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(ABSTRACT)

An investigation is conducted into the effect of cooling and suction on the

stability of subsonic flows over two-dimensional roughness elements and

° supersonic flows over flat plates. First, the effect of wall cooling on the

two—dimensionaI linear stability of subsonic flows over two—dimensiona|

surface imperfections is investigated. Results are presented for flows over

smooth humps and backward—facing steps with Mach numbers up to 0.8. The

results show that, whereas cooling decreases the viscous instability, it

increases the shear-layer instability and hence it increases the growth rates in

the separation region. The coexistence of more than one instability

mechanism makes a certain degree of wall cooling most effective. For the

Mach numbers 0.5 and 0.8, the optimum wall temperatures are about 80% and

60% of the adiabatic wall temperature, respectively. Increasing the Mach

number decreases the effectiveness of cooling slightly and reduces the

optimum wall temperature.

Second, the effect of suction on the stability of compressible flows over

backward-facing steps is investigated. Mach numbers up to 0.8 are



considered. As expected, suction considerably reduces the separation region.

The results show that continuous suction stabilizes the flow outside the

separation bubble, as expected, but it destabilizes the flow inside it.

Nevertheless, the overall N factor decreases as the suction level increases.

This is due to the considerable reduction in the separation bubble. For the

same suction flow rate, properly distributed suction strips are more effective

in stabilizing the flow than continuous-suction distributions. Furthermore, the

size of the separation bubble, and hence its effect on the instability, can be

considerably reduced by placing strips with high suction velocities in the

separation region.

Third, the effect of suction on the stability of supersonic and hypersonic

boundary layers is investigated. Calculations are performed for non-similar

and self-similar boundary layers. The variation of the maximum growth rate

with Mach number at low levels of suction is different from that at high levels

of suction. This is due to the coexistence of viscous and inviscid instability

mechanisms in supersonic and hypersonic boundary layers. Suction is more

effective in stabilizing the viscous instability, and hence it is more effective at

low Mach numbers. Although suction decreases the maximum growth rate of

second-mode waves, small levels of suction increase the growth rates of

disturbances having certain frequencies. On the other hand, first~mode waves

are stabilized by suction at all frequencies. Constant—suction distributions

considerably move the critical Reynolds numbers of second-mode waves to

higher values while the critical Reynolds numbers of first-mode waves are not

sensitive to suction.
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Chapter 1

Introduction

The subiect of boundary·layer control was pursued since the beginning of

this century. In fact some of Prandtl’s early papers described several

experiments in which the boundary layer was controlled‘. Out of the same

stream a subiect termed Iaminar flow control (LFC) emerged in the sixties2-°.

While boundary-layer control aims to affect the whole flow in a desired

direction by influencing the structure of the boundary layer, LFC is concerned

with malntaining Iaminar flow over a body or surface for the longest distance

possible by delaying the transition to turbulence. A flight demonstration

program, the X—21 program" which was terminated in the sixties, provided

preliminary information about LFC. Later in the seventies and due to the

energy crisis more emphasis was placed on LFC, especially since the

turbulent skin friction is the order of 50% of the total cruise dragö of some

aircraft. The portion of the turbulent friction drag gets higher for other

inttodnotaon 1



hydrodynamic applications. For example, for a vehicle having a moderate

Reynolds number, application of Iaminar flow control provides a lucrative

increase in fuel efficiency". As the time passed by, the prospect of making LFC

practical have increased because of many factors that include production of

advanced high strength materials, modern fabrication and manufacturing

techniques, and super-critical airfoilsß . For attached flows, Iaminar flow

control can be obtained by one or a combination of the following methods:

suction, heating in water, cooling in air, favorable pressure gradients in

two-dimensional or axisymmetric flows, and convex curvature. Good reviews

of these techniques and their applications can be found in Refs. 7 and 8. These

techniques are also used in the area of boundary-layer control.

To efficiently apply LFC one needs to understand how transition occurs.

Experiments performed on flat plates identified one possible route for

transition from Iaminar flow into a fully developed turbulent flow'. First,

two-dimensional Tollmien-Schlichting (T-S) waves grow downstream. Second,

three-dimensional unstable waves and vortices develop in the flow. Third,

secondary instabilities take place, resulting in either spikes or low-frequency

modulations. Finally, turbulent spots form. These spots then get closer to

each other, forming a fully developed turbulent boundary layer. Although

many characteristics of the second stage can be explained by the secondary

instability theory°·'°, the first stage is the only one that is fully understood. The

linear stability theory can accurately predict the shape and the growth rate of

instability waves. More importantly the linear theory, and especially the

non—parallel theory" , can accurately predict the critical locations where these
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waves first become unstable. The development of the linear theory promoted

theoretical investigations into LFC methods.

The linear theory gained a big boost when augmented by the e^'

method‘2·". Although this method does not take into consideration the initial

amplitude of the disturbance, comparing linear calculations with experimental

measurements made in low disturbance wind tunnels showed that transition

locations can be correlated with the locations where the logarithmic

amplification of T-S waves reaches a certain value N; therefore it is called the

e" method. For different instability mechanisms, the N factor is found to be in

the range between 7.0 and 11.0'2"°.

Most of the theoretical LFC investigations studied flows with single

instability mechanism, mainly the viscous instability of T-S waves. However,

most of flows with practical interest have more than one mechanism of

instability. Even if the linear theory is used, these mechanisms might interact

in a nonlinear fashion through the mean flow. Thus the effect of their

coexistence is not merely an algebraic sum of their separate effects. Here, we

investigate LFC techniques for flows with more than one mechanism of

instability.

A problem that is rich with instability mechanisms is the flow over

surface imperfections‘5·'°. The mechanisms by which two-dlmensional (2-D)

roughness elements cause transition include amplification of T-S waves,

Kelvin-Hemholtz instability ( for separated flows ), amplification of cross-flow

vorticity, Goertler instability, and enhancement of the receptivity of freestream

turbulence and acoustic disturbances". Nayfeh and Al-Maaitah‘” studied the

Introduction 3



subharmonic interaction between the Goertler vortices and the T-S waves and

found it to have a small effect on the T-S wave. MaIik*°, however, found that

higher-order interactions can considerably modify the growth rates of T-S

waves. Nayfeh et al *5 investigated the stability of flows over 2-D bulges. They

accounted for T-S and shear-layer instabilities. They found that experimentally

determined transition locations can be correlated with an N factor in the range

7.4-10.0.

The unavoidable existence of these imperfections demands investigations

into the control of flows around them. ln Chapters 2 and 3 we use the e^'

method To gage the effectiveness of wall cooling and suction in controlling

flows around 2-D humps and backward-facing steps. We demonstrate in

Chapter 2 how the inviscid instability turns cooling into a destabilizing

mechanism for the detached flow. Moreover, we show that cooling beyond an

optimum level results in increasing the overall N factor.

In Chapter 3 we investigate the effect of suction on the stability of

subsonic flows over backward-facing steps. We find that properly distributed

suction strips stabilize the flow more than continuous-suction distributions

with the same total flow rate. Moreover, we show that unlike cooling,

increasing suction monotonically decreases the maximum N factor. This is due

to the significant reduction in the separation bubble with suction.

ln Chapter 4, we consider the effect of suction on the compressible

stability of supersonic and hypersonic boundary layers. While the inviscid

instability in the separation region is due to the reversed flow, the inviscid

instability of the supersonic boundary layer is due to the existence of a
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generalized inflection point. The results show that suction Ioses its

effectiveness at high Mach numbers. Moreover, we show that high and low

levels of suction have different effects on the maximum growth rate of

first-mode waves. Two suction distributions are investigated: a spatially

varying distribution that results in a self-similar boundary layer and a

uniform-suction distribution that results in a non-similar boundary layer. The

mean flow is calculated using self-similar and non-similar compressible

b0undary—layer equations.

Chapter 5 contains a summary of the results and recommendations for

future research.
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Chapter 2

Effect of Wall Cooling on the Stability of

Compressible Subsonic Flows Over Smooth Humps

and Backward-Facing Steps

2.1. Introduction

Due to the proven achievability of Natural Laminar Flow2° (NLF), there is

an increasing interest in its use for the design of high performance aircraft.

The substantial drag reduction with NLF has promoted more analyses of ways

to achieve and maintain NLF on airfoils and other aerodynamic geometries.

The maintenance of NLF is critically sensitive to the location of transition,

which is strongly affected by surface imperfections. Since many of these

EfTcct of Wall Cooling on the Stability of Compressible Subsonic Flows Over Smooth llumps and
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imperlections cannot be avoided by modern manufacturing techniques"·”, a

guide is needed for their allowable sizes and methods that should be used to

control their effect on NLF.

There are some empirically based criteria in the |iterature"·2‘ for prediction

of the transition of flows around imperfections. But these criteria are for

special cases and geometries, and they do not explain the instability

mechanisms enhanced by the imperfections or the physics of ways to control

them. Bestek et al” solved the unsteady Navier-Stokes equations using

finite-differences; they concluded that the unsteadiness of the separated flow

can be regarded as a phenomenon governed by the hydrodynamic inslability.

Their calculations show that Tollmien-Schlichting waves considerably amplify

once the separation is enhanced in agreement with the results of Nayfeh

et al‘5 . Burnel et al2° and Gougat and Martin" experimentally investigated the

flow over 2~D imperfections. Their measurements of the amplitied

disturbances show that they damp down in the region of favorable pressure

gradients. A similar trend is seen in the calculations of Nayfeh et al‘5.

Recently, the effect of compressibility on the achievability of NLF has

received more attention for n0n—Iifting surfaces. High subsonic and supersonic

Mach—number flows develop density gradients across the boundary layer,

which provide additional damping to 2-D and axisymmetric T-S waves. For

certain geometries this advantage can be offset by the increase in the adverse

pressure gradients. Viigen et al"’ showed that increasing the freestream Mach

number has a stabilizing effect on subsonic Iaminar boundary layers over

Ifgvgäiligxeinn thc Stuhility of (Tomprcssihlc Suhsonic Iilows Ovcr Smooth Ilumps anal 7



fuselages. Their Mach number varied from low subsonic to 0.8. Hastings

et al2° reported that NLF extended as far as 37% on a NLF fairing installed on

a turbo-fan nozzle.

ln spite of the previous investigations more understanding of the physics

of the instability of such flows and ways to control them are still needed,

especially for compressible flows. The two most common ways for laminar

flow control are wall cooling in air (or heating in water) and wall suction. Wall

cooling stabilizes incompressible flows over flat plates in air and destabilizes

them in water°°“°° . Mack3" and Malik35 found that for compressible flows, wall

cooling stabilizes first—mode waves but destabilizes second-mode waves. The

question arises on how does wall cooling affect flows around surface

imperfections, and whether these flows can be stabilized by this technique,

especially, since more than one instability mechanism coexist. The purpose

of this work is to study the effect of wall cooling on the subsonic

two-dimensional stability of boundary Iayers around two-dimensional smooth

backward—facing steps and humps.

