds by assuming the airplane is flexible (i.e., a 
deformable body). Determining inertia loads for a deformable body is more complex, and may be warranted later 
in the structural design process.

 

2.2.1 Coordinate systems and Newton’s laws of motion

 

The right-handed Cartesian coordinate system O

 

XYZ

 

 is fixed to the Earth, origin at point O, and it is assumed that 
this is an inertial system. That is, Newton’s laws of motion are valid in the Earth axis system. The unit base vec-

tors in the O

 

XYZ

 

 system are denoted by . The right-handed Cartesian coordinate system 

 

Gxyz

 

 is fixed in 

the body of the aircraft, with its origin at the center of gravity, which is labeled 

 

G. 

 

The unit base vectors in the 

 

Gxyz

 

 system are denoted by . Consider planar motion of the aircraft – that is, symmetrical maneuvers of 

the aircraft, and where the aircraft is symmetrical about its vertical fore and aft plane. Body axis 

 

Gx

 

 is directed 
forward, axis 

 

Gy

 

 is directed toward the starboard wing, and body axis 

 

Gz

 

 is in the normal direction. For symmet-

rical maneuvers there is no roll or yaw of the airplane, so symmetrical maneuvers imply  for all time 

 

t

 

. Let 

 denote the position vector of the center of gravity 

 

G

 

 with respect to fixed point O

 

. 

 

The flight path is a plane 
curve in the 

 

X-Z

 

 plane with the arc-length along the curve denoted by 

 

s

 

. The unit tangent vector to the flight path 

at 

 

s

 

 is denoted by , the unit normal vector at 

 

s

 

 by , and the angle between the flight path and the unit tangent 

vector, or the x-axis, by 

 

θ

 

. Note that . Angle 

 

θ

 

 represents the clockwise rotation of the aircraft in pitch. See 
figure 2.1. 

The unit tangent vector and its derivative along the path are 

, and .

 

(2.1)

 

Let . The change in slope of the flight path with respect to arc-length  defines the curvature of the 

path, and the radius of curvature is . The velocity of the center of gravity 

 

G

 

 along the flight path is

,

 

(2.2)

 

where the speed of the center of gravity of the aircraft along the flight path is . The acceleration of 

Î Ĵ K̂, ,( )

î ĵ k̂, ,( )

ĵ Ĵ=

RG

t̂ n̂

t̂ î=

X Î,
Z K̂,

O

RG

v̇Gt̂
s

vG
2 θ′n̂

θ
t̂
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Î

flight path

x

z

G

Fig. 2.1 Acceleration of the center of gravity tangent and normal to the flight path.
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the center of gravity is

.

 

(2.3)

 

where  is the acceleration component tangent to the path. The acceleration component normal to 

the path , or centripetal acceleration, is directed toward the concave side of the path.

A free body diagram of the aircraft at time 

 

t

 

 and its time rate of change of momenta are shown in figure 2.2. 

Derivatives with respect to time of the pitch angle are written as

, and .

 

(2.4)

 

The mass of the aircraft is denoted by 

 

m

 

, the moment of inertia about the center of gravity by , the local accel-

eration due to gravity by , and the weight of the aircraft by 

 

W

 

 where . Equations for Newton’s second 
law at time 

 

t

 

 are

,

 

(2.5)

 

where the resultant force is denoted by , the moment about the center of gravity by , and the moment about 

the fixed point by . These force and moment vectors are determined from

,

 

(2.6)

aG
dvG

dt
--------- d

dt
----- vGt̂( ) vG

˙ t̂ vG
dt̂
ds
-----ds

dt
-----+ vG

˙ t̂ vG
2 θ′n̂+= = = =

vG
˙ dvG dt⁄=

vG
2 θ′ vG

2 R⁄=

X Î,
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O
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…

Fig. 2.2 Free body and rate of momenta diagrams for symmetrical motion of 
an aircraft at time t.
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where  is the position vector of the point of application of force  with respect to the center of gravity.

2.2.2 Principle of D’Alembert

D’Alembert in 1743 proposed a principle that would reduce a problem in dynamics to an equivalent one in statics 
by introducing so-called inertial forces. The inertial force acting at the airplane’s center of gravity is defined as 

, and the inertial moment about the center of gravity is defined as . These inertial forces are drawn on 

the free body diagram of the airplane in addition to all the applied forces. D’Alembert’s principle states that the 
applied forces together with the inertial forces form a system in equilibrium. Thus we write Newton’s second law 
as

. (2.7)

The free body diagram is modified accordingly as shown in figure 2.3. In the free body diagram the inertial 
forces and moment are indicated by dashed lines. From the free body diagram we proceed as in statics to write 
the conditions of (dynamic) equilibrium. 

