
A Portable Approach to High-Level Behavioral
Programming for Complex Autonomous Robot

Applications

Jesse G. Hurdus

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in
partial fulfillment of the requirements for the degree of

Master of Science
In

Mechanical Engineering

Dr. Dennis Hong, Committee Co-Chairman
Assistant Professor of Mechanical Engineering

Virginia Tech

Dr. Alfred L. Wicks, Committee Co-Chairman
Associate Professor of Mechanical Engineering

Virginia Tech

Dr. Charles F. Reinholtz, Committee Member
Alumni Distinguished Professor of Mechanical Engineering

Virginia Tech
Chair of Mechanical Engineering

Embry-Riddle Aeronautical University

April 28, 2008
Blacksburg, Virginia

Keywords: Behavioral Programming, Action Selection, DARPA Urban Challenge,
VictorTango, RoboCup, Hybrid Architecture, Unmanned Systems, Autonomous Vehicles

Copyright (C) 2008, Jesse G. Hurdus

A Portable Approach to High-Level Behavioral
Programming for Complex Autonomous Robot

Applications

Jesse G. Hurdus

ABSTRACT

Research in mobile robotics, unmanned systems, and autonomous man-portable vehicles
has grown rapidly over the last decade. This push has taken the problems of robot cognition
and behavioral control out of the lab and into the field. Two good examples of this are the
DARPA Urban Challenge autonomous vehicle race and the RoboCup robot soccer competition.
In these challenges, a mobile robot must be capable of completing complex, sophisticated tasks
in a dynamic, partially observable and unpredictable environment. Such conditions necessitate
a behavioral programming approach capable of performing high-level action selection in the
presence of multiple goals of dynamically changing importance, and noisy, incomplete perception
data.

In this thesis, an approach to behavioral programming is presented that provides the designer
with an intuitive method for building contextual intelligence while preserving the qualities of
emergent behavior present in traditional behavior-based programming. This is done by using
a modified hierarchical state machine for behavior arbitration in sequence with a command
fusion mechanism for cooperative and competitive control. The presented approach is analyzed
with respect to portability across platforms, missions, and functional requirements. Specifi-
cally, two landmark case-studies, the DARPA Urban Challenge and the International RoboCup
Competition are examined.

Acknowledgments

There are many people without whom this thesis, as well as my graduate career, would
not have been possible. My appreciation for their support, wisdom, and guidance is truly
immeasurable.

My deepest thanks go to my family. My parents, Alan and Luzviminda Hurdus, have been
the greatest examples of strength throughout my entire life. It is their trust and belief in my
abilities as both a student and a person that have allowed me to become the individual that I am
today. My older brother, Ethan, has been my secret role-model for as long as I can remember,
and it is for his respect and admiration that my thirst for knowledge has always been driven.

I would also like to thank my advisers, Dr. Charlie Reinholtz, Dr. Al Wicks, and Dr. Dennis
Hong, whose mentorship has proven invaluable to my growth both in and out of the classroom.
I will always remember the day Dr. Reinholtz spent over an hour discussing ideas behind
robotics and autonomy with me, even though I was only a sophomore in college. His ability
to look past preconceptions and evaluate both people and ideas for what they truly are will
always amaze me. I have never had a professor more concerned with the acquisition of actual
knowledge and understanding over mere grades, then Dr. Wicks. I will always remember fondly
the lessons learned in his classes and the continual appreciation he showed for his students. I
have also never had a professor with a greater drive for success then Dr. Hong. I hope to always
keep his talent, ambition, and love for robotics as an example before me.

Of course, I have to give enormous thanks to my graduate peers and fellow researchers. I
would not trade the world for all the hours spent coding, testing, arguing, explaining, stressing,
and ultimately cheering with my fellow team members. Thank you to the TORC developers,
Andrew Bacha, Cheryl Bauman, Chris Terwelp, Mike Fleming and especially Ruel Faruque,
my partner in Driving Behavior crime. On the university side, thank you to Patrick Currier,
Jesse Farmer, Steve Cacciola, Grant Gothing, Mike Webster, Peter King, Shawn Kimmel, Dave
Anderson, Tom Albieri, Dave Bass, John Weekly, Karl Muecke, Brad Pullins, and Robert Mayo,
who have all been invaluable to work beside. I would also like to thank Loginn Kapitan and
the SAIC team for their support of my research and our RoboCup efforts.

I would also like to thank Shawn, Myles, Tyler, and Jess, who have been there for me
through thick and thin and have inspired me in so many unimaginable ways. Their compassion
and love for life will always be a part of me. Finally I must thank Blacksburg and the Hokie
Nation, who taught me the power of community and support, even in the face of horrible
tragedy.

iii

Contents

1 Introduction 1

2 History and Background 4
2.1 What Is Mobile Robot Intelligence? . 4
2.2 The Robotic Paradigms . 5

2.2.1 The Hierarchical Paradigm . 6
2.2.2 The Reactive Paradigm . 8
2.2.3 The Hybrid Deliberative/Reactive Paradigm 10

2.3 A Closer Look at Hybrid Architectures . 12
2.3.1 Combining Deliberative and Reactive Control 14
2.3.2 Bi-level Approach (SAPHIRA) . 14
2.3.3 Tri-level Approach (VictorTango) . 16

3 A General Approach to Behavioral Programming 20
3.1 Problem Breakdown . 21
3.2 Taxonomy of ASMs . 22
3.3 Merging Arbitration and Command Fusion . 23
3.4 Arbitration Mechanism . 24

3.4.1 Hierarchical Structure . 24
3.4.2 State-Based Behavioral Structure . 26

3.5 Command Fusion Mechanism . 28
3.5.1 Application Specific Selection . 29

3.6 Discussion . 30
3.6.1 Benefits . 30
3.6.2 Drawbacks . 32

4 Case Study: Autonomous Driving in Urban Environments 33
4.1 Robotic Platform . 34
4.2 System Architecture . 35
4.3 Task Decomposition and Hierarchy . 39

4.3.1 Route Driver . 41
4.3.2 Passing Driver and Blockage Driver . 42
4.3.3 Precedence Driver, Merge Driver, and Left Turn Driver 45
4.3.4 Zone Driver . 47

4.4 Command Fusion Mechanisms . 48

iv

4.5 Performance Results . 51
4.6 Lessons Learned . 54

5 Case Study: Humanoid Robot Soccer 56
5.1 Robotic Platform . 58
5.2 System Architecture . 59
5.3 Task Decomposition and Hierarchy . 62

5.3.1 Attacker . 64
5.3.2 Goalie . 65

5.4 Command Fusion Mechanisms . 66
5.5 Performance Results . 67
5.6 Lessons Learned . 68

6 Conclusions, Contributions, Observations, and Future Work 70
6.1 Summary of Contributions . 70
6.2 Important Observations . 72

6.2.1 Hierarchy . 72
6.2.2 State Machines . 72
6.2.3 Command Fusion . 73

6.3 Future Work . 73

Bibliography 75

A Behavioral State Diagrams 78

B Detailed System Architectures 80

v

List of Figures

1.1 Odin, an unmanned ground vehicle, and DARwIn II, a bipedal humanoid 3

2.1 Structural organization of the Hierarchical Paradigm 6
2.2 Structural organization of the Reactive Paradigm. 8
2.3 Structural organization of the Hybrid Deliberative/Reactive Paradigm 11
2.4 Brain-Hybrid Analogy . 13
2.5 The Saphira architecture (bi-level) . 15
2.6 The VictorTango architecture (tri-level) . 18

3.1 Pirjanian’s taxonomy of ASMs . 23
3.2 General example of a behavioral HSM . 25
3.3 A behavioral state machine for robot soccer . 27
3.4 Layered Command Fusion Modules . 29

4.1 Lineup of Finalist Vehicles in the Urban Challenge 33
4.2 External view of Odin with sensors labeled . 35
4.3 Perception and World Model Structure on Odin 36
4.4 Command and Control Chain on Odin . 37
4.5 Main situational categories, the open road (a), intersections (b), and zones (c) . 39
4.6 Behavior hierarchy developed for driving in an urban environment 40
4.7 State Diagram of the Route Driver . 42
4.8 State Diagram of the Passing Driver . 43
4.9 State sequence for passing a disabled vehicle in an oncoming lane 44
4.10 Network of control points used for navigating zones 47
4.11 Command Fusion ASMs used on Odin . 49
4.12 Interaction between the Route Driver and Passing Driver 50
4.13 Validation of 4-way stop behavior in simulation 52
4.14 Validation of the ”gauntlet” behavior in simulation 53
4.15 Odin at the finish line next to Stanley of Stanford and Boss of Carnegie Mellon . 54

5.1 DARwIn IIa and IIb competing at RoboCup 2007 57
5.2 Kinematic and Mechanical Design of DARwIn . 58
5.3 DARwIn’s tri-level Hybrid control architecture 59
5.4 Behavior hierarchy suggested for robot soccer . 63
5.5 State diagram of the Attacker . 64
5.6 State Diagram of the Goalie . 65

vi

5.7 MuRoSimF screen shot used for testing and evaluation 68

A.1 State Diagram of the Precedence Driver . 78
A.2 State Diagram of the Merge Driver . 79
A.3 State Diagram of the Left Turn Driver . 79

B.1 System Architecture used for the DARPA Urban Challenge 80
B.2 System Architecture used for RoboCup . 81

vii

Chapter 1

Introduction

Research in mobile robotics, unmanned systems, and autonomous man-portable vehicles

has grown rapidly over the last decade. This push has taken the problems of robot cognition

and behavioral control out of the lab1 and into the field. In such situations, completing com-

plex, sophisticated tasks in a dynamic, partially observable and unpredictable environment is

necessary. An approach to action selection must be used that balances appropriate elements of

planning and reactivity.

Traditionally, planning and reactivity were seen to be at ends with each other, but it is now

generally understood that a complimentary combination of the two is needed. Many Hybrid

Deliberative/Reactive control architectures[24, 14, 22, 27, 33] have been developed since the

mid 90’s to address this problem. In the majority of these architectures we see a general trend

of placing the deliberative components at a high level while the more reactive, behavior-based,

components are kept at a low-level for direct actuator control. However, with advances in

computing technology, a deliberative approach to low-level motion control has re-emerged [32,

29, 31]. These search based, or planning-oriented, methods [9] have proven to be very desirable

from an engineering point of view for their predictability. When the scope of deliberative

motion planning is kept small and is coupled with modern computing power, sufficiently fast

cycle times are attainable. As a result, the scope of a behavioral control component can now

be moved from low-level reflexes to higher-level decision making for solving complex, temporal
1Or simulated environments

1

problems. Chapter 2, History and Background, goes through the advancement of robotic control

architectures and helps to further define a new role and scope for behavioral programming.

Within any behavior-based control system, the core problem lies in coordinating the activ-

ities of individual behaviors into rational and coherent strategies. The formulation of mecha-

nisms to solve this problem is known as the action selection problem (ASP).2 Maes defines the

problem formally in [17] with the following statement.

“How can an agent select the most appropriate or the most relevant next action
to take at a particular moment, when facing a particular situation?”

Many different action selection mechanisms (ASMs) have been proposed to solve this problem

and their taxonomy has been well documented by Pirjanian in [23]. There exist many relevant

characteristics with which to classify ASMs, but Pirjanian finds that all ASMs can be put into

either arbitration or command fusion classes. Arbitration ASMs allow“one or a set of behaviors

at a time to take control for a period of time until another set of behaviors is activated.”

