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Abstract

Model to Evaluate the Aerodynamic Energy Requirements of Active

Materials in Morphing Wings

Gregory W. Pettit

A computational model is presented which predicts the force, stroke, and energy needed

to overcome aerodynamic loads encountered by morphing wings during aircraft maneuvers.

This low-cost model generates wing section shapes needed to follow a desired flight path,

computes the resulting aerodynamic forces using a unique combination of conformal mapping

and the vortex panel method, computes the longitudinal motion of the simulated aircraft,

and closes the loop with a zero-error control law. The aerodynamic force prediction method

has been verified against two more expensive codes. This overall model will be used to

predict the performance of morphing wings and the requirements for the active material

actuators in the wings.
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Chapter 1

Introduction and Literature Review

1.1 Motivation

This work addresses the energy needs for active materials to be used to morph, to change

the shape of, wings envisioned for future aircraft. Eliminating discrete control surfaces on

airfoils in favor of subtly reshaping the airfoil to perform maneuvers is an attractive idea.

This idea was proven beneficial when Scherer et. al. performed a series of wind tunnel test.

In these tests they showed using shape memory alloy (SMA) actuators for twist, flap, and

aileron deflections an improved roll and lift over conventional designs was found to be 17 and

15 percent, respectively [L. B. Scherer, et. al., 1999]. This increase in rolling performance

was also shown in the work by Inman et. al., where they showed the benefits of controlling

the pressure distribution, Figure 1.1 [D. J. Inman, et. al., 2000]. They showed that when

a flap was deflected, the suction peak was concentrated to one area aft of the elastic axis

of the wing, Figure 1.1a. By subtly reshaping the airfoil, this pressure distribution could

be smoothly placed over a region closer to this axis, Figure 1.1b. Control of this pressure

distribution not only helps in performance, it also allows for a lighter and more flexible

structure to be constructed.

Morphing airfoils would also allow for planform variations. These planform variations

help to overcome the ever so common engineering trade-off by enabling each flight condition

1
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(a) (b)

Figure 1.1: Pressure distribution comparing a flap to a morphed surface: (a) pressure peak from
the deflection of a flap; and (b) smooth pressure distribution from a morphed surface.

to be optimized by changing configurations for cruise, takeoff, and landing [J. J. Spillman, 1992].

In addition, with a system of distributed actuators and sensors, the overall reliability could

be improved. This reliability stems from the redundancy of actuators and the ability to

detect damage while simultaneously controlling excessive vibration.

1.2 Previous Approaches

There are several approaches underway to explore methods of morphing. Scott et. al. showed

that it was possible to maneuver a vehicle by inducing small perturbations on the surface

of the wing. This work sounds promising since it does not involve bending or twisting

a structure purposely designed rigid for flight. However, this is not the case with most

approaches like that of the German Aerospace Center (DLR). Here they proposed a belt rib

type construction that was capable of camber changes [F. Campanile, et. al., 2000]. They

used a system of ribs connected to an outer belt that would have varying stiffnesses in the
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joints. By applying a moment to the structure and varying these stiffnesses they could

control the camber.

Another approach, like that evaluated by Khot et. al., consisted of morphing a

wing with axial load carrying cross elements in the structure. These cross elements were

used as actuators by applying tensile and compressive loads on the wing structure to get

the desired twist and camber changes necessary for a roll [N. S. Khot, et. al., 1998]. Yet

another approach investigated, looked at changing camber by applying torques for and aft of

the wing box structure. Here camber would be changed by bending the least rigid section of

the wing. However, like the previous approaches discussed, it too would involve high strain

energy.

In parallel to the ongoing investigations to determine a structure capable of morphing,

there is a strong interest in developing active materials to perform such actuation. One

such group is located within the Materials Division at NASA Langley Research Center.

Here, Simpson et. al. are investigating innovative materials to conduct such morphing

[J. O. Simpson, et. al., 1998]. With the need for large displacements and high load carrying

capabilites required by aerospace structures Simpson et. al. have been focusing much of

there attention to RAINBOW and THUNDER actuators. These actuators are capable of

displacements as high as 1.7mm with no load decreasing to 1mm with a point load of 250g.

1.3 Inverse Approach

This work is unique in that it takes an inverse approach to the morphing quest. By assuming

that shape changes can be produced independent of structure, a tool can be developed that

will allow us to predict the force, stroke, and energy required for a distributed system of

active material actuators. Then using these requirements, actuators can be chosen and a

structure designed.

While there are two important energy considerations, strain energy needed to morph

the structure and energy needed to overcome the aerodynamic forces, this work is concerned
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with the latter. With this inverse approach, we cannot predict the configuration of the active

materials that will make up the morphing wing; therefore, we are not able to predict how

much energy will be required to strain the wing structure. We can envision some designs that

will have very little strain energy in the structure after morphing. Those designs could have

variable length links or members that cannot be back driven by wing forces. We can also

envision some designs that will have significant amounts of strain energy in the structure.

These designs could have actuators straining the structure of a typical wing box. Therefore,

we are addressing the aerodynamic loads only.

The model used for this approach is broken into five major parts: shape generation,

aerodynamics, dynamics, control, and power, Figure 1.2. When the five parts are integrated

together, the model becomes a versatile tool that allows for the input of a time based desired

course with the output being time, power, and stroke required by the actuators to fly the

course. The model is unique for three reasons. First, the shape generation allows for a vast

array of shapes suitable for flight along with an easy method of changing this shape. Second,

the aerodynamics uses the combination of two methods that will allow for the air loads to

quickly and accurately be determined for a wing with a finite span. Third, the air loads can

be found on the upper and lower surfaces not just on a mean camber line, which aids in the

calculation of the energy required to change the shape.

1.4 Thesis Overview

The document devotes a chapter to the theory and assumptions behind each section of the

model. Each chapter progressively builds on information developed in previous chapters. In

addition, in discussing the individual sections, insight is given to how to extend the model

to include more physical aspects of flight. While the code used to simulate the model is not

present, a detailed description of how to use the code, available upon request, is presented

as an Appendix.
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Figure 1.2: Block diagram demonstrating the flow of the model and the organization of this document.



Chapter 2

Formulation of Shape Generation

Module

In order to meet the needs of a planform that can quickly and easily change shape, a method

of conformal mapping was chosen. This method allows for a unit circle to be transformed

into the shape of an airfoil section. While the basic mapping, known as Joukowski’s trans-

formation, has been around for many years, the mapping has been expanded to incorporate

many NACA airfoils [Jones, 1990]. Since this extended transformation starts from a unit

circle, it proves to be very useful when calculating the aerodynamics. Once we have the

capability of generating airfoil sections, the method is performed in succession to generate

the entire wing. This wing generation can be thought of as a bookshelf. Each book with its

own shape and size is analogous to a wing section. Then when all the books are stacked side

by side, they create a three-dimensional shape much like a cube. Although books can not

fly, when all of the wing sections are stacked side by side, they create a three-dimensional

wing.

6
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2.1 Generation of Wing Section

The mapping from a circle to an airfoil section consists of four steps. These steps are done

in succession with each step building on the previous. To gain a better understanding of the

mapping, it is helpful to visualize each step. A graphical result from each of these steps is

shown in Figure 2.1.

Figure 2.1: The four steps of the conformal mapping approach. Each step is a mapping that builds
on the previous map. The mapping yields five shape parameters that enable many NACA airfoils
to be generated such as the 6 series, which is suitable for flying wings.

The first step shown in equation 2.1 is to define the unit circle, s, in the complex

plane:

s = cos θ + i sin θ (2.1)

Second, to map the s plane into the z plane, the center of the unit circle is offset by the

amount xc + iyc, and the point 1 + i0 of the unit circle is mapped to the point, xt + iyt.

Now that we have two points common to each plane, we can develop the mapping shown by

equation 2.2:

z = [xt − xc + i ∗ (yt − yc)]s + xc + iyc (2.2)
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This mapping introduces four shape parameters: xc, yc, xt, and yt. The effects that these

parameters have on the shape of the airfoil along with suitable ranges for these parameters

are shown in Table 2.1. Third, the offset circle, z, is mapped into the z0 plane as shown in

equation 2.3:

z0 = z +
(−1 + xt + iyt)(xt + iyt −∆)

z +∆
(2.3)

This mapping is a slight elongation of the offset circle, z, and introduces another shape

parameter, ∆. The effects and suitable ranges for ∆ are also shown in Table 2.1. This

third step is an extension of Joukowski’s transformation and allows for a greater variety of

airfoils such as the NACA M6, which has a reflexed trailing edge and is well suited for tailless

airplanes, [Jones, 1990]. The fourth and final step is to put the morphed circle through a

mapping known as Joukowski’s transformation shown in equation 2.4:

ζ = z0 +
1

z0
(2.4)

Here, the elongated circle takes the shape of an airfoil section. The coordinates of this airfoil

section are complex and denoted by ζ.

Table 2.1: Shape parameters and their effects on an airfoil section.

Parameter Effect Range

xc Thickness of airfoil -.2 to 0

yc Camber towards leading edge -.2 to .2

xt Thickness towards trailing edge 1 to 1.1

yt Camber towards trailing edge -.1 to .1

∆ Position of the effects of xt 0 to .8

The mapping described above allows for an airfoil section to be created with a wide

array of possible shapes. In addition, it allows for these shapes to easily be changed by

adjusting the five shape parameters. These shape changes become important later when

they are used for controlling the wing while in simulated flight.
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2.2 Generation of Wing

To create the wing, the mapping technique described in the previous section is done in

succession along each spanwise location of the wing, η. These successive transformations

yield a set of complex coordinates, ζ , for each spanwise station. To better illustrate this

point, Figure 2.2 shows an example of an entire wing composed of the different sections. In

addition, this figure shows an airfoil section at the η = −.5 spanwise station. The real and
imaginary values of this section, <[ζ(−.5)] and =[ζ(−.5)], become the xζ(−.5) and zζ(−.5)
coordinates of the wing for the location η = −.5. The yζ(−.5) coordinate is then chosen
according to the desired span location of the airfoil section. To achieve the coordinates of

the entire wing, this successive mapping is repeated for all desired locations of η.

Figure 2.2: Wing generated using conformal mapping at different spanwise locations. Also shown
is the airfoil section at the η = −.5 spanwise station. The entire wing is made up a series of these
sections at desired locations of η.

In order to achieve a wing with taper, the chord at each spanwise station, c(η), is
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chosen. To achieve this chord, the values of ζ(η) are first non-dimensionalized by the length

of the existing chord. These values of ζ(η) are then scaled to the desired chord. The wing

can then be given sweep and dihedral by offsetting the values of xζ(η) and zζ(η) by x
δ
ζ(η) and

zδζ (η), respectively. Another desirable trait of a wing is to have twist. This twist is obtained

by rotating the values of ζ(η) by θt as shown in equation 2.5:

ζ(η) = ζe−iθt(η) (2.5)

These steps, which allow for much flexibility when generating wings with taper, sweep, and

dihedral, are shown in Table 2.2

Table 2.2: Shape parameters and their effects on wing.

