The Design and Implementation of
Concurrent Input/Output Facilities
in ACT++ 2.0

Dennis Kafura and Manibrata Mukherji

TR 92-46

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

August 23,1992



The Design and Implementation of Concurrent Input/Output
Facilities in ACT++ 2.0
By
Dennis Kafura and Manibrata Mukherji
Virginia Tech
kafura@cs.vt.edu

ACT++ 2.0 is the most recent version of a class library for concurrent programming in C++.
Programs in ACT++ consist of a collection of active objects called actors. Actors execute
concurrently and cooperate by sending request and reply messages. An agent, termed the behavior of
an actor, is responsible for processing a single request message and for specifying a replacement
behavior which processes the next available request message. One of the salient features of ACT++
is its realization of I/O as an actor operation. A special type of actor, called an interface actor,
provides a high level interface for a file. Interface actors are sent request messages whenever 1/0O is
necessary and can also transparently perform asynchronous /0. ACT++ has been implemented on
the Sequent Symmetry multiprocessor using the PRESTO threads package.

1.0 Introduction

Structuring applications as a collection of objects that communicate and cooperate with each other to solve a single
problem is argued to be a natural way of modeling the real world and of capturing the concurrency of operations that exist
among the entities of the real world. The objects which model the real world entities can be thought of as autonomous
agents which compute independently of cach other and communicate with each other via messages. To exploit the
concurrent behavior of the objects comprising an application it is imperative to use a programming language that enables

one to specify and control concurrent objects.

While C++ (Stroustrup 86] is a widely used language, computation in a C++ program is carried out by a single thread of
control and the sender of a message blocks until the requested operation is completed. Given the advances made in the
realm of computers having multiple processors and the development of distributed programming paradigms, the latter
limitation of C++ not only inhibits the user from exploiting the natural concurrency in the problem domain but also

fails to exploit the physical parallelism of computations that can be achieved in order to enhance efficiency.

Our goal in designing ACT++ was to provide the ability to specily and control concurrent objects in C++. Instead of
inventing a new mode! of concurrent computation we decided to implement some features of the Actor model of
concurrent computation [Agha 86, Agha and Hewitt 87]. (Kafura and Lee 90] describes the design issues and the
implemeniation details of an earlier version of ACT++. This paper describes ACT++ 2.0 (henceforth just ACT++), the

latest version which enhances the earlier one in three respects. First, we have nsed the PRESTO [Bershad et al 88,



Bershad 90] threads package as the underlying system to control concurrent objects. PRESTOQ was used because it is
written in C++ and provides a high-level abstraction for concurrent programming using “lightweight” processes called
threads. Second, we have implemented a concurrency control mechanism called behavior sets [Lavender and Kafura 90]
which can be used to tackle the conflict between the inheritance mechanism of object-oriented languages and the
specification of synchronization constraints. Third, we have introduced special features using which concurrent
input/output (henceforth 1/O for short) - simultaneous I/O requests from multiple, simultaneousty executing threads of

control - can be handled correctly and efficiently.

In this paper we will discuss in detail the design issues and the implementation details of the concurrent 1/O facilities
implemented in ACT++. In the remainder of the paper, first, we introduce the salient features of the model of
computation implemented in ACT++. Then we discuss the problems posed by concurrency, UNIX, and the choice of
PRESTO in the design of the I/O system. Then we discuss how those problems have been resolved in ACT++. We

conclude the paper by stating the current status of our work and directions of future research,

2.0 The ACT++ Model of Computation
In the following we summarize the salient features of the model of computation implemented in ACT++.

» An ACT++ program consists of a collection of actors which execute concurrently using independent threads of

control.

. Actors communicate asynchronously via messages called request messages. Each actor has the ability to buffer
messages in a queue called its mail queue. Actors can also participate in synchronous communications with objects

that are not actors.

« Request messages contain requests for the execution of program segments in an actor called behavior scripts. Behavior
scripts are implemented as the methods of a special type of object called the behavior object (also referred to as the

behavior). Each behavior is responsible for processing exactly one request message.

« The behavior object that will process an actor’s next request message is called its current behavior. At any point in
time only a single behavior object is designated as the current behavior of an actor. The execution of a specific method

in the behavior object of an actor is regarded as the processing of a message by that actor.

« The processing of a request message by a behavior of an actor could lead to the occurrence of one or all of the

following actions:



. send asynchronous request messages to itself or other actors,
. synchronously invoke methods in itself or in other non-actor objects,

. create more actor or non-actor objects, and

. specify the next behavior of the actor (called a replacement behavior) that will process the next request message.

+ Actors may also exchange reply messages. As a result of a request message to it, an actor may send a reply message
to the requestor with the result of the computation. A special type of object called a Cbox is used to buffer reply
messages. Cboxes are defined with blocking sernantics so that an actor blocks when it tries to extract a reply message

from an empty Cbox.

+ Replacement behaviors of an actor in ACT++ are not restricted to process request messages in the strict order of their

arrival. Instead, a replacement behavior can consult the values of its instance variables to decide which request message

to process next.
3.0 Some Problems for I/O in a Concurrent Environment

This section considers three general problems pertaining to I/O in a concurrent environment in which multiple threads of

control execute simultancously. These problems are:

. the interference between concurrent sequences of I/O operations directed at the same file,
. the blocking effects of low-level /O system calls in UNIX, and
. the consistency of the interpretation of I/O commands executed in different process contexts.

