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Geophysics
(ABSTRACT)

Reprocessing of line PR3 proprietary seismic reflection data (24-fold) has delineated
Grenvillian, Paleozoic and Mesozoic structures within the Appalachian foreland, Blue Ridge, and
Piedmont of the central Appalachians. The eastern portion of PR3 can be correlated along strike
with the western portion of line 1-64, reprocessed earlier at Virginia Tech. The I-64 seismic re-
flection data (12-fold) images the crust from the eastern Valley and Ridge, Blue Ridge, Piedmont
and Atlantic Coastal Plain provinces. Automatic line drawing displays were produced from both
data sets for the purpose of interpreting and comparing subsurface structures. Within the
Piedmont, large reflective structures imaged on both lines PR3 and 1-64 are interpreted to be nappes
that might be comprised of deformed Catoctin, Evington Group and possibly younger
metamorphosed rocks. A concealed extension of the Green Springs mafic mass intrudes a nappe

imaged along the PR3 profile.

The Blue Ridge-Piedmont allochthon was transported in a northwest direction along the Blué
Ridge thrust, which ramped upward beneath the Piedmont province approximately 12 km east of
the surface exposure of the Mountain Run Fault. Along line PR3, the Blue Ridge thrust maintains
an undulating geometry, and the maximum thickness of the Blue Ridge allochthon is interpreted

to be approximately 4.5 km. The Blue Ridge metamorphic allochthon is generally acoustically



transparent and overlies parautochthonous Lower Paleozoic shelf strata. The maximum thickness
of these strata is approximately 8 km. Shelf strata are interpreted to extend as far east as 5 km east
of the surface exposure of the Mountain Run Fauit, the northeastward extension of the Brevard
Fault Zone, where they are truncated by the Blue Ridge thrust at a depth of 10.5 km (3.5 s).
Various folds and blind thrusts are imaged beneath the Appalachian foreland; however, the foreland
does not appear to have experienced the same degree of deformation as observed in the eastern
provinces. A basement uplift approximately 45 km wide is imaged beneath the Valley and Ridge
province and is interpreted as having formed prior to Upper Cambrian time. Further west, re-
flections imaged beneath the Glady Fork anticline in the Appalachian Plateau are interpreted as a
positive flower structure associated with wrench fault tectonics. Relatively few deep crustal re-
flections are imaged along line PR3. The majority of reflections that does exist at these depths is
observed beneath the Piedmont and eastern Blue Ridge. The high reflectivity associated with the
Grenvillian basement in these areas suggests that this crust was deformed during compression re-

lated to the Paleozoic orogenies and extension related to Late Proterozoic and Mesozoic rifting.
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Introduction

Within the past several years, many advances have been made that clarify the subsurface
structures of the southern and northern Appalachians; however, relatively few studies have been
published that focus primarily on the structural geology beneath the central Appalachians. In
particular, the geometry of the Blue Ridge and Piedmont allochthons, the easternmost extent of the
parautochthonous Lower Paleozoic shelf strata, and deformational features associated with the

Appalachian foreland remain controversial in this region.

Reprocessing of Petty-Ray (now Halliburton Geophysical Services, Inc.) seismic reflection
line 3 (PR3) has provided new insight into the internal geometry of the Virginia and West Virginia
central Appalachian orogen. Results of an earlier geophysical investigation were reported by Pratt
and others (1988) along a 281 km segment of Interstate 64 (I-64) between Staunton, VA, and the
Atlantic coast approximately 15 km south of line PR3 (Figure 1). The present study images sub-
surface geometry west of line 1-64, and correlation of images along PR3 and 1-64 provides three-
dimensional subsurface control when delineating the deformational features beneath the Piedmont
and Blue Ridge provinces. The subsurface structures of the Piedmont and Blue Ridge provinces
appear to have experienced a more complex series of deformational events than the structures im-
aged beneath the Appalachian foreland. Subsurface structures beneath the Appalachian Plateau,

Valley and Ridge, Blue Ridge and western Piedmont provinces are reevaluated in light of the in-
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creased seismic resolution provided by the reprocessed PR3 data. The following is a discussion of
subsurface structures that incorporates the seismic reflection data along lines PR3 and 1-64, poten-
tial field data, well log data and the published geologic data within the central Appalachians of

Virginia and West Virginia.
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Figure 1. Location of the study area: The PR3 and 1-64 seismic reflection data were acquired over
the Appalachian Plateau, Valley and Ridge, Blue Ridge, Piedmont and Atlantic Coastal

Plain provinces of the central Appalachians. Figure modified from Rankin (1976) and
Rankin and others (1989).
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Geologic History of the central Appalachians

The Appalachian mountain system extends from Newfoundland, Canada, southwest to the
southeastern United States. This mountain chain is often divided into three geographic regions
referred to as the northern, central and southern Appalachians, which are characterized by different
structural geometries, stratigraphy or episodes of deformation (Suppe, 1985). In many publications,
however, the Appalachian Mountains have been classified into two geographical segments that are
separated by the Hudson River, and referred to simply as the southern and northern Appalachians
(Rodgers, 1970); the central Appalachians are then considered to be a subset of the southern.

Appalachians.

The central Appalachians are located between the northern boundary of the Reading Prong
(near New York City, NY) and the southern boundary of the northern Blue Ridge (near Roanoke,
VA); a distance of about 650 km (Rodgers, 1970; Drake, 1980). Four distinct geologic provinces
are located within the central Appalachians. From northwest to southeast, these regions include
the Appalachian Plateau, Valley and Ridge, Blue Ridge and Piedmont provinces. These provinces

are distinguished on the basis of their varying topography and surface geology.

The topography and stratigraphy of the Appalachian Plateau province are represented by

plateaus and wide, open folds composed primarily of Carboniferous strata. In general, these rocks
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have experienced little deformation and have not been metamorphosed (Wiltschko and Geiser, in
Hatcher and others, 1989). The Aliegheny structural front defines the eastern boundary of this

province.

The Valley and Ridge province, southeast of the Appalachian Plateau, is characterized by a
series of narrow, parallel ridges and valleys that strike northeast. The ridges are underlain primarily
by sandstones, and the valleys that separate these ridges are underlain by carbonates and shales
(Hack, 1989). The Cambrian through Pennsylvanian strata are folded and a few thrust faults are
exposed in the PR3 study area; however, these rocks are relatively unmetamorphosed (Glover and
others, 1983). Together, the Appalachian Plateau and Valley and Ridge provinces define the

Appalachian foreland (Hatcher, 1989a).

The rocks of the Blue Ridge province, east of the Valley and Ridge province, have been in-
terpreted as representing the ancient North American continental margin, which was decapitated
and transported westward during Paleozoic orogenies (Brown, 1970; Rankin, 1975; Evans, 1984;
Wehr and Glover, 1985; Glover, 1989; Glover and others, 1992). The axis of the Blue Ridge, co-
incident with the Rockfish Valley (Hayesﬁlle-Fries) Fault, might represent the reactivated late
Proterozoic hinge zone of this margin (Wehr and Glover, 1985). In the PR3 study area, the Blue
Ridge is referred to as the Shenandoah massif, and is considéred to be a Middle Proterozoic outlier
of the Grenville province (Rankin and others, 1989). The Blue Ridge is characterized by a domi-
nant, asymmetrical allochthonous anticlinorium of Grenville age basement rock, which is approxi-
mately 56 km wide in central Virginia (Conley, 1988). Within this area, this northeast plunging

anticlinorium was reported as overturned to the northwest (Evans, 1984).

The Piedmont province lies east of the Blue Ridge province and is characterized by rolling
hills that slope gently to the southeast. Within the central Virginia Piedmont, mélanges comprised
of a phyllite, schist or gneiss matrix containing exotic rocks compose the imbricated thrust sheets

of this region (Pavlides, 1989). The majority of exposures in this area is covered by a thick mantle
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of saprolite derived from the metamorphosed Precambrian and Paleozoic sedimentary and igneous

rocks (Rodgers, 1970; Pavlides, 1989).

Relatively little has been published about the geological and tectonic history of the immediate
area of seismic line PR3. Work is in progress in central Virginia south of the Potomac Valley, but
little of this information has been published (Drake, in Drake and others, 1989). Published data
do confirm that the central Appalachian region is the product of several orogenies that occurred
during the Proterozoic and Paleozoic eras. Furthermore, in the eastern provinces, the effects of
these episodes were complicated and overprinted by extensional events of Mesozoic age. A general
discussion of the geologic development of the central Appalachians with regard to the study site

has been compiled from various sources and is discussed briefly below.

Proterozoic

Precambrian Laurentian continental basement underlies the Appalachian Plateau and Valley
and Ridge provinces, extending eastward beneath the center of the Blue Ridge (Rodgers, 1970).
The easternmost extent of this basement in the Appalachian orogen has been the subject of much
controversy. This basement was affected by the Grenvillian orogeny and overlain by Late
Precambrian and Paleozoic rocks. The allochthonous crystalline rocks of the Blue Ridge (1 b.y.)
{Bartholomew, 1984) were deformed during this orogeny, which has been interpreted as a major
event that resulted from either Mid-Proterozoic extension within a single continent or by
continent-continent collision (Moore, 1986, Woussen and others, 1986). During this event, the
basement rocks underwent amphibolite to granulite facies metamorphism (Rankin and others,

1989).

Geologic History of the central Appalachians 6



Late Proterozoic - Ordovician

Following the Grenvillian orogeny, a continental margin formed along the eastern Laurentian
craton as the result of late Proterozoic extension and rifting of the Grenville basement. Extension
began as the metamorphosed basement was uplifted, eroded and intruded by the 690-640 Ma
Crossnore Suite plutons (Rankin, 1975; Odom and Fullagar, 1984; Wehr and Glover, 1985; Rankin
and others, 1989). The rifting that followed led to the opening of the Iapetus ocean 690-570 Ma

(Rankin, 1975; Rankin, 1976; Odom and Fullagar, 1984; Wehr and Glover, 1985).

Wehr and Glover (1985) outlined the formation of the early continental margin, which began
with extensional uplift followed by rifting. Subsidence occurred just east of a hinge zone now re-
presented by the transported Blue Ridge axis. Wehr and Glover (1985) proposed that the Rockfish
Valley Fault (Hayesville-Fries Fault), which corresponds with this axis, might be the reactivated late
Proterozoic hinge zone that separates the foreland basin on the west from the attenuated crust on
the east. Rifting was succeeded by rapid subsidence, and during this stage the crust thinned and
normal faulting took place. Block-faulted basins that formed on attenuated crust east of the hinge
zone were filled with deep-water sediments of the Lynchburg Group, and at the same time,
shallower, landward rift basins that formed west of the hinge zone were filled with terrestrial and
shallow marine sediments of the Swift Run Formation. These basin deposits were then covered
by Catoctin basalts during a volcanic episode around 570 Ma that ended approximately at the be-
ginning of Cambrian time. On the basis of these late Proterozoic and early Paleozoic rocks, Wehr
and Glover (1985) divided the Blue Ridge into a western and eastern subprovince, bounded by the

anticlinorium axis (Figure 2).