2.2. Mean Flow

The sizes of the two-dimensional imperfections under consideration are

such that strong viscous-inviscid interactions and small separation bubbles

are unavoidable. The conventional laminar boundary-layer formulation cannot

Effect of woll Cooling on the sloliilily of coninnonnililo solinonio lilows Over Smooth Ilumps and
Backward-Facing Steps 8



predict such flows. An alternative is to solve the full Navier-Stokes equations,

but in such a case the grid should be fine enough so that important flow

characteristics are not smeared by the truncation error and artificial

dissipation. However, due to the large number of cases that need to be

investigated, solving the full Navier-Stokes equations is a very expensive task.

A more economical alternative is to solve the interacting boundary·Iayer (IBL)

equationsgö or the nonlinear triple-deck equations.

We calculated the two-dimensional compressible Iaminar boundary layers

over flat plates with 2-D surface imperfections using the interacting

boundary—layer equations (IBL). The flowfield is assumed to be governed by

the steady compressible boundary-layer equations as followsz

x—momentum equation

öu öu _ dP 1 ö öup" ax+’”’
ay ” dx+Re ay

<”
ay) (Z1)

continuity equation

ölpu) ölpvl——— —l· i— = Ü 2.2
öx öy

( )

energy equation

öx öy °° dx
(2.3)

+1g Kg; +(v—1>M2 gz
RePr öy öy Re °°/J öy

Effect of Wall Cooling on the Stability of Compressihle Suhsonic Flows Over Smooth llumps and
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and equation of state for a perfect gas

N = ßJe (2-4)

where velocities are normalized with respect to the freestream velocity Ull,

Iengths are normalized with respect to L", which is the distance from the

leading edge to the center of the imperfection, and the temperature and the

viscosity and thermal-conductivity coefficients are normalized with respect to

their freestream values Tll, pll , and Klo, respectively. Here,

u' U'Re=—2—r/12-, Pr:-——;i, and)»=4 (2.5)
#00 K00 Cv

where Cl and C; are the gas specific—heat coefficients at constant pressure and

volume, respectively.

The boundary conditions at the wall are

u=v=0and T=TW at y=f[C(x)] (2.6)

where f(C) is the shape of the wall with the imperfections. For the step

r(;) = é h[1 + erf({)], g = Re'3/815/4(x — 1) (2.7)

and for the hump

n(1 —12C2 +16C3), iff g 0.6
f(C) =

0.0, if { > 0.5

Ell'cct of Wall Cooling on the Stahility of Compressible Suhsonic Flows Over Smooth llumps and
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(X - 1)
C — I XW I

where x„, is the width of the hump, erf is the error function, h is the height of

the step or the hump, and Ä = 0.332057. Away from the wall

u—»UeandT—>T€, as y—>«><> (2,8)

where the subscript e stands for edge variables.

Using the Prandtl transposition theorem,

dfz=y-f[C(X)]„w=v—¤—§ (2-9)

we rewrite Eqs. (2.1)-(2.3), (2.6), and (2.8) as

öu öu dp 1 0 (öu———— = - —·— ——·· ·—— ·i .10puöx-lpwöz dX+R6^ öz
yöz (2 )

ö(pW) d(pW)
U 2.11öx + 62 ( I

ÖT ÖT 2 dp 1 6 ( ÖT )—— —— = — 1 M ——— li- —·"” öx +"‘” 62 (V lwu dx+RePr 62 "62 12121
Re °° öz

u=w=0,T=T„, atz;0 (2.13)

U—»Ue and T—»Te as z—>«>o (2.14)

EfTcct of Wall Cooling on the Stahility of Compressihlc Suhsonic Flows ()vcr Smooth Ilumps and —
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Next we use the Levy-Lees variables

X ./Re Ue Z
§(x) =I pepeUedx and 11(x,z) =il pdz (2.15)

0 , /2.f 0

and transform Eqs. (2.10)-(2.12) into

ö öF (2.16)

26Fe + v„ + F = 0 (2.17)

6 6 00 2 UE 2

where

F=i, Q=l— (2.192)Ue T2

„/2C
V=————[./Re pw+r1X„/2§ F] (2.19b)

66-U6-#9

_ P/1 _ Z6 due6- peue and ß0— Ue de (2.196)

The boundary conditions become

F=V=0andQ=Qw at ry=0 (2.20a)

Ell'ect of Wall Cooling on the Stahility of Compressiblc Subsonic Flows Over Smooth llumps and
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F—»1andQ-+1 as 11—>oo (2.20b)

F : F(C0, 11) and Q : Q(C0, 11) at C: CO (2.200)

To account for viscous-inviscid interactions, we need to calculate the

inviscid flow over the displaced surface. This is done through the interaction

law, which relates the edge velocity to the displacement thickness. Using thin

airfoil theory, we obtain

- <><> dl dt Oe cl U Ö dt
· ßn LE x — t [31; LE x — f

where ß : „/1 — M; , the displacement thickness ö is given by

1 «/26 VO
Ö =ll- — F C] 2.22

and Üe is the inviscid surface velocity in the absence of the boundary layer,

which, in the case of small imperfections, can be expressed as

.. <><> df dtUe:1+J—I J-—dt (2.23)
ß" LE X T t

Defining X : f+ Ueö, we rewrite Eq. (2.21) as

Elfect of Wall Cooling on the Stuliility of Compressihlc Suhsonic Flows Over Smooth Ilumps and
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(2.24)
ßn LE X-! ß7z LE X-!

The principal values of the integrals in Eqs. (2.23) and (2.24) are assumed.

Following Davis and Werle°’ and Nayfeh et al'5, we integrate the interaction

law by parts to eliminate the derivative of X. We assume X to vary Iinearly

over a differencing interval to obtain a second-order quadratic expression for

the edge velocity. Furthermore, we calculate the second term in Eq. (2.24)

explicitly from the previous iteration. By assuming the flow far away from the

imperfection to be a Blasius flow, we can write the interaction law as

Vlv + d)ßoi = W (2-25)

For a definition of d> and l/1 and a detailed derivation of Eq. (2.25), we refer the

reader to Ref. 15.

Equations (2.16)-(2.18) and (2.20) are solved simultaneously with Eq. (2.25)

using central differences in the transverse direction and three-point backward

differencing in the streamwise direction.

Ragab, Nayfeh, and Krishna°° compared the IBL calculations with solutions

of the thin-layer compressible Navier-Stokes equations obtained using the

computer code "ARC2D" developed at NASA Ames (Version 1.5 GAMMA). The

results obtained using the IBL agree very well with those obtained using the

Navier-Stokes solver; this is true for both the mean flow3° and the stability3°

characteristics. ln Ref. 38 insulated wall conditions were used. In the present

Effect of woll Cooling on llio sloliilily or cnniniossililo Suhsonic lilows Over sniooln Ilumps nnn
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work, we investigate the influence of continuous— and strip—cooIing

distributions.

2.3. Stability Calculations

In this work, we consider the linear two-dimensional quasi-parallel stability

of the mean flow calculated using the interacting boundary-layer formulation.

The quasi-parallel assumption was justified a posteriori by Nayfeh et aI‘5. They

found that the wavelengths of the disturbances are the order of the

boundary-layer thickness. The calculations are performed for constant specific

heats and Prandtl number. Since we are limiting our calculations to subsonic

flows, this assumption has a small effect on the accuracy of the stability

results. Moreover, the viscosity and thermal-conductivity coefficients p and K

are assumed to be functions of temperature only. Since Pr and C,} are constant

we take K = ii .

To derive the stability equations, we superimpose 2-D disturbances on the

mean flow calculated using the interacting boundary-layer formulation to

obtain the total-flow quantities

5 = 5„.(y) + 5(><.v.0 (2-268)

ü' = u„,(y) + u(x,y,t) (2.26b)

ElTect of Wall Cooling on the Stahility of Compressible Suhsonic Flows Over Smooth Ilumps and
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V = v(x,y,t) (2.26c)

6 = p,„(y) + p(><„y¢) (2269)

E = u,„(y) + #(><„v,¢) (2-266)

E = Ämty) (2260

T = T„,(v) + T(><„v¢) (2269)

where l and p appear in the definition of the bulk-viscosity coefficient k as

- lk -— Ä + 3 p

The subscript m refers to mean-flow quantities and the overbar refers to total

flow quantities. Since E and Ä are functions of temperature only, we have

"drm " mm "°dr„,
"””'m ‘„i——q—/E-T—„l’

(T )T and
——%-”—T— ’

(T )T (227)

Substituting Eqs. (2.26) and (2.27) into the 2-D compressible Navier-Stokes

equations, subtracting the mean-flow quantities, and Iinearizing the resulting

~ equations, we obtain

öp 60 dpm au ayé —··· —l— *— ·l— ·····—· ·l· —— = Ü 2.28a¢+””'ax dy "
"'“(ax ay ( l

EfTcct of Wall Cooling on the Stahility of Comprcssihle Suhsonic Flows Ovcr Smooth Ilumps and
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66 66 dum öpVmg 6:
+””'

62: V dy V)+ 62:
1 ö öu öv

1 6 66 öv dvm“R
öy öy V 62:)+**

dyövöv ÖVP 1 ö öv öu"”'( 6: VV"' 62: )+ öy
“ R öy [mm öy

+’"””'
62:(2.30)

R öx "' öx öy dy

ÖT OT dTm 2 öp öp
"m< 6: (V0 62: V dy V) (V

()'V'·~( 6: (VM 62:
_ #:22 ö2T Jr 62r

+ 1 Qg dT„:
° RPr ÖX2 6},2 RPr öy dy (2-3V)

+ 1 u d2T„:
RPr dy dy R RPr dy?

where

66 öv d¤„2 dvm 2= —— ——— —— ——— 2.32

Äfflm=T,r=2+m, (2.33)
m

Ui
:5° . ° *R=¥’—. 6:,= bi (2.34)

voc Uoc

E1Te•:t of Wall Cooling on the Stability of Compressible Subsonic Flows Over Smooth llumps and
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The linearized equation of state for a perfect gas is

ymfop = pmr + pr„,

or

P = (VMÄOP — P,„T)/Tm (2-35)

The boundary conditions are

u=v=0,T=0 at y=O (2.36)

u, v,p,T—>0 as y—>c>o (2.37)

Since the coefficients in Eqs. (2.28)-(2.31), (2.36), and (2.37) are functions

of y only, we seek normal-mode solutions of the form

q =
q\(y) exp{f'[adx — fmt} + complex coniugate (2.38)

where q stands for (u, v, p, T), a is the wavenumber, and m is the frequency.

For spatial stability analysis a is complex and m is real, whereas for

temporal-stability analysis m is complex and a is real. In this work, we analyze

the spatial stability case and determine m from the non-dimensional frequency

F as m = F/R.

