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(ABSTRACT)

An investigation is conducted into the effect of cooling and suction on the
stability of subsonic flows over two-dimensional roughness elements and
supersonic flows over flat plates. First, the effect of wall cooling on the
two-dimensional linear stability of subsonic flows over two-dimensional
surface imperfections is investigated. Results are presented for flows over
smooth humps and backward-facing steps with Mach numbers up to 0.8. The
results show that, whereas cooling decreases the viscous instability, it
increases the shear-layer instability and hence it increases the growth rates in
the separation region. The coexistence of more than one instability
mechanism makes a certain degree of wall cooling most effective. For the
Mach numbers 0.5 and 0.8, the optimum wall temperatures are about 80% and
60% of the adiabatic wall temperature, respectively. Increasing the Mach
number decreases the effectiveness of cooling slightly and reduces the
optimum wall temperature.

Second. the effect of suction on the stability of compressibie flows over

backward-facing steps is investigated. Mach numbers up to 0.8 are



considered. As expected, suction considerably reduces the separation region.
The results show that continuous suction stabilizes the flow outside the
separation bubble, as expected, but it destabilizes the flow inside it.
Nevertheless, the overall N factor decreases as the suction level increases.
This is due to the considerable reduction in the separation bubble. For the
same suction flow rate, properly distributed suction strips are more effective
in stabilizing the flow than continuous-suction distributions. Furthermore, the
size of the separation bubble, and hence its effect on the instability, can be
considerably reduced by placing strips with high suction velocities in the
separation region.

Third, the effect of suction on the stability of supersonic and hypersonic
boundary layers is investigated. Calculations are performed for non-similar
and self-similar boundary layers. The variation of the maximum growth rate
with Mach number at low levels of suction is different from that at high levels
of suction. This is due to the coexistence of viscous and inviscid instability
mechanisms in supersonic and hypersonic boundary layers. Suction is more
effective in stabilizing the viscous instability, and hence it is more effective at
low Mach numbers. Although suction decreases the maximum growth rate of
second-mode waves, small levels of suction increase the growth rates of
disturbances having certain frequencies. On the other hand, first-mode waves
are stabilized by suction at all frequencies. Constant-suction distributions
considerably move the critical Reynolds numbers of second-mode waves to
higher values while the critical Reynolds numbers of first-mode waves are not

sensitive to suction.
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Chapter 1

Introduction

The subject of boundary-layer control was pursued since the beginning of
this century. In fact some of Prandtl’s early papers described sev.eral
experiments in which the boundary layer was controlled'. Out of the same
stream a subject termed laminar flow control (LFC) emerged in the sixties??.
While boundary-layer control aims to affect the whole flow in a desired
direction by influencing the structure of the boundary layer, LFC is concerned
with maintaining laminar flow over a body or surface for the longest distance
possible by delaying the transition to turbulence. A flight demonstration
program, the X-21 program* which was terminated in the sixties, provided
preliminary information about LFC. Later in the seventies and due to the
energy crisis more emphasis was placed on LFC, especially since the
turbulent skin friction is the order of 50% of the total cruise drag® of some

aircraft. The portion of the turbulent friction drag gets higher for other
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hydrodynamic applications. For example, for a vehicle having a moderate
Reynolds number, application of laminar flow control provides a lucrative
increase in fuel efficiency?. As the time passed by, the prospect of making LFC
practical have increased because of many factors that include production of
advanced high strength materials, modern fabrication and manufacturing
techniques, and super-critical airfoils® . For attached flows, laminar flow
control can be obtained by one or a combination of the following methods:
suction, heating in water, cooling in air, favorable pressure gradients in
two-dimensional or axisymmetric flows, and convex curvature. Good reviews
of these techniques and their applications can be found in Refs. 7 and 8. These
techniques are also used in the area of boundary-layer control.

To efficiently apply LFC one needs to understand how transition occurs.
Experiments performed on flat plates identified one possible route for
transition from laminar flow into a fully developed turbulent flow'. First,
two-dimensional Tollmien-Schlichting (T-S) waves grow downstream. Second,
three-dimensional unstable waves and vortices develop in the flow. Third,
secondary instabilities take place, resuiting in either spikes or low-frequency
modulations. Finally, turbulent spots form. These spots then get closer to
each other, forming a fully developed turbulent boundary layer. Although
many characteristics of the second stage can be explained by the secondary
instability theory®™, the first stage is the only one that is fully understood. The
linear stability theory can accurately predict the shape and the growth rate of
instability waves. More importantly the linear theory, and especially the

non-parallel theory'' , can accurately predict the critical locations where these
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waves first become unstable. The development of the linear theory promoted
theoretical investigations into LFC methods.

The linear theory gained a big boost when augmented by the e"
method'?-'4. Although this method does not take into consideration the initial
amplitude of the disturbance, comparing linear calcu‘lations with experimental
measurements made in low disturbance wind tunnels showed that transition
locations can be correlated with the locations where the logarithmic
amplification of T-S waves reaches a certain value N; therefore it is called the
e" method. For different instability mechanisms, the N factor is found to be in
the range between 7.0 and 11.0'2-'6,

Most of the theoretical LFC investigations studied flows with single
instability mechanism, mainly the viscous instability of T-S waves. However,
most of flows with practical interest have more than one mechanism of
instability. Even if the linear theory is used, these mechanisms might interact
in a r.10nlinear fashion through the mean flow. Thus the effect of their
coexistence is not merely an algebraic sum of their separate effects. Here, we
investigate LFC techniques for flows with more than one mechanism of
instability.

A problem that is rich with instability mechanisms is the flow over
surface imperfections's'¢. The mechanisms by which two-dimensional (2-D)
roughness elements cause transition include amplification of T-S waves,
Kelvin-Hemholtz instability ( for separated flows ), amplification of cross-flow
vorticity, Goertler instability, and enhancement of the receptivity of freestream

turbulence and acoustic disturbances'’. Nayfeh and Al-Maaitah'® studied the
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subharmonic interaction between the Goertler vortices and the T-S waves and
found it to have a small effect on the T-S wave. Malik'?, however, found that
higher-order interactions can considerably modify the growth rates of T-S
waves. Nayfeh et al ' investigated the stability of flows over 2-D bulges. They
accounted for T-S and shear-layer instabilities. They found that experimentally
determined transition locations can be correlated with an N factor in the range
7.4-10.0.

The unavoidable existence of these imperfections demands investigations
into the control of flows around them. In Chapters 2 and 3 we use the eV
method To gage the effectiveness of wall cooling and suction in controlling
flows around 2-D humps and backward-facing steps. We demonstrate in
Chapter 2 how the inviscid instability turns cooling into a destabilizing
mechanism for the detached flow. Moreover, we show that cooling beyond an
optimum level results in increasing the overall N factor.

In Chapter 3 we investigate the effect of suction on the stability of
subsonic flows over backward-facing steps. We find that properly distributed
suction strips stabilize the flow more than continuous-suction distributions
with the same total flow rate. Moreover, we show that unlike cooling,
increasing suction monotonically decreases the maximum N factor. This is due
to the significant reduction in the separation bubble with suction.

In Chapter 4, we consider the effect of suction on the compressible
stability of supersonic and hypersonic boundary layers. While the inviscid
instability in the separation region is due to the reversed flow, the inviscid

instability of the supersonic boundary layer is due to the existence of a
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generalized inflection point. The results show that suction loses its
effectiveness at high Mach numbers. Moreover, we show that high and low
levels of suction have different effects on the maximum growth rate of
first-mode waves. Two suction distributions are investigated: a spatially
varying distribution that results in a self-similar boundary layer and a
uniform-suction distribution that results in a non-similar boundary layer. The
mean flow is calculated using self-similar and non-similar compressible
boundary-layer equations.

Chapter 5 contains a summary of the results and recommendations for

future research.
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Chapter 2
Effect of Wall Cooling on the Stability of
Compressible Subsonic Flows Over Smooth Humps

and Backward-Facing Steps

2.1. Introduction

Due to the proven achievability of Natural Laminar Flow® (NLF), there is
an increasing interest in its use for the design of high performance aircraft.
The substantial drag reduction with NLF has promoted more analyses of ways
to achieve and maintain NLF on airfoils and other aerodynamic geometries.
The maintenance of NLF is critically sensitive to the location of transition,

which is strongly affected by surface imperfections. Since many of these
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imperfections cannot be avoided by modern manufacturing techniques?' %, a
guide is needed for their allowable sizes and methods that should be used to
control their effect on NLF.

There are some empirically based criteria in the literature?®? for prediction
of the transition of flows around imperfections. But these criteria are for
special cases and geometries, and they do not explain the instability
mechanisms enhanced by the imperfections or the physics of ways to control
them. Bestek et al”® solved the unsteady Navier-Stokes equations using
finite-differences; they concluded that the unsteadiness of the separated flow
can be regarded as a phenomenon governed by the hydrodynamic instability.
Their calculations show that Tolimien-Schlichting waves considerably amplify
once the separation is enhanced in agreement with the results of Nayfeh
et al's . Burnel et al?® and Gougat and Martin? experimentally investigated the
flow over 2-D imperfections. Their measurements of the amplified
disturbances show that they damp down in the region of favorable pressure
gradients. A similar trend is seen in the calculations of Nayfeh et al's.

Recently, the effect of compressibility on the achievability of NLF has
received more attention for non-lifting surfaces. High subsonic and supersonic
Mach-number flows develop density gradients across the boundary layer,
which provide additional damping to 2-D and axisymmetric T-S waves. For
certain geometries this advantage can be offset by the increase in the adverse
pressure gradients. Vijgen et al” showed that increasing the freestream Mach

number has a stabilizing effect on subsonic laminar boundary layers over
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fuselages. Their Mach number varied from low subsonic to 0.8. Hastings
et al” reported that NLF extended as far as 37% on a NLF fairing installed on
a turbo-fan nozzle.

In spite of the previous investigations more understanding of the physics
of the instability of such flows and ways to control them are still needed,
especially for compressible flows. The two most common ways for laminar
flow control are wall cooling in air (or heating in water) and wall suction. Wall
cooling stabilizes incompressible flows over flat plates in air and destabilizes
them in water?®- . Mack3* and Malik® found that for compressible flows, wall
cooling stabilizes first-mode waves but destabilizes second-mode waves. The
question arises on how does wall cooling affect flows around surface
imperfections, and whether these flows can be stabilized by this technique,
especially, since more than one instability mechanism coexist. The purpose
of this work is to study the effect of wall cooling on the subsonic
two-dimensional stability of boundary layers around two-dimensional smooth

backward-facing steps and humps.

2.2. Mean Flow

The sizes of the two-dimensional imperfections under consideration are
such that strong viscous-inviscid interactions and small separation bubbles

are unavoidable. The conventional laminar boundary-layer formulation cannot
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predict such flows. An aiternative is to solve the full Navier-Stokes equations,
but in such a case the grid should be fine enough so that important flow
characteristics are not smeared by the truncation error and artificial
dissipation. However, due to the large number of cases that need to be
investigated, solving the full Navier-Stokes equations is a very expensive task.
A more economical alternative is to solve the interacting boundary-layer (IBL)
equations or the nonlinear triple-deck equations.