Command fusion ASMs, on the other hand, “allow multiple behaviors to contribute to the final

control of the robot.” Pirjanian’s taxonomy classifies all ASMs as being in either one or the

other of these two classes, but not both. In Chapter 3, an approach to behavioral programming

is proposed that allows for the combination of both an arbitration and command fusion ASM.

Such an approach preserves the benefits of both classes of ASMs.

The ultimate goal of action selection and behavior-based decision making research within

mobile robotics is to build a physically embedded system that can exist autonomously in the

real world. Action selection mechanisms that work in virtual environments are often unsatis-

factory when transported to agents that must deal with real world uncertainty. It is therefore

desirable to inspect the performance of any approach to behavioral programming on real robots

performing real tasks. Chapter 4 and Chapter 5 present two very important case studies of

behavioral programming, the DARPA Urban Challenge and the International RoboCup soccer

competition. At first glance, these two real-world robotic applications are extremely different.
2Also known as the behavior coordination problem

2

Figure 1.1: Odin, an unmanned ground vehicle, and DARwIn II, a bipedal humanoid

The DARPA Urban Challenge is concerned with building a full-sized autonomous ground ve-

hicle capable of driving in an urban environment while negotiating traffic, intersections, and

parking lots. RoboCup, on the other hand, is focused on creating a team of fully-autonomous

humanoid robots capable of playing soccer. Across these two applications, the base platform

is drastically different; from a 1.8 ton, 4-wheel, differentially steered vehicle to a bi-pedal, 2

foot tall humanoid robot. The goals of each robot are significantly different as well, from urban

driving to goal scoring. In both of these landmark challenges, however, the core problem of

a behavioral control structure is the same. Both robots must somehow balance dynamically

changing desires while trying to achieve mission objectives in a real and unpredictable environ-

ment. The application and portability of the general behavior-based control approach presented

in Chapter 3 is therefore analyzed with respect to these two vastly different challenges.

Finally, Chapter 6 presents the most important conclusions and observations from the work

done. The most important lessons learned from the behavioral programming challenges pre-

sented by the Urban Challenge and RoboCup are summarized and any remaining questions are

posed as future research topics.

3

Chapter 2

History and Background

In order for robots to become commonplace in the home and in industry, they must exhibit

some form of artificial intelligence. The role of robotics can no longer be constrained to pre-

programmed sequences often seen on manufacturing floors and production plants. A.I. for

mobile robot control has therefore been an important area of research for over 30 years and

has led to a variety of robotic control architectures. This chapter gives a brief account of the

development of common robotic control architectures from the Hierarchical paradigm, through

the Reactive paradigm, and into the growth of Hybrid Deliberative/Reactive paradigms. Looking

at the emerging trends in robotic control architectures is instrumental in understanding the role

and scope of present-day behavioral programming. It also serves to lay the foundation for the

general approach to behavioral programming presented in Chapter 3.

2.1 What Is Mobile Robot Intelligence?

There exist many different definitions for intelligence. The appropriateness of any such defini-

tion ends up being linked strongly to the application. From a mobile robotics point of view,

intelligence is primarily concerned with providing the skills and abilities for a physically embed-

ded system to interact with and induce some change in the world. Jim Albus of the National

Institute of Standards and Technology defines intelligence as

“the ability to act appropriately in an uncertain environment, where appropriate
action is that which increases the probability of success, and success is the achieve-

4

ment of behavioral goals.” [1]

Satisfying Albus’ definition of intelligence requires proficiency in several different areas includ-

ing, but not limited to:

• Perception

• Knowledge Representation

• Reasoning

• Decision Making

• Planning

• Motion Control

• Manipulation

Functions such as these are considered the fundamental building blocks of mobile robot intel-

ligence. Overall intelligence as defined by Albus is only possible when a robot is capable of

performing these smaller problems well and when they are organized in certain ways. Defining

and classifying all of these smaller, but necessary, building blocks is a large problem of its own.

In [21], Murphy has divided the common functions of any mobile robot into three accepted

primitives: SENSE, PLAN, and ACT.

2.2 The Robotic Paradigms

By dividing the common functions of robots into these categories, or primitives, it is possible

to classify robotic control architectures according to various different paradigms. The three

known robotic paradigms are structured around different methods of organizing the robotic

primitives. They are known as the Hierarchical Paradigm, the Reactive Paradigm, and the

Hybrid Deliberative/Reactive Paradigm. The Hierarchical Paradigm was prevalent from 1967-

1990, but when the Reactive Paradigm emerged in 1988 there was a large shift away from

many Hierarchical approaches. Then in 1992, the Hybrid Deliberative/Reactive Paradigm,

5

Figure 2.1: Structural organization of the Hierarchical Paradigm

which pulls many features from both of the previous paradigms, began gaining popularity and

has been predominant since then. Therefore, understanding the current trends within Hybrid

approaches requires knowledge of the benefits and shortcomings of the older Hierarchical and

Reactive Paradigms.

2.2.1 The Hierarchical Paradigm

The origins of mobile robot control are rooted in the Hierarchical Paradigm. First devised in

1967, the Hierarchical Paradigm was born at the Stanford Research Institute (SRI) on a robot

aptly named Shakey. Shakey was built on a tall, differentially steered platform, equipped with

several cameras, and tasked with navigating a large room with a variety of static obstacles in

it. In the end, Shakey’s name was extremely appropriate as his performance was ”shakey” at

best. This, however, was largely due to limited sensor and computing power available at the

time. Either way, Shakey pioneered the use of the Hierarchical Paradigm.

Attributes

The structure of the Hierarchical Paradigm is inherently sequential. In terms of the three

robotic primitives, a Hierarchical approach will first sense the world around it, then plan a

path, or set of actions, and finally act in an attempt to achieve that plan. After some time

interval, the algorithm will repeat, resulting in another cycle of sense, plan, and act. A diagram

illustrating the organization of a hierarchical paradigm is shown in Figure 2.1.

An important aspect of the Hierarchical Paradigm is that it is monolithic, in that all per-

ception information is fused into one global data structure, or world model. During every loop

iteration, the world model is updated off of what is sensed and a plan is ”solved-for” using

6

this representation of the world. Possibly the most important attribute of any Hierarchical

Paradigm lies in the planning primitive. By definition, a Hierarchical approach will take ad-

vantage of some form of global solver, or planner, to analyze all the known information about

the world and deduce the best course of action for some future time period. Most commonly,

this planner utilizes advanced search techniques to examine the set of all possible moves given a

certain search space. As you can imagine, the overall performance of the robot therefore hinged

largely on the performance of this planning component.

Advantages

The primary advantage of the Hierarchical Paradigm was that it pushed the development of

more efficient search algorithms. In the Hierarchical approach, as the number of objects being

represented in the world model increases and the number of possible actions broadens, the search

space grows exponentially. Subsequently, to prevent the planning component from becoming a

bottleneck, more effective search and planning algorithms were needed. The most significant

breakthrough came in the development of the A* algorithm, which allows an “agent to find a

sequence of actions that achieves its goals, when no single action will do.” [25] The A* algorithm

is widely recognized today as the most common and successful metric path planner and is used

in a variety of applications, not just within mobile robotics.

Drawbacks

While improved search and planning algorithms helped to reduce the time needed to plan, it

was not enough to overcome the growing complexity needed to complete even simple tasks such

as navigating a room. Due to the linear nature of the paradigm, anything that changes in

the environment during the planning phase is completely lost to the robot. Furthermore, the

Hierarchical Paradigm is subject to a problem known as the closed world assumption. In order

for a global planner to be successful, all relevant information about the world must be explicitly

represented in the world model. If the robot ever encounters an object which it cannot classify

and represent internally, it will have no way of reacting to it. This is a major shortcoming

7

Figure 2.2: Structural organization of the Reactive Paradigm.

preventing Hierarchical Paradigms from being successful in the field.

2.2.2 The Reactive Paradigm

The Reactive, or behavior-based, Paradigm grew mainly out of dissatisfaction with the Hierar-

chical Paradigm. It also incorporates ideas that were emerging at the time from ethology, or the

study of animal and insect behavior. It was clear to many researchers at the time that simple

biological beings with very low computational capacity were capable of doing what Shakey could

not. While the high-level planning and cognitive abilities of the Hierarchical Paradigm were

neat, were they really necessary for the basic problem of robot navigation? Some researchers,

Rodney Brooks of MIT in particular, didn’t think so.

Attributes

The main feature of any reactive paradigm is that all actions are accomplished through the use

of distinct behaviors. “Behaviors are a direct mapping of sensory inputs to a pattern of motor

actions that are then used to achieve a task.” [21] Mathematically, a behavior is simply just a

transfer function, mapping some sensory input directly to some form of actuator output. The

overall control architecture is then built up as a set of concurrently running behaviors. The

result is that a robot’s overall behavior emerges from the combination of behaviors operating

at any given time[6]. In terms of the robotic primitives, the Reactive Paradigm leads to a

much more parallel and vertical decomposition, and completely throws out any sort of planning

8

component, as seen in Figure 2.2.

In this type of structure, the sensing is specific to each behavior. For example, raw computer

vision data may be processed in a specific way for one behavior, but differently for another.

A lane following behavior might be most interested in locating the position of lane markings,

whereas a vehicle-convoy behavior might be more interested in determining the location of the

lead vehicle. Either behavior has no idea what the other behavior is doing or perceiving. This

leads to the other major difference from the Hierarchical Paradigm: the removal of any type of

global world model. In doing so, the Reactive Paradigm inherently gets rid of the closed world

assumption.

Advantages

An important advantage of the Reactive Paradigm is that it allows for autonomous behavior to

be built up in a similar manner to biological intelligence. In one implementation of the Reactive

Paradigm known as Subsumption Architecture [6], primitive behaviors can be developed first,

and then new layers of behaviors that reuse or inhibit the lower, older behaviors can be built up

on top. Another very important advantage of behavior-based approaches is graceful degradation.

If an advanced behavior fails, the lower-level behaviors will continue to operate normally. With

the Hierarchical approach, on the other hand, a failure within the planning module often results

in the robot’s functionality grinding to a halt. One of the greatest advantages of the Reactive

Paradigm is the overall speed of operation. Since each behavior consists of only some direct

sense-act coupling and all behaviors run in parallel, the bottleneck of planning is removed.

Rodney Brooks showed with his 6-legged robot, Khepera, that robot navigation across a room

could be achieved with very low complexity algorithms when used in a behavior-based approach.

Drawbacks

While most Reactive Paradigms are computationally simple, fast, and robust when compared

to Hierarchical Implementations, they are also usually much more imprecise. It is difficult to

determine beforehand exactly what discrete behaviors are needed to combine and produce a rich

9

emergent behavior. Furthermore, reactive behaviors do not lend themselves to mathematical

proofs which can definitively show that they are sufficient and correct for a task. All these

factors tend to lead people into describing reactive architectures as “fast, cheap, and out-of-

control.” Even when the correct base behaviors are determined, exactly how they are combined

has a huge effect on what emergent behavior results. In fact, the method used for combining

different behaviors or selecting which behaviors are run is the distinctive feature of different

behavior-based architectures and is known as the action selection mechanism (ASM).