The curvature of the flight path  can change sign. As shown in figure 2.4, the curvature is positive for a 
pull-up maneuver from a dive, and the curvature is negative for a push-down maneuver from a climb. Conse-
quently, the inertia force normal to the flight path is directed toward the convex side of the path. 

rm G⁄ Fm

maG– Iy θ̇̇ ĵ–

F mvG
˙– t̂ mvG

2 θ′n̂–( )+ 0= MG Iy θ̇̇ ĵ–( )+ 0=

G

WK̂

mvG
˙ t̂–( )

mvG
2 θ′ n–( )ˆ

Iy θ̇̇ ĵ–( )

MG

F

Fig. 2.3 Aircraft free body diagram at time t including the inertial forces and the inertial moment. 

θ′

θ 0= θ′ 0>

θ 0= θ′ 0<

gflight path

(a)

(b)

Fig. 2.4  Sign of the curvature for (a) pull-up 
from a dive, and (b) push-down from a climb.
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2.2.3 Relative velocity and acceleration

Often it is necessary to determine the inertial forces at locations within the airplane not coincident with the center 
of gravity. For these computations we need the relative velocity and acceleration formulas from rigid body 

dynamics. Consider two points A and G fixed in the body. The position of point A relative to G is taken as , 

as shown in figure 2.5.    

The position vectors of points A and G are related by

. (2.8)

The velocity vectors of points A and G are then

. (2.9)

Since vector  is embedded in the rigid body for all time, its rate of change is determined from its cross 

product with the vector of the time rate of change of pitch rotation. That is,

. (2.10)

Hence,

. (2.11)

The time rate of change of this velocity expression (2.11) relates the acceleration of A relative to G by

. (2.12)

Perform the vector cross product in eq. (2.12) to find

. (2.13)

xA G⁄ î

G

xA G⁄ t̂
A

O

RG
RA

Fig. 2.5 Relative position of two points fixed in a rigid body.
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td
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td
d xA G⁄ t̂( ) θ̇ ĵ xA G⁄ t̂× xA G⁄ θ̇n̂= =

vA vG xA G⁄ θ̇n̂+=

aA aG
td

d xA G⁄ θ̇n̂[ ]+ aA xA G⁄ θ̇̇n̂ θ̇
td

d xA G⁄ n̂[ ]+ + aG xA G⁄ θ̇̇n̂ θ̇ θ̇ ĵ xA G⁄ n̂×[ ]+ += = =

aA aG xA G⁄+ θ̇̇n̂ θ̇2xA G⁄ t̂–=
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2.2.4 Uniform linear and angular accelerations

In some inertial load problems it is reasonable to assume that the acceleration of a particle and/or the angular 
acceleration of a rigid body are constant over a time interval. Let s denote the distance of a particle along a 
straight line, v its speed along the line, and a its constant acceleration. Then, we have the following formulas

, (2.14)

where  and  at time . Similarly if the angular acceleration  is constant over some time 

interval, then

, (2.15)

where  and  at time .

2.3 Load factors

It is convenient to combine the inertial forces and gravity forces in the analysis of aircraft structural components. 
Consider an airplane in general plane motion as depicted in figure 2.6. 

The actions shown in figure 2.6 represent:  = lift force (wing and tail),  = drag force,  = thrust force, 

 = inertia force, and  = acceleration of the center of gravity given by eq. (2.3). We are not considering 

the moment of momentum equation for now. However,  in general. For the configuration shown in figure 
2.6 dynamic equilibrium is

. (2.16)

Let the total applied force on the airplane excluding weight be noted by . The total applied force, in general, 

may include other effects than those shown in the sketch above (e.g., wheel reactions on landing.) Then dynamic 
equilibrium is written as

v at v0+= s 1
2
---at2 v0t s0+ += 2a s s0–( ) v2 v0

2–=

s s0= v v0= t 0= θ̇̇

θ̇ θ̇̇t θ̇0+= θ 1
2
--- θ̇̇t2 θ̇0t θ0+ += 2 θ̇̇ θ θ0–( ) θ̇2 θ̇0

2–=

θ̇ θ̇0= θ θ0= t 0=

G

WK̂

L

D

Teng

W
g
-----aG 
 –

Fig. 2.6 Inertial force, weight, and other forces acting on an airplane in general plane motion.
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. (2.17)

As shown in figure 2.7, the projection of the gravity unit vector on the tangent and normal 

directions is . Similarly, we define the projections of the resultant 

forces in the tangent and normal directions as

. (2.18)

Dynamic equilibrium (2.17) separated into tangent and normal directions is

. (2.19)

Rewrite dynamic equilibrium (2.19) in the form

, (2.20)

where the load factors in the tangent and normal directions are defined by

. (2.21)

Also, eq. (2.20) shows that the load factors can be determined from

. (2.22)

Note that the load factor is a dimensionless number, and it can be negative, zero, or positive. The free body dia-
gram for dynamic equilibrium of the airplane employing load factors is shown in figure 2.8.