We caiculated the two-dimensional compressible laminar boundary layers
over flat plates with 2-D surface imperfections using the interacting
boundary-layer equations (IBL). The flowfield is assumed to be governed by
the steady compressible boundary-layer equations as follows:

x-momentum equation

e
continuity equation
a(apxu) + 6(apyv) =0 (2.2)
energy equation
pu—QL +pvﬂ= (v — 1)M2 u—dL
ox dy " dx

(2.3)

1 0 oT =1 ,2 [ ou \2
+RePr oy <K 6y>+ Re M""”(W)
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and equation of state for a perfect gas

pT = peTe (2.4)

where velocities are normalized with respect to the freestream velocity U_,
lengths are normalized with respect to L*, which is the distance from the
leading edge to the center of the imperfection, and the temperature and the
viscosity and thermal-conductivity coefficients are normalized with respect to

their freestream values T_, . , and «__, respectively. Here,

o0

U _Lp. #..C, o
Re=-—2—,—p—°—°—, Pr=—2"  andy=—% (2.5)
'uoo Kot) C.V

where C, and C; are the gas specific-heat coefficients at constant pressure and
volume, respectively.

The boundary conditions at the wall are

u=v=0and T=T, at y=f{(x)] (2.6)
where f({) is the shape of the wall with the imperfections. For the step
() =+ BT + erf()], { = Re ™" 2% (x — 1) (2.7)

and for the hump

h(1 — 122 +16¢%), if{ <05

f({) =
0.0,if{>05
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(x-—1)
(=15
where x, is the width of the hump, erf is the error function, h is the height of
the step or the hump, and A = 0.332057. Away from the wall

u—Uyand T—>T, as ¥y = oo (2.8)

where the subscript e stands for edge variables.

Using the Prandt! transposition theorem,

df

z=y -] w=v—-u—= (2.9)
we rewrite Eqgs. (2.1)-(2.3), (2.6), and (2.8) as
du ou __ dp 1 0 du
pu x + pw 57 = dx + Re 37 <u . ) (2.10)
d(pw)  d(pw)
ox + Py =0 (2.11)
aT T _ (g2, 9P 19 oT
PU 5% toW = (y = IMe,u dx  RePr az (K iz ) 2.12)
L= D 2 (Qg_ 2 '
Re M\ "5z
u=w=0,T=T, at z=0 (2.13)
U—>U,and T—T, as Z— o0 (2.14)

Effect of Wall Cooling on the Stability of Compressible Subsonic Flows Over Smooth [umps and
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Next we use the Levy-Lees variables

X Re U, (2
é(x)=J. petieUcdx and n(x,z) =——| pdz (2.15)

0 \/Eé_ 0

and transform Egs. (2.10)-(2.12) into

d oF 2 _
2{F Fy + VF, o (0 o ) + Po(F Q)=0 (2.16)
2§F§+ V,+F=0 (2.17)
2 [ 0 9Q Us
s 2 e 2 _
ZéFQg +vVQ, - an ( Pr on > —(y — )M T HF,, =0 (2.18)
where
u T
F = ., Q=— 2.19a
U, Te ( )
=————V2€[./Re PW + 1,/ 28 F] (2.19b)
peUerue X .
__pPu _ 2¢ dU,
0= TR and i, = 0. (2.19¢)
The boundary conditions become
F=V=0andQ=Q, at n=0 (2.20a)

Effect of Wall Cooling on the Stability of Compressible Subsonic Flows Over Smooth Humps and
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F—->1andQ—1 as - oo (2.20b)

F=F(, nand Q=Q({, n) at &=¢ (2.20c)

To account for viscous-inviscid interactions, we need to calculate the
inviscid flow over the displaced surface. This is done through the interaction
law, which relates the edge velocity to the displacement thickness. Using thin

airfoil theory, we obtain

— 0o d(in dt oo d(U,0)/dt
U, = e+—1—I u 5 Uneldt L 1 Welldt 1 (221)
pr ) g x—t pr ) x-—t
where f§ = \ﬁ — M2 | the displacement thickness 4 is given by
J2E oo
§=— J (Q — F)dy (2.22)
/Re peue 0

and U, is the inviscid surface velocity in the absence of the boundary layer,

which, in the case of small imperfections, can be expressed as

_ 1 [ dffdt

Ug=1+ dt 2.23
e ﬂTE LE X—t ( )

Defining x = f + U.5, we rewrite Eqg. (2.21) as

Effect of Wall Cooling on the Stability of Compressible Subsonic Flows Over Smooth Humps and
Backward-Facing Steps 13



o d(inp)/dt o dy/dt
U, =1+ [Ty,s2Uneldt | 1 LTI (2.24)
pr Jig x—t prn Jg x—t

The principal values of the integrals in Egs. (2.23) and (2.24) are assumed.
Following Davis and Werle¥ and Nayfeh et al's, we integrate the interaction
law by parts to eliminate the derivative of y. We assume x to vary linearly
over a differencing interval to obtain a second-order quadratic expression for
the edge velocity. Furthermore, we calculate the second term in Eq. (2.24)
explicitly from the previous iteration. By assuming the flow far away from the

imperfection to be a Blasius flow, we can write the interaction law as

Uy + &Boi =V (2.25)

For a definition of ¢ and y and a detailed derivation of Eq. (2.25), we refer the
reader to Ref. 15.

Equations (2.16)-(2.18) and (2.20) are solved simultaneously with Eq. (2.25)
using central differences in the transverse direction and three-point backward
differencing in the streamwise direction.

Ragab, Nayfeh, and Krishna®™ compared the IBL calculations with solutions
of the thin-layer compressible Navier-Stokes equations obtained using the
computer code “ARC2D” developed at NASA Ames (Version 1.5 GAMMA). The
results obtained using the IBL agree very well with those obtained using the
Navier-Stokes solver; this is true for both the mean flow® and the stability®

characteristics. In Ref. 38 insulated wall conditions were used. In the present

Effect of Wall Cooling on the Stability of Compressible Subsonic Flows Over Smooth Tlumps and
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work, we investigate the influence of continuous- and strip-cooling

distributions.

2.3. Stability Calculations

In this work, we consider the linear two-dimensional quasi-parallel stability
of the mean flow calculated using the interacting boundary-layer formulation.
The quasi-parallel assumption was justified a posteriori by Nayfeh et al's. They
found that the wavelengths of the disturbances are the order of the
boundary-layer thickness. The calculations are performed for constant specific
heats and Prandtl number. Since we are limiting our calculations to subsonic
flows, this assumption has a small effect on the accuracy of the stability
results. Moreover", the viscosity and thermal-conductivity coefficients u and k
are assumed to be functions of temperature only. Since Pr and C, are constant
we take k = .

To derive the stability equations, we superimpose 2-D disturbances on the
mean flow calculated using the interacting boundary-layer formulation to

obtain the total-flow quantities
P =pmly) + plxy.t) (2.26a)

T =uy(y) +ulxyt) (2.26b)

Effect of Wall Cooling on the Stability of Compressible Subsonic Flows Over Smooth Humps and
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v =v(xyt) (2.26¢)

P = pPm(y) + plx.y.t) (2.264)
I= pm(y) + ux.y.t) (2.26¢e)
1= A,(y) + A(x.y.0) (2.26f)
T =T,(y) + T(xy.t) (2.26g)

where 1 and u appear in the definition of the bulk-viscosity coefficient k as
—1+2
k=21+ T H

The subscript m refers to mean-flow quantities and the overbar refers to total

flow quantities. Since i and 1 are functions of temperature only, we have

din, ) di, ,
= —a—ﬁ- T=A(T)T and u= _(Fm— T=up(T)T (2.27)
Substituting Eqs. (2.26) and (2.27) into the 2-D compressible Navier-Stokes

equations, subtracting the mean-flow quantities, and linearizing the resulting

equations, we obtain

dp dp | dpm du | v
W"}'Um X + dy V+pm< x + 3y =0 (2.28)

Effect of Wall Cooling on the Stability of Compressible Subsonic Flows Over Smooth ITumps and
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d %)
pm<—@-—+u Ou | Zm v>+ P

at ™ 0x dy dx
1 0 du ov
—FT[rum—a——+mumFy—] (2.29)

3 5 5 u (2.30)
1 v u m
—_———— A A =0
Rax[m(ax+6y)+ dY]
oT oT | dTm 2( Op op
p’"( o TUm ot dy V) v 1)M°"< at " Um X
2 2 du dT,
_ _Hm o°T n a°T + 1 H m (2.31)
RPr \ 52 (:)y2 RPr gy dy
2 2
L1 Gum T = OMed  u AT
RPr dy dy R RPr dy2
where
au v dum dum 2
= 2.32
’lm
m=——,r=2+m, (2.33)
Lm
U;O(SE) . v X"
R=—2—, §p= - (2.34)
vOO UOO
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The linearized equation of state for a perfect gas is
YM2p = ppuT + pTy,
or
p=OM2p = P (2.35)
The boundary conditions are
u=v=0T=0 at y=0 (2.36)
uv,p,T—0 as y - oo (2.37)

Since the coefficients in Egs. (2.28)-(2.31), (2.36), and (2.37) are functions

of y only, we seek normal-mode solutions of the form

q=4q(y) exp{iJadx — iwt} + complex conjugate (2.38)

where q stands for (u, v, p, T), « is the wavenumber, and w is the frequency.
For spatial stability analysis « is complex and w is real, whereas for
temporal-stability analysis w is complex and « is real. In this work, we analyze
the spatial stability case and determine w from the non-dimensional frequency
F as w = F/R.

Dropping the hat from ﬁ for convenience and defining
Q=w—oaup, (2.40)

Fffect of Wall Cooling on the Stability of Compressible Subsonic Flows Over Smooth [Tumps and
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we find that o is governed by the eigenvalue problem ’ ,

T, iQp
Dv = — iou + D>Wv+ pp - "T)T (2.41)
m m m

—ip,. QR ' DT,
Dzu=<——pﬂ—+m2>u—(ﬁ—m——ﬂ0u>

Hm Um
rmRDuy, , fu’mDTm ,
+ [ Ty = fo — v —i(1 + mjaDv (2.42)
2 :
iRo Dup, D Um |
+ T p—[—um—D(um)-{- T ]T—' Du, DT
) D7, 2u' DT, )
xoOp = — la(r T + T u — jeDu
iRQ 2 Dsz r;u’m(DTm)2
+ —o+r + v
EmTm Tm EmTm

(2.43)

DT, u
. m m
+i . [Q( 7 + DT,,,)—aDum]p

‘ irQ
+ [i(aDum)( ‘;’:’ + T’ )— L DTm]T—_’Frg—DT

DT,
D*T = —2(y — YM2 PrDu,,Du + [Rprﬁ"ﬂ—’"— ~ 2i(y - 1)M3,,Praoum]v
- :
Q P . 2 DTl 'm
+i(y — YM2PIR P+ | —IRPQ 4 a” — —— (2.44)
Hm Hm
2
DT, U u DT
B el VAl M2 Pr = (Duyy) ] 2 ——=DT
u=v=T=0 at y=0 (2.45)
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u,v,p,T,—-0 as y o oo (2.46)

where

d ____I?__I’ri,andpm:_ 1

(e 0]

2.4. Numerical Results

Following the procedure described in Section 2.2, we calculated the mean
flow over a backward-facing step for different wall temperatures. Figure 2.1

shows the influence of cooling on the skin-friction coefficient

2
_ 2Ueu(Ty) oF
=
T, J2Ret N

| =0 (2.48)

In the case of cooling, the separation point is aimost fixed but the reattachment
point moves slightly upstream, resulting in a slightly smaller separation
bubble. Moreover, cooling causes a larger negative shear prior to
reattachment. The pressure coefficient C, = 2(p.T, — 1)/(yM2) is plotted in
Figure 2.2. Although cooling does not have much effect on C, far away from
the imperfection, it causes steeper adverse and favorable pressure gradients
around the separation bubble. In Figure 2.3, we compare the mean profiles

of the flows over adiabatic and cooled walls at several locations. In general,
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cooling results in fuller velocity profiles compared to the adiabatic case. In the
separation region, although the mean-velocity profiles are still fuller away from
the wallyfor the cooled wall case, they develop inflection points close to the
wall, and more negative flows develop near reattachment. The corresponding
temperature profiles are shown in Figure 2.4. The combined effect of cooling
on the velocity and temperature profiles is a movement of the generalized
inflection point closer to the wall in the separation region, as shown in Figure
2.5.