Parameter Effect

η Spanwise location

yζ(η) y coordinates of wing as a function of span

xζ(η) x coordinates of wing as a function of span

zζ(η) z coordinates of wing as a function of span

xδζ(η) Sweep of wing as a function of span

zδζ(η) Dihedral of wing as a function of span

θt(η) Twist of wing as a function of span

c(η) Taper of wing as a function of span

2.3 Generation of Wing Example

This section is devoted to demonstrating the flexibility of the wing generation process de-

scribed in the previous sections. The demonstration will consist of an example that begins

with a wing section and transforms, through a series of steps, into the wing that will be used

for the remainder of this document.
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To begin, a generic wing section is created. For demonstration purposes this wing

section will be symmetric with no camber or twist as shown in Figure 2.3a. This wing section

is expanded on later in the example. This section is then placed at desired spanwise locations,

η, as shown in Figure 2.3b. This process can be thought of as extruding the two-dimensional

wing section into a three-dimensional shape.

(a) (b)

Figure 2.3: Wing created from placing wing sections at different spanwise locations: (a) wing
section created from conformal mapping; and (b) wing section placed at different spanwise locations.

Next, it is desired for the wing to have a sweep angle of 35 degrees. This sweep

angle is achieved by offsetting each of the spanwise locations by the amount xδζ. The yζ

coordinates of the wing have been non-dimensionalized by the half span of the wing as

shown in equation 2.6:

η =
yζ

halfspan
(2.6)

where η now represents the non-dimensionalized span of the wing and ranges from -1 to 1.

Therefore, the desired offset, xδζ , can be represented by equation 2.7:

xδζ(η) = η ∗ sin 35 (2.7)

Figure 2.4 shows a plot of desired offset and the effects that it has on the wing. Although

wings generally have a linear sweep angle, as shown in this example, it is not necessary.
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Representing this sweep as a function affords the possibilities of unique designs. This ability

to easily change shape parameters makes the shape generation model a powerful tool.

(a) (b)

Figure 2.4: Effects of offsetting the xζ coordinates on wing shape: (a) the x
δ
ζ parameter as a

function of span; and (b) shifting xδζ allows for sweep in the wing.

Now that sweep has been added to the wing, we will take it a step further and add

taper. This taper can be thought of as making the chord of the wing longer or shorter at

different span locations. However, one should note that the wing sections still start from

the xδζ locations. If this were not the case, then the sweep angle would be changed. For this

example the chord as a function of η, as well as the results this scaling has on the wing, are

shown in Figure 2.5.

The shape that has been created thus far will be used in the remainder of the doc-

ument as the non-morphed planform. Since the end goal of this model is to determine

the energy requirements of active materials in morphing wings, the wings will have to be

morphed to maneuver in flight. This morphing is achieved by varying certain shape pa-

rameters, discussed in the previous sections. This change in shape parameters will morph

the wing causing the aerodynamic loads to vary. Once the equations of motion are applied,

this variation will then cause deviations of the flight path, thus enabling the possibilities for
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(a) (b)

Figure 2.5: Effects of scaling the chord on wing shape: (a) the nondimensionalized chord,
c/halfspan, as a function of span; and (b) scaling the chord allows for taper in the wing.

control.

An example of this morphing would be to twist the wing. Setting the twist, θt, as a

function of η will cause the lift to change on the wing. The example shown in Figure 2.6

shows twist being applied to the left half of the wing. For this case, the lift would increase

on the left wing causing a rolling moment about the xζ axis.

Another possibility, instead of adding twist, would be to add camber. Like twist,

camber is also used to vary the load distribution on the wing. Camber is added to the wing

by choosing the shape parameter, yc, as a function of span, η. One such example is shown in

Figure 2.7. In this case, positive camber is added to the left half of the wing, while negative

camber is added to the right. This change in camber will add positive lift to the left wing

and conversely cause the right wing to lose lift. This change in lift will again cause a rolling

moment about the xζ axis.
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(a) (b)

Figure 2.6: Effects of adding twist on wing shape: (a) the twist, θt, as a function of span; and (b)
changing the twist allows for the lift distribution to change on the wing.

(a) (b)

Figure 2.7: Effects of adding camber on wing shape: (a) the parameter, yc, as a function of span;
and (b) changing the camber allows for the lift distribution to change on the wing.
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While the morphing schemes described above are very simple, when used in parallel,

they offer a variety of complex shape changes. These shape changes can be quickly and easily

implemented, providing a powerful tool when used in conjunction with the remaining parts

of the model, which will be described in the following chapters.



Chapter 3

Formulation of Aerodynamic Module

There are several methods to model the flow around a wing. Typically, each method does

one thing well, but lacks in other areas. For example, the vortex lattice method captures the

three dimensional flow effects. However, this lattice method is based on thin airfoil theory.

This thin airfoil theory means the results are generally based on a mean camber line and not

on the outer surface of the wing. Since the end goal of this model is to predict the amount of

work necessary to change the shape of the wing, we should look at localized areas on the skin

of the wing in which actuators are located. In addition, the vortex lattice method requires

large amounts of computation time compared to methods like conformal mapping. Since

our model will be used for dynamic analysis, computation time is an important issue. In

contrast, conformal mapping techniques do not capture three-dimensional flow effects, but

requires very little computation time.

For these reasons we have chosen to use a combination of two methods. First, confor-

mal mapping and potential flow will be used to describe the flow around the outer surface

of the wing. Knowing the flow around the outer surface is important because it will allow

for the work to be determined at localized areas on the wing surface. However, conformal

mapping can not capture the flow effects on a wing with a finite span. Second, a modified

version of the vortex lattice method, also based on potential flow, was used. This modified

vortex lattice is known as a vortex panel that consists of one vortex positioned at each span-

16
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wise panel of the wing as opposed to a lattice of vortices. The vortex panel method runs

quickly compared with the lattice method and allows for the aerodynamics of a wing with

a finite span to be calculated. However, this method’s shortcoming stems from its ability

to predict a load at only one point at each spanwise panel. Third, these methods will be

combined to allow for the finite span aerodynamics to be calculated along the entire surface

of the wing.

3.1 Aerodynamics of Wing Section Using Conformal

Mapping and Potential Flow

From the conservation of mass, we know that the mass of a system must remain constant.

If we assume our system to be a fixed control volume, cv, the conservation of mass can be

written as:
∂

∂t

Z
cv
ρd ∨+

Z
cs
ρV · ndA = 0 (3.1)

where ∂
∂t

R
cv ρd∨ represents the change in mass of the system, and

R
cs ρV ·ndA represents the

mass exchange across the surface of the volume. Equation 3.1 is commonly known as the

continuity equation and in Cartesian coordinates can be written as

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
= 0 (3.2)

where u, v, and w denote the velocity of the fluid in the x, y, and z directions. Furthermore,

if we assume the flow to be steady then density is not a function of time and ∂ρ
∂t
goes to zero

[Munson et. al., 1998]. In addition, by assuming the flow is incompressible then the density

is constant and the continuity equation can be simplified as shown in equation 3.3:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (3.3)

Since the flow for the wing section is two dimensional, there will be no flow in the y direction,

leaving equation 3.4:
∂u

∂x
+
∂w

∂z
= 0 (3.4)
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By defining a function known as the potential function, φ, we can describe the fluid’s

velocity at any point by differentiating with respect to the desired coordinate, as shown in

equation 3.5:

∂φ
∂x

= u ; ∂φ
∂z

= w (3.5)

This function is called the velocity potential because it describes the potential of the fluid at

any point in the flow field. Substitution of this function into the continuity equation yields

the well known Laplace’s equation shown in equation 3.6:

∂2φ

∂x2
+
∂2φ

∂z2
= 0 (3.6)

By assuming the fluid particles do not spin, then the fluid is said to be irrotational and can

be described by equation 3.7:
∂u

∂z
− ∂v

∂x
= 0 (3.7)

We can define a function known as the stream function, ψ, which is perpendicular to the

potential function and is tangent to the flow everywhere in the field. The stream function’s

derivative is related to the fluid velocities as given in equation 3.8:

∂ψ
∂z

= u , ∂ψ
∂x

= −w (3.8)

The stream function is helpful in describing the rotation of the fluid flow. When this function

is substituted into equation 3.7, we again get Laplace’s Equation:

∂2ψ

∂x2
+
∂2ψ

∂z2
= 0 (3.9)

In order to solve for the flow around a wing section, we need the solution to Laplace’s

equation for the fluid flowing around the given section. Laplace’s equation is a homogenous,

second-order, partial differential equation with constant coefficients; and there are several

techniques, such as separation of variables, available to solve this type of equation. However,

one technique, using complex functions, lends itself nicely to solving the flow around a wing

section. We can define the complex function, w, as the complex potential function shown in

equation 3.10:

w = φ+ iψ (3.10)
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In addition, we can assume that the complex potential is differentiable everywhere in the

complex plane that is defined by s = x+iz. We can now show that this function is a solution

to Laplace’s equation. Since this function is differentiable over the domain of s, then from

Cauchy-Riemann’s theorem, the relations shown in equations 3.11 and 3.12 must hold:

∂φ

∂x
=

∂ψ

∂z
= 0 (3.11)

∂φ

∂z
= −∂ψ

∂x
= 0 (3.12)

Substitution of the relations in equation 3.5 and equation 3.8 shows that these relations

do indeed hold. Since the complex potential function is differentiable everywhere, then the

complex function’s derivative is the same regardless from which direction we differentiate, x

or z. Differentiating equation 3.11 with respect to x and differentiating equation 3.12 with

respect to z yields the relationships shown in equations 3.13 and 3.14:

∂2φ

∂x2
=

∂2ψ

∂x∂z
= 0 (3.13)

∂2φ

∂z2
= − ∂2ψ

∂x∂z
= 0 (3.14)

Furthermore, since Laplace’s equation is a linear differential equation, then the superpo-

sition of multiple solutions is also a solution. The summation of equations 3.13 and 3.14

equals Laplace’s equation as shown in equation 3.15, thus proving that the complex potential

function is indeed a solution to Laplace’s Equation:

∂2φ

∂x2
+
∂2φ

∂z2
=

∂2ψ

∂x∂z
− ∂2ψ

∂x∂z
= 0 (3.15)

Since the complex potential function is a solution to Laplace’s Equation we can use

this function to describe the flow of simple fluid fields. Then using the principle of superpo-

sition, we can add these solutions together to describe the fluid flow of more complex fields.

