
Three-dimensional Fluid Flow Measurement Techniques with
Applications to Biological Flows

Roderick R. La Foy

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Mechanical Engineering

John J. Socha, Chair

Thomas E. Diller

Mark R. Paul

Mark A. Stremler

Danesh K. Tafti

August 12, 2022

Blacksburg, Virginia

Keywords: PIV, Tomography, Fluid Flow

Copyright 2022, Roderick R. La Foy

Three-dimensional Fluid Flow Measurement Techniques with Appli-
cations to Biological Flows

Roderick R. La Foy

(ABSTRACT)

The accuracy of plenoptic and tomographic particle image velocimetry (PIV) experimental

methods is measured by simulating three dimensional flows and measuring the errors in the

estimated versus true velocity fields. Parametric studies investigate the accuracy of these

methods by simulating a range of camera numbers, camera angles, calibration errors, and

particle densities. The plenoptic simulations combine lightfield imaging techniques with

standard tomographic techniques and are shown to produce higher fidelity measurements

than either technique alone. The tomographic PIV simulations are centered around testing

software developed for processing large quantities of data that were produced during an

experimental investigation of the flow field about a 3D printed model of the flying snake

Chrysopelea paradisi. A description of this tomographic PIV experiment is given along with

basic results and recommendations for future investigation.

Three-dimensional Fluid Flow Measurement Techniques with Appli-
cations to Biological Flows

Roderick R. La Foy

(GENERAL AUDIENCE ABSTRACT)

Two different experimental measurement techniques that can be used to measure three-

dimensional fluid flow fields are discussed. The first measurement technique that is investi-

gated in simulations uses cameras with arrays of lenses to simultaneously capture images of

a flow field from multiple different angles. A method of combining the data from multiple

cameras is discussed and shown to yield more accurate estimates of the three-dimensional

flow fields than from a single camera alone. An additional measurement technique that uses

a group of standard cameras to measure three-dimensional flow fields is also discussed with

respect to software that was developed for processing a large volume dataset. This software

was developed for processing data collected during an experimental investigation of the flow

field about a 3D printed model of the flying snake Chrysopelea paradisi. A description of this

experiment is given along with basic results and recommendations for future investigation.

Acknowledgments

Many thanks are due to Harriet Angel who has spent significant time analyzing data, looking

through code, and generally providing encouragement with this work. Her support on this

project has been invaluable.

I would also like to thank Susan Carr for being an amazing friend through all of this. You

have given me advice, someone to talk to when needed, a distraction when I am stressed, and

above all, unwavering support and love. This likely would not have been possible without

you.

iv

Contents

List of Figures ix

List of Tables xviii

1 Introduction 1

1.1 Motivation . 1

1.2 Tomographic PIV . 3

1.3 Plenoptic PIV . 7

1.4 Summary of Work . 8

2 Snake Model Tomographic PIV Experiment 10

2.1 Introduction . 10

2.2 Experimental Design . 12

2.2.1 3D Snake Model System . 12

2.2.2 PIV Imaging System . 15

2.2.3 Data Collection . 18

2.3 Data Processing . 21

2.3.1 Self-Calibration . 22

2.3.2 Model Masking . 24

v

2.4 Particle Image Preprocessing . 35

2.4.1 Image Sequence Normalization . 36

2.4.2 Image Sequence Particle Scaling . 37

2.4.3 Image Intensity Transformation . 38

2.4.4 Temporal Low-pass Filter . 40

2.4.5 Threshold Filter . 41

2.4.6 Example Preprocessed Images . 41

2.5 Tomographic Reconstruction . 42

2.6 PIV Processing . 43

2.6.1 Windowing Methods . 45

2.6.2 Cross-correlation Calculation . 47

2.6.3 Cross-correlation Peak Selection . 47

2.6.4 Cross-correlation Peak Fitting . 49

2.6.5 Vector Field Validation and Filtering 52

2.7 Results . 53

2.7.1 Processing Parameters . 53

2.7.2 Reconstructions and Vector Fields 54

2.7.3 Resolution Testing . 57

2.8 Recommendations . 59

vi

3 Tomographic PIV Processing Software 62

3.1 Introduction . 62

3.2 Tomographic PIV . 62

3.2.1 Camera Calibration . 63

3.2.2 Weighting Matrices . 65

3.2.3 Particle Images . 68

3.2.4 Tomographic Reconstruction . 69

3.2.5 PIV Processing . 71

3.3 Software Description . 72

3.4 Software Validation . 74

3.4.1 Velocity Field . 74

3.4.2 Particle Field . 76

3.4.3 Camera Simulation . 78

3.4.4 Performance Metrics . 79

3.4.5 Camera Angle . 80

3.4.6 Particle Density . 82

3.4.7 Calibration Error . 83

3.5 Conclusions . 85

4 Multi-camera Plenoptic PIV 87

vii

4.1 Methods . 93

4.1.1 Lightray Simulation . 93

4.1.2 Volumetric Image Reconstruction . 96

4.1.3 Multiple Camera Reconstruction Algorithm 106

4.1.4 Reconstruction Fidelity Metrics . 107

4.1.5 Simulation Parameters . 111

4.2 Results . 112

4.3 Conclusions . 119

5 Conclusions 121

5.1 Snake Model Experimental Data . 121

5.2 Software Development . 122

5.3 Plenoptic PIV . 122

Bibliography 123

Appendices 131

Appendix A C Code Functions 132

A.1 Least Energy Velocity Field . 132

A.2 Rectilinear Gaussian Fitting . 162

A.3 Diagonal Gaussian Fitting . 171

viii

List of Figures

2.1 This is a photo of the 3D printed snake model showing the painted black

background and the speckle painted calibration pattern. A stainless steel

support cantilever beam holds the model in place during experiments. 13

2.2 This shows a diagram of the snake model experimental system along with

the X and Y -axis linear motors. The arrows in the water tunnel indicate the

direction of flow while the green indicates the laser illumination. 15

2.3 This diagram shows the relative position of the three-dimensional volumes

that were measured during the tomographic PIV experiment in the XY and

XZ planes. The volumes were approximately 12 cm by 12 cm by 3 cm in

size in the X, Y , and Z directions respectively. The highlighted blue region

shows the size of a single volume. 16

2.4 This diagram shows the relative position of the four imaging cameras con-

nected to the support frame with respect to the snake model within the water

tunnel. 17

2.5 (a) A photo showing an example bright field photo of the physical snake

model. (b) The same photo, but with masking applied so that an image

registration calculation can be performed. An intensity normalization was

also applied to the iamge so that the speckle pattern spots all have roughly

uniform intensity levels. 19

ix

2.6 A photo of a single Z-axis position of the calibration grid from one camera.

The calibration grid has two levels of grid points with the square and triangle

patterns centered on each of these levels. The rectilinear grid pattern was

offset by 7.5 mm in both the X and Y directions between the two levels. . . 21

2.7 These figures show the estimated disparity maps at one Z-axis depth for

the four cameras used in the tomographic PIV experiment. The maps are

constructed by adding a large number of Gaussian peaks together centered on

the measured disparity of each triangulated particle. The narrow, well defined

peaks shown here indicate that the self-calibration procedure has converged

onto an accurate estimate of the calibration functions. 24

2.8 This shows the computational model of the snake including the mapped paint

patterns. To determine the position of the model within the experimental

measurement volume, ray traced images of this model were generated and

compared to the physical camera images. 27

2.9 These figures show the solid-body transformation matching process between

the physical camera images and the computational snake model. The physical

camera images of the model are shown in green while the computational model

is shown in magenta. When the two images overlap, a white color becomes

visible as is shown in Figure 2.9c when the physical and computational models

are closely aligned. 29

x

2.10 These figures show the deformation applied to the computational model in

each axis parameterized by the arc length along the length of the snake.

The blue curves represent the applided deformation while the black regions

consist of the vertices of the computational model that are visible in each set

of camera images. 32

2.11 These figures show the average zero-mean normalized cross-correlation val-

ues of all camera images as a function of the model displacement. These

curves effectively give an estimate of the uncertainty of the final model posi-

tion. Ideally the error in the position should be less than velocity vector field

resolution. 33

2.12 This plot shows an example intensity transformation function used to sup-

press low intensity noise while maintaining high intensity particle values. The

inflection point of the function is denoted by the single marker and indicates

the point below which noise will be suppressed. 39

2.13 This shows example particle images that were cropped to a 200 by 200 pixel

region from a single camera. Both images have been inverted to enhance

visibility and both are shown with the same colormap scaling. (a) The image

here is an example image before any preprocessing has been applied. (b) This

shows the same particle image after the various image preprocessing steps

have been applied. 42

2.14 This plot shows a time sequence of tomographic reconstruction isosurfaces

from multiple frames superimposed over one-another. The intensity of isosur-

faces is varied with the frame numbers to illustrate the particle motion. This

dataset was collected without the snake model present in the images. 44

xi

2.15 These figures compare the three cross-correlation windowing methods tested

in processing the snake model tomographic PIV data. The vector field should

be uniform translation since the snake model was not included in this dataset.

The methods were completed with two passes with no validation or smoothing

applied on the second PIV pass. The window sizes were 64 by 64 by 64 voxels

with 32 by 32 by 32 voxels effective resolutions. The same cross section from

a single Z plane of the measured velocity field is shown in all three figures. . 46

2.16 These two velocity fields were both processed using discrete window offset

cross-correlations, but the method to extract the cross-correlation peak was

varied. (a) This field was calculated by setting the velocity equal to displace-

ment associated with the maximum cross-correlation peak location. (b) This

velocity field was estimated by storing the n largest cross-correlation peaks

and choosing the peaks that would result in the lowest signal energy velocity

field. 48

2.17 This plot compares the sensitivity of the three sub-voxel fitting techniques to

additive noise in the volumetric images. The error is measured as the median

voxel per frame error and the 95% confidence intervals are highlighted in the

graph. The noise magnitude is measured as the standard deviation of the

Gaussian distribution in comparison to the particle intensity. 52

2.18 This graph shows the measured three-dimensional flow field around snake

model. The location of the computational model mask is shown as the grey

surface. 54

xii

2.19 This graph shows a two-dimensional cross-section of the velocity field shown

in Figure 2.18. The low resolution nature of the vector field is apparent in the

flow near the snake model. Additionally, a shadow in the laser illumination is

visible near the middle of the vector field where the vector magnitudes drop

to nearly zero. 55

2.20 These graphs show the relationship between the location of the physical model

and the laser illumination shadow. (a) The voxels greater than zero were

summed along the Z-axis direction to highlight the zero-valued region cor-

responding to the snake model. (b) The same reconstruction images were

summed across ten frames in the Z-axis direction. This highlights the tracer

particles as well as the laser illumination shadow. 56

2.21 This shows the velocity field variance magnitude in the uniform flow region

upstream of the snake model for a variety of different window sizes used

with pyramid correlation processing. Since every vector should be nearly

identical in this region, the variance should asymptotically approach zero

when sufficient window resolution has been reached. Since even at the largest

window resolution, the variance is still rapidly dropping, this means that the

PIV windows must be at least 64 by 64 by 64 voxels in size. 58

3.1 This plot shows the uv vector field of an example time instant of a single

Z-axis plane of the simulated turbulence velocity field. The homogeneous

nature of the flow along with the range of length scales is apparent in the flow. 76

xiii

3.2 This figure shows the effect of camera angle on the reconstruction quality and

velocity error. It can be seen that the optimal camera angle is a function of

particle density since higher camera angles will require viewing the volume

through longer lines of sight and thus more particles will be imaged by the

cameras. 81

3.3 This figure shows the effect of particle density on the reconstruction quality

and velocity error. It can be seen that there is an optimal particle density

for measuring the velocity field since at low particle densities, there are not

enough particles to sufficiently resolve the velocity field. But at higher parti-

cle densities, the reconstruction noise starts negatively affecting the velocity

measurement. 82

3.4 The data in these plots was calculated by adding Gaussian noise to the simu-

lated calibration coordinate data prior to calculating the calibration functions.

The standard deviation of the Gaussian noise is plotted along the horizontal

axis of the graphs. Confidence intervals showing the 99% confidence range

are plotted here since only a small number of trials could be run and the

uncertainty is higher than for the other simulations. 84

4.1 (a) A diagram showing a lightray intersecting the (u, v) and (s, t) planes.

(b) A diagram showing the design of a plenoptic camera including a particle

in free-space in front of the camera, the main lens, the lenslet array, and

the camera sensor. Additionally the relative distances between the different

camera components are shown. 90

xiv

4.2 This diagram schematically shows the multi-camera plenoptic reconstruction

algorithm. First, several plenoptic cameras image the PIV volume. The

images from these cameras are next used to calculate the lightfield function.

Then the individual reconstruction from each camera is calculated. Finally,

the reconstructions from each camera are combined together to form the full

volumetric reconstruction. 92

4.3 (a) The sensor image from a photograph taken of a PIV particle field using a

commercial lightfield camera. This camera uses a hexagonal array of lenslets,

which is apparent in the particle images. (b) A simulated lightfield camera

sensor image showing a simulated PIV particle field. The simulated cameras

used a rectilinear lenslet array for computational ease. 97

4.4 (a) This image shows a collection of sub-aperture images extracted from the

lightfield L(u, v, s, t). Each sub-aperture image corresponds to a single pixel

under each lenslet. The camera was focused on a calibration grid for this

lightfield. The vignetting on the edge of the lenslet images is clearly visible

in the radial intensity decrease of the sub-aperture images. (b) This image

shows the corresponding weighting function calculated for the lightfield. . . . 105

4.5 A comparison between the standard tomographic reconstruction quality factor

Q and the zero mean reconstruction quality factor Q∗ showing the artificially

high values produced by Q at very high particle seeding densities. 109

4.6 A scatter plot showing the reconstructed particle position error distribution

for the x and z axes. The reconstruction was performed with 2,500 particles

and two simulated lightfield cameras placed 25◦ off the volume axis. 110

xv

4.7 Computationally refocused images taken using the Lytro lightfield camera

during a PIV experiment. (a) The PIV field refocused using the standard

additive refocusing algorithm described in Equation (4.5). There is relatively

high-magnitude background noise in the image due to out-of-focus particles.

(b) The same PIV field refocused using the multiplicative refocusing algorithm

described in Equation (4.6). The background noise level in this image is much

lower than the noise level produced by the additive reconstruction. 113

4.8 A graph showing the zero-mean normalized cross correlation quality factor as

a function of the dimensionless camera focal distance for a range of different

volume width to thickness ratios. The camera focal distance soM is normalized

by the aperture of the main lens pM . The quality factor has a peak at soM/pM

due to the camera’s angular resolution decreasing with distance while the

depth-of-field increases. 114

4.9 (a) The quality factor as a function of the camera configuration. (b) The z

particle position uncertainty as a function of the camera configuration. Two

or more cameras dramatically increase the z resolution. (c) The RMS velocity

error as a function of the camera configuration. Two or more cameras perform

equally well in reconstructing the velocity field. (d) The UOD outlier ratio

as a function of the camera configuration. 116

xvi

4.10 Graphs showing several different reconstruction fidelity metrics for a range of

particle densities. Tomographic MART reconstructions using both f/2 and

f/20 apertures of the same particle field are shown for comparison. (a) A

graph showing the quality factor as a function of the particle density. (b) A

graph showing the particle position uncertainty as a function of the particle

density. (c) The RMS velocity error as a function of the particle density. (d)

The UOD outlier ratio as a function of the particle density. 118

xvii

List of Tables

4.1 A table listing the plenoptic camera parameters used in the lightfield simula-

tions. These parameters were held constant for all completed simulations. . . 112

xviii

Chapter 1

Introduction

Complex fluid flows are ubiquitous in the world and occur in many purely natural phenomena

as well as a very large number of engineered systems. Understanding the flow in these systems

is important both for a clearer understanding of the physical world and for creating more

efficient and robust engineering designs. Yet despite the prevalence and importance of fluid

flows, much of the dynamics of these systems are not well understood. There are many

reasons for this lack of understanding including the highly complex nature of many flows,

the difficulty in modeling and simulating flows, and the problematic nature of observing

and accurately measuring flows. All of these problems have been intensely studied in an

attempt to contribute to this full body of knowledge, but this work will primarily focus

on those problems related to the measurement of flows. In particular, this work specifically

investigates methods for collecting volumetric flow field measurements applied to the natural

system of the flying snake.

1.1 Motivation

There are many interesting fluid dynamics phenomena that could be investigated that re-

quire an understanding of the fully three-dimensional nature of the flow. For various reasons

that will be explained later, it is significantly easier to study two-dimensional (or even one-

dimensional) flow fields. Many interesting flows have been investigated from a purely planar

1

2 Chapter 1. Introduction

viewpoint. While this can yield many valuable insights and in some cases, can relatively accu-

rately model the full dynamics of the flow field, many flows are inherently three-dimensional.

Despite the importance of measuring the fully three-dimensional nature of the flows, many

experimental investigations still primarily focus on two-dimensional systems due to the ex-

perimental and computational simplicity of the measurements. Experimental measurements

studying the fluid flows governing the dynamics of the flying snake Chrysopelea paradisi is

one such case.

The genus of flying snakes native to Southeast Asia have evolved the ability to leap from

trees, spread their ribs to flatten dorsoventrally to form an airfoil, and then glide to the

ground or other trees while undulating in an ’S’-shape [58, 59]. This specific mode of flight

is unique among animals and is interesting to investigate for this reason alone. In addition

to this, previous two-dimensional studies of the fluid dynamics governing the flight of the

snake have shown interesting dynamics including a large jump in the lift-to-drag ratio of the

snake at a 35 degree angle of attack and a very gentle stall behavior up to large angles of

attack [25, 27].

While these insights are inherently valuable, the fluid flow around the body of the snake is

inherently three-dimensional due to the ‘S’-shaped asymmetry of the body during flight, the

undulatory motion of the snake, and the angle of attack of the snake body causing the flow

to transition into the turbulent regime for at least some flight cases [25]. Thus it is likely that

some of the important dynamics governing the snake’s flight could not be experimentally

observed in the two-dimensional model case.

Fully understanding the three-dimensional flow dynamics about the flying snake would re-

quire measuring the flow around living specimen during flight. However, measuring the fluid

velocity field about a living snake during flight is difficult for several reasons, both logisti-

cally and technically. From a logistical standpoint, working with animals is difficult due to

1.2. Tomographic PIV 3

getting experimental approval and the animals not always being cooperative with the exper-

imentalist. But from a technical perspective, collecting tomographic measurements around

the snakes during gliding would be very difficult. To accurately measure the velocity field

at a sufficiently high resolution to resolve important flow features about the snake requires

that the field of view of the cameras be approximately 20 cm on a side. However, during

gliding experiments, the snakes typically traverse tens of meters, so ensuring the snake trav-

els through this narrow field of view would be very difficult. Additionally, seeding the air

surrounding the snake with particles would be difficult since typically fog machines are used

to aerosolize fine droplets of oil for air flows - which might change the snake’s behavior or

potentially be dangerous to the snake.

For these reasons, the experiment designed to study the three-dimensional flow character-

istics about the snake body was designed to use a 3D printed model of the snake mounted

in a water tunnel. A technique known as tomographic particle image velocimetry (PIV)

was selected to measure the three-dimensional flow field about the snake model in the water

tunnel experiments.

1.2 Tomographic PIV

In two dimensions, PIV typically involves illuminating a fluid seeded with reflective, low

mass particles with a focused light source, commonly a laser, while cameras record the light

emitted from the particles. By imaging many particles at once over at least two time steps,

a map of the full flow field across a two-dimensional plane is recorded. To extract the

velocity field from these images, the motion of the particles must be tracked. A variety of

methods can be used to perform this measurement, but typically small windows of the image

are extracted and cross-correlated across multiple time steps. For a coherent, spatially and

4 Chapter 1. Introduction

temporarily resolved flow field, the correlation function will have a peak intensity located

at a distance from the origin that directly corresponds to the average displacement over the

windows. In this way, each cross-correlation will yield a single velocity vector. By combining

multiple cross-correlations over a large spatial and possibly temporal region, the flow field

can be measured in a two-dimensional plane.

This technique is relatively straight-forward to implement both experimentally and com-

putationally. However, extending this to the measurement of three-dimensional flow fields

requires a significantly more complex experimental setup, additional data to be collected,

and much higher computational cost [8, 9, 10]. Since the position of the particles in the

flow field must be triangulated, either through direct calculation of their position or through

the reconstruction of a three-dimensional image, at least one additional camera is required

during the data acquisition process; in practice four or more cameras are typically used

[8, 52]. The relative positions of the cameras with respect to one-another and to the illumi-

nated fluid must also be recorded as a calibration function for each camera. This calibration

function may be recorded through a variety of methods, but generally a series of images are

collected from all cameras of a grid of precisely positioned points that is translated through

the volume of interest [60].

Small errors in the calibration functions may result in relatively large errors in the measured

velocity flow field [65]. Thus a self-calibration procedure is applied utilizing the particle

image data to refine the measured calibration function. This method utilizes the fact that

since the particles must have had a single physical location during the recording process,

their triangulated positions must align amongst all cameras. Any discrepancies between the

triangulated positions from the different subsets of cameras must be due purely to error in

the calibration functions. By measuring these discrepancies for a large number of different

particles, the error of the calibration function may be estimated over the entire measured

1.2. Tomographic PIV 5

flow field. Then to correct the calibration functions, this error is added back onto the

original calibration function estimate. This process may be repeated iteratively to refine the

calibration functions to a very low level of error that will result in accurate measurement of

the flow field.

The velocity field may then be measured by either directly calculating the displacement of

the particles in the field or by reconstructing a three-dimensional image of the particle field

and applying the cross-correlation techniques applied to the two-dimensional PIV system.

Calculation of this three-dimensional image is known as tomographic reconstruction [8, 9, 10].

The generation of the three-dimensional image from the collected camera data involves two

steps. First, the calibration function is used to generate a weighting matrix that relates the

voxels in the three-dimensional image to each of the pixels in the cameras’ two-dimensional

images [1, 2, 3, 8, 10]. This process is relatively computationally expensive, but only must be

calculated once for a single set of camera positions. After this, the individual particle image

frames can be used along with this weighting matrix to reconstruct the three-dimensional

representation of the particle field.

In two dimensions, the particle image that is processed (using cross-correlation or other

velocimetric methods) is an accurate representation of the physical particle field. There will

be errors in the image data due to a variety of sources including the focusing of the lens

and depth-of-field effects, the finite resolution of the imaging system, mis-alignment of the

light sheet and the focal plane of the camera, light scattering effects about the particles,

along with many other potential error sources. While all of these sources do contribute to

increasing noise in the calculated velocity field, the image that the camera records is still an

accurate representation of the particle field. Any particles imaged by the camera correspond

to physical particles that are illuminated in the flow field. However, this is not the case with

the reconstructed three-dimensional images used in tomographic PIV.

6 Chapter 1. Introduction

The tomographic reconstruction of the three-dimensional particle field image requires solving

a massively underdetermined system. Typically the number of unknown variables outranks

the known values by a factor of hundreds. Assumptions about the nature of PIV recordings,

specifically that small bright regions appear on an otherwise dark background, can be used

in the reconstruction calculations to lessen the effect of the indeterminacy of the system

[2, 3]. However, errors in the reconstructed image are unavoidable and unlike in the two-

dimensional case, the reconstructed images do not represent a physical system. Specifically,

particles will be generated in the image that did not exist in physical reality. These non-

physical particles are commonly referred to as ghost particles and are the largest source of

noise in tomographically measured velocity fields [1, 2, 3, 8, 11].

The effects of ghost particles may be minimized during the experimental phase of the inves-

tigation through several means. First, the number of ghost particles scales with the particle

density. This suggests that lowering the total number of particles will help to eliminate noise

from the ghost particles. However, decreasing the particle density will inevitably result in

lower resolution velocity field measurements since at best, only one velocity vector can be

measured per particle. Realistically, the actual velocity field resolution is much lower than

this, so in practice the particle density cannot be significantly lowered. A second source of

ghost particles is due to sensor noise being reconstructed. In general, this problem is easier

to solve since the signal-to-noise ratio of the recorded particle images scales with the inten-

sity of source used to illuminate the particles within the fluid. The snake model experiment,

however, required cutting out a large portion of the particle illumination due to the nature of

the experiment. This resulted in more advanced tomographic PIV algorithms being required

to process the data from the experiment.

1.3. Plenoptic PIV 7

1.3 Plenoptic PIV

Plenoptic or lightfield cameras have been proposed for performing single camera three-

dimensional fluid velocity field PIV measurements due to their unique advantage of recording

both the spatial variation and the propagation direction of the incoming light. The combi-

nation of both the spatial and angular information of the light yields the lightfield function,

which in turn can be used to computationally reconstruct the three-dimensional particle

field.

Unfortunately, single camera plenoptic PIV measurements suffer from low angular resolu-

tion limitations similar to single camera defocussing PIV [26, 46, 47] and holographic PIV

techniques, which are detrimental to PIV measurements. To increase the quality of lightfield

volumetric PIV, a multi-camera plenoptic reconstruction algorithm is developed and pre-

sented. This algorithm combines the three-dimensional reconstructions from each individual

camera by taking a scaled product of the individual reconstructions. Using lightray simu-

lations it is demonstrated that using two plenoptic cameras can produce three-dimensional

intensity fields with much higher fidelity to the true field than the reconstructions produced

by a single plenoptic camera. Using additional plenoptic cameras is shown to only incremen-

tally improve the reconstruction quality. To directly compare the dual plenoptic camera PIV

methodology with traditional volumetric PIV techniques, standard camera images from two

to four cameras were also simulated and used to create tomographic reconstructions. The

intensity fields produced using two plenoptic cameras were shown to have higher fidelity

than those produced using tomographic PIV techniques with up to four standard cameras

in the same configuration. This work shows that using multiple plenoptic cameras for PIV

measurements has the potential to produce higher fidelity data than using traditional three-

dimensional measurement methods.

8 Chapter 1. Introduction

1.4 Summary of Work

The following chapters begin by summarizing the work that was completed during a tomo-

graphic PIV experiment investigating the flying snakes in Chapter 2. This experiment was

motivated by the interesting flight dynamics that are already known from previous studies

with the flying snakes. Specifically, the experiment intended to use the tools of tomographic

PIV to investigate the three-dimensional flow dynamics around a static model of a snake.

The data from this experiment would ideally provide valuable insights into the flight dy-

namics as well as provide a test case for the development of three-dimensional measurement

techniques.

The collecting and processing of the tomographic PIV snake data is discussed in detail in

this chapter. Descriptions of how the data is processed and validated are given, but these

primarily focus on setting the data up to the point that it can be analyzed with standard

tomographic PIV tools, which is described more fully in the following chapter.

Chapter 3 describes the tomographic PIV software that was used to process the snake model

experimental data. This chapter summarizes the tomographic tools that were developed

as well as describes novel processing methods that were incorporated into the software to

aid in the processing of the snake model data. Since the software was newly developed for

processing the experimental data, simulated test cases are also described. These test cases

are used to validate the software and show that it gives outputs that are similar to other

tomographic PIV software that has been developed.

In Chapter 4, a novel three-dimensional PIV measurement technique is described. This

method uses unique cameras that not only record the radiance information of a scene, but

also record the directional information of the light in the scene. Since the primary concept

behind tomography is that a three-dimensional image can be built up from two-dimensional

1.4. Summary of Work 9

images taken from different directions, this means that these cameras, known as plenoptic

or lightfield cameras, can create tomographic reconstructions with a single camera.

The work in this chapter investigates combining the data from multiple plenoptic cameras to

generate three-dimensional PIV data. It is shown that using just two plenoptic cameras can

produce high quality data. However, the process of using these cameras with experimental

data is significantly more intensive than using standard cameras, so these cameras were not

used with the tomographic snake model experiment.

Finally, in Chapter 5 a summary of this work is given. The results of the projects are related

to one-another and plans and recommendations for future work are given.

Chapter 2

Snake Model Tomographic PIV

Experiment

2.1 Introduction

A genus of snakes native to Southeast Asia have evolved the ability to leap from trees,

spread their ribs to flatten dorsoventrally to form an airfoil, and then glide to the ground or

other trees while undulating in an ’S’-shape [58, 59]. This specific mode of flight is unique

among animals and is interesting to investigate for this reason alone. Previous fluid dynamics

studies of these snakes and the species Chrysopelea paradisi in particular, which is known for

having the best flight capabilities in the genus, have primarily focused on two-dimensional

flow. This work has shown interesting dynamics including a large jump in the lift-to-drag

ratio of the snake at a 35 degree angle of attack and a very gentle stall behavior up to large

angles of attack [25].

While these insights are inherently valuable, the fluid flow around the body of the snake

is inherently three-dimensional due to the ‘S’-shaped asymmetry of the body during flight,

the undulatory motion of the snake, and the fact that the Reynolds number range observed

of the snake during flight indicates that the flow is likely transitioning to turbulence for at

least some flight cases [25]. Thus it is likely that some of the important dynamics governing

the snake’s flight could not be experimentally observed in the two-dimensional model case

10

2.1. Introduction 11

and a fully three-dimensional, time-resolved experiment investigating the flight dynamics

was developed.

This experiment was designed to measure the flow dynamics about a static model of the snake

placed within a water tunnel with flow speed matching the Reynolds number of a snake in

flight. Tomographic PIV data was collected to measure the three-dimensional flow field

surrounding the full body of the snake model. By investigating the time-resolved behavior

of flow structures, this data would ideally be able to address several open questions related

to the snake flight. Does the ‘S’-shape of the snake strongly affect the dynamics or can the

dynamics be primarily characterized as a series of tandem air-foils? Does the shape of the

snake inhibit vortex shedding, and would this positively or negatively affect flight? Does the

lift augmentation at 35 degrees still exist in a fully three-dimensional model? Lastly, how

does the snake flying in a turbulent transition region affect the flight dynamics?

The experiment was broken down into several components. First, the physical experiment

had to be constructed. A 3D model of the snake had to be manufactured that was suitable

for use in a water tunnel in addition to a system to securely and accurately position the

snake model within the water tunnel. Since the cameras collecting the tomographic PIV

data would be viewing the snake model at an angle, tilt-shift adapters had to be designed

and manufactured to produce focused PIV images. Finally, a frame to hold the cameras

needed to be created. Since creating accurate tomographic PIV data relies on very precise

positioning, the camera frame needed to hold the cameras in position such that any motions

due to vibrations, settling, et cetera would be on the order of 10 µm or less.

Once the data was collected, processing involved several steps. In tomographic PIV, the

two-dimensional images from multiple cameras are combined together to reconstruct a three-

dimensional image. Then cross-correlations are applied to windows within this three-dimensional

image to yield an estimate of the velocity field. Since the 3D model of the snake is stationary

12 Chapter 2. Snake Model Tomographic PIV Experiment

within the three-dimensional images, the model must be computationally masked to avoid

introducing errors to the velocity field. Masking the model required estimating its precise

position within the three-dimensional experimental volume. Additionally, since the calibra-

tion error of the cameras must be on the same order as the inherent PIV error to avoid

introducing additional error in the velocity field, the calibration error must be corrected to

approximately 0.1 pixels to yield accurate velocity measurements. Thus, a self-calibration

procedure using the imaged particle positions was also applied prior to calculating the re-

constructions and measuring the velocity field.

2.2 Experimental Design

2.2.1 3D Snake Model System

During gliding, the snake Chrysopelea paradisi undulates its body; however, the velocity of

the undulations was much lower than the forward velocity of the snake, so it was assumed

that a static model of the snake was appropriate for the experimental investigation [25]. The

pose and geometry of the snake model was chosen as a typical case from photos and video of

the snake during gliding [59]. A three-dimensional CAD model of the snake was created and

3D printed at a one-to-one scale to the real snake. To mount the snake model, a stainless

steel support bar was added to the model protruding downstream so as to minimize any

effects to the flow field.