As the complexity of robotic applications grew, purely reactive architectures were also found

to be insufficient. Without any sort of planning component, reactive architectures eliminated

any form of remembering or reasoning about the global state of the robot with respect to its

environment. Not only could optimal trajectories not be calculated, but functionality such as

map making and performance monitoring were lost. In total, it became very difficult to design

a set of behaviors that would be wholly sufficient for completing more complex, multi-objective

tasks.

2.2.3 The Hybrid Deliberative/Reactive Paradigm

With the deficiencies of the Hierarchical Paradigm in terms of low-level control addressed by

the Reactive Paradigm, there emerged a need to find a way to re-incorporate some of the

high-level cognitive abilities of the Hierarchical Paradigm. Techniques needed for sequencing

or assembling behaviors such that a series of sub-goals can be achieved is necessary for more

complex problems. The result is the Hybrid Deliberative/Reactive Paradigm which presents

the idea of combining reactive behaviors with top-down, hierarchical planners used for more

deliberative functions.

Attributes

An important feature of the Hybrid approach is that deliberative implies more cognitive abilities

than just path planning, as it did in the Hierarchical Paradigm. Examples of these deliberative

functions include performance monitoring, behavioral management, map making, and mission

10

Figure 2.3: Structural organization of the Hybrid Deliberative/Reactive Paradigm

planning. In general these deliberative components are designed to run asynchronously, pro-

viding a set of intermediary goals for use as guidance to the lower-level reactive system. These

intermediary goals should be sufficient for preventing the reactive system from making too

many poor decisions as well as provide the ability to recover from being “trapped”. Another

important attribute of Hybrid systems is that behaviors within the reactive layer differ from

traditional sense-act couplings. In the Reactive Paradigm, behaviors are purely reflexive, with

no internal memory or state. Biological behaviors, however, are not just reflexive reactions,

and we see in most Hybrid architectures much more complex behaviors with dynamic internal

states. Returning again to the three robotic primitives, we can visualize the Hybrid Paradigm

as a parallel structure where planning occurs on a slower time scale but looks ahead to a longer

time horizon and helps to determine which sense-act behaviors should be running at any given

time, as seen in Figure 2.3.

Advantages

The obvious advantage of the Hybrid approach is that theoretically the benefits of both the

Hierarchical Paradigm and the Reactive Paradigm can be achieved. For example, sensing

organization takes on a dual role. Sensor data is available to the planner components for

construction of a task-oriented global world model but is also available directly to behaviors for

quick reactions that do not require any type of explicit representation. The Hybrid Paradigm

and the development of asynchronous processing techniques such as multi-threading have lead

to much more modular designs. Individual components responsible for different functions can

11

run at their own frequency and then simply pass the most relevant and latest data between

them. Each component is also freed to use either a hierarchical or reactive approach, allowing

for a deeper abstraction of the responsibilities of individual modules within the overall control

architecture. When properly implemented, a Hybrid approach can produce an appropriate

balance of exploration and reactivity with an execution of planned actions, thus mimicking

biological intelligence.

Drawbacks

The main challenge for any Hybrid implementation is determining where to draw the line

between planning components and reactive components. Because the paradigm itself is so

loosely defined, there is a wide range of differing Hybrid architectures each with their own

strengths and weaknesses. It is therefore difficult to look at the drawbacks of the Hybrid

approach as a whole. Of course, by incorporating both Reactive and Hierarchical elements, the

Hybrid Paradigm naturally inherits the shortcomings of both other approaches. For example,

the deliberative planning components within a Hybrid system are still usually subject to the

closed-world assumption. However, it is usually acceptable for a robot to think in a closed

world as long as it can still act in an open world.

2.3 A Closer Look at Hybrid Architectures

Both the Hierarchical Paradigm and the Reactive Paradigm were largely developed to solve

one of the most well known problems for mobile robots: navigation. While the problem of

simply getting around in the world is important, modern day robot applications require much

higher levels of intelligence and complexity. Hybrid architectures present a way of addressing

these problems and are therefore generally accepted as the best approach to most applications

today. They allow for the layering of responsibilities from high level mission planning to low

level obstacle avoidance. Individual software agents responsible for different tasks are freed to

use whatever paradigm is most appropriate. According to Murphy,

12

Figure 2.4: Brain-Hybrid Analogy

“a paradigm is a philosophy or set of assumptions and/or techniques which char-
acterize an approach to a class of problems.” [21]

Individual software agents within a Hybrid architecture can therefore use the different paradigms

to tackle their individual tasks. Such an approach lends itself very well to object-oriented pro-

gramming and the portability of specialized modules to new domains. This overall structure

can be loosely analogous to the way a human brain works. Large segments of the human brain

can be considered to be associated with certain specific abilities, from sensor processing in the

visual cortex to motor control in the brain stem. The same role-based segmentation exists in

Hybrid architectures as individual software modules. The question then becomes how to orga-

nize these software modules and determine what information should be passed between them.

Furthermore, how does the overall behavior emerge? Figure 2.4 illustrates this problem and

analogy to the human brain.

The problem of high-level behavioral programming, the subject of this thesis, can now be

seen as an individual software agent within a larger Hybrid control architecture. As is implied

by the name, this individual module will utilize the behavior-based, or reactive paradigm to

solve its specific task. To better understand the role and scope of this module however, the

surrounding architecture needs to be analyzed so that the proper assumptions and requirements

are clear.

13

2.3.1 Combining Deliberative and Reactive Control

After the success of the Reactive Paradigm in the early 90’s, it was the general consensus that

behavior-based methods were the ”best” way of doing low-level motion control because of their

speed, elegance, and simplicity. This led to most Hybrid architectures having a single division

between deliberative and reactive layers. Cognitive modules responsible for mission planning,

map making, performance monitoring, and behavioral sequencing were done on the higher,

deliberative layer, while selected behaviors ran on the lower, reactive layer, interacting directly

with the robot’s actuators. Many well known hybrid control architectures were developed

with this bi-level approach, such as the Autonomous Robot Architecture (AuRA)[5], Sensor

Fusion Effects (SFX)[22], 3T[11], Task Control Architecture (TCA)[27], and Saphira[14]. In

this section we will take a closer look at the Saphira architecture because it is a good example of

the bi-level approach and also because it illustrates some important features of Hybrid control.

We will then examine the newer tri-level approach in the context of the Hybrid architecture

developed for the DARPA Urban Challenge.

2.3.2 Bi-level Approach (SAPHIRA)

The Saphira architecture was developed at SRI and is built around three important principles,

coordination, coherence, and communication [14]. Coordination refers to the coordination of

actuators and sensors as well as the coordination of goals and sub-goals over a period of time.

Coherence implies the need for a well-maintained global perception representation, such that all

planning and control components are working off the same assumptions. Finally, communication

is important for building a robot that can interact with humans.

A simplified diagram of the Saphira architecture can be seen in Figure 2.5. Like most Hy-

brid architectures at the time, there is a very defined line between the higher-level deliberative

functions and the low-level reactive system of behaviors. Within the deliberative layer, many

common functions of Hybrid Paradigms are included, such as a mission planner, cartographer,

sequencer, behavior manager, and performance monitor. The high-level mission planner comes

14

Figure 2.5: The Saphira architecture (bi-level)

in the form of the Procedural Reasoning System - Lite (PRS-Lite), which is capable of inter-

preting natural language voice commands into a series of manageable navigation tasks. The

Topological Planner and Navigation Tasks module are then responsible for managing and se-

quencing behaviors as well as monitoring the performance of the robot. Within the reactive

layer, the assemblage of behaviors best suited to meet the current navigation task are run and

their outputs, which are different fuzzy rules, are then combined using fuzzy logic. Following

convention, the behaviors within Saphira are reflex-oriented and largely concerned with low-

level obstacle avoidance. The results of the fuzzy combination of behavior outputs are direct

actuator commands. Finally, both the mission planner as well as the reactive behaviors rely

on the Local Perceptual Space (LPS), which maintains an accurate world model with symbolic

representations of salient features in the environment.

World Models and Virtual Sensors

A very important feature of the Saphira architecture and a growing trend in all Hybrid ap-

proaches is the re-emergence of the world model, or in this case, the LPS. Not only does the

15

high-level planner use this shared knowledge representation, but so do the reactive behaviors.

This is very important to the idea of coherence. Of course, this sounds very familiar to the

monolithic world models found in the Hierarchical Paradigm and should therefore come with

the same problems. However, there are some very important differences which should be noted.

With the advent of distributed processing, slower, more computationally intensive perception

routines can run independently of the control algorithms. They then provide, via shared data

structures, the latest, most relevant information. By running the perception algorithms inde-

pendently, sensor errors and uncertainty can be filtered using sensor fusion over time. This

approach combined with newer, more powerful processors has removed the bottleneck induced

by world models in the Hierarchical Paradigm.

Another important feature is the introduction of virtual sensors. Reactive approaches usu-

ally rely on behavior-specific sensing, where each behavior processes raw sensor data as it sees

fit. However, this is not consistent with the idea of coherence introduced by the Saphira ar-

chitecture. In this case, the global world model provides a set of virtual sensors of which the

different behaviors can ”eaves-drop” on. For example, in the Saphira architecture, each behavior

would have access to a people sensor, object sensor, and surface sensor. Each virtual sensor

would then provide an appropriate list of people, objects, or surfaces that could be taken into

account by the behavior.

2.3.3 Tri-level Approach (VictorTango)

The deliberative layer provided by Hybrid architectures such as Saphira was very important

for bringing robotic applications into more cognitively challenging domains. The reactive layer

was then sufficient for more time critical control problems such as low-level obstacle avoidance

and could react quickly to unforeseen events and surprises. Due to the nature of the Reactive

Paradigm, however, there was still no guarantee of optimality beyond the intermediary goals

set by a deliberative planner. Even if the robot went in the right direction, it could easily

spend extra time getting into and out of box canyons or other situations that behavior-based

navigation approaches have problems with. Similar to the re-emergence of the global world

16

model, we see again the effect of more powerful processing technology. Path planning algorithms

that once took minutes to run can now run multiple times a second. Because of this, utilizing

deliberative planning techniques for low-level motion control is much more realistic.

These advancements have led to what I call the tri-level Hybrid approach. In a tri-level

approach, there still exists a deliberative layer at the highest level, responsible for tasks such

as mission planning and map making. These modules then provide intermediary goals, or

waypoints, to a reactive, behavioral component that is then sandwiched by yet another low-level

deliberative layer. We therefore end up with a deliberative-reactive-deliberative progression.

The low-level deliberative layer is strictly responsible for motion control and sends the final

output to the hardware interface. It is only concerned with events on a short time horizon

and utilizes optimal planning techniques to find the best series of actuator outputs. Unlike in

the Hierarchical Paradigm, where a plan is made and then the robot attempts to follow that

plan until a problem occurs, a low-level path planner will continually replan, as many times

a second as possible. This method of short time-horizon predictive path planning has been

steadily gaining in popularity.

A good example of the tri-level approach is the control architecture developed by Team

VictorTango for the DARPA Urban Challenge and is seen in Figure 2.6. In this architecture, a

deliberative Route Planner is run solely on demand, when a new mission is loaded or if a road-

block is encountered. This planned ”route” is then provided to Driving Behaviors, a reactive,

behavior-based module responsible for maintaining situational awareness while balancing the

rules of the road with the goals set forth by the Route Planner. Finally, high-level motion

commands are sent to the Motion Planner, which uses deliberative search methods to find the

optimal path through the immediate environment. Like in Saphira, all sensor data is routed

through a set of perception modules responsible for locating, identifying, and tracking specific

percepts such as the road, static obstacles, and dynamic obstacles. These sensor independent

perception messages are what make up the global world model and are provided to the behaviors

and planning components as virtual sensors.