At the beginning of Cambrian time, the seas transgressed and a passive margin formed as the
clastic shelf deposits of the Chilhowee Group disconformably overlaid the earlier rift facies sequence
(Figure 2). The passive margin sequence of the central Appalachians is comprised of the Late

Precambrian to Early Cambrian basal clastic sequence consisting of the Weverton, Harpers and

Geologic History of the central Appalachians 7



NW | SE

WESTERN EASTERN
BLUE RIDGE BLUE RIDGE

ROCKFISH
VALLEY

. ’

‘basement rocks (Grenville)'

Figure 2. The Late Precambrian-Early Paleozoic stratigraphy of the Blue Ridge: Summary of the
stratigraphic units located along the eastern and western limbs of the Blue Ridge
anticlinorium in the PR3 study area. Figure modified from Wehr and Glover (1985).
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Antietam Formations, the Early Cambrian carbonate sequence (Tomstown/Shady Dolomite), the
Early to Middle Cambrian clastics (Waynesboro/Rome Formation), the Middle to Early Late
Cambrian sequence (Elbrook Formation), the Late Cambrian cyclic carbonates (Conococheague
Formation) and the Ordovician carbonates (Beekmantown Group) (Read, in Rankin and others,
1989). Within the PR3 study area, this passive margin sequence is referred to as the
parautochthonous Lower Paleozoic shelf strata (LPSS). These strata are presently overlain by
allochthonous crystalline rocks of the Blue Ridge province, but are exposed in the eastern Valley

and Ridge province.

Passive margin conditions continued until early Middle Ordovician time, depositing 2-3 km
of shallow water carbonates west of the hinge zone (Wehr and Glover, 1985). As the passive margin
sequence was deposited, deep marine deposition occurred to the east of the hinge zone, as evidenced

by the fine-grained, metasedimentary rocks of the Evington Group (Wehr and Glover, 1985).

Around 550 Ma, the Chopawamsic volcanic rocks originated somewhere east of the passive
margin (Pavlides, 1981). These rocks have been interpreted as forming on an island arc or as a
segment of a single exotic terrane to the east of Laurentia (Higgins, 1972; Pavlides, 1981; Pavlides
and others, 1982a; Glover and others, 1992). From 480 to 435 Ma, the passive margin conditions
along the Laurentian margin ended as the exotic terrane collided with Laurentia during the Taconic
orogeny (Glover and others, 1983; Wehr and Glover, 1985; Glover and others, 1992). This event
resulted in the westward thrusting of attenuated crust and the overlying slope/rise sequence along
the Rockfish Valley (Hayesville-Fries) Fault, as illustrated in Figure 3 (Wehr and Glover, 1985;
Glover and others, 1992). A slice of the Laurentian hinge zone was decapitated during this collision
and this segment represented the proto Blue Ridge (Wehr and Glover, 1985; Glover and others,-
1992). Thrusting was followed by erosion of the eastern orogenic uplifts, producing a flood of
sediments that was deposited to the west in the foreland basin. These eastward thickening clastic
deposits formed the Taconic clastic wedge during the Late Silurian to Middle Devonian (Hatcher

and others, 1989).

Geologic History of the central Appalachians 9
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Figure 3. Development of the early Paleozoic continental margin: Summary of the extensional, rifting
and drifting episodes that led to the formation of the early Paleozoic passive margin along
the eastern Laurentian continent. Development of this margin was discontinued during the
initial stages of the Taconic orogeny. Figure from Wehr and Glover (1985).
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The 510 to 460 million year old ages of plutons and metamorphic episodes documented in
the Piedmont of the central and southern Appalachians suggest that the Peﬁobscottian orogeny
might have preceded the Taconic orogeny (Hatcher, 1989b); however, delineating Penobscottian
and Taconic orogenic effects in the central Appalachians has been complicated by Acadian and
Alleghanian overprinting. According to Drake (Drake and others, 1989), rocks of the Piedmont
have been metamorphosed to such an extent that their relationship to the Taconic orogeny is now
obscured; however, Glover and others (1983) suggested that Taconic compression caused
greenschist to middle amphibolite grade metamorphism in the Blue Ridge and Piedmont, and that
these grades of metamorphism extend east to the western edge of the present day Alleghanian de-
formation front. In light of the available evidence, the Taconic orogeny is often considered to be

the most intense Paleozoic deformational event to have effected the central Appalachians.

Silurian - Devonian

During the Silurian and Early Devonian, quartzose sandstones, limestones, dolomites,
evaporites and shales were deposited on the passive margin sequence as the Taconic highlands
eroded to sea level and were transgressed (Suppe, 1985; de Witt and Milici, 1989). Thus,
nonorogenic quartz arenite and carbonate platform strata are now observed overlying the Taconic

clastic sedimentary sequence as a result of these marine transgressions (Glover and others, 1983).

The Acadian orogeny played an important role in the northern Appalachians during the
Middle Devonian, but the specifics of this episode in the central Appalachians are sketchy. Erosion
of most Silurian and Devonian rocks, along with Alleghanian overprinting, has led to uncertainty
regarding Acadian events (Osberg and others, 1989). The limited evidence that documents this
orogeny has been gleaned from rocks of the Valley and Ridge province. The Middle Devonian
black mudstone was overlain by Middle Devonian to Early Mississippian deposits; this sequence
comprises the Acadian clastic wedge (Glover and others, 1983; Thomas, in Hatcher and others,

1989).

Geologic History of the central Appalachians H



Early Carboniferous - Permian

During the Alleghanian orogeny, the Blue Ridge-Piedmont composite crystalline thrust sheet
was transported westward, ramping into the rift-drift facies and overthrusting the platform
sedimentary rocks along a basal detachment that might have originated eastward at the ductile-
brittle transition (Hatcher and others, 1989). This event occurred from approximately 330 to 230
Ma as the North American and African plates collided, forming part of the supercontinent Pangaea
(Glover and others, 1983). In the Blue Ridge and Appalachian foreland, this detachment is seated
in the Lower Cambrian Waynesboro Formation of the Lower Paleozoic shelf strata (Kulander and
Dean, 1986). During this time, various other faults propagated upward into shallower detachments
within the Ordovician, Silurian and Devonian rocks of the Appalachian foreland (Hatcher and

others, 1989).

Westward transport of the basement composite thrust sheet deformed rock units in the Valley
and Ridge and Appalachian Plateau. This deformation is preserved as folding and imbricate
thrusting within the Valley and Ridge (Wiltschko and Geiser, in Hatcher and others, 1989; Horton
and others, 1991). Due to the absence of Permian or Lower to Middle Triassic rocks within the
Appalachian orogenic belt, it is difficult to assess when the last stage of Alleghanian deformation

occurred (Suppe, 1985).

Post-Paleozoic

The Paleozoic orogenies were followed by the breakup of Pangea and the opening of the
Atlantic Ocean during the Mesozoic. Rifting followed the end of compressive deformation, and the
subsequent drifting episode led to the formation of the present North American passive margin.
As summarized by Manspeizer and others (1989), separation began with late Triassic rifting of the

North American and African plates, which was followed by an erosional period. During the Middle
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Jurassic, rifting was replaced by drifting as the crust cooled and was transgressed by the sea. This
marine transgression was followed by a dominant regression that presently continues (Hatcher,

1989b).
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PR3 Research Area

Previous Work

A seismic reflection line across the four provinces of the central Appalachian orogen was ac-
quired along interstate I-64 in Virginia (Figure 1) and interpreted by Harris and others (1982a,
1982b). On the basis of the 1-64 seismic reflection data, they interpreted the presence of a “mega-
thrust system” consisting of a series of large-scale thrust sheets along the seismic profile. These
thrust sheets were transported in a westward direction along a basal décollement(s) that they inter-
preted as extending from beneath the Valley and Ridge to the Atlantic Coastal Plain. They divided
the crust into three basic units consisting of an autochthonous basement overridden by an

allochthonous sedimentary rock unit and an allochthonous metamorphic and igneous rock unit.

Following the initial investigation by Harris and others (1982b), Pratt and others (1988) re-
processed the I-64 data and imaged deeper crustal reflections (Figure 4) by applying an extended
correlation technique to produce 14 seconds of data from the original 8 seconds of fully correlated
data. Gravity modeling was also carried out by Pratt and others (1988) to investigate the Piedmont
gravity high. Interpretations of both upper and lower crustal structures were then reevaluated.

Their results supported Harris and others (1982b) seismic interpretation of a Blue Ridge allochthon
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underlain by shelf strata. They suggested that the Evington Group and Chopawamsic rocks be-
tween stations 900-1700 (Figure 4) lie within the synformal structure that reaches a maximum
depth of approximately 10 km along this profile. Additionally, they interpreted the Goochland
terrane in the eastern Piedmont province to be a nappe that was thrust westward over the
Chopawamsic metavolcanic rocks. The dipping reflections that define the eastern boundary of this
terrane appeared to penetrate the lower crust, and they proposed that these reflections might origi-
nate from the edge of the early Paleozoic continental margin. With regard to the lower crust, the
reprocessed I-64 data imaged the west dipping Mohorovicic discontinuity at 30-42 km (10-14 s)
beneath the Piedmont and Atlantic Coastal Plain provinces. The results from gravity modeling
demonstrated a correspondence between the increase in Bouguer gravity values observed traversing
eastward over the Piedmont province and the thickness of the crust, and they attributed the cause

of the Appalachian gravity gradient to crustal thinning.