The first complex potential function of concern is the function that represents the flow of a

uniform stream with a velocity, V , inclined at an angle, α, as shown in Figure 3.1a and is

represented by equation 3.16:

w(s) = V se−iα (3.16)
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Two other functions commonly used are sources and sinks. Figure 3.1b shows the effect that

a source and sink have on the flow field and can be represented by equation 3.17:

w(s) =
m

2π
ln(s) (3.17)

wherem is the rate per unit length that the fluid is being created due to a source or destroyed

due to a sink. When a source and a sink of equal strength are placed apart at some distance,

a, they are referred to as a dipole. Equation 3.18 shows the complex potential function that

represents the flow of a dipole inclined at an angle α:

w(s) =
m

2π
ln
µ
s+ a

s− a
¶
e−iα (3.18)

where m is the rate per unit length at which the fluid is being created and destroyed and a

is the distance between them. If we take the limit as a goes to zero, provided that m goes

to infinity, we get a doublet shown in Figure 3.1e as represented by equation 3.19:

w(s) =
2µ

2πs
e−iα (3.19)

where µ = 2ma. Lastly, a vortex with circulation strength Γ is shown in Figure 3.1c and

represents the velocity of fluid in a circular path around its center. This velocity is inversely

proportional to the distance from its center. The complex potential function representing

this vortex is shown in equation 3.20:

w(s) =
iΓ

2π
ln(s) (3.20)
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Figure 3.1: Simple flow fields that when summed together can represent a more complex flow: (a)
uniform flow inclined at an angle, α, with respect to the x-axis; (b) source or sink, represented by
fluid being generated or destroyed at a point; (c) vortex, flow in a circular motion with velocity, V ,
inversely proportional to the distance from the origin; (d) dipole, source and sink placed apart at a
distance 2a inclined at an angle α; and (e) doublet, is a dipole as m goes to infinity and a goes to
zero;
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As stated previously, we can superimpose these complex potential functions to rep-

resent complex flow fields. By superimposing a free stream velocity with a doublet, both

of which are inclined at an angle α, we can obtain the new potential function as shown in

equation 3.21:

w(s) =
µ
V s+

2µ

2πs

¶
e−iα (3.21)

If the doublet strength µ is chosen such that µ = r22πV this potential function can be used to

describe the flow around a circle of radius r. Substituting the value for µ and differentiating

with respect to s the flow around a circle can be described by equation 3.22:

dw

ds
= V e−iα

Ã
1− r

2

s2

!
(3.22)

Figure 3.2 represents an example of the flow around such a circle. For this case, the circle

was the unit circle and the free stream velocity was inclined to an angle of 15 degrees. This

figure shows the velocity vectors around the circle along with the stream lines. The velocity

vectors are equal in magnitude on opposite sides of the circle, which means the pressure is

also equal. With the pressure being equal on both sides of the circle, there will be no net

force implying the lift is zero.

Figure 3.2: Flow around a unit circle, which is represented by the superposition of a uniform
stream and a doublet.

Next, by adding a vortex located at the center of the circle, with fluid flowing in a

clockwise direction, we can change flow field. The new complex potential function is shown
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in equation 3.23:
dw

ds
= V e−iα

Ã
1− r

2

s2

!
+
iΓ

2πs
(3.23)

The effects of this vortex can be visualized by observing the differences between Figures 3.2

and 3.3. By adding flow tangent to the circle in a clockwise direction, the flow velocity

is increased along the top of the circle and decreased along the bottom. Now the velocity

tangent to the circle is faster along the top causing a low pressure and thus resulting in a

lifting force. However, how much circulation should we add with the vortex?

Figure 3.3: Flow around a unit circle with circulation, which is represented by the superposition
of a uniform stream, doublet, and a vortex. The uniform stream inclined at an angle α does not
appear to line up with the stream lines. This misalignment is from the vortex adding circulation
to the flow. However, one should note that at infinity the uniform flow field and the stream lines
match.

In the previous chapter on shape generation it was shown that a unit circle could

be transformed into an airfoil section. Therefore, if we can calculate the flow around this

unit circle, then it is possible to map the flow from the s plane to the ζ plane yielding the

flow around an airfoil section as shown in Figure 3.4. This mapping can be achieved since

the conformal mapping process left us with three functions: (1) s as a function of z; (2) z

as a function of z0; and (3) z0 as a function of ζ; In addition from potential flow we have

a function relating w as a function of s. Therefore by applying the chain rule as shown in
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equation 3.24 we can solve for the flow around the airfoil:

dw

dζ
=

dw

ds

ds

dz

dz

dz0
dz0

dζ
(3.24)

Furthermore, it was shown that the point at s = 1 + i0 on the unit circle transforms

into the trailing edge of the wing. In order for the flow to leave the wing smoothly, there must

be a stagnation point, zero velocity, at the trailing edge. Therefore, the vortex strength, Γ,

can be calculated by substituting the point s = 1+ i0 into equation 3.23 and setting it equal

to zero. As shown in equation 3.25, Γ is a function of the fluid velocity, V , and angle of

attack, α:

Γ = 4πV sinα (3.25)

Figure 3.4: Flow around an airfoil section with α equal to 5 degrees.

Once the velocity profile is known surrounding the airfoil section, we can apply

Bernoulli’s equation to get the pressure distribution. This pressure distribution can be

non-dimensionalized by the dynamic pressure allowing for the evaluation of the pressure dis-

tribution for a wing section over an entire subsonic flight regime. This non-dimensionalized
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pressure is called the coefficient of pressure and is shown in equation 3.26:

cp = 1−
µ
V

V∞

¶2
(3.26)

The results of transforming the velocity profile found in Figure 3.4 into a pressure distribution

is shown Figure 3.5. The negative pressure coefficients represent a negative pressure, thus

resulting in lift.

Figure 3.5: Pressure distribution surrounding an airfoil section with α equal to 5 degrees.
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3.2 Aerodynamics of Wing Using the Vortex Panel

Method

The previous solution was for a wing section and for assumed two-dimensional flow. However,

this two-dimensional assumption is valid only for wings that can be modeled as having an

infinite span. An infinite span is when the span of the wing is much larger than the chord.

An example of a such a wing would be that of a glider. Since gliders have long slender wings,

most of the flow is two dimensional with no flow along the wing. Due to the lack of flow

along the wing there is less induced drag making these wings ideal for gliding. However,

when maneuvering is important, such as with our case, the wing should have a much lower

aspect ratio. The lower aspect ratio reduces the bending moment at the root of the wing.

When a wing has finite span, otherwise known as low aspect ratio, three dimensional

flow effects become important. This importance stems from the high pressure on the bottom

of the wing trying to equalize with the low pressure on the top. This equalization occurs

at the wing tips and is the cause of what is known as wing tip vortices. These tip vortices

cause a downwash of velocity on the wing, resulting in loss of lift and an increase in induced

drag. Therefore, in order to solve for the aerodynamics of wing with a finite span, we must

choose a method capable of capturing these physics.

To capture the physics of a finite span, a vortex panel method will be used. This

panel method is a simplified version of the vortex lattice method, which is an industry

standard. The major difference is that the vortex panel method consists of panels only

in the spanwise direction, while the lattice method has panels in both the spanwise and

chordwise directions. Therefore, the vortex panel method may have 10 panels to model the

flow over the wing, while the lattice method may have 100. This means that only a 10x10

matrix has to be inverted for the solution to a vortex panel method, while a 100x100 matrix

has to be inverted for a vortex lattice method. By reducing the number of panels, the time

needed for a solution is greatly reduced and, as mentioned previously, this reduction becomes

important in a dynamic simulation.

The main idea behind these vortex methods is to solve for the circulation strength of
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each vortex, Γn, located on each panel. The lift of each panel is directly proportional to this

circulation strength through equation 3.27:

ln = ρ∞U∞Γn (3.27)

The velocity induced from a vortex is related to the strength of the vortex, Γ, by the law of

Biot and Savart that yields the relationship shown in equation 3.28:

~dvm =
Γn(~dl × ~r)
4πr3

(3.28)

where ~dl is the vector representing a vortex filament and ~r is the vector relating the normal

distance from the vortex filament in which the velocity is desired.

In order to implement this method, a vortex filament is placed on each panel. This

filament starts at positive infinity and goes to a point located at the left hand side 1
4
chord

point of the panel [Bertin and Smith, 1998]. It then travels along the 1
4
chord point to the

right hand side of the panel. Finally the vortex filament terminates at positive infinity as

shown in Figure 3.6. In addition to the vortices, there is a control point centered on each

panel at the 3
4
chord point as shown in figure 3.6.

To solve for the circulation strength of a vortex, a boundary condition is applied

at the control point. The applied boundary condition states that the flow must remain

tangent to the wing everywhere. Therefore, the flow normal to the wing must be zero. If

we had one vortex and one control point we could apply equation 3.28 with the boundary

condition and solve for the unknown circulation strength, Γ. This method can be extended

to multiple panels through the principle of superposition. If we have N panels, then there

will be N horseshoe vortices. Therefore we can develop an equation with N unknowns. For

example, consider one control point m. The velocity induced at this control point becomes

the combined effect of each vortex with circulation strength Γn. Then, applying the boundary

condition that this velocity, Vm, normal to the wing at the control point is zero, we end up

with an equation with N unknowns as shown in equation 3.29:

~dVm =
NX
n=1

~Cm,nΓn (3.29)

By choosing the number of control points equal to the number of panels we are left with a

square matrix, which can be inverted to solve for the circulation of each vortex, Γn.
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Figure 3.6: The layout of the horseshoe vortices located at the 1
4 chord point of the wing along

with the control points located at the 3
4 chord point.

3.3 Aerodynamics of Wing Combining Conformal Map-

ping and Vortex Panel Method

We can obtain the lift of the wing from the vortex panel method and then approximate the

distribution of this lift using conformal mapping. This combination is done by calculating

the potential flow at each spanwise station and substituting the circulation Γ found from the

vortex panel method, thus giving the flow around a circle at each spanwise station. Since

each wing section was generated from a circle, the flow around the wing can be calculated

through a geometric relation, as described in the conformal mapping section.

Since the potential flow theory used is based on a two-dimensional analysis and the
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vortex panel method considers three dimensional effects, two steps must be taken to inte-

grate these methods. First, the Kutta condition, which states that the flow from the upper

and lower surface must leave the wing smoothly, must still be satisfied. By choosing s in

equation 3.23 such that it corresponds to the trailing edge of the wing, we can solve for the

angle of attack, α, that will ensure the velocity at the trailing edge is zero. Again the point

s = 1 is used since it corresponds to the trailing edge yielding equation 3.30:

α(η) = sin−1
Ã
Γ(η)

4πV

!
=
Γ(η)

4πV
(3.30)

This result is one that we would expect. Since the flow is circulating around the wing tips

due to the high pressure on the bottom of the wing and the low pressure on top, there is

some downwash. This downwash will change the angle of attack of the free stream velocity

relative to the panel.

The second factor to consider is that we must ensure that the total lift of each panel

is equal to the lift found from equation 3.27. Therefore, a direct comparison is made and the

free stream velocity is scaled slightly at each panel to insure the match. Again this result is

one that we would expect. Because the vortex panel method is a three-dimensional analysis,

there will be some velocity flowing along the span of the wing. This flow along the span of

the wing will cause the incident velocity flowing over the wing to be less.