The 3D printed model was slightly porous which could potentially detrimentally affect the

experiments. Thus the surface of the model was sealed by coating it in a thin layer of acetone

to dissolve the ABS plastic. Once the acetone evaporated, the ABS plastic re-solidified thus

sealing the small pores on the surface of the model. Additionally, the laser light reflected from

2.2. Experimental Design 13

Figure 2.1: This is a photo of the 3D printed snake model showing the painted black back-
ground and the speckle painted calibration pattern. A stainless steel support cantilever beam
holds the model in place during experiments.

the model body was assumed to be a large potential source of error in the measurements due

to over saturation of the camera images, thus the model was painted with black water-proof

paint to minimize reflections. Also, since knowing the exact coordinates of the surface of the

model within the images is critical to understand the dynamics of the flow about the snake,

the 3D printed model was splatter painted with white paint to provide reference points for

reconstructing the surface position in the camera images. A photo of the snake model used

in the experiments is shown in Figure 2.1.

The support cantilever was clamped to the end of a 25.4 mm diameter stainless steel cylinder

to rigidly support the model during testing. The Reynolds number of the cylinder matches

14 Chapter 2. Snake Model Tomographic PIV Experiment

the value of approximately 13000 that the snake model experiences during testing, so the

cylinder by itself will induce turbulent vortex shedding. Additionally, the wake from the

snake model may interact with the support rod affecting the snake model flow dynamics.

Both of these interactions would detrimentally affect the measured flow dynamics about

the snake model, so the vertical support cylinder was surrounded by a 3D printed NACA

0012 airfoil that decreased the net drag on the vertical support by approximately 90% while

simultaneously minimizing any wake interactions or vibrations due to vortex shedding. While

the airfoil would never be directly illuminated during the experiments, stray laser light could

still detrimentally affect the measurements, so the airfoil was also painted with water-proof

black paint to minimize any reflections.

The snake model system including the model, the support rod, and the surrounding airfoil

were all suspended over the water tunnel and positioned by a 3-axis linear motor system

that could be controlled to approximately 0.1 mm accuracy within the water tunnel. The

snake model is approximately 60 cm long, so to collect high resolution data, the experimental

volume was divided into regions approximately 12 cm on a side, and the snake model was

moved within the water tunnel by the linear motors so that dynamical data could be collected

over the whole model. A diagram showing the snake model experimental system is shown

in Figure 2.2.

The water tunnel had a cross section of approximately 610 mm by 610 mm and was operated

at a flow speed of approximately 0.5 m/s during the experiments. The width of the water

tunnel limited the range of angle-of-attacks that could be measured with the snake model

without edge effects interfering with the model. Due to this limitation, two angles-of-attack

were chosen for the experiments: 20 degrees and 35 degrees. The 20 degree case allowed for

the full body to be imaged. Data could only be collected near the center of the snake model

for the 35 degree angle-of-attack case due to the model approaching the water tunnel walls,

2.2. Experimental Design 15

Figure 2.2: This shows a diagram of the snake model experimental system along with the
X and Y -axis linear motors. The arrows in the water tunnel indicate the direction of flow
while the green indicates the laser illumination.

however, this case was chosen to investigate the lift augmentation that was seen to occur at

this angle with the two-dimensional studies. The 20 degree case was divided into 44 imaging

positions: 4 Y -axis positions and 11 XZ-plane positions. The 35 degree case was then

divided into 16 imaging positions: 4 Y -axis positions and 4 ZX-plane positions. Diagrams

showing the relative positions of the imaging regions-of-interest are shown in Figure 2.3.

2.2.2 PIV Imaging System

The snake model was illuminated from below using a New Wave Pegasus 20 W dual head

527 nm Nd:YLF laser with both heads simultaneously pulsed at 1000 Hz to produce 20 mJ

per pulse. The system was imaged with four Photron APX-RS cameras with 1024 by 1024

pixel resolution. The expanded laser beam was aimed to illuminate an approximately 12 cm

by 12 cm by 3 cm region located near the center of the water tunnel. Shutters were used to

16 Chapter 2. Snake Model Tomographic PIV Experiment

(a) 20 degree AOA XZ-plane ROIs (b) 20 degree AOA XY -plane ROIs

(c) 35 degree AOA XZ-plane ROIs (d) 35 degree AOA XY -plane ROIs

Figure 2.3: This diagram shows the relative position of the three-dimensional volumes that
were measured during the tomographic PIV experiment in the XY and XZ planes. The
volumes were approximately 12 cm by 12 cm by 3 cm in size in the X, Y , and Z directions
respectively. The highlighted blue region shows the size of a single volume.

cut off the edge of the laser beam so that the illuminated region had a sharp decrease in the

particle intensity along the camera axis (which decreases experimental noise while providing

a metric of the quality of the tomographic reconstructions).

The cameras were positioned in a 2 by 2 arrangement surrounding the illuminated region

and angled at approximately 35 degrees off of the laser sheet plane axis. A diagram of the

experimental setup including the cameras is shown in Figure 2.4. Universal Scheimpflug

adapters specifically designed and 3D printed for this experiment were attached to the cam-

2.2. Experimental Design 17

Figure 2.4: This diagram shows the relative position of the four imaging cameras connected
to the support frame with respect to the snake model within the water tunnel.

eras to allow the 105 mm lenses to be focused at an off-axis angle. To ensure that the entire

illuminated volume remained in focus, the lenses were stopped down to an aperture of f /4.0

resulting in a depth-of-field of approximately 4 cm.

A large amount of the laser light was expected to reflect from the snake model. This would

likely over-saturate the camera images, resulting in lost data near the model. To eliminate

this effect, particles were chosen that could absorb the laser light and then emit the light

back at a different frequency. Then the laser light can be filtered out from the camera

images. To accomplish this, the water was seeded with Thermo Scientific 13 µm diameter

particles that had a peak absorbance wavelength of 542 nm and a peak emission wavelength

of 612 nm. To remove the laser light reflected from the model, Edmund Scientific 590 nm

long-pass filters were placed over the camera lenses. This successfully mitigated the reflected

light; however, this also resulted in the particles being very dim in the camera images. Thus

advanced filtering and processing methods will be used to process the data to account for

18 Chapter 2. Snake Model Tomographic PIV Experiment

the low signal-to-noise ratio in the camera images.

Once the particles were added to the water tunnel, the particle density was measured using a

time averaged particle identification algorithm. The particle density was initially measured

to be between 0.07 and 0.08 particles per pixel. Typically tomographic PIV experiments are

designed to have particle densities between 0.01 and 0.10 particles per pixel. It was expected

that a large number of particles would be lost during the course of the experiment due to

settling and unintentional filtering of the particles by the water tunnel flow-straightening

system. The loss of particles was qualitatively apparent throughout the course of the ex-

periment, so additional particles were continually added to the water over the course of the

approximate week that it took to collect the data.

2.2.3 Data Collection

Four different types of data were collected from the tomographic PIV experiment. In addition

to the particle field images surrounding the snake model, images were collected with bright

field illumination of the snake model to determine its position. Additionally, particle field

images without a model in the water tunnel were collected to use as a reference of the laser

illumination. Finally, calibration images were collected of a calibration grid to determine

the relative camera positions.

For each of the model positions, the full camera buffer of 6144 frames was recorded. The

dominant oscillation frequency of the vortex shedding from the snake model was approx-

imately f = 0.47 Hz, so this corresponds to about 13 oscillations per recording, ensuring

that the full dynamics should be recorded in each data set. While the model was relatively

stationary, the full camera buffer of data was recorded so that the specific motion and the

extent of any oscillations of the model could also be measured. The full buffer of particle

2.2. Experimental Design 19

(a) Bright field model photo (b) Masked model photo

Figure 2.5: (a) A photo showing an example bright field photo of the physical snake model.
(b) The same photo, but with masking applied so that an image registration calculation can
be performed. An intensity normalization was also applied to the iamge so that the speckle
pattern spots all have roughly uniform intensity levels.

image data was recorded with the expectation that dominant flow features may be identified

with relatively high resolution by performing a phase averaging of the flow oscillations.

Additionally, at each model position, the laser was shut off and room lights were used to

illuminate the snake model within the water tunnel. Since the water tunnel flow caused

the model to deform by approximately 1 cm, the tunnel was left flowing at the same speed

as during the PIV tests to ensure that the model remained in the same position. While

the snake model remained in the same position, sensor noise was still visible in the camera

images, so 1000 bright field images of the model were collected so that an average of the

images could be calculated to reduce the noise effects. An example bright field model image

is shown in Figure 2.5a. During processing, these images were masked as in Figure 2.5b and

an image registration process was formed to match the physical and computational models.

A series of particle images was also collected with the snake model removed from the water

20 Chapter 2. Snake Model Tomographic PIV Experiment

tunnel both before and after the tomographic data was collected. Since the laser used to

illuminate the volume has a Gaussian intensity profile, the illumination within the mea-

surement volume also retains a Gaussian profile once the laser beam is optically expanded.

Additionally, scratches or dust on any of the optical surfaces that the beam passes through

may introduce additional inhomogeneities. The variation in particle intensity can introduce

additional error in both the tomographic reconstruction and in the cross-correlations. Both

of these effects will result in higher errors when the velocity field is calculated, so the average

particle image was calculated and used as a normalization factor for rescaling the particle

images that contained the model. This data was also used in the self-calibration procedure

described later.

Calibration data for the cameras was recorded by collecting images of a LaVision type 31

dual level calibration grid traversed across a 42 mm distance in 3 mm Z-axis increments.

Calibration grid data was collected both before and after the tomographic data collection.

An example calibration grid image is shown in Figure 2.6. It is apparent in this image that

this data will only result in a low resolution estimate of the calibration functions due to the

error in estimating the center of the calibration grid circles and the large spacing between

the circles. The circular grid points are spaced 15 mm apart, but due to the dual level

grid pattern, the XY -plane grid resolution is 7.5 mm. While this resolution is relatively

coarse compared to the approximately 0.17 mm per pixel resolution of the images at this

magnification, the camera calibration functions are locally highly linear and can globally be

approximated by a cubic polynomial function [3, 60].

The image coordinates of the calibration grid markers were determined to a sub-pixel ac-

curacy using in-house calibration software written in the MATLAB programming language.

Additionally, the errors in the calibration functions were later reduced by using the particle

positions within the images as a higher resolution calibration data set in a process known as

2.3. Data Processing 21

Figure 2.6: A photo of a single Z-axis position of the calibration grid from one camera. The
calibration grid has two levels of grid points with the square and triangle patterns centered
on each of these levels. The rectilinear grid pattern was offset by 7.5 mm in both the X and
Y directions between the two levels.

self-calibration.

2.3 Data Processing

The data processing of the tomographic PIV data from the snake model experiment can be

broken down into several steps. First, a self-calibration procedure is performed on the particle

image data to yield higher accuracy calibration functions. Next, this newly calculated set

of calibration functions is used along with the bright field model images to determine the

position of the snake model within the measurement volumes. This model position data is

then used to mask the three-dimensional reconstruction images. Finally, the velocity field is

calculated by performing cross-correlations on the reconstructed images.

22 Chapter 2. Snake Model Tomographic PIV Experiment

2.3.1 Self-Calibration

The calibration process that fits a cubic polynomial to the calibration grid coordinates is

known to commonly have errors between 0.5 and 2.0 pixels [65]. However, to calculate

accurate tomographic reconstructions, the calibration error generally needs to be less than

about 0.4 pixels [8]. Therefore a way of refining the initial calibration function is needed.

The camera calibration functions relate the world coordinates of the experiment to the

pixel coordinates in the camera images. While the calibration grid data is relatively low

resolution in both the world and camera image coordinates, the flow tracer particles may be

used to produce high resolution calibration data since the particles will tend to densely mix

throughout the experimental volume and the particle positions can be accurately determined

to sub-pixel accuracy. To produce this calibration data, a triangulation procedure may be

used to estimate the world coordinates of the particles from the image coordinates of the

particles within the camera images. A similar procedure exists for using the particle data to

self-calibrate stereo PIV data [37, 64]. However this procedure only refines the estimate of

the location of the illuminated laser sheet and does not apply to volumetric data.

If the triangulation procedure worked with high accuracy for nearly every particle, then there

would be no need to perform the computationally intensive tomographic reconstructions since

the velocity field could be directly estimated from the three-dimensional particle tracking. In

practice, due to the large number of particles in the camera images and the fact that there

is likely error in the previously estimated calibration functions, uniquely and accurately

triangulating the world coordinates of most particles tends to be impossible. However, the

distribution of errors of the estimates of the particle world coordinates tends to be Gaussian

with zero mean. Therefore, this particle triangulation procedure can be applied to a large

number of particles to yield localized estimates of the camera calibration errors.

2.3. Data Processing 23

In practice, this self calibration procedure involves several steps: identifying particles in two-

dimensional camera images, triangulating world coordinates for these identified particles,

dividing the experimental volume into sub-regions, mapping all particles in each sub-region

back to camera image coordinates, averaging the disparity between the mapped image coor-

dinates and the original coordinates for each region, and updating the calibration functions

with the measured disparities. This process is often repeated several times until the esti-

mated disparities converge to zero. This procedure is described in depth in [65]. Typically

the estimated disparity is calculated by summing Gaussian peaks centered on the dispar-

ity calculated from each particle. When the self-calibration procedure has converged, the

summed peaks tend to be relatively narrow as is shown in the example dataset in Figure 2.7.

While the tomographic PIV dataset that was collected during the snake model experiments

was very large and required the reconstruction and velocity field measurement processes to

be very computationally fast, the self-calibration procedure only needed to be performed

once. Therefore, the software to complete this process was written in MATLAB and was

less optimized than the other tomographic PIV software written for processing this dataset.

The self-calibration procedure was run on the particle image data collected with the snake

model not included in the water tunnel. The procedure was found to converge to measured

disparities of approximately 0.1 pixels after three calibration function updates. The self-

calibration processing was repeated for the calibration data that was collected after the

tomographic PIV data and compared to the first calibration. Any discrepancies between the

calibration functions would indicate that the cameras may have moved during the experiment

and that the self-calibration may need to be repeated using the model tomographic particle

data. It was found, however, that the calibration functions did not change over the course

of the experiment, and thus the self-calibration functions could be used for the entire set of

collected data.

24 Chapter 2. Snake Model Tomographic PIV Experiment

(a) Camera 1 disparity map (b) Camera 2 disparity map

(c) Camera 3 disparity map (d) Camera 4 disparity map

Figure 2.7: These figures show the estimated disparity maps at one Z-axis depth for the
four cameras used in the tomographic PIV experiment. The maps are constructed by adding
a large number of Gaussian peaks together centered on the measured disparity of each
triangulated particle. The narrow, well defined peaks shown here indicate that the self-
calibration procedure has converged onto an accurate estimate of the calibration functions.

2.3.2 Model Masking

While the filters on the cameras remove the majority of the laser light reflected from the snake

model, some reflected light is still apparent in the particle images. In particular, the white

spots painted on the model are visible in many of the camera images. Unfortunately, these

spots will act computationally similarly to the tracer particles and will appear as stationary

regions within the time-resolved series of reconstructed three-dimensional images. These

regions will result in a strong zero-displacement signal in the cross-correlations performed

2.3. Data Processing 25

during the velocity field measurements. This will tend to either bias the measured velocity

(especially in low velocity regions) or result in zero velocity being incorrectly measured for

some cross-correlation windows. Thus, the model must be computationally removed from

the data.

While simply masking out the regions of the particle images corresponding to the model

locations (by setting the pixel values in these regions equal to zero) would remove this effect

from the reconstructions, this would also remove computationally valuable information from

the data. Illuminated particles will pass between the model and the cameras, thus allowing

the velocity field in this region to ideally be measured, but masking out the models in the

camera images would also remove this data. Additionally, since the reconstruction calculation

is effectively a multiplicative process, any region set to a value of zero in the original two-

dimensional camera images, will result in the projection of this region being zero everywhere

in the three-dimensional reconstructions. Thus, useful particle data will also be removed

from ‘behind’ the model as well. Therefore, the masking operation must be performed in

the three-dimensional computational domain.

Masking the computational domain requires determining the position of the snake model

within the experimental volume. This is accomplished by creating a computational model

representing the physical snake model and transforming this computational model in three-

dimensional space until images generated from the computational model match the camera

images of the physical model. This process involves several steps. First, a computational

model of the snake needs to be created. This can be done by applying photographic images

of the model to the triangulated mesh data that was used for 3D printing the model. Once

this model is created, a ray-tracing algorithm can be used with the calibration functions to

create simulated camera images of the computational model. The computational model is

then translated and rotated in three-dimensional space to approximately match the images

26 Chapter 2. Snake Model Tomographic PIV Experiment

from all camera and all model positions. Then since the physical model likely is a deformed

version of the triangulated mesh (due to printing errors, the model absorbing moisture, and

the water tunnel flow pushing on the model), the computational model is computationally

deformed to match the physical model. After this process, the ray traced images of the

computational model match the physical camera images to discrepancies of less than 1 mm.

Finally, the computational domain is broken down into individual voxels and each voxel is

tested to determine whether it lies inside or outside of the computational model. The voxels

that lie inside the model are set equal to zero and those outside the model are set equal to

one.

To create a computational model of the snake model used in the experiments, the physical

model was photographed along with a calibration grid placed in the same location as the

model. The grid points in the calibration photographs were used to determine a transfor-

mation to convert the image to an axis-aligned rectilinear coordinate system; this effectively

removed any distortion from the camera lens or from the model being placed at an angle to

the camera sensor. This transformed image was then aligned to the triangulated mesh that

was used in 3D printing the model. The mesh was mapped onto the transformed image (by

effectively removing the Z-axis component of the vertex data since the coordinate systems

of the image and mesh are aligned) and each mesh triangle face was defined to have a color

value equal to the mapped location of the center of the triangle on the transformed image.

The result of this operation is shown in Figure 2.8 where the computational model is shown

projected into the three-dimensional coordinate system.

Note that this operation results in the same paint patterns being apparent on both the dorsal

and ventral sides of the computational model. However, since only the dorsal side of the

physical model is visible to the cameras, as long as the ray tracing algorithm only visualizes

‘visible’ faces of the computational model, the ray traced images of the model will still be

2.3. Data Processing 27

Figure 2.8: This shows the computational model of the snake including the mapped paint
patterns. To determine the position of the model within the experimental measurement
volume, ray traced images of this model were generated and compared to the physical camera
images.

correct despite this simplification.

The ray tracing algorithm works by mapping the world coordinates of the triangular mesh

vertices to the image coordinates in each camera using the calibration functions. Any mesh

triangles that map to outside the camera image domain are excluded since these regions of

the model won’t be in the field of view of the camera. Additionally, any mesh faces whose

normal vectors point away from the camera are not mapped since these faces will be on

the ‘back’ side of the model from the perspective of the camera. The pixel values in the

camera images are then set equal to the weighted sum of the mesh face color values where

the weights are given by the proportion of the pixel that is covered by each triangular mesh

face.

Calculating the weighting values involves estimating the intersected area between each of

the simulated camera pixels and each of the mapped mesh triangular faces. Each simulated

28 Chapter 2. Snake Model Tomographic PIV Experiment

camera contained 1048576 pixels and the computational model consisted of 199632 faces.

Despite the fact that many mesh faces will not map to the camera images due to being

outside the field of view or facing away from the camera, this is still a very large number

of intersections to calculate. For this reason, the ray tracing algorithm was written in C so

that the code could run quickly and be easily parallelized.

To compare the ray traced images and the physical model images, the background of the

camera images were masked by setting the pixel values to zero. An attempt to automate this

process using image thresholding combined by edge detection algorithms was made, however

there was too much variation in the images. It was determined that any attempt to automate

the process would result in poor quality masking, so the masking was completed manually

by tracing the edges of the snake model in all 176 camera images in which it appears. To

ensure that any metric used to measure the similarity between the simulated and real images

was relatively continuous as the position of the model was varied, a logistic function was

applied to the mask so that the pixel values varied continuously from zero in the background

to one over the model. An example masked image is shown in Figure 2.5b.

The zero-mean normalized cross-correlation (ZNCC) was chosen as the similarity metric

between the physical model images IP and the simulated computational model images IC .

This metric

Q∗ =

∑
x,y IP (x, y) · IC(x, y)√∑

x,y IP (x, y)
2 ·
∑

x,y IC(x, y)
2

was chosen due to its computational efficiency to calculate, the fact that its output is inde-

pendent of intensity scaling on the images, and the fact that the function range 0 ≤ Q∗ ≤ 1,

with a value of Q∗ = 1 corresponding to a perfect match, is easy to interpret both mathe-

matically and intuitively. For any particular computational model position, Q∗ is calculated

for all camera positions in which the model appears and the sum of these values is taken as

2.3. Data Processing 29

(a) Initial model position (b) Closely matched model (c) Converged model match

Figure 2.9: These figures show the solid-body transformation matching process between the
physical camera images and the computational snake model. The physical camera images of
the model are shown in green while the computational model is shown in magenta. When
the two images overlap, a white color becomes visible as is shown in Figure 2.9c when the
physical and computational models are closely aligned.

the overall similarity metric.

An initial guess of the model position and rotation angles based upon the known angle

of attack and the rough position of the model was then used in gradient descent based

algorithm to maximize the overall similarity metric. This processing was carried out in

MATLAB using the ‘fminsearch’ function calling the C ray tracing program and a script to

calculate the similarity metric sum. Several steps of this computational process are shown

in Figure 2.9 where the computational model is progressively matched to the physical model

in the images.

Once the gradient descent algorithm reached convergence (defined as further motions of

the model resulting in less than 0.1 pixel changes in camera image positions), the physical

model and the computational model were still separated by several millimeters in world

coordinates in some locations along the body. The physical and computational models likely

do not exactly match geometries exactly due to printing errors, the physical model absorbing

moisture, and the model bending due the flow in the water tunnel. To account for these

30 Chapter 2. Snake Model Tomographic PIV Experiment

discrepancies, the vertices of the computational model were transformed by small distances,

essentially morphing the shape of the computational model to match the physical model.

To determine the motion necessary to transform the computational model, the gradient

descent algorithm was applied to single sets of camera views instead of all camera views at

once. Additionally, only translations (instead of translations and rotations) were considered.

The initial estimate for the model position was taken as the converged location from the

previous step. This resulted in a set of (∆x,∆y,∆z) translation values for each of the model

positions (44 for the 20 degree angle of attack and 16 for the 35 degree angle of attack).

Since these translation values applied equally to the entire model visible in each set of

camera images and parts of the model appear in multiple different views, it was necessary

to determine a way of smoothly parameterizing these translations. This would allow the

translations to be uniquely defined in the cases where regions of the model are visible in

multiple different views while avoiding discontinuities when the translations are applied to

the computational model. The arc length along the center of the snake model body was

chosen as a well defined parameterization that could be calculated for all vertices in the

triangulation mesh.

The translation values were then calculated for every vertex that was visible in each set of

camera images. The translation values along each axis are plotted in Figure 2.10 as the black

regions (which are in fact scatter plots, but appear as solid regions due the large number of

vertices in the computational model). The arc length parameterization has a value of zero

corresponding to the tip of the head with a value of one corresponding to the end of the

tail. Since the translation values are not uniquely defined and tend to be relatively noisy,

a least squares fit of a seventh order polynomial was applied along each of the axes. This

function was chosen as a compromise between attempting to closely match the noisy data

and overly smoothing the translations. The polynomial fits are plotted in blue in Figure

2.3. Data Processing 31

2.10. While the fit functions do not closely match all vertex translation values, it’s apparent

that transforming the computational model by the fit values will reduce the model position

discrepancies to approximately 1 mm across most of the model.

Once the polynomial coordinate transformation was applied to the vertices of the compu-

tational model, an estimate of the uncertainty of the computational model registration was

desired to be calculated. This would give an idea of how closely the computational model

matches the physical model. Ideally, the error between the two should be less than the vector

field resolution of the calculated velocity field, since any errors smaller than this won’t be

apparent in the measured velocity field. The magnification of the camera system (as derived

from the calibration functions) is approximately 0.17 mm/pixel, then assuming the smallest

correlation window possible would likely be 16 pixels on a side, then the spatial resolution

of the vector field would be 2.72 mm/vector. Therefore, if the error in the position of the

computational model is less than approximately this distance, then it will have negligible

effect on the measured velocity.

To estimate the uncertainty in the position of the computational model, the average ZNCC

value was calculated across all camera views while the position of the model was shifted by

small increments along each axis. The results of these tests are shown in Figure 2.11. It

is apparent that the quality of the image similarities falls quickly with displacements more

than 1 mm in the X and Y axes, thus implying that the overall position is likely of this

magnitude. The Z-axis image similarity shows a broader peak implying that the error in this

dimension is likely higher as well. The position error in this dimension likely approximately

equals the minimum vector field resolution.

Once the position of the computational model was determined, this information needed to be

translated to the reconstruction domain to properly mask the data as was discussed earlier.

Since the tomographic reconstructions occur by iteratively refining the voxel values within a

32 Chapter 2. Snake Model Tomographic PIV Experiment

(a) Model X-axis arc length parameterization fitting

(b) Model Y -axis arc length parameterization fitting

(c) Model Z-axis arc length parameterization fitting

Figure 2.10: These figures show the deformation applied to the computational model in each
axis parameterized by the arc length along the length of the snake. The blue curves represent
the applided deformation while the black regions consist of the vertices of the computational
model that are visible in each set of camera images.

2.3. Data Processing 33

dx [mm]
-5 -4 -3 -2 -1 0 1 2 3 4 5

Z
N

C
C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Mean ZNCC value as function of the X-axis displacement

dy [mm]
-5 -4 -3 -2 -1 0 1 2 3 4 5

Z
N

C
C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Mean ZNCC value as function of the Y -axis displacement

dz [mm]
-5 -4 -3 -2 -1 0 1 2 3 4 5

Z
N

C
C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Mean ZNCC value as function of the Z-axis displacement

Figure 2.11: These figures show the average zero-mean normalized cross-correlation values
of all camera images as a function of the model displacement. These curves effectively give
an estimate of the uncertainty of the final model position. Ideally the error in the position
should be less than velocity vector field resolution.

34 Chapter 2. Snake Model Tomographic PIV Experiment

three-dimensional image, a three-dimensional image mask that has the same dimensions as

the tomographic reconstructions needed to be calculated.

The dimensions of the reconstruction volume, and thus the mask, were determined by finding

the largest volume that was visible to all four cameras that included the entire 3 cm depth

of the laser sheet. Additionally, the magnification of the voxels was set equal to that of

the camera pixels since a one-to-one ratio is known to perform well during tomographic

reconstructions. This resulted in a volume that was 800 by 900 by 200 voxels in size, which

corresponded to 136 mm by 153 by 34 mm.

While spatial gradients would not need to be calculated across the image as was the case

for the two-dimensional masking, it was still assumed that defining the mask with transi-

tional values between zero and one at the border of the mask would decrease errors in later

calculations. Leaving a sharp transition in the image could potentially increase the noise in

vector field cross-correlations in particular. So voxels that were intersected by the mesh of

the computational model were set to fractional values.

Ideally the value of these masking voxels would be set equal to the proportion of the voxel that

lies inside the computational snake model. Unfortunately, this calculation is difficult to solve.

Algorithms exist to efficiently calculate the intersection of two convex hulls, however the

mesh defining the computational snake model is not a convex hull. Therefore, this calculation

could only be completed by intersecting every face in the computational model with the faces

of every voxel and then finding the intersection of the resultant halfspaces. The number of

intersection points would grow exponentially - so this problem is computationally intractable

in the general case. An approximate solution could be calculated by only considering faces

in the computational model that are ‘nearby’ the voxel in consideration. In practice, this

would likely work relatively well since the faces of the computational model are of the same

length scale as the faces of the voxels and the computational model is locally smooth at this

2.4. Particle Image Preprocessing 35

length scale.

However, a computationally simpler method was used that is also mathematically well de-

fined. The computational model is a manifold surface and therefore has a well defined

‘inside’ and ‘outside’. Therefore, given any point in three-dimensional space, it is possible to

efficiently test whether this point lies inside (or outside) the model by counting the number

of times that a line from this point to infinity crosses a boundary of the model. Testing

the center of the voxels in the reconstruction volume will still yield a simple binary mask.

However, by dividing the voxels into subregions and testing whether each of these subregions

lie within the model, any arbitrary precision can be reached in determining the intersection

volume. Therefore, each voxel within the reconstruction was sub-divided into an 8 by 8 by

8 set of sub-regions and each of these regions was tested. This resulted in an estimate of the

intersection volume that had an error on the order of 0.2%. This process was then completed

for every voxel within the reconstruction volume to yield the full tomographic mask.

2.4 Particle Image Preprocessing

Due to spreading the laser light into a relatively large volume and the filters used to suppress

the laser light reflections, the tomographic particle images that were collected were relatively

low contrast with a low signal-to-noise ratio. Additionally, both random and time-dependent

sensor noise (which appears as a flicker in time-resolved image sequences) was apparent in the

camera images. To counteract these negative effects, multiple image preprocessing techniques

were applied to the particle images prior to calculating the tomographic reconstructions.

The sequence of preprocessing steps included: calculating time-resolved image statistics over

the entire image sequence, rescaling the images so that the intensities are roughly normalized

by the overall sequence intensities, normalizing the images by the mean particle intensities

36 Chapter 2. Snake Model Tomographic PIV Experiment

so that the brightest particles all roughly have the same intensity in all images, applying a

linear-logistic scaling to the images to suppress low intensity noise while brightening parti-

cles, applying a Fourier based temporal low-pass filter to the image sequences to minimize

time-dependent sensor noise, and finally thresholding the images to remove low intensity

background noise.

2.4.1 Image Sequence Normalization

The intensity of the particles that is recorded by the cameras varies due to both the viewing

angle of the cameras (caused by light scattering effects) and the individual sensitivities of the

cameras. Moreover, different regions within each specific camera image will have different

intensities, primarily due to the variation in the laser intensity within the illuminated volume.

Unfortunately, the highest quality tomographic reconstructions and measured velocity fields

will occur when all particles have approximately equal intensities. Therefore, it is necessary

to normalize the images so that the particle intensity is roughly uniform amongst the cameras

and across the individual camera images. To perform this normalization process, statistics

were measured across the image sequences recorded by each camera.

In particular, the minimum values Imin(x, y) and the median values Imed(x, y) were measured

for the entire image sequence of each camera. Then the sequence of images was rescaled by

these values using the following formula

Inorm(x, y) =
I(x, y)− Imin(x, y)

Imed(x, y)− Imin(x, y) + ε

where the constant ε is defined as a small value equal to the one-percentile difference between

the median and minimum values and is included to avoid division by zero errors. Once this

scaling was performed, all images then had values roughly between zero and one across the

2.4. Particle Image Preprocessing 37

entire image sequence. However, this normalization process treated background noise from

the snake model or from the camera image sensor noise the same as signals from particles, so a

second normalization process was applied that accounted specifically for particle information.

2.4.2 Image Sequence Particle Scaling

Since the ideal tomographic particle image data will have particles of uniform intensities, the

image sequence needed to be scaled by the particle intensity values as well. This could not be

completed in the first step since the particle intensities varied dramatically across individual

camera images and across the different cameras. Once the intensities were normalized,

however, particles could be identified and tracked across multiple images to yield a more

accurate normalization process.