2.4 The V-n diagram   

First, some definitions:

Limit load – the maximum load that an aircraft may be expected to encounter at any time in service
Limit load factor – n associated with limit load 
Ultimate load – force necessary to rupture
Ultimate load factor – n associated with ultimate load 
 Factor of safety – ultimate load/limit load > 1; usually 1.5
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g
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Fig. 2.7.
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Fig. 2.8 Inertial forces and gravity forces 
represented by load factors for dynamic 
equilibrium of the airplane.
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2.4.1 Airplane design requirements     

2.4.2 Regulations

Limit load factors are specified by regulations, which depend on the type of aircraft (e.g., transport, aerobatic, 
etc.). Criteria for civil aerospace vehicles in the United States. 

Code of Federal Regulations
   Title 14, Aeronautics and Space
   Parts 1 – 59
Federal Aviation Administration (Department of Transportation is the regulatory agency.)
Military requirements in the United States. issued in MIL–Specs covering specific topics of structural 
design of US Air Force, Navy, and Marine aircraft.

2.4.3 Specified data

Specified maximum positive load factor; .

Specified maximum negative load factor; .

Specified design airspeeds:

2.4.4 Basic maneuver V-n diagram

This is predicated on pilot-controlled, symmetrical maneuvers in flight through calm air (i.e., no gust). Assump-
tions made for analytical purposes are that the pitching acceleration is assumed zero or negligible, the airspeed is 
constant during the maneuver, and there is no rolling or yawing of the aircraft, although rolling or yawing 

maneuvers may be considered in design as well. For no pitching acceleration the pitch rate  is constant with 
respect to time. Use the chain rule to write the pitch rate as

. (2.23)

Hence, in a steady state maneuver  is constant with respect to time. The load factors (2.21) for a steady state 

maneuver are

. (2.24)

A pull-up from a dive, and a push-down from a climb are examples of steady state symmetrical maneuvers and 

1. All parts of the airplane are designed so they are not stressed beyond the yield point at the limit load 
factor.

2. The airplane structure must carry the ultimate loads for at least 3 seconds without collapsing, even 
though the members may acquire permanent deformation.

nmax 1>

nmin 0<

VC maximum level flight cruise speed=

VD maximum dive speed 1.2 to 1.5VC∼=

θ̇

θ̇ dθ
dt
------ dθ

ds
------ds

dt
----- θ′vG= = =

θ′vG

nx θsin= nz θcos
vG

2 θ′

g
-----------+ 

 =
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The V-n diagram

are depicted in figure 2.4. Also, a level flight, coordinated turn is considered a symmetrical maneuver even 
though the airplane does have a lateral acceleration in the turn. (Refer to practice exercise 2.) In general, the 
steady state symmetrical maneuvers will produce the maximum design wing loads. See figure 2.9.

2.4.5 Aerodynamic data

When a two-dimensional airfoil is subject to a relative wind there is a net pressure distribution over the airfoil 
that depends on the angle of attack, which is denoted by α. The angle of attack is the angle between the relative 
wind and the chord of the airfoil.The chord is the width of the airfoil and its length is denoted by c. The resultant 
action of the pressure distribution is a force R and no moment at the center of pressure, which is labeled C.P. in 
figure 2.10(a). The center of pressure location varies with the angle of attack. The resultant action of the pressure 
distribution is a force and a moment at any other location. The standard reference point for aerodynamic data is 
the aerodynamic center, which is labeled A.C. in figure 2.10(b). The aerodynamic center is the point where the 
pitching moment is independent of the angle of attack. For most subsonic wing sections the A.C. is around 25 
percent of the chord.The net force of the pressure distribution is resolved at the aerodynamic center into a lift 
force perpendicular to the relative wind and a drag force parallel to the relative wind and the pitching moment.

The lift increases as the angle of attack increases. At some point, however, the flow can no longer stay attached to 
the upper surface and detaches. This results in a decrease in lift, which is called aerodynamic stall as shown in 
figure 2.10(c). The sharpness of the decrease in lift is dependent on the type of airfoil.

Airplanes are three-dimensional vehicles with three-dimensional aerodynamic surfaces, so the aerodynamic 
loads are spread over these surfaces. This distribution in the spanwise direction of the wing results in a force and 
moment at the root of the wing. The spanwise distribution of the airload is a function of the wing planform shape, 
the airfoil sections, and the geometric twist. The basic aerodynamic reference for three-dimensional wings is the 

n

V

nmax

nmin

Vc
VD

1–

0

1

maneuvering within this 
envelope is acceptable on 
the basis of structural con-
siderations only

Fig. 2.9 Maneuver V-n diagram based on 
structural considerations only.
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α

V

Fig. 2.10 Characteristics of a two-dimensional airfoil: (a) center of pressure, (b) aerodynamic 
center, (c) stall.
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L
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mean aerodynamic chord (MAC). The thickness, chord length, and angle of attack of the MAC airfoil section is 
used as a reference for all aerodynamic data. For a rectangular wing planform, the MAC is equal to the wing 
chord, and for a trapezoidal planform of the semiwing the MAC is equal to the chord at the centroid of the trape-
zoid.