The aerodynamic code was validated against two other codes: NASTRAN and a

Vortex Lattice Code. The results of these comparisons in Figure 3.7 show the code does an

excellent job of predicting the loads. In addition, this method allows for calculations to be

made in less than a quarter of a second on a desktop PC with the accuracy of the results

shown [Gern, et. al., 2001]. Other benefits include that this combined method does not

assume symmetry and the locations of the vortices and control points are calculated directly

from the shape generation in the previous chapter. Therefore, it will have the flexibility to

be used in a six degrees of freedom simulation.
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Figure 3.7: Planform evaluated using three models: NASTRAN, vortex lattice method, and com-
bined method. The shown results are the ∆Cp assuming a rigid wing with no twist at 5 degrees
angle of attack and a dynamic pressure of 2.5 psi.



Chapter 4

Formulation of Dynamics Module

Using the steady aerodynamic’s presented in the previous chapter the forces over the entire

wing can be calculated. By representing these forces as a force couple system located at the

center of mass, the equations of motion can be applied and the rigid body motion of the

vehicle can be determined. While these forces are calculated from steady aerodynamics, they

can be used for dynamic analysis since the motions occur at a relatively low frequency. This

chapter is devoted to developing these equations of motion and noting the assumptions made

to derive them. While the final equations are included in many sources, their derivations are

included for completeness [Bryson, 1994, Ashley, 1992].

4.1 Coordinate System

Previously when describing the shape and aerodynamics of the wing, a fixed right handed

coordinate system with the y axes pointing towards the port wing has been used. However,

when describing the rigid body dynamics of such a wing it is helpful to have two coordinate

systems: one fixed to the wing and the other fixed to the earth. In addition to the extra

coordinate system, the coordinate system fixed to the wing is still right handed, except the y

axes now points towards the starboard wing. While confusing, this change in the coordinate

system is used to remain true to convention.

31
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The dynamics used to calculate rigid body motion will be relative to the non-inertial

axes fixed to the body, while position will be described relative to the coordinate system

fixed to the earth. For example, the equations of motion will include velocities that are

relative to the axes system fixed to the vehicle, while a time history of these velocities will

be used to describe the vehicles position relative to the earth.

The rotating coordinate system fixed to the wing brings rise to some additional equa-

tions. To understand these additional equations, we will begin by calculating the velocity of

the mass shown in Figure 4.1a. The velocity of the mass, ~̇ri, must be written relative to an

inertial axes. Using vector addition this derivative can be re-written as follows:

~̇ri = ~̇rc + ~̇ρi (4.1)

Figure 4.1: Coordinate system showing both the inertial axes fixed to the earth and the rotating
system attached to the body.

Since ~rc is relative to the inertial axes, its derivative is simply the velocity of point

c, the center of mass, thus it can be denoted by Vc. However, ~ρi is relative to a rotating

axes as shown in Figure 4.1. This rotation means that not only is it possible for the vector

to change, but the axes can change as well. Therefore, the chain rule must be applied. For

example, let ~ρi be the vector represented by equation 4.2:

~ρi = xı̂+ y̂+ zk̂ (4.2)
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Then its derivative becomes:

~̇ρi = ẋı̂+ ẏ̂+ żk̂ + x˙̂ı+ y ˙̂+ z
˙̂
k (4.3)

(a) (b)

Figure 4.2: The following figures shows the rotating coordinate system: (a) the small angle ap-
proximation; and (b) the derivatives represented in vector form.

The first part of the derivative, ẋı̂ + ẏ̂ + żk̂, is the velocity of the mass relative to

point c and will be denoted by Vrel as shown below:

~̇ρi = Vrel + x˙̂ı+ y ˙̂+ z
˙̂
k (4.4)

However, the second part of the derivative is more complicated. In order to determine an

expression for x˙̂ı + y ˙̂ + z
˙̂
k, it is helpful to visualize the rotation of the axes and what is

happening to the unit vectors as shown in Figure 4.2. In Figure 4.2a an expression for dı̂ and

d̂ can be determined. By assuming dθ is a small angle then dı̂ and d̂ can be approximated

by the following geometric relationships given by equation 4.5:

dı̂ = dθ̂ ; d̂ = −dθı̂ (4.5)

Then dividing both sides of equation 4.5 by dt the equation reduces to the following:

dı̂

dt
=
dθ

dt
̂ ;

d̂

dt
= −dθ

dt
ı̂ (4.6)

˙̂ı = Ω̂ ; ˙̂ = −Ωı̂
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Plotting the vectors represented in equation 4.6 as shown in Figure 4.2b we can see that the

derivative of a unit vector is the cross product between the vector of rotation, Ω, and the

unit vector itself as shown in equation 4.7

˙̂ı = Ω× ı̂
˙̂ = Ω× ̂ (4.7)

˙̂
k = Ω× k̂

Thus the final expression for ~̇ρi becomes:

~̇ρi = Vrel + Ω× ~ρi (4.8)

It should be noted that the expression shown in equation 4.8 is true for any vector described

in a rotating coordinate system and will be used throughout the derivation below.

4.2 Non-Linear Equations of Motion

4.2.1 Translational Equations

We begin with Newton’s second law of motion, which states that the sum of the forces is

equal to mass times its acceleration as shown in equation 4.9:

X
~F = m~a (4.9)

This law cannot be proven analytically and is instead validated only from empirical data.

Furthermore, this law can be manipulated to many forms, which can be chosen according

to the particular solution methods being used. By replacing the acceleration vector in

equation 4.9 with the change in velocity, equation 4.9 becomes:

X
~F =

md(~V )

dt
(4.10)

If the mass is constant with respect to time the mass can be moved inside the derivative

and the sum of the forces becomes equal to the change in linear momentum as shown in
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equation 4.11: X
~F =

d(m~V )

dt
= ~̇G (4.11)

Figure 4.3: Diagram of the system to be simulated, where Ω is the rotation of the body axes
located at the center of mass and ω is the rotation of the body of mass. The inertial axes system is
represented by the subscript i.

Figure 4.3 represents the desired system for our simulation. Applying Newton’s sec-

ond law, equation 4.11, to the elemental masses of Figure 4.3 we get the following equation

of motion: X
~F =

d
³P

mi ~̇ri
´

dt
(4.12)

Using vector addition ~ri can be replaced by ~rc + ~ρi where the subscript c represents the

center of mass and the subscript i represents the vector connecting the ith mass element to

the center of mass. Making this substitution, the new equation of motion can be represented
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by equation 4.13: X
~F =

d
³P

mi(~̇rc + ~̇ρi)
´

dt
(4.13)

The expression for ~̇rc becomes the velocity of the center of mass, Vc, and since ~̇ρi is relative

to a rotating coordinate system it is replaced with the expression found in equation 4.8. The

new equation of motion is shown below:

X
~F =

d (
P
mi(Vc + Vrel + Ω× ρi))

dt
(4.14)

We will assume the body is rigid in order to simplify this equation. By making this

assumption we are implying that the mass will not move relative to the center of mass, c,

which makes Vrel equal to zero. In contrast, the goal of this model is to determine the amount

of work necessary to move this mass against its external forces. However, we can make this

assumption because the inertial effects of these motions will be relatively small compared to

the overall dynamics of the vehicle. Another simplification can be made since point c is the

center of mass. With this assumption
P
miρi becomes equal to zero by definition. These

simplifications yield a new equation of motion shown below:

X
~F =

d (mVc)

dt
(4.15)

The velocity of the body’s center of mass, Vc, is relative to the earths axes while

most of the forces on the body have been calculated relative to the rotating axes. For these

reasons it is helpful to describe the dynamics relative to the moving coordinate system. This

transformation can be done using the transformation of a time derivative, which transforms

the derivate from one coordinate system to another as shown in equation 4.16:d~Vc
dt


e

=

d~Vc
dt


b

+ ~Ω× ~Vc (4.16)

In addition, if we fix the rotating coordinate system to the body, Ω becomes equal to ω

reducing the equation of motion to the following:

X
~F = m

d~Vc
dt


b

+ ~ω × ~Vc

 (4.17)
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where ³
~Vc
´
b
= uı̂+ v̂+ wk̂ (4.18)

and

~ω = pı̂+ q̂+ rk̂ (4.19)

By separating equation 4.17 into component form we get the following first order equations

used to describe translational motion:

u̇ =
Fx
m
− qw + rv (4.20)

v̇ =
Fy
m
− ru+ pw

ẇ =
Fz
m
− pv + qu

where the forces, F , are relative to the rotating body axes. These forces can be broken

down into three groups aerodynamic, propulsive, and gravitational. The aerodynamic and

propulsive forces are calculated relative to this rotating axes. However, the gravitational

forces of the vehicle is relative to the earth.

4.2.2 Rotational Equations

While the above equation of motion is based on linear momentum and used to describe

translational motion, there exists a set of parallel equations based on angular momentum

and are used to describe rotational motion as shown in equation 4.21:

X
~M =

d (
P
(ρi ×miṙi))

dt
= ~̇Hc (4.21)

Again, the derivatives are with respect to the inertial axes and the moments are determined

relative to the rotating axes. Therefore, we use the transformation of a time derivative to

transfer the time derivative to the coordinate system relative to the rotating body. This

transformation is shown below in equation 4.22:

X
~M =

d ~Hc
dt


b

+ ~ω × ~Hc

 (4.22)
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Referring to Figure 4.3 the angular momentum Hc can be re-written and as shown below:

~Hc =
X
(ρi ×miṙi) (4.23)

=
Xh

ρi ×mi

³
~̇rc + ~̇ρi

´i
=

Xh
ρi ×mi

³
~Vc + ~Vrel + ω × ρi

´i
The term for the expression of ~Hc containing ~Vc can be re-written as

P
ρi ×mi

~Vc = −~Vc ×P
miρi. Since point c is the center of mass then

P
miρi = 0 by definition. The second term

~Vrel is zero from the assumption that the vehicle is a rigid body. That leaves the following

expression for ~Hc as shown in equation 4.24:

~Hc =
X
[ρi ×mi (ω × ρi)] (4.24)

=
X³

pmi

³
ρ2yi + ρ2zi

´
− qmiρxiρyi − rmiρxiρzi

´
ı̂

+
³
qmi

³
ρ2zi + ρ2xi

´
− rmiρyiρzi − pmiρxiρyi

´
̂

+
³
rmi

³
ρ2xi + ρ2yi

´
− pmiρxiρzi − qmiρyiρzi

´
k̂

Furthermore, since we have chosen point c as the center of mass, equation 4.23 becomes:

~Hc = (pIxx − qIxy − rIxz) ı̂
+ (qIyy − rIyz − pIxy) ̂ (4.25)

+ (rIzz − pIxz − qIyz) k̂

Since the planform is symmetric about one axes in both the xy and yz planes both Ixy

and Iyz become zero. Substitution of equation 4.25 into equation 4.22 and separating into

component form we get the following three first order equations used to describe rotational

motion:

ṗ =
−IzzL− Ixz (Ixx − Iyy + Izz) pq + (I2xz − IyyIzz + I2zz) qr − IxzN

I2xz − IxxIzz
(4.26)

q̇ =
M − Ixzp2 + (Izz − Ixx) pr + Ixzr2

Iyy

ṙ =
−LIxz −NIxx + (IxxIyy − I2xx − I2xz) pq + Ixz (Ixx + Izz − Iyy) qr

IxxIzz − I2xz
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4.2.3 Flight Path Equations

It is not only important to know the vehicle’s performance as a rigid body, but it is equally

important to know its flight path and angle with respect to the inertial axes. This flight path

becomes important when navigating locations or determining what relationship the vehicle

has with respect to the earth. For example, the vehicle cannot take a picture of the ground

if it is pointed or oriented in the wrong direction. Relating the vehicle back to the inertial

axes can be achieved through a couple of different transformations. The one shown below

and most commonly used is a transformation using Euler-angles. This transformation begins

lined up with the inertial axes. Then the axes is yawed about the z-axis, ψ, pitched about

the y-axis, θ, and finally it is rolled about the x-axis, φ. The order of operations is important.