In each image from each camera sequence, all local maximums were identified, and the sub-

pixel location and fit intensity values were recorded. A three-point Gaussian intensity fitting

function was used to estimate the peak location

xfit = x+
log(I(x+ 1))− log(I(x− 1))

2 · log(I(x))− log(I(x+ 1))− log(I(x− 1))

where the pixel coordinate x is the integer coordinate of the local maxima. The peak intensity

value was then linearly interpolated from the pixel values at the fit location. (Note that this

is not a particularly robust or accurate method of determining the particle statistics, but a

rough approximation is all that is needed for rescaling the images.) Once all local maxima

were identified in the images, any maxima within one pixel of the image edge were removed

from this list to avoid edge effects. Then only the 500 brightest maxima were used to calculate

the particle statistics to avoid potentially including local maxima generated by background

noise within the data.

38 Chapter 2. Snake Model Tomographic PIV Experiment

The images were then normalized a second time using the median particle intensity Pmed

across all frames

Ipart(x, y) =
Inorm(x, y)

Pmed

to yield images that had roughly constant particle intensities across the whole image and

amongst all four cameras. The images at this point still contained significant noise, partic-

ularly at low intensities, so a transformation was performed to reduce low intensity values

while keeping the higher intensity values constant.

2.4.3 Image Intensity Transformation

During the tomographic PIV reconstruction calculation, the high intensity particles primarily

dominate the energy of the reconstructions. However, low intensity background noise tends

to introduce noise to the reconstructions and thus the measured velocity fields. Therefore,

reducing this background noise prior to the reconstruction process is advantageous.

Ideally any transformation applied to the images will suppress low level intensities, while

leaving higher intensity values roughly constant. To accomplish this, a piecewise function

that is logistic at low levels and linear at high levels was used

Itran =


L

1+exp(−k·(Ipart−I0))
− L

1+exp(k·I0) if Itran < µ

a · Ipart + b− L
1+exp(k·I0) if Itran ≥ µ

where the values of the linear function are chosen to match the logistic function at the

inflection point

2.4. Particle Image Preprocessing 39

I
In

0 0.2 0.4 0.6 0.8 1

I O
u

t

0

0.2

0.4

0.6

0.8

1

Figure 2.12: This plot shows an example intensity transformation function used to suppress
low intensity noise while maintaining high intensity particle values. The inflection point of
the function is denoted by the single marker and indicates the point below which noise will
be suppressed.

a =
k · L · exp(−k · (µ− I0))

(1 + exp(−k · (µ− I0)))2

b =
L

1 + exp(−k · (µ− I0)))
− a · µ

so that the intensity scaling remains continuous. An example of this intensity transformation

function is plotted in Figure 2.12. Intensity values below the inflection point will tend to be

pushed towards zero, while values above this point will be linearly scaled towards a value

of one. This function will cause clipping of very high intensity values, so, in practice a less

steep curve was used to minimize this effect.

The parameters L, k, I0, and µ were chosen for each camera such that the output images

40 Chapter 2. Snake Model Tomographic PIV Experiment

were all roughly similar and had values L = 1, 3 ≤ k ≤ 4, 0.95 ≤ I0 ≤ 1.05, and µ = 1.5.

Different values were chosen for Figure 2.12 to accentuate the function features.

The intensity transformation tended to minimize intensity level noise fluctuations; however,

the time-dependent sensor noise was still apparent in images at this point, so a temporal

low-pass filter was applied to the images.

2.4.4 Temporal Low-pass Filter

While the laser intensity did noticeably fluctuate over time, this effect was negligible from

one frame to the next and wasn’t expected to negatively affect the tomographic recon-

structions. However, the high-speed cameras tended to have obvious sensor noise that was

time-dependent and apparent between individual frames of data. To minimize the effects

that this might have on the reconstructions, a temporal low-pass filter was applied to the

image sequences of all four cameras.

To minimize aliasing effects, the entire image sequence was transformed into the Fourier

domain and the low pass filter was applied by multiplying the Fourier transformed image

sequence with a super-Gaussian function

I(x, y, t) = F−1

((
1− exp

(
− tγ

2 · σγ

))
· F (I(x, y, t))

)

where the Fourier transform is only applied in the time dimension. The parameters σ and γ

control the range of frequencies that pass through the filter and how quickly the filter cuts

off those frequencies. Since applying an overly narrow low-pass filter will tend to cause the

particles to be blended across multiple images, a very wide filter was chosen that only cut

off the highest frequencies.

2.4. Particle Image Preprocessing 41

2.4.5 Threshold Filter

The final pre-processing step that was utilized before calculating the tomographic recon-

structions was to apply a threshold to the images below which all intensity values are set

equal to zero. This step is sufficiently common in tomographic PIV processing, that the

threshold function was built into the tomographic reconstruction software and was applied

in real time as the reconstructions were being calculated. A variety of threshold values were

used during testing, but the value was typically about 0.08% to 0.15% of the maximum im-

age intensity. This allowed nearly all particle information to be passed to the tomographic

reconstruction while eliminating much of the remaining background noise.

2.4.6 Example Preprocessed Images

An example particle image in both original and preprocessed formats is shown in Figure

2.13. The images have been inverted to enhance the visibility of the particles. In the original

image, the particles are very low intensity and generally only the largest particles are visible.

However, after the preprocessing has been applied, all particles have similar intensity levels.

Unfortunately, the preprocessing also enhances background noise that appears as many single

pixels with high intensities. Some of the lower intensity or smaller diameter particles also

appear as single illuminated pixels in individual frames, so this noise effect cannot be easily

filtered out without removing some of the velocity field signal as well.

The exact parameters that were used in each step of image preprocessing were determined

by calculating reconstructions from the preprocessed images and inspecting the quality of

the resultant velocity field. A compromise was made between enhancing the contrast of the

particle images and increasing the noise to unacceptable levels.

42 Chapter 2. Snake Model Tomographic PIV Experiment

(a) Original PIV image (inverted) (b) Preprocessed PIV image (inverted)

Figure 2.13: This shows example particle images that were cropped to a 200 by 200 pixel
region from a single camera. Both images have been inverted to enhance visibility and both
are shown with the same colormap scaling. (a) The image here is an example image before
any preprocessing has been applied. (b) This shows the same particle image after the various
image preprocessing steps have been applied.

2.5 Tomographic Reconstruction

The tomographic reconstructions were performed using 10 iterations of the MART method

[1, 2, 3, 8, 9, 10] using in-house processing code written in C. The three-dimensional recon-

struction image was initialized using the mask calculated from the computational model.

This causes any portion of the image corresponding to the snake model to be reconstructed

with values of zero while regions outside this will be reconstructed normally. This should

prevent any reconstruction artifacts from the model interfering with the velocity field calcula-

tions. The size of the reconstructed images was 800 by 914 by 229 voxels which corresponded

to physical coordinates of 104.8 mm by 119.8 mm by 29.95 mm.

The camera images were threshold filtered with intensity values ranging from 0 to 200 (where

the maximum intensity value of the images was 65535) to remove background noise in the

2.6. PIV Processing 43

reconstructions. The MART relaxation parameter was set to µ = 1 as is common practice

[2, 8, 52]. After each reconstruction iteration, a mild Gaussian smoothing filter as well as

a Laplacian sharpening filter were possibly applied. The strength of these filters decreased

with the index of the iterations so that typically no filters were applied during the last

iterations.

An example tomographic reconstruction time series is shown in Figure 2.14. This plot shows

10 frames of tomographic reconstruction data superimposed over one-another. The intensity

of the isosurfaces in the plot are varied with the frame number to illustrate the motion of

the particles. This dataset was collected without the snake model in the flow field to have a

base dataset to determine the quality of the tomographic reconstructions.

While the flow field in this case is effectively a uniform flow field and is therefore not

particularly complicated, this shows that the tomographic reconstruction process is working

as expected since the particles appear to be temporarily coherent and traveling in a linear

pattern as would be expected in a uniform flow. The threshold to calculate the isosurfaces

was set relatively high to ensure that the plot did not become overly cluttered, so the actual

number of particles in the reconstruction is higher than what is visually apparent here.

2.6 PIV Processing

Once the tomographic reconstructions were calculated, the reconstructions were processed

using a variety of PIV processing methods to find the most optimal processing algorithm.

The tomographic reconstructions appeared to produce high quality data; however, it was

found that due to the low contrast particle camera images, the preprocessing operations

carried out to enhance the particle contrast also significantly increased the background noise

in the reconstructions causing significant contamination of the measured velocity fields.

44 Chapter 2. Snake Model Tomographic PIV Experiment

Figure 2.14: This plot shows a time sequence of tomographic reconstruction isosurfaces from
multiple frames superimposed over one-another. The intensity of isosurfaces is varied with
the frame numbers to illustrate the particle motion. This dataset was collected without the
snake model present in the images.

2.6. PIV Processing 45

Many different processing methods were attempted to increase the signal-to-noise levels

to acceptable levels.

2.6.1 Windowing Methods

Three different windowing methods were used in the processing: discrete window offset

cross-correlations [67], window deformation cross-correlations [51], and pyramid correlations

[57]. Basic testing of the reconstruction data was carried out using discrete window offset

cross-correlations as these are relatively fast to process. Validation of the data was carried

out by investigating the ratio of identified outliers in the measured vectors and looking at the

variance of the velocity vectors within the uniform flow regions of the dataset. Using these

metrics, it was determined that the first pass of the PIV processing required window sizes of

128 by 128 by 128 voxels with effective resolutions of 64 by 64 by 64 voxels to produce high

quality velocity field data. Since the reconstructed volume was only 229 voxels across, this

implied that only about 4 vectors could be measured across the Z-axis of the volume which

is relatively low resolution.

Therefore, processing attempts were made using the higher accuracy window deformation

and pyramid correlation methods. These methods involve deforming the reconstructed in-

tensity field by the measured velocity field by performing interpolations at the deformed

image coordinates. Pyramid correlations also add multiple time steps of frames together to

increase both the sensitivity and the resolution of the measurements. These processes are

relatively computationally intensive compared to the discrete window offset correlations, but

they resulted in higher quality data.

It was found that using the window deformation method improved the quality of the mea-

sured velocity field, however the difference from the discrete window offset processing was

46 Chapter 2. Snake Model Tomographic PIV Experiment

X [mm]
-50 0 50

Y
 [

m
m

]

-40

-30

-20

-10

0

10

20

30

40

50

(a) Uniform flow discrete win-
dow offset cross-correlations

X [mm]
-50 0 50

Y
 [

m
m

]

-40

-30

-20

-10

0

10

20

30

40

50

(b) Uniform flow deformation
cross-correlations

X [mm]
-50 0 50

Y
 [

m
m

]

-40

-30

-20

-10

0

10

20

30

40

50

(c) Uniform flow pyramid cross-
correlations

Figure 2.15: These figures compare the three cross-correlation windowing methods tested
in processing the snake model tomographic PIV data. The vector field should be uniform
translation since the snake model was not included in this dataset. The methods were
completed with two passes with no validation or smoothing applied on the second PIV pass.
The window sizes were 64 by 64 by 64 voxels with 32 by 32 by 32 voxels effective resolutions.
The same cross section from a single Z plane of the measured velocity field is shown in all
three figures.

not significant. The pyramid correlations were found to reduce a large number of outlier

vectors though. In Figure 2.15, the three different window cross-correlation methods are

compared for the uniform flow field data with no snake model. The window size was in-

tentionally set lower than what appeared to be required for producing high quality velocity

fields to accentuate the effects of using the different window correlation methods.

It can be seen in the method comparison graphs that the discrete window offset cross-

correlations produces a large number of outlier vectors. The number of outlier vectors is

improved to a small extent when the window deformation cross-correlation method is used.

However, only a large number of outliers are removed by using the pyramid cross-correlations,

implying that using this method may be required for processing the snake model tomographic

data.

Unfortunately, the higher order methods are considerably slower. For the vector fields shown

in Figure 2.15, it took approximately 1 minute to process the data with the discrete window

2.6. PIV Processing 47

offset correlations, about 31 minutes to process with the deformation correlations, and 231

minutes to process with the pyramid correlations. While the exact ratios are dependent

upon the window sizes among other factors, this demonstrates that the pyramid correlations

tend to be significantly slower to process.

2.6.2 Cross-correlation Calculation

In addition to testing the windowing method used in the cross-correlations, the specific type

of cross-correlation was tested as well. Both standard cross-correlations [67] and robust phase

cross-correlations (RPC) [7] were tested as both methods are computationally fast and RPC

method has been shown to be less sensitive to noise in the images. However, relatively little

difference between the two cross-correlation calculation methods was found in the data.

2.6.3 Cross-correlation Peak Selection

When an outlier vector occurs in the measured velocity field, this is due to the highest mag-

nitude peak in the cross-correlation volume corresponding to noise rather than the velocity

signal generated by the particle motion. Generally, the true velocity will still correspond to a

peak within the cross-correlation volume. To improve the probability that the true velocity

peak vector was selected from the cross-correlation volumes, a method was developed that

stored the largest n peaks from the cross-correlation volumes for all vectors in the velocity

field and peaks that resulted in the lowest signal energy velocity field were selected as the

most likely correct peaks from each cross-correlation. This tended to dramatically reduce

the number of outliers in the measured velocity field as can be seen in Figure 2.16.

The algorithm effectively involves selecting a kernel size surrounding each vector within the

velocity field and iterating through the n possible vectors while calculating the residuals to

48 Chapter 2. Snake Model Tomographic PIV Experiment

X [mm]
-50 0 50

Y
 [
m

m
]

-40

-30

-20

-10

0

10

20

30

40

50

(a) Maximum peak velocity field
X [mm]

-50 0 50

Y
 [
m

m
]

-40

-30

-20

-10

0

10

20

30

40

50

(b) Least energy velocity field

Figure 2.16: These two velocity fields were both processed using discrete window offset cross-
correlations, but the method to extract the cross-correlation peak was varied. (a) This field
was calculated by setting the velocity equal to displacement associated with the maximum
cross-correlation peak location. (b) This velocity field was estimated by storing the n largest
cross-correlation peaks and choosing the peaks that would result in the lowest signal energy
velocity field.

the adjacent vectors within the kernel. The vector with the lowest residual is then stored

as the current most likely vector. This process is repeated for all vectors until an initial

estimate of the lowest energy velocity field is calculated. Then during a second iterative

process, the velocity vectors are iterated through and replaced with the cross-correlation

peak vector that results in the lowest energy within the kernel radius compared to the initial

estimate of the velocity field. This process is repeated until a convergence is reached and

the vector field is no longer updated. The code describing the process is listed in Appendix

A.1.

This algorithm has not been rigorously tested and it is unknown if there are conditions

under which convergence may not be reached. However, in all studies completed so far, this

algorithm has produced superior results to the typical maximum peak-based method in the

presence of noise. When the algorithm was tested with low noise data, it yielded identical

2.6. PIV Processing 49

results to the maximum peak algorithm. Note that this method would not be appropriate

in any rapidly varying velocity field, such as across a shock boundary, though this should

not be an issue for the snake model velocity field.

2.6.4 Cross-correlation Peak Fitting

Since the peak of the cross-correlation volume corresponds to integer particle displacement,

a sub-voxel fit is applied to the peak. Early tests were completed using the standard three-

point Gaussian fitting method [41] which fits a Gaussian function to the peak of the cross-

correlation volumes using the three collinear points along each axis centered on the cross-

correlation peak. However, it was expected that the apparent background noise in the data

would potentially corrupt the fitting process using only three points. So least squares fitting

procedures that fit the Gaussian function in all three dimensions simultaneously using the 3

by 3 by 3 voxel volume surrounding the cross-correlation peak were developed.

The first method assumed the Gaussian peak was only elongated in along the coordinate

axes and had a functional form of

G(X,Y, Z) = C · exp

(
−(X −X0)

2

2 · σ2
X

− (Y − Y0)
2

2 · σ2
Y

− (Z − Z0)
2

2 · σ2
Z

)
(2.1)

where the fitting parameters are the intensity C, the sub-voxel peak center (X0, Y0, Z0), and

the Gaussian function standard deviations σX , σY , and σZ . For a 3 by 3 by 3 array of

voxels this gives 27 equations with 7 variables and is thus an overdetermined system. If

the coordinates of the Gaussian function in each dimension are taken as {−1, 0,+1}, then a

linear system of equations with a constant matrix is produced for all input functions. The

least squares fitting can then be calculated by taking the Moore-Penrose inverse [62] of this

50 Chapter 2. Snake Model Tomographic PIV Experiment

constant matrix which yields the parameters as being equal to a matrix multiplication with

rational coefficients.

When this is simplified for the center coordinates of the Gaussian function, the center co-

ordinates are simple functions of the logarithms of the products of the 3 by 3 by 1 regions

of the input array where the slices are taken in the direction of the dimension for which

the center coordinate is being calculated. Thus, to calculate the sub-voxel coordinate of the

peak in the X-axis direction when the discrete location of the cross-correlation occurs at

(Xp, Yp, Zp), calculate the products of the cross-correlation values

ΠX−1 =

Yp+1∏
Y=Yp−1

Zp+1∏
Z=Zp−1

C(Xp − 1, Y, Z)

ΠX =

Yp+1∏
Y=Yp−1

Zp+1∏
Z=Zp−1

C(Xp, Y, Z)

ΠX+1 =

Yp+1∏
Y=Yp−1

Zp+1∏
Z=Zp−1

C(Xp + 1, Y, Z)

and then the the sub-voxel peak location occurs at the location

X0 = Xp +
logΠX−1 − logΠX+1

2 · log (ΠX−1 · ΠX+1)− 4 · logΠX

(2.2)

where the values of the 3 by 3 by 3 region surrounding the cross-correlation peak must be

positive due to the logarithms being calculated. Similar equations can be applied to calculate

the values of Y0 and Z0. The same method can be applied to derive the peak intensity C as

well as the Gaussian function standard deviations σX , σY , and σZ . The code describing this

peak fitting process is given in Appendix A.2.

2.6. PIV Processing 51

The second sub-voxel calculation method uses a generalized non-axis aligned Gaussian func-

tion as the fitting function

G(X,Y, Z) = C · exp(−a1 · (X −X0)
2 − a2 · (Y − Y0)

2 − a3 · (Z − Z0)
2

− a4 · (X −X0) · (Y − Y0)− a5 · (X −X0) · (Z − Z0)− a6 · (Y − Y0) · (Z − Z0)) (2.3)

where the parameters ai store both the direction of the principal axes of the Gaussian function

as well as the standard deviation values. The least squares fitting of this function proceeds

in a similar way to that of Equation 2.1, except that there are now 10 parameters to fit.

The explicit least squares solution can then be calculated as a polynomial function of the

logarithm of the cross-correlation values that is relatively easy to calculate. However, there

are a large number of functional terms, so the explicit solution is not written here and is

given in the C code form in Appendix A.3.

To measure the effectiveness of these two fitting methods in comparison to the three point

Gaussian fit, three-dimensional particle images were simulated with varying amounts of

Gaussian noise added onto the images. The results of these simulations are shown in Figure

2.17.

The two higher order fitting methods work better on average than the three point fitting

method in the presence of noise. However, the confidence intervals in the graph indicate that

there is a significant overlap amongst the three methods. The effectiveness of these methods

needs further investigation, but this indicates that the higher order methods may be more

suitable for particularly noisy data.

52 Chapter 2. Snake Model Tomographic PIV Experiment

Figure 2.17: This plot compares the sensitivity of the three sub-voxel fitting techniques to
additive noise in the volumetric images. The error is measured as the median voxel per frame
error and the 95% confidence intervals are highlighted in the graph. The noise magnitude
is measured as the standard deviation of the Gaussian distribution in comparison to the
particle intensity.

2.6.5 Vector Field Validation and Filtering

Once the velocity fields were calculated, they were validated using both thresholding and the

Universal Outlier Detector algorithm [63]. The identified outlier vectors are replaced using

a Laplacian interpolation scheme calculated through a diffusion based process. After the

vector field is validated, a Gaussian smoothing filter is applied to minimize high frequency

noise, particularly when additional PIV passes will be completed and the previous passes

are used as initial guesses in subsequent passes.

The vector fields were interpolated between PIV passes to use as initial estimates during the

next PIV pass. Within the volume defined by the calculated vectors, a cubic interpolation

scheme was used [29]. Outside of this volume, a novel extrapolation technique was used

that applied a Taylor series expansion to a natural neighbor interpolation. This algorithm

ensured that extrapolated vectors remained bounded and gave reasonable results.

2.7. Results 53

To avoid overly filtering the data, the last pass of the PIV processing generally only applied

very minor smoothing or no smoothing at all, depending upon the application of the data.

Validation was sometimes also skipped during the last pass to examine the quality of the

vector field.

2.7 Results

While a wide range of processing parameters were investigated, the following results were

processed using a set of parameters that was found to be close to optimal for the snake model

tomographic PIV data.

2.7.1 Processing Parameters

The tomographic reconstructions were calculated using ten passes of the MART algorithm

with smoothing applied during the first eight iterations, but not on the last two iterations. No

sharpening was applied during the reconstruction calculation. The camera image threshold

value was set equal to an intensity level of 50. The reconstructions were stored with 16 bit

precision using the ‘zlib’ compression in the HDF5 data file.

After the tomographic reconstructions were calculated, the three-dimensional images were

processed with four PIV passes using the pyramid correlation windowing method. The first

and second passes had window sizes of 128 by 128 by 128 voxels with window resolutions of

64 by 64 by 64 voxels. The third and fourth passes had window sizes of 64 by 64 by 64 voxels

with window resolutions of 32 by 32 by 32 voxels. All passes used the RPC cross-correlation

and stored 5 peaks to determine the least energy velocity field. The sub-voxel peak locations

were determined using the three point Gaussian fitting method. Validation was applied on

54 Chapter 2. Snake Model Tomographic PIV Experiment

Figure 2.18: This graph shows the measured three-dimensional flow field around snake model.
The location of the computational model mask is shown as the grey surface.

all four passes, however the vector field was only smoothed in the first three passes.

2.7.2 Reconstructions and Vector Fields

An example three-dimensional tomographic PIV velocity field is shown in Figure 2.18 along

with the portion of the snake model superimposed onto the vector field. The general flow

over the snake model can be seen in this graph, however it is difficult to discern specific flow

field details.

A second velocity field is shown in Figure 2.19 that consists of a two-dimensional slice of the

first vector field down the middle of the Y -axis. More detail can be seen in this graph. The

2.7. Results 55

X [mm]
100 120 140 160 180 200

Z
 [

m
m

]

-150

-140

-130

Figure 2.19: This graph shows a two-dimensional cross-section of the velocity field shown in
Figure 2.18. The low resolution nature of the vector field is apparent in the flow near the
snake model. Additionally, a shadow in the laser illumination is visible near the middle of
the vector field where the vector magnitudes drop to nearly zero.

flow field appears to split into a flow above and below the snake model, similar to an airfoil as

would be expected. However, little detail is apparent in the flow about the snake model. The

vectors near the model have the same approximate magnitude as far-field vectors, indicating

that the boundary layer forming over the model due to the no-slip condition could not be

resolved. Additionally, the vectors near the model are only approximately parallel to the

surface of the model as would also be expected. So the vector field shown here does not

resolve the flow features about the snake model in sufficient detail to investigate the physics

of the flow and the resolution of the processing needs to be increased.

A second prominent feature in the flow field is the group of low magnitude vectors in a

vertical bar just down-stream of the snake model. In Figure 2.19, it appears as though this

may be due to a shadow forming from the snake model. However, the laser illumination was

parallel to the Y -axis (out of the page), so this was unlikely. To investigate this further,

the three-dimensional reconstructions over a time series were investigated. In Figure 2.20a,

the sum of all voxels greater than zero were calculated along the Z-axis. Since the model

is masked out and set equal to zero, this shows the exact location of the model within the

image. In Figure 2.20b, the reconstruction voxel values were summed along the Z-axis for

56 Chapter 2. Snake Model Tomographic PIV Experiment

X [mm]
100 120 140 160 180 200

Y
 [

m
m

]

60

70

80

90

100

110

120

130

140

150

(a) Reconstruction model mask
X [mm]

100 120 140 160 180 200

Y
 [

m
m

]

60

70

80

90

100

110

120

130

140

150

(b) Reconstruction time series

Figure 2.20: These graphs show the relationship between the location of the physical model
and the laser illumination shadow. (a) The voxels greater than zero were summed along
the Z-axis direction to highlight the zero-valued region corresponding to the snake model.
(b) The same reconstruction images were summed across ten frames in the Z-axis direction.
This highlights the tracer particles as well as the laser illumination shadow.

all frames in the time series. This shows particle tracks and a large vertical region across

the reconstruction where the particles appear to lose illumination.

Thus, the region of the vector field corresponding to the low magnitude vectors does likely

correspond to a shadow in the experiment, but it is in a different location than the snake

model, so this likely was due to some other source. Since the particle illumination was

already relatively low and significant preprocessing was required to bring out the particle

contrast, it may be possible that this shadow was still in a relatively well illuminated region,

but the illumination was just low enough that the particles were no longer visible above the

noise threshold of the cameras. This further indicates that the laser illumination levels were

too low to accurately resolve velocity field data.

2.7. Results 57

2.7.3 Resolution Testing

Since after optimizing the processing parameters, the measured velocity field appeared to still

have too low of resolution to accurately resolve the flow field features, the effective resolution

of the tomographic data was investigated. Calculating the exact resolution requires knowing

the correct solution to the velocity field, however since this is unknown, a proxy solution was

used. The flow field sufficiently far upstream from the snake model should be approximately

uniform; therefore the mean measured velocity in this region should be approximately equal

to the true velocity.

To estimate the effective resolution of the tomographic PIV data, pyramid correlations were

calculated with similar settings to the vector field calculated for Figure 2.18, except that

only two passes were completed and the window size was varied from 16 vox3 up to 64

vox3. The vectors were only calculated for a small portion of the total reconstruction that

corresponded to the upstream section from the model. Then the magnitude of the differences

between each of the vectors and the mean vector was calculated. The result of these tests is

shown in Figure 2.21.

At small window sizes, there will be an insufficient number of particles to generate an accurate

displacement peak within the cross-correlation. This will result in the image noise covering

the particle signal and highly erroneous vectors being measured across much of the vector

field. As the window size increases, at some point the particle signal should dominate the

image noise and the variance in the measured vectors will asymptotically approach zero for

a uniform flow field. The point at which the variance starts converging will then effectively

be the resolution of the particle image. Unfortunately, as can be seen in Figure 2.21, even

for the largest window sizes, convergence is not reached.

This implies that the velocity field resolution shown in Figures 2.18 and 2.19 is essentially

58 Chapter 2. Snake Model Tomographic PIV Experiment

Window Size [vox]
20 30 40 50 60 70

σ
2
 [
v
o
x
/f
ra

m
e

2
]

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 2.21: This shows the velocity field variance magnitude in the uniform flow region
upstream of the snake model for a variety of different window sizes used with pyramid
correlation processing. Since every vector should be nearly identical in this region, the
variance should asymptotically approach zero when sufficient window resolution has been
reached. Since even at the largest window resolution, the variance is still rapidly dropping,
this means that the PIV windows must be at least 64 by 64 by 64 voxels in size.

the highest resolution that can be achieved with the collected tomographic PIV data since

processing the reconstruction images with smaller window sizes will only increase the noise

in the measured vector field without providing any additional refinement of the velocity field

features.

The process described here is relatively linear, however a large number of different permuta-

tions of processing parameters, methods, and algorithms were attempted to yield the highest

quality velocity field data. Some of these methodologies either did not work or worked more

poorly than other processing methods that had been attempted. The methodology described

here was found to produce the best data and thus was focused upon.

2.8. Recommendations 59

2.8 Recommendations

The primary reason that the tomographic PIV data did not yield velocity fields with suf-

ficiently high resolution to investigate the physics of the flow around the snake model was

that the signal-to-noise ratio in the collected camera particle images was too low. The two

primary sources of error in tomographic PIV are due to calibration error and particle image

noise. The calibration error was directly measured during the self-calibration process and

found to be approximately 0.1 pixels, which falls well below the recommended maximum

error tolerance of 0.4 pixels [8].

The effects of image noise on tomographic PIV measurements have not been thoroughly

studied. This is likely due to the fact that modern lasers and high-speed cameras produce

particle images with very high signal-to-noise ratios. Tomographic reconstruction has been

largely replaced with particle tracking-based methodologies that require very high quality

camera image data [54, 55, 56] where individual particle positions can be tracked over time.

These methodologies would not be possible with particularly high noise particle images since

it would be difficult to determine whether relatively high intensity regions on the camera

images corresponded to either particles or noise, thus making particle tracking effectively

impossible. Therefore it is difficult to determine based upon previous studies whether the

data collected for the snake model experiment would be considered too low of a signal-to-

noise ratio to produce high quality data.

However, the energy density of the laser illumination gives a metric which can be compared

to previous tomographic PIV work. The snake model data collected used a dual head 10

mJ per pulse laser for illumination. Both laser heads were simultaneously pulsed and were

used to illuminate an area of about 105 mm by 30 mm. This gives the illumination flux

energy per pulse as 6.35 · 10−3 mJ/mm2. A tomographic PIV review paper from 2013 [52]

60 Chapter 2. Snake Model Tomographic PIV Experiment

summarized 14 tomographic PIV experiments which had illumination flux energies between

2.66 ·10−2 mJ/mm2 and 1.35 ·100 mJ/mm2. The median flux energy was 1.44 ·10−1 mJ/mm2

which was 22.7 times the energy of the snake model system. The laser and camera used

to collect the snake model data had lower power and resolution than 12 of the 14 cases

described in the paper. While the laser optical system, the sensitivity of the cameras, and

the lens aperture diameters will also play a role in the overall image quality, this basic analysis

implies that the illumination likely needed to be significantly higher to produce high quality

tomographic PIV data.

Since the laser power is fixed, the area of illumination can be decreased to increase the energy

density. To achieve the median energy density described above would require reducing the

reconstruction volume to approximately 22 mm by 25 mm by 6 mm. Since the snake model

is approximately 500 mm in length, this would require collecting data for far too many

volumes to practically image the entire snake model. Therefore, a subsequent study would

necessarily focus on small regions of the model for data collection.

Additionally, running preliminary processing on the tomographic PIV data at the start of

the experimental data collection would be prudent to ensure that the data will produce

high quality velocity fields. This would involve collecting calibration data, collecting particle

image data, calculating the initial calibration, calculating the self-calibration, performing the

reconstruction process, and measuring the velocity vector fields. This process would likely

take six hours with in-house software and two to three with commercial software.

If the velocity field data was found to be too low of resolution, multiple techniques could

be used to resolve the issue. First, the image magnification could be increased by moving

the cameras closer to the volume or by using longer focal length lenses. The particle density

could also be increased by adding additional seeding particles to the fluid. The illumination

energy density could be increased by decreasing the illumination area and the corresponding

2.8. Recommendations 61

imaging volume. The camera sensitivity could also potentially be increased by opening the

lens aperture or increasing the sensor gain on the camera, but both of these parameters may

be effectively fixed by the experimental system. Without having the feedback process of

examining the velocity field data to update the experimental configuration, it is difficult to

estimate the best procedure for repeating the snake model experiment. More than likely

it would involve a combination of all of these options, with the primary focus being on

decreasing the volume size to increase illumination and image magnification.

Chapter 3

Tomographic PIV Processing Software

3.1 Introduction

Understanding the three-dimensional structure of fluid systems is essential for several appli-

cations. Practical applications include measuring the forces due to vortex shedding and tur-

bulence, quantifying rates of mixing in industrial processes, determining energy flux in heat

exchangers, as well as many other problems. Despite the importance of understanding the

three-dimensional dynamics of flows, experimental techniques to collect three-dimensional

velocity data remain relatively limited. There are several techniques for measuring three-

dimensional velocity fields including stereo Particle Image Velocimetry (PIV) [37, 48, 53, 60],

holographic PIV [24, 36], and defocused PIV [26, 46, 47], but currently tomographic PIV

[1, 2, 3, 8, 9, 10] and its related Shake the Box method [54, 55, 56] are capable of resolving

the largest volumes with the highest particle seeding densities.