For a given mean flow, w, and R, we solved for the eigenvalue « and the

eigenfunctions, and then determined the amplification factor from

R
N=— J 20,dR (2.49)

where R, corresponds to Branch | of the neutral stability curve and «; is the
imaginary part of « . The eigenvalue problem was solved using the
second-order finite-difference subroutine DBVPFD*, which is much faster than
SUPORT*: the resuits of DBVPFD are in full agreement with those of SUPORT.
In all cases, the results are for the most dangerous frequency, defined to be
the one that results in an N factor of 9.0 in the shortest distance's*2. For an
adiabatic wall, it is 50 x 10-¢ and the maximum N factor is 9. Figure 2.6 shows
the N factors for various frequencies when T, = 0.55T,,. Thus, in the case of
cooling, it appears that F =50x10-¢ produces the largest N factor in the

shortest distance. Hence, all the calculations are made for an F = 50x10 5.
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We analyzed the stability of the mean profiles calculated using the IBL
code for flows over a backward-facing step. The present analysis accounts for
both viscous and shear-layer instabilities in the separation region. The effect
of wall cooling on the stability of such flows is different from its effect on the
stability of flows over flat plates. Figure 2.7 shows the growth rates for the
cases of adiabatic and cooled walls. The temperature of the cooled wall is
55% of the adiabatic wall temperature T,,. We note that the instability is due
to the viscous mechanism in the attached region and due to a combination of
the viscous and shear-layer mechanisms in the separation region. Figure 2.7
shows that cooling decreases the growth rates and hence it is stabilizing in the
attached flow regions because cooling produces fuller velocity profiles. On the
other hand, in the separation region cooling increases the growth rates due to
the increase in the negative shear flow in the separation bubble and the
movement of the generalized inflection points closer to the cooled wall.
However, the growth-rate curve corresponding to the cooled case is narrower
around the peak value than that corresponding to the adiabatic case because
the cooled flow reattaches ahead of the adiabatic flow. Figure 2.8 shows the
variation of the growth rate with streamwise distance for different wall
temperatures. Decreasing the wall temperature destabilizes the flow in the
separation bubble and stabilizes it in the attached flow region. Moreover the
growth-rate curve gets narrower as the wall temperature decreases.
Consequently, the overall effect of cooling as measured by the N factor

depends on the wall temperature, as shown in Figure 2.9. When T, = 0.957,,,
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the boundary layer is completely stable ahead of separation and the overall
N factor is less than that of the adiabatic wall. As T, decreases below 0.8 T,,
the increase in the growth rates in the separation region overcomes the
reduction in the growth rates elsewhere, and the net result is an increase in
the maximum N factor.

For a Mach number of 0.8, Figure 2.10 shows the growth rates for various
wall temperatures. The increase in the growth rates in the separation region
when M_ = 0.8 is less than that when M_ = 0.5. Moreover, the peak growth
rate when M_ = 0.8 is wider than that when M_ = 0.5. This makes the
optimum wall temperature to be T, = 0.6T,, as it is clear from the resulting N
factors shown in Figure 2.11. Figure 2.11 also shows that at M_ = 0.8 cooling
has a slightly smaller effect than at M_ = 0.5 .

The previous results seem to be general and apply to other imperfections.
For example, Figure 2.12 shows the growth rates for a flow at M_ = 0.8 around
a cubic hump. The hump width is 0.2 L* and height is 0.003 L*. The behavior
of the growth rates with cooling is similar to that of the step case. The
resulting N factors are plotted in Figure 2.13. This figure shows that the
optimum wall temperature is about 7, = 0.87,,.

In an attempt to lower the growth rates in the separation region, we
performed calculations for a wall that is cooled everywhere except in the
separation bubble. The resulits indicate that this distribution has a very small
effect on the N factor as shown in Figure 2.14. The growth rates are slightly

changed as shown in Figure 2.15. The reason for this small effect is that the
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mean profiles in the separated region are influenced by cooling ahead of the
separation bubble due to the non-similarity of the boundary layer.

Next we show the influence of the step position on the N factors for a
constant frequency. The results shown in Figure 2.16 are for M_ = 0.5 and
adiabatic wall conditions. Unlike the in(;ompressible case the most dangerous
step location is not the one corresponding to Branch | of the neutral stability
curve, but it is the one corresponding to a distance half-way between Branches
| and Il. Figure 2.17 shows that a similar trend is true for the cubic hump.

From the previous results it is clear that the coexistence of viscous and
shear-layer instability mechanisms complicates the effect of cooling on the
stability of such flows. Since cooling decreases the viscous instability and
increases the shear-layer instability, there exists an optimum wall temperature

that reduces the amplification factor.
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Chapter 3
Effect of Wall Suction on the Stability of
Compressible Subsonic Flows Over Smooth

Two-Dimensional Backward-Facing Steps

3.1. Introduction

The increasing interest in high performance aircraft has promoted more
research in the area of laminar flow control (LFC). Boundary-layer transition
does not only affect the lift and drag characteristics of lifting surfaces, it also
affects airplane stability and control®®. Surface imperfections have a significant
effect on the transition process. Unfortunately, the sizes of some unavoidable

imperfections cannot be always reduced to significantly diminish their effect.
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This demands the investigation of methods for controlling the flows around
such imperfections. Such investigations must take into consideration the
coexistence of different instability mechanisms in such flows's'7.21.24  |n this
chapter we study the effectiveness of wall suction on the stabilization of flows
around two-dimensional (2-D) backward-facing steps.

Carmichael, Whites, and Pfenninger** and Carmichael and Pfenninger
performed flight experiments on the wing glove of an F-94A airplane. The
modified 652-213 airfoil had 69 suction slots distributed between 41 and 95%
chord. They investigated single and multiple sinusoidal waves located at 15%,
28%, and 64% chord. Their results show that the allowable sizes of the waves
increase when embedded in the suction region. They found that to maintain
laminar flow across the airfoil requires an 8% increase in the suction level
over the clear airfoil case. Carmichael*® established empirical criteria relating
the height to width ratio of the waves to the Reynolds number. However, these
criteria are valid only for the configurations and the conditions investigated in
the experiments. Moreover, they do not indicate the minimum suction levels
needed to reduce the effect of the waviness. Spence and Randall¥
investigated the effect of uniform suction on the stability of boundary layers
over plates with sinusoidal surface waves. They derived a closed-form
expression for the asymptotic mean profile. By using the parallel stability
theory of Lin*, they calculated the suction velocity needed to make the critical

Reynolds number larger than the flow Reynolds number. Separation was not
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taken into consideration. Their results show that as the wavelength increases
smaller suction velocities are needed.

More recently, Nayfeh and Reed® and Reed and Nayfeh® proposed a
numerical-perturbation scheme to study the effect of porous suction strips on
the stability of boundary layers over axisymmetric bodies and flat plates. To
optimize the effect of the porous strip configuration, they suggested the
concentration of suction near Branch | of the neutral stability curve. Their
calculations show good agreement with the experiments of Reynolds and
Saric®and Saric and Reed%. Hahn and Pfenninger® experimentally
investigated the effect of suction on the transition over a backward-facing step.
They placed closely spaced suction slots downstream of the step. Suction
levels were found for the prevention of premature transition downstream.
Their measurements show that suction considerably moves the reattachment
point upstream. They found that suction is more effective when the strips are
placed slightly upstream of the reattachment region. However, they stopped
short of performing stability measurements.

Although existing investigations indicate that wall suction can be used to
stabilize flows around surface imperfections, none of them gives a detailed
physical understanding of how this can be done. Questions still need to be
answered about the most effective suction levels and distributions.
Furthermore, an understanding of how does the coexistence of different

instability mechanisms alter the effectiveness of suction is still lacking.
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In this chapter we investigate the effect of uniform suction as well as
suction strips on the stability of flows over 2-D backward-facing steps. The
mean profiles are calculated using the interacting boundary-layer equations®
(IBL) modified for the case of wall suction. These equations account for the
upstream influence resulting from the separation bubble and the suction strips.
The stability of the mean profiles is calculated using a quasi-parallel linear
stability theory for 2-D compressible flows. The theory accounts for both
viscous and shear-layer instabilities coexisting in the separation region. The
effectiveness of suction is then measured by the reduction in the resuiting N

factors*%,

3.2. Mean Flow

The flowfield is assumed to be governed by the interacting boundary-layer
equations. The governing equations are given in Section 2.2. For convenience,
we list them below modified for the case of suction. After applying the Prandti
transposition theorem and using the Levy-Lees variables, one can write the

boundary-layer equations as

2£FF§+VF”——a(an—<8-%3)+ﬂo(F2—Q)=0 (3.1)
2F, +V, +F =0 (3.2)
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The Levy-Lees coordinates ¢ and n are given by

x Re U
609 = [ poneladx and n(x,2
0 J2¢

e r4
=—| pdz
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and the Prandtl transposed z and w variables are defined as

z=y - MMl w=v—u-P

where f({) is the shape of the wall defined as

() = h[1 +erf(0)], { = Re™*2%4(x —

1)

(3.3)

(3.4a)

(3.4b)

(3.4c)

(3.5)

(3.6)

(3.7)
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In equations (3.1)-(3.6) the velocities u and v are normalized with respect to the
freestream velocity U_, lengths are normalized with respect to L*, which is the
distance from the leading edge to the center of the step, and the temperature
and viscosity and thermal-conductivity coefficients are normalized with
respect to their freestream values T_, u__, and «_. Here

_ Unlpo #ooCp Co

Re = " ,Pr= ‘and‘y.:
”oo Koo CV

(3.8)

-

where C; and C; are the gas specific heat coefficients at constant pressure and
volume, respectively. The Prandtl transposed boundary conditions at the wall

are

F=0,%—(:=0andv=vw at n=20 (3.9a)

where

J2&Re

V, =—F— 3.9b
w Qerue ( )

Vw

Qu = w/Te (3-96)

T, is the adiabatic wall temperature and the physical suction velocity v, is

normalized with respect to U.. Away from the wall
Fo1andQ —1asn - o (3.10a)
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To complete the problem formulation, we need to impose initial conditions

upstream of the step; that is,

F=F(nand Q=Q(&,n) at &=¢,

and F and Q are taken to correspond to the Blasius flow.

