

NAWEA 2015 Symposium Virginia Tech in Blacksburg, VA June 9-11, 2015

Investigation of Dynamic Loading for 13.2 MW Downwind Pre-Aligned Rotor

Chao Qin (Research Associate)

Eric Loth (Professor)

Sang Lee (Post-Doctoral Researcher)
Patrick Moriarty (Senior Engineer)

Outline

- Extreme-scale issues & Force alignment
- Pre-Alignment & Impact of this design
- FAST simulations & main results
- Discussion & Conclusion

Increasing sizes lead to increasing mass & increasing exponents (2.5+) once gravity loads start to dominate

Rotor size trends

Larger turbines mean more energy captured Increased MW reduces "plant" & "utility-integration" costs Next great frontier: "extreme-scale" off-shore wind turbine systems

Reduce the rotor mass and satisfy tower clearance requirement

Early evaluations of new wind turbine concept

Pre-Aligned Concept

Wind Turbine Forces

Load combination of centrifugal (C), gravity (G), and thrust (T) aligned along the blade path via downwind coning

Method & Test Conditions

Methodology

- Aeroelastic simulator FAST, an open source code developed at NREL, is employed to predict loads acting on HAWT blades
- Reference turbine is Sandia 13.2 MW upwind turbine with 100 m blades
- Damage equivalent loads (DEL) of the blades, calculated by MLife code, are used to address impacts of different designs on fatigue

Sandia 13.2 MW Reference

- Rated wind speed V_{rated}, = 11.3 m/s
- Blade: SNL100-00 (117 Mg)
- Conventional design: U3, U2, D2
- Pre-aligned design: D2PA, D2PAL
- Modify Drivetrain and control system
- Turn on pitch and variable-speed controllers
- Turn off tower shadow and potential flow
- Calculate damage equivalent loads (DELs)

Case parameters and main outputs in FAST Simulation

Case	Blade Mass (Mg)	Rotor Mass (Mg)	Cone (deg)	α (deg)	Teeter	ω (rpm)	Ср (-)	λ (-)
U3	114.2	342.6	-2.5	0.0	No	7.44	0.459	7.06
U2	114.2	228.4	-2.5	-1.8	No	8.93	0.458	8.47
D2	114.2	228.4	2.5	-1.8	No	8.93	0.458	8.47
D2PA	114.2	228.4	17.5	-1.8	No	8.93	0.418	7.90
D2PAt	114.2	228.4	17.5	-1.8	Yes	8.67	0.388	7.86
D2PALt	125.6	251.2	Streto	ch blade by	y 10%	8.93	0.395	8.93

M-N Curve + Goodman Diagram

 $Ma = Mu \times N^{(-1/m)}$

 $R = \frac{M \min, lcycle}{M \max, lcycle} = \frac{Mm - Ma}{Mm + Ma}$

Where,

Ma Amplitude moment in one load cycle

Mu Ultimate moment of the blade N Allowable cycles to failure

m Slope of the curve

Mmin,1cycle Mmax,1cycle Minimum moment in one load cycle Maximum moment in one load cycle

Case parameters and main outputs in FAST Simulation

Case	Rotor Mass (Mg)	Cone (deg)	α (deg)	Teeter	ω (rpm)	Ср (-)	Pwr (MW)	RFBM (kNm)	DEL (kNm)
U3	342.6	-2.5	0.0	No	7.44	0.459	13.20	4.62E4	8.84E3
U2	228.4	-2.5	-1.8	No	8.93	0.458	13.20	6.44E4	3.79E4
D2	228.4	2.5	-1.8	No	8.93	0.458	13.20	4.39E4	1.73E4
D2PA	228.4	17.5	-1.8	No	8.93	0.418	11.09	155	2.01E4
D2PAt	228.4	17.5	-1.8	Yes	8.67	0.388	10.29	606	2.85E3
D2PAL t	251.2	Stretc	h blade b	y 10%	8.93	0.395	13.20	-581	3.41E3

CONCLUSIONS

Steady-state analysis of D2PAt allows substantial reduction in flapwise bending moment for 13,2MW wind turbine blades at rated wind condition

Stretching blade length by 10% can make up the power losses

Pre-aligned design has lower DELs at different steady wind speeds than conventional three-bladed design, but it has two blades that requests rotor running at a higher rpm

Much more work needed to determine relative feasibility for force-aligned downwind systems

Tower shadow
Turbulent wind condition
Control system
IEC standard tests
SNL100-02 blades

Question and Comment

Rated

Power

(MW)

1.25

2

3

4

3

1

3

6.5

8

10-50

2

5

2

2.5-12

Location

Castleton, VT

Howard Knob, NC

Sweden

Wyoming

Germany

Colorado /

California

South China Sea

China

Fukushima, Japan

Kamisu City,

Japan

Norway

Blade

Number

2

2

2

2

2

2

2

2

2

2

3

3

2

3

3

Commercial

Availability

Prototype

Prototype

Prototype

Prototype

Prototype /

FAILURE

Unknown / 250,

500kW Prototype

Available

Prototype

Prototype in

Development

Planned

Available

Prototype in

Development

Concept /

Prototype

Available

Prototype

Year

1941

1979

1981

1982

1983-1988

Around

2000

2011

2013

~2010

2013-2015

2017

Manufacturer & Model

Smith-Putnam

GE MOD-1

Hamilton-Standard WTS-3

Hamilton-Standard WTS-4

GROWIAN I

Wind Turbine Company

WTC-1000

Carter Wind Energy

Hitachi HTW 2.0/80

Hitachi HTW 5.0/126

Nautica Windpower AFT

Subaru 80/2.0

SWAY

Aerodyn /

Ming Yang

SCD 3.0

SCD 6.0

SCD 8.0

Rotor

Diamter

(m)

53

61

78

79.2

100

54.3

110

140

168

80

126

80

Comments

First MW wind turbine. 1100 hrs. Blade failure.
World's second multi-MW wind turbine. Sponsored by DOE and administered by NASA. Operated at least 18

months but full operating history is unknown.

Sucessfully operated for 11 years.

World record for power output for over 20 years.

The most famous, most discussed and criticised

German federal research project.

A modern update of Smith-Putnam. Compared to 3-

blade upwind ones, head weight reduces by one-half

and manufacturing costs reduce by one-third.

Off-shore. Designed by Aerodyn and manufactured by

Chinese licencee Ming Yang.

Scale-up 300-500kW products.

Experimental off-shore floating wind farm project begins in 2012. In second term, 7-MW wind turbines

will be added between 2013 and 2015.

A demonstration prototype is under construction.

Advanced Floating Turbine. Digital prototype. A 1/3-

scale version with a 35- m rotor is expected by 2013.

Manufactured by Fuji Heavy Industries. Designed for

strong wind. Special attention is being given to

withstand the heavy typhoon in Japan.

NREL is collaborating with SWAY. The SWAY 1/5 scale prototype has a 13-m rotor on a 29-m tower, with a

large portion of the tower beneath the ocean surface.

Planed Simulation Progress

Generate Wind Input Profile

FAST Simulation

Fatigue Analysis

- TurbSim
- IEC Standards

- Sandia 13.2 MW wind turbine
- SNL100-02 blades
- Upwind /downwind
- Controller from NREL 5 MW turbine
- Pre-cone angles

- MLife
- Rainflow cycles
- Weibull distribution
 Goodman Correction
- Short-term DELs
- Life-time DELs