The gross crustal framework along the I-64 seismic profile was also interpreted by Coruh and
others (1988). They suggested that the 100 km wide antiform between stations 1300-2600
(Figure 4 and Figure 5), which is defined by the westward and eastward dipping reflections (B and
E on Figure 35), represents a compressional-extensional feature that formed as the result of west-
ward thrusting, crustal thinning and westward tilting during the Mesozoic era. The Moho (M) is
imaged best within this compressed and extended region of the crust. Other features that they in-
terpreted on this section include the brittle-ductile transition zone (C) and a dike swarm (D) that
might have been intruded during Mesozoic extension. Later comparison of this data set with other
seismic data in South Carolina and Georgia (Hubbard and others, 1991) suggests that (D) might
be an older intrusion (Coruh, personal communication). With regard to potential field data, (;oruh‘
and others (1988) correlated this dike swarm with a positive Bouguer gravity anomaly. They at-
tributed the absence of a distinct acromagnetic anomaly to a greater depth to the top of the dike
swarm (F). They also interpreted‘ the westward dipping flank of the antiform to be the locus of the

“transported Taconic suture” (TS in Figure 5).
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Further west, the structure and tectonics of the Valley and Ridge and Appalachian Plateau
provinces of the Virginia central Appalachians were examined by Kulander and Dean (1986). Their
study employed surface geologic data, potential field data, deep-well data, and regional and local
reflection seismic data. This information was used to investigate structures within this region and
to compile structural cross sections of the crust between the surface and basement. Their cross
section 4 (Tigure 6) represents the subsurface structures parallel to and just north of line PR3.
They proposed that the main structural elements of the Appalachian foreland are the Blue Ridge,
Martinsburg and Waynesboro sheets. As shown in Figure 6, the Lower Cambrian Waynesboro
shale is the glide unit that forms the sole detachment above the basement; all overlying strata have
been displaced westward along this detachment. They noted that Middle Devonian, Silurian, and
Mississippian shales within the Martinsburg sheet also served as detachment zones, and shortening
within this upper sheet always exceeds shortening within the underlying Waynesboro sheet. With
regard to shallower detachments in the eastern segment of their study area, they interpreted the Blue
Ridge and Piedmont allochthons as being transported along the North Mountain-Pulaski fault

system, which is seated in the Upper Ordovician Martinsburg shale.

Evans (1989) published a detailed study of the structural geometry of the rock units within
the Great Valley subprovince and Blue Ridge province of Virginia. In this study, Line 5 corre-
sponds to a segment of line PR3. The Great Valley comprises the eastern region of the Valley and
Ridge province, and is bounded on the east and west by the Blue Ridge thrust and the North
Mountain thrust (also referred to as the Little North Mountain thrust), respectively. For the pur-
poses of this discussion, the Great Valley 1s contained within the eastern portion of the Valley and
Ridge province and is not considered as a separate subprovince in the PR3 study area. The data
of ten separate seismic reflection lines were published in the form of tracings of reflectors interpreted
from seismic sections, structural cross sections and restored sections. Since Line 5 is an actual
segment of line PR3 processed earlier from the same uncorrelated data, this line will be examined
in greater detail. Evans (1989) separated the allochthonous and parautochthonous rocks of the Blue
Ridge and eastern Valley and Ridge in this area into three units; the Blue Ridge thrust sheet of

Precambrian-Late Cambrian rocks, the North Mountain thrust sheet of Cambrian-Ordovician
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Figure 6. Structural cross section through the central Appalachian Plateau and Valley and Ridge provinces by Kulander and Dean
(1986): 'This section is parallel to seismic line PR3, approximately 10 mi (17 km) to the north. Corresponding stratigraphic
units are described in Figure 7.
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Figure 7. Central Appalachian stratigraphic chart compiled by Kulander and Dean (1986): General-
ized stratigraphic correlation chart of lithological units found in the central and southern
Appalachians.
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Figure 8. Competent lithotectonic units of the central Appalachians by Evans (1989): The principle
competent lithotectonic units which compose the allochthonous, parautochthonous and
autochthonous crust of the central Appalachians.
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carbonates, and the Upper Ordovician-Late Devonian clastic rocks (Figure 8). IHe suggested that
both the Blue Ridge and North Mountain sheets are seated in the Ordovician Martinsburg shale.
Evans interpreted the Blue Ridge thrust sheet as being thrusted over the North Mountain thrust
sheet along the Blue Ridge thrust (Figure 9). Additionally, the lower North Mountain ramp
(LNMR in Figure 9) represents the footwall cutoff of the North Mountain thrust sheet. In
Figure 9, this ramp defines the present eastern extent of the parautochthonous Paleozoic shelf

strata.

Seismic Data

Line PR3 is approximately 278 km in length and extends from just west of Elkins, West
Virginia, to Louisa, Virginia, across the Appalachian Plateau, Valley and Ridge, Blue Ridge and
western Piedmont provinces (Figure 1). The PR3 seismic data were collected by Petty-Ray in 1980
moving from east to west using four Y-600 B vibrators, which were spaced 30.5 m apart and cou-
pled together as a source array. A split spread array of 48 channels was used to record the data.
Since both the group interval and source spacing were 91.4 m, this resulted in 24-fold stacked data.
A 7 second, 14-56 Hz up-sweep was used to record the data for 12 seconds, producing a total lis-
tening time of 5 seconds. Additional parameters pertaining to the acquisition of line PR3 are listed

in Appendix A.

The 1-64 seismic reflection data were acquired in 1981 by Geophysical Services Incorporated
(GSI) for the U. S. Geological Survey and reprocessed at Virginia Tech. The acquisition and re-
cording parameters of this line, along with the processing sequence, are listed in Appendix A. These
parameters are mentioned because the 1-64 data are herein compared with the PR3 seismic images,

and used to verify their extension along strike.

PR3 Research Area 23



PR3 Seismic Data Processing

An interpretive processing method was conducted on the PR3 seismic data at the Regional
Geophysics Laboratory of Virginia Tech. Interpretive processing means that the interpretation of
the seismic data was carried out while the processing parameters were chosen, thereby allowing one
to make logical inferences about what is signal and what is noise. The processing sequence used
on these data varied from the conventional sequence because of the application of vibroseis
whitening before correlation (Coruh and Costain, 1983), the application of extended correlation
using the self-truncating method (Pratt, 1982; Pratt, 1986; Okaya, 1989), and the omission of a ge-

ometrical spreading correction because of whitening.

Vibroseis whitening was applied to improve the signal-to-noise ratio (S/N) and increase seis-
mic resolution. This process involves the application of an automatic gain control (AGC) before
crosscorrelation to compensate for amplitude changes due to frequency and time-varying atten-
uation. AGCs of 500, 1000 and 2000 ms were applied to various shot records before the vibroseis
correlation. From these tests, an AGC of 1000 ms was chosen to whiten the spectral content and

partially correct for the effects of geometrical spreading and intrinsic dampening.

The original PR3 data were fully correlated to a listening time of 5 seconds while the deeper
reflections were recovered by extended correlation down to 10 seconds. After this correlation, the
frequency bandwidth between 0-5 seconds is 14-56 Hz, and tapers out linearly to converge to 14-26
Hz at 10 seconds. The bandwidth at 10 seconds is approximately one octave (14-28 Hz). Extended
correlation was not applied beyond 10 seconds due to expected ringing associated with a bandwidth

of less than one octave.

Finally, a geometrical spreading correction is often used to compensate for the amplitude loss
created by the expanding spherical wavefront. When imaging shallow data, application of this
correction enhances the signal. This correction should also be applied if the signal amplitude decays

rapidly with respect to depth or offset. In the case of line PR3, reprocessing focused on imaging
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the large scale subsurface structures observed between the surface and a depth of approximately 30
km; the imaging of shallow features was not the primary target. Additionally, the recoverable fre-
quencies were limited to 14-56 Hz. Since this survey was not designed to yield high resolution data,
the decay of the higher frequency signal amplitudes was not a crucial factor. Considering these is-
sues and taking into account the application of vibroseis whitening before crosscorrelation, the in-
crease in resolution resulting from the application of a spherical divergence correction after

correlation was deemed negligible and was therefore not applied.

Additional processing parameters applied to the PR3 seismic data are included in Appendix
A. Both the unmigrated and migrated sections are displayed as automatic line drawings. The au-
tomatic line drawing (ALD) displays were created using a technique related to coherency esti-
mations (Coruh, and others, 1988). As such, original waveforms are preserved while presenting the
relative reflection amplitudes. ALD displays tend to enhance the subsurface images observed in
conventional (wiggly-line) sections and lessen background noise (Figure 10). For the purposes of
displaying seismic sections for interpretation along PR3, these automatic line drawings are less bi-
ased in their presentation than manual line drawings created by the interpreter. Therefore, due to
their less subjective nature and excellent resolution during reproduction, the automatic line drawing
displays are favored for the purpose of interpretation instead of conventional seismic displays. With
regard to the migrated displays, the data were completely migrated down to 6 seconds. Between

6-10 seconds, the data were only partially migrated.

In the PR3 ALD displays, the zero time corresponds to the 600 m reference datum. The time
axes represent two-way travel time. Time-to-depth conversions were calculated using a constant
velocity of 6 km/s. For conversion of two-way travel times on these displays, a velocity of 3 km/s,
equal to one-half the constant velocity of 6 km/s, can be used. All PR3 seismic data displays are

scaled one-to-one unless otherwise noted.
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Figure 10. A comparison of ALD and conventional seismic displays: The advantage of the automatic
line drawing (ALD) (bottom) over the conventional seismic section (top) lies in the ability
to enhance subsurface images, offer a more objective presentation of the data than is pos-
sible from hand-tracings of reflectors, and allow greater resolution during reproduction.
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Interpretation and Discussion

The interpretation presented herein is based on the compilation of geophysical and geological
data, with a primary emphasis on the seismic reflection data obtained from the reprocessed line
PR3. The discussion will focus on the seismic images of crustal structure along the western
Piedmont, Blue Ridge, Valley and Ridge and Appalachian Plateau provinces and will incorporate

potential field data anomalies that are related to the interpretation.

Allochthonous and Parautochthonous Crust

The concept of thin-skinned deformation proposed by Rich (1934) has been confirmed many
times by seismic reflection profiling and drilling within the central and southern Appalachians
(Harris and Milici, 1977; Cook and others, 1979; Harris and Bayer, 1979; Ando and others, 1983;
Cook and .others, 1983; Harris and others, 1982b; Pratt and others, 1988). As described by Harris
and others (1981), deformation resulted from the westward stacking of thrust sheets along low-angle
faults. Specifically, these sheets were displaced above uninvolved crystalline basement and are
presently observed as allochthonous and parautochthonous rock units overlying an autochthonous

basement unit.
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Harris and Bayer (1979) proposed that the southern Appalachian orogen, from the
Appalachian Plateau to the Atlantic Coastal Plain, is underlain by a basal décollement that dips
gently to the southeast. Through the use of surface geology and seismic reflection data, it was
suggested that the lower Paleozoic shelf strata, consisting of Cambrian and Lower Ordovician
clastic and carbonate rocks, overlie the basal décollement and are presently concealed beneath
Precambrian crystalline and Paleozoic rocks of the Blue Ridge and Piedmont allochthons that were
thrust westward. Movement along the basal décollement most likely occurred during several Late
Proterozoic and Paleozoic tectonic events (Harris and Bayer, 1979); however, the eastern extent of
this décollement in the southern Appalachians remains controversial (Cook and others, 1979; Harris
and Bayer, 1979; Hatcher and Zietz, 1980; Iverson and Smithson, 1982; Cook and others, 1983;
Secor and others, 1986). Seismic profiles within parts of the central and southern Appalachians
have imaged a package of relatively continuous reflectors, usually between 6-12 km (2-4 s) that re-
sembles the basal décollement that underlies the southern Appalachians (Cook and others, 1979;
Harris and others, 1982b; Coruh and others, 1987; Pratt and others, 1988; Evans, 1989; Hubbard

and others, 1991).