17

Figure 2.6: The VictorTango architecture (tri-level)

Virtual Actuators

While the Saphira architecture utilized the concept of virtual sensors, or high-level perception

messages, the VictorTango architecture also implements the concept of virtual actuators, or

high-level motion commands. Instead of the final output being generated by the behaviors

going directly to the hardware interface, as seen in Saphira, they produce symbolic motion

commands for abstract actuators. For example, in the VictorTango case, virtual actuators

include a lane actuator, which specifies what lane of the road to be in, a speed limit actuator,

which specifies the max speed the vehicle can drive, and a direction actuator, which specifies

whether the vehicle should be traveling forward, in reverse, or if it doesn’t matter. The Motion

Planner component then calculates the optimal path through the environment while meeting

all the requirements imposed by the virtual actuators.

The New Role of Behavioral Programming

With deliberative approaches now being used for high-level mission planning as well as low-level

motion planning, the role of the reactive, behavior-based layer narrows. While this may initially

seem like a bad thing for behavior-based control schemes, it is actually very useful. There still

18

exists a very important void in the overall intelligence of the robot that is capable of bridging

the gap between high-level mission plans and low-level waypoint navigation. A software agent

is needed that can provide two very important aspects of embodied A.I., contextual intelligence

and emergent behavior. A reactive, behavior-based solution is well-suited to provide these

important characteristics.

Contextual intelligence provides the robot with a mechanism of understanding the current

situation. This situation is dependent on both the current goals of the robot, as defined by the

mission planner, as well as the current environment, as defined by the relevant objects present

in the world model. Such insight is important for performance monitoring and self awareness

along with the ability to balance multiple goals and sub-goals. Emergent behavior is a very

important trait of biological intelligence which we understand to be necessary for the success

of living organisms in the real world. It allows for the emergence of complex behavior from the

combination of simpler behaviors, which is important not only for individual intelligence, but

cooperative intelligence within groups and multi-agent systems as well.

Deliberative approaches remain largely insufficient for providing these important traits.

The reactive, behavior-based, paradigm remains the best approach for this layer of intelligence

within a larger robotic control architecture. Within this context, we can now redefine the role

of behavioral programming to have the following definition:

How do we determine the most appropriate, high-level actions to achieve complex mission

goals and sub-goals given a dynamic, unpredictable environment?

19

Chapter 3

A General Approach to
Behavioral Programming

As shown in Chapter 2, within the tri-level hybrid architecture, there is a distinct need for a

reactive, behavioral component capable of providing contextual intelligence that can also be a

mechanism for producing emergent behavior. As inputs, this software agent operates on virtual

sensors, and as outputs, this agent controls virtual actuators. Virtual sensors provide a filtered

view of the world and virtual actuators provide a mechanism for dictating high-level motion

commands to a deliberative motion planner. It has been shown that the Reactive Paradigm

is the most appropriate approach to solving this problem even though the overall goals do not

coincide with traditional obstacle avoidance and robot navigation problems.

In this chapter, a general architecture and approach is presented for solving this sub-problem.

A method of action selection is proposed that takes advantage of both command fusion and

arbitration action selection mechanisms (ASMs). The ASMs discussed in this chapter are not

novel themselves, but rather a novel method of combining existing ASMs is presented. The

justification for using this approach stems from the specific responsibilities of a behavioral

module set forth by the tri-level hybrid architecture considered in Chapter 2.

20

3.1 Problem Breakdown

The central problem of behavioral programming is determining at any given moment what type

of action should be performed. Returning to Albus’ definition of mobile robot A.I., a robot

must “act appropriately in an uncertain environment, where appropriate action is that which

increases the probability of success, and success is the achievement of behavioral goals.” The

process of deducing the most ”appropriate” action is known as the Action Selection Problem

(ASP). Unfortunately, the ability to evaluate ”appropriateness” is a very complex problem and

one that causes even many humans trouble. While choosing the absolutely rational, or optimal

action is often impossible without seeing into the future, we can hope to select ”good enough”

or satisficing actions, as defined in [28]. According to Maes, the following requirements are

needed of any ASM to produce ”good enough” behavior [17].

• Goal-orientedness - the favoring of actions that contribute to one or several goals

• Situatedness - the favoring of actions that are relevant to the current situation

• Persistence - the favoring of actions that contribute to the ongoing goal

• Planning - the ability to avoid hazardous situations by looking ahead

• Robustness - the ability to degrade gracefully

• Reactivity - the ability to provide fast, timely response to surprise

In [30], the following requirements for an ASM capable of producing satisficing behavior were

added.

• Compromise - the favoring of actions that are best for a collection of behaviors, rather
than for individual behaviors

• Opportunism - the favoring of actions that interrupt the ongoing goal and pursue a new
one

Finally, from my experiences developing ASMs for both the Urban Challenge and RoboCup, a

capable ASM should also take into account

21

• Temporal Sequencing - the ability to define a necessary order for tasks and sub-tasks

• Uncertainty Handling - the ability to not react poorly to perception noise

It is very important to note that some of these many requirements conflict with each other. For

example, persistence can be in conflict with opportunism and situatedness. Similarly, planning

is in conflict with reactivity. It is therefore impossible to create an ASM which meets all of

these requirements. Instead an ASM must attempt to trade-off between these requirements in

a way that best fits the given application.

3.2 Taxonomy of ASMs

Being able to classify ASMs into logical groups is an important and useful exercise. Examples

of such taxonomies are seen in [16], [26], and [23]. Of these taxonomies, the most complete and

comprehensive is by Pirjanian in [23]. Pirjanian breaks down all ASMs as being either in the

arbitration or command fusion class.

Arbitration ASMs allow “one or a set of behaviors at a time to take control for a period

of time until another set of behaviors is activated.” Arbitration ASMs are therefore most

concerned with determining what behaviors are appropriate given the current situation. Once

this has been determined it is guaranteed that there will be no conflict in outputs between the

running behaviors and so no method of combination or integration is needed. ASMs within the

Arbitration category are further broken down into priority-based, state-based, or Winner-take-

all subclasses.

Command fusion ASMs, on the other hand, “allow multiple behaviors to contribute to the

final control of the robot.” Rather than being concerned with selecting appropriate behaviors,

command fusion ASMs let all behaviors run concurrently, then rely on a fusion scheme to filter

out insignificant behavioral outputs. Command fusion ASMs are therefore typically described

of as being flat. Since multiple behaviors can end up desiring the same control, these ASMs

present novel methods of collaboration amongst behaviors. This sort of collaboration often lends

itself to multiple objective problems. For example, in the robot navigation domain, command

22

Figure 3.1: Pirjanian’s taxonomy of ASMs

fusion ASMs are useful for both avoiding an obstacle and proceeding towards a goal at the

same time. An arbitration ASM would be constrained to doing one or the other. ASMs within

the Command Fusion category are further broken down into Voting, Superposition, Fuzzy, or

Multiple Objective subclasses. Figure 3.1 presents the taxonomy presented by Pirjanian that

has been described here.

3.3 Merging Arbitration and Command Fusion

Both Arbitration and Command Fusion ASMs have their unique strengths and weaknesses.

For example, arbitration mechanisms are more efficient in their use of system resources. By

selecting only one behavior from a group of competing behaviors, processing power and sensor

focus can be wholly dedicated to one thing. In a flat, command fusion ASM, all behaviors

must be operating at all times in order to vote for the action they prefer. As the complexity of

the robot application grows, the number of behaviors needed grows, and so does the necessary

resources in a command fusion ASM. In a hierarchical arbitration ASM, however, the library of

behaviors can grow as much as it wants, but only a subset of those behaviors will ever be needed

at any given moment. Of course, command fusion ASMs have their own benefits over arbitration

schemes. For example, command fusion mechanisms allow multiple behaviors to simultaneously

contribute to the control of the robot. This cooperative approach, rather than competitive, can

be extremely useful in situations with multiple, concurrent objectives. Well known examples

of arbitration ASMs include the Subsumption Architecture [6], Activation Networks [17], and

23

Bayesian Decision Analysis [15]. Popular examples of command fusion ASMs include Potential

Fields [13], Motor Schemas [4], Distributed Architecture for Mobile Navigation (DAMN) [24],

and Fuzzy DAMN [33].

In this section, a method of merging these two different classes of ASMs is presented. In do-

ing so, the strengths of both arbitration and command fusion mechanisms hope to be preserved.

This is possible by placing an arbitration ASM in sequence with a command fusion

ASM. The result, in essence, is the ability to select a subset of behaviors given the current

situation. Then, if multiple behaviors competing for the same output are activated, they can

still be cooperatively combined using a method of command fusion. Specifically, a state-based,

hierarchical, arbitration ASM is used for behavior coordination. This method utilizes a hierar-

chical network of Finite State Automata (FSA), which can be referred to as a Hierarchical State

Machine (HSM). To integrate the outputs of the activated behaviors, almost any known method

of command fusion may be used. However, the chosen method should exhibit the qualities most

conducive to the specific robotic application.

3.4 Arbitration Mechanism

Using a hierarchical approach to behavior decomposition is a common practice in ethology. It

allows for the differentiation of behaviors according to their level of abstraction. According to

Minsky in the Society of Mind [18], intelligent beings consist of agents and agencies. All agents

are organized in a hierarchy where abstract agents are built upon lower, less abstract agents.

Each agent has an individual motive which it pursues by activating and deactivating lower,

subordinate agents. Groups of related agents in the hierarchy are viewed as sub-systems, and

the hierarchy as a whole is the overall system.

3.4.1 Hierarchical Structure

A very similar organization has been adapted here, except agents refer to individual behaviors.

All behaviors are similarly organized in a hierarchy with more abstract behaviors higher in the

24

Figure 3.2: General example of a behavioral HSM

tree, and more physical behaviors lower in the tree. At any given time a subset of the total

number of behaviors in the hierarchy are activated and the rest are deactivated. The activated

behaviors are considered to be along the activation path. Each behavior, or node, in the tree is

responsible for determining which of their sub-behaviors should be activated. This is determined

by each behavior’s internal state and is not limited to only one sub-behavior. For example,

given behavior A in state X, two parallel, sub-behaviors may be activated at the same time.

The result is a branch in the activation path and can be seen in Figure 3.2

We can also see from Figure 3.2 that all behaviors have implied relationships based off

of their position within the hierarchy tree. Behaviors can have parent-child relationships or

sibling relationships, but it is important to note that these relationships do not necessarily

imply importance or priority. While some arbitration ASMs use hierarchy to determine the

relevance of a behavioral output [6], this approach uses hierarchy solely as an abstraction

method for task decomposition. Simply put, the primary function of the hierarchical tree is

to determine what behaviors to run. Using a hierarchy allows us to logically break down a

complex task into smaller, more manageable pieces.