(3.10b)

The edge velocity is calculated from the interaction law which relates it to

the displacement thickness. Using thin airfoil theory, we obtain

o d(Inp,)/dt o dy/dt
U, =1+ [Ty, U0 X9t
Br Jg x—t pr Jg x—t

where

B=J1-M2  x=F+U.d

and the displacement thickness ¢ is given by

1 N2

JRe Pele

o=

J‘ (Q — F)dn
0
Integrating equation (3.2) we obtain
fmz d
VN + K(”N) + Vw =2¢ 'a? (Ueéeé)

where

(3.11)

(3.12a)

(3.12b)

(3.13)
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K(mw) = L"”(o +2e 2L (3.14)

V, is the vertical velocity at the edge of the boundary layer, and n, is the
corresponding value of 1. Following Davis and Werie¥, Nayfeh et al',and
Ragab et al®, we integrate equation (3.11) by parts to eliminate the derivative
of y. We assume x to vary linearly over a differencing interval to obtain a
second-order quadratic expression for the edge velocity. By combining the

resulting expression with the interaction law, we obtain
Vv + ¢Boi =¥ -V, (3.15)

For a definition of ¢ and ¢ and a detailed derivation of equation (3.15), we
refer the reader to Refs. 15 and 16.

Equations (3.1)-(3.3) are solved simultaneously with equation (3.15) using
central differencing in the transverse direction and three-point backward
differencing in the streamwise direction. The suction velocity appears in the
interaction law and the boundary conditions at the wall. This demands extra
care in inverting the resulting matrix. For the flow prescribed, the skin-friction

coefficient C, and the pressure coefficient C, are defined as

2
202u(T, To— 1
c, = et(Tw) gF |0 and cp=2”_835__
T, J2Ret N YM.,
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3.3. Stability Calculations

We consider the linear two-dimensional quasi-parallel stability of the mean
flow described in Section 3.2. The disturbance equations have the same form
as equations (2.28)-(2.32). When most of the suction flow is directed normal to
the surface and for small suction velocities, Lekoudis*® showed that the

boundary conditions for these equations can be reasonably expressed as
u=v=0aty=0 (3.16)
Furthermore, for high frequency disturbances, we have
T=0aty=0 (3.17)
Since disturbances decay away from the wall,
u,v,p, T—>0 as y - oo (3.18)

Seeking a normal mode solution of equations (2.28)-(2.32) and (3.16)-(3.18),
we obtain the eigenvalue problem defined by equations (2.41)-(2.46) listed in
Chapter 2. For known basic-state profiles, the eigenvalue o and corresponding
eigenfunctions (, are calculated using the finite-difference subroutine

DBVPFD%*. Specifying R and w to be real, we find the eigenvalue
a=a,+ io; (3.19)
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where «, and o, are the real and imaginary parts of a, respectively. Then — «;
is the spatial growth rate of the disturbance. The amplification factor is then

calculated using equation (2.49).

3.4. Results and Discussion

First, we investigate the influence of suction on the mean-flow
characteristics. Figure 3.1 shows the effect of continuous suction on the
skin-friction coefficient of flows over a backward-facing step located at x = 1.0.
As expected, suction reduces the size of the separation bubble. Hahn and
Pfenninger®® reported a reduction of 20% in the separation region. When
v, = 5x10-* the size of the separation bubble reduces to 67 % of that when no
suction is applied. Moreover, suction increases the positive shear in the
attached flow region and decreases the negative shear in the separated flow
region. Figure 3.2 shows the effect of continuous suction on the pressure
coefficient C,. Although continuous suction does not have much effect on C,
far away from the step, it results in steeper pressure gradients around it. At
different locations on the plate, Figure 3.3 shows a comparison between the
mean profiles when v, = 0.0 and v, = 5x10-*. Away from separation, suction
results in fuller velocity profiles. This is also true in the separation region,
however the generalized inflection point moves closer to the wall. For the

same conditions, Figure 3.4 shows that suction slightly alters the temperature
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profiles. Outside the separation bubble, Figure 3.5 shows that suction reduces
the vorticity throughout the boundary-layer except near the wail. However, in
the separation region, suction widens the region of increase in the vorticity,
as shown in Figure 3.6.

Figure 3.7 shows that the size of the separation bubble is reduced
significantly when a concentrated suction strip is placed around the step. The
strip starts at x = 0.9 and ends at x = 1.3, v, = 1x10°%, M_ = 0.8, and the
height of the step is 0.003 L*. The resulting separation bubble extends over a
distance of 0.04 L*, which is 22% of the size of that when no suction is applied.
For the same conditions but with the step height = 0.002 L*, Figure 3.8 shows
that the separation bubble extends over a distance of 0.017 L*, which is 25%
of that when no suction is applied. Figures 3.7 and 3.8 show a large increase
in the positive shear around the suction strips.

Next we analyze the stability characteristics of the mean profiles calculated
using the IBL. Figure 3.9 shows the growth rates for the cases when
v, = 5x10~* and v, = 0.0. Outside the separation region suction stabilizes the
boundary layer due to the resuiting fuller velocity profiles. In the separation
bubble suction has a destabilizing influence on the boundary layer due to the
movement of the inflection point towards the wall and the increase in the
vorticity near the wall. Figure 3.10 shows the growth rates for different suction
levels. As v, increases the flow is stabilized in the attached flow region and
destabilized in the separation region. A similar trend was noted in the case

of wall cooling. Whereas the variation of the N factor with wall temperature
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has a relative minimum, Figure 3.11 shows that the N factor monotonically
decreases with suction. Thus, increasing the suction level results in a greater
reduction in the overall N factor and hence in stabilizing the boundary layer.
This is due to the significant reduction in the separation bubble.

To optimize the distribution of suction strips, Reed and Nayfeh* suggested
that the strips be located around the smallest growth rate location. In the flow
over backward-facing steps, these regions are near Branch | of the
neutrai-stability curve of the Blasius flow, slightly ahead of the step, and
around the end of separation. To study the effect of suction-strip distributions,
we locate three suction strips of width 0.2 L™ at x = 0.360, 0.723, and 1.103,
each has a v, = 2.33 x 10 ‘. The total flow rate equals to that when a
continuous suction is applied with v, = 1.0x10 * from the leading edge to a
distance of 1.4 L*. In Figure 3.12 we compare the growth rates obtained using
the suction strips with those obtained using a continuous-suction distribution
with v, = 1.0x10 * and the case of no suction. In the case of suction strips, the
growth rates are lower than those corresponding to v, = 0.0 except in the
separation bubble. However, they are lower than those corresponding to the
continuous suction case only around the strip locations, with the exception of
the separation region. The strips gradually decrease the growth rate near the
beginning of the strips. Their effect, however, continues downstream of the
strips. A similar trend was noted by Reed and Nayfeh® and Hahn and
Pfenninger®. The resulting N factors shown in Figure 3.13 demonstrate that

the same amount of flow rate can stabilize the flow more when properly
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distributed in strips. Although in Ref. 53 suction was placed only downstream
of the step, suction was found to be most effective when placed near the
reattachment region. This corresponds to the place where the third strip is
located in the present work.

As discussed previously in Figures 3.7 and 3.8, the separation bubble can
be reduced significantly when a concentrated suction strip is placed across it.
Figures 3.14 and 3.15 show the resuiting N factors for the same filow conditions
of Figures 3.7 and 3.8, respectively. The maximum N factor in Figure 14 was
reduced from 9.0 to 4.0. In Figure 3.15 the effect of separation was nearly
eliminated.

The stability characteristics are calculated for the most dangerous
frequency's*®4. Suction does not have much effect on this frequency. Figure
3.16 shows the N factors for different frequencies when continuous suction is
applied. A similar trend turns out to be true in the case of suction strips.

In conclusion, we note that suction reduces the viscous instability and
increases the shear-layer instability. While cooling loses its efficiency as the
wall temperature decreases below a critical value, increasing the suction
results in a monotonic stabilization of the boundary layer owing to the
significant reduction in the separation bubbie by suction. Properly distributing
suction in strips results in more stabilization of the boundary-layer. Moreover,
concentrating the suction in the separation region can eliminate the effect of

the separation bubble.

Effect of Wall Suction on the Stability of Compressible Subsonic Flows Over Smooth Two-Dimensional
Backward-Facing Steps 37



Chapter 4
Effect of Suction on the Stability of Supersonic and

Hypersonic Boundary-Layers

4.1. Introduction

The compressible stability theory of laminar boundary layers differs in
many ways from the incompressibie theory. The most important feature of the
stability of supersonic laminar boundary layers is that there can be more than
one mode of instability contributing to the growth of the disturbance. For a
comprehensive review of the stability of compressible boundary layers, we
refer the reader to the articles of Mack® and Nayfeh®. Using extensive
numerical calculations, Mack® found that there are mulitiple values of

wavenumbers for a single disturbance phase velocity whenever there is a
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region of supersonic mean flow relative to the disturbance phase velocity. The
first mode is similar to the Tollmien-Schlichting instability mode of
incompressible flows, while the second and higher unstable modes are unique
to compressible flows. For the inviscid case, Mack®% found that the lowest
Mach number at which the higher modes exist in the boundary layer on an
insulated flat plate is 2.2. The lowest of these modes is called the second
mode and it is the most amplified of the higher modes.

It is an interesting facet of compressible 2D boundary layers that the most
unstable first-mode wave need not be parallel to the freestream as the Mach
number approaches unity®*®. In contrast with incompressible stability theory,
at supersonic speeds, 3D first modes are more unstable than their
corresponding 2D waves. However, 3D second-mode waves are more stable
than their corresponding 2D waves. As the Mach number increases to the
hypersonic regime, second-mode waves display growth rates that are higher
than those of 3D first-mode waves. However, the maximum growth rate is less
than that of the first mode at zero Mach number. Mack showed that below
M_ = 2.2, the boundary layer on an insulated flat plate is virtually stable to
inviscid 2D waves and that above M_ = 2.2 the second mode is the most
unstable mode. Moreover, the maximum amplification rate increases sharpiy
as M_ increases beyond 2.2, and above M_, = 5 the first mode is not even the
second most unstable mode.

Again, using extensive numerical calculations, Mack* investigated the
influence of Mach number on the viscous instability of supersonic flows past

flat plates. He found that viscosity is stabilizing for both 2D and 3D first-mode
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waves when M_ > 3.8 and for second-mode waves at all Mach numbers; that
is, the maximum ampilification rate (over all frequencies, and wave angles in
case of 3D waves, at constant Reynolds number) decreases with decreasing
Reynolds number. At M_ = 1.6, Mack found that compressibility drastically
red.uces the viscous instability. As the Mach number increases beyond 1.6, the
viscous instability continues to weaken although the effect of the increase in
the inviscid instability continues to extend to lower and lower Reynolds
numbers. When M_ reaches 3.8, the viscous instability disappears and
viscosity acts only to damp out the inviscid instability. This result was
disputed by Wazzan, Taghavi, and Keltner® who did not find a transition from
viscous to inviscid instability with increasing Mach number but found that the
viscous instability persists to M_ = 6.0 . Mack® reconfirmed his calculations
for the case of temporal stability and obtained spatial stability results that
agree with his earlier conclusions on the influence of viscosity on
compressible stability. Moreover, the spatial stability calculations of Ei-Hady
and Nayfeh®? and the present results agree with those of Mack for at least three
significant figures.

As in the inviscid case, the numerical results of Mack®**5 suggest that 2D
second- and higher-mode waves are more unstable than their corresponding
3D waves. Moreover, the maximum growth rate of second-mode waves drops
sharply as the wave angle increases from zero.

The lowest Mach number at which Mack®¥” was able to calculate 2D
second-mode waves is M_=3.0 at which the minimum critical Reynolds

number is 13,900. Moreover, the inviscid instability increases rapidly with
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increasing Mach number and hence one would expect the minimum critical
Reynolds number to decrease rapidly to lower values as the Mach number
increases. In fact, Mack found that the minimum critical Reynolds number
drops to 235 as the Mach number increases to 4.5. Moreover, at higher Mach
numbers second-mode waves have much higher growth rates than oblique
first-mode waves.