3.2 Tomographic PIV

In tomographic PIV, multiple cameras record data from a three-dimensional particle field. A

two-by-two or cross-shaped arrangement of four cameras is commonly used, although other

configurations are possible. Generally, as additional cameras are added to the system, the

error in the measured velocity field will decrease while the effective resolution will increase,

62

3.2. Tomographic PIV 63

but this adds additional physical and computational complexity to the system.

The two-dimensional images from these cameras are then used to computationally recon-

struct a three-dimensional best estimate approximation to the original particle field. Once

this three-dimensional image is calculated, straightforward extensions of two-dimensional

PIV algorithms are applied to this image to yield three-dimensional velocity fields. In prac-

tice, this process involves multiple steps.

3.2.1 Camera Calibration

First, a camera calibration function is determined for each camera. This function relates

the three-dimensional world (or experimental) coordinates to the two-dimensional image

coordinates in each camera. The calibration functions are primarily used during the to-

mographic reconstruction process, although the functions can also be used to measure the

image magnification, perform three-dimensional particle tracking, and estimate the relative

camera positions.

The data for determining the camera calibration are typically collected by traversing a

precisely manufactured calibration grid through the measurement volume. The position

of markers on the calibration grid and the traversal distances are generally known to a

high degree of accuracy yielding a list of world coordinates (Xi, Yi, Zi). The position of the

markers in the camera images (xi, yi) is then determined, typically by applying some type

of sub-pixel fitting, to yield a list of point correspondences between the world coordinates

and the image coordinates. This list of point correspondences (Xi, Yi, Zi, xi, yi) is then used

to fit a calibration function for each camera that can be used as a model relating the world

coordinates to the image coordinates. The calibration functions may be further refined using

a self-calibration procedure that uses the particle positions as a higher resolution calibration

64 Chapter 3. Tomographic PIV Processing Software

dataset [65].

The imaging system of many cameras can be closely approximated by a model referred to as

a pinhole, projective, or linear camera model. Mathematically this model is a homographic

transformation between the world and image coordinates [21] and thus can be expressed as

the straightforward linear relation


wx

wy

w

 =


P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

 ·


X

Y

Z

1


(3.1)

where the matrix P is referred to as the projective matrix and w is a dummy variable used

to represent the homographic transform. The projective matrix P is calculated from the list

of point correspondences (Xi, Yi, Zi, xi, yi) using a singular value decomposition of a matrix

constructed from the calibration coordinates [21]. In practice, many cameras have geometric

distortions that cause significant errors if Equation 3.1 is used as a global calibration model

across all world coordinates. However, since this model can be easily inverted to yield world

coordinates as a function of image coordinates, the model can be used in calculations that

do not require high accuracy.

Equation 3.1 can be modified by adding distortion terms to increase the accuracy of the

calibration model. However, since it is difficult to account for all potential sources of distor-

tion, a more generalized calibration model based upon a cubic polynomial is used in most

3.2. Tomographic PIV 65

calculations. This calibration functions given by

x = a0 + a1X + a2Y + a3Z + a4X
2 + a5XY + a6Y

2

+ a7XZ + a8Y Z + a9Z
2 + a10X

3 + a11X
2Y + a12XY 2

+ a13Y
3 + a14X

2Z + a15XY Z + a16Y
2Z + a17XZ2 + a18Y Z2

y = b0 + b1X + b2Y + b3Z + b4X
2 + b5XY + b6Y

2

+ b7XZ + b8Y Z + b9Z
2 + b10X

3 + b11X
2Y + b12XY 2

+ b13Y
3 + b14X

2Z + b15XY Z + b16Y
2Z + b17XZ2 + b18Y Z2 (3.2)

was suggested in [60] and are now commonly used in PIV applications. The coefficients of

these polynomials can be calculated using a least-squares fitting procedure. While Equation

3.2 can accurately model a large number of camera systems, including those with significant

distortion, the calibration function cannot be directly inverted and numerical methods must

be relied upon for these calculations.

3.2.2 Weighting Matrices

To calculate the tomographic reconstructions, the relationships between the world volume

voxels and the camera image pixels must be determined. Specifically, the calibration function

is used to calculate which voxels map to which pixels. This relationship can be expressed as

a weighting matrix W that is multiplied by the three-dimensional particle field image vector

I to yield each specific camera image vector C, i.e.

66 Chapter 3. Tomographic PIV Processing Software

C = W · I (3.3)

where the image vectors I and C are simply one-dimensional copies of the three-dimensional

particle field array I(X,Y, Z) and the two-dimensional camera array C(x, y). Thus, a weight-

ing matrix must be calculated for each camera image which is the total number of camera

pixels nxpix · nypix rows by the total number of reconstruction voxels nXvox · nYvox · nZvox

columns in size.

For typical tomographic PIV setups, the weighting matrix is very large. For a system with

four one megapixel cameras, this matrix will contain approximately 1015 elements. The large

number of elements means that directly calculating the weighting matrix is computationally

infeasible. Additionally, assuming that the matrix is stored with floating point precision,

this would require thousands of terabytes of memory storage. However, in practice each

voxel will only map to a small number of pixels, so the weighting matrix is largely sparse.

Assuming that the magnification of the voxels is similar to that of the pixels, as is commonly

done in tomographic PIV, this means that the number of non-zero values in the matrix is

on the order of 1010 elements.

Thus, by calculating and storing only the elements that might be non-zero, the weighting ma-

trix can be relatively efficiently calculated and stored. There are two primary methods that

are used to calculate the weighting matrix elements: a cylinder-sphere intersection algorithm

and a convex-hull intersection algorithm. The cylinder-sphere algorithm is computationally

easier to calculate, however it is less accurate than the convex-hull algorithm.

The weighting matrix specifically stores the proportion of the volume of each voxel that

intersects the line of sight of each pixel. Therefore every entry of the weighting matrix has

a value 0 ≤ Wij ≤ 1. Since most voxels in the reconstruction do not intersect most camera

3.2. Tomographic PIV 67

Algorithm 1 This algorithm is used to efficiently calculate the tomographic reconstruction
weighting matrices from the calibration functions x = f(X,Y, Z) and y = g(X,Y, Z).
1: procedure WeightingMatrix(f(X,Y, Z), g(X,Y, Z))
2: for Xmin ≤ X ≤ Xmax do
3: for Ymin ≤ Y ≤ Ymax do
4: for Zmin ≤ Z ≤ Zmax do
5: xcam ← f(X,Y, Z)
6: ycam ← g(X,Y, Z)
7: for bxcamc ≤ x ≤ dxcame do
8: for bycamc ≤ y ≤ dycame do
9: W(X,Y,Z,x,y) ← IntersectV olume
10: end for
11: end for
12: end for
13: end for
14: end for
15: end procedure

pixels, the weighting matrix may be efficiently calculated by skipping a large number of

potential calculations. Qualitatively, the calculation algorithm is described in Algorithm

1. Assuming that the voxel magnification approximately equals the pixel magnification,

then only a small number of pixels need to be iterated over for each voxel. This effectively

decreases the number of calculations by a factor of approximately 105 for typical tomographic

PIV systems.

The IntersectV olume function within the algorithm corresponds to the method used to

intersect each pixel with each voxel. In the cylinder-sphere method, the pixel is back-

projected into the volume as an infinitely long cylinder which is then intersected with the

voxel represented as spheres. This calculation method is described in [2, 8, 9, 10]. An

analytical solution to the cylinder-sphere intersection volume is described in [28] as functions

of numerically evaluated elliptic integrals [49].

The convex hull intersection algorithm involves first representing the back-projected pixel

as rectangular frustum. This frustum may then be converted to a convex hull triangular

68 Chapter 3. Tomographic PIV Processing Software

mesh. The cubic (or more generally rectangular) voxel may also be converted to convex hull

triangular mesh. Then since the intersection of two convex hulls is also a uniquely defined

convex hull, these two geometries may be intersected. The volume of the resultant geometry

(if it is not a null set) may be calculated by using an application of Gauss’s theorem.

Both of these algorithms allow the weighting matrix to be calculated in a reasonable amount

of time. However, the weighting matrices are still very large in terms of memory. Addition-

ally, multiplying the reconstruction image by the weighting matrix is still computationally

expensive if the non-zero elements are directly stored. Thus, a function was developed to

convert the weighting matrix to a compressed sparse row (CSR) format which both decreases

memory and increases matrix multiplication efficiency.

Storing the weighting matrices in CSR format decreases the memory requirements, however

the memory is still quite extensive. So an additional function was developed to further

compress the weighting matrix by converting the weighting matrix values from floating point

to integer precision. Native HDF5 data compression is also used to store the weighting

matrices on the hard disk with less memory as well.

3.2.3 Particle Images

Particle images for tomographic PIV appear similar to those used in two-dimensional PIV,

however instead of a thin sheet, a volume of particles is illuminated. This illumination is

typically accomplished by optically expanding a laser beam and using shutters to create well

defined boundaries to the volume. Since the cameras need to keep a volume of particles in

focus instead of a single plane, the camera lenses are commonly stopped down to increase

the depth-of-field. This also has the effect of decreasing the light entering the cameras and

will decrease the signal-to-noise ratio of the data. Therefore, the size of the volume that can

3.2. Tomographic PIV 69

be imaged is partially limited by the available illumination.

The quality of the tomographic PIV velocity field data depends heavily on the number of par-

ticles imaged by the cameras. Sparse images with very few particles can result in high quality

tomographic reconstructions. However, the low particle density results in significant errors

in the measured velocity field due to few tracer particles to match in the cross-correlations.

High particle densities reduce the quality of the tomographic reconstructions since particles

will effectively obscure one-another, which also results in higher error velocity fields. This

implies that there is generally an optimal particle density for tomographic PIV. This effect

is investigated further in the software validation simulations.

Typically the camera particle images are pre-processed to increase the particle contrast and

reduce any background noise prior to the reconstruction calculations. This generally involves

normalizing the particle images so that the particle intensity is approximately constant

across the images, applying a minimum background subtraction, and applying a thresholding

operation that sets the images to zero below some defined threshold [52]. The thresholding

operation is built into the tomographic PIV software described here, but additional camera

image pre-processing would need to be carried out in other image processing software.

3.2.4 Tomographic Reconstruction

Once the two-dimensional particle images are collected by the cameras, they are then com-

bined with the calibration data via the weighting matrices to calculate the tomographic

reconstructions of the three-dimensional particle volume. The Multiplicative Algebraic Re-

construction Technique (MART) [1, 2, 8, 9, 10, 23] calculation method is described in Al-

gorithm 2 where the reconstruction is repeated kmax iterations. The relaxation parameter

µ controls how quickly the reconstruction process converges towards a solution and is typi-

70 Chapter 3. Tomographic PIV Processing Software

Algorithm 2 This describes the MART calculation algorithm given the previously calcu-
lated weighting matrices and the camera images. The weighting matrix for the nth camera
of ncam total cameras is denoted as Wn while the nth camera image is denoted by Cn. The
number of MART iterations is given by kmax and µ is a relaxation parameter that is typically
set equal to 1.
1: procedure MARTCalculation(W,C)
2: R ←1 . Set all voxels equal to one
3: for 1 ≤ k ≤ kmax do . Iterate reconstruction kmax times
4: for 1 ≤ n ≤ ncam do . Iterate over all cameras
5: R ←R ·

(
Cn

Wn·R

)µWn

6: end for
7: end for
8: end procedure

cally set equal to 1. This method is effectively an iterative error-correction scheme that is

applied to adjust the three-dimensional images so that their projections closely match the

experimental images recorded by the cameras.

During testing of the reconstruction software, it was found that the process of raising the cor-

rection factor to the power of the weighting matrix was relatively slow. So the reconstruction

equation was re-written to a logarithmically transformed version

R← R · exp
(
µ · log

(
Cn

Wn ·R

)
·Wn

)

which was found to run significantly faster. This is due to the combination of facts that the

computational complexity for multiplications is lower than for calculating powers and that

CSR matrix format is optimized for matrix multiplication.

Between each iteration of the MART reconstruction process, Gaussian smoothing and Lapla-

cian sharpening filters may be applied to the reconstruction images. The smoothing oper-

ation produces higher quality reconstructions in particular when the particle diameters are

one pixel or smaller since spreading the reconstructed particles out ensures that they fully

3.2. Tomographic PIV 71

intersect amongst all cameras. The sharpening operation is then applied to ensure that the

particles maintain relatively sharp peaks that give strong cross-correlation signals.

3.2.5 PIV Processing

The three-dimensional reconstructed images are processed using standard PIV algorithms.

These algorithms break the images into a number of smaller windows that are then cross-

correlated in time with other image frames. The cross-correlations are calculated using

discrete Fourier transforms to increase speed. The location of the peaks in the correlation

volumes is calculated with sub-voxel accuracy using a variety of fitting methods, which yield

a velocity vector for each window. Several filtering methods are applied to the full vector

field. This process is iteratively repeated to yield a velocity field for each reconstructed

image frame.

Several different cross-correlation methods are built into the software. Standard cross-

correlation simply extracts the windows and applies the cross-correlations without any pro-

cessing applied to the windows. Window deformation uses the estimates of the velocity field

from the previous PIV iterations to transform the fluid parcels corresponding to each window

into an un-deformed state prior to the cross-correlation [51] which typically results in lower

error, particularly in high-shear flows. Additionally, both standard cross-correlations and

phase correlations may be applied in the software.

The measured velocity fields are validated using both thresholding and the Universal Out-

lier Detector algorithm [63]. The identified outlier vectors are replaced using a Laplacian

interpolation scheme. Once the vector field has been validated, a Gaussian smoothing filter

is applied to minimize high frequency noise, particularly when additional PIV passes will be

completed and the previous passes are used as initial guesses in subsequent passes.

72 Chapter 3. Tomographic PIV Processing Software

3.3 Software Description

The tomographic PIV software is designed to be relatively easy to install, cross-platform,

and straightforward to call from other scientific programming languages. The software runs

entirely from the command line and is controlled by passing parameter files created in the

commonly used Hierarchical Data Format Version 5 (HDF5) scientific data format [20] as

function arguments. All processed data is returned as additional HDF5 data files. This has

the advantage that the software may be called as scripts to serially process large quantities of

data with little user input required once the script begins running. The primary disadvantage

of this processing method is that the software provides little feedback to the user by itself

and the HDF5 data files must be opened by other software to analyze the software output.

When possible, publicly available libraries were used in the software to ensure that critical

functions were efficient and thoroughly tested, while minimizing the amount of additional

code that was necessary to write. At the same time, libraries were only chosen to be used in

the software if they were known to be well supported both in terms of common usage and

in terms of being regularly updated. These external libraries included the following:

• HDF5: Hierarchical Data Format Version 5 [20]

• BLAS: Basic Linear Algebra Subprograms [61]

• LAPACK: Linear Algebra Package [45]

• FFTW: Fastest Fourier Transform in the West [13]

• LibTIFF: Tag Image File Format Library [32]

• OpenMP: Open Multi-Processing [44]

3.3. Software Description 73

Oftentimes, these libraries are used in multiple different functional parts. For example,

HDF5 file format is used for communication between different functions, for passing pro-

cessing parameters to functions, and for storing processed data. The HDF5 format was also

chosen as it is widely supported by other research programming languages including Python,

MATLAB, Mathematica, and Julia. This means that once the tomographic PIV software is

compiled, its functions may be directly called from these languages.

Additionally, functions were written to be as universal as possible so that they could be used

in multiple different locations across the processing pipeline. A cubic interpolation library

[29] was developed that was used in both interpolating three-dimensional images as well as

velocity fields as an example.

The software is divided into roughly two groups of functions. The primary group of func-

tions performs the tomographic PIV processing. Given input data from a tomographic PIV

experiment, these functions will output reconstructed three-dimensional particle field images

along with calculated vector fields. The second group of functions were developed to cre-

ate simulated tomographic PIV data that was used to validate the first group of functions.

These functions all communicate by passing HDF5 parameters or data files to one another.

A single function was developed to run a variety of simulation validation cases.

The tomographic PIV group of functions outputs two primary types of HDF5 data: tomo-

graphically reconstructed three-dimensional images of the particle fields and three-dimensional

velocity vector fields. In addition to the reconstructed images, the reconstruction data files

also include the voxel coordinates (in the calibration coordinate system). Since the recon-

struction images can be up to a gigabyte in size, lossless compression, either ‘zlib’ or ‘szip’,

may be applied to the saved images. Additionally, the images may be saved with lower

numerical precision (8, 16, 32, or 64 bits per sample) to further save memory. The veloc-

ity vector fields also include the three-dimensional coordinates at which the vectors were

74 Chapter 3. Tomographic PIV Processing Software

measured as well as a data set indicating whether the vectors were interpolated from the

remaining vector field due to being flagged as outliers.

3.4 Software Validation

Testing the accuracy of the tomographic reconstructions and the measured velocity vector

fields that are calculated from the tomographic PIV software requires having an input data

set with a known true solution. Since even for well studied flow phenomena, it is impossible to

know the true solution of experimental data with absolute certainty, software was developed

to simulate arbitrary tomographic PIV data sets. This software simulates three-dimensional

particle fields experiencing flows by a defined velocity field. Camera lenses, angles, and

positions are specified to create calibration functions from which camera sensor images of the

flow field are generated. Additionally, calibration grid data is created from these calibration

functions. Noise can be added to the data at any of these steps to test the sensitivity of the

tomographic PIV software to non-ideal experimental data.

3.4.1 Velocity Field

A variety of velocity fields can be simulated including uniform translation, shear flow, sinu-

soidal flow, and a homogeneous turbulence flow. The library defining the velocity fields was

written to be highly portable so that additional velocity fields could be easily added to the

library in the future.

The position of the cameras imaging the fluid volume in tomographic PIV will introduce an

inherent geometrical bias to the tomographic reconstructions. This primarily manifests as

the reconstructed particles effectively being blurred along the imaging axes of the cameras.

3.4. Software Validation 75

Due to this effect, the velocity field error tends to be higher along the imaging axis as well.

To ensure that this effect could be accurately measured in the simulations, the homogeneous

turbulence velocity field model was used in the validation simulations since the velocity field

should not introduce a directional bias (as the shear flow would for example).

The homogeneous turbulence model used in the simulations was designed to provide an ana-

lytical model describing a flow field that satisfies continuity, exhibits a Kolgomorov scaling,

causes advection of smaller scale vortices by larger vortices, and has independent Fourier

modes with Gaussian distributions [15]. In addition to not introducing geometrical biases

into the data, this flow will allow the software to be tested with a wide range of both spatial

and temporal length scales. The velocity fields are analytically given by

u (X, t) =

M0∑
m=1

Nk∑
n=1

Pω∑
p=1

(amnp × κ̂mn) cos (κmn ·X + ωnp t)+(bmnp × κ̂mn) sin (κmn ·X + ωnp t)

where κ̂mn are random vectors distributed on a sphere with a radius s. The radius s de-

termines the spatial length scales of the flow with higher values resulting in a more rapidly

varying velocity field. The vectors amnp and bmnp are generated from normal distributions

with zero-mean and a variance of one. The time based component ωnp also has zero-mean

normal distribution with a variance of r which controls how quickly the velocity field changes

in time. A single Z-axis plane of a velocity field used in the simulations is shown in Figure

3.1.

While only the uv velocity field is shown in the figure, the homogeneous nature of the flow

and the range of length scales is apparent in the flow field. The temporal variance in the

simulations was chosen such that the velocity field rapidly evolved and represented a range

of different flow fields during any individual simulation case. Since the velocity field is

76 Chapter 3. Tomographic PIV Processing Software

x [vox]
0 200 400 600 800 1000 1200

y
 [

v
o

x
]

0

200

400

600

800

1000

1200

Figure 3.1: This plot shows the uv vector field of an example time instant of a single Z-axis
plane of the simulated turbulence velocity field. The homogeneous nature of the flow along
with the range of length scales is apparent in the flow.

non-stationary, this also means that any PIV measurements will be averaging the flow in

both space and time and thus the measured velocity field error will be higher than for a

non-changing flow field.

3.4.2 Particle Field

The three-dimensional particle field image was generated by simulating the particles as

localized Gaussian functions with a range of different intensities and diameters. The intensity

values and particle diameters were taken from a randomly generated log-normal distribution

as is typically seen in PIV experiments. In practice, unless a very wide distribution is

specified by the user, the distributions will be approximately normal.

3.4. Software Validation 77

The particles are uniformly ‘seeded’ within the simulated volumes and advected along the

velocity field using a 4th order adaptive Runge-Kutta-Fehlberg differential equation solver.

The edge of the volume is ‘re-seeded’ between every frame so that an arbitrary number

of frames can be generated with constant particle densities. Any particles that leave the

simulated volume are removed from the simulation and replaced by new randomly gener-

ated particles. This is experimentally unrealistic, but should not affect the results of the

tomographic PIV simulations.

The number of particles within the volumes was determined based upon the particle density

ppp which is defined in terms of the number of particles per pixel in the camera sensors.

In tomographic PIV, this particle density is typically in the range 0.02 ≤ ppp ≤ 0.1 [52].

However, this metric does not account for the diameter of the particles, so a second metric

known as the source density Ns is also used. The source density is defined as

Ns = ppp · π
4
·
(
dτ
µp

)2

where dτ is defined as the particle diameter on the image sensor and µp is the pixel pitch

of the image sensor, so that dτ/µp is the particle diameter in pixels. The source density is

equivalent to the proportion of the area of the image that the particles in the image cover.

For tomographic PIV the source density is typically in the range 0.1 ≤ Ns ≤ 0.3 [52].

In the simulations completed here, the particle density was varied across the range 0.01 ≤

ppp ≤ 0.42 with the mean particle diameter (defined in terms of the full width half maximum

of the Gaussian intensity function) equal to dτ/µp = 2.25 pixels. This resulted in a source

density range of 0.04 ≤ Ns ≤ 1.68. These ranges extend from below to above typical

tomographic PIV ranges, but were chosen to test the software over a wide range of data.

More thorough testing was completed at a narrower range of particle densities.

78 Chapter 3. Tomographic PIV Processing Software

The simulated particle fields are stored in the same HDF5 data format as the reconstructions

and additionally include the precise particle positions, intensities, and diameters so that the

reconstruction particle statistics can be compared with the known true statistics.

3.4.3 Camera Simulation

The cameras are simulated in a rectilinear grid that can be an array of any size, however all

simulations discussed here consisted of 2 by 2 camera grid since this is the most common

configuration found in tomographic PIV experiments. The simulated cameras are offset from

the Z-axis by a defined angle θ and are placed equidistant from the center of the simulated

volume. The camera lens, sensor resolution, and sensor pixel size can all be specified. The

simulations here were all completed using 105 mm lenses with the camera center placed at

1000 mm from the volume origin and using a 1024 by 1024 sensor with 17 µm pixel pitches.

The angle θ was varied during the simulations, however the other parameters were held

constant.

The camera sensor images may be calculated using one of two methods. The first method

involves multiplying the simulated three-dimensional particle field images by the camera

weighting matrices. And the second method maps the three-dimensional particle positions to

the sensor images using the calibration functions and directly calculating the two-dimensional

Gaussian functions. The second method was used in the simulations here since calculating

the weighting matrices is computationally intensive, so this allowed the simulations to be

run more efficiently.

Camera calibration grid data was also generated in the form of a list of point correspondences

between the world coordinates and the image coordinates (Xi, Yi, Zi, xi, yi) for each camera.

The ∆X, ∆Y , and ∆Z spacing of the calibration grid world coordinate data could be

3.4. Software Validation 79

specified and was set equal to ∆X = ∆Y = 15 mm and ∆Z = 5 mm for the simulations as

this represented a typical tomographic PIV experimental case.

3.4.4 Performance Metrics

The simulation software records a wide range of performance metrics including multiple

image similarity metrics, particle reconstructions errors, and velocity field errors. However,

to compare these results with other tomographic PIV studies, two metrics were focused on:

the reconstruction normalized cross-correlation quality and the velocity field error.

The normalized cross-correlation quality factor Q is a metric that specifically investigates the

fidelity of the tomographic reconstructions R(X,Y, Z) compared to the original simulated

three-dimensional particle intensity field I(X,Y, Z) and is defined by

Q =

∑
X,Y,Z R(X,Y, Z) · I(X,Y, Z)√∑

X,Y,Z R(X,Y, Z)2 ·
∑

X,Y,Z I(X,Y, Z)2
.

This factor was first proposed for measuring tomographic PIV images in [8] due to being a

convenient fidelity metric both in terms of being easy to evaluate and due to having simple

to interpret output values. The factor will evaluate to exactly 1 when the two images are

equal and approaches 0 as the images diverge. In practice, the value of Q will rarely drop

below Q ≈ 0.1 since even random noise will tend to have a non-zero correlation.

The velocity field error is defined as the mean magnitude of the difference between the

simulated velocity field u (X, t) and the measured velocity field up (X, t) where the average

is taken over all m calculated vectors in each of the n simulated frames.

80 Chapter 3. Tomographic PIV Processing Software

|ε| = 1

mn

m∑
i=1

n∑
j=1

|u (Xi, tj)− up (Xi, tj)|

This metric was chosen since the velocity field is the output that will ultimately be taken

from any tomographic PIV experiments. Additionally, it is known that in ideal scenarios,

the minimum PIV error is typically about 0.1 voxel per frame. Therefore, if the results of

the simulations approach this value, then it can be assumed that the software is performing

correctly.

For the simulations described here, the flow fields were simulated across 50 frames of time

with a 53 by 53 by 8 vector velocity field measured for each frame. A single PIV pass was

completed for each frame using a 64 by 64 by 64 voxel window with an effective resolution of

32 by 32 by 32 voxels. Both velocity vector thresholding and the universal outlier detector

were used to validate the vector fields with identified outlier vectors replaced using Laplacian

interpolation.

3.4.5 Camera Angle

In many tomographic PIV studies, both experimental and simulated, four cameras are placed

in either a square or a cross shape that is offset from the experimental axis by an angle [52].

The optimal angle depends upon the source density, the thickness of the imaged volume,

and the lens system (and corresponding depth-of-field) of the cameras. However, it has been

generally found that the optimal reconstruction quality results are achieved when the camera

angle is approximately 20◦ ≤ θ ≤ 30◦ [8, 52]. Since this is a well studied problem, this was

chosen as an example case to investigate and validate the tomographic PIV software.

In these simulations, a two by two camera array views the simulated particle field volume

3.4. Software Validation 81

θ [deg]
0 10 20 30 40 50 60

Q

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ppp = 0.03
ppp = 0.05
ppp = 0.07

(a) Quality as a function of camera angle

θ [deg]
0 10 20 30 40 50 60

|
| [

vo
x]

0

0.2

0.4

0.6

0.8

1

1.2
ppp = 0.03
ppp = 0.05
ppp = 0.07

(b) Velocity error as a function of camera angle

Figure 3.2: This figure shows the effect of camera angle on the reconstruction quality and
velocity error. It can be seen that the optimal camera angle is a function of particle density
since higher camera angles will require viewing the volume through longer lines of sight and
thus more particles will be imaged by the cameras.

with an angle varying from 5◦ to 60◦. Particle densities of 0.03, 0.05, and 0.07 ppp are

simulated which correspond to source densities of 0.12, 0.20, and 0.28. The reconstructed

volume had a thickness of 192 voxels, but the width of the volume varied with the camera

angle and ranged from 986 by 986 voxels down to 526 by 526 voxels at the highest camera

angle. The results of the simulations are shown in Figure 3.2.

The maximum reconstruction quality factor can be seen to occur for lower camera angles than

the minimum velocity field error across all three particle densities tested. This indicates that

previous simulation studies that have primarily relied on the reconstruction quality factors in

determining the effectiveness of tomographic PIV may have suggested lower camera angles

than are truly optimal for measuring the velocity fields. Additionally, it was found that

while increasing the particle density resulted in substantially lower reconstruction qualities,

the negative effect was less detrimental to the measured velocity field. However, overall these

results are in close agreement with previous tomographic PIV simulations.

82 Chapter 3. Tomographic PIV Processing Software

ppp

10
-2

10
-1

Q

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ = 20 [deg]
θ = 30 [deg]

(a) Reconstruction quality as a function of par-
ticle density

ppp
10 -2 10 -1

|
| [

vo
x]

0

0.2

0.4

0.6

0.8

1

1.2
θ = 20 [deg]
θ = 30 [deg]
Original Image

(b) Velocity error as a function of particle den-
sity

Figure 3.3: This figure shows the effect of particle density on the reconstruction quality and
velocity error. It can be seen that there is an optimal particle density for measuring the
velocity field since at low particle densities, there are not enough particles to sufficiently
resolve the velocity field. But at higher particle densities, the reconstruction noise starts
negatively affecting the velocity measurement.

3.4.6 Particle Density

Since particle density is known to strongly affect the measurements of tomographic PIV, this

was chosen as a second case to investigate with simulations. In these simulations, the camera

angle was held constant at two values of θ = 20◦ and θ = 30◦ while the particle density was

logarithmically varied from ppp = 0.01 to ppp = 0.42. The reconstructed volume was 888

by 888 by 192 voxels for the 20◦ case and 720 by 720 by 192 for the 30◦ case. The results of

these simulations are shown in Figure 3.3.

The reconstruction quality monotonically decreases with the particle density. This would

seem to indicate that any high seeding density will result in poor quality PIV measurements.

However, error in the measured vector field decreases up to a seeding density of ppp ≈ 0.03.

The reason for this can be seen in Figure 3.3b where the measured PIV error of the original

3.4. Software Validation 83

simulated particle image is shown in addition to the error of the reconstructed image. The

PIV error of the original simulated image continues to decrease across the whole range of

particle densities simulated here. So at lower densities, the additional particles contribute

more information to the velocity measurement. But eventually the additional noise in the

reconstructed image will overwhelm the additional velocity information and the PIV error

will begin to increase.

The velocity field error measured here appears to be in agreement with previous work that

has shown that optimal tomographic PIV measurements will typically occur in the range

0.02 ≤ ppp ≤ 0.1. The PIV measurements on the original simulated volume also indicate

that the PIV measurements are performing as expected as the error approaches the typical

lower value of 0.1 voxels.

3.4.7 Calibration Error

It is known that relatively small errors in the estimated calibration functions can cause

significant errors in the reconstructed data. For this reason, the effect of calibration error

was tested using the simulations. Gaussian noise was added to the image coordinates of the

simulated grid points prior to calculating the calibration functions. This closely approximates

what would occur during a physical experiment where the sub-pixel position of the grid points

would be measured with some non-zero error. The standard deviation of the Gaussian noise

was varied from 0 to 1 pixels in 0.1 pixel increments. Four trials were conducted at each

error level with 887 by 887 by 192 voxel volumes. The results of these simulations are shown

in Figure 3.4.

Only four trials were run for each error level since it was necessary to calculate new weighting

matrices for each new calibration function and calculating the weighting matrix is the slowest

84 Chapter 3. Tomographic PIV Processing Software

Calibration Error [pix]

0 0.2 0.4 0.6 0.8 1

Q

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Reconstruction quality as a function of the
calibration error

Calibration Error [pix]
0 0.2 0.4 0.6 0.8 1

|
| [

vo
x]

0

0.2

0.4

0.6

0.8

1

1.2

(b) Velocity error as a function of the calibra-
tion error

Figure 3.4: The data in these plots was calculated by adding Gaussian noise to the simulated
calibration coordinate data prior to calculating the calibration functions. The standard
deviation of the Gaussian noise is plotted along the horizontal axis of the graphs. Confidence
intervals showing the 99% confidence range are plotted here since only a small number of
trials could be run and the uncertainty is higher than for the other simulations.

part of the simulation process. This means that the results from this simulation had higher

statistical uncertainty than the other simulations. Therefore, the 99% confidence interval

is plotted for the calibration error simulations. (For the other simulations, the confidence

interval was smaller than the markers in the plots.)