Methods of data acquisition.  Basic methods to calculate aerodynamic data for aircraft design and analysis are 
preliminary design estimates, wind tunnel testing, numerical fluid analysis, and aircraft flight test. The wind tun-
nel test is the major source for aerodynamic data in the preliminary design phase, and it involves construction of 
a scale model of the aircraft. The model is instrumented with pressure and force transducers. Data required for 
the structural analysis are the lift, drag, and pitching moment curves for the complete airplane with the horizontal 
tail removed through the range of angles of attack from the negative stalling angle to the positive angle. Data for 
the combination of the wing and fuselage, or the wing, fuselage, and nacelles, are more difficult to calculate 
accurately from the published data, because of the uncertain effects of the aerodynamic interference of the vari-
ous components.

The lift force L is normal to the relative velocity (flight path), the drag force D is parallel to the relative 
velocity, and the pitching moment  is nose-up positive at the mean aerodynamic chord as shown in figure 

2.11(a). The angle θ is measured from the flight path to the x-axis and is equal to the difference between to the 
angle of attack  and the angle of wing incidence i.

The lift force, drag force, and pitching moment for the tail-off are expressed in terms of the dynamic pressure q, 
wing reference area S, and dimensionless aerodynamic coefficients , , and . The dynamic pressure 

is

, (2.25)

where the air density at altitude is denoted by . The aerodynamic actions are expressed as

, (2.26)

where the mean aerodynamic chord is denoted by .

M0.25

α

α θ

i

G

chord line

relative velocity V
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z
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M0.25

D

(a)

C: 0.25 MAC
G

x

z

M0.25

fn

fx

C

zC G⁄

xC G⁄

(b)

θ

Fig. 2.11 (a) Lift force, drag force, and pitching moment at the MAC. 
(b) Lift and drag resolved along the body x- and z-axes at MAC.
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The V-n diagram

The aerodynamic actions L, D, and  at the mean aerodynamic chord are statically equivalent to the 

aerodynamic actions , , and  at the center of gravity. The lift and drag forces are resolved into compo-

nents normal  and parallel  to the flight path by

, and . (2.27)

The moment at the center of gravity is determined from figure 2.11(b):

. (2.28)

The forces acting on the airplane are shown in figure 2.12, in which the tail force  acts perpendicular to the 

flight path at the center of pressure of the horizontal tail.

The dynamic equilibrium equations for no acceleration in pitch are

, (2.29)

, and (2.30)

. (2.31)

Substitute the moment at the center of gravity (2.28) into eq. (2.31) to get

. (2.32)

Introduce aerodynamic coefficients ,  and  by the relations

, , and . (2.33)

Substituting  and  from the definitions (2.33) into eq. (2.27) determines the coefficients  and  as

, and . (2.34)

The balancing tail force coefficient  is to be determined from the equations of dynamic equilibrium. From the 

relations (2.33) and (2.34), the equilibrium equations (2.29) and (2.30) are written as

, and (2.35)

. (2.36)

M0.25

fn fx My

fn fx

fn L θcos D θsin+= fx L θsin D θcos–=

My M0.25 xC G⁄ fn zC G⁄ fx–+=

Lt

My

nzW

Teng

Lt
nxW

relative velocity V

z

x

Lt

ze

fx

fn

G

θ

xT G⁄

Fig. 2.12 Forces acting on the airplane during steady state symmetrical maneuvers. No pitching 
acceleration.

fx Teng nxW– Lt θsin+ + 0=

fn nzW– Lt θcos+ 0=

My zeTeng xT G⁄ Lt θcos–+ 0=

M0.25 xC G⁄ fn zC G⁄ fx– zeTeng xT G⁄ Lt θcos–+ + 0=

Cn Cx Ct

fn CnqS= fx CxqS= Lt CtqS=

fn fx Cn Cx

Cn CL θcos CD θsin+= Cx CL θsin CD θcos–=
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nxW Cx Ct θsin+( )qS Teng+=
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Let , where the airplane normal coefficient is denoted by . From eq. (2.36) the normal coeffi-

cient is

. (2.37)

In terms of the aerodynamic relations introduced, the moment about the center of gravity (2.32) is

. (2.38)

Rearrange eq. (2.38) to

. (2.39)

Consider the case of power-off so that , and solve for  to get

. (2.40)

If the term on the right side containing longitudinal coefficient  is assumed small with respect to the other 

terms and neglected, then the resulting expression for coefficient  is consistent with the traditional equation for 

the balancing tail load (Lomax, p. 9). Substitute  from eq. (2.40) into eq. (2.37) to get the expression for 

the normal coefficient determined from the aerodynamic coefficients with the tail off:

. (2.41)

The total normal force is denoted by . From eq. (2.30) , and . Hence,

. (2.42)

From wind tunnel data for complete airplane the aerodynamic coefficient of lift along the z axis is plotted against 
the angle of attack as depicted in figure 2.13. Generally, the magnitudes of the maximum and minimum values of 
the normal aerodynamic coefficient corresponding to stall and inverted stall, respectively, satisfy 

.