The Piedmont Province

The PR3 seismic profile begins in the western Piedmont. Within the PR3 study area, no deep
wells have penetrated the autochthonous basement beneath the Blue Ridge or Piedmont
allochthons. The allochthonous crust overlying the Blue Ridge thrust represents the Blue Ridge-
Piedmont composite thrust sheet, which is considered to be the largest (greatest horizontal trans-
port) overthrust sheet in the central Appalachians (Hatcher and others, 1989). During the
Alleghanian orogeny, this composite crystalline unit was transported westward, deforming the
thrust sheet and initiating the westward propagation of the Paleozoic shelf strata within the

Appalachian foreland (Hatcher and others, 1989).
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Along the PR3 seismic reflection profile (Figure 11), the western Piedmont is highly reflective
and is bounded below by southeast dipping reflectors that are imaged to a depth of 15 km (3 s),
and might extend deeper further east. The event BRT is interpreted to overlie these dipping re-
flectors and reflections imaged above this event attest to the complex deformational episodes that
affected the Piedmont. A highly reflective zone (A in Figure 11) between 4.5-9 km (1.5-3 s), whose
reflector geometry is interpreted here as a nappe, overlies the event labeled BRT. Individual re-
flectors within this zone appear relatively continuous. This reflective zone (A) is separated from
an acoustically transparent region (NRZ) above by a package of high amplitude, southeast dipping

reflectors (F1).

After migration, the Blue Ridge thrust (BRT in Figure 12) beneath the Piedmont allochthon
is interpreted at 10.5 km (3.5 s) along the eastern edge of the profile, where it turns upward toward
the west after reaching a maximum depth of 13.5 km (4.5 s). Along seismic line 1-64, this thrust
also turns upward beneath the western Piedmont (Figure 4). In restoring the reflectors to their true
subsurface positions, the arcuate reflection package (A) appears narrower on the migrated data.
The reflections representing the western limb of the nappe (WA in Figure 12) appear to terminate
just east of the surface exposure of the Mountain Run Fault (MRF). This fault is the northeastern
extension of the Bowens Creek Fault, which coincides with the Brevard Fault Zone further south

(Horton and others, 1991; Hubbard and others, 1991).

In the PR3 unmigrated and migrated sections, subhorizontal, discontinuous reflectors (SRP)
are imaged between the Blue Ridge thrust (BRT) and reflection package A (Figure 11 and
T'igure 12). It would appear likely that a detachment zone (Z) separates the two structural styles,
and that an overlying sheet was thrust westward above this boundary. Another significant result
of migration is the presence of an acoustically transparent region (GS) along the easternmost seg-

ment of the profile that extends to 9 km (3 s) (Figure 12).

Although line PR3 extends far enough to the east to image only one of these arcuate reflection

packages (A), line 1-64 clearly images two additional packages (B and C in Figure 14) of similar
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Figure 11. ALD display of unmigrated PR3 seismic reflection data from the western Piedmont
crust: Compare with Figure 12. A = nappe, BRT = Blue Ridge thrust, F1 = thrust
fault, MRF = surface exposure of the Mountain Run Fault (Bowens Creek Fault-Brevard
Fault Zone), NRZ = non-reflective zone, SRP = subhorizontal reflection package, Z =
detachment zone. (Uncorrelated PR3 seismic data provided by Halliburton Geophysical
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from eastern limb of the nappe, F (?)

Interpretation and Discussion

Interpreted ALD display of migrated PR3 seismic reflection data from the western Piedmont
crust: A = nappe, BD = basal décollement BRT = Blue Ridge thrust, EA = reflections
= fault (?), F1 = thrust fault, GS= extension of
Green Springs mafic mass, MRF = surface exposure of Mountain Run Fault (Bowens
Creek Fault-Brevard Fault Zone), NRZ = non-reflective zone, SRP = subhorizontal re-
flection package, WA = reflections from the western limb of the nappe, Z = detachment
zone. (Uncorrelated PR3 seismic data provided by Halliburton Geophysical Services, Inc.)
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Interpretation and Discussion

Detailed examination of a thrust fault beneath the western Piedmont: As imaged by the
unmigrated (top) and migrated (bottom) PR3 seismic reflection data, the southeast dipping
reflectors truncate a series of horizontal reflectors (indicated by the arrows) to the west.
This dipping event is interpreted as a thrust fault (F1). (Uncorrelated PR3 seismic data
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Halliburton Geophysical Services, Inc.)
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geometry and reflectivity. Reflection packages A, B and C imaged by the PR3 and I-64 data are
herein interpreted to be nappes, and each of these structures might represent an imbricate thrust
nappe of a thrust complex that continued along strike in this region of the central Appalachians.
Reflector packages A, B and C in Figure 14 lie above prominent westward-dipping reflectors that
might originate from the Catoctin and younger formations (Pratt and others, 1988). Pratt and
others (1988) interpreted reflector packages B and C to originate from rocks of the Evington Group
and Chopawamsic Formation, which were extended from the surface down to the bottom of the
basin-shaped synform (Figure 4). An alternative interpretation was proposed by Phinney and
Roy-Chowdhury (1989). They suggested that the clastic and volcanic deposits in this synform
might be in place and represent a failed rift. On the basis of the PR3 and I-64 seismic reflection
data, the reflections comprising these packages might originate from the Catoctin Formation,
Evington Group strata, and possibly younger metamorphosed rocks that were transported westward

during Paleozoic orogenies.

Along the surface of the western Piedmont in the PR3 study area, the Mountain Run Fault
is the boundary between the Piedmont and Blue Ridge, and separates the mélanges of the Mine
Run Complex on the east from the continental deposits of the True Blue Formation on the west
(Pavlides and others, 1983; Pavlides, 1989). Faulting along this zone was initiated in the early
Paleozoic, reactivated during the early Mesozoic, and now this fault represents the eastern boundary
of the Culpepper Basin (Pavlides and others, 1983). The ductile to brittle deformation observed
by Conley (1987) at an exposure of the Mountain Run Fault confirmed Pavlides and others (1983)
interpretation of early Paleozoic faulting along this zone. Phyllonite, mylonite and breccias are
found along the surface of this fault zone, and a fault-line scarp can be traced along most of its
length, from the Culpepper basin southwest toward the Scottsville basin (Pavlides, 1989). Expo-
sures of mélange zones IIl and IV of the Mine Run Complex lie along the surface of the western
Piedmont that is crossed by line PR3 (Figure 15 and Figure 16). These rocks appear to corre-
spond, respectively, to the Shores mélange and Hardware metagraywacke of Evans (1984) and
Glover and others (1992). The mélanges of the Mine Run Complex are interpreted as having

formed in a Cambrian-Ordovician back-arc or marginal basin that lay between the Laurentian
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continent and the Chopawamsic island arc (Pavlides, 1989). Melange zone III is characterized by
rocks composed of a deformed phyllite and schist matrix, which contains abundant exotic blocks
of euhedral magnetite. On the other hand, rocks of mélange zone IV consist of an intercalated
metavolcanic phyllite matrix that contains few exotic blocks, and euhedral magnetite is noticeably

less abundant (Pavlides, 1989).

Various intrusive bodies are located near line PR3 in the western Piedmont. The surface
exposure of the Ellisville granodiorite pluton lies to the east of line PR3 (Oe in Figure 15 and
Figure 16). At the surface, this 440 Ma pluton intrudes the lower grade metamorphic rocks of the
Chopawamsic Formation and the higher grade metamorphic rocks of the Hatcher Complex
(Columbia pluton) further south (Pavlides and others, 1982b; Sinha and Guy, in Drake and others,
1989). Emplacement of this granitoid is believed to mark the end of Penobscottian-Taconian de-
formation and metamorphism within this areca of the Piedmont province (Pavlides, 1989). To the
southwest of line PR3 lies the Green Springs mafic mass. This pluton, like the Ellisville, was
probably emplaced during Ordovician time (Conley and others, unpublished). The Green Springs
pluton was later intruded by the Green Springs granitoid, also referred to as the Pore Creek pluton,

during the Ordovician-Silurian time (Pavlides, 1989; Conley and others, unpublished).

Examination of Bouguer gravity data within the central Appalachians reveals a transition
from the gravity low over the Valley and Ridge to the Piedmont gravity high to the east. This
transition is conventionally called the Appalachian gravity gradient. Within the PR3 study area,
negative Bouguer gravity values less than -65 mgals are observed over the Valley and Ridge. These
values increase to the southeast where they reach maxima greater than -8 mgals over the Piedmont

(Figure 17).

An inspection of the Bouguer gravity variations along the Piedmont and Blue Ridge segment
of PR3 (Figure 17 and Figure 18) reveals a positive Bouguer gravity anomaly associated with the
acoustically transparent region along the eastern edge of the PR3 profile (GS in Figure 12). Just

west of Louisa, Virginia, is a closed positive gravity anomaly that is herein associated with the
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Figure 15. Detailed surface geology of the western Piedmont and easternmost Blue Ridge as mapped
by Pavlides (1989): The Mountain Run Fault zone defines the boundary between the
Blue Ridge and Piedmont provinces. The acoustically transparent region (GS in
Figure 12) along the eastern edge of the PR3 profile is interpreted to originate from an

extension of the Green Springs mafic mass just south of this line (GSm on this map).
Explanation provided in Figure 16.
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Green Springs mafic and ultramafic pluton (GSA in Figure 17 and Figure 18). On the basis of the
fow reflectivity in the ALD displays often associated with intrusive bodies (Coruh and others, 1988;
Hubbard and others, 1991), the high Bouguer gravity anomaly observed along this eastern segment
of the profile, and the abrupt southeastern termination of the reflection package F1 in Figure 12

at approximately 3 km (1 s), this non-reflective region is attributed to a buried extension of the

Green Springs pluton.