The first of these problems is inherent to concurrent computation and simply another instance of the general problem of
interference among concurrent activities over their access to shared resources. The second problem is due to our choice of
implementing ACT++ on UNIX, The third problem arises due to the fact that the scheduling mechanism in PRESTO, in
the preemptive mode, maintains a balanced load on the different processes by assigning a ready thread to run on any idle
process. As a result, a thread can execute on different processes in its lifetime and since file descriptors do not retain their

meaning across different process contexts, thread migration becomes an obstacle to concurrent [/O.



3.1 The Problem of Interference

Interference arises if multiple concurrently executing processes perform /O to or from the same destination. UNIX
ensures individual I/O calls are non-preemptive, that is, if /O is initiated by a process on a file descriptor, the
corresponding file table entry will remain locked uniil the IfO is complete. But in between system calls no locking is
available, As a result, interleaved executions of the IO calls might lead to different results in different executions of the
same program. For example, in the case of writing to a terminal, multiple concurrent writes might cause overlapped and

incomplete display of information depending on the relative speeds and the volume of I/O performed by the processes.

Two solutions to the interference problem is to do /O from a critical section or use an [/O server to do all I/O. Neither
solution is elegant and does not reduce the burden on the user. In the case of using critical sections, the user has 10
explicitly manage the locks used to implement each critical section. Moreover, in programming environments like
ACT++ which do not provide locks at the user level, this solution cannot be implemented. In the case of a server, the
user must both define the server and ensurc that the server does not become a performance bottleneck. Given the choice
between doing I/O using critical sections and using an I/O server, an I/O server is more attractive because a server

encapsulates all low level operations and provides high Ievel abstractions for the user.

A useful and efficient language feature for concurrent /O would aflow a user to create an O server for each file and then
control the sharing of a server between the different threads of conrol running the application. The creation of one server
for each file reduces the possibility of the server becoming a bottleneck and also reduces the complexity of an individual

server since it has to manage I/O to a single file only.
3.2 The Problem of Blocking I/O Calls

The current version of ACT++ is implemented on the UNIX operating system. As a result, the basic mechanisms for
doing I/O are those available in UNIX. Among the [/O features available in UNIX are a set of system calls including
open, close, read, and write, which perform I/O using a unique identifier called a file descriptor. File descriptors are unique
identifiers which act as an internal representation of the standard files or the special devices with which they are
associated. Other system calls, like fentl and ioctl, can be used to modify the status of file descriptors. Only unformatted
raw byte /O is possible through the read and write system calls - no low level facility for formatted I/O is available.

The problem with the read and write system calls is that they are blocking calls. This means that if the IO is not
possible immediately when a call is made, the process making the I/O call will block. When the /O is possible, the
operating system will unblock the process allowing it to complete the I/O. In an application running on multipie
processes which does not use a central server for doing concurrent I/Q, every process may block as a result of unsatisfied

I/O calls thereby defeating the purpose of using multiple processes altogether. The latter sitnation might also cause a



real-time application to miss important events in the external world. In an environment, like ACT++, which uses threads
instead of processes, a blocking call executed by a thread blocks the process on which it was executing. This hurts other
threads which are ready and could have executed on the blocked process. The execution of a blocking I/O call by a thread
on each process might block all the processes and yet there could be many ready threads waiting to execute.

To avoid blocking, UNIX provides non-blocking, asynchronous 1/O facilities for terminals and sockets only. To

perform asynchronous I/O the user must

. write a signal handler for the SIGIO signal that the operating system delivers to a process when the T/Q is ready,
. mark the file descriptor for asynchronous I/O by using a special option of the fontl system call, and
. identify the process or process group (o which the SIGIO signal must be delivered.

A language feature which hides all of the above details for doing asynchronous I/O will certainly be easier 10 use.

3.3 The Problem of Consistency of File Descriptors

Another problem for concurrent I/O in a multi-process application is the consistency of file descriptors across processes.
Because it is an index to a process specific table called the file descriptor table, a file descriptor is meaningful only in the
context of the process in which it was created. But PRESTO on the Symmetry assumes that all objects are created in the
shared memory which makes them accessible from every process. "Therefore, PRESTO implements the most efficient
scheduling mechanism for load balancing in such an environment aﬁd allows a thread to execute in the context of different
processes during its lifetime, if more than one process is being used to run the application. As a result, a file descriptor
obtained by a thread while running on one process is rendered useless when the thread executes on another process.
Therefore, the Tun time system must be enhanced to ensure that 2 thread that exccutes an open call on a particular process

is scheduled to run on the same process throughout its lifetime.
4.0 Concurrent I/O Facilities in ACT++
The problems of concurrent [/O discussed above have been resolved in ACT++ as follows.

. Interference is avoided by creating an 1/O server for each file which serializes all /O to that file. The ACT++

class library contains the definition of the file server objects.

. Blocking is prevented by embellishing the T/O servers with the ability to do asynchronous I/O to terminals

only. All work to set up a file for asynchronous 1/ is done transparently by the 1/O server.



. Consistency of file descriptors is maintained by enhancing PRESTO with the capability of thread binding - the

ability to constrain a thread to run on a specific process throughout its lifetime.
In the following sections we will discuss the design issues and the implementation of each of the above solutions.
4.1 Interface Actors - the File Specific /O Servers

The file-specific /O servers which handle 1/O requests in an ACT++ application arc called interface actors (henceforth
IA). As the name signifies, [As are actors themselves. This implies that 1/O operations are performed via messages Lo an
1A instead of direct system calls. The TActor class in ACT++ implements IAs. It is a subclass of the Actor class

which implements all user-defined actors in an application. A partial definition of the TActor constructor is as follows.