Whereas cooling can stabilize 2D and 3D first-mode waves, Mack* found
that cooling destabilizes inviscid second-mode waves. Including the effects
of viscosity, Malik* studied the influence of cooling on oblique first-mode
waves at y = 60° for M_ = 2 and 4.5 and second-mode waves for M_ = 4.5; in
these calculations R = 1500 and the stagnation temperature is 560° R. His
results show that oblique first-mode waves at M__ = 2 are completely stabilized
when T7,/T,,=0.7 whereas those at M_=4.5 are stabilized only when
T./T,, = 0.48. On the other hand, his results show that second-mode waves
are destabilized by cooling. In fact, the maximum growth rate increases
rapidly with cooling. Malik found that the frequency of the most amplified
first-mode wave decreases with cooling whereas that of the most amplified
second-mode wave increases with cooling.

Malik® also investigated the influence of favorable pressure gradients and
self-similar suction distributions on the stabilization of second-mode waves at
M_ = 4.5 and R = 1500. He found that each of them shifts the band of unstable
frequencies to higher values and reduces the peak amplification.
Consequently, it appears that, whereas cooling cannot be used to stabilize

second-mode waves, they can be stabilized using either suction or wall

Effect of Suction on the Stability of Supersonic and Hypersonic Boundary-Layers 41



shaping to produce a favorable pressure gradient. However, his calculations,
are for a single Reynolds number and a single Mach number. In this work we
present a detailed study of the effect of self-similar as well as uniform suction
distributions on the compressible stability of supersonic and hypersonic
boundary layers. Both first- and second-mode waves of instability are
investigated. Our results show that, suction is not as effective at M_ = 6 and

7TasatM_=45.

4.2. Mean Flow

We consider 2D compressible flows over adiabatic flat plates of an ideal
calorically perfect gas. The basic flowfield is governed by the non-dimensional

2D boundary-layer equations

x-momentum equation

d,
pu6u+v6u_ p 1 0<8u>

ax P ay_—dx+Re dy * 3y

continuity equation

d(pu)  d(pv)
ot oy =0 . (4.2)

energy equation
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where velocities are normalized with respect to the freestream velocity U,

=(y— WMZu

pu
(4.3)

lengths are normalized with respect to a reference length L*, and the
temperature, viscosity, and thermal conductivity coefficients are normalized

with respect to their freestream values T_, 1., and «__, respectively. Here,

o0

u_Lp. #0.Cp C,
Re = 2P p._ £ andy=— (4.4)
'uoo Koo CV

where C, and C, are the gas specific heat coefficients at constant pressure and
volume, respectively. For a perfect gas the non-dimensional equation of state

has the form
pT =1 (4.5)
Away from the wall, the boundary conditions are
u—1and T—-1as y > o0

Moreover, the temperature gradient at the wall should vanish for adiabatic

wall conditions; that is,

oT

a1 _ - 6
5, —0aty 0 (6a)
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Here we consider the case of continuous wall suction. Assuming that the

suction velocity is directed normal to the plate, we have
u=0aty=0 (6b)
v=—v, at y=0 (6¢)

where v, can vary with x in general. However, there are two restrictions on the
suction velocity. First, v, should not be too large so that the boundary-layer
assumption continues to be valid. Second, v, should not vary abruptly, as in
the case of suction strips. In the latter case the conventional boundary-layer
equations cannot predict the upstream influence of the abrupt changes.
Instead one should use a triple-deck formulation or the interactive
boundary-layer equations.

it is convenient to reformulate the problem using the Levy-Lees variables

x Re U, [V
600 = [ ponolstx and nixy) = =" | pay (47)
Jo 0

g

and transform Eqgs. (4.1)-(4.6) into

20F Fy + VF, = 36,7 (9 %) + Bo(F* —Q@) =0 (4.8)
2LF; +V, +F=0 (4.9)
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2
a ( 6 9Q 2 Ve 2
2§FQ§+VQ"— 677 < Pr an )—(V—1)M00T—89F'] =0 (410)
where
_U T
F= U, ,Q = T (4.11a)

V=—\/§£_—[ﬁpv+nx\/§f—/:] (4.4.11b)

peUeﬂe
__pu _ 2¢ dU,
0= TR and fig = 0. a¢ (4.11¢c)

and the subscript e refers to conditions at the edge of the boundary layer. The

boundary conditions become

F—-1and Q-1 as n—>oo (4.12a)
F=0 and —-%: =0atn=0 (4.12b)
v J2Re (O)v,, at 0 (4.12¢)
= ——— v, at n= A2c
poUoity pOv, at n

Equations (4.7)-(4.12) represent the non-similar boundary-layer equations.
Under certain conditions these equations admit self-similar solutions. These
conditions include flows over an adiabatic flat plate with no suction or blowing.
In the case of uniform suction distributions V,, varies along the plate and hence

self-similar solutions do not exist. However, when V, is constant, and hence
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the physical suction velocity v, is proportional to ¢-'2, Eqs. (4.7)-(4.12) admit
self-similar solutions for flows over adiabatic flat plates. In the latter case,
u,=T,=pu.,=10and F,=0 and Q, =0. Letting V= —f(n) and solving Eq.

(4.9), we have F =f. Then, using Eq. (4.5), we rewrite Eqs. (4.8) and (4.10) as

(%f")'+ff"=0 (4.13)
(—T—/—;,TT’)’ T+ (y — 1)M§o(ir)(f")2=o (4.14)

where the prime denotes the derivative with respect to n. The boundary

conditions (4.12) become

f>1and T—-1asn - oo (4.15)
f=T=0andf=,/2V,atn=0 (4.16)
where
Vv __éRe tant 417
w="T0) v, = constan (4.17)
7(0)

Thus, the physical wall velocity must be proportional to in the
self-similar calculations, we specify V, instead of v,,.

Equations (4.7)-(4.12) are solved using central differences in the transverse
direction and three-point backward differencing in the streamwise direction,

whereas Eqs. (4.13)-(4.17) are solved using the finite-difference code

DBVPFD*. The calculated displacement thickness for different M_ are in
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agreement with the fourth-order calculations of Malik® for zero suction

velocity.

4.3. Stability Analysis

We consider the linear quasi-parallel 3D compressible stability of the
calculated 2D mean flowfield. We superimpose on it a small disturbance and

obtain the total-flow quantities in the form
Gix.y.zt) = gp(y) + g(x.y.z,0) (4.18)

where q stands for u, v, w, p,p, u, and T, the hat stands for the total-flow
quantities; and the subscript b stands for the basic-flow quantities.
Substituting Eq. (4.18) into the compressible Navier-Stokes equations, recalling
that the basic flow satisfies the Navier-Stokes equations, and linearizing with
respect to q, we obtain the disturbance equations

o du o . 0 ow_ _
3 TP 5 T Ub 5y +ay(bv)+pb7 =0 (4.19)

du du du, \ _ dp 1 i du v aw
(at+ba +de>— ax+R{”bax (rax+"’ay+’"az>
9
.uba

J (4.20)
d ou v Up ow |, du
+6y[#b<6y +6x>+ dy ]+ z<ax+6z>}
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aw aw\_ 9 1 a (dw | du
pb(at +“"ax>‘ 6z+R{ub8x(6x+8z>
+

(4.22)
0 av , ow d du ov ow
T 5y [“b<az+ y>] ”baz<’" ax "My T, >}

aT aT dTy |\ 2[ op p 1
(4.23)

L 02T+ 9 or ., dT, ﬂ 0°T

RPr )70 52 " gy \"® oy d ® 922

_ du , dv | dup dup \2
¢—2ub( 3y + 6x> dy +u< dy > (4.24)
where
2 2

r=§—(e+2)andm=?(e—1) (4.25)

and e = 0 corresponds to the Stokes hypothesis. The local Reynolds number
R in Eqgs. (4.19)-(4.24) is based on a reference length &, = ./vx;/U, , which is
the order of the boundary-layer thickness. Velocities are normalized with
respect to the free-stream velocity U’ and lengths are normalized with respect

to §;. Hence,
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The boundary conditions at the walil are
u=v=w=T=0aty=0 (4.26)

For sonic, subsonic, and supersonic waves the boundary conditions away from

the wall have the general form®
u,v,w, T,p, are bounded asy — oo (4.27)

We assume that u is a function of the temperature only; hence

d
p=T—= (Tp) = Ty’ (T) (4.28)
Moreover, the linearized equation of state takes the form

plps =TTy, + p/pp (4.28b)

Since the mean flow is assumed to be quasi-parallel, we seek solutions in

the form of 3D traveling Tollmien-Schlichting waves as

[uv.p, T.w]=[L(y), {3(¥), Laly). Cs(y), Ea(y)] eXP["(J.adX + fz — wt)] (4.29)
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where o and f are the streamwise and spanwise wavenumbers, respectively,
and w is the frequency. Substituting Eqs. (4.28) and (4.29) into Egs.

(4.19)-(4.24), we obtain

: DT . 2 {s :
D{3 + ialy — T {3+ i(aup — )| YM {4 — T, +ifl; =0  (4.30)

T
i(otub — (,())C1 + C3DUb + iaTbC4 - —f?b‘ { - lub(ra2 + /}2) Ci - aﬁub(m + 1)C7 (431)

+ i{m + 1)oppDEs + ppy' DLy + japy' {3 + pD%¢s + D(up'Dup)s + pp'Duy DLs) = 0

T
i(auy — W)y + T,DC4 — —.,-?b— {i(m + 1) appD{y + imopy'{y — (a2 + /32);11)(3(4-32)

+ r/.lb’D£3 + im/}ub'é'7 + iaﬂb,DUbC5 + r,ubD2§3 + l(m + 1)[’#[; D(7} =0
(ot — )y + iBTyla — ~2 { — (m + 1) aPusly + iBiy'C
o — i —_—— o {

b 7 b54 R HpG 1 Hp 63 (4.33)
+i(m + 18D — up(o + )7 + 1p'DLy + 1y 0257} =0

T
i(aub - Cl))cs + {3DTb - I(V - 1)TbMi(an - (U)C4 - —Ri [2DUb(DC1 + i(X{a)
(4.34)

+ 1y’ (Dup)ls] = 5= [ = mo(o® + B?)Cs + D(pDLs) + Dl DTyl5) ] = 0
C1=C3=C5={7=0aty=0 (435)
{, are bounded as y — oo (4.36)

where the prime denotes the derivative with respect to the argument and

D =d/dy .
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In this work, we consider the case of spatial stability so that w is real.
Since the basic flow is two-dimensional, f§ is constant. In this work, we assume

that f§ is real and @ complex so that
o =0, + i; (4.37)
Moreover, we compute » from the non-dimensional frequency F as
w =RF (4.38)
and compute the wave angle y as

¥ =tan”" (Ba)

The eigenvalue problem is solved using the finite-difference code DBVPFD*
coupled with a Newton-Raphson iteration technique. This scheme produces
results that are as accurate as those obtained by using SUPORT*' with far less
computational time. For the case of no suction, our resuits are in total
agreement with those of Mack®’, El-Hady and Nayfeh®?, and Malik® . For the
case of self-similar suction distributions, R =1500, and M_ =4.5, we

reproduced the results of Malik®.
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4.4. Results and Discussion

For certain M_, P_, Pr, and v,, the velocity profile is determined using the
formulation described in Section ll. The stability of the calculated profile is
then analyzed as described in Section lll. A great deal of the physics of the
stability problem, however, can be understood by studying the effect of suction
on the mean-flow characteristics. Whereas the incompressible Blasius profile
does not have an inflection point, an important characteristic of the
compressible Blasius flow is the existence of a generalized inflection point
inside the boundary layer. The generalized inflection point is defined as the
point where D(p,Du,) = 0. In the absence of suction, there is one generalized
inflection point inside the compressible boundary layer. Suction creates
.another generalized inflection point near the wall. In Figufe 4.1 we show the
variation of the locations of the generalized inflection points with the level of
the self-similar suction distribution when M_=2.0,45,5.0, and 6.0,
respectively. As the suction level increases, the two generalized inflection
points move closer to each other until they meet and then disappear, as shown
in Figure 4.1. The influence of T__ on the locations of the generalized inflection
points is shown in Figure 4.2. The suction level needed to eliminate the
generalized inflection points when T_ = 62 K° is larger than that needed when
T.=121K° . In Figure 4.3, we show the minimum suction level needed to
eliminate the generalized inflection points as a function of Mach number. This

level increases rapidly as the Mach number increases. Therefore, the suction
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level needed to stabilize the inviscid mechanism increases rapidly as the
Mach number increases. The viscous instability, however, can be gauged by
the displacement thickness. The variation of the displacement thickness with
suction level for different Mach numbers is shown in Figure 4.4. Although the
displacement thickness decreases rapidly with suction, its rate of reduction
decreases as V, increases.