Variations of the magnetic field anomaly of the central Appalachians are generally attributed
to .changes in the percent of magnetite in the rocks (Robinson and Coruh, 1988). A linear magnetic
high is located over the western Piedmont province of the study area (WPM in Figure 19). This
anomaly might correlate with a poorly reflective zone on the PR3 seismic profile and suggests that
this feature might represent a deep seated, vertical intrusion that extends along strike; however, the
I-64 seismic data does not support such an event in the western Piedmont. Therefore, this anomaly
is interpreted to correspond with the surface exposure of mélange zone I1I of the Mine Run Com-
plex. The abundant euhedral magnetite within this mélange has been correlated with narrow, linear

magnetic anomalies on aecromagnetic maps (Pavlides, 1989).

The PR3 and 1-64 seismic reflection data, available surface geology and potential field data
have been combined to present an integrated interpretation of the central Piedmont. The nappe
(A) on Figure 11 and Figure 12 is overlain by a southeast dipping reflection package (F1). A de-
tailed examination of this event (Figure 13) shows that this dipping reflection package truncates a
series of subhorizontal reflectors to the west. On the basis of this observation, this package in in-
terpreted as a thrust fault zone. This nappe is also interpreted to be bounded on the west by a
steeply dipping fault that is not imaged on line PR3 because of its slope. The trace of the Mountain
Run Fault in the PR3 study area was mapped by Pavlides (1989) as a linear feature (Figure 15),
suggesting that this mapped surface fault has a steep dip. On the basis of the linear trace defined
by the surface exposure of the Mountain Run Fault, and the termination of the reflections origi-
nating from the western limb (WA) of the nappe (A), a steeply dipping fault (F (?) in Figure 12)

is interpreted to merge with the Blue Ridge thrust at about 10.5 km (3.5 s). Its projected surface
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Figure 18. Detailed Bouguer gravity anomaly map along line PR3: GSA = Green Springs Bouguer
gravity anomaly. Figure from the gravity map by Johnson (1971).
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location coincides approximately with the exposure of the Mountain Run Fault as mapped by
Pavlides (1989). The reflections originating from the shalloW thrust fault (F1) in Figure 11 and
Figure 12 also project to the surface exposure of the Mountain Run Fault. Since the surface
projections of these faults converges to the mapped location of the Mountain Run fault, it is not
possible to determine whether the thrust fault (F1) or the steeply dipping fault (IF (7)) represents the

Mountain Run fault.

The Blue Ridge Province

The Blue Ridge province lies to the west of the Piedmont and is bounded on the east and
west, réspectively, by the Mountain Run Fault (Bowens Creek Fault-Brevard Fault Zone) and Blue
Ridge thrust. Along the surface of this region, from east to west, are exposures of the True Blue
continental margin deposits, Catoctin metabasalts, Lynchburg metasediments, Blue Ridge crystal-
line rocks and Chilhowee clastics (Figure 2 and Figure 15)(Williams, 1978; Wehr and Glover,
1985; Pavlides, 1989). These rocks were carried westward with the Blue Ridge allochthon during
the Alleghanian orogeny. The Blue Ridge thrust is the frontal thrust of the Blue Ridge-Piedmont

thrust sheet (Pratt and others, 1988; Hatcher, in Hatcher and others, 1989).

Various seismic reflection profiles across the central and southern Appalachians have shown
that the Blue Ridge thrust is underlain by a thick sequence of Cambrian and Ordovician carbonates,
which in turn, overlie a basal décollement (Clark and others, 1978; Cook and others, 1979; Harris
and Bayer, 1979; Harris and others, 1982a; Harris and others, 1982b; Cook and others, 1983; Coruh
and others, 1987; Pratt and others, 1988; Evans, 1989; Hubbard, and others, 1991). The relatively
continuous reflections from shelf strata that have been imaged above a basél “décollement”
(Hubbard and others, 1991) suggest that horizontal transport along a basal décollement is less than
that along the Blue Ridge thrust. Therefore, the Lower Paleozoic shelf strata are designated as
“parautochthonous”. Analysis of eatlier seismic data within the central Appalachians suggests that

this décollement is seated in the shales of the Lower Cambrian Rome-Waynesboro Formation, and
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extends westward beneath the Valley and Ridge and Appalachian Plateau (Kulander and Dean,

1986; Evans, 1989; Geiser, in Hatcher and others, 1989).

Within the PR3 study area (Figure 8), the Lower Paleozoic shelf sequence of Cambrian-
Ordovician limestones and dolomites overlies autochthonous Grenvillian basement and is bounded
above by shales of the Martinsburg Formation (Evans, 1989). In a study of crustal reflectivity,
Christensen and Szymanski (1991) carried out a series of experiments using measured compressional
wave velocities and densities of the sedimentary rocks within the Valley and Ridge of the southern
Appalachians. These physical properties were used to determine the seismic properties and the
origin of reflectivity from the parautochthonous shelf strata that overlie the basal décollement. By
generating a synthetic seismogram and comparing it with an actual reflection profile, they deter-
mined that the reflections originating from the Cambrian-Ordovician shelf strata were often attri-
buted to vertical facies changes within the formations, instead of the formation boundaries. The
compressional wave velocities of the shelf strata ranged from 3.6 km/s for shales to 7.2 km/s for
dolomites. In southwest Virginia, interval velocities calculated from the sonic log of Gulf's W. R.
Price #1 well are 6.4 km/s and 4.4 km/s for the Maynardville dolomite and Nolichucky shale, re-
spectively (Figure 20). These formations correspond to the Conococheague Formation in the
central Appalachians (Figure 7), and the Conococheague Formation is located within the Lower
Paleozoic shelf sequence (Figure 8). Supported by the results from the reflectivity study conducted
by Christensen and Szymanski (1991) and data from the W. R. Price #1 well, the reflections origi-
nating from the Lower Paleozoic shelf strata in the PR3 study area are attributed to velocity vari-
ations within this parautochthonous sequence. The reflectivity observed within the shelf strata
along line PR3 might also be associated with tectonic imbrication. Costain and others (1986)
identified imbricate structures, referred to as “duplex tuning wedges”, within the Paleozoic shelf
strata along seismic profiles across the southern Appalachians. They proposed that reflections as-
sociated with the duplex tuning wedges originate from wavelet tuning in tectonically imbricated thin
beds within the structures, and are important because they mark locations in the crust where thrust

faults ramp upward.
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Figure 20. W. R. Price #1 well gamma ray log and borehole compensated sonic log data (4094-4230
m): Note the variations in these logs at the Maynardville dolomite/Nolichucky shale
interface.
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Reflections that originate from the Blue Ridge crystalline rocks are relatively sparse when
compared to the strong reflections from the underlying shelf sequence (Costain and others, 1986;
Coruh and others, 1988). The majority of thick carbonate sequences within the shelf strata are also
acoustically transparent (Christensen and Szymanski, 1991; Hubbard and others, 1991). As meas-
ured from the sonic log of the W. R. Price #1 well, the average interval velocity of the Chepultepec
dolomite is 6.6 km/s, and the interval velocity of the Copper Ridge dolomite is approximately 6.7
km/s (Figure 21). These two formations are correlated with the Beekmantown Group and
Conococheague Formation of the Paleozoic shelf strata (Figure 7 and Figure 8). The low
reflectivity originating from these carbonates within the PR3 study area is associated with the lack
of velocity variations between these two formations as indicated by the sonic log (Figure 21). With
regard to the crustal reflectivity of the central Appalachians Blue Ridge, the automatic line drawing
generated from the reprocessed seismic line PR3 has shed new light on the structural geometry of

the Blue Ridge allochthon and the parautochthonous shelf strata.

In an attempt to delineate the Blue Ridge thrust along the PR3 profile, and therefore define
the upper boundary of the Paleozoic shelf strata, the following observations were taken into ac-

count:

*  The Blue Ridge allochthon is cored by Grenville basement rocks, which have relatively low

reflectivity (Coruh and others, 1988).

*  Since the core of the Blue Ridge is characterized by a low reflectivity, the shallowest reflection
packages probably originate from the interface between the Blue Ridge basement rocks and the

Paleozoic shelf strata, and not from within the crystalline unit.

® The average depth of the Blue Ridge thrust within the central and southern Appalachians has
been estimated as 3 km (1 s) (Coruh and others, 1987; Pratt and others, 1988, Hubbard and

others, 1991).
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¢ The presence of duplex tuning wedges can be used to identify locations in the

parautochthonous shelf strata where thrusts ramp upward (Costain and others, 1986).

In addition to the above points, an attempt was made to use interval velocities to distinguish
high and low velocity zones that could possibly represent rocks of basement and shelf strata. Dif-
ficulties were encountered in attempting to relate the interval velocities with lithologies. The in-
terval velocities computed from various velocity spectra were useful in establishing the presence of
velocity inversions within the subsurface, but could not be used to identify the lithologic units.
Specifically, the interval velocities calculated between similar reflection packages on the conven-
tional PR3 seismic display did not correlate, and it was not possible to identify velocities associated
with the shelf strata from velocities associated with the crystalline basement. Therefore, supported
primarily by the discontinuous reflection packages imaged beneath the region of low reflectivity on
the PR3 seismic data, the Blue Ridge thrust is interpreted ramp upward beneath the Piedmont at
approximately 13.5 km (4.5 s) (BRT in Figure 23). This ramp has also been imaged on seismic
lines in Virginia and South Carolina, and was interpreted to be the same ramp that extends along
strike at least 600 km (Costain and others, 1987). From the PR3 seismic data (Figure 23), the Blue
Ridge thrust is interpreted to truncate the eastward extent of the Lower Paleozoic shelf strata. The
thrust continues westward until it surfaces at station 1600 where this thrust fault was mapped by:
Williams (1978) and Conley and others (unpublished). The Blue Ridge allochthon is interpreted
as an acoustically transparent unit above the Blue Ridge thrust; the various formations exposed at
the surface cannot be delineated by seismic data in the subsurface due to the lack of reflectivity

contrasts (Figure 23).