IActor::IActor (char* frame, File Beh* init_beh, char* name) : ((Behavior*) init beh, 1, name)
{ int fd = init_beh->Open (fname);}

The first argument to TActox is the name of the file for which the TA will act as a server. The second argument is a
pointer to the initial behavior object. The third argument could be used to assign a name to the IA. The assignment is

optional; a null name is assigned by default.

The initializer list associated with the TActor constructor is used to initialize the arguments of the Actor coRSIructor.
Significant among them is the second argument which specifies the number of threads that can be active simultaneously
inside an IA. The default value of 1 limits the number of threads executing inside an IA at any point in time to one. This
ensures that an IA serializes all I/O requests to a file because with a limit of one thread it will never process the next
request message until the current request message has been serviced completely. This also ensures that multipie /O
requests are not activated simultaneously on the same file descriptor which would result in unnecessary blocking of

threads.

The behaviors of an IA are instantiations of the File_Beh class which is defined as follows.

class File Beh : public Behavior ¢
int £d;
int coldflags;
public:
File Beh();
int Open{char* fname);
void Read(Rbox* r, int nbytes):
vold Write {(Wbox* w, int nbytes}); }



The File_ Beh constructor sts the £d data member to -1 and the o1dflags data member to 0. The £d data member
stores the file descriptor of the device for which the IA is the server. Since file descriptors start from 0,2 -1 indicates that
no valid file descriptor is stored in £d. The oldflags data member is used to store the status 2 file descriptor has when

it is created. It is used to restore the status of the descriptor when the IA is deleted.

The initial behavior passed to the TActox constructor is an incomplete object which is not ready to handle I/O requests.
It is the invocation of the Open method in it from the TActor constructor which assigns valid information to the
private data members thereby making it ready for /O processing, This way of constructing an "interface actor-behavior”
pair is different from the construction process of an ordinary "actor-behavior” pair. In the latter case, all the data members

are properly initialized and the behavior is ready to process a message before it is passed to the actor constructor.

The reason behind this deviation is related to the proper handling of concurrent /O in an application running on multiple
processes. Although /O in the case of multiple processes is discussed in a later section, we will discuss the rationale
behind the "interface actor-behavior” construction now. The construction of an initial File_Beh object and the
construction of an IA are two independent activities that are executed by the same physical thread. In a single process
application, the thread is graranteed to exccute on the same process. But, in a multi-process preemptive run-time
environment, even though each construction phase can be made non-interruptible, the thread might be preempted between
the two construction phases. Thus, if such an interruption occurred, the file descriptor could be obtained by the
File Beh constructor on process A and the IA could be constructed on process B. The execution of the constructors on
two different processes is not of any concern except for the fact that threads created in the IA must execute on the process
on which the file descriptor was obtained. Therefore some information pertaining (o thread binding must be recorded when
the file descriptor is created. This information can be maintained either in the behavior object or in the IA. If maintained
in the behavior object the data has to be explicitly passed from a behavior to its replacement. Morcover, when a thread is
created in an IA the thread binding information must be obtained by invoking methods in the replacement behavior.
Hence, for the sake of efficiency, a design decision was made that thread binding information will be maintained in the
IA. As a result, the construction of the File Beh object is completed as a part of the IA construction process cansing

all threads which execute request messages to an IA to run on the process on which the IA was constructed.

The following are the most important actions taken in the Open method.

. The open system call is invoked to obtain the file descriptor corresponding to the file name argument fname
supplied by the user.
. The signal handler for the SIGIO signal is specified. This is the signal that the operating system sends when O

is ready, i.e. when the I[/O operation on the file can be completed without blocking. The specification is done

using the sigvec system call.



. The current status flags associated with the file descriptor £d is obtained by using the F_GETFL option of the

fentl system call and this status is recorded in the 01dflags data member.

. The file descriptor £d is enabled for both asynchronous I/O and /O without delay. It is done by setting the
FASYNC flag which indicates that asynchronous 1/O can be done on the file and by setting the FNDELAY flag
which indicates that a read or a write system call will never wait for the file to become ready for I/O when the
calls are made. With the FNDELAY flag set, an /O call returning with a zero vatue indicates that the file is not
ready for 1/O and asynchronous I/O must be performed. To set the new status, the fentl system call is invoked

using the #_SETFL option and providing the flag settings as arguments.

. The current process is marked as the recipient of the SIGIO signal. This is an important step because it informs
the operating system to which process to deliver the SIGIO signal for a file on which asynchronous 1/O is being
performed. The fentd system call is used once again, this time with the F_SETOWN option. The process id of

the current process is obtained using the gefpid system call and it is passed as an argument o fentl.
4.2 The Asynchronous I/O Manager

As mentioned before, the blocking on an /O call is prevenied in ACT++ by embellishing the I/O servers with the
capability of doing asynchronous I/O. This feature has been realized by a special object called the asynchronous I/O
manager (henceforth AIOM). Every IA communicates with the AIOM in order to perform an 1/O operation. There is only
one AIOM object per process in an ACT++ application. It manages the low-level aspects of doing /O, keeps track of all
the file descriptors that have been used by IAs to do asynchronous 1/O in the context of that process, determines which
file descriptor is ready for I/O when a SIGIO signal occurs, and acts as an intermediary between the application and the

operating system.

AJOM objects are instantiations of the AsyncIoMgr class. A partial definition of the class follows.

class AsyncIoMgr {
int fdtablesize;
fd set io _mask;
Io_gueue* io_pend list; ... }

The fdtablesize data member records the size of the file descriptor table of the process with which the AIOM is
associated. This member is used when the set of file descriptors is searched to find out which ones are ready for /. The
io_mask data member records the file descriptors that have been marked for asynchronous /0. It is set to zero initially.