Dropping the hat from q for convenience and defining

Q = m — aum (2.40)

ElTect of Wall Cooling on thc Stability of Compressihle Suhsonic Flows Ovcr Smooth Ilumps and
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we find that 0: is governed by the eigenvalue problem
,’

_ 1

Tigx
Ä

l Äff

0v=—1«u+&@v+l—£Ü (2.41)
T,„ pm T,„ „ } [/

(I _

I «·'

—— ' QR
’

DTDzu

„
-+

IiT
*·· IO!
T

V — I(l —l— m)0:Dv (2.42)

- Du 02 ' Du”’DT

_ DT„, 2,u’„,DT„,
X Dp=-:0:0 Tm zum

'
2 I 2

+
IRQ _a2+r_D Tm +r•um(DTm)

V
Tm /1mTm

DT I (2.43)
. r m Il m+ 1 pm [HC Tm + um DT„,> — 0:Du„,]p

+ [:(0:Du„,)( Hm + Tm Tm DT

DTD2T = — 2() — 1)M§„Pr0um0u + [RPr@l—L”— — 21()» — 1):v1f„Pm0u,„]v

0r 2 "
+ i(v —1)MiPrR é2—p + I;

— iRPrQ—Li + 0:2 — (g_44)
ITI Il'] ITT

02r 0* „' 0r— „',„
T"} — (V -1) mfoprjr}

2u=v=T=0at y=O (2.45)
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u, v,p, T,—>0 as y—»«>o (2.46)

where

_ d _ R . Q _ 1
D—·(E’—·,X0—ü—IV%,8Hdpm-W'-2.4.

Numerical Results

Following the procedure described in Section 2.2, we calculated the mean

flow over a backward-facing step for different wall temperatures. Figure 2.1

shows the influence of cooling on the skin-friction coefficient

zvältr > ar
T

l„=„ (2.46)
TW,/2Reé "7

In the case of cooling, the separation point is almost fixed but the reattachment

point moves slightly upstream, resulting in a slightly smaller separation

bubble. Moreover, cooling causes a larger negative shear prior to

reattachment. The pressure coefficient is plotted in

Figure 2.2. Although cooling does not have much effect on CP far away from

the imperfection, it causes steeper adverse and favorable pressure gradients

around the separation bubble. ln Figure 2.3, we compare the mean profiles

of the flows over adiabatic and cooled walls at several locations. In general,
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cooling results in fuller velocity profiles compared to the adiabatic case. In the

separation region, although the mean-velocity profiles are still fuller away from

the wallfor the cooled wall case, they develop inflection points close to the

wall, and more negative flows develop near reattachment. The corresponding

temperature profiles are shown in Figure 2.4. The combined effect of cooling

on the velocity and temperature profiles is a movement of the generalized

inflection point closer to the wall in the separation region, as shown in Figure

2.5.

For a given mean flow, w, and R, we solved for the eigenvalue oz and the

eigenfunctions, and then determined the amplification factor from

R
N = — 211,dR (2.49)

Ro

where Ro corresponds to Branch I of the neutral stability curve and oz, is the

imaginary part of oz . The eigenvalue problem was solved using the

second-order finite-difference subroutine DBVPFD°°, which is much faster than

SUPORT"‘; the results of DBVPFD are in full agreement with those of SUPORT.

ln all cases, the results are for the most dangerous frequency, defined to be

the one that results in an N factor of 9.0 in the shortest distance'51°°·“2. For an

adiabatic wall, it is 50 x 10*° and the maximum N factor is 9. Figure 2.6 shows

the N factors for various frequencies when Tw = 0.55T„„. Thus, in the case of

cooling, it appears that F = 50x10”° produces the largest N factor in the

shortest distance. Hence, all the calculations are made for an F = 50x10*°.
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We analyzed the stability of the mean profiles calculated using the IBL

code for flows over a backward-facing step. The present analysis accounts for

both viscous and shear-layer instabilities in the separation region. The effect

of wall cooling on the stability of such flows is different from its effect on the

stability of flows over flat plates. Figure 2.7 shows the growth rates for the

cases of adiabatic and cooled walls. The temperature of the cooled wall is

55% of the adiabatic wall temperature Tad. We note that the instability is due

to the viscous mechanism in the attached region and due to a combination of

the viscous and shear-layer mechanisms in the separation region. Figure 2.7

shows that cooling decreases the growth rates and hence it is stabilizing in the

attached flow regions because cooling produces fuller velocity profiles. On the

other hand, in the separation region cooling increases the growth rates due to

the increase in the negative shear flow in the separation bubble and the

movement of the generalized inflection points closer to the cooled wall.

However, the growth—rate curve corresponding to the cooled case is narrower

around the peak value than that corresponding to the adiabatic case because

the cooled flow reattaches ahead of the adiabatic flow. Figure 2.8 shows the

variation of the growth rate with streamwise distance for different wall

temperatures. Decreasing the wall temperature destabilizes the flow in the

separation bubble and stabilizes it in the attached flow region. Moreover the

growth-rate curve gets narrower as the wall temperature decreases.

Consequently, the overall effect of cooling as measured by the N factor

depends on the wall temperature, as shown in Figure 2.9. When T„, = 0.95T„,
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the boundary layer is completely stable ahead of separation and the overall

N factor is less than that of the adiabatic wall. As Tw decreases below 0.8 Tw,

the increase in the growth rates in the separation region overcomes the

reduction in the growth rates elsewhere, and the net result is an increase in

the maximum N factor.

For a Mach number of 0.8, Figure 2.10 shows the growth rates for various

wall temperatures. The increase in the growth rates in the separation region

when Mw = 0.8 is less than that when Mm = 0.5. Moreover, the peak growth

rate when Mw = 0.8 is wider than that when Mm = 0.5. This makes the

optimum wall temperature to be Tw = 0.6T_„,, as it is clear from the resulting N

factors shown in Figure 2.11. Figure 2.11 also shows that at Mm = 0.8 cooling

has a slightly smaller effect than at Mm = 0.5 .

The previous results seem to be general and apply to other imperfections. w

For example, Figure 2.12 shows the growth rates for a flow at Mm = 0.8 around

a cubic hump. The hump width is 0.2 L" and height is 0.003 L*. The behavior

of the growth rates with cooling is similar to that of the step case. The

resulting N factors are plotted in Figure 2.13. This figure shows that the

optimum wall temperature is about Tw = 0.8Ta„.

ln an attempt to lower the growth rates in the separation region, we

performed calculations for a wall that is cooled everywhere except in the

separation bubble. The results indicate that this distribution has a very small

effect on the N factor as shown in Figure 2.14. The growth rates are slightly

changed as shown in Figure 2.15. The reason for this small effect is that the
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mean profiles in the separated region are influenced by cooling ahead of the

separation bubble due to the non—similarity of the boundary layer.

Next we show the influence of the step position on the N factors for a

constant frequency. The results shown in Figure 2.16 are for ll/im = 0.5 and

adiabatic wall conditions. Unlike the incompressible case the most dangerous

step location is not the one corresponding to Branch l of the neutral stability

curve, but it is the one corresponding to a distance half-way between Branches

l and ll. Figure 2.17 shows that a similar trend is true for the cubic hump.

From the previous results it is clear that the coexistence of viscous and

shear-layer instability mechanisms complicates the effect of cooling on the

stability of such flows. Since cooling decreases the viscous instability and

increases the shear-layer instability, there exists an optimum wall temperature

that reduces the amplification factor.
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Chapter 3

Effect of Wall Suction on the Stability of

Compressible Subsonic Flows Over Smooth

Two-Dimensional Backward-Facing Steps

3.1. Introduction

The increasing interest in high performance aircraft has promoted more

research in the area of laminar flow control (LFC). Boundary-layer transition

does not only affect the lift and drag characteristics of lifting surfaces, it also

affects alrplane stability and contro|"3. Surface imperfections have a significant

effect on the transition process. Unfortunately, the sizes of some unavoidable

imperfections cannot be always reduced to significantly diminish their effect.
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This demands the investigation of methods for controlling the flows around

such imperfections. Such investigations must take into consideration the

coexistence of different instability mechanisms in such flows‘5·"·2‘-2*. In this

chapter we study the effectiveness of wall suction on the stabilization of flows

around two—dimensional (2-D) backward-facing steps.

Carmichael, Whites, and Pfenninger“ and Carmichael and Pfenninger"

performed flight experiments on the wing glove of an F-94A airplane. The

modified 652-213 airfoil had 69 suction slots distributed between 41 and 95%

chord. They investigated single and multiple sinusoidal waves located at 15%,

28%, and 64% chord. Their results show that the allowable sizes of the waves

increase when embedded in the suction region. They found that to maintain

Iaminar flow across the airfoil requires an 8% increase in the suction level

over the clear airfoil case. Carmichael" established empirical criteria relating

the height to width ratio of the waves to the Reynolds number. However, these

criteria are valid only for the configurations and the conditions investigated in ‘

the experiments. Moreover, they do not indicate the minimum suction levels

needed to reduce the effect of the waviness. Spence and RandalI"’

investigated the effect of uniform suction on the stability of boundary layers

over plates with sinusoidal surface waves. They derived a cIosed—form

expression for the asymptotic mean profile. By using the parallel stability

theory of Lin", they calculated the suction velocity needed to make the critical

Reynolds number larger than the flow Reynolds number. Separation was not
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taken into consideration. Their results show that as the wavelength increases

smaller suction velocities are needed.

More recently, Nayfeh and Reed" and Reed and Nayfeh5° proposed a

numerical-perturbation scheme to study the effect of porous suction strips on

the stability of boundary layers over axisymmetric bodies and flat plates. To

optimize the effect of the porous strip configuration, they suggested the

concentration of suction near Branch I of the neutral stability curve. Their

calculations show good agreement with the experiments of Reynolds and

Saric5‘and Saric and Reedßz. Hahn and Pfenningeröß experimentally

investigated the effect of suction on the transition over a backward-facing step.

They placed closely spaced suction slots downstream of the step. Suction

levels were found for the prevention of premature transition downstream.

Their measurements show that suction considerably moves the reattachment

point upstream. They found that suction is more effective when the strips are

placed slightly upstream of the reattachment region. However, they stopped

short of performing stability measurements.

Although existing investigations indicate that wall suction can be used to

stabilize flows around surface imperfections, none of them gives a detailed

physical understanding of how this can be done. Questions still need to be

answered about the most effective suction levels and distributions.

Furthermore, an understanding of how does the coexistence of different

instability mechanisms alter the effectiveness of suction is still lacking.
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ln this chapter we investigate the effect of uniform suction as well as

suction strips on the stability of flows over 2-D backward-facing steps. The

mean profiles are caiculated using the interacting boundary-layer equations°°

(IBL) modified for the case of wall suction. These equations account for the

upstream influence resulting from the separation bubble and the suction strips.

The stability of the mean profiles is caiculated using a quasi-parallel linear

stability theory for 2-D compressible flows. The theory accounts for both

viscous and shear-layer instabilities coexisting in the separation region. The

effectiveness of suction is then measured by the reduction in the resulting N

factor“·55.