All of the previous results are for the case of self-similar velocity profiles.
An infinite suction velocity at the leading edge of the plate is nheeded to obtain
such profiles. In Figure 4.5, we compare a self-similar suction distribution with
a uniform-suction distribution having the same level at x =1. Using these
suction distributions in the non-similar boundary-layer solver, we obtained the
skin-friction distributions shown in Figure 4.6. It is clear that the self-similar
suction distribution described in Figure 4.5 resuits in a constant shear
coefficient along the plate, thereby providing some confidence in the
non-similar solver. The uniform-suction distribution results in a gradually
increasing shear coefficient, which asymptotes the shear coefficient produced
by the self-similar suction distribution.

After calculating the mean profiles and for certain R, F, and , we solved
Eqgs. (4.30)-(4.36) for the eigenvalue « and the eigenfunctions {,. In this paper,

we present results for both first- and second-mode waves.
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a. First-Mode Waves

The most important feature of the stability of supersonic and hypersonic
boundary layers is the existence of more than one mode of instability. For the
first mode, oblique waves are more unstable than 2D waves. In Figures 4.7
and 4.8, we show the effect of suction on the variation of the growth rate with
wave angle for two Mach numbers. It is clear that suction decreases the
growth rates of 2D and alli 3D waves. Moreover, suction is most effective in
reducing the growth rates of 3D waves having wave angles equal or nearly
equal to that of the most amplified wave. However, suction has a small
influence on the wave angle for which the first mode grows the most. Itis clear
from Figure 4.9 that suction has a stabilizing effect on first-mode waves. It
decreases the growth rates and the range of frequencies receiving
amplification. Suction also slightly shifts the most. amplified frequency to a
higher frequency. Moreover, for a given frequency, suction decreases the
growth rate of first-mode waves at all streamwise locations, as shown in Figure
4.10.

The variation of the maximum growth rate with Mach number for various
levels of suction is shown in Figure 4.11. The wind-tunnel temperature
corresponds to a stagnation temperature of 311 K°. If T_ gets below 50 K° it
is set equal to 50 K°. In the absence of suction, the maximum growth rate
decreases with Mach number. As shown in Figure 4.11, suction is more
effective at low Mach numbers because it is very effective in reducing the

viscous instability, which is dominant at low Mach numbers. However, suction
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is not as effective in stabilizing the inviscid mechanism, which is dominant at
higher Mach numbers, because high levels of suction are needed to eliminate
the generalized inflection point at high Mach numbers. For suction levels
larger than approximately 0.2, the maximum growth rate increases with M__ for
low Mach numbers. For high Mach numbers, however, the maximum growth
rate decreases slightly with M_. This can be attributed to the fact that the
inviscid instability gets more dominant as M_ increases. For low M_ high
levels of suction can eliminate the influence of viscosity, leaving only the
inviscid mechanism, whereas at low levels of suction both the viscous and
inviscid mechanisms continue to coexist. This is the reason why we see
different behaviors for low and high levels of suction at relatively low M_. At
M_, equal or larger than 3.8, Mack found that the viscous instability disappears
for first-mode waves, and hence viscosity is stabilizing, which may explain the
similar behavior for all levels of suction at high Mach numbers. Hence, at high
M_, suction is not as effective in stabilizing first-mode waves.

In Figure 4.12, we show that the influence of the suction level on the
growth rate of first-mode waves at R = 1500, y =60°, F = 11.5x10 ¢ for
M_ =26 and 3.0. The suction levels needed to completely stabilize the flow
at M_=26 and 3.0 are V,=0.7 and 0.9, respectively. In both cases the
suction velocity needed to stabilize the disturbance is slightly larger than the
one needed to eliminate the generalized inflection points. For all the cases
investigated, the growth rate at constant frequency varies approximately

linearly with the suction level. Based on this, one expects that linear

Effect of Suction on the Stahility of Supersonic and Hypersonic Boundary-l.aycrs 55



perturbation methods, such as that of Ref. 12, can be used to predict the
stability of flows over suction strips.

Next we investigate the effect of suction on the eigenfunctions of first-mode
waves. In Figures 4.13a and 4.13b, we show that, whereas in the absence of
suction the temperature disturbance has a peak near the generalized inflection
point (GIP), the u disturbance has a peak at the upper generalized inflection
point when V, = 0.3 . The lower generalized inflection point does not create
another peak. As the suction velocity increases, the peak of the u disturbance
moves toward the wall following the upper inflection point. At V, = 0.66 the
generalized inflection point is eliminated but Figure 4.13d shows that the
peaks do not vanish at this level of suction. Furthermore, Figure 4.12 shows
that the flow is still slightly unstable at this level of suction in spite of the fact
that the source of the inviscid instability is eliminated.

The previous calculations are for self-similar boundary layers. In Figure
4.14, we show the variation of the growth rate with streamwise location for two
levels of uniform-suction distribution. Suction decreases the growth rates at
all iocations. Furthermore, it increases the critical Reynolds number and
decreases the Reynolds number corresponding to Branch Il of the neutral

stability curve.
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b. Second-Mode Waves

At Mach numbers above 3.0, a second mode of instability emerges. As the
Mach number increases this mode becomes more unstable than the first
mode. Malik® showed that the maximum growth rate of second-mode waves
at M_ =45 and R = 1500 decreases with suction and the frequency of the
most amplified wave is considerably shifted to the right. Figure 4.15 shows a
set of resuits similar to those of Malik. It is clear that for some frequencies
suction increases the growth rate. Keeping F constant, we show in Figure 4.16
the variation of the growth rate with suction velocity at M_=6.0. As the
suction level increases from zero, the growth rate increases until it reaches a
maximum at V,=0.22. As V, increases further, the growth rate decreases
monotonically. The maximum growth rate, however, monotonically decreases
with suction velocity as shown in Figure 4.17. In fact the maximum growth rate
decreases approximately linearly with suction velocity. The corresponding
frequencies are plotted in Figure 4.18. They increase approximately linearly
with suction velocity when V,>0.1.

Next, we plot in Figure 4.19 the variation of the growth rate with wave
angle for V, = 0 and 0.1. Even in the case of suction the most unstable second
mode is still two-dimensional. The second mode is stabilized for all wave
angles by suction.

In Figure 4.20, we show the variation of the maximum growth rate with
M_ for different levels of suction. The Mach number at which unstable

second-mode waves exist increases with suction level. Without suction, this
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Mach number is M_ = 3.8, in agreement with Mack®% . With suction, this
Mach number increases to M_ =4.0 when V,=0.1 and to M_ = 4.2 when
» =03 . In addition to shifting the Mach number at which second-mode
waves become unstable, suction is very effective in decreasing the maximum
growth rate of second-mode waves for.lower supersonic and hypersonic Mach
numbers, Mach numbers below 5.5. For example, at M_ = 5.0, the growth rate
drops from 0.0043 to 0.0034 when V,=0.1 and to 0.0025 when V, =0.3 ,
respectively. However, at higher Mach numbers suction loses its
effectiveness. For example, at M_ = 7.0 the maximum growth rate drops from
0.0025 to 0.0024 when V, =0.1 and to 0.00216 when V, =0.3. Figure 4.21
shows the effect of suction on the variation of the frequency corresponding to
the maximum growth rate with Mach number for the conditions in Figure 4.20.
It is obvious that these frequencies increase by suction at all Mach numbers.
In Figures 4.22a-4.22c, we show the effect of suction on the temperature
disturbance; i.e., {; . In the absence of suction, Figure 4.22a shows that the
temperature disturbance has four peaks: the upper two peaks lie on both sides
of the generalized inflection point (GIP). When V, = 0.3 the second of these
peaks moves downward to the new location of the upper generalized inflection
point, as shown in Figure 4.22b. However, it seems that the lower generalized
inflection point does not affect the locations of the peaks. When V, increases
to 0.6, Figure 4.22c shows that the upper generalized inflection point
considerably moves down and the second peak from the top increases and
shifts downward with this generalized inflection point. The third peak from the

top is nearly damped out.
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Next we investigate the effect of uniform-suction distributions on
second-mode waves. Figure 23 shows the variation of the growth rate with
streamwise location for different suction levels when M_ = 4.5. The resulting
curves shift considerably to the right as the suction level increases, resuiting
in a large increase in the critical Reynolds number. The growth rates
corresponding to the self-similar suction distribution shown in Figure 4.5 are
also plotted in Figure 4.23. Comparing the latter growth rates with the growth
rates corresponding to a constant suction of 1.5x10-%, we note that the
self-similar suction distribution is more stabilizing for low R where the suction
level is large, and less stabilizing for high R where the suction level is small.
Figure 24 shows that suction considerably reduces the N factors. Moreover,
the start of the growth of disturbances moves downstream as the suction level
increases. The effect of uniform-suction distributions on the variation of the
growth rate of second-mode waves with frequency is shown in Figure 4.25.
The band of unstable frequencies shifts to the right, as in the self-similar case.
The results in Figures 4.23-4.25, however, are for M_=4.5. At this Mach
number suction is effective in stabilizing second-mode waves. On the other
hand, suction loses its effectiveness for higher Mach numbers. For example,
when M__ = 6.0, Figure 4. 26 shows the variation of the growth rate along the
plate for different levels of uniform-suction distributions. Whereas a
v, = 2x10-4 reduces the maximum growth rate by 50% when M_ =45, it
reduces the maximum growth rate by only 8% when M_ = 6.0 . Moreover, the
peak growth rate widens up as the suction level increases, resulting in a larger

area underneath the curve.
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To find the effect of suction on the N factor we search for the most
dangerous frequency, the frequency that results in an N = 9.0 in the shortest
distance. In Figure 4.27, we show the variation of the N-factor with streamwise
distance for several frequencies. It seems that F =30x10% is the most
dangerous frequency at M_ =6.0. At this relatively low frequency, the first
and second modes merge with each other, as shown in Figure 4.28. The
growth rates of first-mode waves, however, are very small at this Mach
number and suction has no significant effect on them. As shown in Figure 4.28
suction is not very effective in reducing the growth rates of second-mode
waves. More importantly, it is clear from Figure 4.29 that suction is not
effective in reducing the overall N factor of the disturbance. The effect of
suction is restricted to slightly delaying the growth of the disturbance. In the
absence of suction, the N factor reaches 9.0 at R = 5420, while for the cases
of v, = 0.5x10°% 1.0x10-¢, and 1.5x10-*, the N factor reaches 9 at R = 5530,
5660, and 5790, respectively. I transition is to occur when N = 9, then a
constant suction velocity of 0.5x104, 1.0x10-* and 1.5x10 * will delay transition
by only 4%, 9%, and 14 %, respectively. At M_ = 7.0, Figure 4.30 shows that
the effectiveness of suction significantly decreases. When V, = 0.4, the
maximum growth rate decreases by only 20%. When V,, = 0.8 , the maximum
growth rate decreases by 44%.