Fd_set is a system defined type that is used to declare bit masks corresponding to the bit masks used by the systemt 10



manipulate file descriptors. The io_pend_list data memberisa pointer o an instantiation of the Io_queue class.

The queue stores information by which the AIOM informs waiting TAs that file descriptors are ready.

Every IA invokes the init_async_io method in the local AIOM in order to perform an I/O request. From
init_async_io, the request may be satisfied synchronously or asynchronously. If the I/ is not satisfied
synchronously then the file descriptor is prepared to do asynchronous /O. In the latter case the [/O completes with the
invocation of the propagate_signal method in the local AIOM. In the following we will discuss the function of

these two methods,
4.2.1 The init_async_io Method

The arguments passed to the init_async_io method are

. the file descriptor on which /O is requested,

. the type of [/O request that is being made (read or write),

. the source or destination of the data (depending on the type of the request) that is involved in the operation,

. a Cbox pointer to which a reply message is sent 0 inform the IA that the descriptor is ready in the case of

asynchronous I/O, and
. the number of bytes of data involved in the 1/O operation.

The major actions in init_async_io are the following.

. Depending on the type of request, either the read or write system call is invoked.
. If the call returns more than zero bytes, then the file was ready and the request has been satisfied and control

returns from the method.

. If the system call returns zero then the file is not ready for 1/O and the following preparation for asynchronous

1/O is made before returning from the method.

. The bit corresponding to the current file descriptor in the the io_mask data member is sel,
. an object is created using the current file descriptor and the Cbox pointer, and
. this object is engueued in the io_pend_ list queue.

The implementation of the init_async_io method is further complicated by its sensitivity to interruptions. There
are three reasons for not interrupting init_async_io. The first and most important reason is the possibility of
deadlock. If init_async_io is processing a file descriptor that is not ready for /O and the SIGIO interruption oCCurs
after the read or write system call is over but before the file descriptor is enqueved to 1o _pend_list, then deadlock is

imminent. This is because, after the read/write call is executed for a file descriptor, I/O must be initiated by the SIGIO



signal for that descriptor. Since the relevant information could not be enqueued when the thread was interrupted, the
signal handler will not be able to send a reply message to the IA waiting on that file descriptor. Deadlock may be avoided
because after the signal handler executes, the thread executing init_async_io will be resumed and the information
will be enqueued. If the signal handler is invoked subsequently due to some other 1/O event, then io_pend list will
be searched again and a reply message will be sent to the IA corresponding to the file descriptor that was skipped last
time. But the possibility of deadlock remains. Second, if interrupted before the read or write calls then, although the file
may be ready, the I/O will be unnecessarily delayed. Third, if the file is not ready then the file descriptor should be
enqueued in the 1o _pending list queue immediately to prevent unnecessary delay in sending a reply message when

the descriptor does become ready.

One way in which the thread execuling init_async_io can be interrupted is by the ACT++ scheduler. To prevent
that we use the thisthread->nonpreemptable () call at the very beginning of the method. This ensures that the
thread will not be preempted by the scheduler. Thisthread is apointer o a thread that is maintained by each process
in PRESTO to remember the current thread that is executing on the process. Before retuming from init _asyn c_io

the preemtable () method is invoked in thisthread torestore the thread as preemptable.

To address the deadlock issue a call is made to the sighlock function at the beginning of init_async_io toblock the
SIGIO signal. Blocking a signal means that if the signal occurs during the period in which it is blocked, then it is held
by the system and is delivered to the process when the signal is enabled once again. Before returning from the method the

SIGIO signal is unblocked.
4,2.2 The propagate_signal Method

The propagate signal method is responsible for the proper notification of the IAs that are waiting for an I/O
request to complete. This method is invoked by the SIGIO signal handler in the AIOM corresponding to the process

which is supposed to receive the SIGIO signal,

The first major event in propagate_signal is to make the select system call. The select system call is used to
determine which file descriptors are ready for 1/0. Two copies of 1o_mask are used as arguments 10 select. Select 1ests
for readiness each file descriptor for which the corresponding bit is set in the masks. After testing all such file descriptors
in each mask, select returns, in place, a mask of those descriptors which are ready for 1/O. The mask corresponding to the
second argument is set for all the file descriptors that are ready for reading and the mask corresponding to the third
argument is set for all the file descriptors that are ready for writing. Note that since an JA serializes 1/O requests, no file

descriptor can be ready for both reading and writing and so the same bit will not be set in both the retumed masks.

10



Select returns the number of file descriptors that are ready for I/O. If no descriptors are ready then control is returned
immediately from propagate_signal. Otherwise the io_pend_list queue is scanned to determine which file
descriptors in the queue are ready for I/O. For each file descriptor extracted from the quene, it is determined using the
FD_ISSET macro whether the bit corresponding to this file descriptor is set in either of the masks returned by select. If
set, the file is ready for I/O. Therefore, the corresponding IA is sent a reply message. Then the bit corresponding to the

descriptor is cleared in the 1o _mask indicating that the request has been serviced.
4.3 Reading and Writing Using an Interface Actor

To read from or write to a file, read or write request messages, respectively, are sent to the corresponding IA. The read
request message invokes the Read method and the write request message invokes the Write method in the current behavior

of the 1A,

An object called a Rbox is used to store the data read by the Read method, Another object called a Whox is used to store
the information that is to be written by Write. Pointers to a Rbox and a Whox are sent to Read and Write respectively.
Both of these objects are character buffers extended with blocking semantics, that is, threads can block on these objects if

no data has been read into a Rbox or the data in a Wbox has not been written.

The sequence of operations involved in a synchronous and an asynchronous read operation is shown in Figure 1(a) and

1(b) respectively. The operations in the case of a write are similar and are not considered separately.