25

Establishing the final output to each virtual actuator (VA) is therefore handled by a set of

command fusion ASMs. As seen in Figure 3.2, two sibling behaviors are collaborating/competing

for control of VA1. VA2, on the other hand, has a parent-child pair producing command mes-

sages. It is also possible for a single behavior to produce more than one VA command if it

requires explicit coordination between two or more VAs. However, it is not required for every

behavior to produce a VA command. Some behaviors, especially higher-level, more abstract

behaviors may be used solely as decision nodes in the hierarchy. The internal state of these

behaviors is important in determining the activation path and subsequently what lower-level

behaviors will run, but do not necessarily request specific action themselves. These behaviors

are seen in Figure 3.2 as activated, but not having a specific color.

Any behavior which produces 1 or more VA commands is classified as a command behavior.

Any behavior which results in the activation of lower sub-behaviors (i.e. not a leaf node) is

classified as a decision behavior. These classifications are not mutually exclusive, so it is possible

for a behavior to be both a command and decision behavior.

3.4.2 State-Based Behavioral Structure

Every behavior is modeled as an individual state machine, or finite state automata (FSA).

Individual behaviors can therefore be formally described as consisting of a set of controls states

csi ∈ CS. Each control state encodes a control policy πva, which is a function of the robot’s

internal state and its beliefs about the world (virtual sensor inputs). This policy, πva determines

what action with respect to a specific VA to take when in control state csi. All behaviors have

available to them the same list of virtual actuators vai ∈ V A. Furthermore, each control state

has hard-coded what sub-behaviors sbi ∈ SB to activate when in that state.

Transitions between control states occurs as a function of the robot’s perceptual beliefs, in

the form of virtual sensors, or built-in events, such as an internal timer. While each behavior

may have a begin and end state corresponding to the start and completion of a specific task, a

single behavior, or state machine, cannot terminate itself. The higher, calling behavior always

specifies what sub-behaviors should be running. Should a sub-behavior complete its state

26

Figure 3.3: A behavioral state machine for robot soccer

sequence and have nothing to do, it will remain in an idle state and not compete for control of

any VA.

A simple example of an abstract behavior used for robot soccer is shown Figure 3.3. The

Field Player- Attacker behavior shown here is just one behavior within the overall behavior

hierarchy needed for a generic soccer playing robot. It is a decision behavior with 4 control states

and a multitude of transitions for moving between these control states. While all transitions in

this example are based off of perceptual occurrences, some may require a combination of virtual

sensor inputs before being evaluated to true. For example, Open Shot may require perceiving

the goal as being in front of the robot as well as perceiving the presence of no other robots

before triggering.

Of course this individual behavior is only one within a hierarchy of other more, and less,

abstract behaviors. A higher-level behavior might determine the role of the robot based off of

the game situation or user inputs. For example, if the team is winning significantly it might

be desired to have attacking players transition to a defender role, at which point the behavior

27

shown in Figure 3.3 might no longer be called. On the other side, each control state shown has a

selection of sub-behaviors which are activated when in that control state. Let the Field Player

- Attacker behavior be in csApproachBall, it is possible then that sbBallChaser, sbBallTracker,

and sbObstacleAvoider are activated, each with their own state machine and corresponding sub-

behaviors. Since the behavior shown here is a decision behavior and not a command behavior,

csApproachBall has no control policy with respect to a virtual actuator. Instead, the primary

function of this behavior is to determine what sub-behaviors to run given the current situation.

From these examples we see how a HSM, and particularly the current activation path within

that hierarchy, are representative of the robot’s current situation. This situation is a function

of the robot’s environment, the goals of the robot, and the internal states of the robot. In total,

proper construction of the HSM will result in providing contextual intelligence to the robot.

Producing emergent behavior, however, is left to the Command Fusion mechanism.

3.5 Command Fusion Mechanism

As stated earlier, the hierarchical relationship between behaviors has no relevance to the likeli-

hood of that behavior’s effect on a specific VA. Once all the behaviors along the activation path

have been defined by the arbitration mechanism described previously, their hierarchy is thrown

out and they are put in a flat structure. Their individual outputs are then combined by a

series of command fusion ASMs, with each instance corresponding to a single virtual actuator.

The specific mechanism used for command fusion is not specified in this approach, and instead

should be determined by the designer according to the robot application and specific virtual

actuator. It is therefore possible to have one command fusion method for VA1 of robot X, and

a separate command fusion method for VA2 and VA3 of the same robot. This general approach

to command fusion is seen in Figure 3.4.

28

Figure 3.4: Layered Command Fusion Modules

3.5.1 Application Specific Selection

Returning to the robot soccer example presented in the previous section, let VA1 be a vector

which defines the direction and speed of a walking gait. Based on the current activation path

in the HSM, the walkToBall behavior and the avoidObstacle behavior are outputting desired

gait vectors. It therefore makes sense, in this behavior-based robot navigation example, to

use a superposition mechanism of command fusion, such as potential fields or motor schemas.

This would be the simplest way of producing the desired emergent behavior of approaching

the ball while avoiding other robots along the way. Take now the situation where the robot is

attempting to kick the ball into the opposing goal. Let VA2 be a set of discrete kick types, left-

Foot_forward, leftFoot_backward, rightFoot_forward, rightFoot_backward, etc. Just the

fact that there are only a set number of discrete kick types makes a superposition-based ASM

inappropriate. Instead a voting-based ASM would be much more applicable, where each be-

havior would vote for one type of kick, and the kick with the most votes would be selected.

Taking yet another, further example, examine the behavior needed to select lanes when driving

down in urban street in an autonomous vehicle. In this situation, one behavior desiring to stay

in the right lane for an upcoming turn is running concurrently with a behavior desiring to pass

a slow moving vehicle by moving to the left lane. Let the VA be the desired lane, and again we

see that a superposition ASM is not appropriate. In this robot application, driving in between

two lanes is unacceptable. Instead, a single lane should be chosen, either the left or the right.

29

We see from these examples the result of selecting different fusion ASMs. Depending on the

exact mechanism chosen, completely different emergent behavior can result. Where the arbi-

tration ASM was responsible for providing contextual intelligence to the robot, the command

fusion ASM is responsible for producing emergent behavior.

3.6 Discussion

In this chapter, a general approach to behavioral programming that fits within the tri-level

hybrid architecture has been presented. This approach attacks the Action Selection Problem by

placing an arbitration ASM in sequence with a command fusion ASM. The arbitration ASM is

a novel variant of existing state-based ASMs and utilizes a hierarchical state machine for task

decomposition and behavior selection. The mechanism proposed therefore provides the robot

with contextual intelligence. The specific command fusion ASM is not specified and should be

chosen based on the robot application and corresponding virtual actuator. The organization

of ASMs in this approach allows many typical and well known command fusion ASMs to be

implemented. The selection and implementation of these command fusion mechanisms will

result in the selected subset of behaviors producing emergent behavior. In total, the general

approach presented here addresses many important problems with existing ASMs. Like with

any solution, however, there are some important benefits and drawbacks.

3.6.1 Benefits

The following benefits have been identified while developing this general approach to high-level

behavioral programming.

Task Decomposition The organization of behaviors in a hierarchical tree according to their

level of abstraction is extremely useful for breaking down a task into manageable sub-

tasks, and sub-sub-tasks that can be solved as independent solutions. Due to the fact that

robotic behaviors still need to be largely hand-coded, a logical method for decomposition

is very helpful in this process.

30

Temporal Sequencing Through the use of state machines in each behavior, the robot de-

signer can easily imply when the order of tasks is important and when it is not. Every

behavior uses a state machine to define which sub-behaviors are activated. This designer

can therefore use state transitions to imply order in the completion of those lower sub-

behaviors.

Behavior Reuse By taking a ”divide-and-conquer”approach to behavioral problem solving, it

is possible to reuse lower-level behaviors for similar problems. A sub-behavior for control

state i of behavior x, can also be a sub-behavior for control state j of behavior y.

Behavior Commonalities In conventional state machines, there are many commonalities

amongst different states. In the behavioral programming example, it is possible that

many different behaviors would encode the same policy for a specific VA. By using a

hierarchical state machine, encoding this policy in every behavior is unnecessary. Instead,

a higher-level behavior allows us to define common policies only once.

Perception Requirements From a systems engineering perspective, the use of state ma-

chines is very useful because state transitions define all perception and virtual sensor

requirements. By building the behavioral HSM first, a robot designer is aware of what

information needs to be pulled from the environment.

Uncertainty Handling A unique property of state-based behaviors is that they can be made

robust to perception noise. This is possible because state transitions are directional. The

requirements for transitioning from control state A to control state B can be different

then the requirements for transitioning from B to A. If there is noise in the perception

data (which there usually is), defining these transitions properly can prevent flip-flopping

between states.

31

3.6.2 Drawbacks

As expected, this approach to behavioral programming is not a ”silver bullet” solution. There

are some drawbacks which should be noted.

Preprogrammed vs. Learned Individual behaviors and their relationships within the greater

hierarchy must be hand-coded. As a result, determining the control policies and param-

eters built into each state of each behavior is a time consuming and error prone process.

Testing, both in simulation and on the actual robot, is absolutely essential but not al-

ways possible. It is desirable to automatically generate or learn behaviors, or at least

autonomously modify parameters and control policies based off of the robots actual expe-

rience. Such learning methods are not addressed in our approach but are being researched

elsewhere [3].

Performance Measurement There exists no formal method for measuring and comparing

the performance of the presented approach against other existing approaches. While

”good enough” behavior defines important functional requirements, there is no quantita-

tive method of comparison for ”goal-orientedness”, for example. Qualitative observations

are the only major source of comparison which is generally insufficient. Performance com-

parison of ASMs can be done in a standard simulation environment [30] or even better

in real-world competitions such as the DARPA Urban Challenge. However, with non-

standardized platforms, sensors, and technology, the overall performance of any team is

not a good indication of the smaller behavioral programming problem. Furthermore, since

the behavior hierarchy is hand-coded, different implementations of the same approach can

have very different results. The overall performance, therefore, is still dependent more on

the designer than the approach itself.

32

Chapter 4

Case Study: Autonomous
Driving in Urban Environments

In November 2007, the Defense Advanced Research Projects Agency (DARPA) hosted the

Urban Challenge, an autonomous ground vehicle race through an urban environment. In order

to complete the course, the fully autonomous vehicle had to traverse 60 miles under 6 hours

while negotiating traffic (both human and robotic), through roads, intersections, and parking

lots. Out of an original field of hundreds of teams from across the globe, only 35 were invited

to the National Qualifying Event (NQE) in Victorville, California. After rigorous testing, only

11 teams were selected to participate in the Urban Challenge Event (UCE). Of these 11, only

6 teams managed to finish the course, with the top three places going to Carnegie Mellon

Figure 4.1: Lineup of Finalist Vehicles in the Urban Challenge

33

University, Stanford University, and Team VictorTango of Virginia Tech.

In order to complete the challenge, vehicles had to contend with complex situations in

crowded, unpredictable environments. A behavioral system capable of obeying California state

driving laws in merging situations, stop sign intersections, multi-lane roads, and parking lots

was needed. While a vehicle did not need to actively sense signs or signals such as traffic lights,

right-of-way rules had to be followed as well as precedence-order at predefined intersections.

This required the sensing, classification, and tracking of both static and dynamic obstacles at

speeds up to 30 mph. To be successful, the vehicle had to balance goals of dynamically changing

importance, traversing the course as quickly as possible while remaining a safe and ”defensive”

driver. The software module utilized by Team VictorTango to attack this problem employed

the general approach to behavioral programming presented in Chapter 3. By examining this

unique implementation and comparing it with other implementations, we can gain insight into

the power and use of such a behavior-based approach.