Substitute  from eq. (2.34) into eq. (2.35) to find the longitudinal load factor as

. (2.43)

At a given airspeed

nzW CNqS= CN

CN Cn Ct θcos+=

CM0.25qSc xC G⁄ CnqS zC G⁄ CxqS– zeTeng xT G⁄ CtqS θcos–+ + 0=

CM0.25c xC G⁄ Cn zC G⁄ Cx– xT G⁄ Ct θcos–+( )qS zeTeng+ 0=

Teng 0= Ct θcos

Ct θcos c xT G⁄⁄( )CM0.25 xC G⁄ xT G⁄⁄( )Cn zC G⁄ xT G⁄⁄( )Cx–+=

Cx

Ct

Ct θcos

CN c xT G⁄⁄( )CM0.25 xC G⁄ xT G⁄⁄( )Cn zC G⁄ xT G⁄⁄( )Cx–+=

Lz Lz fn Lt θcos+ nzW= = nzW CNqS=

Lz nzW CNqS 1
2
---ρV2
 
  SCN= = =

CN( )min CN( )max<

α

CN

CN( )max

0

CN( )min

Fig. 2.13 Normal force coefficient as a 
function of the angle of attack.
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The V-n diagram

. (2.44)

Hence,

, (2.45)

which are quadratic functions of .

2.4.6  Maneuver V-n diagram including aerodynamic stall 

The maneuver V-n diagram including aerodynamic stall is shown in figure 2.14.

Note:

1.  varies with compressibility, and varies with the C.G. location as shown in eq. (2.41). Generally we must 

consider different altitudes and weight configurations.

2. For flight in incompressible air, the dynamic pressure , where  is the airspeed and  is the air 

density, both at altitude. Define equivalent airspeed  at sea level by

. (2.46)

Then the equivalent airspeed is given by . Use  on V-n diagram to cover all altitudes. Some 
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 
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Lz( )min
1
2
---ρV2
 
  S CN( )min nzminW= = push-down from climb.

nzmax CN( )max
ρV2 2⁄( )
W S⁄( )

---------------------= nzmin CN( )min
ρV2 2⁄( )
W S⁄( )

---------------------=

V

nz

V

nmaxstructural limit

nminstructural limit

Vc VD

1–

0

1

stall

inverted

CN( )
max

ρ 2⁄( )
W S⁄( )

----------------V2

n+ultimate

n-ultimate
CN( )

min
ρ 2⁄( )
W S⁄( )

----------------V2

stall

Fig. 2.14 Maneuver V-n diagram including aerodynamic stall and specified data.
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q 1
2
---ρV2= V ρ

VEAS

q 1
2
---ρV2 1

2
---ρs.l.V2

EAS≡=

VEAS
ρ
ρs.l.
--------V= VEAS
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typical values of the load factors are shown in table 2.1 

Transport category airplanes.  The airworthiness standards for transport category airplanes are specified in 
Part 25 of the Federal Aviation Regulations (FAR). Flight maneuver and gust conditions are specified in subsec-
tions 25.331-25.351. The maneuver V-n diagram is shown in figure 2.15. The strength requirements must be met 
at each combination of airspeed and load factor on and within the boundaries of the representative maneuvering 
envelope (V-n diagram). The stalling speed with the flaps retracted at  is denoted by .

Table 2.1  Structural limit load factors

Category

Structural limits

nmax nmin

U.S. civil transports (Boeing) 2.5

U.S. military heavy bomber 3.0

U.S. military subsonic attack 8.0

U.K. civil aerobatic 6.0

U.K. sailplane, aerobatic 7.0

1.0–

1.0–

3.0–

3.0–

5.0–

nz 1= Vs1

VFVs1 VC VD

-1

0

1

2

3
CN( )max

Flaps up

CN( )max

Flaps down

CN( )min

Flaps up

nz

Equivalent air speed

Fig. 2.15 Flight maneuvering envelope per FAR 25.333.

A D

FH

I

E
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2.5 Design gust load factors

Turbulent conditions of varying intensity occur in air through which an airplane flies. For example, atmospheric 
phenomena that create turbulence are thermals (convection), mountain waves (terrain effects), wind shears, and 
jet streams. Assume steady level flight from still air, n = 1, into an ideal sharp-edged gust as shown in figure 2.16.

The change in the angle of attack due to the idealized sharp-edged gust is depicted in figure 2.17.

The lift curve slope between stall points is . Therefore, the change in the aerodynamic coeffi-

cient is

, (2.47)

and the change in lift is

. (2.48)

Now the change in the load factor due to the gust is

, (2.49)

V
U

U V usually« U O 50 ft./s( )∼ V O 300 ft./s( )∼

Fig. 2.16  Steady level fight into a sharp-edged gust.