The read request message invokes the Read method in the current behavior of the IA (step 1 in Fig. 1(a)). A Rbox
pointer and the number of bytes to be read are passed as arguments to Read. In the Read method, first, a Cbox is
created. This is the Cbox on which the current thread will block if the read request cannot be satisfied. After that, the
init_async_io method is invoked in the AIOM (step 2} for the process on which the thread is executing. Among
many arguments, the Rbox is passed to init_async_io. The read system call is invoked from init_async_io
(step 3) with the Rbox as an argument and since this is the synchronous read case, the call is satisfied and the data is read

into the Rbox (step 4).
If the 1/O cannot be completed synchronously in init_async_io then, the file descriptor is prepared for asynchronous

I/O (step 3 in Fig. 1(b)). Then control is returned to Read with an indication that asynchronous /O has to be performed.

This causes the thread execuating Read to block on the Cbox by invoking the receive operation (step 4) in it,

11



into Rbox
Re current behavior of AsynecloMgpr:: AIOM Read Fila
method interface actor init_async_io
invoked invoked
{2)
(S Store data into Rbox
due to read from File_Beh::Read
Read current behavior of AsyncloMgr:: Prepare for File
method interface actor IniL_async_1o asynchronous
invoked ' invoked IO ;@
SIGIC
Wakeup = signal
behavior SIGIO signal
handler

AsyncloMgr::
propagate_signal

@ Send reply

message

®

Figure 1: (a) The sequence of operations involved in a synchronous read operation. (b) The sequence of

operations involved in an asynchronous read operation.

When the file is ready for I/O, a SIGIOQ signal is sent (step 5) by the system which in wm invokes the SIGIO signal
handler. The signal handler invokes the propagate signal method (step 6) in the AIOM. After doing some file
descriptor related operations, propagate_signal sends a reply message to the Cbox (step 7) on which the thread

executing the Read method blocked. This awakens the thread (step 8) which then executes the read system call fo read

the data from the device (step 9) into the Rbox.

12



5.0 Handling Concurrent 1/0 in a Mnulti-Process Application

The most important issue of concurrent [/O in a multi-process application is that of file descriptor consistency across
processes. The solution to this problem in ACT++ is to sclectively bind threads to processes. The specific threads that
are bound to processes are those which execute the Read and the Write methods in the behaviors of an IA. This is
because these methods use the file descriptor for the file for which the IA is the server and as such must be executed on

the process on which the [A constructor was executed.

Since PRESTO does not support selective binding of threads to processes we have implemented that in PRESTO. To
implement selective thread binding, the following features had to be incorporated in PRESTO.

. The ability to mark a thread which executes the Read or Write method in an IA in order to keep a record of the

process on which it must be executed.
. The addition of a process specific queue in the scheduler along with the existing queuve (the common queue) for

each process that runs the application.

. A modification of the thread queueing and dequeueing mechanisms in the scheduler to take into account the

presence of the process specific queues.

The introduction of the thread binding feature cansed the following enhancements to be made.

. Modification of the VTALRM signal handler in PRESTO to take into account the process specific queues in the
scheduler.
. Modification of the Actor and TActor classes in ACT++ 1o use the thread binding features,

In the following sections we will discuss the implementation of each of the above extensions,

5.1 Implementing Thread Marking

To implement thread marking, the Thread class in PRESTO has been subclassed. Named New_Thread, the class
represents the threads which execute an ACT++ application and which can be bound to specific processes, if necessary.

The subclass is defined below.

13



class New_Thread :

protected:

public Thread

int t_iactor;
Process* t_runonlyon;
int t_processq;

public:

New_Thread(?);
int get proc()

int set_proc(Process*

P)

void set iactor({)

void set processqg(int

i)

int get_processqg/(}
int test iactor(): H

int New_Thread::test_iactox()

{

if (t_iactor)

else

The t_iactor datamember is used to record that a thread has been created inside the behavior of an IA (henceforth such
a thread will be referred to as an IA thread). The t_runonlyon data member is used to record the process object on
which the thread must always execute. The t_processq data member is used to store the position of the process
specific queue in which this thread will be engqueued when ready to execute. The methods in the New Thread class

operate on these three data members in order to set, reset, or return them and are self explanatory.

return 1;
return 0;

5.2 Implementing Process Specific Queues

To implement the process specific queues and the associated operations we replaced the scheduler object in PRESTO by a

new scheduler object which gives priority to IA threads. The new scheduler object is an instantiation of the

{return (int)t runonlyon;}
{t_runonlyon = p;}

{t iactor = 1;}
{t_processqg = i;}

{return t processq;}

Prty_ Scheduler class in ACT++ which is defined as follows.

class Prty Scheduler

protected:

public Scheduler {

ThreadPcecl* psc t ready[NUMPROCS]:
int thread pres[NUMPRCCS];
virtual int get prty gptr{int i);
virtual vold set_thread pres(int);
virtual void reset_thread_pres{int};

public:

Prty_Scheduler(int numschedulers, int quantum =

virtual
virtual
virtual
virtual
virtual
virtual
virtual

~Prty_ Scheduler{);

Thread* getreadythread(}:
void resume {Thread* t);

int invoke():

int readyqgqlen{);

int Schedulexr glen();
int process_glen{int);

14

DEFQUANTUM} ;



Among the data members of the Prty Scheduler class, psc_t_ready is an array of pointers to queues. There can
be as many queues as there are processors in the system (recorded by the NUMPOCS macro in PRESTO). Each element
of the array stores a pointer to a queue holding ready IA threads which will execute only on a specific process -

psc_t_readyl[i] isthe pointer to the ready queue for the process object i,

The thread pres data member in Prty_Schedulex is an array of integers that stores the status of the IA thread
queses. If thread_pres [1] is setto I then the queue pointed to by psc_t_ready[i] hasat feast one ready

thread in it if set to 0 the 1th queue is empty.