However, the transformation can be reversed by multiplying by the transformation matrix’s

transpose. The following figures and equations represent each step of the transformation.
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First the yaw as shown in Figure 4.4 and represented by equation 4.27:

(a) (b)

Figure 4.4: The first Euler-angle rotation is a yaw about the z-axes: (a) the z-axes remains
stationary; while (b) a positive rotation occurs about the z-axes.

T2e
x2

y2

z2

 =

cosψ sinψ 0

− sinψ cosψ 0

0 0 1



xe

ye

ze

 (4.27)

or
xe

ye

ze

 =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1



x2

y2

z2

 (4.28)

Te2
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Second the pitch as shown in Figure 4.4 and represented by equation 4.29:

(a) (b)

Figure 4.5: The second Euler-angle rotation is a pitch about the y-axes: (a) the y-axes remains
stationary; while (b) a positive rotation occurs about the y-axes.

T32
x3

y3

z3

 =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ



x2

y2

z2

 (4.29)

or
x2

y2

z2

 =

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ



x3

y3

z3

 (4.30)

T23
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Third, the roll as shown in Figure 4.6 and represented by equation 4.31:

(a) (b)

Figure 4.6: The third Euler-angle rotation is a roll about the x-axes: (a) the x-axes remains
stationary; while (b) a positive rotation occurs about the x-axes.

Tb3
xb

yb

zb

 =

1 0 0

0 cosφ sinφ

0 − sinφ cosφ



x3

y3

z3

 (4.31)

or
x3

y3

z3

 =

1 0 0

0 cosφ − sinφ
0 sinφ cosφ



xb

yb

zb

 (4.32)

T3b
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With the three transformations known, it is possible to transfer between the two

coordinate systems, body fixed versus earth fixed. As described earlier it is important to

represent the flight path equations relative to the inertial reference coordinate system fixed

to the earth. This transformation is shown below in equation 4.33.
ẋe

ẏe

że

 = Te2T23T3b

u

v

w

 (4.33)

ẋe = u cos θ cosψ + v(sinφ sin θ cosψ − cosφ sinψ) (4.34)

+ w(cosφ sin θ cosψ + sinφ sinψ)

ẏe = u cos θ sinψ + v(sinφ sin θ sinψ + cosφ cosψ) (4.35)

+ w(cosφ sin θ sinψ − sinφ cosψ)
że = −u sin θ + v sinφ cos θ + w cosφ cos θ (4.36)

With the addition of these flight path equations, comes three new unknowns, which

are the flight path angles relative to the inertial axes. These flight path angles φ, θ, and

ψ can be represented as states to the system. In order to determine a representation of

these new states, we must represent them as a function of pre-existing states. To begin, the

angular velocity of the body, ω, can be represented in two ways as shown in equations 4.37

and 4.38, [Ashley, 1992].

ω = pı̂b + q̂b + rk̂b (4.37)

= φ̇ı̂b + θ̇̂3 + ψ̇k̂2 (4.38)

Next, using the transformations defined above all of the unit vectors must be transformed

to the body fixed axis as shown in equations 4.39 and 4.40.

̂3 = ̂b cosφ− k̂b sinφ (4.39)

k̂2 = cos θk3 − sin θı̂3 (4.40)

= cosφ cos θk̂b + sinφ cos θ̂b − sin θı̂b
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Finally, substitution of equations 4.39 and 4.40 into equation 4.38 and equating like terms

we can write an expression for the flight path angles in terms of existing states.

φ̇ = p+ q sinφ tan θ + r cosφ tan θ (4.41)

θ̇ = q cosφ− r sinφ (4.42)

ψ̇ = q sinφ sec θ + r cosφ sec θ (4.43)

In summary, the equations derived above are necessary to simulate the flight of a wing

with six degrees of freedom. These 12 equations are strongly coupled and highly non-linear

and are again shown below:

u̇ =
Fx
m
− qw + rv

v̇ =
Fy
m
− ru+ pw

ẇ =
Fz
m
− pv + qu

ṗ =
−IzzL− Ixz (Ixx − Iyy + Izz) pq + (I2xz − IyyIzz + I2zz) qr − IxzN

I2xz − IxxIzz
q̇ =

M − Ixzp2 + (Izz − Ixx) pr + Ixzr2
Iyy

ṙ =
−LIxz −NIxx + (IxxIyy − I2xx − I2xz) pq + Ixz (Ixx + Izz − Iyy) qr

IxxIzz − I2xz
ẋe = u cos θ cosψ + v(sinφ sin θ cosψ − cosφ sinψ)

+ w(cosφ sin θ cosψ + sinφ sinψ)

ẏe = u cos θ sinψ + v(sinφ sin θ sinψ + cosφ cosψ)

+ w(cosφ sin θ sinψ − sinφ cosψ)
że = −u sin θ + v sinφ cos θ + w cosφ cos θ
φ̇ = p+ q sinφ tan θ + r cosφ tan θ

θ̇ = q cosφ− r sinφ
ψ̇ = q sinφ sec θ + r cos φ sec θ
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4.3 Decoupled Equations of Motion

It is sometimes helpful to decouple the longitudinal from the lateral dynamics. In order

to accomplish this task, we must make some assumptions. To begin, we must assume that

the aircraft is symmetric about the x-z plane, i.e. left wing is the same as the right. This

assumption will allows for Iyz = Iyx = 0 and will insure that u, w, q, and θ will not produce

any Fy, L and N ; and v, p, r, φ and ψ will not produce any Fx, Fz and M , [Bryson, 1994].

Next, we must assume that we begin with steady rectangular flight, where steady rectangular

flight is achieved when u̇ = v̇ = ẇ = ṗ = q̇ = ṙ = 0 and the wings are level, φ = 0. By

assuming that v, p, and r are initially zero then they will remain zero and the longitudinal

equations can be decoupled as shown below, [Ashley, 1992]:

u̇ =
Fx
m
− qw (4.44)

ẇ =
Fz
m
+ qu (4.45)

q̇ =
M

Iyy
(4.46)

θ̇ = q (4.47)

ẋe = u cos θ + w sin θ (4.48)

że = −u sin θ + w cos θ (4.49)

Furthermore, by assuming that u, w, and q are initially zero then they too will remain zero

and lateral equations can be decoupled as shown below:

v̇ =
Fy
m

(4.50)

ṗ =
−IzzL− IxzN
I2xz − IxxIzz

(4.51)

ṙ =
−LIxz −NIxx
IxxIzz − I2xz

(4.52)

ẏe = v cosφ cosψ (4.53)

φ̇ = p (4.54)

ψ̇ = r cosφ (4.55)
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With the system split into the longitudinal and lateral equations of motion, the aircrafts

natural modes of oscillation can be observed and individually compensated.



Chapter 5

Formulation of Control Module

In review, we have discussed three of the four modules that make up the simulation. First,

the shape generation module generates a wing shape based on certain shape functions and

shape parameters. Second, the aerodynamics module calculates the forces on the generated

wing shape based on input from the dynamics and the shape generation modules. The

third module then uses rigid body dynamics to calculate the trajectory of the system. By

combining these three modules: Shape Generation, Aerodynamics, and Dynamics, shape

parameters can be specified with an output of trajectory as shown in Figure 5.1a. However,

using ones intuition to determine what shape parameters are necessary to achieve a given

trajectory can become quite challenging even for the sharpest minds. Therefore, by lineariz-

ing the input output relationship shown in Figure 5.1b we can implement a zero error linear

controller to achieve the desired dynamics, Figure 5.1c.

Since the system is observable and controllable we decided to use full state feed back

for control. This method of control can be simplified further by feeding back all of the states

and not using an observer. With the end goal of this research concerned with the energy

necessary to morph a wing in flight and not to design a practical controller, the absence of

an observer is acceptable. With this said, we investigate two possible methods of achieving

a zero error tracking with full state feedback. The first method used full state feedback

with a feed forward term that would allow for the steady state response to have zero error.

47
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(a) (b) (c)

Figure 5.1: Block diagrams describing the control methodology: (a) program allows for shape
parameters to be entered while ouputing the trajectory; (b) input output relationship is linearized
to develop a controller; and (c) controller is implemented to track a desired trajectory.

This method shifts the steady state value based on the linear equations, which means that

non-linearities could result in error. The second method augments the state matrix with the

integral of the error in the states we wish to track. Therefore, slight variations in linearity

will not cause any problems.

5.1 Open Loop State Equations

To begin the design of the compensator, the system shown in Figure 5.1a , which is repre-

sented by equations 5.1- 5.10, was first linearized by calculating the Jacobian:

u̇ =
Fx(u, w, q, camberx, reflexx, twistx)

m
− qw + thrustx

m
(5.1)

ẇ =
Fz(u, w, q, camberx, reflexx, twistx)

m
+ qu (5.2)

q̇ =
M(u, w, q, camberx, reflexx, twistx)

Iyy
(5.3)
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θ̇ = q (5.4)

ẋe = u cos θ + w sin θ (5.5)

że = −u sin θ + w cos θ (5.6)

˙camberx =
camberu − camberx

τcamber
(5.7)

˙reflexx =
reflexu − reflexx

τreflex
(5.8)

˙twistx =
twistu − twistx

τtwist
(5.9)

˙thrustx =
thrustu − thrustx

τthrust
(5.10)

To avoid inaccuracy in the numerical simulation, first order dynamics have been added to

the inputs of the shape parameters. One should note, while these equations represent the

longitudinal dynamics and only three shape parameters were chosen as inputs, the model

is not limited to these. For example, if sweep was desired as a possible shape parameter,

it would be necessary to make a modification to the code. However, planforms, initial

conditions, and certain control parameters can easily be changed in the input file to the

simulation.