From the previous results it is obvious that the coexistence of inviscid and
viscous instability mechanisms significantly alters the effect of suction on the
stability of supersonic and hypersonic boundary layers. If a suction level was

enough to stabilize the boundary layer at a certain Mach number, it is not safe
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to assume that the same level is enough to stabilize the flow at higher Mach
numbers. [n general, suction loses its effectiveness in reducing the growth
rates of second-mode waves at high Mach numbers. The present results also
show that suction has different effects on first- and second-mode waves,

especially when a single wave with a fixed frequency is being considered.
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Chapter 5

Summary, Conclusions, and Recommendations

We present an analysis of the effects of cooling and suction on the stability
of subsonic flows over two-dimensional roughness elements and the effect of
suction on the stability of supersonic and hypersonic flows over flat plates, all
within the framework of a quasi-paraliel, compressible, linear, spatial stability
theory. Included in the theory are disturbances due to velocity, pressure,
temperature, and transport properties. The mean flows over the
two-dimensional roughness elements are calculated using the interacting
boundary-layer equations while the flow over the flat plate is calculated by
solving either the non-similar or the self-similar boundary-layer equations,
depending on the distribution of the suction velocity.

The eigenvalue problem arising from the linearized disturbance equations
with the appropriate boundary conditions are solved numerically using a

variable-step finite-difference subroutine that solves the two-point
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boundary-value problem. For three-dimensional disturbances this subroutine
was coupled with a Newton-Raphson iteration scheme to improve
convergence. The non-similar boundary-layer equations are solved using
central differences in the normal direction and three-points backward
differences in the streamwise direction. Results are presented for various

suction and temperature distributions.

5.1. Conclusions

A main conclusion that can be drawn from the numerical results is that the
coexisting of more than one instability mechanism can significantly complicate
the effects of suction and cooling on the stability of boundary-layer flows. In

addition, the following conclusions can be drawn:

5.1.1. Influence of Cooling on 2-D Humps and Backward-Facing Steps

(a) While wall cooling slightly reduces the separation bubble on the side of a
step or a hump, suction considerably reduces the separation region, especially

when a strip with high suction velocity is placed across the separation bubble.
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(b) Cooling stabilizes the flow in the attached region, whereas it destabilizes
the flow in the separated region due to the movement of the generalized

inflection point toward the wall and the increase in the negative flow.

(c) Since the reduction in the separation bubble by cooling is small, the
variation of the N factor with wall temperature has a relative minimum. Hence,

there exists an optimum wall temperature at which cooling is most effective.

(d) Cooling the wall everywhere except in the separation region has a minor

effect on the growth rates and the N factor.

(e) Increasing the Mach number results in a decrease in the optimum wall

temperature and in a slight reduction in the effectiveness of cooling.

5.1.2. Influence of Suction on the Flow over 2-D Backward-Facing Steps

(a) While suction reduces vorticity in the attached regions, it increases vorticity
in the detached regions. This combined with the movement of the generalized
inflection point toward the wall results in a destabilizing effect in the

separation region. The attached flow, however, is stabilized by suction.
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(b) Due to the large reduction in the separation bubble by suction, the overall

N factor decreases monotonically as the suction level increases.

(c) For the same total flow rate, properly distributed suction strips are more

effective in stabilizing the flow than a continuous-suction distribution.

(d) For the subsonic flows investigated, both suction and cooling slightly alter

the most dangerous frequency.

5.1.3. Influence of Suction on Supersonic and Hypersonic Flow

(a) The coexistence of inviscid and viscous instability mechanisms complicates
the effect of suction on the stability of supersonic and hypersonic boundary
layers over flat plates. Suction is more effective in stabilizing the viscous
mechanism.  Suction loses its effectiveness in stabilizing the inviscid

mechanism as the Mach number increases.

(b) For low suction levels the maximum growth rate of first-mode waves
decreases as the Mach number increases, whereas for high suction levels the
maximum growth rate increases with M_ for low Mach numbers, and

decreases as M_ increases for high Mach numbers. In general, the stabilizing
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effect of suction on first-mode waves decreases significantly as the Mach

number increases.

(c) Suction slightly alters the wave angles corresponding to the maximum
growth rates. Moreover, suction stabilizes first-mode waves for all wave

angles.

(d) Suction stabilizes first-mode waves at all frequencies and Reynolds
numbers. Nevertheless, the frequency and the Reynolds number
corresponding to the maximum growth rate increase slightly as suction

increases.

(e) The frequency band corresponding to growing second-mode disturbances
significantly shifts to the right as the suction level increases. A similar trend
is true for the Reynolds numbers corresponding to growing second-mode

waves. This is true for non-similar and self-similar velocity profiles.

() Whereas for relatively low Mach numbers suction is effective in stabilizing
second-mode waves, it looses its effectiveness for high Mach numbers. The
reduction in the N factor becomes insignificant for Mach numbers greater than
6.0 and the effect of suction is restricted to slightly delaying the growth of

disturbances.
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(g) The most growing second mode continues to two-dimensional when suction

is applied.

5.2. Recommendations

The results obtained throughout Chapters 2 , 3, and 4 point to the
danger of extrapolation of controls designed for the case of one instability
mechanism to the case with more than one instability mechanism.

More specific recommendations for future work are listed below.

5.2.1. Flows Over Roughness Elements

- investigation of the effect of suction and cooling on the receptivity and
Goertler, and secondary instabilities.

- extension of the present analysis to supersonic flows.

- investigation of the effect of suction and cooling on other separated and
inflectional flows.

- investigation of the effect of suction and cooling on the stability of flows
over roughness elements on swept wings where the cross-flow instability plays
an important role.

- conduction of detailed experiments in order to validate the present

resuits.
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5.2.2. Smooth Surfaces

- investigation of the influence of suction strips and their optimum
distributions.

- taking into consideration real gas effects, flow dissociation, etc.

- performance of detailed experiments to validate the theoretical resulits.

- investigation of the effects of suction on supersonic flows over swept
wings.

- analysis of the combined effects of suction and heat transfer on the

stability of flows over two-dimensional flows and swept-back wings.
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Figure 2.1. Effect of wall cooling on the shear coefficient for a flow over a
backward-facing step when the step height = 0.003, step slope = - 4.34695,
M. = 05 Re = 1.0x10% and Pr = 0.72. __T./T,, = 1.0, e TITy =

0.8, and---T,/T,, =055,
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Figure 2.2. Effect of wall cooling on the bressure coefficients for a flow over a
backward-facing step when the step height = 0.003, step slope = -4.34695,
M, =035, Re=10x10% and Pr = 0.72: __ T,/T,,=1.0, __ _T./T., =08,
and---T,/T,,=0.55.
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Figure 2.5. Variation of the inflection point across the separation region for adiabatic

and
step slope = —4.34695 , M_ = 0.5, Re = 1.0x10%, and Pr = 0.72: - - -

T./T.,=08 and __ T./T., = 1.0.

cooled-wall

conditions when the step height = 0.003,
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Figure 2.6. The influence of the frequency on the N factor when T.=0.55T,
height = 0.003, step slope = - 434965, M_ = 0.5, Rg = 10x10-¢ ,
— F=40x106, - —-F= 60x10-¢, and — ___
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Figure 2.7. The growth rates for the flow over cooled and adiabatic walls when the
step height = 0.003, step slope = - 4.34965, M_ = 0.5, Re = 10x10¢, Pr =
0.72, and F = 50x10-* TJTe=1.0and __ T/ T, = 0.55.
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Figure 2.8. Variation of the growth rates with wall temperature: step height = 0.003,
step slope = - 4.34695, M_ = 0.5, Re = 1.0x10%, Pr = 0.72, and F =

50x10-¢.
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Figure 2.9. Variation of the amplification factor with wall temperature: step height =
0.003, step slope = - 4.34695, M_ = 0.5, Re = 1.0x10%, Pr = 0.72, and F

= 50x10-¢,
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Figure 2.10. Variation of the growth rates with wall temperature: step height = 0.003,
step slope = - 434695, M_, = 0.8, Re = 1.0x10% Pr = 072, and F =

S50x10-*,
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Figure 2.11. Variation of the amplification factor with wall temperature: step height
= 0.003, step slope = - 4.34695, M_ = 0.8, Re = 1.0x10%, Pr 0.72, and
F = 50x10-¢.
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Figure 2.12. Variation of the growth rates with wall temperature for a cubic hump:
hump height = 0.003, x,=0.2, M_,=0.8 Re=1.0x10% Pr=0.72, and

F = 50x10-*.
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Figure 2.13. Variation of the amplification factor with wall t
hump: hump height
and F = 50x10-s,

emperature for a cubic
= 0.003, x, = 0.2, M_ = 0.8, Re = 1.0x10%, Pr = 0.72,
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Figure 2.14. Effect of an adiabatic separation region on the amplification factor: step
height = 0.003, step slope = -4.34695, M_ = 0.5,Re = 1.0x10%, Pr = .72,
and F = 50x10-% __ adiabatic wall, _ TJTw = 08, - - - cooled

everywhere except in separation region.
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Figure 2.15. Effect of an adiabatic separation region on the growth rates: step height
= 0.003, step slope = - 4.34695, M_,
F = 50x10-*: __ adiabatic wall, -
except in separation region.