3.2. Mean Flow

The flowfield is assumed to be governed by the interacting boundary-layer

equations. The governing equations are given in Section 2.2. For convenience,

we list them below modified for the case of suction. After applying the Prandtl

transposition theorem and using the Levy—Lees variables, one can write the

boundary-layer equations as

ö ( öF 2
2CFF—l—VF ——— 8- +ß(F —O)=O (3.1)C #1 gn an 0

2éF; + V" + F = 0 (3.2)
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6 6 öQ 2 UE 2 _
2§FQ; + VQ,1 —

an Pr Ö'?
>

(y - 1)Il/im —T;6F„ - 0 (3.3)

where

-L -LF —
Ue

, Q —
Te

(3.4a)

F] (6.412)
62U.-,66

_ Pfl __ 2C due
6 - Pelle

and [io —
Ue dc

(3.40)

The Levy—Lees coordinates é and ay are given by

>< ,/Re Ue Z
§(x) = pe;ieUedx and r;(x,z) = -7-..-] pdz (3.5)

0 X) 2i 0

and the Prandtl transposed z and w variables are defined as

z=y—f[C(¤)]-w=v—¤-(§j;C— (3-6)

where f(C) is the shape of the wall defined as

im c = 6e*"“f'“(»« — 0 (3-0
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In equations (3.1)-(3.6) the velocities u and v are normalized with respect to the

freestream velocity Ug, lengths are normalized with respect to L*, which is the

distance from the leading edge to the center of the step, and the temperature

and viscosity and thermal-conductivity coefflcients are normalized with

respect to their freestream values Tg, pg, and Kg. Here

u'
1.*Re=—¥°ii'*.Pr=+i„a¤dv=J3— (3-8)

[loc Koo
Cv

where C; and C; are the gas specific heat coefficients at constant pressure and

volume, respectively. The Prandtl transposed boundary conditions at the wall

are

at 7]=Ü (3.98)

where °

V .V
2éRe

(3 9b)W
Qwuelue

W

OW = TW/Te (3.96)

Tw is the adiabatlc wall temperature and the physical suction velocity vw is

normalized with respect to Ug. Away from the wall

F——>1andQ—»1as1y-»c>o (3.10a)

Effect of Wall Suction on the Stability of Compressihle Suhsonic Flows Over Smooth Two-Dimensions!
Backward·Facing Steps 30



To complete the problem formulation, we need to impose initial conditions

upstream of the step; that is,

F = F(60. ri) and Q = @(60, 11) at 6 = 60 (3-lob)

and F and Q are taken to correspond to the Blasius flow.

The edge velocity is calculated from the interaction law which relates it to

the displacement thickness. Using thin airfoil theory, we obtain

aa dl dt an d dtue=1+J—) ue6Ä@l——d1+l) —Ldt (3.11)

where

(3.123)

and the displacement thickness ö is given by

- 1 «/26 V6 —
peße 0

(Q F)dr7 (3.12b)

Integrating equation (3.2) we obtain

/—‘ dVN + K("N) + Vw = E

(Ueéeö)where
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mv ÖQK(mv) =L (Q + 2C (3-14)

VN is the vertical velocity at the edge of the boundary layer, and r1N is the

corresponding value of 11. Following Davis and Werle", Nayfeh et aI'5,and

Ragab et
al“°,

we integrate equation (3.11) by parts to eliminate the derivative

of X. We assume X to vary linearly over a differencing interval to obtain a

second—order quadratic expression for the edge velocity. By combining the

resulting expression with the interaction law, we obtain

Vrv + <(’ßor = W ‘ Vw (3-15)

For a definition of d> and gb and a detailed derivation of equation (3.15), we

refer the reader to Refs. 15 and 16.

Equations (3.1)-(3.3) are solved simultaneously with equation (3.15) using

central differencing in the transverse direction and three-point backward

differencing in the streamwise direction. The suction velocity appears in the

interaction law and the boundary conditions at the wall. This demands extra

care in inverting the resulting matrix. For the flow prescribed, the skin-friction

coefficient C, and the pressure coefficient CD are defined as

Cf: 21/§#(Tw) il :0 and C :2 ßJe—1
rm/EE öw " " VM;
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3.3. Stability Calculations

We consider the linear two-dimensional quasi-parallel stability of the mean

flow described in Section 3.2. The disturbance equations have the same form

as equations (2.28)-(2.32). When most of the suction flow is directed normal to

the surface and for small suction velocities, Lekoudisss showed that the

boundary conditions for these equations can be reasonably expressed as

u=v=0aty=0 (3.16)

Furthermore, for high frequency disturbances, we have

T=O at y=Ü (3.17)

Since disturbances decay away from the wall,

u, v,p,T—>0 as y—>«><> (3.18)

Seeking a normal mode solution of equations (2.28)—(2.32) and (3.16)—(3.18),

we obtain the eigenvalue problem defined by equations (2.41)-(2.46) listed in

Chapter 2. For known basic—state profiles, the eigenvalue oz and corresponding

eigenfunctions C, are calculated using the finite-difference subroutine

DBVPFD‘°. Speclfying R and w to be real, we find the eigenvalue

oz = oz, + io:) (3.19)
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where oz, and oz, are the real and imaginary parts of oc, respectively. Then — oz,

is the spatial growth rate of the disturbance. The amplification factor is then

calculated using equation (2.49).

3.4. Results and Discussion

First, we investigate the influence of suction on the mean-flow

characteristics. Figure 3.1 shows the effect of continuous suction on the

skin-friction coefficient of flows over a backward—facing step located at x = 1.0.

As expected, suction reduces the size of the separation bubble. Hahn and

Pfenninger’° reported a reduction of 20% in the separation region. When

v,„ = 5x10" the size of the separation bubble reduces to 67% of that when no

suction is applied. Moreover, suction increases the positive shear in the

attached flow region and decreases the negative shear in the separated flow

region. Figure 3.2 shows the effect of continuous suction on the pressure

coefficient CP. Although continuous suction does not have much effect on CP

far away from the step, it results in steeper pressure gradients around it. At

different locations on the plate, Figure 3.3 shows a comparison between the

mean profiles when v„, = 0.0 and v„, = 5x10". Away from separation, suction

results in fuller velocity profiles. This is also true in the separation region,

however the generalized inflection point moves closer to the wall. For the

same conditions, Figure 3.4 shows that suction slightly alters the temperature
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profiles. Outside the separation bubble, Figure 3.5 shows that suction reduces

the vorticity throughout the boundary—layer except near the wall. However, in

the separation region, suction widens the region of increase in the vorticity,

as shown in Figure 3.6.

Figure 3.7 shows that the size of the separation bubble is reduced

significantly when a concentrated suction strip is placed around the step. The

strip starts at x = 0.9 and ends at x = 1.3, = 0.8, and the

height of the step is 0.003 L*. The resulting separation bubble extends over a

distance of 0.04 L*, which is 22% of the size of that when no suction is applied.

For the same conditions but with the step height = 0.002 L*, Figure 3.8 shows

that the separation bubble extends over a distance of 0.017 L*, which is 25%

of that when no suction is applied. Figures 3.7 and 3.8 show a large increase

in the positive shear around the suction strips.

Next we analyze the stability characteristics of the mean profiles calculated

using the IBL. Figure 3.9 shows the growth rates for the cases when

vw = 5x10r‘ and vw = 0.0. Outside the separation region suction stabilizes the

boundary layer due to the resulting fuller velocity profiles. In the separation

bubble suction has a destabllizing influence on the boundary layer due to the

movement of the inflection point towards the wall and the increase in the

vorticity near the wall. Figure 3.10 shows the growth rates for different suction

levels. As vw increases the flow is stabilized in the attached flow region and

destabilized in the separation region. A similar trend was noted in the case

of wall cooling. Whereas the variation of the N factor with wall temperature
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has a relative minimum, Figure 3.11 shows that the N factor monotonically

decreases with suction. Thus, increasing the suction level results in a greater

reduction in the overall N factor and hence in stabilizing the boundary layer.

This is due to the significant reduction in the separation bubble.

To optimize the distribution of suction strips, Reed and Nayfeh5° suggested

that the strips be located around the smallest growth rate location. In the flow

over backward-facing steps, these regions are near Branch l of the

neutral—stability curve of the Blasius flow, slightly ahead of the step, and

around the end of separation. To study the effect of suction·strip distributions,

we locate three suction strips of width 0.2 L* at x = 0.360, 0.723, and 1.103,

each has a vw = 2.33 x 10 ". The total flow rate equals to that when a

continuous suction is applied with vw = 1.0x10c‘ from the leading edge to a

distance of 1.4 L*. In Figure 3.12 we compare the growth rates obtained using

the suction strips with those obtained using a continuous-suction distribution

with vw = 1.0x10*" and the case of no suction. ln the case of suction strips, the

growth rates are lower than those correspondlng to vw= 0.0 except in the

separation bubble. However, they are lower than those correspondlng to the

continuous suction case only around the strip locations, with the exception of

the separation region. The strips gradually decrease the growth rate near the

beginning of the strips. Their effect, however, continues downstream of the

strips. A similar trend was noted by Reed and Nayfeh5° and Hahn and

Pfenninger5°. The resulting N factors shown in Figure 3.13 demonstrate that

the same amount of flow rate can stabilize the flow more when properly
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distributed in strips. Although in Ref. 53 suction was placed only downstream

of the step, suction was found to be most effective when placed near the

reattachment region. This corresponds to the place where the third strip is

located in the present work.

As discussed previously in Figures 3.7 and 3.8, the separation bubble can

be reduced significantly when a concentrated suction strip is placed across it.

Figures 3.14 and 3.15 show the resulting N factors forthe same flow conditions

of Figures 3.7 and 3.8, respectively. The maximum N factor in Figure 14 was

reduced from 9.0 to 4.0. ln Figure 3.15 the effect of separation was nearly

eliminated.

The stablllty characteristics are calculated for the most dangerous

frequency‘5~”°·“°. Suction does not have much effect on this frequency. Figure

3.16 shows the N factors for different frequencies when contlnuous suction ls

applied. A similar trend turns out to be true in the case of suction strips.