4.1 Robotic Platform

Team VictorTango’s entry, Odin, is a modified 2005 Hybrid Ford Escape. It is a mid-size

commercial automobile that was converted completely to drive-by-wire for autonomous control.

Odin’s main computers, a pair of HP servers equipped with two quad-core processors each,

is capable of shifting gears, applying throttle/brake, steering, activating lights/turn signals,

honking the horn and even rolling down the windows. A variety of sensors provide Odin’s

perception, including a multitude of Laser Range Finders (LRFs), two cameras, and an Inertial

Navigation System (INS)1. As a whole the vehicle is a very large, heavy, and powerful robotic

platform capable of moving at high speeds. It is also very reliable with several safety fail-safes

and the ability for a human to take control at any time. [32]

1An INS is composed of a differential GPS unit integrated with an Inertial Measurement Unit (IMU)

34

Figure 4.2: External view of Odin with sensors labeled

4.2 System Architecture

As described in Chapter 2, team VictorTango implemented a novel, tri-level, Hybrid Delibera-

tive/Reactive control architecture as seen in Figure 2.6. This architecture follows a deliberative-

reactive-deliberative progression from high-level mission planning, through behavioral control,

down to low-level path planning. The architecture utilizes perception modules for producing

sensor-independent perception messages in the form of virtual sensors, which are then fed to

both the reactive Driving Behaviors module and the deliberative Motion Planning module. A

diagram illustrating the perception structure is seen in Figure 4.3. The virtual sensors available

to Driving Behaviors are described here:

Static Obstacles Objects in and around the road which have been classified as not moving

and not having the potential to move. Objects such as poles, dumpsters, traffic cones,

and roadblocks are listed as static obstacles.

Dynamic Obstacles Objects in and around the road which are either moving, or have the

potential to move. All manned or unmanned vehicles are listed as dynamic, even if they

are stopped at an intersection or on the side of the road. Dynamic obstacles also have

a predicted path and lane ID associated with them. This path is a function of the road

35

Figure 4.3: Perception and World Model Structure on Odin

coverage as well as the current and past movement of the vehicle. The lane ID is a function

of the road coverage and the current position of the vehicle.

Road Coverage The drivable area around the vehicle broken down into individual lanes. Each

lane consists of center points and a lane width and is organized by road and direction.

Branches in the lane at intersections are also included.

Lane Position Reports the current lane position of Odin.

Local Position and Velocity State Reports the current position and velocity of Odin with

respect to the ”local” frame. This local frame is ground fixed, not vehicle fixed and is

updated mainly from the INS system. The position of all other objects as well as the road

information are given in this coordinate system.

On the control side, a deliberative Route Planner is run solely on demand, providing an

optimal sequence of roads to follow to achieve the greater mission. The behavioral component,

or Driving Behaviors, is then responsible for providing contextual intelligence, monitoring the

situation at hand and taking into account the changing goals and sub-goals of the vehicle.

Through a method of behavior coordination, the desired emergent behavior given the current

situation must be produced through the issuing of high-level motion commands via virtual

actuators. The collection of virtual actuators is known as the Behavior Profile. This behav-

ior profile provides inputs to a low-level, deliberative Motion Planner that plans and re-plans

36

Figure 4.4: Command and Control Chain on Odin

continuously. Motion Planning maintains proper separation distances between vehicles in the

same lane, and uses a trajectory search to find the optimal path to meet the behavior profile

requirements while avoiding any obstacles. Finally, a desired path is sent to the Vehicle Inter-

face which uses internal feedback loops to set proper steering, throttle, and brake percentages.

A simplified diagram of this entire process is shown in Figure 4.4 with the reactive behavioral

component, Driving Behaviors, highlighted. It is important to note that the command and

control chain typically operates in a top-down manner, originating at the Route Planner. How-

ever, it is possible, in the event of an unforeseen roadblock, to move from the bottom-up. In

this case, Motion Planning reports the behavior profile as unachievable, and then depending

on the situation and the number of alternatives attempted, Driving Behaviors may request a

replan from the Route Planner. This would result in an illegal, but necessary U-Turn and the

continuation of the vehicle towards the ultimate mission objectives.

The virtual actuators which compose the Behavior Profile and are available for control to

Driving Behaviors are described here:

Desired Velocity The desired speed of the vehicle. Motion Planning may reduce the speed of

the vehicle in order to safely avoid obstacles or maintain stability, but may never increase

the speed beyond the Desired Velocity.

37

Desired Lane This specifies the lane corridor the vehicle should be in. It is selected from

the list of available lanes given by the lane position virtual sensor. Should the Desired

Lane differ from the current lane position, a lane change is being commanded and Motion

Planning should attempt to switch to the proper lane as soon as possible. If a Desired

Lane of 0 is set, no lane maintenance is required and Motion Planning should ignore lane

markings and stay only within the confines of the entire road.

Target Points A series of waypoints Motion Planning should attempt to achieve. Each target

point consists of a local position and a set of behavior flags. The behavior flags are used

to indicate special action that should occur at the specific target point. For example, if

the stop behavior flag is set, the vehicle should come to a complete stop at that target

point and remain stopped until a new set of target points are sent with the stop flag

removed. The second behavior flag is the heading flag which can be used to dictate a

specific heading of the vehicle when crossing over that target point. In general, lane

management takes precedence over Target Points. Should they disagree, motion planning

is expected to remain in the Desired Lane.

Direction Indicator This specifies whether or not the vehicle should be progressing in the

forward direction or in the reverse direction. It is possible for Driving Behaviors to set

this indicator to ”either”, in which case Motion Planning may solve to figure out which

direction is optimal for meeting all the requirements being set by other virtual actuators.

Signals Specifies what turn signals to actuate along with flashing the lights and honking the

horn. While this virtual actuator will not modify the path produced by Motion Planning,

it is the responsibility of Driving Behaviors to control these signals in a coherent matter.

For example, before passing a disabled vehicle, flashing the lights and honking the horn

should be performed.

Request Replan Initiates a replan of the Route Planner. Should an unforeseen road block

be encountered, Driving Behaviors should request a replan if no other method of getting

around the road block exists.

38

Figure 4.5: Main situational categories, the open road (a), intersections (b), and zones (c)

4.3 Task Decomposition and Hierarchy

With the available perception information, in the form of virtual sensors, and control methods,

in the form of virtual actuators, defined, we can now look at the behavioral decomposition

used in Driving Behaviors. Construction of the Hierarchical State Machine is dependent on

the proper breakdown of required tasks and skills. Unfortunately, the entire problem of driving

in an urban environment is complex with many different sets of situation dependent rules.

Furthermore, it is expected that these rules be sometimes bent in order to complete more

important objectives. For example, it is normally illegal to cross over a double yellow line.

However, if there is a disabled vehicle on a two lane road with a double yellow line, it is within

the rules to cross into the oncoming lane to pass as long as there is no oncoming traffic and the

maneuver is properly signaled. Understanding and breaking down such ambiguities is essential.

After careful analysis of the Urban Challenge rules as well as the California state driver’s

handbook, the overall driving task was broken down into three main categories, the open road,

intersections, and parking lots, or zones, as seen in Figure 4.5. These divisions can be defined by

the structure of the road network in these areas. The open road is characterized by well defined

lanes going in parallel, but opposite directions. Intersections are naturally polygons where two

or more roads intersect and are well defined with entrance and exit points. Finally, parking

lots have a given perimeter but no sort of lane structure. Parking spots may be defined in a

parking lot, some of which the vehicle may be required to park in. Not only do these different

39

Figure 4.6: Behavior hierarchy developed for driving in an urban environment

areas have significantly different road structure, the behavior of the vehicle in these areas differs

greatly. In the open road, lane changing, passing maneuvers, and U-turns are the necessary

emergent behaviors. In intersections, merging, following precedence, and crossing traffic are the

focus. Finally, in parking lots and zones, navigation in unstructured environments, parking, and

reversing are the required skills. It is this high-level decomposition that guided the behavioral

construction on Odin.

The overall HSM used for behavior arbitration on Odin is seen in Figure 4.6. The entire

tree has a depth of 2, and all command behaviors are labeled as ”drivers”. Level 1 behaviors are

primarily concerned with traversing the course solely on a-priori information. These behaviors

utilize the given Route Network Definition File (RNDF) and other a-priori information to

execute as if no surprises in the world exists. Level 2 behaviors are then responsible for handling

events that cannot be planned for, such as intersection traffic, disabled vehicles, and roadblocks.

At the highest level, Driving Behaviors is always in one of only four states, Idle, Build Route,

Drive Route, or Shutdown. Both Idle and Shutdown are of trivial importance, so depending

on the highest level state, Driving Behaviors runs either the Route Builder sub-behavior or

the Route Driver sub-behavior. The Route Builder behavior is activated only when a new

40

plan has been sent to Driving Behaviors from the Route Planner. It is neither a command

nor decision behavior and therefore has no control policies and does not activate any lower

sub-behaviors. Instead, it is used for pre-processing the routes to minimize calculations that

need to be performed in real-time while the vehicle is driving. Most importantly, the Route

Builder produces a complete list of Target Points that the vehicle should follow should no

other traffic be encountered during the mission. This list of classified Target Points are then

given to the Route Driver which is then activated until either the mission is completed or a

dynamic replan is required.

4.3.1 Route Driver

The subsequent responsibilities of the Route Driver are twofold. As a command behavior, it

has a control policy with respect to five of six total virtual actuators, πdir, πTP , πvel, πlane,

and πsig. These control policies are programmed such that Odin will drive the route as close

as possible to the plan originally provided by the Route Planner. For example, when entering

a new segment, πlane will immediately move Odin to the correct lane for the upcoming exit,

πsig will initiate the appropriate turn signal once within a certain distance, and πTP will set a

stop flag at the exiting Target Point if the road network dictates that the vehicle must stop (i.e.

a stop sign is present). If the vehicle is not required to stop (i.e. a yield situation), then the

Route Driver will not set a stop flag, and it is the responsibility of a more specific intersection

behavior to stop the vehicle due to traffic.

As a decision behavior, the Route Driver must determine what sub-behaviors to activate.

The available sub-behaviors are the Passing Driver, Blockage Driver, Precedence Driver,

Merge Driver, Left Turn Driver, and Zone Driver. These drivers are chosen based on the

internal state of the Route Driver. All of the Route Driver’s states are classified as either open

road, intersection, or zone. In open road states, the Passing Driver and Blockage Driver

behaviors are activated. In intersection states, depending on the type of intersection, some

combination of the Precedence Driver, Merge Driver and Left Turn Driver is activated.

Finally, in zone states, the Zone Driver is activated. Figure 4.7 shows the state diagram of

41

Figure 4.7: State Diagram of the Route Driver

the Route Driver and the classification of states as either open road, intersection, or zone.

From this state diagram, we can see some important behavioral traits. For example, before

every intersection, which are defined as being either stop or exit intersections, there is a corre-

sponding approaching state. The transitions of the state diagram show that it is impossible to

enter a stop or exit state without first moving through the approaching state which is entered

once the vehicle is within a certain distance threshold to the upcoming intersection. As you can

see in the Figure 4.7, these approaching states are defined as intersection states and not open

road states, meaning the Passing Driver and the Blockage Driver are no longer activated.