The Jacobian about the desired trimmed condition is calculated as shown in equa-

tions 5.11 and 5.12:

A =
∂f

∂x
|xo,uo (5.11)

B =
∂f

∂u
|xo,uo (5.12)

Upon completion of this linearization, the system in Figure 5.1b can be represented by

equation 5.13:

ẋ(t) = Ax(t) +BU(t) (5.13)

where x(t) represent the longitudinal states and U(t) represent the inputs to the system as
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shown below:

x(t) =



u

w

q

θ

xe

ze

camberx

reflexx

twistx

thrustx



;U(t) =



camberu

reflexu

twistu

thrustu


(5.14)

With the plant now modeled as a linear time invariant system as shown in Figure 5.2,

we can represent the system in algebraic form so that the new augmented state matrix can

be determined. Figure 5.2 shows the addition of the integral of the states we wish to track, θ,

xe, and ze. Adding these states to the system will prevent small non-linearities from causing

problems in the steady state tracking. Again referring to Figure 5.2, the open loop state

equations can be written as:

ξ̇(t) = CIξ(t)−NIR(t) (5.15)

ẋ(t) = Ax(t) +BU(t) (5.16)

where

ξ(t) =


R
(θ error)R
(xe error)R
(ze error)

 ;R(t) =

θ(t)

xe(t)

ze(t)

 (5.17)

When these open loop state equations are augmented they become:(
ξ̇(t)

ẋ(t)

)
=

"
0 CI

0 A

#(
ξ(t)

x(t)

)
+

"
0

B

#
u(t)−

"
NI

0

#
R(t) (5.18)

At this point, if we looked at the eigenvalues of the augmented A matrix the following

poles would appear: The system would have five poles at zero, two of which represent the

rigid body motion of xe and ze. The other three would be from the three integrators added to
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Figure 5.2: Block diagram of the full state and integral error feedback controller.

the system to ensure zero steady state error. Next there would be four real poles representing

the first order time constants place on the inputs to the system. The remaining four complex

poles would represent the short and long period of the rigid body. The long period, known

as the phugoidal pitching mode, is highly undamped and depending on the location of the

center of mass and planform configuration can be unstable. The short period generally dies

out very fast; however, if flexibility is added to the structure, one must be careful not to

allow the first bending mode to couple with the short period.

5.2 Closed Loop State Equations

Referring to Figure 5.2, we have chosen to track θ, xe, and ze, yielding the following values

for CI and CR:

CI = CR =


0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

 (5.19)
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The states u, w, q, camberx, reflexx, twistx, and thrustx are compared to their initial

conditions yielding the following for Cx:

Cx =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1


(5.20)

Next we chose to use a linear quadratic regulator, LQR, algorithm to choose the

control gains. While this method does not guarantee the best tracking versus actuator

power, it does serve as a good starting point. The LQR algorithm is based on optimization

of a quadratic cost function, J , as shown in equation 5.21:

J =
Z ∞
0

h
xT (t)Q1x(t) + U

T (t)Q2U(t)
i
dt (5.21)

This algorithm allows for the user to trade off importance between control effort and regu-

lation of the error in the states. If more weight is given to the control effort, the gains will

be chosen in such a way to lower the control effort.

For Q1 we have chosen to minimize the integral of the error in the states we wish to

track, ξ(t) as shown below:

Q1 = C
T I(3)C (5.22)

where,

C =


1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0

 (5.23)

If the integral of the error in the tracking states goes to zero, then we can be assured that the

system is indeed tracking. Equation 5.24 shows Q2, which has been chosen as the identity

matrix giving equal weighting to each control input.

Q2 = I(4) (5.24)
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In order to get the desired output it may be necessary to change the weighting on some

states or control inputs. For example, if pitch, θ, is not responding as fast as altitude, ze,

more weight could be given to this state by changing C:

C =


50 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0

 (5.25)

Upon completion of the control gain calculations the closed loop eigenvalues can be

determined from the closed loop state matrix. From Figure 5.2, U(t) can be written as

follows:

U(t) = −KIξ(t) +KR [NRR(t)− CRx(t)]−KxCxx(t) (5.26)

Substitution of equation 5.26 into equation 5.18 and setting R(t) = 0, the closed loop state

matrix becomes:

Acl =

"
0 CI

−BKI A− BKRCR −BKxCx

#
(5.27)



Chapter 6

Energy Calculations

While there are two important energy considerations, strain energy needed to morph the

structure and energy needed to overcome the aerodynamic forces, this work is concerned

with the latter. We cannot predict the configuration of the active materials that will make

up the morphing wing; therefore, we are not able to predict how much energy will be required

to strain the wing structure. We can envision some designs that will have very little strain

energy in the structure after morphing. Those designs could have variable length links or

members that cannot be back driven by wing forces. We can also envision some designs that

will have significant amounts of strain energy in the structure. These designs could have

actuators straining the structure of a typical wing box. Therefore, we are addressing the

aerodynamic loads only. To calculate this energy, we first determine the power necessary to

morph the wing, and then this power is integrated to determine the energy.

6.1 Power Calculations

To calculate the power, information is fed from both the aerodynamics module and the

shape module as shown in Figure 6.1. Three separate power values are of concern. First

referring to Figure 6.2, the power necessary to twist each section, Pη, is calculated from the

moment about the twist axis times the angular velocity of the particular section as shown

54
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Figure 6.1: Block diagram showing where the power is calculated.

in equation 6.1:

Pη =
X
n

(rn × Fn) dθ (6.1)

Second, power to morph any location, k, on the wing is calculated by the dot product between

the force and velocity of the given section as shown in equation 6.2:

Pk = Fk • drk (6.2)

The velocity of point k is determined relative to a plane that runs from the leading edge to

the trailing edge of each wing section as shown in Figure 6.2. The third power is the total

power assuming reversibility. This power shown in equation 6.3 is used as a metric that will

be helpful in comparing different control schemes:

Ptotal =
X
k

Pk +
X
η

Pη (6.3)
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Figure 6.2: Model used to calculate the power requirements at each section.

6.2 Energy Calculated from the Power

Once the power has been calculated, we can proceed to determine the necessary energy

requirements. We are concerned with two energy values that will help serve as a metric, one

assumes reversibility and the other does not. In addition to these energy requirements, we

want to know the force displacement characteristics of the most demanding actuator. This

plot will help in determining what type of actuators can be used for the job.

Based on the power definitions defined above, the power is negative when we had to

put energy into the actuator. In contrast, the power is positive when the surface was moved

by the free stream velocity. With that said, in order to obtain the total reversible energy for

the simulation, we must perform the integration shown below in equation 6.4:

Erev =
Z t∞

0
Ptotaldt (6.4)

To determine the irreversible energy, we only integrate the negative portion of this power as

shown in equation 6.5:

E =
Z t∞

0
Ptotaldt | (Ptotal < 0) + 0 | (Ptotal ≥ 0) (6.5)

The last value of concern is the force displacement plot of the most demanding actu-

ator. To create this plot, the most demanding actuator is first determined by scanning Pk

for all values of time. The actuator with the most negative value is then flagged and the

time history of the force versus displacement can be evaluated.



Chapter 7

Conclusions and Future

Enhancements

7.1 Conclusion

The theory behind a computational model has been presented. This model is capable of

predicting the force, stroke, and energy needs necessary to overcome the aerodynamic forces

encountered while in flight. This model is unique in that it allows for a shape to be easily

determined and changed. In addition, the model incorporates a time-efficient aerodynamic

model, validated against more time-expensive codes, that can calculate the air-loads on the

present shape. While the dynamics only include a three degree of freedom system, the

theory has been presented to extend the model into the full six degrees. Finally, a zero error

compensator is presented that allows the user to input a desired course to the model, which

in turn will output the stroke, power, and energy requirements.

In addition to the theory, an overview of the code used to simulate the model is

also presented. This overview includes a step by step discussion of the simulation and is

supported with an actual example. The example includes the input file to the simulation

followed by the output and a description of the these files. This example will serve as a

starting point to further exercise and develop the model.
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7.2 Future Enhancements

There are many enhancements that would serve well if added to the model. First and

foremost would be the addition of a genetic algorithm. Since there are numerous input

parameters that can be varied, it is difficult for the human mind to observe changes specific

to each parameter. With the addition of such an algorithm, which could be added to the

front end of the simulation, it would allow the inputs to the simulation to be varied in a

systematic way, while minimizing the energy requirements of the actuators.

Another possible enhancement would be the inclusion of induced drag effects. Induced

drag is the drag that is caused by the shedding of vortices, which in turn is proportional

to the lift. When a vortex is shed there is an accompanying downwash in velocity. This

downwash in velocity lowers the angle of attack and produces a corresponding force in the

x-direction of the vehicle, which is known as induced drag. The addition of this drag would

allow not only for efficiencies between different planforms to be determined, but would also

allow for yaw control. With a method of yawing the aircraft, the extension of the model into

six degrees of freedom would become a possible feat.

One final enhancement would be to add structural dynamics to the system. Upon

minimizing the energy input to the system, an actual prototype could be designed. This

prototype would have real actuators and some type of structure that would allow for the

above modeled shape changes. The dynamics of this smart structure could feasibly be

added as another module to the pre-existing code. The shape would be generated, the loads

calculated, and the structure would bend accordingly. Then the process would repeat with

the new shape until the system converged. With the addition of the structure would come

new control strategies such as combining twist and camber to control the center of pressure

relative to the elastic axis.

The model presented serves as a starting point to greatly explore the possibility of

flight with morphing surfaces. By simulating the model in a batch style environment allows

for many unattended runs to be calculated allowing for a vast array of shapes and control

laws to be tested. In addition, this model lends itself nicely to be expanded to incorporate
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many features.



Appendix A

Simulation of Formulated Model

A simulation was built based on the model discussed in the previous chapters. The simulation

is a collection of MATLAB m-files and Simulink mdl-files that are integrated in such a way

that allows for un-attended runs. The user can put a series of configuration files in a directory,

which will be read and simulated.

A.1 Simulation Configuration

To begin, the simulation file structure is shown in Figure A.1a. At the top of the hierarchy is

the main directory called wing long, which stands for a wing with longitudinal dynamics. In

this directory there are four sub-directories. The first is the build directory, which contains

all of the files used in the simulation. The second, is the input directory that contains the

input files, which will be discussed later. Third, the output directory contains the simulation

output. The code creates a directory in the output directory. This directory carries the same

name as the input file. If a directory already exists with the name of the input file, then the

code will continue to add a number to the end of the directory till there is no match. The

fourth and last sub-directory is the complete directory. Upon completion of the simulation

the input file is moved to the complete directory.

In order to better understand the code, we will take a closer look at the simulation
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(a) (b)

Figure A.1: Simulation and file structure diagram: (a) File structure of the code used to simulate
the system; and (b) Block diagram of the code used to simulate the system.

block diagram as shown in Figure A.1b. All of the files with the exception of run this.m are

located in the build directory. To begin the simulation, the user starts MATLAB and sets

the path to the wing long directory. Then by typing run this.m the code begins to execute.

If there is a file in the input directory, run this.m will then call main.m. The main.m file

then reads the input file, creates a directory for the output in the output directory. Next,

using the files shown in Figure A.1b block-1, main.m determines the inputs necessary for

trimmed flight based on the initial conditions stated in the input file. Figure A.1b block-2

represents the linearization of the system. Using the inputs found during the trim routine

and initial conditions, the system is linearized.
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Upon completion of the linearization main.m calls the gain calc.m routine to deter-

mine the control gains based on the linear model. As discussed in the control chapter, these

gains are determined through an LQR routine and the weights for this routine are specified

in the input file. Using these control gains the non-linear system is simulated, which is

represented by fig:blkdiag2b block-4. Once the simulation has completed, main.m uses the

output to post-process other information such as power.