The Blue Ridge province was interpreted as the crest of the early Paleozoic hinge zone of
Laurentia that was decapitated by a thrust fault during the Taconic orogeny (Rankin, 1975; Glover
and others, 1983; Wehr and Glover, 1985; Glover, 1989). As such, this crest represents the eastern
edge of the early Paleozoic North American continent (Brown, 1970; Hatcher, 1972; Rankin, 1975;
Hatcher, 1978; Wehr and Glover, 1985). Of all the formations that were deposited on Grenvillian

basement, only the True Blue, Catoctin and Lynchburg Formations (Figure 2 and Figure 15) are
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presently preserved along the eastern limb of the Blue Ridge anticlinorium (Wehr and Glover, 1985;
Pavlides, 1989). According to Pavlides (1989), the protoliths of the True Blue continental margin
deposits of slate and argillite accumulated during the Middle Cambrian through Early Ordovician
times. This formation overlies basal quartzites and Catoctin metabasalts. The late Proterozoic-
Cambrian Catoctin basalts erupted during the Iapetus rifting and overlie the metasediments of the
Lynchburg Group along the eastern limb (Wehr and Glover,1985). The protolith of the Lynchburg
Group consists of deep-water sediments that were deposited nonconformably on the Blue Ridge
crystalline basement during the early phase of lapetus rifting (Wehr and Glover, 1985). These for-

mations are not imaged in the PR3 seismic data.

In the past several years, a particular emphasis has been placed on analyzing the middle
Proterozoic crystalline basement rocks, which compose the core of the anticlinorium. On the basis
of varying assemblages of igneous and metamorphic rocks mapped at the surface, Bartholomew and
others (1981) divided these crystalline rocks into two terranes that are separated by the Rockfish
Valley Fault. To the west of this fault lies the Pedlar massif, and to the east, the Lovingston massif.
Both of these terranes contain different assemblages of charnokites and gneisses that experienced
high pressure metamorphism during the Grenville event (Bartholomew and others, 1991). The
Lovingston massif also contains late Proterozoic Crossnore plutons that are associated with the
initial rifting of the Iapetus (Rankin, 1975; Rankin, 1976, Wehr and Glover, 1985; Bartholomew
and others, 1991). Although PR3 crosses the surface exposure of the Rockfish Valley Fault, neither
this fault nor the intrusive bodies associated with the Lovingston massif were imaged in the PR3
data. On the western limb of the Blue Ridge anticlinorium in the PR3 study area, the Pedlar massif
1s noncomformably overlain by the Catoctin metabasalts, which are overlain by the metasandstones
and metasiltstones of the Chilhowee Group (Wehr and Glover, 1985). These rocks were not im-.

aged in the PR3 seismic data.

With regard to the potential field data, two linear magnetic anomalies are located within the
Blue Ridge piovince (EBRM and WBRM in Figure 19). These anomalies, which are composed

of adjacent positive and negative parts, are interpreted to correlate with the Catoctin metabasalts.
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Compare with Figure 23. (Uncorrelated

Figure 22. ALD display of unmigrated PR3 seismic reflection data from the Blue Ridge crust:
PR3 seismic data provided by Halliburton Geophysical Services, Inc.)
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Figure 23. Interpreted ALD display of migrated PR3 seismic reflection data from the Blue Ridge crust: A = nappe BD = basal
décollement underlying the central Appalachians, BRT = Blue Ridge thrust, CBU (?) = carbonate buildup (), F (?) = fault
(?), F1 = thrust fault, LPSS = Lower Paleozoic shelf strata, MD = Martinsburg detachment, NRZ = non-reflective zone,
SR = subhorizontal reflections, Z = detachment zone. Small dashed lines beneath the Blue Ridge thrust (BRT) are interpreted
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As shown in Figure 19, the eastern Blue Ridge magnetic anomaly (EBRM) is more prominent and
continuous than the western Blue Ridge anomaly (WBRM). The differences between these mag-
netic anomalies might be explained by the greater number of Catoctin feeder dikes that have been
identified in the eastern Blue Ridge; fewer dikes have been located in the western Blue Ridge (Reed

and Morgan, 1971; Evans, 1984).

The eastern extent of the Lower Paleozoic shelf strata: During the Alleghanian orogeny, the Blue
\

Ridge-Piedmont composite unit wa\q\ thrust over the relatively unmetamorphosed Lower Paleozoic
shelf strata (Hatcher and others, 198&&). In the southern Appalachians, the thickness of these strata
was reported to be approximately 61(}({ m (20,000 ft) beneath the Tennessee Blue Ridge (Milici and
others, 1979). Along the PR3 profile, the strata are identified by the presence of duplexes and du-
plex tuning wedges that are bounded by the overlying Blue Ridge thrust and underlying basal
décollement. Within these parautochthonous strata, duplexes are delineated by the images of “du-
plex tuning wedges”. The various reflections contained within the duplexes are often discontinuous
and are interpreted to originate from duplex tuning wedges. A particular region at about 9 km (3
s) is imaged as an acoustically transparent lens-shaped feature (CBU on Figure 23). Judging from
the high reflectivity associated with the reflections near the top of this structure, and the onlapping

nature of these events, this structure might represent a carbonate buildup (Bubb and Hatlelid,

1977).

The reflector geometry of the Paleozoic shelf sequence along the PR3 profile suggests that the
strata extend to approximately 5 km east of the surface exposure of the Mountain Run Fault, where
they are truncated by the Blue Ridge thrust at about 10.5 km (3.5 s). The maximum apparent
thickness of this shelf sequence is approximately 8 km (2.6 s). The strata have been duplicated by
tectonic imbrication. Further west, beneath the Appalachian foreland, the average thickness of the
Paleozoic shelf strata is approximately 5 km, and is comparable to the thickness of the shelf strata
observed in the southern Appalachians. The presence of multiple, small scale duplexes within the

shelf strata along the eastern Blue Ridge attests to the greater degree of compressional deformation
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experienced in this region when compared to the subhorizontal reflections originating from the

strata beneath the western Blue Ridge.

The interpretation of the Blue Ridge allochthon and underlying shelf strata construed from
the seismic images in the PR3 data is shown in Figure 24 along with the interpretation by Evans
(1989) of the same data (Line 5). On the basis of the higher resolution provided by the reprocessed
PR3 seismic data (Figure 23, bottom), the average thickness of the Blue Ridge allochthon is in-
terpreted to be 3 km (1 s), with a maximum thickness of approximately 4.5 km (1.5 s). Along the
PR3 profile, the Martinsburg detachment is interpreted to splay from the basal décollement that
transported the Lower Paleozoic shelf strata westward. Transport along the Martinsburg
detachment doubled the thickness of the strata beneath the eastern Valley and Ridge province. The
most significant aspect of the reprocessed PR3 is that Lower Paleozoic shelf strata extend eastward
beneath the Piedmont province approximately 5 km east of the surface exposure of the Mountain
Run Fault and are truncated on the east by the Blue Ridge thrust. This model differs from the cross
section compiled by Evans (1989), which shows the lower North Mountain ramp (LNMR in Fig-
ure 8) as marking the westernmost extent of the shelf strata approximately 14 km west of the sur-

face exposure of the surface location of the Mountain Run Fault.

The Valley and Ridge Province

The Valley and Ridge province is bounded on the east by the Blue Ridge thrust, and on the west
by the Allegheny structural front (Figure 26 and Figure 28). According to Weaver (1970), in the
central Appalachians, this front represents the change from the intensely deformed rocks of the
Valley and Ridge to the gently folded rocks of the Appalachian Plateau further west. Carbonates
of the Lower Paleozoic shelf strata dominate the surface of the eastern Valley and Ridge and are
bounded on the west by the Little North Mountain Fault. The scattering of seismic energy
throughout the near-surface region is a common occurrence in regions with karst topography. The

carbonates exposed at the surface in the eastern Valley and Ridge traversed by seismic line PR3
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cause scattering and prevent the imaging of subsurface structures. The acoustically transparent
character observed beneath stations 1500-1800 and 1975-2700 along the PR3 profile (Figure 26) is
attributed to the presence of carbonates at the surface. These subsurface structures are masked and
cannot be observed because of limitations related to the conventional (P-wave) seismic data ac-
quisition. Tt might be possible to image these structures in SH-wave data acquired over these
carbonate regions if the karst topography is minimal (Gresko and Costain, 1985). In the regions

where reflections do exist, clastic rocks such as shales or siltstones are exposed on the surface.

The subsurface interpretation of this eastern region is constrained by the few reflections im-
aged beneath the clastic rocks, and therefore is open to a large degree of subjectivity. As shown
by the PR3 reflector geometry, the eastern Valley and Ridge is comprised of two dominant struc-
tural units (Figure 26). The lower unit consists of parautochthonous Paleozoic shelf strata
bounded below by the basal décollement in the Waynesboro Formation (BD), and bounded above
by the Martinsburg detachment (MD)(Kulander and Dean, 1986). Kulander and Dean (1986) refer
to this structural unit as the Waynesboro sheet, which appears to be relatively continuous beneath
the Appalachian foreland along the PR3 profile (Figure 26, Figure 28, and Figure 31). A zone
of subhorizontal reflections (SR in Figure 26 and Figure 28) is imaged within the Waynesboro
sheet at a depth of approximately 4.5 km (1.5 s) and can be traced westward beneath the
Appalachian Plateau (Figure 31). The lack of deep well data within this area precludes identifying
the lithologic unit(s) from which this reflection package (SR) originates. On the basis of the PR3
seismic data, the Lower Paleozoic shelf strata exposed at the surface in the eastern Valley and Ridge
are interpreted to be thrust westward over the Waynesboro sheet along the Martinsburg
detachment. As mentioned earlier, the Martinsburg detachment appears to splay from the basal
décollement beneath station 650, and it is possible that the proposed carbonate buildup (CBU (?)
in Figure 23), which is approximately 2 km (0.6 s) thick, controlled the location of related ramping.
Kulander and Dean (1986) interpreted the Little North Mountain Fault (LNMT in Figure 26) as
the frontal thrust of the Massanutten-Blue Ridge thrust sheet. Furthermore, they proposed that
both the Little North Mountain Fault and the Pulaski-Staunton Fault are seated in the

Martinsburg shales, and the Pulaski-Staunton Fault splays from the Little North Mountain Fault,
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separating the Blue Ridge from the Massanutten unit (FFigure 6). The present interpretation of the
PR3 reflector geometry does not include Lower Paleozoic shelf strata as part of the Blue Ridge-
Piedmont composite unit. The Cambrian-Ordovician strata carried westward along the
Martinsburg detachment are considered as a separate entity. Additionally, both the Little North
Mountain and Pulaski-Staunton faults (LNMT and PST in Figure 26) are interpreted to splay
from the Martinsburg detachment, and are considered to be imbricate thrusts seated in the shales
of the Martinsburg Formation as observed by Kulander and Dean (1986). Large scale imbricate
thrusts represented by the various detachment zones segment the shelf strata and appear to root in
the basal décollement beneath the Blue Ridge allochthon. Previously, the Waynesboro sheet and
overlying Paleozoic shelf strata (Figure 6 and Figure 9) were divided into many segments by
imbricate thrusts (Kulander and Dean, 1986; Evans, 1989); however, the limited reflectivity within

this region along the PR3 profile suggests the presence of fewer thrusts than previously reported.