In conclusion, we note that suction reduces the viscous instability and

increases the shear—layer instability. While cooling Ioses its efficiency as the

wall temperature decreases below a critical value, increasing the suction

results in a monotonic stabilization of the boundary layer owing to the

significant reduction in the separation bubble by suction. Properly distributing

suction in strips results in more stabilization of the boundary-layer. Moreover,

concentrating the suction in the separation region can eliminate the effect of

the separation bubble.
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Chapter 4

Effect of Suction on the Stability of Supersonic and

Hypersonic Boundary-Layers

4.1. Introduction

The compressible stability theory of Iaminar boundary layers differs in

many ways from the incompressible theory. The most important feature of the

stability of supersonic Iaminar boundary layers is that there can be more than

one mode of instability contributing to the growth of the disturbance. For a

comprehensive review of the stability of compressible boundary layers, we

refer the reader to the articles of
Mack°‘·5’

and Nayfeh5°. Using extensive

numerical calculations, Mack5° found that there are multiple values of

wavenumbers for a single disturbance phase velocity whenever there is a
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region of supersonic mean flow relative to the disturbance phase velocity. The

first mode is similar to the ToI|mien—Schlichting instability mode of

incompressible flows, while the second and higher unstable modes are unique

to compressible flows. For the inviscid case,
Mack“‘·5’

found that the lowest

Mach number at which the higher modes exist in the boundary layer on an

insulated flat plate is 2.2. The lowest of these modes is called the second

mode and it is the most amplified of the higher modes.

lt is an interesting facet of compressible 2D boundary layers that the most

unstable first-mode wave need not be parallel to the freestream as the Mach

number approaches unity°‘·5°. In contrast with incompressible stability theory,

at supersonic speeds, 3D first modes are more unstable than their

corresponding 2D waves. However, 3D second-mode waves are more stable

than their corresponding 2D waves. As the Mach number increases to the

hypersonic regime-, second-mode waves display growth rates that are higher

than those of 3D first-mode waves. However, the maximum growth rate is less
U

than that of the first mode at zero Mach number. Mack showed that below

Mw = 2.2, the boundary layer on an insulated flat plate is virtually stable to

inviscid 2D waves and that above M„=2.2 the second mode is the most

unstable mode. Moreover, the maximum amplification rate increases sharply

as Mw increases beyond 2.2, and above Mm = 5 the first mode is not even the

second most unstable mode.

Again, using extensive numerical calculations, Mack°"‘ investigated the

influence of Mach number on the viscous instability of supersonic flows past

flat plates. He found that viscosity is stabilizing for both 2D and 3D first-mode
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waves when Mw 2 3.8 and for second-mode waves at all Mach numbers; that

is, the maximum amplification rate (over all frequencles, and wave angles in

case of 3D waves, at constant Reynolds number) decreases with decreasing

Reynolds number. At Mw = 1.6, Mack found that compressibility drastically

reduces the viscous instability. As the Mach number increases beyond 1.6, the

viscous instability continues to weaken although the effect of the increase in

the inviscid instability continues to extend to lower and lower Reynolds

numbers. When Mm reaches 3.8, the viscous instability disappears and

viscosity acts only to damp out the inviscid instability. This result was

disputed by Wazzan, Taghavi, and Keltner6° who did not find a transition from

viscous to inviscid instability with increasing Mach number but found that the

viscous instability persists to Mm = 6.0 . Mack"‘ reconfirmed his calculations

for the case of temporal stability and obtained spatial stability results that

agree with his earlier conclusions on the influence of viscosity on

compressible stability. Moreover, the spatial stability calculations of El-Hady

and Nayfehöz and the present results agree with those of Mack for at least three

signiflcant figures.

As in the inviscid case, the numerical results of Mack3"·5’ suggest that 2D

second- and higher-mode waves are more unstable than their corresponding

3D waves. Moreover, the maximum growth rate of second-mode waves drops

sharply as the wave angle increases from zero.

The lowest Mach number at which Mack57 was able to calculate 2D

second-mode waves ls M,„=3.0 at which the minimum critical Reynolds

number is 13,900. Moreover, the inviscid instability increases rapidly with
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increasing Mach number and hence one would expect the minimum critical

Reynolds number to decrease rapidly to lower values as the Mach number

increases. In fact, Mack found that the minimum critical Reynolds number

drops to 235 as the Mach number increases to 4.5. Moreover, at higher Mach

numbers second—mode waves have much higher growth rates than oblique

first-mode waves.

Whereas cooling can stabilize 2D and 3D first-mode waves, Mack" found

that cooling destabilizes inviscid second-mode waves. including the effects

of viscosity, Malikaö studied the influence of cooling on oblique first-mode

waves at i/1 = 60° for Mm = 2 and 4.5 and second-mode waves for Mm = 4.5; in

these calculations R = 1500 and the stagnation temperature is 560° R. His

results show that oblique first-mode waves at Mm = 2 are completely stabilized

when T,„/T„== 0.7 whereas those at Mw = 4.5 are stabilized only when

Tw/T„= 0.48. On the other hand, his results show that second-mode waves

are destabilized by cooling. ln fact, the maximum growth rate increases

rapidly with cooling. Malik found that the frequency of the most amplified

first-mode wave decreases with cooling whereas that of the most amplified

second-mode wave increases with cooling.

MaIik“5 also investigated the influence of favorable pressure gradients and

seIf—similar suction distributions on the stabilization of second-mode waves at

Mm = 4.5 and R = 1500. He found that each of them shifts the band of unstable

frequencies to higher values and reduces the peak amplification.

Consequently, it appears that, whereas cooling cannot be used to stabilize

second—mode waves, they can be stabilized using either suction or wall
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shaping to produce a favorable pressure gradient. However, his calculations,

are for a single Reynolds number and a single Mach number. In this work we

present a detailed study of the effect of self-similar as well as uniform suction

distributions on the compressible stability of supersonic and hypersonic

boundary layers. Both first- and second—mode waves of instability are

investigated. Our results show that, suction is not as effective at Mm = 6 and

7asatMw=4.5.

4.2. Mean Flow

We consider 2D compressible flows over adiabatic flat plates of an ideal

calorically perfect gas. The basic flowfield is governed by the non-dimensional

2D boundary-layer equations

x-momentum equation

Öu Öu dp 1 Ö Öu— —— = — ——— ·—— —·— —— 4.1

dx+Recontinuityequation

Ö ÖLE + LE = 0 . (4.2)
Öx Öy

energy equation
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öT öT 2 dP
+ —— = —— 1 M —-"“

öx "" öy (V ’«»” dx
4.3

R6Pr öy öy Re °°u öy

where velocities are normalized with respect to the freestream velocity Ulo,

Iengths are normalized with respect to a reference length L", and the

temperature, viscosity, and thermal conductivity coefficients are normalized

with respect to their freestream values Tlo,;1lo, and Klo, respectively. Here,

u'
L*Re=-‘%&°¥-,Pr=—¥,andy=Ä (4.4)

#„ ·<.„ Cv ‘

where C; and CQ are the gas specific heat coefficients at constant pressure and

volume, respectively. For a perfect gas the non-dimensional equation of state

has the form

pT = 1 (4.5)

Away from the wall, the boundary conditions are

u—»1 and T——>1 as y—>«x>

Moreover, the temperature gradient at the wall should vanish for adiabatic

wall conditions; that is,

öT——— = O t = Ü 6öy a v ( a)
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Here we consider the case of continuous wall suction. Assuming that the

suction velocity is directed normal to the plate, we have

U = Ü at y = Ü (Gb)

v=—vwaty=0 (6c)

where vw can vary with x in general. However, there are two restrictions on the

suction velocity. First, vw should not be too large so that the boundary-layer

assumption continues to be valid. Second, vw should not vary abruptly, as in

the case of suction strips. In the latter case the conventional boundary—Iayer

equations cannot predict the upstream influence of the abrupt changes.

instead one should use a triple-deck formulation or the interactive

boundary-layer equations.

lt is convenient to reformulate the problem using the Levy-Lees variables

X= pp Xafl l7X,y=-—-—- py .cil Ud ¤ i l ml
*0 6 9 E 0

and transform Eqs. (4.1)-(4.6) into

ö öF 22FF+VF ——- 6- F- =0 4.86, ,, ol <l

2éFC + Vw + F = 0 (4.9)
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2
ö 6 ÖQ 2 Ue 2 _

ZCFQ; —l—
Pr an

(y 1)MOo Te
ÜF,] — 0 (4.10)

where

F = L , o = L 4.11a
UeTe„/2C

F] (4.4.11b)
ßeüeße

Flu Z: due
8 ZZ Z ZZ .peße and [30 Ue dc (411c)

and the subscript e refers to conditions at the edge of the boundary layer. The

boundary conditions become

F—>1andQ->1asr7—>oo (4.12a)

F=0 and E-=0 at11=0 (4.12b)@4

= V 8 = . CV
2éRG

(0) t 0 (412 )
pal-lelue P W ,7

Equations (4.7)-(4.12) represent the non-similar boundary-layer equations.

Under certain conditions these equations admit self-similar solutions. These

conditions include flows over an adiabatic flat plate with no suction or blowing.

ln the case of uniform suction distributions Vw varies along the plate and hence

self-similar solutions do not exist. However, when Vw is constant, and hence
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the physical suction velocity vw is proportional to
C*‘(2,

Eqs. (4.7)—(4.12) admit

self-similar solutions for flows over adiabatic flat plates. In the latter case,

ue = T; = pw = 1.0 and F; = 0 and Q; = 0. Letting V = — f(11) and solving Eq.

(4.9), we have F = f. Then, using Eq. (4.5), we rewrite Eqs. (4.8) and (4.10) as

41 I I I
<?f’)

+ff’ =0 (4.13)

L „ 1 „ _ 2 L „ 2 _
( TFT r) +1r T )(r) -0 (4.14)

where the prime denotes the derivative with respect to 11. The boundary

conditions (4.12) become

f'—>18hdT-*13571-*00 (4.15)

f'=T'=Üal1dl°”=\/EV,/81f]=O (4.16)

where

w- Tw)
vw- consan (. )V

Cm?
t t 4 17

Th . . . T(0)
us, the physical wall velocity must be proportional to ln the

C
self-similar calculations, we specify Vw instead of vw.

Equations (4.7)-(4.12) are solved using central differences in the transverse

direction and three-point backward differencing in the streamwise direction,

whereas Eqs. (4.13)-(4.17) are solved using the finite-difference code

DBVPFD‘°. The calculated displacement thickness for different Mw are in
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agreement with the fourth-order calculations of Maliköa for zero suction

velocity.

4.3. Stability Analysis

We consider the linear quasi-parallel 3D compressible stability of the

calculated 2D mean flowfield. We superimpose on it a small disturbance and

obtain the total·flow quantities in the form

ä(><.v.Z.t) = qb(v) + ql><.v.z.t) (4.18)

where q stands for u, v, w, p,p,p, and T; the hat stands for the total·flow

quantities; and the subscript b stands for the basic—flow quantities.

Substituting Eq. (4.18) into the compressible Navier-Stokes equations, recalling

that the basic flow satisfies the Navier-Stokes equations, and Iinearizing with

respect to q, we obtain the disturbance equations

ÖP 66 ÖP 6 äw1 1 1 1 1 = O 4.19

b ät b äx dy öx R b äx äx äy äz

d
(4.20)ä äu äv ub ä

<
äw äu )+1 1 +1 -l- 1 1 1+1

äy [#b( äy äx >
y dy 1+% äz äx äz
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öv öv _ ÜP 1 0 0u öv duopb< ar
+”°

ax >" ay + R 1 ax [*1*1 ay + 0x
>+”

dy 1
(4.21)

ö öu öv öw ö öv öw
0x

+röy +m
öz öz (dz +0yö-W.