= 0.5, Re = 1.0x10%, Pr = 0.72, and
T./Tyy=0.8, - - - cooled everywhere
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Figure 2.16. Effect of step location on the amplification factor: step height = 0,003,

step siope = - 434695, M_, = 0.5, Re = 1.0x10%, Pr = 0.72, and F =
50x10-¢,
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Figure 2.17. Effect of hump location on the amplification factor: hump height = 0.003,
hump width = 0.2, M_ = 0.5, Re = 1.0x10% Pr = 0.72, and F = 50x10-¢ .
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Figure 3.1. Effect of wall suction on the shear coefficient for a flow over a

backward-facing step when the step height = 0.003, step slope = - 4,35,
M, = 0.8, Re = 1.0x10% and Pr =

072: __v,=0.0,---v, =30x10",
and __.._ v,=5.10x10~.
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Figure 3.2. Effect of wall suction on the pressure coefficients for a flow over a
backward-facing step when the step height = 0.003, step siope = -4.35,
M, =08, Re=1.0x10%, and Pr = 0.72: ___ v, =0.0, - - - v, = 3.0x10~, and
.V, =5.0x10-.
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Figure 3.5. Influence of suction on the first derivative of the velocity profile at x = 0.8
when the step height = 0.003, step slope = - 4.35, M., = 0.8, Re = 1.0x10¢,
and Pr = 072: __.__ v,=0.0and ---v, =5.0x10~.
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Figure 3.6. influence of suction on the first derivative of the velocity profile at x = 1.04
when the step height = 0.003, step siope = - 4.35, M_ = 0.8, Re = 1.0x10¢,
andPr=0.72: __._ _v,=00and ---v, =5.0x10"
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Figure 3.7. Effect of a concentrated suction strip on the shear coefficient. The strip
starts at x = 0.9 and ends at x = 1.3, v, = 1.0x10-?, step height = 0.003,
step slope = - 4.35, M_, = 0.8, Re = 1.0x10-%, Pr = 0.72: ___ without suction
and - - - with suction.
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Figure 3.8. Effect of a concentrated suction strip on the shear coefficient. The strip
starts at x = 0.9 and ends at x = 1.3, v, = 1.0x10-3, step height = 0.002,
step slope = - 4,35, M_ = 0.8, Re = 10x10-%, Pr = 0.72: ___ without suction
and - - - with suction.
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Figure 3.9. The growth rates for the flow over steps with and without continuous

suction when the step height = 0.003, step slope

= 1.0x10%, Pr = 072, and F = 50x10-%:
v, = 5.0x104 .

- 435, M, = 0.8, Re
— v,=00 and __
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Figure 3.10. The variation of the growth rates. with streamwise location for different
continuous suction levels: step height = 0.003, step slope = - 435 M_
= 0.8, Re = 1.0x10%, Pr = 0.72, and F = 50x10-%.



Figure 3.11. The variation of the amplification factor with streamwise location for
different continuous suction levels: step height = 0.003, step slope =
-4.35, M_, = 0.8, Re = 1.0x10%, Pr = 0.72, and F = 50x10-*.

105



7.5 T

5.07

- 2,X10% 2.5

0.0F T

st 2 ¢ttt Tttt ¢t ot
600 800 1000 1200

Figure 3.12. The effect of suction strips and continuous suction on the growth rates
for the flow over a step with a height of 0.003, step siope = - 4.35,
M_=0.5 Re=1.0x10% Pr=0.72, and F=50x10"*. The suction strips are
centered at R = 678, 907, and 1097 with a length of 0.2 L* each. In the case
of strips v, = 233 x 10~ and in the case of continuous suction
v, = 1.0x10~* ___ no suction, __. continubus suction, and - - - suction

strips.
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Figure 3.13. Comparison of the variation of the amplification factor with streamwise
location for the cases of continuous suction, suction strips, and no suction.

Flow conditions are the same as in Figure 12: .. no suction,
continuous suction, and - - - suction strips.
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Figure 3.14. Effect of the concentrated strip suction described in Figure 7 on the
amplification factor. Flow conditions are the same as in Figure 7,

F = 50x10-% __..__ no suction and ___ suction strip.
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Figure 3.15. Effect of the concentrated strip suction described in Figure 8 on the
amplification factor. Flow conditions are the same as in Figure 8,
F =50x10-% _..__ no suction and ___ suction strip.

109



101

61

Figure 3.16. The variation of the amplification factor with streamwise location for
flows over steps with continuous wall suction for different frequencies
when the step height = 0.003, step slope = - 435 M_ = 0.5, Re =
1.0x10¢%, V, = 5x10~¢, and Pr = 0.72: __..__F=40x10"*, ___ F=50x10"%, and
--- F=60x10-*,
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Figure 4.1. Variation of the location of the generalized inflection points with
suction level for several Mach numbers for Pr = 0.72 and

wind-tunnel temperature: ___ lower inflection point and - — — upper
infection point.
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Figure 4. 2. Effect of 7_ on the variation of the location of the generalized
inflection points with suction level when M_ = 4.5and Pr = 0.70: __

lower inflection point and — — — upper infection point.
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Figure 4. 3. The suction velocity needed to eliminate the generalized inflection

points as a function of Mach number for wind-tunnel temperature and
Pr = 0.72.
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Figure 4. 4. Variation of the displacement thickness with suction velocity for
wind-tunnel temperature and Pr = 0.72: ___M_=45,---M_=6.0,
and M, =T.0.
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Figure 4. 5. Comparison of the suction distribution which resuits in a
self-similar mean profile with a uniform-suction distribution for
M,.=45,T_ =121K° Pr=0.70, and Re = 2.5x10%. ____ self-similar
distribution and - - - uniform distribution.
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Figure 4. 6. Comparison of the shear coefficients obtained using two suction
distributions when M_=4.5,T, =121K°, Pr = 0.70, and Re
2.5x10%: ___ v, = 1.5x10*and ---V,=0.1.
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Figure 4. 7. Effect of suction on the variation of the growth rate of first-mode
waves with wave angle for M_ = 2.1, R = 1500, T_ = 178K° ,F =

13.550x10-%, and Pr = 072: __. V, = 00 and ---V, = 0.3.
Self-similar boundary layer.
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Figure 4. 8. Effect of suction on the variation of the growth rate of first-mode
waves with wave angle for M_ = 45, R = 1500, T_ =62K°, F =
20.0x10-%, and Pr = 0.72, ___V, = 0.0and ---V, = 0.3. Self-similar
boundary layer.

118



2.5 v, = 0.0
0.1
2.07
0.2
1.9]
—o, X10°
1.07
0.5]
0.01 -r .
) 10 15 20
FX10°

Figure 4. 9. Effect of suction on the variation of the growth rate of first-mode
waves with frequency for three levels of suction for M, =21R =
1500, 7, = 165K°, y=60° , and Pr = 0.72. Self-similar boundary
layer.
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Figure 4. 10. Effect of suction on the variation of the growth rate with
streamwise location for M_ = 2.1, T_=178K° , F = 13.550x10-¢,
Y =60°, and Pr = 0.72. Self-similar boundary layer.
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Figure 4. 11. Effect of suction on the variation of the maximum growth rate of
first-mode waves with Mach number for R = 1500, Pr = 0.72, and
wind-tunnel temperature. Self-similar boundary layer.
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Figure 4. 12. Effect of suction on the growth rate of first-mode waves when
T.=123K° ,F = 11.50x10-6, R = 1500, Pr = 0.72, and ¢ = 60° :
__M_=26and---M_=3.0. Self-similar boundary layer.
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Figure 4. 13. Effect of suction on the eigenfunctions of first-mode waves when
M_ = 3.0, T_=123K°,R=1500 , and F = 11.15x10-%; (a) V. =0.0,
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Figure 4.13. Effect of suction on the eigenfunctions of first-mode waves when

M., = 3.0, T,=123K°,R = 1500 , and F = 11.15x10-*: (b)V, = 0.3,
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Figure 4.13. Effect of suction on the eigenfunctions of first-mode waves when
M_ =30 T, =123 K°,R =1500 , and F = 11.15x10"% (c)V,, =05
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Figure 4.13. Effect of suction on the eigenfunctions of first-mode waves when
M. = 3.0, 7_=123K°,R=1500 , and F = 11.15x10% (d)V, = 0 65,
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Figure 4. 14. variation of the growth rate of first-mode waves with streamwise
location for two uniform-suction distributions when M_ =15,
T.=121K°, ¢y =55° and Pr = 0.70: __ v, =00, - - - v, = 1x10-5,
and - V= 1x10"
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Figure 4. 15. Effect of suction on the variation of the growth rate of
second-mode waves with frequency for M_ = 45, 7_ = 70 K°,R =
1500, Pr = 0.72, and ¥ = 0.0° . Seif-similar boundary layer.
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Figure 4. 16. Effect of suction on the growth rate of second-mode waves for
M, =60, T, =52K°,F = 93.550x10-¢, R = 1500, Pr = 0.72, and
Y= 0.0°. Self-similar boundary layer.
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Figure 4. 17. Variation of the maximum growth rate of second-mode waves
with suction velocity for M_ = 5.0, T. =59K°,R = 1500, Pr = 0.72,
and Y= 0.0°. Self-similar boundary layer.
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Figure 4. 18. Variation of the frequencies corresponding to the maximum growth
rate with suction velocity for M_ = 5.0, T_ = 58 K°, R = 1500, Pr
= 0.72, and Yy = 0.0° . Self-similar boundary layer.
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Figure 4. 19. Effect of suction on the variation of the growth rate of
second-mode waves with wave angle for M_ = 4.5, T_ = 121 K°, R
= 1500, Pr = 0.72, and F = 153.33x10.-%: __V, = 0.0and _.._V,
= 0.1. Self-similar boundary layer.



Figure 4. 20. Effect of suction on the variation of the maximum growth rate of
second-mode waves with Mach number for wind-tunnel temperature,
R = 1500, y = 0.0°, and Pr = 0.72: __V, =00, -- -V, = 0.1, and

vV, = 0.3. Self-similar boundary layer.
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Figure 4. 21. Effect of suction on the variation of the frequencies corresponding
to the maximum growth rates with Mach number for wind-tunnel
temperature, R = 1500, y = 0.0° and Pr = 0.72: __ V, = 0.0,---
V, =0.1,and _ __V, = 03. Self-similar boundary layer.
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Figure 4. 22. Effect of suction on the eigenfunctions of the temperature
disturbance for M_=6.0, Pr = 072, T, = 50K°, F = 66.0x10-%, R =
1500: (a) V., =0.0
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Figure 4.22. Effect of suction on the eigenfunctions of the temperature
disturbance for M_ =6.0, Pr = 0.72, T_ =50 K°, F = 66.0x10-%, R =
1500: (b) V,, = 0.3..
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Figure 4.22. Effect of suction on the eigenfunctions of the temperature
disturbance for M_ =6.0, Pr = 0.72, T_ =50 K", F = 66.0x10~%, R =
1500: (c) v, = 0.6.
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Figure 4. 23. Variation of the growth rate of second-mode waves with Reynolds
number for different levels of constant suction for M_ =45, Pr =
0.70, T_ =121 and F = 153.33x10-%: ___ non-similar boundary layer

and - - - self-similar boundary layer.
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Figure 4. 24. Influence of suction on the variation of the N factor with
streamwise location; same conditions as in Figure 4.23,
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Figure 4. 25. Influence of suction on the variation of the growth rate of
second-mode waves with frequency for R = 1500, M_ = 4.5, Pr =
0.70, T, = 121K°. Non-similar boundary layer.
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Figure 4. 26. Influence of suction on the variation of the growth rate of
second-mode waves with Reynolds number for M_=6.0, Pr = 0.70,
T.,=62K°, R = 1500, and F = 66x10-%. Non-similar boundary layer.
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Figure 4. 27, Variation of the N factor with streamwise distance for several
frequencies when M_=6.0, Pr =

0.70, T_ = 62K® and no suction is
applied.
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Figure 4. 28. Effect of constant suction on the variation of the growth rate with
streamwise distance for the most dangerous frequency;
F =30x10-%, M_ = 6.0, and Pr = 0.70. Non-similar boundary layer.
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Figure 4. 29. Influence of uniform- suction distributions on the variation of the N
factor with streamwise distance for the same conditions in Figure 4.28.

Non-similar boundary layer.
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Figure 4. 30. Influence of self-similar suction distributions on the variation of
the growth rate of second-mode waves with frequency for M_ = 7.0,

Pr = 0.72, T_ =50K°, R = 1500, and Y =0. Self-similar boundary
layer.
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