West of the Little North Mountain Fault, the Martinsburg detachment carried the overlying
Upper Ordovician-Late Devonian clastics and carbonates westward through the Appalachian fore-
land (Kulander and Dean, 1986; Evans, 1989). Kulander and Dean (1986) suggested that the sub-
surface structures of the foreland are controlled primarily by the Waynesboro, Martinsburg and
Massanutten-Blue Ridge thrust sheets. They defined the Martinsburg thrust sheet as containing the
Upper Ordovician through Pennsylvanian strata that liec above the Martinsburg detachment west
of the Little North Mountain Fault. The topography of the foreland is characterized by anticlinoria
and synclinoria of the Martinsburg sheet, and they proposed that the structural relief of the basal
décollement is responsible for these structures. Specifically, lower sheet ramping from the
Waynesboro Formation results in antiformal structures and the relative absence of imbrications
within this formation results in synformal structures. Furthermore, they demonstrated that in every
cross section they compiled across the Appalachian foreland, shortening within the upper sheet

exceeds that of the lower sheet.

Upward ramping from the basal décollement is apparent in the PR3 reflector geometry (Fig-

ure 28). Upward thrusting of the lower sheet has carried the overlying units westward where they
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Figure 26.

Interpreted ALD display of migrated PR3 seismic reflection data from the eastern Valley and Ridge crust: BD = basal
décollement, BRT = Blue Ridge thrust, CR = coherent midcrustal reflections, LNMT = Littie North Mountain thrust, LPSS
= Lower Paleozoic shelf strata, MD = Martinsburg detachment, PST = Pulaski-Staunton thrust, SR = subhorizontal re-
flection package. (Uncorrelated PR3 seismic data provided by Halliburton Geophysical Services, Inc.)
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blind frontal thrust, BH
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Interpreted ALD display of migrated PR3 seismic reflection data from the western Valley and Ridge crust:
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strata, MD

Figure 28.
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are folded against a blind, frontal thrust (BFT). On the surface, this thrusting is manifested in the
Long Ridge anticline. This ramping of the lower sheet might have been controlled by the basement
high in the western Valley and Ridge, which is imaged in the PR3 scismic data (BH in
Figure 28). The seismic stacking velocities exhibit small lateral variations across this region,
thereby suggesting that this structure is not a “velocity pull-up”. Furthermore, this basement high
corresponds with the eastern West Virginia arch (Kulander and Dean, 1986) shown in the basement
structure contour map (Figure 29). The basement high (BH) is approximately 45 km wide along
the PR3 profile. The observed thinning of the Conococheague Formation, Chazy Group and
Chambersburg Group carbonates over the eastern West Virginia arch (Chen, 1977; Kulander and
Dean, 1986) suggests that this structure was formed prior to deposition of the Conococheague

Formation during the Upper Cambrian (Kulander and Dean, 1986), and might represent a horst.‘

West of the Long Ridge anticline, the Middle Mountain syncline structure is attributed to the
minor displacement along the basal décollement splay (BS). Moving westward from the Long
Ridge anticline, it is also apparent that the subhorizontal reflection package (SR) at 4.5 km (1.5 s)
becomes discontinuous and cannot be delineated. The Wills Mountain anticline is adjacent to the
Allegheny structural front, and line PR3 traverses this front along strike in a northeast direction.
The eastern West Virginia arch is roughly coincident with the structural front, and the PR3 reflector
geometry and basement structure contour map reveal that the depth to the basement surface in-

creases moving northeast along this arch (Figure 28 and Figure 29).

The Appalachian Plateau Province

The westernmost province of the central Appalachians is the Appalachian Plateau, which is
bounded on the east by the Allegheny structural front. Relatively unmetamorphosed exposures of
Silurian-Pennsylvanian sedimentary rocks are exposed at the surface, and these rocks exhibit little
deformation (Kulander and Dean, 1986; Wiltschko and Geiser, in Hatcher and others, 1989). The

topography of this province is characterized by a series of broad open folds (Wiltschko and Geiser,
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in Hatcher and others, 1989), and no faults have been reported at the surface in the PR3 study area.
Furthermore, along the PR3 profile, only one imbricate thrust (BT in Figure 31) is imaged in the
Appalachian Plateau province that appears to splay from the basal décollement (BD in
Figure 31). This observation confirms the diminished lower sheet ramping and folding noted by
Kulander and Dean (1986) west of the eastern West Virginia arch, which roughly coincides with the

Allegheny structural front in Figure 29.

Many of the synclines and anticlines mapped at the surface of this province are mimicked by
the shallow reflection packages observed within the upper 2 km (0.6 s). These shallow reflection
packages reveal the synformal structure of the Stony River, Job and North Potomac synclines
(SRS, JS and NPS in Figure 31). Due to low fold coverage between stations 4925-5025 in
Figure 31, the Horton anticline, which lies between.these two synclines, is not readily apparent;
however, the geometry of this structure can be inferred from the turned-up reflections characterizing
the western and eastern boundaries of the Stony River and Job synclines beneath stations 4925 and
5025, respectively. The Stony River and Job synclines are interpreted to result from the absence
of displacement along the Martinsburg and Waynesboro detachments. The axis of the Stony River
syncline, as mapped on the surface (Cardwell and others, 1968) is labeled by a solid vertical line in
Figure 31; however, the PR3 seismic data suggest that the axis of this syncline is located to the east
of this mapped location, as indicated by the arrow. Further west, a change in the basement to-
pography (CBT) appears to have controlled the development of the Glady Fork anticline and the
North Potomac syncline. The Glady Fork anticline is located above the “inflection line” (IF) that
separates the eastern West Virginia arch and folded plateau trough (Figure 29). Given a seismic
line traversing westward along the dip direction, it would be reasonable to image an increase in
basement depth upon crossing this topographic transition. The PR3 reflector geometry displays a
northwest dip (CBT) along the basal décollement reflection package that is interpreted to be asso-
ciated with the basement surface transition between the eastern West Virginia arch and the folded
plateau trough. The Glady Fork anticline is underlain by a series of concealed faults. As noted
by Bally (1983), strike-slip fault zones resulting from convergent systems “are often associated with

foreland deformation”. The images observed in the PR3 seismic data appear to satisfy some of the
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criteria listed by ID’Onfro and Glagola (1983) for identifying a wrench fault. The images in
Figure 31 are herein interpreted as a positive flower structure (FS (?)) with changes in dip across
the faults comprising this structure, and changes in the fault throw with depth. Harding and others

(1983) state that

Structural relief on the upturned beds (associated with these flower structures) commonly decreases
downward and in many examples is replaced at depth by a simple, vertical slep (separation) of a
subhorizontal basement surface.

As such, the “basement step” (CBT) in Figure 31 might also be the associated with convergent
wrench faulting within the Appalachian foreland. In general, geologic maps do not document
transpressional stress west of the Brevard Fault Zone; however, the interpretation of this positive
flower structure implies that transcurrent movement has occurred within this region. On the basis
of the PR3 seismic data, no evidence exists for the presence of strike-slip faults at the surface be-

cause this structure is presently concealed by Paleozoic strata.

Adjacent to the North Potomac syncline, the reflection package (MD) observed at approxi-
mately 3 km (1 s) turns upward and duplicates the eastern limb of an anticline. The axis of this
anticline runs through the town of Elkins, WV; however, seismic data were not acquired through
this residential area and a gap of approximately 5 km resulted between stations 5852 and 5854 in
Figure 31. West of Elkins, beneath station 5900, these reflections gradually turn down again, im-
aging the western limb of the aforementioned anticline. Low fold coverage within this region pre-
vents the continuous imaging of the basal décollement. The westernmost edge of the PR3 profile
displays fairly continuous, subhorizontal reflections at approximately 1 km (0.3 s), 3 km (1 s), 5
km (1.6 S). and 8 km (2.6 s) (RP, MD, SR and BD on Figure 31).

The Autochthonous Crust

Basement rock is interpreted to lie beneath the Piedmont allochthon and the basal
décollement along the entire PR3 seismic line to a depth of 30 km. Along the 1-64 seismic profile,

the Moho is imaged at a depth of approximately 30 km (10 s) beneath the eastern Piedmont, and
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continues to a westward depth of approximately 42 km (14 s) before it is no longer imaged beneath
the Blue Ridge province (Figure 4). Along line PR3, the data does not extend far enough into the
subsurface to reach the Moho, and this crustal transition zone is not imaged. On the unmigrated
and migrated profiles (Figure 11 and Figure 12), the crust beneath the basal detachment (BD) east
of station 650 is more reflective than the crust located further west. Because of poor reflectivity
(Coruh and others, 1988), the autochthonous crust west of station 650 is interpreted to be relatively

undeformed Grenvillian basement.

In the attempt to delineate the top of autochthonous basement along the PR3 profile, the
borehole compensated sonic log of the W. R. Price #1 well was analyzed. This well was drilled in
the Valley and Ridge of southwest Virginia, and penetrated the top of the basement at a depth of
5074 m (16,646 ft). The sonic log (Figure 32) shows little change in interval velocity between the
Shady dolomite, Basal Sand and underlying Basement Complex at this location. Furthermore, the
variations in density between these formations are minor. It was concluded that the acoustic
impedance contrast between the basement rock and its overlying cover is relatively weak, and
therefore the top of the Grenville basement cannot be clearly delineated from the seismic reflection
data. Herein, the Grenville basement and the overlying sequence comprised of the Swift Run,
Catoctin, Chilhowee Group and Tomstown/Shady dolomite (Figure 8) is interpreted as the

autochthonous crust below a basal decollement (BD).

The upper boundary of the autochthonous crust that underlies the parautochthonous shelf
strata is distinguished by a high velocity contrast between these different lithologies on well logs.
As reported by Christensen and Szymanski (1991), the reflection coefficient of shales in contact with
carbonates in the Valley and Ridge of the southern Appalachians usually ranges between
+0.33to +0.41. In the central Appalachians (Figure 8), the basal décollement, seated in the
Waynesboro shale, overlies the Shady dolomite at the top of the autochthonous unit (Evans, 1989).
On the basis of density and velocity values compiled by Edsall (1974), Kolich (1974) and Gresko
(1985), the calculated reflection coefficient at the Rome (Waynesboro) shale and Shady

(Tomstown) dolomite interface is + 0.32. The high amplitude reflections associated with this re-
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flection coefficient are correlated with this interface on the PR3 seismic data and are interpreted as

the boundary between the parautochthonous and autochthonous crust.