The results of the calibration error simulation show that errors up to about 0.5 pixels can

occur before the error in the reconstruction and velocity field start rapidly increasing. This

is in close agreement with other work that has examined the effects of calibration errors [8].

Interestingly, the reconstruction quality and the velocity field error are very closely corre-

lated in this simulation in contrast to the results investigating camera angle and particle

density effects. It is speculated that this due to the fact that with the camera angle and

particle density cases, artifacts are generated during the reconstruction process known as

ghost particles [2, 8, 11], but these ghost particles tend to be correlated with nearby par-

3.5. Conclusions 85

ticles and thus tend to flow with the actual tracer particles to an extent, so the measured

velocity is less affected by the ghost particles. However, in this case since the error is directly

affecting the calibration function, the geometry of the reconstruction is being changed and

thus the potential correlation between the tracer particle and the ghost particles is lost.

This indicates that calibration error may be more important than other sources of error in

tomographic PIV, however this effect should be investigated further.

3.5 Conclusions

This work has shown that the developed tomographic PIV software functions well and pro-

duces results that are similar to previous tomographic PIV studies. The software was pri-

marily developed in Linux and currently can be compiled and installed with an included

Makefile that should directly work in all Linux and Apple operating systems. A standalone

executable file could also be produced that would work in Windows based systems with

relatively little modification to the source code. The software will likely be distributed via

Github [19] with an open source license.

There are also several updates that should be included in future versions of the software.

First of all, additional parallelization should be added to the software, in particular to the

process of calculating the weighting matrix as this is currently the slowest operation. Adding

the ability to process across multiple nodes using the Open MPI library [39] should also be

relatively straightforward and has the potential to dramatically increase the speed of the

software.

Since the particle positions correlate in time, but the noise in the reconstructed images tends

to lose correlation very quickly across multiple frames, the quality of time resolved data can

be improved by combining the data from multiple frames together in a technique known as

86 Chapter 3. Tomographic PIV Processing Software

Motion Tracking Enhanced (MTE) tomography [43]. This technique works by deforming

the reconstructed particle fields by the measured velocity fields and then combining multiple

frames of deformed data together. The combined reconstructions are then used to initialize

new tomographic reconstructions. All the components of this process already exist in the

tomographic PIV software, so implementing this feature should be simple as well.

Adding multiple frame correlation methods such as pyramid correlations [57] or fluid trajec-

tory correlation [34] would also increase the accuracy of the velocity field measurements and

could utilize previously developed tools within the software. Some additional tomographic

PIV methods such as volume self-calibration [65] ideally need a graphical user interface could

also be developed, but this would change the paradigm that the software can be easily called

by other software through the command line.

Chapter 4

Multi-camera Plenoptic PIV

In many fluid systems, measuring the full three-dimensional velocity field is essential to

understanding the flow dynamics. However, due to the increased complexity and computa-

tional costs typically associated with three-dimensional measurement techniques, these ex-

perimental methods still remain much less common than planar techniques. Many different

experimental techniques have been proposed for measuring three-dimensional velocity fields

using Particle Image Velocimetry (PIV) including defocussing PIV [26, 46, 47], holographic

PIV [24, 36], and tomographic PIV, among several others. In particular, tomographic PIV

has emerged as the standard three-dimensional imaging technique currently used in fluid

dynamics. This method involves imaging the fluid volume from several different directions

simultaneously and then combining these images together to produce a three-dimensional

reconstruction. Several tomographic reconstruction algorithms have been proposed includ-

ing the Multiplied Line of Sight (MLOS) technique [2, 38] and the Multiplicative Algebraic

Reconstruction Technique (MART) [1, 2, 8, 9, 10, 23] which has become the standard three-

dimensional imaging method in fluid dynamics.

Recently, so-called plenoptic or lightfield cameras have been proposed for performing single

camera three-dimensional fluid velocity field measurement [6, 12, 35, 42]. Conventional

cameras only record the spatial variation of light intensity, but plenoptic cameras have the

unique capability of additionally measuring the propagation direction of the incoming light

[16, 17, 40]. The combination of both the spatial and angular information of the light, which

87

88 Chapter 4. Multi-camera Plenoptic PIV

can be measured by a single camera, yields an approximation to the lightfield function that

can be used to create three-dimensional reconstructions [5, 6, 12, 35, 42]. Unfortunately PIV

reconstructions created using a single plenoptic camera suffer from the same low angular

resolution issues as do the single camera defocussing PIV [26, 46, 47] and holographic PIV

techniques.

While a camera sensor ostensibly records only two-dimensional data, the lightfield function is

in fact seven-dimensional. This function was first described by Arun Gershun as the quantity

of light L, of a particular wavelength λ, passing through a point in space (x, y, z), traveling

in a specific direction (θ, φ), at a precise moment in time t [18]. However, the lightfield

function L(x, y, z, θ, φ, λ, t) may be described by a four-dimensional approximation to enable

measurement with standard camera sensors. For typical PIV measurements, the color of the

light λ may be neglected. Further assuming that attenuation of the light is negligible, the

radiance along a particular lightray may then be assumed to be constant, thus eliminating

the need for three spatial dimensions. Finally, since the speed of light is much greater than

processes found in typical PIV, the temporal dimension may be assumed to be constant

for a particular image frame. Therefore the lightfield may be described by the simplified

function L(x, y, θ, φ) without loss of generality. This function may be parameterized by

several different methods, however in this analysis, the function will be represented by the

intersection of the light rays with two parallel planes. This may be interpreted as being

the two points of intersection (u, v) and (s, t) within the planes. A diagram illustrating this

parameterization is shown in Figure 4.1a.

A variety of experimental techniques have been developed to record lightfield data. Stereo

camera setups used to extract depth information from images were the first approximations

to lightfield measurements [4, 14, 48]. However stereo systems do not allow for computational

refocusing or synthesis of new imaging viewpoints. The first practical lightfield measurements

89

were made using cameras moving on gantries [31], but since the angular information of these

systems is encoded in time, they are impractical for fluid measurements. To enable time-

resolved measurements of lightfields, arrays of cameras were designed in which each camera

measures a different set of lightfield angles [66]. This technique was applied to experimental

fluid measurements to develop the Synthetic Aperture PIV technique which allows the fluid

particle lightfield to be computationally refocused to produce a volumetric reconstruction

[5]. To develop the plenoptic camera system to measure lightfields, an array of micro-lenses

was placed directly in front of the sensor in a standard camera, allowing for both spatial and

angular information to be recorded by a single camera [40].

A plenoptic camera measures both the position and the angle of incoming light rays to

produce a four-dimensional radiance function [16, 17, 30, 40]. This function can be used

to computationally refocus the camera to a range of different focal lengths to produce a

focal stack. In PIV applications, this focal stack consists of a three-dimensional intensity

field of tracer particles upon which standard cross-correlation may be performed to yield a

fluid velocity field. There are currently two primary designs of lightfield cameras that are

referred to as plenoptic 1.0 cameras and plenoptic 2.0 cameras. Plenoptic 1.0 cameras densely

sample the angular information of the lightfield while sampling the spatial information at a

relatively low resolution. In contrast, plenoptic 2.0 cameras sample the angular information

at a low resolution while sampling the spatial information at a high resolution [33]. Though

high spatial resolution images have benefits for PIV measurements, the angular resolution

is vital for collecting volumetric PIV data. For this reason, the cameras simulated in this

work are plenoptic 1.0 cameras. In Figure 4.1b the design of a typical plenoptic camera is

shown, consisting of a main lens and an array of microlenses in front of the camera sensor.

By varying the distances dML and dLS, the camera may be switched between plenoptic 1.0

and plenoptic 2.0 configurations. These microlenses produce an array of images in which

90 Chapter 4. Multi-camera Plenoptic PIV

(a) Lightfield parameterization (b) Plenoptic camera design

Figure 4.1: (a) A diagram showing a lightray intersecting the (u, v) and (s, t) planes. (b) A
diagram showing the design of a plenoptic camera including a particle in free-space in front
of the camera, the main lens, the lenslet array, and the camera sensor. Additionally the
relative distances between the different camera components are shown.

each image corresponds to a different set of angles of the lightfield. Typically the set of

lightfield angles for each lenslet is relatively small compared to the total angular resolution

of the camera and can thus be assumed to be constant. The spatial information of the

lightfield is encoded by the position of the pixels on which each microlens image is projected.

Three-dimensional reconstructions may then be produced by extracting and integrating the

angular and spatial information from the sensor.

A single lightfield camera can produce a three-dimensional reconstruction that is suitable for

performing PIV analysis. However the quality of this reconstruction will likely be severely

limited by the low angular resolution of the single camera. The maximum angular resolution

that a single camera can attain is limited by the diameter of the primary lens. Additionally

for performing volumetric reconstructions of a fluid volume, the diameter of the fluid volume

must be small in comparison to the main camera lens. For example, a camera with a very

large aperture lens that is placed close to a fluid volume will have a much higher angular

resolution over the volume than the angular resolution produced by a camera with a narrow

aperture lens placed far from the fluid volume.

For this reason, the reconstruction fidelity of the light field cameras will be strongly limited

91

by the available angular resolution of the cameras. Thus the cameras should perform better

when the imaged fluid volume is closer to the camera. However, since the depth-of-field

of cameras decreases with the focal distance of the cameras, we speculate that below some

distance, too many of the particles will become unfocused and the reconstruction quality

will decrease. Therefore there should be a focal distance that is optimal in terms of the

reconstruction fidelity.

Since the primary lens limits the angular resolution of the individual cameras, we also hy-

pothesize that the reconstruction fidelity will dramatically increase by adding a single addi-

tional lightfield camera to the imaging system. The additional angular resolution provided

by the second camera will be controlled by the baseline distance between the cameras rather

than the individual cameras lenses. Thus placing the two cameras in a stereo imaging con-

figuration will provide a large increase to the available angular resolution. However since

the individual cameras already produce fully three-dimensional reconstructions, we speculate

that adding more than a single additional camera to the system will only marginally increase

the system fidelity.

To prove these hypotheses, a mathematical model is derived to describe the lightfield camera

and a series of simulations is then completed to test the performance of the lightfield cam-

eras. The optical properties of the plenoptic camera are used to develop a camera calibration

function relating the world coordinates to the lightfield imaged on the camera sensor. Pre-

vious work studying plenoptic cameras has primarily focused on producing computationally

refocused planes, which are then combined to yield a focal stack. In contrast, the equations

derived here can be used to directly perform volumetric refocusing. During this process the

images from each of the individual lenslets are combined together to yield the reconstructed

volume. This process has typically involved adding the lenslet images together, which we

refer to as the additive reconstruction process. However, in this work we derive a single

92 Chapter 4. Multi-camera Plenoptic PIV

Figure 4.2: This diagram schematically shows the multi-camera plenoptic reconstruction
algorithm. First, several plenoptic cameras image the PIV volume. The images from these
cameras are next used to calculate the lightfield function. Then the individual reconstruction
from each camera is calculated. Finally, the reconstructions from each camera are combined
together to form the full volumetric reconstruction.

camera multiplicative reconstruction algorithm and we show that this algorithm produces

higher quality reconstructions than the additive refocusing algorithms. We then expand this

algorithm to allow multiple plenoptic cameras to be used in performing volumetric recon-

structions. This is in contrast to previous works, which have only investigated the use of a

single plenoptic camera for PIV measurements [6, 12, 35, 42]. Figure 4.2 shows a diagram

illustrating the multiple camera plenoptic reconstruction process.

This work first describes the optical system used to model the lightfield camera. These

models are then used to derive the volumetric refocusing algorithm for a single and multiple

plenoptic cameras. Finally, the results of the computational simulations are analyzed to

compare the performance of multiple plenoptic cameras with that of single plenoptic cameras

as well as with the established tomographic PIV MART approach [1, 2, 8, 9, 10].

4.1. Methods 93

4.1 Methods

4.1.1 Lightray Simulation

We created a computational model of the optical and imaging systems using a lightray

approach and geometrical optics [22]. In these simulations, we modeled combinations of one

to four cameras. The simulated cameras each consist of a single large primary lens that

focuses the incoming lightrays onto an array of small lenses, referred to as the lenslet array.

Figure 4.1b shows the design of the simulated cameras. The individual lenslets are focused at

infinity and thus produce out-of-focus images upon the simulated camera sensor. However,

these images are generally non-uniform and still contain spatial information. The tracer

particles are simulated by computationally creating a series of lightrays emanating from

points surrounding each tracer particle. The intensity profile of the lightrays is Gaussian with

respect to the radial coordinate from the tracer particle; this is based upon the assumption

that the illuminated tracer particles will produce approximately Gaussian shaped intensity

distributions upon the image sensor due to diffraction of the light [50]. The lightray source

points have a uniform spatial distribution within a radius corresponding to 1% and greater

of the peak intensity; no lightrays are simulated that emanate from outside of this radius.

The standard deviation of the Gaussian particles is set equal to 0.7 times the voxel diam-

eter to produce particle images that are consistent in diameter with traditional PIV/PTV

measurements. The direction of the lightrays is randomly selected from a uniform distribu-

tion that exactly covers the primary lens. This increases the computational efficiency of the

simulations since lightrays that do not enter the simulated camera are not created.

The lightrays are propagated through free-space and through the camera lenses using stan-

dard optical matrix operations. In this system, the lightray is represented by the vector

94 Chapter 4. Multi-camera Plenoptic PIV

~L(x, y, θ, φ) where x and y are the position of the lightray from the z-axis and θ and φ are

the angles of the lightray to the z-axis in the x and y directions, respectively. All optical

operations then correspond to a simple matrix operation ~L′ =M · ~L on the lightray vector

~L where the matrix M is determined by the type of optical operation. Using this notation,

the simplest operation is given by a lightray propagating through a free-space of length d

which is described by the transformation

~L′ = T · ~L =



1 0 d 0

0 1 0 d

0 0 1 0

0 0 0 1


·



x

y

θ

φ


which can be seen to change the position of the lightray, but not the angle of the lightray

as would be expected from a non-refracting medium. This matrix operation is applied three

times for each lightray: first, when the lightray passes from the source particle to the primary

lens; second, when the lightray passes from the primary lens to the lenslet array; and finally,

when the lightray passes from the lenslet array to the camera sensor. The second matrix

operation corresponds to a lightray refracting through a thin lens with a focal length f and

is given by

~L′ = R · ~L =



1 0 0 0

0 1 0 0

−1/f 0 1 0

0 −1/f 0 1


·



x

y

θ

φ


which changes the angle of the lightray, but not the position of the lightray. This operation

is used when the lightrays pass through the main lens that lies on the optical axis. However

since the lenslets do not lie on the optical axis, a modified form of this operation must be

4.1. Methods 95

used to calculate the transformation of a ray passing through the lenslets. Thus for a thin

lens with a focal length f that is centered at the location (sx, sy) the ray transformation is

given by

~L′ = R · ~L+ ~S =



1 0 0 0

0 1 0 0

−1/f 0 1 0

0 −1/f 0 1


·



x

y

θ

φ


+



0

0

sx/f

sy/f


which can be seen to be equivalent to a refracting lens followed by a prism such that the

position and direction of the lightrays changes due to the transformation [16]. The center

locations of the lenslets (sx, sy) are set to lie on a rectilinear grid with the spacing between

the lenslets equal to the lenslet’s pitch. In practice, the precise value of (sx, sy) must be

calculated individually for each lightray. The total lightray propagation transformation is

given by

~L′ = TLS · (RL · TML · RM · TEM · ~L+ ~SL) (4.1)

where TEM is the propagation matrix exterior to the camera from the source point to the

main lens, RM is the refraction matrix for the main lens, TML is the propagation matrix

from the main lens to the lenslet array, RL is the refraction matrix of the lenslet array,

~SL is a shifting vector due to the lenslets being off-axis, and TLS is the propagation matrix

from the lenslet array to the sensor. This operation is applied to every simulated lightray.

Additionally, the shifting vector TLS depends upon the particular lenslet that the lightray

intersects and thus needs to be calculated after propagating the lightray to the lenslets.

During the computational propagation of the lightrays, it was assumed that there was no

attenuation of the lightray intensity due to absorption by either the free-space or the lenses.

However, the rays that do not intersect the optical elements are assumed to be lost as though

the interior of the camera was coated with 100% absorbing paint. Stops are not specifically

96 Chapter 4. Multi-camera Plenoptic PIV

simulated within the camera, but the lenses act as stops by programming the simulation to

remove all the lightrays that do not intersect the lenses. The intensity field produced on

the simulated camera sensor is calculated by integrating all the lightrays that intersect the

sensor.

The simulated sensor consists of a rectilinear grid of square pixels that return a weighted sum

of the lightrays’ irradiance. The lightrays intersect the simulated sensor at relatively small

angles with respect to the optical axis, so a paraxial approximation is used to assume that

the irradiance is independent of the incident angle. Since the lightrays typically intersect the

pixels at non-integral positions, the intensity produced by each lightray must be interpolated.

This is accomplished by assuming that the lightrays have square profiles with dimensions

equal to the dimensions of a single pixel. Then the intensity of the lightray is split between

the nearest four pixels to the point of intersection based upon the area of overlap. The total

intensity of each pixel in the simulated camera sensor is equal to the sum of the intensities

of all the interpolated lightrays that intersect the particular pixel. The final sensor image

is saved both as a double precision array as well as a 16 bit unsigned integer array. To

accurately model discretization effects upon the volumetric reconstruction, the 16 bit images

were used in all subsequent processing. Figure 4.3 shows the qualitative agreement between

a simulated plenoptic camera image and a real plenoptic camera image acquired from a

commercial lightfield camera.

4.1.2 Volumetric Image Reconstruction

To perform the volumetric reconstructions from the plenoptic camera data, a four-dimensional

lightfield function is extracted from the camera sensor and integrated over a specified do-

main. The lightfield function may then be used to produce images that are computationally

4.1. Methods 97

(a) Real sensor image (b) Simulated sensor image

Figure 4.3: (a) The sensor image from a photograph taken of a PIV particle field using
a commercial lightfield camera. This camera uses a hexagonal array of lenslets, which is
apparent in the particle images. (b) A simulated lightfield camera sensor image showing
a simulated PIV particle field. The simulated cameras used a rectilinear lenslet array for
computational ease.

refocused on different regions by varying the integration domain of the lightfield function.

The matrix optics transformations described in the previous section are used to analytically

derive the reconstruction algorithm.

Qualitatively, the plenoptic reconstruction algorithm is equivalent to estimating the image

that would have been formed in the camera at a new position either in front of the lenslet

array or behind the lenslet array. To computationally refocus the lightfield onto the new

focal plane requires knowing both the spatial and angular information of the lightrays. This

knowledge can be extracted from the camera sensor image produced by the lenslets. In

plenoptic 2.0 cameras, the spatial information of the lightfield is encoded by the position

of the lenslets, while the angular information of the lightfield is encoded within the images

produced by each lenslet. This intuitively makes sense, since the main lens is focused onto the

lenslet array; the sensor in a standard camera is found where the lenslet array is in a plenoptic

98 Chapter 4. Multi-camera Plenoptic PIV

camera, so the lenslets are essentially acting as large pixel sensors. Additionally since the

lenslets produce images of the main lens, the spatial variation within each lenslet image

corresponds to the angular variation of the light entering the camera. For example, the light

that falls on the pixels on the right side of a lenslet image may be predominantly from the left

side of the main lens (the actual orientation will depend upon where the lightrays originated

with respect to the focal plane of the main lens). In practice, computationally refocusing the

lightfield involves extracting the images under each lenslet and then overlapping these images

to combine them. The new focal distance of the refocused image is controlled by varying the

amount of overlap of the individual lenslet images. In order to emulate the physical process

that occurs in a standard camera, the lenslet images may be added together.

Single Camera Additive Reconstruction Algorithm

In order to add, or integrate, the images from the individual lenslets together, the lightfield

function must be extracted from the sensor image in terms of the system coordinates. Once

this is complete, the lightfield function is interpolated onto new coordinates and integrated

to computationally refocus the camera.

Analytically, refocusing the lightfield may be represented by re-parameterizing the spatial

and angular information from the sensor into (u, v, s, t) coordinates. In this parameterization

the (u, v) coordinates correspond to the location that a lightray intersects the main lens, while

the (s, t) coordinates give the location that the same lightray intersects the lenslet plane.

All coordinates are measured with respect to the optical axis of the camera. Using this

parameterization, the irradiance on the (s, t) plane, or equivalently the image produced by

a standard camera, is given by integrating the lightfield across the (u, v) coordinates [40]

E(s, t) =
1

D2

∫∫
L(u, v, s, t) · A(u, v) · cos4(α) du dv

4.1. Methods 99

where D is the distance from camera aperture to the (s, t) plane, A(u, v) is an aperture

function returning one within the aperture and zero elsewhere, and α is the angle the lightray

makes with the (s, t) plane. Since only the relative magnitude within the refocused volume

is important for measuring velocities, the 1/D2 factor may be eliminated. Additionally, by

assuming that the main lens acts as the camera aperture stop, the aperture function A(u, v)

may be assumed to be uniformly equal to one. While in general a camera may have multiple

lenses as well as a separate aperture stop, the camera’s optical system can be assumed to

be equivalent to a single thin lens with its outer edge acting as the aperture stop without

loss of generality. Finally, by assuming that the lightrays arrive on the (s, t) plane with

a small angle to the optical axis, the paraxial approximation can be used to assume that

cos4(α) ≈ 1. With these assumptions, the measured image irradiance equation on the (s, t)

plane becomes

E(s, t) =

∫∫
L(u, v, s, t) du dv. (4.2)

However, to volumetrically reconstruct the image requires integrating the lightfield over a

range of different domains, so a relationship between the (u, v, s, t) coordinates and the lab

coordinates (x, y, z) must be calculated. This is accomplished by using the optical matrix

transformations to propagate a lightray emanating from the coordinate (x, y, z) first to the

main lens to find the relationship with the (u, v) coordinates and second, to the lenslet

array to find the relationship with the (s, t) coordinates. A system of equations is then

constructed from these relationships to transform the lab coordinates into the lightfield

coordinates. Propagation of a lightray to the main lens is given by the transformation

100 Chapter 4. Multi-camera Plenoptic PIV



u

v

θ(u,v)

φ(u,v)


=



x+ θz

y + φz

θ

φ


=



1 0 z 0

0 1 0 z

0 0 1 0

0 0 0 1


·



x

y

θ

φ


,

which gives the relationship between the lab coordinates and the (u, v) coordinates. Addi-

tionally the propagation of the lightray to the lenslet array is given by the operation



s

t

θ(s,t)

φ(s,t)


=



(
1− dML

fM

)
x+

(
dML +

(
1− dML

fM

)
z
)
θ(

1− dML

fM

)
y +

(
dML +

(
1− dML

fM

)
z
)
φ

− x
fM

+
(
1− z

fM

)
θ

− y
fM

+
(
1− z

fM

)
φ



=



1 0 dML 0

0 1 0 dML

0 0 1 0

0 0 0 1


·



1 0 0 0

0 1 0 0

−1/fM 0 1 0

0 −1/fM 0 1


·



1 0 z 0

0 1 0 z

0 0 1 0

0 0 0 1


·



x

y

θ

φ


,

which gives the relationship between the lab coordinates and the (s, t) coordinates. Then

the system of equations relating the lab coordinates and the lightfield coordinates is



u = x+ θz

v = y + φz

s =
(
1− dML

fM

)
x+

(
dML +

(
1− dML

fM

)
z
)
θ

t =
(
1− dML

fM

)
y +

(
dML +

(
1− dML

fM

)
z
)
φ

,

4.1. Methods 101

which may then be solved for the original lab coordinates lightray vector to yield



x = u ·
(
1− z

fM

)
+ z·(u−s)

dML

y = v ·
(
1− z

fM

)
+ z·(v−t)

dML

θ = s·fM+u·(dML−fM)
dML·fM

φ = t·fM+v·(dML−fM)
dML·fM

(4.3)

To perform the volumetric reconstructions, the relationship between the (u, v, s, t) coordi-

nates of the lightfield and the pixel coordinates on the sensor must also be known. To

calculate this transformation, the lab coordinates in equation (4.3) are substituted into the

full camera lightray equation (4.1) to yield the sensor pixel coordinates


xS =

(s− u)fL + s dML

dML

yS =
(t− v)fL + t dML

dML

. (4.4)

Then if the camera sensor image is denoted by the function IS(x, y), the coordinates in

equation (4.4) may be used to extract the lightfield from the sensor according to the function

L(u, v, s, t) = IS(xS, yS). Since u and v correspond to the coordinates at which the lightrays

intersect the main lens, they must satisfy pM/2 ≥
√
u2 + v2 where pM is the pitch of the

main lens. Additionally, since the lenslets are focused at infinity, the images they form on the

camera sensor are of the main lens. Thus each pixel under an individual lenslet corresponds

to one (u, v) coordinate. The s and t coordinates correspond to the locations of the centers

of the individual lenslets. The lightfield function L(u, v, s, t) is then calculated by varying

the (u, v, s, t) coordinates over their respective domains to produce the sensor coordinates

(xS, yS). Since these coordinates likely do not correspond to integral pixel values in the

102 Chapter 4. Multi-camera Plenoptic PIV

sensor, cubic interpolation is used to calculate L(u, v, s, t).

A calibration process is required to refocus an actual plenoptic camera. This process involves

several steps. First, the location of the individual lenslet images on the sensor must be

determined to calculate the (s, t) coordinates. This process is relatively straightforward

since the images projected by the lenslets appear as periodic circles on a uniformly dark

background and this format is commonly used in standard camera calibration procedures.

The second step in performing the calibration process is to calculate estimates for the values

of main lens focal length fL and the main lens to lenslet array distance dML. Both of these

values should be approximately known from the camera design; however, precise estimates

may be determined by refocusing the plenoptic camera on a calibration grid. The parameters

are then calculated by finding the distance from the plenoptic camera at which the calibration

grid becomes focused. Additionally higher order calibration terms may be accounted for by

using the positional information in the calibration grid.

While the camera produces a lightfield with a focused image on the (s, t) plane, by shifting

this plane to a new position on the z-axis denoted by (s′, t′), an image focused on a different

depth may be produced. The image at this new plane may be calculated from equation

(4.2). To computationally refocus the image on an arbitrary lab coordinate (x, y, z) requires

finding a relationship to the computational focal plane (s′, t′). Using the first two equations

in the system of equations (4.3), the transformed (s′, t′) coordinates may be calculated as


s′ = u+ dML

(
u−x
z
− u

fM

)
t′ = v + dML

(
v−y
z
− v

fM

) .

The (u, v) plane that is coincident with the main lens may also be transformed to a new

location along the optical axis. However, this increases the complexity of the volumetric

4.1. Methods 103

reconstruction algorithm while not conferring a particular advantage, so the transformed

coordinates are set equal to the original coordinates (u′, v′) = (u, v).

Once the transformed coordinates (u′, v′, s′, t′) are calculated, equation (4.2) may be used to

computationally refocus the image to the lab coordinate (x, y, z) by the function

V (x, y, z) =

∫∫
L

(
u, v, u+ dML

(
u− x

z
− u

fM

)
, v + dML

(
v − y

z
− v

fM

))
du dv. (4.5)

Evaluating the integral in (4.5) requires interpolating the lightfield from the discretely sam-

pled function L(u, v, s, t). However, it was found that the results produced by using a simple

discrete sum were nearly identical to the results produced by using numerical quadrature, so

the lightfield function only needs to be interpolated at a limited number of points for each

evaluation.

Using the additive refocusing algorithm given by Equation (4.5) is suitable for performing

computational refocusing that closely resembles the focusing process in a standard camera;

however, the quality of the volumetric reconstructions can be improved by taking into account

the unique nature of fluid measurement images. PIV imaging data is generally sparse with

the large majority of the imaged volume consisting of empty space while the remaining

space is filled with small, high intensity particles. Additionally the primary concern in

three-dimensional PIV processing is to correctly measure the position of the particles within

the volume. Assuming that there are no obstructions, this measurement can be made using

just two images from different angles. However since higher seeding densities yield higher

fidelity velocity measurements, often there is a sufficiently large number of particles present

to cause obstructions from at least one viewing angle. Thus views from several different

angles are typically needed to finely resolve the particle positions within the imaged volume,

but generally only a small number of viewing angles is necessary.

104 Chapter 4. Multi-camera Plenoptic PIV

For tomographic PIV using the MLOS and MART reconstruction algorithms, only four view-

ing angles are typically needed to fully resolve the particle field, while the lightfield camera

commonly images particles from over ten different angles. For this reason, we employed the

MLOS reconstruction algorithm to computationally refocus the lightfield cameras.

Single Camera Multiplicative Reconstruction Algorithm

Directly implementing the MLOS reconstruction technique by multiplying the different

lenslet images together is not possible due to the particular manner in which data is pro-

duced by lightfield cameras. Each of the lenslet images has a roughly uniform intensity in the

center of the image, but strong vignetting occurs near the edge of the images. However, the

pixels near the edge of the lenslet images still contain useful information for computationally

refocusing the camera. This information may be retained during the MLOS reconstruction

process by calculating a renormalization factor.

To illustrate the lenslet image vignetting issue, the same pixel under every lenslet image can

be extracted and combined together to form what is known as a sub-aperture image. These

images can be extracted from the lightfield L(u, v, s, t) by evaluating the function over the

domain of (s, t) while holding (u, v) constant [40]. A collection of sub-aperture images is

shown in Figure 4.4a.

In this figure it can be seen that the vignetting causes some of the sub-aperture images

to have nearly uniformly zero intensities. Thus a simple multiplication of these images

together would yield a uniformly zero volumetric reconstruction. To overcome the effect of

the vignetting, a weighting function is introduced.

To overcome the effect of the vignetting, a weighting function is introduced. To calculate the

weighting function, an image of a uniformly bright background is taken with the plenoptic

4.1. Methods 105

(a) Sub-aperture images (b) Weighting function

Figure 4.4: (a) This image shows a collection of sub-aperture images extracted from the
lightfield L(u, v, s, t). Each sub-aperture image corresponds to a single pixel under each
lenslet. The camera was focused on a calibration grid for this lightfield. The vignetting
on the edge of the lenslet images is clearly visible in the radial intensity decrease of the
sub-aperture images. (b) This image shows the corresponding weighting function calculated
for the lightfield.

camera and the lightfield L(u, v, s, t) is extracted. The weighting function is set equal to

the sum of the intensities of each sub-aperture image w(u, v) =
∑

s,t L(u, v, s, t). Then the

weighting function is linearly scaled to lie in the range 0 ≤ w(u, v) ≤ 1. This results in the

weighting function being approximately equal to one for the sub-aperture images taken from

the center of the lenslet images and approximately zero for the sub-aperture images taken

from the edge of the lenslet images. Figure 4.4b shows the weighting function calculated from

the sub-aperture image in Figure 4.4a. The weighting function only needs to be calculated

once for a particular plenoptic camera configuration since it is independent of the scene being

imaged by the camera.