The get_prty gptr method is used to return the pointer to the queue in the scheduler for a particular process. The
set_thread _pres and reset_thread pres methods are used to set and reset, respectively, the element in the

thread_pres array corresponding to a particular process.
5.3 The New Thread Queueing and Dequeueing Mechanisms

Introduction of the process specific queues caused the thread queueing and dequeueing mechanisms to be altered. The

getreadythread and the resume methods implement the new schemes.

The Prty scheduler::getreadythread is the specialization of the getreadythread method in the

Scheduler class which is used to dequeue a ready thread from the scheduler object. It is defined as follows.

Thread* Prty_ Scheduler::getreadythread()
{

int i = (int) thisproc;
int k = get _prty_gptr(i);
Thread* t;

if (k == -1) {

cerr << "\n -1 RETURNED BY GET PRTY QPTR IN GETREADYTHREAD \n";
this->abort (SIGKILL);
kill (getpid{(), SIGILL);
//NOT REACHED
}
if (psc_t_readylk]l->size() != 0)
{
t = psc_t_readyl[k]->get ();
decr_thread pres(k):
s¢ lock—>lock();
{void) busybits{(l):
sc_lock—>unlock{();
} else
t=8cheduler: :getreadythread(};
return t; }

15



UNIX processes running a PRESTO application are represented as objects which are instantiations of the Process class
in PRESTO. PRESTO creates as many UNIX processes as there are free processors in the system and for each such
process creates a process object. Each UNIX process created in PRESTO has a variable in private memory called
thisproc which stores a pointer to the process object that represents it. The above method is invoked by a special
thread called the scheduler thread of which there is one per process object. Whenever a thread finishes execution, control is
returned to the scheduler thread which then extracts the next available ready thread from the scheduler. The functionality of
the above method is the same as Scheduler: :getreadythread except that code has been added to search the
process specific queues before searching the common queue. That is achieved by first converting the value of the
thisproc pointer of the free process into an integer and then invoking get_prty_gptr using that integer value as
an argument. Get _prty_qgptr returns the position of the IA thread queue pointer in psc_t_ready corresponding to
the free process. If the returned value is a -1 then it is a fatal error and the PRESTO run time system is aborted.
Otherwise, if the size of the IA thread queue of the {ree process is not zero, then, a ready IA thread is extracted. Then the
busybits method is invoked inside a critical section to set the bit corresponding to the current process in a mask that
represents the busy processes in the application and a pointer to the extracted thread is returned.

If the 1A thread queue has no ready threads the common quene is searched by invoking
Scheduler: :getreadythread. Then, whatever is returned by Scheduler: :getreadythread isreturned. It
is not necessary to access the psc_t_ready queue in a critical section because there is a unique queue for each process,
only one thread executes on a process object at any time, and a scheduler thread is non-preemptable. Yet, many threads

might try to invoke busybits simultaneously from different processes. Hence it is invoked in a critical section.
Searching the process specific queues before searching the general queue implicitly assigns a higher priority to A threads
over ordinary threads. This prioritizing is reasonable because it ensures that I/O activities, which are not processor

intensive, will always be attended to first in an ACT++ application.

The resume method in Prty_Scheduler is used to enqueue a thread that has just been created or was blocked and

has become ready for execution once again. The method is defined as follows.

16



void Prty_ Scheduler::resume (Thread* t)
{

int index;
if (t—>flags()&TF_SCHEDULER)
L->error("Can't resume a scheduler thread\n™)};
t->isready ();
if (t->test_iactor())
{

if ((t->get_processqg()) == =1)

{
index=get_prty_qptr(t->get_proc{));
t->set_processqg(index);

} else

index = t->get_processg{);
psc_t_readyiindex]->insert (t);
incr_thread pres(index);
} else

8c_t_ ready->insert{(t); }

The above method is a specialization of the re sume method in the Scheduler class. Since a scheduler thread is never
preempted, it must never be enqueued in the scheduler. That is tested by the first if-statement. If the rAread is not a
scheduler thread then it is marked ready for execution. Then it is determined whether the thread is an TA thread by
invoking the test_iactor method in t. Test_lactorrewmsalifthe t_iactor data member is set; a 0 if
not. If a 1 is returned then £ must be enqueued in a process specific queue instead of the common queue. If a 0is returmned

then the thread is inserted in the common queue by invoking the insert method in sc_t_ready.

To determine on which process specific queuc to enquese t, the get_processqg method is invoked in t. If t has just
been created Ehen the queue pointer is not yet recorded in the rhread. Gat _processq indicates this by refurning a -1. If
a -1 is not returned, index records the location of the 1A thread queue pointer for the thread. Otherwise, the get_proc
method is invoked in t (o obtain the process on which t must cxecute. Then, get_prty gptr is invoked with the
integer value of the process pointer as the argumeni. This invocation returns the location of the IA thread queue pointer

inpsc_t_ready for t which is recorded in it once and for all by invoking the set_processq method.

After the correct queue for t has been determined and stored in index, t is placed on the queue by invoking the
insert method in psc_t_ready!index].Then the incr_thread_pres method is invoked with index as the

argument to record the presence of an 1A thread in the queue.