At this point the code has all the information necessary, and main.m stores this

information in a file called simout.mat. This file is in a structure format and can be used by

many codes. From here the code proceeds to format the information in a form that is useful

to the user. This format is in the form of five output files as shown in Figure A.1b blocks 6

and 7.

Upon completion, main.m outputs one final file, output.dat. This file consists of all

the files used for the simulation and the dates these files were last modified. This file also

contains all of the input data, trim data, linearized data, gains, and filenames of the output.

The final step occurs when main.m moves the input file to the complete directory followed

by a return to run this.m. If another input file is in the input directory the process repeats.

This repetition allows for the code run unattended until all of the input files are processed.

A.2 Simulation Input

The input to the simulation is contained in a text file. This text file is formated very similar

to a MATLAB m-file, if a line is preceeded with a % symbol then the line will be ignored.

The file contains four sets of data: shape, dynamic, control, and flight path. The shape

information, described in the Shape Generation Chapter, is in the form of a structure as

shown below: For example, when specifying the chord as a function of span, shape(8).data,

we specify a matrix with two rows. The first row specifies span location and the second row

is the actual chord
halfspan

. This can be seen in detail in Figures 2.5a and b.

%========================================
% shape functions structure
% desc - description of parameter
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% var - variable for data
% data - the actual data
% first row is don-dimensionalized span
% second row is value associated with span
% in-between is linearly interpolated
%========================================

shape(1).desc=’xcfunc describes the distribution of the xc mapping parameter’;
shape(1).var=’xcfunc’;
shape(1).data=’[-1 1; 1 1]’;

shape(2).desc=’ycfunc describes the distribution of the yc mapping parameter’;
shape(2).var=’ycfunc’;
shape(2).data=’[-1 0 1; 1 0 1]’;

shape(3).desc=’xtfunc describes the distribution of the xt mapping parameter’;

shape(3).var=’xtfunc’;
shape(3).data=’[-1 1; 1 1]’;

shape(4).desc=’ytfunc describes the distribution of the yt mapping parameter’;
shape(4).var=’ytfunc’;
shape(4).data=’[-1 0 1; 1 0 1]’;

shape(5).desc=’deltafunc describes the distribution of the delta mapping parameter’;
shape(5).var=’deltafunc’;

shape(5).data=’[-1 1; 1 1]’;

shape(6).desc=’xstartfunc describes the leading edge sweep of the wing’;
shape(6).var=’xstartfunc’;
shape(6).data=’[-1 0 1; tan(35*pi/180) 0 tan(35*pi/180)]’;

shape(7).desc=’zstartfunc describes the dihedral of the wing’;
shape(7).var=’zstartfunc’;

shape(7).data=’[-1 0 1; 0 0 0]’;

shape(8).desc=’chordfunc describes the chord of the wing -- nondimensionlized by the half span --’;
shape(8).var=’chordfunc’;
shape(8).data=’[-1 -.442 0 .442 1; .372 .558 1.21 .558 .372]’;

shape(9).desc=’twistfunc describes where the twist is applied to the wing’;
shape(9).var=’twistfunc’;
shape(9).data=’[-1 0 1; 1 0 1]’;

shape(10).desc=’twistaxisfunc describes where the twist axis is on the wing -- percent chord --’;
shape(10).var=’twistaxisfunc’;
shape(10).data=’[-1 1; .25 .25]’;

shape(11).desc=’pretwistfunc describes the geometric pretwist in the wing -- in radians --’;
shape(11).var=’pretwistfunc’;
shape(11).data=’[-1 -.471 -.021 .021 .471 1; -1 4.42 3.70 3.70 4.42 -1]’;

shape(12).desc=’vortex_panels describes the number of panels in the chordwise direction’;
shape(12).var=’vortex_panels’;
shape(12).data=’40’;

shape(13).desc=’chord_panels describes the number of panels on each surface in the chordwise direction’;
shape(13).var=’chord_panels’;
shape(13).data=’20’;

shape(14).desc=’span describes the half span of the wing -- b/2 ft --’;
shape(14).var=’span’;
shape(14).data=’15’;

shape(15).desc=’thickness value 0 to -.1’;
shape(15).var=’xc’;
shape(15).data=’-.1’;

shape(16).desc=’camber value -1 to 1’;

shape(16).var=’yc’;
shape(16).data=’0’;

shape(17).desc=’thickness value towards trailing edge 1 to 1.1’;
shape(17).var=’xt’;
shape(17).data=’1’;

shape(18).desc=’reflex value -1 to 1’;
shape(18).var=’yt’;

shape(18).data=’0’;

shape(19).desc=’trailing edge thickness distribution 0 to .8’;
shape(19).var=’delta’;
shape(19).data=’0’;

shape(20).desc=’twist value -1 to 1 degrees’;
shape(20).var=’th_t’;

shape(20).data=’0’;
%========================================
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The dynamic section contains data the will have an effect on the equations of motion.

These values such as mass, density, and time constants, are specified in a structure format

like that of the shape, and are shown below: If one wanted to change the time constant of

the camber input to .2, then they would change the value for dynamic(7).data to 0.20.

%========================================

% dynamic data for the simulation
% desc - description of parameter
% var - variable for data
% data - the actual data
%========================================
dynamic(1).desc=’mass of the wing in slugs’;
dynamic(1).var=’mass’;
dynamic(1).data=’310.5’;

dynamic(2).desc=’acceleration of gravity ft/s^2’;
dynamic(2).var=’g’;
dynamic(2).data=’32.2’;

dynamic(3).desc=’center of gravity [x,y,z] relative to zeta’;
dynamic(3).var=’cg’;
dynamic(3).data=’[7,0,0]’;

dynamic(4).desc=’mass moment of inertia Iyy slugs ft^2’;

dynamic(4).var=’Iyy’;
dynamic(4).data=’50000’;

dynamic(5).desc=’air density slugs/ft^3’;
dynamic(5).var=’rho’;
dynamic(5).data=’2.38e-3’;

dynamic(6).desc=’initial conditions [uo wo qo tho xo zo tau_camber tau_reflex tau_twist tau_thrust]’;

dynamic(6).var=’xinit’;
dynamic(6).data=’[400 0 0 0 0 0 0 0 0 0]’;

dynamic(7).desc=’time constant for camber’;
dynamic(7).var=’tau_camber’;
dynamic(7).data=’.3’;

dynamic(8).desc=’time constant for reflex’;
dynamic(8).var=’tau_reflex’;

dynamic(8).data=’.3’;

dynamic(9).desc=’time constant for twist’;
dynamic(9).var=’tau_twist’;
dynamic(9).data=’.3’;

dynamic(10).desc=’time constant for thrust’;
dynamic(10).var=’tau_thrust’;
dynamic(10).data=’.3’;

%========================================

The control inputs consist of MATLAB commands and are entered so that the end result

are two weight matrices for the LQR algorithm. These matrices should be set equal to Q1,

state weights, and Q2, control weights.

%========================================
% LQR weights
%========================================
%========================================
% Q2/Q1 larger = more control effort
%========================================
ratio=1;
%========================================

%========================================
% state weights for LQR
% [int_th int_x int_z u w q th x z camber_x reflex_x twist_x thrust_x]
%========================================
H=[1000 0 0 0 0 0 0 0 0 0 0 0 0; 0 1 0 0 0 0 0 0 0 0 0 0 0; 0 0 1 0 0 0 0 0 0 0 0 0 0];
Q1=1/ratio*H’*eye(3)*H;
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%========================================
%========================================
% control weights for LQR
% [camber_u reflex_u twist_u thrust_u]
%========================================
Q2=ratio*[100 0 0 0; 0 100 0 0; 0 0 100 0; 0 0 0 100];

%========================================

The final input is the desired trajectory as a function of time. Simulink will read in these

inputs and linearly interpolate between them.

%========================================
% inputs to simulation
% t th x z
%========================================
in(1,:)=[0 0 0 0];
in(2,:)=[.5 .041 200 0];
in(3,:)=[1 .082 400 0];
in(4,:)=[1.5 .124 600 0];
in(5,:)=[11.5 .124 4600 -500];

%========================================

A.3 Simulation Output

The simulation outputs five files that help in visualizing the results of the simulation. Fig-

ures A.2a and b shows the first of these files, which are the total power requirements and

the force displacement requirements of the most demanding actuator. The overall power re-

quirements refer to the total from all the actuators added together. Figure A.2a also shows

the overall energy requirements assuming both the case if we could capture energy from the

free stream velocity, reversible, and the case if we could not capture this energy, irreversible.

While Figure A.2a refers to the overall power, Figure A.2b refers to the power of only one

actuator, which is the most demanding actuator on the outer surface. This force displace-

ment plot can take on some unique shapes, due to the decoupled twist and camber inputs.

The next output, Figure A.3, is a plot of the control inputs that are feed into the

shape generation. These inputs are actually the states camberx, reflexx, and twistx. We

chose to monitor these states as opposed to the actual input to the system, so that it could

be determined when these inputs became to large.
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(a) (b)

Figure A.2: Plots showing the power requirements of the wing: (a) plot of the power and energy
requirements of the wing versus time; and (b) plot of the force displacement requirements of the
most demanding actuator.

Figure A.3: Plot of the control input to the wing as a function of time.
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The next two output files are movies showing the real time results as the wing maneu-

vers the desired course by morphing from one shape to another. The first movie Figure A.4a

shows the wing in the lower left hand corner while the tracking results are displayed in the

top. The lower right hand corner contains a series of gauges that help to give a sense of what

is happening. Most of the gauges are the kind you would find in a real aircraft panel, vertical

speed indicator, artificial horizon, altimeter, air speed indicator, and a load meter. The other

two gauges display: the current maximum and minimum displacement of the outer surface

of the wing; and the minimum and maximum peak power of the most demanding actuator.

By displaying these two gauges the user can see where the plane required the largest input

and possible adjust the shape, control law, or input accordingly. The second movie is the

same as the first, except the gauges have been replaced by the localized real time power in

and out of the wing.

(a) (b)

Figure A.4: Screen shots from the output movies: (a) screen shot of the movie that demonstrates
the real time tracking and performance capabilities of the wing; and (b) screen shot of the movie
that demonstrates the real time power requirements of the wing.
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The last file in the output is the output.dat file. This file contains all pertinent

information used in running the simulation and is shown below: With this file and the

simout.mat file all of the information shown above could be re-created in a form suitable to

the user.