∆α

∆α

V

U

α

∆α U V⁄atan U V⁄≈=

Fig. 2.17 Equivalent relative wind.

m dCN( ) dα( )⁄=

∆CN m ∆α( )=

∆Lift 1
2
---ρV2
 
  Sm ∆α( ) 1

2
---ρVSmU= =

∆n ∆Lift
W

------------- ρm( ) 2⁄
W S⁄( )

------------------- UV= =
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where  is the wing loading in lb./ft.2 The change in 

the load factor  varies linearly with airspeed V as 
depicted in figure 2.18. 

2.5.1Gust alleviation factor

A more realistic, semiempirical treatment of gust effects, 
based on experience and analysis, is to replace the sharp-

edge gust speed  by , where  is the gust alleviation factor. In reality there is no such thing as a sharp-

edged gust so we account empirically for gust build-up and airplane response. For transport airplanes, NACA 
specified

, (2.50)

where  is the airplane mass ratio defined by

, (2.51)

and where  is the mean aerodynamic chord; , and  is the wing span. See figure 2.19.

2.5.2 Gust load factor

For steady level flight, the gust load factor is

. (2.52)

Note that a lightly loaded airplane is more susceptible than when heavily loaded. This is because the increment in 
lift is independent of the weight. A heavily loaded airplane has more inertia with which to smooth out gusts than 
a lightly loaded airplane, all other things being equal.

2.5.3 NACA discrete gust conditions

Discrete gusts refer to sudden changes, or alleviated sharp-edged gusts, as opposed to continuous turbulence air-
craft gust analysis. In continuous turbulence gusts are represented as a stationary Gaussian random process lead-

n

V
1

slope ρm 2⁄
W S⁄
--------------- 
 U=





Fig. 2.18 The linear change in the load factor

W S⁄

∆n

U KgU Kg

Kg
0.88µg

5.3 µg+
------------------- 0.88<=

µg

µg
W S⁄

ρcgm( ) 2⁄
--------------------------≡

c c S b⁄= b

S

c 2⁄

µg
W

ρgS c 2⁄( )( )m
---------------------------------------=

    

weight of a chunk of air

Fig. 2.19 Depiction of the airplane mass ratio.

n 1 ρm 2⁄
W S⁄
--------------- 
 KgUV+=
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ing to specification of a power spectral density (Hoblit, 1988). For civil transport airplanes 0–20,000 ft., three 
discrete gusts are specified:

1. Rough air gust:  at  a speed related to the stall speed.

2. High speed gust:  at cruise speed .

3. Dive speed gust:  at dive speed .

The gust V-n diagram is shown in figure 2.20, and it is almost symmetrical with n = 1 line since gusts are as 
likely to act down as up.

2.5.4 Design V-n diagram

The extreme load factors of both maneuver and gust diagrams must be met. Superimpose the two and take the 
outer boundaries as shown in figure 2.21. Generally, large airplanes are designed primarily by gust load factors. 
Small military and aerobatic airplanes are designed by maneuver load factors.

U 66 ft/s= V VB=

U 50 ft/s= VC

U 25 ft/s= VD

n

VE.A.S.

VC VD

1–

0

1

U 66 ft/s=

U 50 ft/s= U 25 ft/s=

U 25 ft/s=U 50 ft/s=

U 66 ft/s=
VB

Fig. 2.20 Gust V-n diagram.

n

VC VD

1–

0

1

VE.A.S

1( )

1( )

2( )

2( )

3( )

3( )

Fig. 2.21 Design V-n diagram.
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2.6 Design V-n diagram example

This example is typical of a small aerobatic or perhaps military airplane, with specified data given figure 2.22.

Problem statement:   Determine the design V-n diagram at sea level using the NACA formulas for gust loads.

First, draw the maneuver V-n diagram. The stall boundary is given by

. (a)

The density of air at sea level is

, where . (b)

The wing loading is

. (c)

Substitute eqs. (b) and (c) into eq. (a) to get

, or (d)

. (e)

The inverted stall boundary is

, or (f)

W 10 000 lb.,=

S 100 ft2=

b 25 ft.=

b

c S b⁄ 4 ft.= =
S

VC 500 mph= VD 650 mph= CN( )max 2.07=

CN( )miin 1.2–= m dCN dα⁄ 4.37 per radian= =

str. limit load factors nmax 7.5= nmin 3–=

Fig. 2.22 Data for the small aerobatic or military airplane.

nstall CN( )max

ρs.l. 2⁄
W S⁄

---------------V2=

ρs.l. 0.002378 slugs
ft.3

-------------= 1 lb. 1slug( ) 1ft./s2( )=

W S⁄ 10 000,  lb.( ) 100 ft.2( )⁄ 100 lb./ft.2= =

nstall 2.07( )
0.002378 lb.s2

ft.4
------------ 2⁄ 

 

100 lb./ft.2
------------------------------------------------V2=

nstall 2.46 5–×10 V2= V in ft./s

nistall CN( )min

ρs.l. 2⁄
W S⁄

---------------V2 1.2 0.002378 2⁄( )–
100

---------------------------------------------V2= =
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. (g)

The airspeeds at stall and structural limit factors are

 , and (h)

. (i)

The maneuver V-n diagram is shown in figure 2.23.