The MLOS plenoptic camera reconstruction is then performed by raising each sub-aperture

image to the power of the weighting function. This scaling results in the low intensity sub-

aperture images being nearly uniformly equal to ones and as a result, contributing relatively

106 Chapter 4. Multi-camera Plenoptic PIV

little to the total reconstruction. The specific formula used to calculate the MLOS volumetric

reconstruction is

V (x, y, z) =

(
umax∏
umin

vmax∏
vmin

(
L(u, v, u+ dML

(
u− x

z
− u

fM

)
, v + dML

(
v − y

z
− v

fM

))w(u,v)
)γr

(4.6)

where γr is used to rescale the reconstruction to ensure that the intensity histogram of the

reconstruction approximately equals the histogram of the individual sub-aperture images.

The value of the exponent γr will vary with the lightfield camera configuration and focal

distance, but typically γr will be approximately equal to the reciprocal of the number of

pixels under each lenslet.

The MLOS reconstruction algorithm has advantages over the previously used additive re-

construction algorithms for PIV data, however due to the limited angular resolution of a

single lightfield camera, we hypothesized that combining the data from multiple lightfield

cameras would produce higher fidelity reconstructions. Thus, we also developed a multiple

lightfield camera reconstruction algorithm.

4.1.3 Multiple Camera Reconstruction Algorithm

Since the computational refocusing of a single lightfield camera directly yields a three-

dimensional intensity field, a basic process for combining the data from multiple cameras

is a simple extension of the MLOS algorithm to three-dimensional data. It is possible that

other algorithms may exist that could yield better reconstructions, but for the purposes of

demonstrating the potential of the method, focusing on the MLOS algorithm is sufficient.

In a similar manner to tomographic reconstruction algorithms, the first step in the multi-

ple camera reconstruction is to perform an intensity normalization of the individual camera

4.1. Methods 107

reconstructions so that the intensity histograms of the individual reconstructions are ap-

proximately equal. This ensures that each camera contributes equally to the composite

reconstruction and no information is lost. Then by denoting each plenoptic camera’s recon-

struction as Vi(x, y, z), the composite reconstruction is given by

Vc(x, y, z) =
M∏
i=1

Vi(x, y, z)
γc

where M is the number of lightfield cameras and γc is a rescaling exponent. Since in equation

4.6 the single camera reconstruction is raised to the exponent γr, the two exponents are

dependent upon one-another. Thus only one exponent needs to be controlled during the

reconstruction process. For this reason, the multiple camera reconstruction exponent is set

equal to the reciprocal of the camera number γc = 1/M as is typically done in MLOS

reconstructions [2].

Once the lightfield camera data is used to produce a volumetric reconstruction, the qual-

ity of these reconstructions must be measured and compared to the known true solution.

This allows us to directly compare the validity of the different volumetric reconstruction

techniques.

4.1.4 Reconstruction Fidelity Metrics

A variety of different quality measurements are used to evaluate the accuracy of the lightfield

reconstructions and to compare them to standard tomographic reconstructions. The fidelity

of the reconstructions was measured using the following metrics: the zero mean reconstruc-

tion quality factor, the error in the reconstructed particle positions, the RMS error of the

measured velocity field with respect to the true velocity field, and the percentage of outlier

vectors as defined by the Universal Outlier Detector (UOD) [63].

108 Chapter 4. Multi-camera Plenoptic PIV

The zero mean reconstruction quality factor is a modified form of the reconstruction quality

factor defined by Elsinga, et al [2, 8, 10]. The quality factor as defined by Elsinga is

Q =

∑
x,y,z V (x, y, z) · T (x, y, z)√∑

x,y,z V (x, y, z)2 ·
∑

x,y,z T (x, y, z)
2

where the summation is taken over all coordinates in the reconstructed field. This metric is

essentially a normalized cross-correlation between the reconstructed intensity field V (x, y, z)

and the true intensity field T (x, y, z). This function will produce a value of Q approximately

equal to one for nearly perfect reconstructions, while poorer quality reconstructions will yield

values approaching zero. However, it was found that this quality factor produced artificially

high values for high seeding densities due to the fact that as the seeding density increased, the

functions V (x, y, z) and T (x, y, z) approached nearly uniform values of one. Thus regardless

of the difference between the true field and the reconstructed field, the correlation would

yield a value nearly equal to one; hence, this metric cannot properly characterize high seeding

density reconstructions.

To overcome this effect a zero mean reconstruction quality is used in analyzing the lightfield

reconstruction results. This quality factor is defined as

Q∗ =

∑
x,y,z Ṽ (x, y, z) · T̃ (x, y, z)√∑

x,y,z Ṽ (x, y, z)2 ·
∑

x,y,z T̃ (x, y, z)
2

where Ṽ (x, y, z) and T̃ (x, y, z) are given by zero-mean reconstruction field and zero-mean

true intensity field respectively. The effect this has on the reconstruction quality is shown

in Figure 4.5 where the standard reconstruction quality Q and the zero-mean reconstruction

quality Q∗ are plotted as functions of particle density in particles per image pixels (ppp) for

standard tomographic reconstructions. Below a particle density of approximately ppp = 0.1

4.1. Methods 109

Figure 4.5: A comparison between the standard tomographic reconstruction quality factor
Q and the zero mean reconstruction quality factor Q∗ showing the artificially high values
produced by Q at very high particle seeding densities.

the two reconstruction quality factors differ by less than 10%. For higher particle densities,

the zero mean quality factor Q∗ continues to decrease while the standard quality factor

increases beyond a particle density of approximately ppp = 0.2. Intuitively, higher particle

densities will make volumetric reconstructions more difficult due to the rapidly increasing

number of particles overlapping in the camera images, thus the zero-mean reconstruction

quality factor produces more reasonable values at high densities. In all following analysis

the zero-mean reconstruction quality factor Q∗ will be used.

The error in the reconstructed particle positions is measured by fitting a Gaussian intensity

profile to all reconstructed particles and then comparing these fits to the known true particle

positions. Typically ghost particles that have no corresponding true particles will be created

during the reconstruction process, so the nearest true particle to each reconstructed particle

is identified after performing the Gaussian fit. Then the particle position error is measured

for the nearest reconstructed particle to the true particle. This process is repeated for the

110 Chapter 4. Multi-camera Plenoptic PIV

set of all true particles to produce a distribution of particle position errors. Typically the

position errors followed a normal, zero-mean distribution as can be seen in Figure 4.6 which

shows a scatter plot of the reconstructed particle position errors for the x and z axes.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
i
 − x

Ti
 [Voxel]

z
i −

 z
T

i [
V

o
x
e

l]
Particle Position Error in x and z Axes

Figure 4.6: A scatter plot showing the reconstructed particle position error distribution for
the x and z axes. The reconstruction was performed with 2,500 particles and two simulated
lightfield cameras placed 25◦ off the volume axis.

The uncertainty in the reconstructed particle positions is used as the primary position-based

metric to assess the quality of the lightfield reconstructions. The uncertainty is reported as

the distance in voxels from the center of the reconstructed particles in which there is a 95%

chance that the true particle is located assuming a normal distribution of errors. The z-axis

uncertainty is specifically reported since this tends to be larger than either the x or y axis

uncertainty and sets an upper bound in the particle position error.

The simulated particle positions are advected using an analytical solution for a vortex ring

described in [68]. The simulated vortex ring translates through the particle volume with

a constant velocity without experiencing dissipation or changing shape. Three-dimensional

PIV measurements are made on the reconstructed particle volume to return a measured

4.1. Methods 111

velocity field that can be compared to the analytical solution of the vortex ring to produce

an RMS velocity field error defined by

εRMS =

√√√√ 1

N

N∑
i=1

(
(ui − uTi

)2 + (vi − vTi
)2 + (wi − wTi

)2
)

where (ui, vi, wi) are the velocity vectors measured using the PIV correlations. Two passes

are completed using the Robust Phase Correlation algorithm [7]; during the first pass, the

UOD is used to locate likely outlier vectors. These vectors are then subsequently replaced

before the second PIV pass is processed. The final reconstruction quality metric is given by

the ratio of vectors flagged by the UOD in the second pass using the UOD residual threshold

r∗0 > 2.

4.1.5 Simulation Parameters

Due to the complex design of plenoptic cameras and the nature of the reconstruction algo-

rithms, the parameter space that can be studied to analyze the use of plenoptic cameras

for fluid measurements is very large. For this reason, the simulations are designed to ap-

proximate the design of the commercial Lytro plenoptic camera design. The results of the

simulations will then be used to design a complementary series of experiments with a camera

designed using the same parameters. Table 4.1 lists the parameters used in the lightfield

simulations. The commercial plenoptic cameras use zoom lenses that cover a large range of

angles of view, so a fixed focal length was chosen for the simulations that has an angle of

view roughly equivalent to a 70 mm lens on an SLR camera.

The Lytro cameras use a hexagonal lenslet array, however a rectangular lenslet array was

used in the simulations to simplify the algorithm. All remaining parameters were chosen to

112 Chapter 4. Multi-camera Plenoptic PIV

Simulation Parameters
Main Lens Lenslets Sensor

Focal Length fM = 10 mm fL = 28 µm —
Pitch pM = 5 mm pL = 14 µm pS = 1.4 µm
Aperture fM/# = 2 fL/# = 2 —
Number — nxL

× nyL = 328× 328 nxS
× nyS = 3280× 3280

Table 4.1: A table listing the plenoptic camera parameters used in the lightfield simulations.
These parameters were held constant for all completed simulations.

closely match those found in the Lytro cameras. These differences to the physical cameras

are minor and the results will still apply to the actual cameras.

4.2 Results

Before investigating the reconstruction fidelity of the lightfield cameras over a large param-

eter range, the reconstruction algorithm was specifically studied. To validate the multi-

plicative reconstruction algorithm given by Equation 4.6, images from both simulated and

experimental lightfields were computationally refocused. The experimental data were col-

lected using a single Lytro camera viewing a field of fluorescent particles illuminated with a

1 cm thick 532 nm laser sheet.

The data were computationally refocused using both the additive refocusing algorithm and

the multiplicative refocusing algorithm, as is shown by the volume slices in Figures 4.7a and

4.7b. The background noise in the multiplicatively reconstructed field appears much lower

than the noise in the additively reconstructed field. The simulations comparing the additive

and multiplicative refocusing algorithms demonstrated clearly improved performance for the

multiplicative method.

4.2. Results 113

(a) Additive refocusing (b) Multiplicative refocusing

Figure 4.7: Computationally refocused images taken using the Lytro lightfield camera during
a PIV experiment. (a) The PIV field refocused using the standard additive refocusing
algorithm described in Equation (4.5). There is relatively high-magnitude background noise
in the image due to out-of-focus particles. (b) The same PIV field refocused using the
multiplicative refocusing algorithm described in Equation (4.6). The background noise level
in this image is much lower than the noise level produced by the additive reconstruction.

A range of different parameters are studied in the lightfield camera simulations including

varying (1) the distance of the cameras from the particle volume, (2) the thickness of the

particle volume, (3) the number of simulated cameras, (4) the angle of the simulated cam-

eras to the particle volume, and (5) the density of the particles inside the volume. The

simulations varying the camera distance and the particle volume thickness were completed

to test the hypothesis that an optimal distance exists for using the lightfield cameras to

collect PIV measurements. Additionally the simulations varying the number and angles of

the simulated cameras were completed to test the theory that using two cameras should

produce very high quality reconstructions, while using more than two lightfield cameras pro-

vides only a small additional benefit. For the sake of comparison to standard tomographic

reconstruction techniques, two, three, and four standard cameras were also simulated in

these tests. These cameras were configured to have the same magnification as the lightfield

114 Chapter 4. Multi-camera Plenoptic PIV

Figure 4.8: A graph showing the zero-mean normalized cross correlation quality factor as a
function of the dimensionless camera focal distance for a range of different volume width to
thickness ratios. The camera focal distance soM is normalized by the aperture of the main
lens pM . The quality factor has a peak at soM/pM due to the camera’s angular resolution
decreasing with distance while the depth-of-field increases.

cameras and imaged the same particle volume from the same point in space as the light-

field cameras. The reconstructions from the standard cameras were calculated using the

MART tomographic reconstruction algorithm [2, 8, 9, 10]. Additional tests also compared

the different reconstruction techniques for a range of particle densities.

Since a lightfield camera’s depth-of-field increases with the focal distance of the camera, but

the angular resolution of the camera decreases, it was speculated that there might be an

optimal distance to perform volumetric measurements with the lightfield cameras. To test

this hypothesis, a series of simulations were performed for a range of different camera focal

distances and particle volume thicknesses. Figure 4.8 shows the results of these simulations.

In these tests the zero-mean normalized cross correlation quality factor is measured for

reconstructions produced by a single lightfield camera located on the particle volume axis.

4.2. Results 115

The camera focal distance soM is normalized by the aperture of the main lens pM . so that the

results may be scaled to arbitrarily sized primary lenses. Additionally the particle volume

was scaled to fill the entire field-of-view of the camera at each different focal distance.

Due to the resolution trade-off, the quality factor Q∗ has a local maximum near 8 ≤

soM/pM ≤ 10. The quality factor also decreases as the particle volume increases due to

the particles near the edge of the volume becoming more out-of-focus. For all subsequent

lightfield camera simulations a volume thickness-to-width ratio of 1:4 is used as this is a com-

mon ratio in tomographic PIV experiments; additionally, a dimensionless focal distance of

soM/pM = 8 is also used since the quality factor experiences a peak at this relative distance.

Once an optimal distance was determined for completing volumetric measurements with the

lightfield camera, the number of cameras and their configurations wer investigated. Between

one and four lightfield and standard cameras are simulated in these tests. The cameras are

located equal distances from one another with angles measured from the z-axis of the particle

volume. Using this system, two cameras are located along a line on the x-axis, three cameras

are located at the vertices of an equilateral triangle on the xy-plane, and four cameras are

located at the vertices of a square on the xy-plane. The angles of the lightfield cameras were

varied from 0 to 60 degrees in five degree increments. The standard cameras were simulated

at 5 degrees, 25 degrees, and 45 degrees. The standard camera images are used to perform

tomographic reconstructions using the MART algorithm.

The results of these simulations are shown in Figure 4.9. The single plenoptic cameras

perform poorly using all four quality metrics. However, reconstruction fidelity dramatically

increased by adding a single additional plenoptic camera. The z particle position uncertainty

in particular is between two and three times as high for a single camera as for the cases

using multiple cameras. Additionally, from this data it is apparent that using more than

two lightfield cameras to perform volumetric reconstructions only marginally increases the

116 Chapter 4. Multi-camera Plenoptic PIV

(a) Q* (b) z position uncertainty

(c) RMS velocity error (d) UOD outlier ratio

Figure 4.9: (a) The quality factor as a function of the camera configuration. (b) The
z particle position uncertainty as a function of the camera configuration. Two or more
cameras dramatically increase the z resolution. (c) The RMS velocity error as a function of
the camera configuration. Two or more cameras perform equally well in reconstructing the
velocity field. (d) The UOD outlier ratio as a function of the camera configuration.

fidelity of the reconstructions. This data also shows that the fidelity of the reconstructions

created using multiple plenoptic cameras has a maximum value around 25 to 35 degrees,

agreeing well with the results found in tomographic PIV simulations [2, 8].

The tomographic MART reconstruction qualities created using the simulated standard cam-

era are also shown in Figure 4.9. For these tests, two different apertures on the standard

cameras were simulated: an aperture of f/2, which is the same aperture used on the plenop-

tic cameras, and an aperture of f/20, which is the aperture necessary to have an equivalent

depth-of-field as the plenoptic cameras. The reconstruction quality of the images suffers from

a low depth-of-field for the large aperture case. The depth-of-field is large for the small aper-

4.2. Results 117

ture case, but diffraction effects start causing uniform blurring of the particles. The quality

of the MART reconstructions is generally poorer than the plenoptic camera reconstructions

that used two or more cameras.

The low quality of the MART reconstructions, in comparison to the plenoptic reconstruc-

tions, can be explained by several factors. First, the standard cameras with f/2 apertures

have a very low depth-of-field which will result in a high level of noise in the reconstructions.

Second, the equivalent depth-of-field f/20 aperture cameras will have significant diffraction

effects (which will not be apparent in the lightfield camera reconstructions).

The final series of simulations investigated the effects of particle density on the lightfield

camera reconstruction quality. In these tests, the particle density of the simulated volume

was varied over a range typically used in volumetric PIV experiments. The particle density

ppp is generally measured as the ratio of the number of particles imaged to the total number

of pixels covered by the particle volume in the camera image. However, the number of used

pixels is poorly defined for a plenoptic camera since the images produced by the lenslet array

typically do not cover 100% of the sensor. Additionally for Plenoptic 1.0 cameras, the final

image produced by the camera is based upon the number of lenslets rather than the number

of pixels on the sensor. So to provide a fair comparison to particle densities reported in other

volumetric PIV papers, the particle density ppp is measured as the ratio of the number of

particles to the number of reconstructed pixels.

The particle density tests were performed using two plenoptic cameras and two standard

cameras positioned 25 degrees off the particle volume axis. The reconstruction qualities

are measured for particle densities over the domain 1 · 10−3 ≤ ppp ≤ 3 · 101. The standard

cameras used to create the MART reconstructions have simulated apertures of f/2 and f/20.

The particle density simulations showed that the reconstruction fidelities generally decreased

118 Chapter 4. Multi-camera Plenoptic PIV

(a) Q* (b) z position uncertainty

(c) RMS velocity error (d) UOD outlier ratio

Figure 4.10: Graphs showing several different reconstruction fidelity metrics for a range of
particle densities. Tomographic MART reconstructions using both f/2 and f/20 apertures
of the same particle field are shown for comparison. (a) A graph showing the quality factor
as a function of the particle density. (b) A graph showing the particle position uncertainty
as a function of the particle density. (c) The RMS velocity error as a function of the particle
density. (d) The UOD outlier ratio as a function of the particle density.

as the particle density increased. However, the PIV velocity metrics showed an increase in

quality with the particle density as is shown in Figure 4.10. The decrease in the measured

velocity field error with increasing particle density is likely due to the relatively simple

nature of the prescribed velocity field. While the vortex ring does produce three-dimensional

motion relative to the simulated cameras, the motion has sufficiently large scales when

compared to the total particle volume, so it is likely that the ghost particles produced in the

reconstructions only contribute relatively little noise to the PIV correlations. At the same

time, increasing the particle density results in the true particles increasing the signal in the

4.3. Conclusions 119

correlations. It is thus possible that increasing the particle density will only decrease the

measured velocity field noise in cases where the flow is relatively simple, but determining

these cases may be difficult. This effect needs to be investigated in further studies.

4.3 Conclusions

This work presents advancements to the field of volumetric PIV developing novel tools based

on lightfield (plenoptic) imaging. First, by using ray optics, we developed a volumetric re-

construction algorithm for refocusing single plenoptic cameras. Then we show that a mul-

tiplicative refocusing algorithm may be used to improve the quality of the refocused images

due to the unique properties of PIV data. We then modify this multiplicative algorithm so

that data from several plenoptic cameras may be combined together. This reconstruction

algorithm is next used to calculate volumetric reconstructions from artificial sensor data

created using lightray simulations of an illuminated particle field. These reconstructions are

analyzed in terms of several metrics measuring both the reconstruction fidelity to the true

particle intensity field and the accuracy with which the particle motion is measured.

From the results of the simulations, we show that multiple camera plenoptic reconstructions

can yield higher quality data than traditional volumetric measurement techniques under some

circumstances. Single plenoptic camera reconstructions are shown to yield relatively low

quality data, but we show that high quality volumetric data may be taken by simultaneously

using two plenoptic cameras. The simulations show that there is only a small benefit from

using more than two cameras, however. Additionally, we show that under the optimal

conditions for plenoptic cameras, standard tomographic cameras perform relatively poorly.

Future work on the plenoptic camera PIV system must focus on several areas. First, the

parameter range of the simulations will be expanded with the end goal of designing plenoptic

120 Chapter 4. Multi-camera Plenoptic PIV

cameras that are optimized in terms of performing volumetric particle measurements. Addi-

tionally, by using the information from these simulations, a complementary set of experiments

will be performed to validate the simulation results. Finally, more advanced reconstruction

algorithms will be developed and validated using the simulation tools that were developed

for this work.

Chapter 5

Conclusions

5.1 Snake Model Experimental Data

Due to the low effective resolution of the snake model experiment, the primary conclusions

must be drawn from the process of performing the experiment and processing the data. In

particular, the results of this experiment highlighted the importance of collecting high signal

to noise ratio data for tomographic PIV.

Ensuring that the particle illumination is sufficiently high to ensure high contrast images is

crucial to successful tomographic PIV. Additionally, since it is intuitively more difficult to

interpret the quality of tomographic data by simply visually examining the collected image

data, calculating tomographic reconstructions of the data during the experiment is also vital

to ensuring that the data is high quality.

The experimental snake model data also highlighted the ability of extracting high quality

velocity vector data using more advanced tomographic PIV techniques. Processing the data

using a variety of techniques showed that basic PIV algorithms would have been incapable

of yielding nearly any useful data from the highly noisy particle images. So using techniques

like the pyramid correlations and the novel processing algorithms that were described are

necessary for noisy data and may dramatically improve the quality of the output velocity

field.

121

122 Chapter 5. Conclusions

5.2 Software Development

High speed tomographic PIV processing software was developed along with software to gen-

erate simulated tomographic PIV datasets. In Section 3.4 simulations were ran to validate

the tomographic PIV software. These tests focused on ensuring that the basic algorithms

behind the software produced reasonable results that were in agreement with previously

published work.

In all simulations, the tomographic PIV software closely replicated the results from previous

studies, showing that the software performs correctly. This ensured that using the software

to process the snake model tomographic dataset would produce accurate results (within

the limitations of the collected data). This also demonstrated that the software functions

sufficiently well to be released to the general community.

5.3 Plenoptic PIV

The results of the plenoptic PIV simulations were compared with the results of tomographic

PIV ran on the same data cases. These results showed that using multiple plenoptic cameras

can yield better reconstruction data than a similar number of standard cameras processing

the data with tomographic reconstruction algorithms. However, due to the additional com-

plexity of plenoptic cameras, performing a calibration to match multiple cameras together

is experimentally difficult. Therefore, unless more advanced calibration techniques are de-

veloped, experimental work using plenoptic cameras will continue to focus on single camera

systems. This additional complexity suggests that standard cameras will likely continue to

be used for three-dimensional fluid flow measurement experiments.

Bibliography

[1] C. H. Atkinson and J. Soria. Algebraic reconstruction techniques for tomographic par-

ticle image velocimetry. In Proceedings of the 16th Australasian Fluid Mechanics Con-

ference, 16AFMC, pages 191–198, 2007. ISBN 9781864998948.

[2] Callum Atkinson and Julio Soria. An efficient simultaneous reconstruction technique

for tomographic particle image velocimetry. Experiments in Fluids, 47:553–568, 2009.

[3] Callum H Atkinson, Craig J Dillon-Gibbons, Sophie Herpin, and Julio Soria. Recon-

struction Techniques for Tomographic PIV (Tomo-PIV) of a Turbulent Boundary Layer.

In 14th Int Symp on Applications of Laser Techniques to Fluid Mechanics, Jul 2008.

[4] Stephen T Barnard and Martin A Fischler. Computational Stereo. Technical Report

261, SRI International, mar 1982.

[5] Jesse Belden, Tadd T Truscott, Michael C Axiak, and Alexandra H Techet. Three-

dimensional synthetic aperture particle image velocimetry. Measurement Science and

Technology, 21, nov 2010.

[6] Antonio Cenedese, Claudia Cenedese, Francesco Furia, Marco Marchetti, Monica Mo-

roni, and Luca Shindler. 3D particle reconstruction using light field imaging. In In-

ternational Symposium on Applications of Laser Techniques to Fluid Mechanics, jul

2012.

[7] Adric Eckstein and Pavlos P Vlachos. Digital particle image velocimetry (DPIV) robust

phase correlation. Measurement Science and Technology, 2009.

123

124 BIBLIOGRAPHY

[8] G E Elsinga, F Scarano, B Wieneke, and B W van Oudheusden. Tomographic particle

image velocimetry. Experiments in Fluids, 41:933–947, 2006.

[9] G E Elsinga, B W van Oudheusden, and F Scarano. Experimental assessment of

Tomographic-PIV accuracy. In 13th Int Symp on Applications of Laser Techniques

to Fluid Mechanics, 2006.

[10] G. E. Elsinga, B. Wieneke, F Scarano, and A. Schröder. Tomographic 3D-PIV and

Applications. Topics in Applied Physics, 112:103–125, 2008.

[11] G. E. Elsinga, J. Westerweel, F Scarano, and M. Novara. On the velocity of ghost

particles and the bias errors in Tomographic-PIV. Experiments in Fluids, 2010.

[12] Timothy W Fahringer and Brian S Thurow. Tomographic Reconstruction of a 3-D Flow

Field Using a Plenoptic Camera. In AIAA Fluid Dynamics Conference and Exhibit, jun

2012.

[13] FFTW, Jul 2022. URL https://www.fftw.org/.

[14] Pascal Fua. A parallel stereo algorithm that produces dense depth maps and preserves

image features. Machine Vision and Applications, 6:35–49, 1993.

[15] J. C. H. Fung, J. C. R. Hunt, N. A. Malik, and R. J. Perkins. Kinematic simula-

tion of homogeneous turbulence by unsteady random Fourier modes. Journal of Fluid

Mechanics, pages 281–318, Aug 1992.

[16] Todor Georgeiv and Chintan Intwala. Light Field Camera Design for Integral View

Photography. Technical report, Adobe Systems Incorporated, 2003.

[17] Todor Georgeiv, Ke Colin Zheng, Brian Curless, David Salesin, Shree Nayar, and Chin-

tan Intwala. Spatio-Angular Resolution Tradeoff in Integral Photography. In Euro-

graphics Association, 2006.

https://www.fftw.org/

BIBLIOGRAPHY 125

[18] A Gershun. The light field. Mathematical Physics, 18, 1939.

[19] Github, Aug 2022. URL https://github.com/.

[20] The HDF Group, Jun 2022. URL https://www.hdfgroup.org/.

[21] Richard Hartley and Andrew Zisserman. Multipe View Geometry in Computer Vision.

Cambridge University Press, 2000.

[22] E. Hecht. Optics. Pearson, 2002.

[23] Gabor T Herman and Arnold Lent. Eij2. (3). Computers in biology and medicine, 6(3):

273–294, 1976.

[24] K D Hinsch. Holographic particle image velocimetry. Measurement Science and Tech-

nology, 13:R61–R72, 2002.

[25] Daniel Holden, John J Socha, Nicholas D Cardwell, and Pavlos P Vlachos. Aerody-

namics of the flying snake Chrysopelea paradisi: how a bluff body cross-sectional shape

contributes to gliding performance. The Journal of Experimental Biology, 217:382–394,

2014.

[26] L. Kajitani and D. Dabiri. A full three-dimensional characterization of defocusing digital

particle image velocimetry. Measurement Science and Technology, 16:790–804, 2005.

[27] Anush Krishnan, John J. Socha, Pavlos P. Vlachos, and L. A. Barba. Lift and wakes

of flying snakes. Physics of Fluids, 26(3):031901, 2014. doi: 10.1063/1.4866444. URL

https://doi.org/10.1063/1.4866444.

[28] Francois Lamarche and Claude Leroy. Evaluation of the Volume of Intersection of a

Sphere with a Cylinder by Elliptic Integrals. Computer Physics Communications, 59:

359–369, 1990.

https://github.com/
https://www.hdfgroup.org/
https://doi.org/10.1063/1.4866444

126 BIBLIOGRAPHY

[29] F. Lekien and J. Marsden. Tricubic interpolation in three dimensions. International

Journal for Numerical Methods in Engineering, pages 455–471, Mar 2005.

[30] Marc Levoy. Light Fields and Computational Imaging. IEEE Computer Society, pages

46–55, aug 2006.

[31] Marc Levoy and Pat Hanrahan. Light Field Rendering. In Proceedings of the 23rd

annual conference on Computer graphics and interactive techniques ACM, pages 31–42,

1996.

[32] LibTIFF TIFF Library and Utilities, Jun 2022. URL http://www.libtiff.org/.

[33] Andrew Lumsdaine and Todor Georgeiv. Focused plenoptic camera and rendering.

Journal of Electronic Imaging, 19(2):021106, 2010. ISSN 1017-9909. doi: 10.1117/1.

3442712.

[34] Kyle Lynch and Fulvio Scarano. A high-order time-accurate interrogation method for

time-resolved PIV. Measurement Science and Technology, 24, 2013.

[35] Kyle Lynch, Tim Fahringer, and Brian Thurow. Three-dimensional particle image ve-

locimetry using a plenoptic camera. In 50th AIAA Aerospace Sciences Meeting Including

the New Horizons Forum and Aerospace Exposition. AIAA Aerospace Sciences Meeting,

jan 2012. doi: 10.2514/6.2012-1056.

[36] Hui Meng, Gang Pan, Ye Pu, and Scott H Woodward. Holographic particle image

velocimetry: from film to digital recording. Measurement Science and Technology, 15:

673–685, 2004.

[37] D. Michaelis and B. Wieneke. Comparison between Tomographic PIV and Stereo PIV.

In 14th Int Symp on Applications of Laser Techniques to Fluid Mechanics, 2008.

http://www.libtiff.org/

BIBLIOGRAPHY 127

[38] D. Michaelis, M. Novara, F. Scarano, and B. Wieneke. Comparison of volume recon-

struction techniques at different particle densities. In 15th Int Symp on Applications of

Laser Techniques to Fluid Mechanics, 2010.

[39] Open MPI, Jul 2022. URL https://www.open-mpi.org/.

[40] Ren Ng, Marc Levoy, Mathieu Bredif, Gene Duval, Mark Horowitz, and Pat Hanra-

han. Light Field Photography with a Hand-held Plenoptic Camera. Technical report,

Standford University, 2005.

[41] Holger Nobach, Nils Damaschke, and Cam Tropea. High-precision sub-pixel interpola-

tion in piv/ptv image processing. In Proceedings of the 12th international symposium

on applications of laser techniques to fluid mechanics, Lisbon, Portugal, 2004.

[42] T Nonn, J Kitzhofer, D Hess, and Ch. Bruker. Measurements in an IC-engine Flow

using Light-field Volumetric Velocimetry. In Internation Symposium on Applications of

Laser Techniques to Fluid Mechanics, jul 2012.

[43] Matteo Novara1, Kees Joost Batenburg, and Fulvio Scarano. Motion tracking-enhanced

MART for tomographic PIV. Measurement Science and Technology, 21, 2010.

[44] OpenMP, Jul 2022. URL https://www.openmp.org/.

[45] LAPACK — Linear Algebra PACKage, Jul 2022. URL https://netlib.org/lapack/.

[46] F. Pereira and M. Gharib. Defocusing digital particle image velocimetry and the three-

dimensional characterization of two-phase flows. Measurement Science and Technology,

pages 683–694, 2002.

[47] F. Pereira, M. Gharib, D. Dabiri, and D. Modarress. Defocusing digital particle image

velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application

to bubbly flows. Experiments in Fluids, pages S78–S84, 2000.

https://www.open-mpi.org/
https://www.openmp.org/
https://netlib.org/lapack/

128 BIBLIOGRAPHY

[48] A. K. Prasad. Stereoscopic particle image velocimetry. Experiments in Fluids, 29:

103–116, 2000.

[49] William H. Press and Saul A. Teukolsky. Elliptic Integrals. Computers in Physics, pages

92–96, 1990.

[50] C. E. W. Markus Raffel, Steve T. Wereley, and Jurgen Kompenhans. Particle Image

Velocimetry: A Practical Guide. Springer, 1998.