öw. --2 2 L (Lw 2)"°(a1+”°
ax >‘ 0z + R 1**** 0x 0x T az

v w u v w0 0 0 0 0 0 0
( 22)

T ay [M1 az + ay >1+ Vb az (m ax
+”°

ay +" az)

ar ar dTo 2 öp öp 1.—. .2. 2.. = ... 1 ..._ ..2
._

"b<a1+”° ax +V dy (V VMM ae +"'* 0x + R ‘V
(4.23)

ßlRpraß öv öv dY " aß

öu öv duo duo 2=2 —— ·— ——·+ —— 4.24rb ub(öy+ÖX)dy u(dy> ( )

where

2 2r=3—(e+2)andm=?(e—1) (4.25)

and e = 0 corresponds to the Stokes hypolhesis. The local Reynolds number

R in Eqs. (4.19)—(4.24) is based on a reference length ö;= „/vx}/Ugo , which is

the order of the boundary-layer thickness. Velocities are normalized with

respect to the free-stream velocity Ugo and lengths are normalized with respect

to öj. Hence,
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R = Z @12
v* v*

The boundary conditions at the wall are

u=v=w=T=0aty=0 (4.26)

For sonic, subsonic, and supersonic waves the boundary conditions away from

the wall have the general form"“

u, v, w, T, p, are bounded as y —» oo (4.27)

We assume that p is a function of the temperature only; hence

/4 = Tgé? (Tb) = Tl4b'(Tb) (428)

Moreover, the linearized equation of state takes the form

P/Pb = T/Tb + /'/Pb (4-28b)

Since the mean flow is assumed to be quasi-parallel, we seek solutions in

the form of 3D traveling Tollmien-Schlichting waves as

·
[vu/,p,T„w] = [C10/)„ C30'), C4(y), C50'), C7(v)] <—=><¤U()-¤¤d>< + ßz — w¢)] (429)

Eflbct or Suction on the Stability of supersonic and llypcmmib ßmmilm-y-Layers 49



where oz and ß are the streamwise and spanwise wavenumbers, respectively,

and rb is the frequency. Substituting Eqs. (4.28) and (4.29) into Eqs.

(4.19)-(4.24), we obtain

DT
DC; + iozf, — Ti C3 + i(ocub 0 (4.30)

b b

. . Tb 2 2
1(ocub

IUÖTDC1 0

. Tb . . , 2 2
l((‘XUb

_
(/))C3 + TbDC4

"‘
+ (X/lbDC1 +ll77(1ßlb C1

"‘ (tl ‘+‘
ß

rm/DC3 ((m + 1)/Wb DC7} = 0

. . Tb . ,'(Wb " w)C7 + 'ßTbC4 ‘ 'F ( " (m + 1) ‘¥ßl¢bC1 + 'ßllb C3 (4 33)
+ i(m + 1)/WC3 ·· #b(<>¤2 + V/?2)C1 + #b'DC1 + ßb DZC1} = 0

T
i(ocub — w){5 + {3DTb — i(y — 1)TbMi(0zub — w)C4 —— ioc{3)

(4.34)
, 2 Tb 2 2 V , _

+ ub (Dub) C5] ß )C5 + D(#bDC5) + D(#b DTbC5)] — 0

C1=C3=C5=C1=0a*Y=0 (435)

§„ are bounded as y —+ oo (4.36)

where the prime denotes the derivative with respect to the argument and

D = d/dy .
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ln this work, we consider the case of spatial stability so that w is real.

Since the basic flow is two-dimensional, /3 is constant. In this work, we assume

that ß is real and oz complex so that

oz = oz, + ia, (4.37)

Moreover, we compute m from the non-dimensional frequency F as

ru = RF (4.38)

and compute the wave angle 1/1 as

il = ta¤"(ß/<¤„)

The eigenvalue problem is solved using the finite-difference code DBVPFD‘°

coupled with a Newton-Raphson iteration technique. This scheme produces

results that are as accurate as those obtained by using SUPORT" with far less

computational time. For the case of no suction, our results are in total

agreement with those of
Mack”“·5’,

El-Hady and Nayfeh"2, and Maliköß . For the

case of self-similar suction distributions, R = 1500, and Mm = 4.5, we

reproduced the results of Malikßö.

EtTect of Suction on the Stahility of Supersonic and Ilypersonic Boundary-Laycrs SI



4.4. Results and Discussion

For certain Mm, Pw, Pr, and v„„, the velocity profile is determined using the

formulation described in Section ll. The stability of the calculated profile is

then analyzed as described in Section lll. A great deal of the physics of the

stability problem, however, can be understood by studying the effect of suction

on the mean-flow characteristics. Whereas the incompressible Blasius profile

does not have an inflection point, an important characteristic of the

compressible Blasius flow is the existence of a generalized inflection point

inside the boundary layer. The generalized inflection point is defined as the

point where D(p,,Du,,) = 0. ln the absence of suction, there is one generalized

inflection point inside the compressible boundary layer. Suction creates

another generalized inflection point near the wall. In Figure 4.1 we show the

variation of the locations of the generalized inflection points with the level of

the se|f—simiIar suction distribution when Mm = 2.0, 4.5, 5.0, and 6.0,

respectively. As the suction level increases, the two generalized inflection

points move closer to each other until they meet and then disappear, as shown

in Figure 4.1. The influence of Tw on the locations of the generalized inflection

points is shown in Figure 4.2. The suction level needed to eliminate the

generalized inflection points when Tw = 62 K° is larger than that needed when

Tw = 121 K° . In Figure 4.3, we show the minimum suction level needed to

eliminate the generalized inflection points as a function of Mach number. This

level increases rapidly as the Mach number increases. Therefore, the suction
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level needed to stabilize the inviscid mechanism increases rapidly as the

Mach number increases. The viscous instability, however, can be gauged by

the displacement thickness. The variation of the displacement thickness with

suction level for different Mach numbers is shown in Figure 4.4. Although the

displacement thickness decreases rapidly with suction, its rate of reduction

decreases as Vw increases.

All of the previous results are for the case of self-similar velocity profiles.

An infinite suction velocity at the leading edge of the plate is needed to obtain

such profiles. ln Figure 4.5, we compare a self-similar suction distribution with

a uniform-suction distribution having the same level at x= 1. Using these

suction distributions in the non—simiIar boundary-layer solver, we obtained the

skin-friction distributions shown in Figure 4.6. It is clear that the self-similar

suction distribution described in Figure 4.5 results in a constant shear

coefficient along the plate, thereby providing some confidence in the

non-similar solver. The uniform-suction distribution results in a gradually

increasing shear coefficient, which asymptotes the shear coefficient produced

by the self-similar suction distribution.

After calculating the mean profiles and for certain R, F, and 1/1, we solved

Eqs. (4.30)-(4.36) for the eigenvalue oz and the eigenfunctions §,,. In this paper,

we present results for both first- and second—mode waves.
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a. First·Mode Waves

The most important feature of the stabllity of supersonic and hypersonic

boundary Iayers is the existence of more than one mode of instability. For the

first mode, oblique waves are more unstable than 2D waves. In Figures 4.7

and 4.8, we show the effect of suction on the variation of the growth rate with

wave angle for two Mach numbers. lt is clear that suction decreases the

growth rates of 2D and all 3D waves. Moreover, suction is most effective in

reducing the growth rates of 3D waves having wave angles equal or nearly

equal to that of the most amplified wave. However, suction has a small

influence on the wave angle for which the first mode grows the most. lt is clear

from Figure 4.9 that suction has a stabilizing effect on first-mode waves. lt

decreases the growth rates and the range of frequencies receiving

amplification. Suction also slightly shifts the mostamplified frequency to a

higher frequency. Moreover, for a given frequency, suction decreases the

growth rate of first—mode waves at all streamwise locations, as shown in Figure

4.10.

The variation of the maximum growth rate with Mach number for various

levels of suction is shown in Figure 4.11. The wind~tunneI temperature

corresponds to a stagnation temperature of 311 K°. If Tgo gets below 50 K° it

is set equal to 50 K°. ln the absence of suction, the maximum growth rate

decreases with Mach number. As shown in Figure 4.11, suction is more

effective at low Mach numbers because it ls very effective in reducing the

viscous instability, which is dominant at low Mach numbers. However, suction
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is not as effective in stabilizing the inviscid mechanism, which is dominant at

higher Mach numbers, because high levels of suction are needed to eliminate

the generalized inflection point at high Mach numbers. For suction levels

larger than approximately 0.2, the maximum growth rate increases with Mw for

low Mach numbers. For high Mach numbers, however, the maximum growth

rate decreases slightly with Mw. This can be attributed to the fact that the

inviscid instability gets more dominant as Mw increases. For low Mm high

levels of suction can eliminate the influence of viscosity, leaving only the

inviscid mechanism, whereas at low levels of suction both the viscous and

inviscid mechanisms continue to coexist. This is the reason why we see

different behaviors for low and high levels of suction at relatively low Mm. At

Mw equal or larger than 3.8, Mack found that the viscous instability disappears

for first-mode waves, and hence viscosity is stabilizing, which may explain the

similar behavior for all levels of suction at high Mach numbers. Hence, at high

Mw, suction is not as effective in stabilizing first-mode waves.

In Figure 4.12, we show that the influence of the suction level on the

growth rate of first-mode waves at R = 1500, zß=60°,F=11.5x10>° for

Mw = 2.6 and 3.0. The suction levels needed to completely stabilize the flow

at M„=2.6 and 3.0 are V„=0.7 and 0.9, respectively. In both cases the

suction velocity needed to stabilize the disturbance is slightly larger than the

one needed to eliminate the generalized inflection points. For all the cases

investigated, the growth rate at constant frequency varies approximately

linearly with the suction level. Based on this, one expects that linear
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perturbation methods, such as that of Ref. 12, can be used to predict the

stability of flows over suction strips.

Next we investigate the effect of suction on the eigenfunctions of first-mode

waves. In Figures 4.13a and 4.13b, we show that, whereas in the absence of

suction the temperature disturbance has a peak near the generalized inflection

point (GIP), the u disturbance has a peak at the upper generalized inflection

point when Vw = 0.3 . The lower generalized inflection point does not create

another peak. As the suction velocity increases, the peak of the u disturbance

moves toward the wall following the upper inflection point. At V,„ = 0.66 the

generalized inflection point is eliminated but Figure 4.13d shows that the

peaks do not vanish at this level of suction. Furthermore, Figure 4.12 shows

that the flow is still slightly unstable at this level of suction in spite of the fact

that the source of the inviscid instability is eliminated.