Second, draw the gust V-n diagram using NACA formulas. Find the value of the gust alleviation factor as 
given in eq. (2.50). The airplane mass ratio is

, where (j)

.

Hence, the gust alleviation factor is . The change in the load factor due to the gust is

, or (k)

. (l)

For gust (1)  at . To find the airplane speed  on the stall boundary we set the load factor 

in eq. (2.52) equal to its relationship to the airplane speed on the stall boundary; i.e.,

. (m)

Solve eq. (m) for speed  as follows:

, (n)

. (o)

Hence, , and the change in load factor for gust (1) is

. (p)

For gust (2)  at . Hence, the change in load factor is

. (q)

nistall 1.43 5–×10– V2= V in ft./s

2.46 5–×10 VT
2 7.5= VT 552 ft./s 60 mph

88 ft./s
------------------ 
  376 mph= =

1.43 5–×10– V′T( )2 3.0–= V′T 459 ft./s 313  mph= =

µg
W S⁄

ρcgm( ) 2⁄
--------------------------≡ 100 lb./ft2

0.002378 lb s2/ft4( ) 4 ft.( ) 32.2 ft/s2( ) 4.37( ) 2⁄
------------------------------------------------------------------------------------------------------------------=

µg 149= dimensionless

Kg 0.85=

∆ngust
ρm 2⁄
W S⁄
--------------- 
 KgUV 0.002378 4.37( ) 2⁄

100
--------------------------------------------- 0.85( )UV= =

∆ngust 4.42 5–×10 UV= U V,  in ft./s

U 66 ft/s= V VB= VB

2.46 5–×10 VB
2 1 4.42 5–×10 66( ) VB+=

             

stall 2.91 3–×10

VB

VB
2.91 3–×10 2.91 3–×10( )2 4 2.46 5–×10( ) 1( )+±

2 2.46 5–×10( )
------------------------------------------------------------------------------------------------------------------=

VB
2.91 3–×10 1.03 2–×10±

2 2.46 5–×10( )
-------------------------------------------------------= choose +

VB 269 ft/s 184 mph= =

∆n1 4.42 5–×10 66( ) 269( ) 0.78= =

U 50 ft/s= VC 500 mph=

∆n2 4.42 5–×10 50( ) 500 mph 88 ft/s
60 mph
------------------ 
  1.62= =
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For gust (3)  at 650 mph, and the change in load factor is

. (r)

Thus, the six points on the gust V-n diagram are

. (s)

A sketch of the gust V-n diagram is shown in figure 2.23. Here the design V-n diagram is the maneuver V-n dia-
gram since the gust V-n diagram is contained inside the maneuver V-n diagram. 
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U 25 ft/s=

∆n3 4.42 5–×10 25( ) 650 mph 88 ft/s
60 mph
------------------ 
  1.05= =

1 ∆n1± 1.78 0.22,= VB 184 mph=

1 ∆n2± 2.62 0.62–,= VC 500 mph=

1 ∆n3± 2.05 0.05–,= VD 650 mph=

Fig. 2.23 Maneuver and gust V-n diagrams for the example of a small aerobatic or military airplane.
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don: Arnold, a member of the Hodder Headline Group, 1999.

Peery, D. J., 2011, Aircraft Structures. Dover Publications, Inc., 2011. (Unabridged republication of the work 
originally published in 1950 by the McGraw-Hill Book Company, New York.) Chapter 3.

2.8 Practice exercises

1. An airplane weighting 8,000 lb. has an upward acceleration of 3g when landing. If the dimensions are as 
shown in figure 2.24, what are the wheel reactions  and ? What is the time required to decelerate the air-

plane from a vertical velocity of 12 ft./s? What is the shear and bending moment on a vertical section A–A, if the 
weight forward of this section is 2,000 lb. and has a center of gravity 40 in. from this cross section. (Peery, 2011, 
p. 54). 

2. An 8,000 lb. airplane is making a horizontal turn with a radius of 1,000 ft. and with no change in altitude. 
See figure 2.25. Find the angle of bank and the load factor for a speed of (a) 200 mph., (b) 300 mph, and (c) 400 
mph. Find the loads on the wing and tail if the dimensions are as shown (Peery, 2011, p. 72).

3. The airplane shown in figure 2.26 is making an arrested landing on a carrier deck. At the position shown, the 
angular velocity is 0.5 rad/s counterclockwise and the vertical velocity of the center of gravity is 12 ft./s. The 
radius of gyration for the mass of the airplane about the center of gravity is 60 in. Find the load factors  and 

, parallel and perpendicular to the deck, for a point at the center of gravity, a point 200 in. aft of the center of 

gravity, and a point 100 in. forward of the center of gravity. Find the vertical velocity with which the nose wheel 
strikes the deck. Assume no change in the dimensions or loads, and the downward acceleration of the nose wheel 
is constant in the 10 in. of vertical travel (Peery, 2011, p. 72).