[51] F. Scarano. Iterative image deformation methods in PIV. Measurement Science and

Technology, pages R1–R19, 2002.

[52] F. Scarano. Tomographic PIV: principles and practice. Measurement Science and

Technology, 2013.

[53] F. Scarano, L. David, M. Bsibsi, and D. Calluaud. S-PIV comparative assessment: im-

age dewarping+misalignment correction and pinhole+geometric back projection. Ex-

periments in Fluids, pages 257–266, 2004.

[54] D. Schanz, S. Gesemann, A. Schröder, D. Michaelis, and B. Wieneke. ‘Shake The Box’:

A highly efficient and accurate Tomographic Particle Tracking Velocimetry (TOMO-

PTV) method using prediction of particle positions. In Proceedings of the 10th Inter-

national Symposium on Particle Image Velocimetry, Delft, The Netherlands, 2013.

[55] D. Schanz, S. Gesemann, and A. Schröder. Shake‑The‑Box: Lagrangian particle tracking

at high particle image densities. Experiments in Fluids, 2016.

[56] Daniel Schanz, Andreas Schröder, and Sebastian Gesemann. ‘Shake The Box’ - a 4D

PTV algorithm: Accurate and ghostless reconstruction of Lagrangian tracks in densely

seeded flows. In 10th International Symposium on Particle Image Velocimetry - PIV13,

2014.

BIBLIOGRAPHY 129

[57] Andrea Sciacchitano, Fulvio Scarano, and Bernhard Wieneke. Multi-frame pyramid

correlation for time-resolved PIV. Experiments in Fluids, 53:1087–1105, 2012.

[58] John J Socha. Gliding flight in the paradise tree snake. Nature, 418:603,604, 2002.

[59] John J Socha. A 3-D kinematic analysis of gliding in a flying snake, Chrysopelea

paradisi. The Journal of Experimental Biology, 208:1817–1833, 2005.

[60] S M Soloff, R J Adrian, and Z-C Liu. Distortion compensation for generalized stereo-

scopic particle image velocimetry. Measurement Science and Technology, 8:1441–1454,

1997.

[61] BLAS (Basic Linear Algebra Subprograms), Jun 2021. URL https://netlib.org/

blas/.

[62] E. W. Weisstein. CRC Concise Encyclopedia of Mathematics. CRC Press LLC, 2003.

[63] Jerry Westerweel and Fulvio Scarano. Universal outlier detection for PIV data. Exper-

iments in Fluids, 39:1096–1100, 2005.

[64] B Wieneke. Stereo-PIV using self-calibration on particle images. Experiments in Fluids,

39:267–280, 2005.

[65] B Wieneke. Volume self-calibration for 3D particle image velocimetry. Experiments in

Fluids, 45:549–556, 2008.

[66] Bennett Wilburn, Neel Joshi, Vaibhav Vaish, Eino-Ville Talvala, Emilio Antunez, Adam

Barth, Andrew Adams, Mark Horowitz, and Marc Levoy. High Performance Imaging

Using Large Camera Arrays. ACM Transactions on Graphics (TOG), 24(3):765–776,

2005.

https://netlib.org/blas/
https://netlib.org/blas/

130 BIBLIOGRAPHY

[67] C. E. Willert and M. Gharib. Digital particle image velocimetry. Experiments in Fluids,

10:181–193, 1991.

[68] Jie-Zhi Wu, Hui-Yang Ma, and J Z Zhou. Vorticity and vortex dynamics. Springer,

2005.

Appendices

131

Appendix A

C Code Functions

A.1 Least Energy Velocity Field

This code takes arrays of possible u, v, and w three-dimensional vector fields that are ex-

tracted from multiple cross-correlation peaks and calculates an approximation to the vector

field that has the lowest signal energy. Since for n stored cross-correlation peaks and m

vectors within the vector field, the number of vector field permutations is nm, determining

the exact solution is computationally infeasible. So the algorithm finds local approximate so-

lutions and iteratively updates the vector field until convergence is reached. In preliminary

testing, this algorithm always produces more accurate vector fields than simply selecting

the largest cross-correlation peak. Only basic testing has been completed examining if the

selected vector field is always the unique least energy vector field.

This code takes the three components of the velocity field as input arrays ‘ii_velocity_peaks’,

‘jj_velocity_peaks’, and ‘kk_velocity_peaks’ which are one-dimensional arrays with lengths

equal to the number of stored cross-correlation peaks ‘peak_vector_number’ multiplied by

the total number of vectors which is given by the product of the elements of the length 3

‘vector_number’. The length 3 array ‘peak_energy_kernal_size’ stores the size of the kernel

used to calculate the local vector field energy. The kernel size must be odd in each dimension.

The output of the least energy calculation is stored in the velocity field arrays ‘ii_velocity’,

132

A.1. Least Energy Velocity Field 133

‘jj_velocity’, and ‘kk_velocity’ which are of lengths equal to the product of the elements of

the length 3 ‘vector_number’. Upon success, the function will return with a value of 0. If

the function fails for any reason, it will return with a value of -1.

Listing A.1: Least Signal Energy Velocity Field Function

1 int least_signal_energy_velocity_field(double ii_velocity_peaks[], double

jj_velocity_peaks[], double kk_velocity_peaks[],

2 int vector_number[], int peak_vector_number , int

peak_energy_kernal_size[],

3 double ii_velocity[], double jj_velocity[], double

kk_velocity[])

4 {

5 // This function extracts the velocity vectors that correspond to the least

6 // energy combination of the possible velocity vectors stored in the 4th

7 // dimension of the input arrays (which come from additional peaks in the

8 // correlation volumes).

9

10 //

11 // Lowest Energy Calculation Parameters //

12 //

13

14 // This initialize variables to store the radius of the neighborhood to

15 // compare vectors in each dimension

16 int ii_neighborhood_radius;

17 int jj_neighborhood_radius;

18 int kk_neighborhood_radius;

19

20 // This is the radius of the neighborhood to compare the vectors in each

21 // dimension

22 ii_neighborhood_radius = (peak_energy_kernal_size[0] - 1) / 2;

134 Appendix A. C Code Functions

23 jj_neighborhood_radius = (peak_energy_kernal_size[1] - 1) / 2;

24 kk_neighborhood_radius = (peak_energy_kernal_size[2] - 1) / 2;

25

26 // This initializes variables to store the number of windows (ie vectors)

27 // in each dimension

28 int ii_vector_number;

29 int jj_vector_number;

30 int kk_vector_number;

31

32 // This is the number of windows (ie vectors) in each dimension

33 ii_vector_number = vector_number[0];

34 jj_vector_number = vector_number[1];

35 kk_vector_number = vector_number[2];

36

37 //

38 // Initializing Variables //

39 //

40

41 // This initializes variables to index the windows (ie vectors) in each

42 // dimension

43 int ii_vector_index;

44 int jj_vector_index;

45 int kk_vector_index;

46

47 // This initializes variables for the first dimension range to load for

48 // calculating the local signal energy

49 int ii_region_min;

50 int ii_region_max;

51 // This initializes variables for the second dimension range to load for

52 // calculating the local signal energy

53 int jj_region_min;

A.1. Least Energy Velocity Field 135

54 int jj_region_max;

55 // This initializes variables for the third dimension range to load for

56 // calculating the local signal energy

57 int kk_region_min;

58 int kk_region_max;

59

60 // This initializes a variable for indexing through the identified peaks

61 int peak_vector_index;

62

63 // This initializes a variable to store the linear index of the center

64 // element of the local region of the vector fields

65 int center_element_linear_index;

66

67 // This initializes a variable to store the linear index of the adjacent

68 // elements of the local region of the vector field

69 int adjacent_element_linear_index;

70

71 // This initializes variables to store the value of the center velocity

72 // vector in each extracted region

73 double ii_velocity_center;

74 double jj_velocity_center;

75 double kk_velocity_center;

76

77 // This initializes indexing variables for extracting the vectors in each

78 // velocity region

79 int ii_region_index;

80 int jj_region_index;

81 int kk_region_index;

82 // This intializes an indexing variable for extracting all possible vectors

83 // for each of the peaks within the velocity region

84 int peak_region_index;

136 Appendix A. C Code Functions

85

86 // This initializes a variable to store the velocity residuals for each of

87 // the possible velocity field peaks

88 double *velocity_residuals;

89

90 // This allocates memory to the velocity field residuals

91 velocity_residuals = (double *) malloc(peak_vector_number * sizeof(

double));

92 // If the memory could not be allocated , this prints an error and then

93 // exits the function

94 if (velocity_residuals == NULL)

95 {

96 // This prints a memory allocation error message

97 error_memory_allocation("velocity_residuals", "

least_signal_energy_velocity_field");

98 // This returns from the function with an error

99 return -1;

100 }

101

102 // This initializes a variable to store the minimum velocity residual value

103 double min_velocity_residual_value;

104 // This initializes a variable to store the minimum velocity residual index

105 int min_velocity_residual_index;

106

107 // This is a linear index into the output velocity arrays

108 int output_linear_index;

109

110 // This initializes a variable to store the number of elements in each

111 // adjacent region of the velocity field

112 int adjacent_element_number;

113 // This calculates the number of adjacent velocity elements in each region

A.1. Least Energy Velocity Field 137

114 adjacent_element_number = peak_energy_kernal_size[0] *

peak_energy_kernal_size[1] * peak_energy_kernal_size[2] *

peak_vector_number;

115

116 // This initializes arrays to store the possible velocity vector values in

117 // each neighborhood region

118 double *ii_velocity_neighborhood;

119 double *jj_velocity_neighborhood;

120 double *kk_velocity_neighborhood;

121 // This allocates memory to the arrays storing the adjacent possible

122 // velocity vectors in each region

123 ii_velocity_neighborhood = (double *) malloc(adjacent_element_number *

sizeof(double));

124 jj_velocity_neighborhood = (double *) malloc(adjacent_element_number *

sizeof(double));

125 kk_velocity_neighborhood = (double *) malloc(adjacent_element_number *

sizeof(double));

126 // If the memory could not be allocated , this prints an error and then

127 // exits the function

128 if (ii_velocity_neighborhood == NULL)

129 {

130 // This prints a memory allocation error message

131 error_memory_allocation("ii_velocity_neighborhood", "

least_signal_energy_velocity_field");

132 // This returns from the function with an error

133 return -1;

134 }

135 // If the memory could not be allocated , this prints an error and then

136 // exits the function

137 if (jj_velocity_neighborhood == NULL)

138 {

138 Appendix A. C Code Functions

139 // This prints a memory allocation error message

140 error_memory_allocation("jj_velocity_neighborhood", "

least_signal_energy_velocity_field");

141 // This returns from the function with an error

142 return -1;

143 }

144 // If the memory could not be allocated , this prints an error and then

145 // exits the function

146 if (kk_velocity_neighborhood == NULL)

147 {

148 // This prints a memory allocation error message

149 error_memory_allocation("kk_velocity_neighborhood", "

least_signal_energy_velocity_field");

150 // This returns from the function with an error

151 return -1;

152 }

153

154 // This initializes an array to store the index of the peak that is

155 // calculated to yield the lowest energy velocity field

156 int *peak_index_array;

157 // This allocates memory to the array giving the index of the peaks

158 // corresponding to the lowest energy velocity field

159 peak_index_array = (int *) malloc(ii_vector_number * jj_vector_number *

kk_vector_number * sizeof(int));

160 // If the memory could not be allocated , this prints an error and then

161 // exits the function

162 if (peak_index_array == NULL)

163 {

164 // This prints a memory allocation error message

165 error_memory_allocation("peak_index_array", "

least_signal_energy_velocity_field");

A.1. Least Energy Velocity Field 139

166 // This returns from the function with an error

167 return -1;

168 }

169

170 // This initializes a variable to both index into the adjacent peaks and to

171 // store the total number of peaks in each region (which might be less than

172 // the total adjacent_element_number if the region is on the edge of the

173 // vector field)

174 int current_neighborhood_element_number;

175

176 //

177 // Initial Estimate of Lowest Energy Field //

178 //

179

180 // This iterates through the first dimension of the velocity field

181 for (ii_vector_index = 0; ii_vector_index < ii_vector_number;

ii_vector_index++)

182 {

183

184 // This calculates the neighborhood over which to compare the

185 // vectors in the first dimension

186 ii_region_min = ii_vector_index - ii_neighborhood_radius;

187 ii_region_max = ii_vector_index + ii_neighborhood_radius;

188

189 // If the minimum of the neighborhood region is less than zero, this

190 // sets it equal to zero

191 if (ii_region_min < 0)

192 {

193 // This sets the region minimum equal to zero

194 ii_region_min = 0;

195 }

140 Appendix A. C Code Functions

196

197 // If the maximum of the neighborhood region is greater than the number

198 // of vectors, this sets it equal to vector number (minus one)

199 if (ii_region_max > (ii_vector_number - 1))

200 {

201 // This sets the region minimum equal to the vector number (minus

202 // one)

203 ii_region_max = (ii_vector_number - 1);

204 }

205

206 // This iterates through the second dimension of the velocity field

207 for (jj_vector_index = 0; jj_vector_index < jj_vector_number;

jj_vector_index++)

208 {

209

210 // This calculates the neighborhood over which to compare the

211 // vectors in the second dimension

212 jj_region_min = jj_vector_index - jj_neighborhood_radius;

213 jj_region_max = jj_vector_index + jj_neighborhood_radius;

214

215 // If the minimum of the neighborhood region is less than zero,

216 // this sets it equal to zero

217 if (jj_region_min < 0)

218 {

219 // This sets the region minimum equal to zero

220 jj_region_min = 0;

221 }

222

223 // If the maximum of the neighborhood region is greater than the

224 // number of vectors, this sets it equal to vector number (minus

225 // one)

A.1. Least Energy Velocity Field 141

226 if (jj_region_max > (jj_vector_number - 1))

227 {

228 // This sets the region minimum equal to the vector number

229 // (minus one)

230 jj_region_max = (jj_vector_number - 1);

231 }

232

233 // This iterates through the third dimension of the velocity field

234 for (kk_vector_index = 0; kk_vector_index < kk_vector_number;

kk_vector_index++)

235 {

236

237 // This calculates the neighborhood over which to compare the

238 // vectors in the third dimension

239 kk_region_min = kk_vector_index - kk_neighborhood_radius;

240 kk_region_max = kk_vector_index + kk_neighborhood_radius;

241

242 // If the minimum of the neighborhood region is less than zero,

243 // this set it equal to zero

244 if (kk_region_min < 0)

245 {

246 // This sets the region minimum equal to zero

247 kk_region_min = 0;

248 }

249

250 // If the maximum of the neighborhood region is greater than

251 // the number of vectors, this sets it equal to vector number

252 // (minus one)

253 if (kk_region_max > (kk_vector_number - 1))

254 {

255 // This sets the region minimum equal to the vector number

142 Appendix A. C Code Functions

256 // (minus one)

257 kk_region_max = (kk_vector_number - 1);

258 }

259

260 //

261 // Extracting Vectors in Neighborhood //

262 //

263

264 // This initializes the number of adjacent velocity vector

265 // peaks in the current region to zero (so that it can be used

266 // as an indexing variable and for recording the total number

267 // of elements in the current region)

268 current_neighborhood_element_number = 0;

269

270 // This iterates through the first dimension of the vector

271 // field region

272 for (ii_region_index = ii_region_min; ii_region_index <=

ii_region_max; ii_region_index++)

273 {

274

275 // This iterates through the second dimension of the

276 // vector field region

277 for (jj_region_index = jj_region_min; jj_region_index <=

jj_region_max; jj_region_index++)

278 {

279

280 // This iterates through the third dimension of the

281 // vector field region

282 for (kk_region_index = kk_region_min; kk_region_index <=

kk_region_max; kk_region_index++)

283 {

A.1. Least Energy Velocity Field 143

284

285 // This iterates through the peaks of the

286 // vector field region

287 for (peak_region_index = 0; peak_region_index <

peak_vector_number; peak_region_index++)

288 {

289

290 // This calculates the linear index of the

291 // vector adjacent to the center vector in the

292 // current region with the current peak index

293 adjacent_element_linear_index = ii_region_index *

jj_vector_number * kk_vector_number * peak_vector_number +

294 jj_region_index * kk_vector_number * peak_vector_number +

295 kk_region_index * peak_vector_number +

296 peak_region_index;

297

298 // This extracts the adjacent velocity vector

299 // in the current region

300 ii_velocity_neighborhood[current_neighborhood_element_number

] = ii_velocity_peaks[adjacent_element_linear_index];

301 jj_velocity_neighborhood[current_neighborhood_element_number

] = jj_velocity_peaks[adjacent_element_linear_index];

302 kk_velocity_neighborhood[current_neighborhood_element_number

] = kk_velocity_peaks[adjacent_element_linear_index];

303

304 // This increments the index (and number) of

305 // adjacent velocity vectors in the current

306 // region

307 current_neighborhood_element_number++;

308

309 }

144 Appendix A. C Code Functions

310

311 }

312

313 }

314

315 }

316

317 //

318 // Calculating Vector Residuals for Potential Peaks //

319 //

320

321 // This iterates through the peak values of the current vector

322 for (peak_vector_index = 0; peak_vector_index < peak_vector_number;

peak_vector_index++)

323 {

324

325 // This calculates the linear index of the vector centered

326 // in the current region with the current peak index

327 center_element_linear_index = ii_vector_index * jj_vector_number *

kk_vector_number * peak_vector_number +

328 jj_vector_index * kk_vector_number *

peak_vector_number +

329 kk_vector_index * peak_vector_number +

330 peak_vector_index;

331

332 // This extracts the velocity vector centered in the current

333 // region with the current peak index

334 ii_velocity_center = ii_velocity_peaks[center_element_linear_index

];

335 jj_velocity_center = jj_velocity_peaks[center_element_linear_index

];

A.1. Least Energy Velocity Field 145

336 kk_velocity_center = kk_velocity_peaks[center_element_linear_index

];

337

338 // This initializes the velocity field residual for the

339 // current peak to zero (before the residuals are added

340 // onto this value)

341 velocity_residuals[peak_vector_index] = 0.0;

342

343 // This iterates through the adjacent velocity vectors,

344 // calculating the velocity field residual for the current

345 // peak velocity value

346 for (adjacent_element_linear_index = 0;

adjacent_element_linear_index <

current_neighborhood_element_number;

adjacent_element_linear_index++)

347 {

348

349 // This adds the residual of the current

350 // adjacent velocity vector to the sum of all

351 // adjacent vector residuals

352 velocity_residuals[peak_vector_index] += pow(ii_velocity_center

- ii_velocity_neighborhood[adjacent_element_linear_index],

2.0) +

353 pow(jj_velocity_center -

jj_velocity_neighborhood[

adjacent_element_linear_index], 2.0)

+

354 pow(kk_velocity_center -

kk_velocity_neighborhood[

adjacent_element_linear_index], 2.0);

355

146 Appendix A. C Code Functions

356 }

357

358 }

359

360 //

361 // Determining Minimum Residual Peak //

362 //

363

364 // This initializes the velocity residual minimum value equal

365 // to the first velocity residual element

366 min_velocity_residual_value = velocity_residuals[0];

367

368 // This initializes the velocity residual minimum index equal

369 // to zero

370 min_velocity_residual_index = 0;

371

372 // This iterates through the possible peak options finding the

373 // index of the peak corresponding to the lowest velocity

374 // residual sum

375 for (peak_vector_index = 0; peak_vector_index < peak_vector_number;

peak_vector_index++)

376 {

377

378 // If the current value of the velocity residual sum is

379 // less than the recorded minimum value, this resets the

380 // minimum value and the corresponding index

381 if (velocity_residuals[peak_vector_index] <

min_velocity_residual_value)

382 {

383

384 // This sets the minimum velocity residual value eqaul

A.1. Least Energy Velocity Field 147

385 // to the current velocity residual sum value

386 min_velocity_residual_value = velocity_residuals[

peak_vector_index];

387

388 // This sets the index of the minimum velocity residual

389 // sum equal to the current index

390 min_velocity_residual_index = peak_vector_index;

391

392 }

393

394 }

395

396 //

397 // Saving Minimum Energy Velocity Vector //

398 //

399

400 // This calculates the linear index of the vector

401 // corresponding to the minimum velocity residual sum

402 center_element_linear_index = ii_vector_index * jj_vector_number *

kk_vector_number * peak_vector_number +

403 jj_vector_index * kk_vector_number *

peak_vector_number +

404 kk_vector_index * peak_vector_number +

405 min_velocity_residual_index;

406

407 // This extracts the velocity vector centered in the current

408 // region with the current peak index

409 ii_velocity_center = ii_velocity_peaks[center_element_linear_index];

410 jj_velocity_center = jj_velocity_peaks[center_element_linear_index];

411 kk_velocity_center = kk_velocity_peaks[center_element_linear_index];

412

148 Appendix A. C Code Functions

413 // This calculates the linear index of the current output

414 // array vector

415 output_linear_index = ii_vector_index * jj_vector_number *

kk_vector_number +

416 jj_vector_index * kk_vector_number +

417 kk_vector_index;

418

419 // This sets the current output velocity vector equal to the

420 // vector corresponding to the minimum energy value

421 ii_velocity[output_linear_index] = ii_velocity_center;

422 jj_velocity[output_linear_index] = jj_velocity_center;

423 kk_velocity[output_linear_index] = kk_velocity_center;

424

425 // This sets the current element of the peak index array equal

426 // to the index that was identified as yielding the lowest

427 // energy velocity field

428 peak_index_array[output_linear_index] = min_velocity_residual_index;

429

430 }

431

432 }

433

434 }

435

436 //

437 // Initializing Iterative Lowest Energy Variables //

438 //

439

440 // This initializes a variable to count the number of vectors that were

441 // updated during each iteration (which when equal to zero will be used to

442 // exit the while loop)

A.1. Least Energy Velocity Field 149

443 int updated_vector_number;

444

445 // This initializes arrays to store the updated lowest energy velocity

446 // fields

447 double *ii_velocity_updated;

448 double *jj_velocity_updated;

449 double *kk_velocity_updated;

450 // This allocates memory to the arrays storing the updated velocity fields

451 ii_velocity_updated = (double *) malloc(ii_vector_number *

jj_vector_number * kk_vector_number * sizeof(double));

452 jj_velocity_updated = (double *) malloc(ii_vector_number *

jj_vector_number * kk_vector_number * sizeof(double));

453 kk_velocity_updated = (double *) malloc(ii_vector_number *

jj_vector_number * kk_vector_number * sizeof(double));

454 // If the memory could not be allocated , this prints an error and then

455 // exits the function

456 if (ii_velocity_updated == NULL)

457 {

458 // This prints a memory allocation error message

459 error_memory_allocation("ii_velocity_updated", "

least_signal_energy_velocity_field");

460 // This returns from the function with an error

461 return -1;

462 }

463 // If the memory could not be allocated , this prints an error and then

464 // exits the function

465 if (jj_velocity_updated == NULL)

466 {

467 // This prints a memory allocation error message

468 error_memory_allocation("jj_velocity_updated", "

least_signal_energy_velocity_field");

150 Appendix A. C Code Functions

469 // This returns from the function with an error

470 return -1;

471 }

472 // If the memory could not be allocated , this prints an error and then

473 // exits the function

474 if (kk_velocity_updated == NULL)

475 {

476 // This prints a memory allocation error message

477 error_memory_allocation("kk_velocity_updated", "

least_signal_energy_velocity_field");

478 // This returns from the function with an error

479 return -1;

480 }

481

482 //

483 // Iterative Approximation to Lowest Energy Field //

484 //

485

486 // Now that an approximation to the lowest energy velocity field has been

487 // calculated , this repeatedly iterates through the velocity field

488 // replacing any vectors that result in a lower energy field until

489 // stability is reached

490 while (1)

491 {

492

493 // This initializes the number of updated vectors to zero for the

494 // current iteration of the while loop

495 updated_vector_number = 0;

496

497 // This iterates through the first dimension of the velocity field

498 for (ii_vector_index = 0; ii_vector_index < ii_vector_number;

A.1. Least Energy Velocity Field 151

ii_vector_index++)

499 {

500

501 // This calculates the neighborhood over which to compare the

502 // vectors in the first dimension

503 ii_region_min = ii_vector_index - ii_neighborhood_radius;

504 ii_region_max = ii_vector_index + ii_neighborhood_radius;

505

506 // If the minimum of the neighborhood region is less than zero, this

507 // sets it equal to zero

508 if (ii_region_min < 0)

509 {

510 // This sets the region minimum equal to zero

511 ii_region_min = 0;

512 }

513

514 // If the maximum of the neighborhood region is greater than the number

515 // of vectors, this sets it equal to vector number (minus one)

516 if (ii_region_max > (ii_vector_number - 1))

517 {

518 // This sets the region minimum equal to the vector number (minus

519 // one)

520 ii_region_max = (ii_vector_number - 1);

521 }

522

523 // This iterates through the second dimension of the velocity field

524 for (jj_vector_index = 0; jj_vector_index < jj_vector_number;

jj_vector_index++)

525 {

526

527 // This calculates the neighborhood over which to compare the

152 Appendix A. C Code Functions

528 // vectors in the second dimension

529 jj_region_min = jj_vector_index - jj_neighborhood_radius;

530 jj_region_max = jj_vector_index + jj_neighborhood_radius;

531

532 // If the minimum of the neighborhood region is less than zero,

533 // this sets it equal to zero

534 if (jj_region_min < 0)

535 {

536 // This sets the region minimum equal to zero

537 jj_region_min = 0;

538 }

539

540 // If the maximum of the neighborhood region is greater than the

541 // number of vectors, this sets it equal to vector number (minus

542 // one)

543 if (jj_region_max > (jj_vector_number - 1))

544 {

545 // This sets the region minimum equal to the vector number

546 // (minus one)

547 jj_region_max = (jj_vector_number - 1);

548 }

549

550 // This iterates through the third dimension of the velocity field

551 for (kk_vector_index = 0; kk_vector_index < kk_vector_number;

kk_vector_index++)

552 {

553

554 // This calculates the neighborhood over which to compare the

555 // vectors in the third dimension

556 kk_region_min = kk_vector_index - kk_neighborhood_radius;

557 kk_region_max = kk_vector_index + kk_neighborhood_radius;

A.1. Least Energy Velocity Field 153

558

559 // If the minimum of the neighborhood region is less than zero,

560 // this set it equal to zero

561 if (kk_region_min < 0)

562 {

563 // This sets the region minimum equal to zero

564 kk_region_min = 0;

565 }

566

567 // If the maximum of the neighborhood region is greater than

568 // the number of vectors, this sets it equal to vector number

569 // (minus one)

570 if (kk_region_max > (kk_vector_number - 1))

571 {

572 // This sets the region minimum equal to the vector number

573 // (minus one)

574 kk_region_max = (kk_vector_number - 1);

575 }

576

577 //

578 // Extracting Vectors in Neighborhood //

579 //

580

581 // This initializes the number of adjacent velocity vector

582 // peaks in the current region to zero (so that it can be used

583 // as an indexing variable and for recording the total number

584 // of elements in the current region)

585 current_neighborhood_element_number = 0;

586

587 // This iterates through the first dimension of the vector

588 // field region

154 Appendix A. C Code Functions

589 for (ii_region_index = ii_region_min; ii_region_index <=

ii_region_max; ii_region_index++)

590 {

591

592 // This iterates through the second dimension of the

593 // vector field region

594 for (jj_region_index = jj_region_min; jj_region_index <=

jj_region_max; jj_region_index++)

595 {

596

597 // This iterates through the third dimension of the

598 // vector field region

599 for (kk_region_index = kk_region_min; kk_region_index <=

kk_region_max; kk_region_index++)

600 {

601

602 // This calculates the linear index of the

603 // vector adjacent to the center vector in the

604 // current region with the current peak index

605 adjacent_element_linear_index = ii_region_index *

jj_vector_number * kk_vector_number +

606 jj_region_index * kk_vector_number +

607 kk_region_index;

608

609 // This extracts the adjacent velocity vector

610 // in the current region

611 ii_velocity_neighborhood[current_neighborhood_element_number

] = ii_velocity[adjacent_element_linear_index];

612 jj_velocity_neighborhood[current_neighborhood_element_number

] = jj_velocity[adjacent_element_linear_index];

613 kk_velocity_neighborhood[current_neighborhood_element_number

A.1. Least Energy Velocity Field 155

] = kk_velocity[adjacent_element_linear_index];

614

615 // This increments the index (and number) of

616 // adjacent velocity vectors in the current

617 // region

618 current_neighborhood_element_number++;

619

620 }

621

622 }

623

624 }

625

626 //

627 // Calculating Vector Residuals for Potential Peaks //

628 //

629

630 // This iterates through the peak values of the current vector

631 for (peak_vector_index = 0; peak_vector_index < peak_vector_number;

peak_vector_index++)

632 {

633

634 // This calculates the linear index of the vector centered

635 // in the current region with the current peak index

636 center_element_linear_index = ii_vector_index * jj_vector_number *

kk_vector_number * peak_vector_number +

637 jj_vector_index * kk_vector_number * peak_vector_number +

638 kk_vector_index * peak_vector_number +

639 peak_vector_index;

640

641 // This extracts the velocity vector centered in the current

156 Appendix A. C Code Functions

642 // region with the current peak index

643 ii_velocity_center = ii_velocity_peaks[

center_element_linear_index];

644 jj_velocity_center = jj_velocity_peaks[

center_element_linear_index];

645 kk_velocity_center = kk_velocity_peaks[

center_element_linear_index];

646

647 // This initializes the velocity field residual for the

648 // current peak to zero (before the residuals are added

649 // onto this value)

650 velocity_residuals[peak_vector_index] = 0.0;

651

652 // This iterates through the adjacent velocity vectors,

653 // calculating the velocity field residual for the current

654 // peak velocity value

655 for (adjacent_element_linear_index = 0;

adjacent_element_linear_index <

current_neighborhood_element_number;

adjacent_element_linear_index++)

656 {

657

658 // This adds the residual of the current

659 // adjacent velocity vector to the sum of all

660 // adjacent vector residuals

661 velocity_residuals[peak_vector_index] += pow(

ii_velocity_center - ii_velocity_neighborhood[

adjacent_element_linear_index], 2.0) +

662 pow(jj_velocity_center - jj_velocity_neighborhood[

adjacent_element_linear_index], 2.0) +

663 pow(kk_velocity_center - kk_velocity_neighborhood[

A.1. Least Energy Velocity Field 157

adjacent_element_linear_index], 2.0);

664

665 }

666

667 }

668

669 //

670 // Determining Minimum Residual Peak //

671 //

672

673 // This initializes the velocity residual minimum value equal

674 // to the first velocity residual element

675 min_velocity_residual_value = velocity_residuals[0];

676

677 // This initializes the velocity residual minimum index equal

678 // to zero

679 min_velocity_residual_index = 0;

680

681 // This iterates through the possible peak options finding the

682 // index of the peak corresponding to the lowest velocity

683 // residual sum

684 for (peak_vector_index = 0; peak_vector_index < peak_vector_number;

peak_vector_index++)

685 {

686

687 // If the current value of the velocity residual sum is

688 // less than the recorded minimum value, this resets the

689 // minimum value and the corresponding index

690 if (velocity_residuals[peak_vector_index] <

min_velocity_residual_value)

691 {

158 Appendix A. C Code Functions

692

693 // This sets the minimum velocity residual value eqaul

694 // to the current velocity residual sum value

695 min_velocity_residual_value = velocity_residuals[

peak_vector_index];

696

697 // This sets the index of the minimum velocity residual

698 // sum equal to the current index

699 min_velocity_residual_index = peak_vector_index;

700

701 }

702

703 }

704

705 //

706 // Saving Minimum Energy Velocity Vector //

707 //

708

709 // This calculates the linear index of the vector

710 // corresponding to the minimum velocity residual sum

711 center_element_linear_index = ii_vector_index * jj_vector_number *

kk_vector_number * peak_vector_number +

712 jj_vector_index * kk_vector_number * peak_vector_number +

713 kk_vector_index * peak_vector_number +

714 min_velocity_residual_index;

715

716 // This extracts the velocity vector centered in the current

717 // region with the current peak index

718 ii_velocity_center = ii_velocity_peaks[center_element_linear_index

];

719 jj_velocity_center = jj_velocity_peaks[center_element_linear_index

A.1. Least Energy Velocity Field 159

];

720 kk_velocity_center = kk_velocity_peaks[center_element_linear_index

];

721

722 // This calculates the linear index of the current output

723 // array vector

724 output_linear_index = ii_vector_index * jj_vector_number *

kk_vector_number +

725 jj_vector_index * kk_vector_number +

726 kk_vector_index;

727

728 // This sets the current output velocity vector equal to the

729 // vector corresponding to the minimum energy value

730 ii_velocity_updated[output_linear_index] = ii_velocity_center;

731 jj_velocity_updated[output_linear_index] = jj_velocity_center;

732 kk_velocity_updated[output_linear_index] = kk_velocity_center;

733

734 // If the index of the peak is different from that which

735 // was previously calculated , this increments the number of

736 // updated vectors and updates the array of peak index

737 // values

738 if (min_velocity_residual_index != peak_index_array[

output_linear_index])

739 {

740

741 // This increments the number of updated vectors

742 updated_vector_number++;

743

744 // This stores the new index of the peak that was

745 // calculated to have the lowest energy

746 peak_index_array[output_linear_index] =

160 Appendix A. C Code Functions

min_velocity_residual_index;

747

748 }

749

750 }

751

752 }

753

754 }

755

756 // This copies the updated velocity field arrays into the output

757 // velocity field arrays

758 memcpy(ii_velocity , ii_velocity_updated , ii_vector_number *

jj_vector_number * kk_vector_number * sizeof(double));

759 memcpy(jj_velocity , jj_velocity_updated , ii_vector_number *

jj_vector_number * kk_vector_number * sizeof(double));

760 memcpy(kk_velocity , kk_velocity_updated , ii_vector_number *

jj_vector_number * kk_vector_number * sizeof(double));

761

762 // If no vectors have been updated in the current loop, this exits the

763 // while loop since convergence has been reached

764 if (updated_vector_number == 0)

765 {

766

767 // This breaks the while loop since convergence of the lowest

768 // energy vector field has been reached

769 break;

770

771 }

772

773 }

A.1. Least Energy Velocity Field 161

774

775 //

776 // Freeing Memory and Exiting //

777 //

778

779 // This frees the array of velocity residuals from memory

780 free(velocity_residuals);

781

782 // This frees the array storing the indices of the peaks that correspond to

783 // the lowest energy velocity field from memory

784 free(peak_index_array);

785

786 // This frees the arrays storing the adjacent possible velocity vectors

787 // from memory

788 free(ii_velocity_neighborhood);

789 free(jj_velocity_neighborhood);

790 free(kk_velocity_neighborhood);

791

792 // This frees the updated velocity field arrays from memory

793 free(ii_velocity_updated);

794 free(jj_velocity_updated);

795 free(kk_velocity_updated);

796

797 // This succesfully returns from the function

798 return 0;

799

800 }

162 Appendix A. C Code Functions

A.2 Rectilinear Gaussian Fitting

This code takes a cross-correlation array as input and calculates the sub-voxel fit coordi-

nate to the specified peak within the cross-correlation. The fitting is completed using an

axis-aligned three-dimensional Gaussian function that is fit using a least squares algorithm

calculated from the 3 by 3 by 3 region surrounding the specified peak.