The previous calculations are for self—similar boundary Iayers. In Figure

4.14, we show the variation of the growth rate with streamwise location for two

levels of uniform-suction distribution. Suction decreases the growth rates at

all locations. Furthermore, it increases the critical Reynolds number and

decreases the Reynolds number corresponding to Branch Il of the neutral

stability curve.
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b. Second-Mode Waves

At Mach numbers above 3.0, a second mode of instability emerges. As the

Mach number increases this mode becomes more unstable than the first

mode. Malik“5 showed that the maximum growth rate of second-mode waves

at Mw = 4.5 and R = 1500 decreases with suction and the frequency of the

most amplified wave is considerably shifted to the right. Figure 4.15 shows a

set of results similar to those of Malik. lt is clear that for some frequencies

suction increases the growth rate. Keeping F constant, we show in Figure 4.16

the variation of the growth rate with suction velocity at As the

suction level increases from zero, the growth rate increases until it reaches a

maximum at V,„= 0.22. As Vw increases further. the growth rate decreases

monotonically. The maximum growth rate, however, monotonically decreases I

with suction velocity as shown in Figure 4.17. ln fact the maximum growth rate

decreases approximately linearly with suction velocity. The corresponding

frequencies are plotted in Figure 4.18. They increase approximately linearly

with suction velocity when V,„>0.1.

Next, we plot in Figure 4.19 the variation of the growth rate with wave

angle for Vw = 0 and 0.1. Even in the case of suction the most unstable second

mode is still two-dimensional. The second mode is stabilized for all wave

angles by suction.

ln Figure 4.20, we show the variation of the maximum growth rate with

MM for different levels of suction. The Mach number at which unstable

second-mode waves exist increases with suction level. Without suction, this
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Mach number is Mm =3.8, in agreement with Mackaw . With suction, this

Mach number increases to /l/1,_,=4.0 when V„=0.1 and to M„=4.2 when

V„,=0.3 . In addition to shifting the Mach number at which second-mode

waves become unstable, suction is very effective in decreasing the maximum

growth rate of second-mode waves forlower supersonic and hypersonic Mach

numbers, Mach numbers below 5.5. For example, at Mw = 5.0, the growth rate

drops from 0.0043 to 0.0034 when V,„=0.1 and to 0.0025 when V,„=0.3 ,

respectively. However, at higher Mach numbers suction loses its

effectiveness. For example, at Mm = 7.0 the maximum growth rate drops from

0.0025 to 0.0024 when V„= 0.1 and to 0.00216 when Vw = 0.3. Figure 4.21

shows the effect of suction on the variation of the frequency corresponding to

the maximum growth rate with Mach number for the conditions in Figure 4.20.

It is obvious that these frequencies increase by suction at all Mach numbers.

ln Figures 4.22a—4.22c, we show the effect of suction on the temperature
I

disturbance; i.e., (5 . In the absence of suction, Figure 4.22a shows that the

temperature disturbance has four peaks: the upper two peaks lie on both sides

of the generalized inflection point (GIP). When V,„ = 0.3 the second of these

peaks moves downward to the new location of the upper generalized inflection

point, as shown in Figure 4.22b. However, it seems that the lower generalized

inflection point does not affect the locations of the peaks. When V,„ increases

to 0.6, Figure 4.22c shows that the upper generalized inflection point

considerably moves down and the second peak from the top increases and

shifts downward with this generalized inflection point. The third peak from the

top is nearly damped out.
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Next we investigate the effect of uniform-suction distributions on

second-mode waves. Figure 23 shows the variation of the growth rate with

streamwise location for different suction levels when Mm = 4.5. The resulting

curves shift considerably to the right as the suction level increases, resulting

in a large increase in the critical Reynolds number. The growth rates

corresponding to the self-similar suction distribution shown in Figure 4.5 are

also plotted in Figure 4.23. Comparing the latter growth rates with the growth

rates corresponding to a constant suction of 1.5x10"‘, we note that the

self-similar suction distribution is more stabilizing for low R where the suction

level is large, and less stabilizing for high R where the suction level is small.

Figure 24 shows that suction considerably reduces the N factors. Moreover,

the start of the growth of disturbances moves downstream as the suction level

increases. The effect of uniform-suction distributions on the variation of the

growth rate of second-mode waves with frequency is shown in Figure 4.25.

The band of unstable frequencies shifts to the right, as in the self-similar case.

The results in Figures 4.23-4.25, however, are for Mm = 4.5. At this Mach

number suction is effective in stabilizing second-mode waves. On the other

hand, suction loses its effectiveness for higher Mach numbers. For example,

when Mw = 6.0, Figure 4. 26 shows the variation of the growth rate along the

plate for different levels of uniform-suction distributions. Whereas a

v,„=2x10·4 reduces the maximum growth rate by 50% when it

reduces the maximum growth rate by only 8% when Mw = 6.0 . Moreover, the

peak growth rate widens up as the suction level increases, resulting in a larger

area underneath the curve.
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To find the effect of suction on the N factor we search for the most

dangerous frequency, the frequency that results in an N = 9.0 in the shortest

distance. ln Figure 4.27, we show the variation of the N-factor with streamwise

distance for several frequencies. lt seems that F=30x10c° is the most

dangerous frequency at Mw = 6.0. At this relatively low frequency, the first

and second modes merge with each other, as shown in Figure 4.28. The

growth rates of first—mode waves, however, are very small at this Mach

number and suction has no significant effect on them. As shown in Figure 4.28

suction is not very effective in reducing the growth rates of second-mode

waves. More importantly, it is clear from Figure 4.29 that suction is not

effective in reducing the overall N factor of the disturbance. The effect of

suction is restricted to slightly delaying the growth of the disturbance. ln the

absence of suction, the N factor reaches 9.0 at R = 5420, while for the cases

of vw = 0.5x10",1.0x10*", and 1.5x10·‘, the N factor reaches 9 at R = 5530,

5660, and 5790, respectively. If transition is to occur when N = 9, then a

constant suction velocity of 0.5x10"‘, 1.0x10”" and 1.5x10i" will delay transition A

by only 4%, 9%, and 14 %, respectively. At Mm = 7.0, Figure 4.30 shows that

the effectiveness of suction significantly decreases. When Vw = 0.4, the

maximum growth rate decreases by only 20%. When Vw = 0.8 , the maximum

growth rate decreases by 44%.

From the previous results it is obvious that the coexistence of inviscid and

vlscous instability mechanisms significantly alters the effect of suction on the

stability of supersonic and hypersonic boundary layers. lf a suction level was

enough to stabilize the boundary layer at a certain Mach number, it is not safe
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to assume that the same level is enough to stabilize the flow at higher Mach

numbers. ln general, suction Ioses its effectiveness in reducing the growth

rates of second-mode waves at high Mach numbers. The present results also

show that suction has different effects on first- and second-mode waves,

especially when a single wave with a fixed frequency is being considered.
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Chapter 5

Summary, Conclusions, and Recommendations

We present an analysis of the effects of cooling and suction on the stability

of subsonic flows over two-dimensional roughness elements and the effect of

suction on the stability of supersonic and hypersonic flows over flat plates, all

within the framework of a quasi-parallel, compressible, linear, spatial stability

theory. included in the theory are disturbances due to velocity, pressure,

temperature, and transport properties. The mean flows over the

two-dimensional roughness elements are calculated using the interacting

boundary-layer equations while the flow over the flat plate is calculated by

solving either the non-similar or the self-similar boundary—layer equations,

depending on the distribution of the suction velocity.

The eigenvalue problem arising from the linearized disturbance equations

with the appropriate boundary conditions are solved numerically using a

variable-step finite-difference subroutine that solves the two-point
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boundary-value problem. For three-dimensional disturbances this subroutine

was coupled with a Newton-Raphson iteration scheme to improve

convergence. The non—similar boundary-layer equations are solved using

central differences in the normal direction and three-points backward

differences in the streamwise direction. Results are presented for various

suction and temperature distributions.

5.1. Conclusions

A main conclusion that can be drawn from the numerical results is that the

coexisting of more than one instability mechanism can significantly complicate

the effects of suction and cooling on the stability of boundary-layer flows. In

addition, the following conclusions can be drawn:

5.1.1. influence of Cooling on 2-D Humps and Backward-Facing Steps

(a) While wall cooling slightly reduces the separation bubble on the side of a

step or a hump, suction considerably reduces the separation region, especially

when a strip with high suction velocity is placed across the separation bubble.
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(b) Cooling stabilizes the flow in the attached region, whereas it destabilizes

the flow in the separated region due to the movement of the generalized

inflection point toward the wall and the increase in the negative flow.

(c) Since the reduction in the separation bubble by cooling is small, the

variation of the N factor with wall temperature has a relative minimum. Hence,

there exists an optimum wall temperature at which cooling is most effective.

(d) Cooling the wall everywhere except in the separation region has a minor

effect on the growth rates and the N factor.

(e) lncreasing the Mach number results in a decrease in the optimum wall

temperature and in a slight reduction in the effectiveness of cooling.

5.1.2. influence of Suction on the Flow over 2-D Backward-Facing Steps

(a) While suction reduces vorticity in the attached regions, it increases vorticity

in the detached regions. This combined with the movement of the generalized

inflection point toward the wall results in a destabilizing effect in the

separation region. The attached flow, however, is stabilized by suction.
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(b) Due to the large reduction in the separation bubble by suction, the overall

N factor decreases monotonically as the suction level increases.

(c) For the same total flow rate, properly distributed suction strips are more

effective in stabilizing the flow than a continuous-suction distribution.

(d) For the subsonic flows investigated, both suction and cooling slightly alter

the most dangerous frequency.

5.1.3. influence of Suction on Supersonic and Hypersonic Flow

(a) The coexistence of inviscid and viscous instability mechanisms complicates

the effect of suction on the stability of supersonic and hypersonic boundary

Iayers over flat plates. Suction is more effective in stabilizing the viscous

mechanism. Suction Ioses its effectiveness in stabilizing the inviscid

mechanism as the Mach number increases.

(b) For low suction levels the maximum growth rate of first-mode waves

decreases as the Mach number increases, whereas for high suction levels the

maximum growth rate increases with Mw for low Mach numbers, and

decreases as Mm increases for high Mach numbers. ln general, the stabilizing
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effect of suction on first-mode waves decreases significantly as the Mach

number increases.

(c) Suction slightly alters the wave angles corresponding to the maximum

growth rates. Moreover, suction stabilizes first-mode waves for all wave

angles.

(d) Suction stabilizes first-mode waves at all frequencies and Reynolds

numbers. Nevertheless, the frequency and the Reynolds number

corresponding to the maximum growth rate increase slightly as suction

increases.

(e) The frequency band corresponding to growing second·mode disturbances

significantly shifts to the right as the suction level increases. A similar trend

is true for the Reynolds numbers corresponding to growing second-mode

waves. This is true for non-similar and self-similar velocity profiles.

(f) Whereas for relatively low Mach numbers suction is effective in stabilizing

second—mode waves, it looses its effectiveness for high Mach numbers. The

reduction in the N factor becomes insignificant for Mach numbers greater than

6.0 and the effect of suction is restricted to slightly delaying the growth of

disturbances.
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(g) The most growing second mode continues to two-dimensional when suction

is applied.