5.4 The New VTALRM Signal Handler

The VTALRM signal handler in PRESTO is called sigpreempt alrm. This signal handler is executed on the
expiration of the allowed time quantum when PRESTO runs in a preemptive fashion. This signal handler is responsible
for determining which processes are running threads that are preemptable, and in such a case, signalling those processes

to execute the next ready thread in the quene of the scheduler. Note that only the process at the root of the process

17



hierarchy that executes a PRESTO application is configured to receive the VTALRM signal. The addition of the process
specific queues in the scheduler required modifications to the signal handler. The modified signal handler is shown below.
Each addition is identified by a comment.

int sigpreempt__alrm(int sig, int code, struct sigcontext* scp)

{

register *sp = (int¥) sScp->sc_sp;
Process* p;

Thread* t«;

int numt opreempt ;

int i;

int numinscheduler; //Addition
numtopreempt = sched->readyqlen() ;
numinscheduler=sched>Schedule;_qlen(); //Addition
numalarms++;

double g=((double) sched->quantum{}) /1000.0;
for (1 = 0; numtopreempt && i <

sched->sc_p activeschedulers; i++)
{

p = sched—>sc_p_procs[i];

int r = sched->process_glen(i); //Addition
if ({!'r) && ('numinscheduler))
continue; //Addition

t = p->runningthread():
if (£ &g t->canpreempt () )

{ .
if ({p==thisproc) (void)sigpreempt_notify(sig,code,scp);
else kill(p->pid (), SIGPREEMPT_ NOTIFY) ;

numtopreempt-—;
if ({'r) s& (numinscheduler > 0))
numinscheduler--; //Additioen

}
}
return 0; }

The general scheme of operation of the original handler was to determine the number of ready threads in the only queue of
the old scheduler by invoking the readyqlen method in sched, the shared pointer to the scheduler object maintained
by PRESTO. This number gave it some idea about how many process to examine for possible thread preemption, If
there were more ready threads than processes, then, all the processes were examined. If there were fewer threads than
processes then, all the processes were not examined. This was the basic idea behind the for loop condition in the
handler. Note that the signal handler never extracts any thread from the queue of the scheduler object. The process objects
that are signalled are responsible for extracting the threads. The signal handler Just ensures that enough threads are

preempted and the corresponding processes relieved so that the waiting threads in the scheduler are allowed to execute.

To interrogate the status of the threads running on the processes, the corresponding process object pointers stored in the
SC_p_procs data member of the scheduler were used. Starting from 0, each process object pointer in sc_p_procs
was obtained and a pointer to the thread running on that process was retrieved. Then it was determined whether the thread

could be preempied by invoking the canpreempt method in the thread. If preemptable, a signal was sent to the process

18



which would eventually result in the execution of another signal handler, sigpreempt_notify, which would prepare
the current thread for preemption and enable the switchover to the scheduler thread. If the process being interrogated
happened 1o be the one on which the sigpreempt_alrm function itself was executing, the sigpreempt notify

function was invoked directly instead of sending a signal.

To account for the process specific queues in the new scheduler object the handler has been modified as shown above. The
modifications have resulted in the following changes to the scheduling algorithm,

. The process specific queues are searched for aready thread before searching the common queue. Therefore, IA

threads are given higher priority than non-IA rthreads.

. If a particular process specific queue is found empty only then is the common queue searched for a ready thread,

If the common queue is empty then the thread on the current process is not signalled for preemption.

. An empty common queue does not mark the end of the scheduling algorithm. The algorithm terminates only

after all the process specific queues have been searched.

In the modified sigpreempt_alrm function, using Prty_Scheduler: : readyqlen, the numt opreempt
variable receives the total number of ready threads available in the scheduler which includes both 1A threads and threads in
the common quene. Then the number of threads available in the common queue alone is determined using
Prty Scheduler:: Scheduler_glen. The numinscheduler variable is used to keep track of the number of
ready threads in the common queue that are available for execution on processes that do not have any waiting 1A threads.
As each thread is scheduled for execution from the commeon queue, this variable is decremented. When the value of this
variable reaches zero, only IA threads can be scheduled for execution; if a process does not have an IA thread in its process

specific queue then it must not be signalled. Numinscheduler helps to determine this situation.

Inside the for loop, after retrieving the ith process object pointer from s C_p_procs, the
Prty_Scheduler: ‘process_qlen method is invoked in sched to determine if there are any ready IA threads in
the queue for this process, If there is no ready A thread and there are no ready threads in the common queue then, the
Process need not be signalled and hence the next iteration of the loop is executed. Note that although the common quene
is found to be empty, we still have to execute the next iteration of the for loop and examine the next process object in

SC_p_procs because there might be a ready IA thread in the queue of that process.
Finally, it is determined whether the current thread on the process can be preempted. If so, the process is signalled along

with the following additional action. If the queue for the current process is empty and there is at least one ready thread in

the common queue then, the ruminscheduler variable is decremented. This is done to ensure that if the ready thread

19



in the common queue is the last thread to be scheduled for execution on the process just signalled then, in the next

iteration of the for loop, no process would be unnecessarily signalled if its IA thread queue is empty.
5.5 Modifying the Actor and YActor Classes

The following additions have been made to the Act or class,

class Actor : public Object {
int iactor;
Process* my process;
public:
void set_iactor();
void set_proc (Process*); }

Two new data members have been added to the Actor class in connection with the correct handling of operations of [As,
The iactor data member is set when an IA is created and it is used to take special scheduling actions on the threads
created inside the IA. In the case of IAs, the my_process data member stores a pointer to the process object which
represents the process on which the threads created in the IA must execute. Note that these two pieces of information
have to be stored inside the IA object because at the time an IA is created no threads are created inside it. Later, when the
IA services request messages, the :actor data member is used to mark the threads created to execute the messages and

themy_process data member is used to set the t_runonlyon data member in those threads.