This prevents the vehicle from trying to pass a traffic queue for being too slow, or mistaking

the traffic queue as a roadblock and commanding a dynamic replan.

4.3.2 Passing Driver and Blockage Driver

Unlike the Route Driver, both the Passing Driver and Blockage driver are solely command

behaviors and not decision behaviors. This does not imply that the these behaviors are void

of decisions, but simply that they are leaf nodes and do not activate any lower sub-behaviors.

42

Figure 4.8: State Diagram of the Passing Driver

Therefore the internal states of these behaviors are used primarily to modify control policies.

The available control policies to the Passing Driver are πvel, πlane, and πsig. The available

control policies to the Blockage Driver are the same as the Passing Driver with the addition

of πreplan, which gives this behavior the ability to request a replan from the Route Planner

module.

The Passing Driver is concerned with getting around slow moving or disabled vehicles.

It is therefore responsible for monitoring other vehicles in the near vicinity, deciding if a pass

is necessary, and executing this pass in a safe and legal manner. Awareness of the roads is

necessary as the Passing Driver must distinguish between passing in an oncoming lane and

passing in a forward lane, and subsequently check the appropriate areas for traffic. The Passing

Driver does not maintain knowledge of the overall route however, so it is the responsibility

of the Route Driver and the command fusion ASM to overrule or deactivate the Passing

Driver if a pass is initiated too close to an exit or intersection. The state diagram of the

Passing Driver is shown in Figure 4.8.

Important behavioral traits can again be pulled from the breakdown of states seen here.

43

Figure 4.9: State sequence for passing a disabled vehicle in an oncoming lane

Like the pre-emptive approaching states in the Route Driver, we have pre-emptive checking

states that must be entered before commanding an actual pass. These checking states are

differentiated by whether or not a forward lane of travel exists, which in turn defines what the

behavior expects other vehicles to be doing in that lane. We also see the addition of an extra

holding state when the only available passing lane is an oncoming lane. This is a good example

of the power of state machines for temporal sequencing. Before Odin can cross a double yellow-

line, a certain amount of time must pass before the blocking vehicle is classified as disabled.

During this time, πsig flashes the headlights and honks the horn. Once the vehicle is determined

to be disabled, the Passing Driver transitions to the checking oncoming state where πsig is

now used to activate the turn signal. πvel and πlane are used to begin a ”creeping” maneuver

to give the sensors ample view down the oncoming lane and ascertain whether or not a passing

maneuver is possible. If there is a large enough gap in traffic, then the Passing Driver moves

to the passing oncoming state and switches to the oncoming lane. Finally, after moving past

the disabled vehicle, the returning state moves the vehicle safely back to the travel lane. The

total state sequence followed to pass a disabled vehicle in an oncoming lane is shown in Figure

4.9.

Unlike the Passing Driver, which is primarily concerned with dynamic obstacles, the

Blockage Driver is concerned with static obstacles. Static obstacles such as cones and barrels

may be used to block off individual lanes as well as the entire road. Should only a single lane

be blocked, the overall behavior should be similar to passing a vehicle. However, a method is

needed to evaluate when all lanes have been blocked and to subsequently request a replan and

44

3-pt U-turn maneuver. The Blockage Driver therefore has control policies with respect to the

same virtual actuators as the Passing Driver but with the additional control policy, πreplan,

for requesting a replan.

The Blockage Driver maintains an internal list of available lanes in the present segment.

These lanes are ordered such that the immediate lanes to the vehicle’s left or right are chosen

first. All the forward lanes are also given a priority over any oncoming lanes. Each time Motion

Planning reports a lane corridor as unachievable (due to static obstacles), this list is updated

by removing the specified lane and thereby bumping up the priority of all other lanes. All lanes

are tried in turn, and when no more available lanes exist, either in the forward or oncoming

direction, the Blockage Driver enters the replan state. This updates the Route Planner with

the appropriate blockage information and results in all behaviors being reset while a new route

is generated. The state diagram of the Blockage Driver can be seen in Appendix A and is

provided as reference.

4.3.3 Precedence Driver, Merge Driver, and Left Turn Driver

To handle intersections, three different command behaviors (Precedence, Merge and Left Turn)

are activated in the approaching stop, stop, approaching exit, and exit states of the Route

Driver. As command behaviors, their internal states are used to modify their control policies

and do not activate any lower sub-behaviors.

The Precedence Driver is responsible for maintaining precedence order at intersections

with more than one stop sign. Upon arrival at the stop sign, this behavior examines all other

stop points that are a part of the same intersection. If another vehicle is currently occupying one

of these spaces, it is placed in a queue in front of Odin. The Precedence Driver then enters

the waiting for turn state where it monitors the occupied positions until they have all been

vacated. Once it is Odin’s turn, the Precedence Driver continues to hold the vehicle back

until the intersection itself is clear of any traffic. Once satisfied, control is relinquished back to

the Route Driver or a separate intersection behavior. The Command Fusion mechanism used

to handle this passing of control is discussed further in section 4.4. The only control policy

45

encoded into the Precedence Driver is πTP . By producing a set of target points with a high

urgency and the stop flag set, the Precedence Driver is able to overrule the Route Driver

and hold Odin at a stop point. Since the Route Driver assumes no other traffic, it would want

to proceed immediately after coming to a complete stop. It is therefore the responsibility of

the Precedence Driver to hold the vehicle in place until it is also Odin’s turn to proceed. The

state diagram for the Precedence Driver as well as all other behaviors used on Odin can be

found in Appendix A.

The Merge Driver is responsible for determining when there is space to enter, or cross lanes

of moving traffic. This driver uses only one control policy, πvel, to either hold Odin back when

there is not enough space to merge, or possibly increase the merging speed when a smaller

gap is detected. Another important trait of both this behavior and the Left Turn Driver is

the ability to commit to merging in the face of noisy perception data. It is quite common in

busy intersections to determine that there is space for a merging behavior, but due to a tight

turn, static obstacle, obstructing hill, or some other condition unknown to Driving Behaviors,

have the gap shrink or disappear before the merge has been completed. While it is desirable

to cancel the merge in this situation, it is not acceptable to come to a complete stop in the

middle of an intersection. In many cases it is in fact safer to continue with the maneuver and

complete the merge then to freeze in the line of moving traffic. Therefore a ”point-of-no-return”

is continually calculated from the stopping distance needed to come to a complete stop without

protruding into traffic lanes. Once this ”point-of-no-return” has been crossed, the behavior is

committed to the maneuver and will not stop itself.

Finally, the Left Turn Driver is very similar in responsibility to the Merge Driver. The

Left Turn Driver maintains two control policies, πTP and πvel, and is used when making

a left off of a main road across traffic. Functionally, it interacts with the Route Driver the

same way that both the Precedence Driver and Merge Driver do, holding Odin back until

a sufficient gap has been detected in traffic. Furthermore, another ”point-of-no-return” is used

to prevent the vehicle from stopping mid-maneuver due to perception noise.

46

Figure 4.10: Network of control points used for navigating zones

4.3.4 Zone Driver

Keeping consistent with the fact that all level 2 behaviors in the hierarchical tree are responsible

for dynamic, unforeseen events, the majority of zone behavior is actually performed by the Route

Driver. It is for this reason there are so many zone states within the Route Driver as seen

in Figure 4.7. If no traffic is encountered in a zone, it is possible for the Route Driver to

perform all necessary parking behavior. All necessary Target Points for traversing a parking

zone, parking in a defined spot, and exiting the zone are determined from a-priori information.

Based on the organization of parking rows, and the placement of exits and entrances in the

zone, a network of parking control points are defined as seen in Figure 4.10. A Dijkstra’s search

algorithm is then used during the route building phase to create a sequence of Target Points

needed to safely enter the zone, park in all required spots, and exit the zone. These Target

Points are then built into the route passed to the Route Driver in level 1 of the hierarchy.

Should, however, obstacles within the unstructured zone environment make it impossible to

hit all the predefined Target Points, it is the responsibility of the Zone Driver to find a way

47

around. This is done by disconnecting a segment of the control point graph and re-searching

for a new sequence of control points. To enable this capability the Zone Driver maintains the

following control policies: πdir, πTP , and πvel. It is important to note that Driving Behaviors is

not responsible for any obstacle avoidance or traffic behavior in zones. Instead, Motion Planning

controls the path of Odin to stay to the right of oncoming traffic, navigate into a parking spot,

and reverse out safely. This is largely due to the unstructured environment of a zone. Without

well defined lanes, it is impractical for Driving Behaviors, without any knowledge of the size

and mobility constraints of the vehicle, to estimate what is possible to traverse. Rather, Motion

Planning can report a behavior profile as unachievable in a zone, causing the Zone Driver to

kick in and initiate a new control point search.

4.4 Command Fusion Mechanisms

With all the command behaviors defined as individuals, it is necessary to look at how these

behaviors interact as a group. Since control policies are classified by virtual actuator, the main

interaction between behaviors occurs when two or more control policies are outputting to the

same virtual actuator. For example, when πlane of the Passing Driver disagrees with πlane of

the Route Driver, some form of resolution is needed. When this situations occurs, it is the

responsibility of the command fusion mechanism to produce the final desired lane that will be

bundled in the behavior profile.

As described in section 3.5, the HSM is responsible only for task decomposition and deter-

mining what behaviors should be running at any given time. Once these behaviors have been

selected, they are placed in a flat organization. A command fusion mechanism is then used

for each virtual actuator to determine the final output. This command fusion mechanism can

utilize many existing techniques [4, 6, 13] or implement a novel method. What dictates the

choice should be the robot application and the specific virtual actuator. For example, virtual

actuators that have only a set number of possible commands do not lend themselves well to

superposition based ASMs.

48

Figure 4.11: Command Fusion ASMs used on Odin

Figure 4.11 illustrates the command fusion structure used in the DARPA Urban Challenge.

For simplicity, the activation path depicted in Figure 4.7 is reflected here. In this situation, only

the Route Driver, Passing Driver, and Blockage Driver are activated. All of these behaviors

have their own set of control policies, some of which overlap with each other. When this occurs

the respective command fusion ASM resolves the conflict. In this figure, the Set Signals and

Request Replan outputs are separated because they are not actually bundled into the Behavior

Profile and sent to Motion Planning. Set Signals is sent directly to the Vehicle Interface and

Request Replan is actually sent upwards to the Route Planner.

For the Urban Challenge, it was determined that the same fusion mechanism was appropriate

for all virtual actuators. The chosen mechanism uses a modified voting-based policy. Due to

the rule heavy nature of urban driving, and the presence of well defined individual maneuvers

like passing, a non-superposition based ASM was needed. Continuing the example from above,

should the Route Driver and the Passing Driver desire to be in different lanes, it is not acceptable

to drive in between two lanes. Instead, one behavior should take priority and take complete

control of that virtual actuator. To make this possible, each behavior has encoded in all of its

control policies a variable urgency value. This value indicates how badly that behavior feels

its control policy should be adhered to. The command fusion mechanism then has the simple

49

Figure 4.12: Interaction between the Route Driver and Passing Driver

responsibility of selecting the control policy with the greatest urgency. When only one behavior

has an active control policy with respect to a virtual actuator, this decision is even simpler.