5.2. Recommendations

The results obtained throughout Chapters 2 , 3, and 4 point to the

danger of extrapolation of controls designed for the case of one instability

mechanism to the case with more than one instability mechanism.

More specific recommendations for future work are listed below.

5.2.1. Flows Over Roughness Elements

— investigation of the effect of suction and cooling on the receptivity and

Goertler, and secondary instabilities.

- extension of the present analysis to supersonic flows.

— investigation of the effect of suction and cooling on other separated and

inflectional flows.

- investigation of the effect of suction and cooling on the stability of flows

over roughness elements on swept wings where the cross-flow instability plays

an important role. —

— conduction of detailed experiments in order to validate the present

results.
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5.2.2. Smooth Surfaces

- investigation of the influence of suction strips and their optimum

distributions.

- taking into consideration real gas effects, flow dissociation, etc.

- performance of detailed experiments to validate the theoretical results.

- investigation of the effects of suction on supersonic flows over swept

wings.

- analysis of the combined effects of suction and heat transfer on the

stability of flows over two-dimensional flows and swept—back wings.
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Figure 3.5. influence of suction on the first derivative of the velocity profile at x = 0.8
when the step height == 0.003, step slope = · 4.35, M_= 0.8, Re =1.0x10',
and Pr = 0.72: _._ v, = 0.0 and · - · v, = 5.0x10·‘.
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Figure 3.7. Effect of a concentrated suction strip on the shear coefficient. The strip
starts at x = 0.9 and ends at x =

”1.3,
v„=1.0x10·‘, step height = 0.003,

step slope =- · 4.35, M, = 0.8, Re = 1.0x10·°, Pr = 0.72: __ without suction
and - · · with suction.
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Figure 3.9. The growth rates for the flow over steps with and without continuous
suction when the step height = 0.003, step slope = - 4.35, M, = 0.8, Re

= 1.0x10‘, Pr = 0.72, and F = 50x10·': _ v„=0.0 and _.._
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Figure 3.10. The variation of the growth rates-with streamwise location for different
continuous suctlon levels: step height = 0.003, step slope = - 4.35, M,
= 0.8, Re = 1.0x10°, Pr = 0.72, and F = 50x10·'.
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Figure 3.11. The variation of the amplification factor with streamwise location for

different continuous suction levels: step height = 0.003, step slope =

-4.35, M, - 0.8, Re = 1.0x10‘, Pr = 0.72, and F =- 50x10·'.
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Figure 3.12. The effect of suction strips and continuous suction on the growth rates

for the flow over a step with a height of 0.003, step slope = · 4.35,

M_,=0.5, Re=1.0x10‘,Pr=0.72, and F=50x10·'. The suction strips are

centered at R == 678, 907, and 1097 with a length of 0.2 L' each. In the case

of strips v, = 2.33 x
10·‘

and in the- case of continuous suction

v,,=1.0x10·‘: __ no suction, _._ continuous suction, and · · - suction

strips.
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Figure 3.13. Comparison of the variation of the amplification factor with streamwise
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Figure 3.14. Effect of the concentrated strip suction described in Figure 7 on the
ampiification factor. Flow conditions are the same as in Figure 7,
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Figure 3.15. Effect of the concentrated strip suction described in Figure 8 on the
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Figure 4. 3. The suction velocity needed to eliminate the generalized infiection

points as a function of Mach number for wind-tunnel temperature and

Pr = 0.72.

H3



25

20 \

15..10

[

5 ‘·····—————.....1
i

O
Ü T 2 3 4 5

Vw

Figure 4. 4. Variation of the displacement thickness with suction velocity for
wind-tunnel temperature and Pr = 0.72: _ M„ = 4.5, · - -

M__
= 6.0,

and ____ M__
= 7.0.
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Figure 4. 5. Comparison of the suction distribution which results in a
self-similar mean profile with a uniform·suction distribution for
M__

=4.5 , T„ = 121K°, Pr= 0.70, and Re = 2.5x10°. __ self-similar
distribution and - · · uniform distribution.
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Figure 4. 6. Comparison of the shear coefiicients obtained using two suction

distributions when M„ = 4.5,
T__

= 121K°, Pr = 0.70, and Re =

2.5x10°: __ v„ =1.5x10·‘ and · · · V„ = 0.1.
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Figure 4. 7. Effect of suction on the variation of the growth rate of first·mode

waves with wave angle for M__ = 2.1, R = 1500,
T__

= 178K° , F =

13.550x10'°, and Pr == 0.72: _._ V, = 0.0 and · - - V, = 0.3.

Self-similar boundary layer.
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Figure 4. 8. Effect of suction on the variation of the growth rate of tirst-mode
waves with wave angle for

M__
= 4.5, R = 1500, T„=62K°, F =

20.0x10·°, and Pr = 0.72,_ V, = 0.0 and -- · V, = 0.3. Self·simiIar
boundary layer.
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Figure 4. 9. Effect of suction on the variation of the growth rate of ürst-mode
waves with frequency for three levels of suction for M„ = 2.1, R =
1500, T__=165K°, ¤ß=60° , and Pr = 0.72. Self-similar boundary
layer.
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Figure 4.10. Effect of suction on the variation of the growth rate with

streamwise location for M__ = 2.1, T__=178K° , F = 13.550x10·°,
¤ß=60° , and Pr = 0.72. Self-similar boundary layer.
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Figure 4. 12. Effect of suction on the growth rate of first-mode waves when
T__

=123K° , F = 11.50x10·°, R = 1500, Pr = 0.72, and zl1= 60°:
_ M__

= 2.6 and - · -
M__

= 3.0. Self-similar boundary layer.
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Ftgure 4. 13. Effect of suction on the eigenfunctions of first-mode waves when

M„ = 3.0, T„ = 123K°, R = 1500 , and F =11.15x10‘°; (8) V1. = 0·0·
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Figure 4.13. Effect of suction on the eigenfunctions of Erst-mode waves whenM__
= 3.0, T__=

123 K°,R = 1500 , and F=11.15x10": (b)V'=O_3,
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Figure 4.13. Effect of suction on the eigenfunctions of first·mode waves when

M„ = 3.0,
T__=

123 K°,R = 1500 , and F=11.15x10'°: (c)V„=0.5
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Figure 4.13. Effect of suction on the eigenfunctions of first-mode waves whenM__
= 3.0,

T__
= 123 K°, R = 1500 , and F =11.15x10": (d)V„„ = 0.66,
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Flgure 4. 15. Effect of suction on the varlation of the growth rate of

second-mode waves with frequency for
M__

= 4.5, T„ = 70 K°, R =
1500, Pr = 0.72, and x/1= 0.0° . Self·simiIar boundary layer.
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Flgure 4. 16. Effect of suction on the growth rate of second·mode waves for
M__

= 6.0, T__
= 52 K° , F = 93.550x10·°, R = 1500, Pr = 0.72, and

¤ß= 0.0° . Self-similar boundary layer.
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Figure 4. 17. Variation of the maximum growth rate of second-mode waves
with suction velocity for M„ = 5.0,

T__
= 59 K° , R = 1500, Pr = 0.72,

and zl1= 0.0° . Self-similar boundary layer.

l3O



1 65

1 45
I

FX106

1 25

1 O5
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Vw

Flgure 4. 18. Variation of the frequencies corresponding to the maximum growth

rate with suction veloclty for
M__

= 5.0,
T__

= 59 K°, R = 1500, Pr

= 0.72, and ¢= 0.0° . SeIf—similar boundary layer.
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Figure 4. 19. Effect of suction on the variation of the growth rate of

second-mode waves with wave angle for M„ = 4.5,
T__

= 121 K°, R

= 1500, Pr = 0.72, and F = 153.33x10.·‘: __ V, = 0.0 and _.._ V, ~

= 0.1. Self-similar boundary layer.
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Figure
4_ 2g_ Effect of suction on the varlatlon of the maximum growth rate of

second-mode waves wlth Mach number for wlnd-tunnel temperature,

R = 1500, ¤l1= 0.0°, and Pr = 0.72: __V,, = 0.0,- · —V„ = 0.1, and

__ _V„ = 0.3. Self-similar boundary layer.
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Fl9¤¤’¤ 4- 21- Effect of suction on the variation of the frequencies corresponding

to the maximum growth rates with Mach number for wind·tunne|

temperature, R = 1500, •l:= 0.0° and Pr = 0.72: __V, = 0.0,- - -
V, = 0.1, and _ __V, = 0.3. Self·simlIar boundary layer.
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Figure 4.22. Effect of suction on the eigenfunctions 0f the temperature

disturbance for
M__

= 6.0, Pr = 0.72,
T__

= so1<°,1= = 66.0x10·°, R =

1500: (a) V, = 0.0
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Flgure 4.22. Effect of suction on the eigenfunctions of the temperature
disturbance for M__

= 6.0, Pr = 0.72, T__
= 50 K°, F = 66.0x10*°, R =

1500: (6) v_
= 0.3.
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Figure 4.22. Effect of suction on the eigenfunctions of the temperature
disturbance for M„ = 6.0, Pr = 0.72, T_,

= 50 K°, F = 66.0x10‘°, R =
1500: (c) Vw = 0.6.
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Flgure 4. 23. Variation of the growth rate of second·mode waves with Reynolds
number for different levels of constant suction for Mw =4.5, Pr =
0.70, T„ = 121 and F = 153.33x10·°: _ non-similar boundary layer
and —

- · self-similar boundary layer.
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Figure 4. 24. influence of suction on the variation of the N factor with
streamwise location; same conditions as in Figure 4_23_
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Figure 4.25. influence of suction on the variation of the growth rate of

second-mode waves with frequency for R = 1500, M„ = 4.5, Pr =

0.70, T„ = 121K°. Non·similar boundary layer.
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Figure 4.26. lnfluence of suction on the variation of the growth rate of
second·mode waves with Reynolds number for M__

= 6.0, Pr = 0.70,
T„ = 62K°, R = 1500, and F = 66x10·°. Non·similar boundary layer.
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Figure 4. 27. Variation of the N factor with streamwise distance for several

frequencies when M__
= 6.0, Pr = 0.70, T__

= 62K° and no suction is
appüed.
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Figure 4. 28. Effect of constant suction on the variation of the growth rate with

streamwise distance for the most dangerous frequency;
F = 30x10·°, M„ = 6.0, and Pr = 0.70. Non-similar boundary layer.
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Figure 4. 29. influence of uniform- suction distributions on the variation of the N

factor with streamwise distance for the same conditions in Figure 4.28.

Non-similar boundary layer.
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Figure 4. 30. Influence of self-similar suction distributions on the variation of
. the growth rate of second-mode waves with frequency for

M„_
= 7.0,

Pr = 0.72, T__=50K°,R
= 1500, and tb = 0. SeIf·simi|ar boundary

layer.
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