R1 R2

24 kips

8 kips

R1 R2240 in.
40 in.

A

A

40 in.

c.g.
Fig. 2.24 Exercise 1.

Lw

PnW

c.g.

10in. 200 in.

L

W

φ

φW
g
-----V2

R
------

R

Fig. 2.25 Exercise 2. Level flight coordinated turn.

nx

ny
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4.  The aircraft shown below weighs 135 kN and has landed such that at the instant of impact the ground reac-
tion on each main undercarriage wheel is 200 kN and its vertical velocity is 3.5 m/s. (Adapted from Megson, 

1999, P.8.1, p. 272.)

Each undercarriage wheel weighs 2.25 kN and is attached to an oleo strut.

a) What is an oleo strut? What is its purpose? Describe is components and how it functions.

b) Calculate the axial load N and bending moment M in the strut, assuming the strut is vertical.

c) Determine the shortening of the strut when the vertical velocity of the aircraft is zero.

d) Calculate the shear force and bending moment in the wing section A-A if the wing outboard of section 
A-A weighs 6.6 kN and has a center of gravity 3.05 m from A-A.

5. An airplane has a total weight of 40,000 lb. and total rolling moment of inertia about the C.G. of 1,000,000 

lb.-s2-in. Each wing-tip store weighs 2,000 lb. In steady level flight, each wing’s resultant lift is  

lb. (The tail carries stabilizing a negative lift of 2,000 lb.) In a sudden evasive roll maneuver from steady level 
flight, each aileron introduces a lift increment  lb. Assuming the airplane to be rigid and, neglect-

ing wing weight, calculate the total root bending moment for each wing (i.e.,  and ). Neglect the moment 

of inertia of each wing-tip store about its own C.G.

6. Use the data given in table 2.2 and the NACA gust formulas to develop the design V-n diagram for the Boe-
ing 727 aircraft at sea level. The airspeed should be in knots. One knot equals one nautical mile per hour, and 

10°

15 in.c.g.

Icα

Macy

Macx

30 kips

20 kips10 in.

80 in. 20in.

g 386 in./s2=

x

y

ω 0.50 r/s ccw=

10kips

Fig. 2.26 Exercise 3. 
Arrested landing on a 
carrier deck.

150 mm

N

M

oleo strut

A

A

Fig. 2.27 Exercise 4: Instant of impact upon landing.

Lw 21 000,=

La 3 000,±=

MA MB
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approximate one nautical mile as 6,080 ft.1 Clearly label the plot. Also calculate the level flight stall speed .

7. Shown below is the maneuver V-n diagram at sea level for an aircraft of wing span 27.5 m, mean aerody-
namic chord 3.05 m, and total weight 196,000 N. The aerodynamic center is 0.915 m forward of the center of 
gravity and the center of lift for the tail unit is 16.7 m aft of the C.G. The pitching moment coefficient is

.

Table 2.2 Exercise 6

S 1560 ft..2

b 108 ft.

W 170,000 lb.

5.0 per radian

0.951

nmax 2.5 (structural)

nmin  (structural)

VC 350 knots

VD 440 knots

1. A nautical mile is based on the circumference of the planet Earth. If you were to cut the Earth in half at the equator, you could pick up one 
of the halves and look at the equator as a circle. You could divide that circle into 360 degrees. You could then divide a degree into 60 minutes. 
A minute of arc on the planet Earth is 1 nautical mile. This unit of measurement is used by all nations for air and sea travel. A nautical mile is 
1,852 meters, or 1.852 kilometers. In the English measurement system, a nautical mile is 1.1508 miles, or 6,076 feet. [http://www.howstuff-
works.com]

100

30

C.G.

30

100
180180

220220

1000 lb1000 lb
LwLw La

La

MAMB

Fig. 2.28 Exercise 5: 
Evasive roll maneuver 
from steady level flight.

All dimensions in 
inches.

VS1

dCza( ) dα( )⁄

Czamax

Czamin 0.400–

1.0–
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Both the pitching moment coefficient and the position of the aerodynamic center are specified for the complete 
aircraft less the tail unit.

For steady level flight at sea level the fuselage bending moment at the C.G. was recorded by test equipment to 
be 600,000 N m. Calculate the maximum value of this bending moment for the given flight envelope, or V-n dia-
gram. For this purpose it may be assumed that the aerodynamic loadings on the fuselage structure itself can be 
neglected; i.e., the only loads on the fuselage aft of the C.G. are those due to tail lift and the inertia of the fuse-
lage.

3.5

2.51.0

0

1.0–

61.0 91.5 152.5 183

n

V m/s

Cruise point
ρs.l. 1.223 Kg/m3=

Fig. 2.29 Exercise 7: Maneuver V-n diagram at sea level (U.K. regulations).