%============================================================
% Files used in the simulation
%============================================================
Simulation was run at 14-Nov-2001 14:03:41
control_plot.m 02-Oct-2001 07:32:30
force_disp_plot.m 14-Nov-2001 12:27:48
gain_calc.m 14-Nov-2001 13:22:41
lin_sim.mdl 11-Nov-2001 23:24:46

main.m 14-Nov-2001 12:41:13
plant_10x_sfun.m 12-Nov-2001 00:17:34
plant_4x_sfun.m 11-Nov-2001 22:51:03
power_calc.m 28-Aug-2001 06:00:00
power_mov.m 14-Nov-2001 13:26:25
power_plot.m 14-Nov-2001 12:27:23
quasi_wing_fun.m 13-Nov-2001 18:38:12
tracking_mov.m 14-Nov-2001 13:25:44
trim_sim.mdl 11-Nov-2001 21:03:01

ucav_sim.mdl 11-Nov-2001 23:31:05

%============================================================
% Input to simulation
%============================================================

shape(1).desc=’xcfunc describes the distribution of the xc mapping parameter’;
shape(1).var=’xcfunc’;
shape(1).data=’[-1 1; 1 1]’;
shape(2).desc=’ycfunc describes the distribution of the yc mapping parameter’;
shape(2).var=’ycfunc’;
shape(2).data=’[-1 0 1; 1 0 1]’;
shape(3).desc=’xtfunc describes the distribution of the xt mapping parameter’;
shape(3).var=’xtfunc’;
shape(3).data=’[-1 1; 1 1]’;

shape(4).desc=’ytfunc describes the distribution of the yt mapping parameter’;
shape(4).var=’ytfunc’;
shape(4).data=’[-1 0 1; 1 0 1]’;
shape(5).desc=’deltafunc describes the distribution of the delta mapping parameter’;
shape(5).var=’deltafunc’;
shape(5).data=’[-1 1; 1 1]’;
shape(6).desc=’xstartfunc describes the leading edge sweep of the wing’;
shape(6).var=’xstartfunc’;
shape(6).data=’[-1 0 1; tan(35*pi/180) 0 tan(35*pi/180)]’;

shape(7).desc=’zstartfunc describes the dihedral of the wing’;
shape(7).var=’zstartfunc’;
shape(7).data=’[-1 0 1; 0 0 0]’;
shape(8).desc=’chordfunc describes the chord of the wing -- nondimensionlized by the half span --’;
shape(8).var=’chordfunc’;
shape(8).data=’[-1 -.442 0 .442 1; .372 .558 1.21 .558 .372]’;
shape(9).desc=’twistfunc describes where the twist is applied to the wing’;
shape(9).var=’twistfunc’;

shape(9).data=’[-1 0 1; 1 0 1]’;
shape(10).desc=’twistaxisfunc describes where the twist axis is on the wing -- percent chord --’;
shape(10).var=’twistaxisfunc’;
shape(10).data=’[-1 1; .25 .25]’;
shape(11).desc=’pretwistfunc describes the geometric pretwist in the wing -- in radians --’;
shape(11).var=’pretwistfunc’;
shape(11).data=’[-1 -.471 -.021 .021 .471 1; -1 4.42 3.70 3.70 4.42 -1]’;
shape(12).desc=’vortex_panels describes the number of panels in the chordwise direction’;
shape(12).var=’vortex_panels’;

shape(12).data=’40’;
shape(13).desc=’chord_panels describes the number of panels on each surface in the chordwise direction’;
shape(13).var=’chord_panels’;
shape(13).data=’20’;
shape(14).desc=’span describes the half span of the wing -- b/2 ft --’;
shape(14).var=’span’;
shape(14).data=’15’;
shape(15).desc=’thickness value 0 to -.1’;
shape(15).var=’xc’;

shape(15).data=’-.1’;
shape(16).desc=’camber value -1 to 1’;
shape(16).var=’yc’;
shape(16).data=’0’;
shape(17).desc=’thickness value towards trailing edge 1 to 1.1’;
shape(17).var=’xt’;
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shape(17).data=’1’;
shape(18).desc=’reflex value -1 to 1’;
shape(18).var=’yt’;
shape(18).data=’0’;
shape(19).desc=’trailing edge thickness distribution 0 to .8’;
shape(19).var=’delta’;

shape(19).data=’0’;
shape(20).desc=’twist value -1 to 1 degrees’;
shape(20).var=’th_t’;
shape(20).data=’0’;
dynamic(1).desc=’mass of the wing in slugs’;
dynamic(1).var=’mass’;
dynamic(1).data=’310.5’;
dynamic(2).desc=’acceleration of gravity ft/s^2’;
dynamic(2).var=’g’;

dynamic(2).data=’32.2’;
dynamic(3).desc=’center of gravity [x,y,z] relative to zeta’;
dynamic(3).var=’cg’;
dynamic(3).data=’[7,0,0]’;
dynamic(4).desc=’mass moment of inertia Iyy slugs ft^2’;
dynamic(4).var=’Iyy’;
dynamic(4).data=’50000’;
dynamic(5).desc=’air density slugs/ft^3’;
dynamic(5).var=’rho’;

dynamic(5).data=’2.38e-3’;
dynamic(6).desc=’initial conditions [uo wo qo tho xo zo tau_camber tau_reflex tau_twist tau_thrust]’;
dynamic(6).var=’xinit’;
dynamic(6).data=’[400 0 0 0 0 0 0 0 0 0]’;
dynamic(7).desc=’time constant for camber’;
dynamic(7).var=’tau_camber’;
dynamic(7).data=’.3’;
dynamic(8).desc=’time constant for reflex’;

dynamic(8).var=’tau_reflex’;
dynamic(8).data=’.3’;
dynamic(9).desc=’time constant for twist’;
dynamic(9).var=’tau_twist’;
dynamic(9).data=’.3’;
dynamic(10).desc=’time constant for thrust’;
dynamic(10).var=’tau_thrust’;
dynamic(10).data=’.3’;
ratio=1;

H=[1000 0 0 0 0 0 0 0 0 0 0 0 0; 0 1 0 0 0 0 0 0 0 0 0 0 0; 0 0 1 0 0 0 0 0 0 0 0 0 0];
Q1=1/ratio*H’*eye(3)*H;
Q2=ratio*[100 0 0 0; 0 100 0 0; 0 0 100 0; 0 0 0 100];
in(1,:)=[0 0 0 0];
in(2,:)=[.5 .041 200 0];
in(3,:)=[1 .082 400 0];
in(4,:)=[1.5 .124 600 0];
in(5,:)=[11.5 .124 4600 -500];

%============================================================
% Trim information
%============================================================
Inputs were found to be:
Camber = -0.000

Reflex = -0.085
Twist = -0.109
Thrust = -0.276

States at the trim point:
u = 400.000
w = -0.000
th = -0.000
q = 0.000

The change in states when the trim was found:
du = -0.00000
dw = 0.00000
th = 0.00000
dq = -0.00000

%============================================================
% Linearization information
%============================================================
The linearized matrices

A matrix
0.0014 0.0724 -0.2221 -32.2000 0.0000 0.0000 0.0308 -0.0115 -0.0806 1.0000

-0.1610 -1.4219 403.8124 0.0000 0.0000 0.0000 -21.4709 21.4709 -20.6110 0.0000
0.0000 -0.0014 -0.0193 0.0000 0.0000 0.0000 -0.4040 0.5742 -0.0966 0.0000
0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 1.0000 0.0000 -400.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -3.3333 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -3.3333 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -3.3333 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -3.3333

B matrix
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
3.3333 0.0000 0.0000 0.0000

0.0000 3.3333 0.0000 0.0000
0.0000 0.0000 3.3333 0.0000
0.0000 0.0000 0.0000 3.3333

C matrix
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

D matrix

0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

%============================================================
% Control gains
%============================================================
Open loop eigenvalues

0.000 0.000 i
0.000 0.000 i
-0.734 0.293 i
-0.734 -0.293 i
0.014 0.106 i
0.014 -0.106 i
-3.333 0.000 i
-3.333 0.000 i

-3.333 0.000 i
-3.333 0.000 i

Closed loop eigenvalues
-1.562 3.362 i
-1.562 -3.362 i
-3.945 1.279 i
-3.945 -1.279 i
-1.548 0.000 i

-0.654 0.825 i
-0.654 -0.825 i
-0.232 0.400 i
-0.232 -0.400 i
-0.468 0.000 i
-3.329 0.000 i
-3.333 0.000 i
-3.333 0.000 i

Control gains K
-59.528 0.004 0.000 0.041 -0.001 -13.067 -37.691 0.018 -0.007 0.744 -1.049 0.192 0.011
68.527 -0.009 -0.051 -0.023 -0.051 21.777 80.420 -0.027 -0.097 -1.049 1.595 -0.071 -0.005
-41.937 -0.018 -0.084 -0.079 -0.090 2.381 37.092 -0.062 -0.176 0.192 -0.071 0.394 -0.020
1.331 0.098 -0.020 1.042 0.001 -0.145 -1.071 0.450 -0.069 0.011 -0.005 -0.020 0.275

%============================================================
% Simulation output data
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%============================================================
The data is stored in "simout.mat" in the form of a structure array.
The description is under simout.desc as shown below:
The values can be found under simout.data
1 time
2 desired theta

3 desired x
4 desired z
5 camber
6 reflex
7 twist
8 thrust
9 u, velocity in x-direction relative to the airfoil
10 w, velocity in z-direction relative to the airfoil
11 q, angular velocity about the y-axis relative to the airfoil

12 th, pitch angle relative to inertial-axis
13 x, position relative to the inertial-axis
14 z, position relative to the inertial-axis
15 Fx, force in x-direction at cg
16 Fz, force in z-direction at cg
17 M, moment about cg
18 x_zeta, x-locations that make up the wing
19 y_zeta, y-locations that make up the wing
20 z_zeta, z-locations that make up the wing

21 ptx, x-locations for forces [fx, fy, fz]
22 pty, y-locations for forces [fx, fy, fz]
23 ptz, z-locations for forces [fx, fy, fz]
24 fx, forces in the x-direction located at [ptx, pty, ptz]
25 fy, forces in the y-direction located at [ptx, pty, ptz]
26 fz, forces in the z-direction located at [ptx, pty, ptz]
27 theta_t, twist about the rotation axis as a function of span
28 m, moment about the rotation axis

29 px, power in the x-direction located at [ptx, pty, ptz]
30 pz, power in the z-direction located at [ptx, pty, ptz]
31 pth, power to twist the spanwise section located at pty(1,:)

For example to plot the state u as a function of time type --> "plot(simout(1).data,simout(9).data)"

%============================================================
% Simulation output data
%============================================================
A figure showing the total power and work of the simulation has been exported as power.bmp
A figure showing the force vs disp of the actuator with the most costly power consumption has been exported as force_disp.bmp
A figure showing the control inputs of the simulation has been exported as control.bmp

%============================================================
% Movie output data
%============================================================
A (800x600) movie demonstrating the tracking capabilities of the wing has been exported as tracking.avi
A (800x600) movie demonstrating the power requirements of the wing has been exported as power.avi

%============================================================
% Ending simulation time
%============================================================
Simulation ended at 14-Nov-2001 14:14:47



Appendix B

Code Used in the Simulation

The code used in to simulate the model is a combination of MATLAB m-files and Simulink

model files. Due to the size and integration of the code, it would not work well to include it

in text form. Therefore, in order to obtain a copy of the code please contact Dr. Harry H.

Robertshaw at the Center for Intelligent Material Systems and Structures, CIMSS.

Dr. Harry H. Robertshaw

Center for Intelligent Material Systems and Sturctures

Durham Hall

Blacksburg VA, 24060
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