The next addition to the Actor class involves the creation of threads. After creating a new thread in the actor if it is
found that the iactor data member in the actor is set then, the t_iactor data member is st in the new thread by
invoking the set_iactor method on the thread. Also, the t_runonlyon data member is set in the new thread by
invoking the set proc method and passing the my_process data member in the actor as the argument. The above

Steps mark a thread as an IA thread and ensures that the thread binding mechanism will work properly.

The addition to the TActor class involves the constructor as shown below.

IActor: :IActor (char* fname, File Beh* init_beh, char* name) :
((Behavior*)init_beh, 1, name)
{
thisthread->nonpreemptable () ;
Actor::set_proc{thisproc);
Actor::set_lactor{);
int fd = init_beh->Cpen (fname) ;
thisthread->preemptable () ; }

20



Two of the additions in the TActor constructor are invocations to the set_iactor and set_proc methods in the
Actor class. The thisproc pointer of the process cxecuting the IActor constructor is passed as an argument to

set_proc. This signifies that all threads created in the TA must execute on this process.

The invocations of the nonpreemptable and preemptable methods in thisthread play a very significant role.
In an application running a preemptive scheduler, a thread executing the TActor constructor can be preempted at any
point during its execution. After being resumed, the rhread might execute on a different process. If such a thing happens
between the invocation of the set _proc method and the invocation of the Open method then, the first process would
be recorded as the site of execution of all subsequent ¢/reads in the actor but the file descriptor obtained in Open will be
on the second process. To avoid this file descriptor consistency problem we mark the thread as nonpreemptable at the

very beginning and mark it as preemptable at the very end of the constructor.,
6.0 Conclusion

We have implemented the ACT++ class library for the Sequent Symmetry multiprocessor using PRESTO 0.4. This
library is meant to be used with AT&T C++ version 1.2 and any other compatible compilers. We are carrently porting
PRESTO onto SUN 3/80 and DECstation 5000/240. Our next target is to use PRESTO 1.0 to implement ACT++. This
new version of PRESTO uses AT&T Ca+ 2.1,

The design of the I/O system for ACT++ involved a substantial modification to the code for PRESTO. The design of the
PRESTO system allowed us to make all modifications to the C++ parts of PRESTO by subclassing existing classes, for
example, the Threads and the Scheduler classes. The remaining modifications involved code written in C, for
example, the VTALRM signal handler. In such cases we had to insert our changes into the existing PRESTO code to
achieve the desired functionality. The ability to use subclassing to extend and alter PRESTO is, we believe, both a
reflection of the quality of the PRESTO design as well as an affirmation of the utility of object-oriented techniques for

thread-based, concurrent programming,

An important feature of the I/O system in ACT++ is that it provides a high level abstraction for doing I/O, namely,
interface actors. In many languages, for example, C and ADA, /O is not considered 1o be a part of the conceptual
framework of the language and is achieved through calls made to predefined library routines. On the contrary, in ACT++,
I/O is achieved using the same conceptual entities - actors, behaviors, request messages, teply messages, and different
types of Cboxes - which are used to perform the major computation in any ACT++ application. As a result, the ACT++

environment provides a uniform framework for computation and /O using actors.

In order to enhance the capabilities of the [/O sysiem, we will extend interface actors to handle typed I/O. We have

introduced the capability of handling only null-terminated string /O so that we could concentrate on the details of

21



implementing the asynchronous 1/0 capabilities. In future, we will use the i fst ream and of st ream classes available

in the iostream library of C++ to handle typed I/O.
4.1 Acknowledgements

We thank Vikul Khosla for an initial design of the I/O system and Keung Hae Lee for his implementation of an earlier
version of ACT++ [Lee 90].

References

[Agha 86) Agha, Gul, Actors: A Model of Concurrent Computation in Distributed Systems, MIT Press, Cambridge,
MA, 1986,

[Agha and Hewitt 87] Agha, Gul, and Hewitt, Carl, "Concurrent Programming Using Actors," in Object-Oriented
Concurrent Programming, A. Yonezawa and M. Tokoro (eds.), MIT Press, Cambridge, MA, 1987, pp. 37-53.

[Bershad et al 88] Bershad, B.N., Lazowska, ED., and Levy, HM., "PRESTO: A System for Object-Oriented
Parallel Programming,” Software Practice and Experience, 1988.

[Bershad 90} Bershad, B.N .. "The PRESTO User's Manual," Report, Department of Computer Science, University of
Washington, Seattle, Washington, 1990,

[Kafura and Lee 90] Kafura, D., and Lee, K.H., "ACT++: Building a Concurrent C++ with Actors," Journal of
Object-Oriented Programming, Vol. 3, No. 1, May/June, 1990, pp. 25-37.

{Lavender and Kafura 90} Lavender, G., and Kafura, D., "Specifying and Inheriting Concurrent Behavior in an
Actor-Based Object-Oriented Language," Technical Report TR 90-56, Department of Computer Science, Virginia
Tech, Blacksburg, VA, 1990,

[Lee 90] Lee, K.H., Designing A Statically Typed Actor-Baged Concurrent Object-Oriented Programming Language,
Ph.D. Dissertation, Department of Computer Science, Virginia Tech, June 1990,

[Mukherji 92] The implementation of ACT++ on a shared memory multiprocessor, M.S. Project Report, February,
1992, Department of Computer Science, Virginia Tech.

[Stroustrup 86] Stroustrup, Bjarne, The C++ Programming Language, Addison-Wesley, Menio Park, CA, 1986.

22