Various Paleozoic compressional events and Mesozoic extension affected the crust of the
central Appalachians. The cause of middle and lower crustal reflectivity presently remains one of
the most elusive aspects of reflection seismology. In particular, it is not known if middle and lower
crust reflections are the result of collisional deformation, or whether they represent preexisting
structures that were unaffected by collisional forces (Lillie and Yousuf, 1986). Smithson and others
(1986) proposed that these crustal reflections originate from mylonites in a sheared crust. They
attributed the reflectivity of the shear zones to the compositional layering, fabric, planar and con-
tinuous geometry, and chemical alterations within these rocks. They also correlated reflective
mylonites with crustal regions where extensional deformation has been most recent. Middle and
lower crustal reflectivity may also be affected by magmatic intrusions and the presence of water

(Phinney and Roy-Chowdhury, 1989).

Crustal reflections and diffractions are often associated with gneissic terrane, such as the
Grenville basement (Gibbs, 1986). In this case, reflection groups generally appear between 9-24
km (3-8 s) and sometimes correspond in size and style with folds mapped at the surface (Gibbs,
1986). A few reflective zones are imaged in the Grenville crust in the Valley and Ridge province
along line PR3. The northwest dipping package at 10.5 km (3.5 s) and midcrustal reflections (OPR
in Figure 28) displayed beneath the Allegheny structural front are interpreted to originate from out
of the plane of this section because the data in this region were acquired along the direction of
strike. On the other hand, coherent reflections were imaged that dip to the southeast and northwest
from 12-25 km (4-8.3 s) (CR in Figure 26). These reflections were imaged in a dip direction and.
are approximately 8 km in length. The origin of these midcrustal reflections is open for elabo-

rations.

The midcrustal reflections at approximately 9-30 km (3-10 s) beneath stations 12-650

(Figure 12 and Figure 23) are highly reflective when compared to the crustal reflectivity west of this
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segment of the PR3 traverse. A similar highly reflective region within the autochthonous crust was
also imaged on seismic lines that crossed the boundary between the Piedmont and Blue Ridge
boundary further south in Virginia and South Carolina, and was interpreted to originate from ex-
tended crust (Li and others, 1990). Seismic reflection data acquired in southeastern Arizona, Death
Valley, California, and the Rio Grande rift, New Mexico, have also imaged midcrustal reflections
(De Voogd and others, 1988; Goodwin and Thompson, 1988). Many of these events appear as
laterally continuous reflections. These events have been attributed to fracture zones, compositional
layering, regions of velocity anisotropy and magmatic intrusions associated with crustal extension
(De Voogd and others, 1988; Goodwin and Thompson, 1988). Within the southeastern U. S.,
Coruh and others (1992) attributed the midcrustal reflectivity to compressional and extensional
deformation, and the reflections were interpreted to originate from imbricated crust that was in-

jected by mafic material.

The midcrustal reflections beneath the western Piedmont and the Blue Ridge thrust ramp are
interpreted to originate from crust that was deformed during multiple extensional and
compressional episodes. The extensional episodes are associated with the initial rifting of the an-
cient continental margin and Mesozoic rifting; the compressional episodes occurred during the

Paleozoic orogenies.

Interpretation and Discussion 69



Conclusions

Integration of the reprocessed PR3 seismic data along with additional published seismic re-
flection, geological and potential field data is used to clarify the subsurface structures beneath the
central Appalachians in Virginia and West Virginia. The allochthonous western Piedmont and Blue
Ridge crust is bounded below by the Blue Ridge thrust, which is interpreted as an undulating re-
flector beneath the Piedmont and Blue Ridge provinces. The highly reflective nappes within the
Piedmont allochthon might be composed of Catoctin, Evington Group strata and possibly younger
metamorphosed rocks. Along the eastern edge of the PR3 seismic profile, the nappe closest to the
western boundary of the Piedmont is most likely intruded by a concealed nose of the Green Springs
mafic mass, which is associated with an acoustically transparent region. A steeply dipping fault is
interpreted to separate the subsurface structures of the Piedmont and Blue Ridge within the Blue
Ridge-Piedmont éomposite terrane. The surface projections of this fault and the shallow thrust that

overlies the nappe are coincident with the mapped exposure of the Mountain Run Fault.

The Blue Ridge thrust ramps upward beneath the Piedmont and underlies the acoustically
transparent Blue Ridge allochthon. The average thickness of this allochthon is 3 km (1 s), and the
maximum thickness is interpreted to be 4.5 km (1.5 s). The Lower Paleozoic shelf strata beneath
the Blue Ridge allochthon are characterized by the presence of duplex tuning wedges. These strata

are interpreted to extend approximately 5 km east of the surface exposure of the Mountain Run
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Fault, where they are truncated at a depth of 10.5 km (3.5 s) by the Blue Ridge thrust. The
Paleozoic shelf strata are located above a basal décollement that is seated in the Waynesboro for-
mation. The relatively continuous reflection package originating from this décollement is imaged
at approximately 9 km (3 s) beneath the Blue Ridge, Valley and Ridge and Appalachian Plateau
provinces on the PR3 seismic data. This décollement represents the boundary between the

parautochthonous crust and underlying autochthonous crust.

A basement high is imaged beneath the Valley and Ridge province and extends laterally ap-
proximately 45 km along the PR3 seismic profile. This structure is interpreted to have formed prior
to the Upper Cambrian. The basal décollement within the Waynesboro formation has ramped
upward along the eastern boundary of the basement high and displaced the overlying shelf strata.
Further west, in the Appalachian Plateau province, reflections beneath the Glady Fork anticline
are interpreted as representing a concealed positive flower structure associated with transpressional

deformation.

The poorly reflective autochthonous crust west of the eastern Blue Ridge is interpreted to be
relatively undeformed Grenvillian basement. The midcrustal reflections beneath the western
Piedmont and vicinity of the Blue Ridge thrust ramp in the PR3 seismic data are attributed to
compression during the Paleozoic orogenies and to extension during the early Laurentian and

Mesozoic stages of rifting.
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Appendix A. Seismic Reflection Data Parameters

Field Parameters

The source and recording parameters used during acquisition of lines PR3 and 1-64 are listed

Table 1.

Processing Parameters

Seismic processing was conducted using the CogniSeis Development DISCO seismic proc-

essing package. The processing sequence applied to line PR3 is as follows:
Demultiplex
Amplitude balancing (AGC 1000 ms)
Vibroseis correlation (data extended to 10 s)
from 0-5 s, the frequency bandwidth ranged from 14-56 Hz

from > 5-10 s, the frequency bandwidth tapered out linearly and converged to 14-26 Hz
at 10 s '

Definition of line and CDP geometry

Datum statics
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datum elevation = 600 m (minimum surface elevation = 145 m, maximum surface ele-
vation = 1094 m)

replacement velocities ranged from 4000 m/s to 6400 m/s and were determined from the
shot records at 32 stations along line PR3

Edit
CDP sort
Trace balancing (AGC 500 ms)
Deconvolution
(Piedmont to Valléy and Ridge)
gap = 16 ms
filter length = 1200 ms
design window length = 500-2500 ms
application window = 0-10000 ms
(Valley and Ridge to Appalachian Plateau)
gap = 24 ms
filter length = 2400 ms
design window length = 300-3300 ms
application window = 0-10000 ms
NMO correction
Bandpass filter (Hanning tapering)
frequency at low end of tapered zone = 10-14 Hz
frequency at high end of tapered zone = 50-56 Hz
Velocity analysis
iterations with alternating residual statics corrections
Residual statics corrections
iterations with alternating velocity analyses
Velocity specira analyses
Mute
Stack
Migration
post-stack finite difference method
velocity = linear, 95 percent of stacking velocity
layer thickness = 96 ms (TWTT)
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panel width = 48 traces

data fully migrated down to 6000 ms; between 6000-10000 ms, data was partially migrated

This sequence varies from the conventional sequence by the application of vibroseis whitening,
extended correlation and the omission of a geometrical spreading correction. These three processes

were discussed in an earlier section of this paper.

Velocity spectra analyses

Velocity spectra analyses were conducted in order to distinguish the various lithologies asso-
ciated with the allochthonous Piedmont and Blue Ridge units from the parautochthonous
Paleozoic shelf strata. Earlier studies at the Regional Geophysics Laboratory at Virginia
Polytechnic Institute and State University have shown that the allochthonous Blue Ridge crystal-
line rock has an average compressional wave velocity around 6000 m/s; the compressional wave

velocity of the shelf strata is around 5500 m/s (Gresko, 1985).

Velocity coherency estimates were computed using 7 consecutive CDPs at nine locations
within the western Piedmont, Blue Ridge, and eastern Valley and Ridge province. Computation
of these coherency estimates began by collecting the first three consecutive CDPs at each study lo-
cation and combining them into one CDP. The previous datum statics applied using the datum
elevation of 600 m were removed, and for each velocity study location, datum statics were reapplied
using a datum elevation equal to the average elevation of the location. The velocity spectra at each

location was then computed using three of these combined CDPs.

After plotting the spectra, the interval velocities were computed from the spectra using the
Dix equation. Since the Dix equation considers the case of horizontally layered strata, the dip ef-
fects were removed from the stacking velocities using the following equations: tan f§ = —%)ZC— = sin o,

and Az = V(A¢), where « is the true dip and § is the apparent dip. By measuring f, Ax and At from

the stacked seismic section, « = sin~ (V] —ﬁ-}c—) is computed using ¥; = 5.5 km/s. Once « is known,
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then the stacking velocity, V.., is corrected using the equation Vs = cos a(Vappasent ms), Where
Vapparent rms 18 Obtained from the velocity spectra. The corrected stacking velocities ( V..., ) were then

used in the Dix equation to calculate the interval velocities.
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Table 1. Field information

Source Parameters PR3 1-64

year acquired 1980 1981

vibrator model Y-600B (model unknown)
vibrators 4 2-3

sweep length 7 sec 10 sec

sweep frequencies 14-56 Hz 14-56 Hz

taper length N/A 1 sec

source interval

300’ (91.4 m)

440’ (134 m)

Recording Parameters PR3 I-64
geophones Mark 1-25L GSC-20D
natural frequency 8 Hz 10 Hz
instruments MDS-10 DFSV
receiver group spacing 300" (91.4 m) 220" (67 m)

spread (feet)

8100-1200-1200-8100

5500-660-660-5500

spread (meters)

2469-366-366-2469

1676-201-201-1676

number of channels

48

48

configuration split spread split spread
sample interval 4 sec 4 sec

record length 12 sec 24 sec
recording filter N/A 12-18-90-72 Hz
data length 5 sec 14 sec

fold 24 12
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