The input array ‘cross_correlation’ is a one-dimensional array that has a length equal to the

product of the length 3 array ‘window_size’. The variables ‘ii_peak_max’, ‘jj_peak_max’,

and ‘kk_peak_max’ give the subscripted index location of the peak that is being fit. The

sub-voxel fit coordinates of the peak are stored in the output variables ‘ii_max_subpixel’,

‘jj_max_subpixel’, and ‘kk_max_subpixel’. This function will always produce an output,

although if any of the 3 by 3 by 3 regions surrounding the peak have zero or negative values,

the sub-voxel fit variables will have NaN values.

This function references the ‘integer_modulus’ function which simply calculates the modu-

lus function for all integer inputs. This is used instead of the remainder ‘%’ operator in C

since the remainder operator only functions with non-negative inputs. This allows the pe-

riodic boundary conditions of the cross-correlation array (as applied by the discrete Fourier

transform) to be utilized for fitting peaks along the boundary of the cross-correlation.

Listing A.2: Rectilinear Gaussian Fitting Function

1 void least_squares_rectilinear_gaussian_fit(double cross_correlation[], int

window_size[], int ii_peak_max , int jj_peak_max , int kk_peak_max , double *

ii_max_subpixel , double *jj_max_subpixel , double *kk_max_subpixel)

2 {

3

4 // This function calculates the sub-voxel center of the Gaussian function

A.2. Rectilinear Gaussian Fitting 163

5 // given by the 3 x 3 x 3 function 'gaussian_function' using a least

6 // squares fitting method.

7 //

8 // The least squares fitting can be calculated by taking the logarithm of

9 // both sides of a ellipsoidal axis-aligned Gaussian function of the form

10 //

11 // f(x,y,z)=C*exp(-((x-x0)^2)/(2*sigma_x^2)-((y-y0)^2)/(2*sigma_y^2)-((z-z0

)^2)/(2*sigma_z^2))

12 //

13 // to create a linear summation. For a 3 x 3 x 3 array of voxels this

14 // gives 27 equations with 7 variables and is thus an over-determined

15 // system. If the coordinates of the Gaussian function in each dimension

16 // are taken as { -1, 0, +1 }, then the 'A' matrix of the linear equation

17 // is constant for all input functions. The least squares fitting can then

18 // be calculated by taking the Moore-Penrose inverse of 'A'; this inverse

19 // matrix consists of simple rational expression coefficients.

20 //

21 // Then since the logarithm was taken of both sides of the Gaussian

22 // function , this means that the matrix summation can be converted to the

23 // logarithm of the product of the function values.

24 //

25 // When this is simplified for the center coordinates of the Gaussian

26 // function , the center coordinates are simple functions of the logarithms

27 // of the products of 3 x 3 x 1 regions of the input array where the slices

28 // are taken in the direction of the dimension for which the center

29 // coordinate is being calculated.

30

31 //

32 // Initializing Calculation Variables //

33 //

34

164 Appendix A. C Code Functions

35 // This initializes relative subscripted indices into the voxels (which may

36 // be above or below the actual array range)

37 int ii_array_rel_index;

38 int jj_array_rel_index;

39 int kk_array_rel_index;

40 // This initializes absolute subscripted indices into the voxels (which

41 // will always lie in the array range)

42 int ii_array_abs_index;

43 int jj_array_abs_index;

44 int kk_array_abs_index;

45 // This initializes a linear index into the voxels

46 unsigned int linear_array_index;

47

48 // This initializes a variable to store the product of the voxels in the

49 // negative direction

50 double product_ngtv;

51 // This initializes a variable to store the product of the voxels in the

52 // zero direction

53 double product_zero;

54 // This initializes a variable to store the product of the voxels in the

55 // positive direction

56 double product_pstv;

57

58 //

59 // First Dimension Least Squares Fitting //

60 //

61

62 // This initializes the negative direction voxel product to one

63 product_ngtv = 1.0;

64 // This initializes the zero direction voxel product to one

65 product_zero = 1.0;

A.2. Rectilinear Gaussian Fitting 165

66 // This initializes the positive direction voxel product to one

67 product_pstv = 1.0;

68

69 // This iterates through the second dimension of the array calculating the

70 // voxel product

71 for (jj_array_rel_index = (jj_peak_max - 1); jj_array_rel_index <= (

jj_peak_max + 1); jj_array_rel_index++)

72 {

73

74 // This calculates the absolute subscripted matrix index (since the

75 // relative index can go below or above the range of the array)

76 integer_modulus(jj_array_rel_index , window_size[1], &jj_array_abs_index

);

77

78 // This iterates through the third dimension of the array calculating

79 // the voxel product

80 for (kk_array_rel_index = (kk_peak_max - 1); kk_array_rel_index <= (

kk_peak_max + 1); kk_array_rel_index++)

81 {

82

83 // This calculates the absolute subscripted matrix index (since the

84 // relative index can go below or above the range of the array)

85 integer_modulus(kk_array_rel_index , window_size[2], &

kk_array_abs_index);

86

87 // This sets the index of the first dimension absolute array index

88 // equal to the center voxel index minus one

89 integer_modulus(ii_peak_max - 1, window_size[0], &ii_array_abs_index

);

90 // This calculates the linear index into the array

91 linear_array_index = ii_array_abs_index * window_size[1] * window_size

166 Appendix A. C Code Functions

[2] + jj_array_abs_index * window_size[2] + kk_array_abs_index;

92 // This multiplies the current voxel value into the total product

93 product_ngtv *= cross_correlation[linear_array_index];

94

95 // This sets the index of the first dimension absolute array index

96 // equal to the center voxel index

97 ii_array_abs_index = ii_peak_max;

98 // This calculates the linear index into the array

99 linear_array_index = ii_array_abs_index * window_size[1] * window_size

[2] + jj_array_abs_index * window_size[2] + kk_array_abs_index;

100 // This multiplies the current voxel value into the total product

101 product_zero *= cross_correlation[linear_array_index];

102

103 // This sets the index of the first dimension absolute array index

104 // equal to the center voxel index plus one

105 integer_modulus(ii_peak_max + 1, window_size[0], &ii_array_abs_index

);

106 // This calculates the linear index into the array

107 linear_array_index = ii_array_abs_index * window_size[1] * window_size

[2] + jj_array_abs_index * window_size[2] + kk_array_abs_index;

108 // This multiplies the current voxel value into the total product

109 product_pstv *= cross_correlation[linear_array_index];

110

111 }

112

113 }

114

115 // This calculates the sub-voxel least squares fit in the first dimension

116 *ii_max_subpixel = (log(product_ngtv) - log(product_pstv)) / (2 * log

(product_ngtv * product_pstv) - 4 * log(product_zero)) + (double)

ii_peak_max;

A.2. Rectilinear Gaussian Fitting 167

117

118 //

119 // Second Dimension Least Squares Fitting //

120 //

121

122 // This initializes the negative direction voxel product to one

123 product_ngtv = 1.0;

124 // This initializes the zero direction voxel product to one

125 product_zero = 1.0;

126 // This initializes the positive direction voxel product to one

127 product_pstv = 1.0;

128

129 // This iterates through the first dimension of the array calculating the

130 // voxel product

131 for (ii_array_rel_index = (ii_peak_max - 1); ii_array_rel_index <= (

ii_peak_max + 1); ii_array_rel_index++)

132 {

133

134 // This calculates the absolute subscripted matrix index (since the

135 // relative index can go below or above the range of the array)

136 integer_modulus(ii_array_rel_index , window_size[0], &ii_array_abs_index

);

137

138 // This iterates through the third dimension of the array calculating

139 // the voxel product

140 for (kk_array_rel_index = (kk_peak_max - 1); kk_array_rel_index <= (

kk_peak_max + 1); kk_array_rel_index++)

141 {

142

143 // This calculates the absolute subscripted matrix index (since the

144 // relative index can go below or above the range of the array)

168 Appendix A. C Code Functions

145 integer_modulus(kk_array_rel_index , window_size[2], &

kk_array_abs_index);

146

147 // This sets the index of the second dimension absolute array index

148 // equal to the center voxel index minus one

149 integer_modulus(jj_peak_max - 1, window_size[1], &jj_array_abs_index

);

150 // This calculates the linear index into the array

151 linear_array_index = ii_array_abs_index * window_size[1] * window_size

[2] + jj_array_abs_index * window_size[2] + kk_array_abs_index;

152 // This multiplies the current voxel value into the total product

153 product_ngtv *= cross_correlation[linear_array_index];

154

155 // This sets the index of the second dimension absolute array index

156 // equal to the center voxel index

157 jj_array_abs_index = jj_peak_max;

158 // This calculates the linear index into the array

159 linear_array_index = ii_array_abs_index * window_size[1] * window_size

[2] + jj_array_abs_index * window_size[2] + kk_array_abs_index;

160 // This multiplies the current voxel value into the total product

161 product_zero *= cross_correlation[linear_array_index];

162

163 // This sets the index of the second dimension absolute array index

164 // equal to the center voxel index plus one

165 integer_modulus(jj_peak_max + 1, window_size[1], &jj_array_abs_index

);

166 // This calculates the linear index into the array

167 linear_array_index = ii_array_abs_index * window_size[1] * window_size

[2] + jj_array_abs_index * window_size[2] + kk_array_abs_index;

168 // This multiplies the current voxel value into the total product

169 product_pstv *= cross_correlation[linear_array_index];

A.2. Rectilinear Gaussian Fitting 169

170

171 }

172

173 }

174

175 // This calculates the sub-voxel least squares fit in the second dimension

176 *jj_max_subpixel = (log(product_ngtv) - log(product_pstv)) / (2 * log

(product_ngtv * product_pstv) - 4 * log(product_zero)) + (double)

jj_peak_max;

177

178 //

179 // Third Dimension Least Squares Fitting //

180 //

181

182 // This initializes the negative direction voxel product to one

183 product_ngtv = 1.0;

184 // This initializes the zero direction voxel product to one

185 product_zero = 1.0;

186 // This initializes the positive direction voxel product to one

187 product_pstv = 1.0;

188

189 // This iterates through the first dimension of the array calculating the

190 // voxel product

191 for (ii_array_rel_index = (ii_peak_max - 1); ii_array_rel_index <= (

ii_peak_max + 1); ii_array_rel_index++)

192 {

193

194 // This calculates the absolute subscripted matrix index (since the

195 // relative index can go below or above the range of the array)

196 integer_modulus(ii_array_rel_index , window_size[0], &ii_array_abs_index

);

170 Appendix A. C Code Functions

197

198 // This iterates through the second dimension of the array calculating

199 // the voxel product

200 for (jj_array_rel_index = (jj_peak_max - 1); jj_array_rel_index <= (

jj_peak_max + 1); jj_array_rel_index++)

201 {

202

203 // This calculates the absolute subscripted matrix index (since the

204 // relative index can go below or above the range of the array)

205 integer_modulus(jj_array_rel_index , window_size[1], &

jj_array_abs_index);

206

207 // This sets the index of the third dimension absolute array index

208 // equal to the center voxel index minus one

209 integer_modulus(kk_peak_max - 1, window_size[2], &kk_array_abs_index

);

210 // This calculates the linear index into the array

211 linear_array_index = ii_array_abs_index * window_size[1] * window_size

[2] + jj_array_abs_index * window_size[2] + kk_array_abs_index;

212 // This multiplies the current voxel value into the total product

213 product_ngtv *= cross_correlation[linear_array_index];

214

215 // This sets the index of the third dimension absolute array index

216 // equal to the center voxel index

217 kk_array_abs_index = kk_peak_max;

218 // This calculates the linear index into the array

219 linear_array_index = ii_array_abs_index * window_size[1] * window_size

[2] + jj_array_abs_index * window_size[2] + kk_array_abs_index;

220 // This multiplies the current voxel value into the total product

221 product_zero *= cross_correlation[linear_array_index];

222

A.3. Diagonal Gaussian Fitting 171

223 // This sets the index of the third dimension absolute array index

224 // equal to the center voxel index plus one

225 integer_modulus(kk_peak_max + 1, window_size[2], &kk_array_abs_index

);

226 // This calculates the linear index into the array

227 linear_array_index = ii_array_abs_index * window_size[1] * window_size

[2] + jj_array_abs_index * window_size[2] + kk_array_abs_index;

228 // This multiplies the current voxel value into the total product

229 product_pstv *= cross_correlation[linear_array_index];

230

231 }

232

233 }

234

235 // This calculates the sub-voxel least squares fit in the third dimension

236 *kk_max_subpixel = (log(product_ngtv) - log(product_pstv)) / (2 * log

(product_ngtv * product_pstv) - 4 * log(product_zero)) + (double)

kk_peak_max;

237

238 }

A.3 Diagonal Gaussian Fitting

This code takes a cross-correlation array as input and calculates the sub-voxel fit coordinate

to the specified peak within the cross-correlation. The fitting is completed using a three-

dimensional Gaussian function that may be aligned along any axis and is fit using a least

squares algorithm calculated from the 3 by 3 by 3 region surrounding the specified peak.

The input array ‘cross_correlation’ is a one-dimensional array that has a length equal to the

172 Appendix A. C Code Functions

product of the length 3 array ‘window_size’. The variables ‘ii_peak_max’, ‘jj_peak_max’,

and ‘kk_peak_max’ give the subscripted index location of the peak that is being fit. The

sub-voxel fit coordinates of the peak are stored in the output variables ‘ii_max_subpixel’,

‘jj_max_subpixel’, and ‘kk_max_subpixel’. This function will always produce an output,

although if any of the 3 by 3 by 3 regions surrounding the peak have zero or negative values,

the sub-voxel fit variables will have NaN values. This function references the ‘integer_modu-

lus’ function which simply calculates the modulus function for all integer inputs. This is used

instead of the remainder ‘%’ operator in C since the remainder operator only functions with

non-negative inputs. This allows the periodic boundary conditions of the cross-correlation

array (as applied by the discrete Fourier transform) to be utilized for fitting peaks along the

boundary of the cross-correlation.

Listing A.3: Diagonal Gaussian Fitting Function

1 void least_squares_diagonal_gaussian_fit(double cross_correlation[], int

window_size[], int ii_peak_max , int jj_peak_max , int kk_peak_max , double *

ii_max_subpixel , double *jj_max_subpixel , double *kk_max_subpixel)

2 {

3

4 // This function fits an ellipsoidal Gaussian function to the peak of the

5 // input cross-correlation peak 3 x 3 x 3 region. The Gaussian function

6 // may be aligned along any axis (as opposed to being aligned along the x,

7 // y, z axes as is more standard).

8 //

9 // The least squares fitting can be calculated by taking the logarithm of

10 // both sides of the non-axis-aligned ellipsoidal Gaussian function of the

11 // form

12 //

13 // f(x,y,z)=C*exp(-a1*(x-x0)^2-a2*(y-y0)^2-a3*(z-z0)^2

A.3. Diagonal Gaussian Fitting 173

14 // -a4*(x-x0)*(y-y0)-a5*(x-x0)*(z-z0)-a6*(y-y0)*(z-z0))

15 //

16 // to create a linear summation. For a 3 x 3 x 3 array of voxels this

17 // gives 27 equations with 10 variables and is thus an over-determined

18 // system. If the coordinates of the Gaussian function in each dimension

19 // are taken as { -1, 0, +1 }, then the 'A' matrix of the linear equation

20 // is constant for all input functions. The least squares fitting can then

21 // be calculated by taking the Moore-Penrose inverse of 'A'; this inverse

22 // matrix consists of simple rational expression coefficients.

23 //

24 // Then since the logarithm was taken of both sides of the Gaussian

25 // function , this means that the matrix summation can be converted to the

26 // logarithm of the product of the function values. This yields 9

27 // equations related to the center coordinates (the 10th equation gives the

28 // peak intensity value C - which isn't needed). The coefficient vector b

29 // is a function of the coefficient vector a and the center coordinates by

30 // the following equations

31 //

32 // b1 = -a1

33 // b2 = -a2

34 // b3 = -a3

35 // b4 = -a4

36 // b5 = -a5

37 // b6 = -a6

38 // b7 = 2*a1*x0+a4*y0+a5*z0

39 // b8 = a4*x0+2*a2*y0+a6*z0

40 // b9 = a5*x0+a6*y0+2*a3*z0

41 // b10 = log(C)-a1*x0^2-a2*y0^2-a3*z0^2-a4*x0*y0-a5*x0*z0-a6*y0*z0

42 //

43 // Finally, these 9 equations can be related to the center coordinates by a

44 // system of three linear equations which can then be solved for the 3

174 Appendix A. C Code Functions

45 // center coordinates.

46

47 //

48 // Initializing Calculation Variables //

49 //

50

51 // This initializes a variable to store the 3 x 3 x 3 region surrounding

52 // the cross-correlation peak

53 double g[27];

54

55 // This initializes an array to store the fit polynomial coefficients

56 double b[9];

57

58 // This initializes relative subscripted indices into the voxels (which may

59 // be above or below the actual array range)

60 int ii_array_rel_index;

61 int jj_array_rel_index;

62 int kk_array_rel_index;

63 // This initializes absolute subscripted indices into the voxels (which

64 // will always lie in the array range)

65 int ii_array_abs_index;

66 int jj_array_abs_index;

67 int kk_array_abs_index;

68 // This initializes a linear index into the voxels

69 unsigned int linear_cross_correlation_index;

70

71 // This initializes an index into the 3 x 3 x 3 Gaussian vector

72 unsigned int linear_peak_index = 0;

73

74 // This initializes a variable to store the maximum value of the

75 // cross-correlation to normalize the intensity values so that they are all

A.3. Diagonal Gaussian Fitting 175

76 // approximately one to minimize numerical error

77 double cross_correlation_max_inverse;

78

79 // This initializes a variable equal to 1/18 for quick multiplication

80 // during the coefficient calculation

81 double one_eighteenth = 1.0 / 18.0;

82 // This initializes a variable equal to 1/12 for quick multiplication

83 // during the coefficient calculation

84 double one_twelfth = 1.0 / 12.0;

85

86 //

87 // Extracting and Normalizing 3 x 3 x 3 Peak Region //

88 //

89

90 // This calculates the linear index of the cross-correlation peak

91 linear_cross_correlation_index = ii_peak_max * window_size[1] *

window_size[2] + jj_peak_max * window_size[2] + kk_peak_max;

92 // This extracts the value of the cross-correlation peak for normalizing

93 // the intensity values

94 cross_correlation_max_inverse = 1.0 / cross_correlation[

linear_cross_correlation_index];

95

96 // This sets the index into the 3 x 3 x 3 Gaussian vector as zero

97 linear_peak_index = 0;

98

99 // This iterates through the first dimension of the array calculating the

100 // voxel product

101 for (ii_array_rel_index = (ii_peak_max - 1); ii_array_rel_index <= (

ii_peak_max + 1); ii_array_rel_index++)

102 {

103

176 Appendix A. C Code Functions

104 // This calculates the absolute subscripted matrix index (since the

105 // relative index can go below or above the range of the array)

106 integer_modulus(ii_array_rel_index , window_size[0], &ii_array_abs_index

);

107

108 // This iterates through the second dimension of the array calculating

109 // the voxel product

110 for (jj_array_rel_index = (jj_peak_max - 1); jj_array_rel_index <= (

jj_peak_max + 1); jj_array_rel_index++)

111 {

112

113 // This calculates the absolute subscripted matrix index (since the

114 // relative index can go below or above the range of the array)

115 integer_modulus(jj_array_rel_index , window_size[1], &

jj_array_abs_index);

116

117 // This iterates through the third dimension of the array

118 // calculating the voxel product

119 for (kk_array_rel_index = (kk_peak_max - 1); kk_array_rel_index <= (

kk_peak_max + 1); kk_array_rel_index++)

120 {

121

122 // This calculates the absolute subscripted matrix index (since

123 // the relative index can go below or above the range of the

124 // array)

125 integer_modulus(kk_array_rel_index , window_size[2], &

kk_array_abs_index);

126

127 // This calculates the linear index into the array

128 linear_cross_correlation_index = ii_array_abs_index * window_size[1]

* window_size[2] + jj_array_abs_index * window_size[2] +

A.3. Diagonal Gaussian Fitting 177

kk_array_abs_index;

129

130 // This copies the current value of the cross-correlation array

131 // into the gaussian vector

132 g[linear_peak_index] = cross_correlation_max_inverse *

cross_correlation[linear_cross_correlation_index];

133

134 // This increments the linear peak index for the next voxel

135 linear_peak_index++;

136

137 }

138

139 }

140

141 }

142

143 //

144 // Calculating the Guassian Function Coefficients //

145 //

146

147 // This calculates the 1st fit polynomial coefficient of the least squares

148 // diagonal Gaussian function

149 b[0] = one_eighteenth * (log(g[0] * g[1] * g[2] * g[3] * g[4]

* g[5] * g[6] * g[7] * g[8] * g[18] * g[19] * g[20] * g[

21] * g[22] * g[23] * g[24] * g[25] * g[26])

150 - 2 * log(g[9] * g[10] * g[11] * g[12] * g[13] * g[14] * g[15

] * g[16] * g[17]));

151 // This calculates the 2nd fit polynomial coefficient of the least squares

152 // diagonal Gaussian function

153 b[1] = one_eighteenth * (log(g[0] * g[1] * g[2] * g[6] * g[7]

* g[8] * g[9] * g[10] * g[11] * g[15] * g[16] * g[17] * g[

178 Appendix A. C Code Functions

18] * g[19] * g[20] * g[24] * g[25] * g[26])

154 - 2 * log(g[3] * g[4] * g[5] * g[12] * g[13] * g[14] * g[21]

* g[22] * g[23]));

155 // This calculates the 3rd fit polynomial coefficient of the least squares

156 // diagonal Gaussian function

157 b[2] = one_eighteenth * (log(g[0] * g[2] * g[3] * g[5] * g[6]

* g[8] * g[9] * g[11] * g[12] * g[14] * g[15] * g[17] * g[

18] * g[20] * g[21] * g[23] * g[24] * g[26])

158 - 2 * log(g[1] * g[4] * g[7] * g[10] * g[13] * g[16] * g[19]

* g[22] * g[25]));

159 // This calculates the 4th fit polynomial coefficient of the least squares

160 // diagonal Gaussian function

161 b[3] = one_twelfth * (log(g[0] * g[1] * g[2] * g[24] * g[25] *

g[26])

162 - log(g[6] * g[7] * g[8] * g[18] * g[19] * g[20]));

163 // This calculates the 5th fit polynomial coefficient of the least squares

164 // diagonal Gaussian function

165 b[4] = one_twelfth * (log(g[0] * g[3] * g[6] * g[20] * g[23] *

g[26])

166 - log(g[2] * g[5] * g[8] * g[18] * g[21] * g[24]));

167 // This calculates the 6th fit polynomial coefficient of the least squares

168 // diagonal Gaussian function

169 b[5] = one_twelfth * (log(g[0] * g[8] * g[9] * g[17] * g[18] *

g[26])

170 - log(g[2] * g[6] * g[11] * g[15] * g[20] * g[24]));

171 // This calculates the 7th fit polynomial coefficient of the least squares

172 // diagonal Gaussian function

173 b[6] = one_eighteenth * (log(g[18] * g[19] * g[20] * g[21] * g[

22] * g[23] * g[24] * g[25] * g[26])

174 - log(g[0] * g[1] * g[2] * g[3] * g[4] * g[5] * g[6] * g[7]

* g[8]));

A.3. Diagonal Gaussian Fitting 179

175 // This calculates the 8th fit polynomial coefficient of the least squares

176 // diagonal Gaussian function

177 b[7] = one_eighteenth * (log(g[6] * g[7] * g[8] * g[15] * g[16

] * g[17] * g[24] * g[25] * g[26])

178 - log(g[0] * g[1] * g[2] * g[9] * g[10] * g[11] * g[18] * g[

19] * g[20]));

179 // This calculates the 9th fit polynomial coefficient of the least squares

180 // diagonal Gaussian function

181 b[8] = one_eighteenth * (log(g[2] * g[5] * g[8] * g[11] * g[14

] * g[17] * g[20] * g[23] * g[26])

182 - log(g[0] * g[3] * g[6] * g[9] * g[12] * g[15] * g[18] * g[

21] * g[24]));

183

184 //

185 // Calculating the Guassian Function Center Coordinate //

186 //

187

188 // This calculates the least squares fit Gaussian first dimension peak

189 // center coordinate

190 *ii_max_subpixel = (pow(b[5], 2) * b[6] + 2 * b[2] * b[3] * b[7

] - b[5] * (b[4] * b[7] + b[3] * b[8]) + 2 * b[1] * (b[

4] * b[8] - 2 * b[2] * b[6]))

191 / (8 * b[0] * b[1] * b[2] - 2 * b[2] * pow(b[3], 2) - 2 * b[1

] * pow(b[4], 2) + 2 * b[3] * b[4] * b[5] - 2 * b[0] * pow(

b[5], 2)) + (double) ii_peak_max;

192 // This calculates the least squares fit Gaussian second dimension peak

193 // center coordinate

194 *jj_max_subpixel = (pow(b[4], 2) * b[7] + 2 * b[2] * (b[3] * b[

6] - 2 * b[0] * b[7]) + 2 * b[0] * b[5] * b[8] - b[4] * (

b[5] * b[6] + b[3] * b[8]))

195 / (8 * b[0] * b[1] * b[2] - 2 * b[2] * pow(b[3], 2) - 2 * b[1

180 Appendix A. C Code Functions

] * pow(b[4], 2) + 2 * b[3] * b[4] * b[5] - 2 * b[0] * pow(

b[5], 2)) + (double) jj_peak_max;

196 // This calculates the least squares fit Gaussian third dimension peak

197 // center coordinate

198 *kk_max_subpixel = (2 * b[0] * b[5] * b[7] - b[3] * (b[5] * b[6

] + b[4] * b[7]) + pow(b[3], 2) * b[8] + 2 * b[1] * (b[4

] * b[6] - 2 * b[0] * b[8]))

199 / (8 * b[0] * b[1] * b[2] - 2 * b[2] * pow(b[3], 2) - 2 * b[1

] * pow(b[4], 2) + 2 * b[3] * b[4] * b[5] - 2 * b[0] * pow(

b[5], 2)) + (double) kk_peak_max;

200

201 }

	Titlepage
	Abstract
	General Audience Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Tomographic PIV
	Plenoptic PIV
	Summary of Work

	Snake Model Tomographic PIV Experiment
	Introduction
	Experimental Design
	3D Snake Model System
	PIV Imaging System
	Data Collection

	Data Processing
	Self-Calibration
	Model Masking

	Particle Image Preprocessing
	Image Sequence Normalization
	Image Sequence Particle Scaling
	Image Intensity Transformation
	Temporal Low-pass Filter
	Threshold Filter
	Example Preprocessed Images

	Tomographic Reconstruction
	PIV Processing
	Windowing Methods
	Cross-correlation Calculation
	Cross-correlation Peak Selection
	Cross-correlation Peak Fitting
	Vector Field Validation and Filtering

	Results
	Processing Parameters
	Reconstructions and Vector Fields
	Resolution Testing

	Recommendations

	Tomographic PIV Processing Software
	Introduction
	Tomographic PIV
	Camera Calibration
	Weighting Matrices
	Particle Images
	Tomographic Reconstruction
	PIV Processing

	Software Description
	Software Validation
	Velocity Field
	Particle Field
	Camera Simulation
	Performance Metrics
	Camera Angle
	Particle Density
	Calibration Error

	Conclusions

	Multi-camera Plenoptic PIV
	Methods
	Lightray Simulation
	Volumetric Image Reconstruction
	Multiple Camera Reconstruction Algorithm
	Reconstruction Fidelity Metrics
	Simulation Parameters

	Results
	Conclusions

	Conclusions
	Snake Model Experimental Data
	Software Development
	Plenoptic PIV

	Bibliography
	Appendices
	Appendix C Code Functions
	Least Energy Velocity Field
	Rectilinear Gaussian Fitting
	Diagonal Gaussian Fitting