An example of this type of selection mechanism can be seen in Figure 4.12. In this example,

the Route Driver is commanding to stay in the right lane for the upcoming checkpoint. The

Passing Driver, however, is only concerned with proceeding as quickly as possible down the

road. With the presence of the slow moving vehicle in the right lane, the Passing Driver would

like to perform a passing maneuver. Since the checkpoint is still far enough down the road,

we see in this case that the Passing Driver is able to take control and maneuver around the

vehicle. Should the checkpoint be closer, however, it is the responsibility of the Route Driver

to overpower the Passing Driver and prevent the pass. Another example of this behavioral

interplay is seen at stop signs. In this situation, the Route Driver is concerned only with coming

to a complete stop, as defined by the rules-of-the-road, and then continuing the mission. It is

not concerned with any other traffic. The responsibility therefore falls to the Precedence Driver

and Merge Driver to output Target Points with the stop flag set at a higher urgency. Once it is

Odin’s turn to proceed and there is enough room to merge, these behaviors simply lowers their

50

urgency’s and the Route Driver resumes control, moving the vehicle into the intersection.

4.5 Performance Results

As mentioned in Chapter 3, the evaluation of a behavioral structure such as this can be quite

difficult. With the general complexity of a fully autonomous mobile robot system, there are a

large number of factors that might effect the overall performance. With the help of simulation,

however, it is possible to try and isolate the action selection process encapsulated in Driving

Behaviors with repeated tests. This process is not only important for evaluation but also for

tuning and debugging the control policies and state transitions within each behavior.

In this respect, it is possible to gain some insight into the performance of this specific im-

plementation of the behavioral programming approach presented in Chapter 3. From repeated

testing in simulation, and the performance of Odin at the actual competition, it is acceptable

to say that Driving Behaviors is capable of handling all requirements defined by the DARPA

Technical Evaluation Criteria[8]. These criteria are broken down into four major categories,

Basic Navigation, Basic Traffic, Advanced Navigation, and Advanced Traffic. Basic Navigation

and Traffic skills include passing over all mission-defined checkpoints, the appropriate use of

lanes on multi-lane roads, obedience to speed limits, 4-way stop sign behavior, queuing behav-

ior, passing of disabled vehicles in an oncoming lane, and 3-pt U-turns. Advanced Navigation

and Traffic skills include parking zone behavior, dynamic re-planning in the case of unforeseen

roadblocks, merging into moving traffic, performing left turns across traffic, and handling traffic

jams within an intersection.

An example of the technique used for evaluating 4-way stop behavior is shown in Figure 4.13.

In this example, Odin is given a mission proceeding through a 4-way stop intersection. The

arrival time of three other vehicles at the same intersection is then strictly controlled to require

different behavior of Odin. For example, in one test as Odin comes to a stop, there is another

vehicle just arriving at position 1, and two other vehicles already stopped at positions 2 and

3. In this situation it is expected that Odin should traverse the intersection 3rd. These results

51

Figure 4.13: Validation of 4-way stop behavior in simulation

can be easily verified and behaviors subsequently tweaked until the expected result is always

achieved. It is then possible to add in unexpected results such as another vehicle proceeding

out of turn or stopping in the middle of the intersection. The expected action of Odin is still

easily verifiable as being either correct or incorrect.

Another example of behavior evaluation in a much more complex situation is seen in Figure

4.14. This difficult situation was actually encountered during a live test at the National Qual-

ifying Event (NQE). This test involved handling a series of cars parked on the side of a small

two lane road in a residential area. The road was then further cluttered with cones and traffic

hazards along the middle of the road. The cars parked along the sides of the road were also

well within the defined lanes, so differentiating these vehicles from normal traffic is extremely

difficult. Several problems were found with the initial interplay of behaviors in this situation as

well as the interplay between Driving Behaviors and Motion Planning that caused Odin to get

stuck. However, with repeated simulation testing, these issues were resolved and the vehicle

was subsequently able to pass through the gauntlet without problem.

It is important to note, however, that simulation testing is not sufficient for the full evalu-

ation of behaviors. The simulation environment used by team VictorTango was not capable of

simulating noisy perception data. Therefore, testing of intersection behavior, for example, in

the face of disappearing and reappearing vehicles due to occlusions or sensor noise is not pos-

sible. This must be done via live testing on the actual vehicle which is obviously more difficult

52

Figure 4.14: Validation of the ”gauntlet” behavior in simulation

to coordinate and less frequent. For this purpose, detailed logging of the internal processes of

all behaviors is required along with a useful method of playback for post-processing. Tools for

this purpose were developed by team VictorTango and used extensively after live tests. These

tools allowed the exact virtual sensor messages to be re-produced and fed back into Driving

Behaviors for very controlled evaluation and debugging.

In total, the behavioral Hierarchical State Machine and Command Fusion mechanisms pre-

sented in this chapter were sufficient for producing an excellent performance at the Urban

Challenge Final Event. Odin placed third overall, completing the course and all of its rigorous

tests well within the six hour limit and only minutes behind the leaders. After post-processing

all the recorded data from the final race and examining hours of video, it was determined that

Driving Behaviors made no incorrect decisions throughout the entire course of the race. An

image of Odin at the finish line podium is seen in Figure 4.14.

53

Figure 4.15: Odin at the finish line next to Stanley of Stanford and Boss of Carnegie Mellon

4.6 Lessons Learned

While Odin performed very well at the Urban Challenge, there are still some important lessons

to be learned and areas for improvement in the behavioral implementation. The most important

lesson has to do with the reliance on the behavioral designer and the importance of exhaustive

testing. The greatest strength of the general approach is that it provides an intuitive method for

task decomposition while maintaining the qualities of command fusion for emergent behavior.

These benefits, however, are still dependent on the ability of the designer to predict almost all

complex situations that the robot might encounter, and then to test them repeatedly both in

simulation and in live tests. Without this, construction of an effective behavior-based software

module responsible for handling complex problems is nearly impossible.

For example, all individual behaviors are designed to be independent, with no direct knowl-

edge of the activity in other concurrent behaviors. However, in order to produce the right

emergent behavior from the interplay of control policies, higher knowledge is needed of the po-

tential urgency values for each behavior. In the Urban Challenge implementation, the designer

must be aware that the baseline urgency for the Route Driver is x so that they can program

54

the potential urgency of the Passing Driver to be y > x when needed. Otherwise, the Passing

Driver would never take control. Modification of the control policy in one behavior with re-

spect to urgency can therefore have large effects on the resulting action produced by another

behavior. As a result, the designer must be cognizant of what behaviors will be activated at the

same time, and design those behaviors accordingly. In total, while all behaviors are modular

software agents, there immediate re-usability across different platforms and applications is lim-

ited. Control policies and transition requirements must inevitably be tweaked to produce the

right emergent behavior. While machine learning and optimization techniques could potentially

be applied here, it is difficult to create a standard formulation of parameters and performance

criteria for widespread use of such methods across all behaviors.

These drawbacks are largely due to the selected command fusion ASM. The urgency based

voting policy used for all virtual actuators in the Urban Challenge is very simple in nature

and subsequently inflexible. A different approach might result in less hard-coding for the

designer. Examples such as fuzzy logic and multi-valued behavior outputs would allow for

better cooperation amongst behaviors compared to the very competitive method in place. While

using such a methods might alleviate some of the intricacies of setting urgency’s, they could

potentially reduce the overall robustness and predictability of the behavioral system. When

driving a full-sized commercial vehicle through crowded streets, however, such a trade-off is not

acceptable.

55

Chapter 5

Case Study: Humanoid Robot
Soccer

The very first RoboCup conference was held in July of 1997 in Nagoya, Japan. Since then, it

has grown into a multi-national research and education initiative centered on an annual confer-

ence and robotic soccer competition. The goal is to use the standard problem of robot soccer to

foster the growth of artificial intelligence and mobile robotics research. The landmark challenge

presented by RoboCup is to develop a team of fully autonomous humanoid robots that can win

against the human world soccer champion team by the year 2050. This requires significant

advances in the areas of multi-agent collaboration, strategy acquisition, real-time reasoning,

behavioral programming, bi-pedal locomotion, machine vision, and sensor fusion, to name a

few. While it is unlikely that this landmark project will be accomplished in any near term, the

idea of soccer as a standard arena for mobile robots has been widely accepted. It is estimated

that more than 500 teams consisting of 3,000 scientists from 40 countries will participate in

RoboCup 2008 in Suzhou, China, making it the largest competition in the project’s history.

The Robotics and Mechanisms Laboratory (RoMeLa) of Virginia Tech has developed a

team of fully autonomous humanoid robots for entry in the kid-size humanoid division. In this

division a team of 3 fully autonomous humanoid robots must play the game of soccer against

another team of robots. All sensing and processing must be performed on-board, and wireless

transmission may be used only for communication amongst individual players. All sensing must

56

Figure 5.1: DARwIn IIa and IIb competing at RoboCup 2007

be roughly equivalent to the capabilities of a human, prohibiting the use of active sensors that

emit light, sound, or electromagnetic waves. Furthermore, external sensors such as cameras

and microphones may not be placed in the legs, arms, or torso and must have a limited field of

view similar to a human. In order to qualify for competition, robots must be able to localize an

unknown ball position, walk to the ball while maintaining stability, localize a goal and position

around the ball for kicking, kick the ball towards the goal, and autonomously detect and recover

from a fall. To perform well in competition, robots must also be able to defend against other

teams attacks, dive to block kicks if designated as a goalie, avoid contact with other robots,

and work strategically as a team. An example of a typical game-time situation can be seen in

Figure 5.1.

Like the Urban Challenge, each individual robot must be able to handle complex situations

in an unpredictable and noisy environment. A behavioral system is needed that can balance

multiple goals of dynamically changing importance such as scoring, defending, and maneuvering.

Therefore, a method for providing contextual intelligence and the ability to produce emergent

57

Figure 5.2: Kinematic and Mechanical Design of DARwIn

behavior are again required for successful operation. For RoboCup, a software module built

using the general approach to behavioral programming presented in Chapter 3 is again used. By

developing this implementation and comparing it with the Urban Challenge implementation,

the portability of high-level behavioral programming across drastically different platforms and

functionality requirements can be examined.

5.1 Robotic Platform

The Dynamic Anthropomorphic Robot with Intelligence (DARwIn) series of robots are a stan-

dardized humanoid robotics platform capable of bipedal walking and performing human-like

motions. The robot stands 600 mm tall, weighs 4 Kg, and has 221 degrees-of-freedom (6 in

each leg, 4 in each arm, one in the waist, and one in the neck). All joints are actuated by

coreless DC motors that use distributed control with controllable compliance. DARwIn’s com-

putational power comes in the form of a PC-104+ computer stack with an Intel Pentium M 1.4

GHz processor mounted in the chest. Custom electronics provide power management to the

computer, motors, and sensors from two 8.2V lithium polymer batteries attached to the legs.

For sensing, DARwIn has two IEEE 1394 (Firewire) cameras mounted to the head and a 6 axis

120 DOF for the RoboCup competition

58

Figure 5.3: DARwIn’s tri-level Hybrid control architecture

rate gyro/accelerometer (IMU). All the motors provide position feedback as well, giving DAR-

wIn a sense of proprioception. All the links on DARwIn are custom machined and designed to

be both strong and lightweight. External shock absorbers have also been installed to protect

the robot from damage when falling. With this hardware, DARwIn can implement human-like

walking gaits and perceive the world (like humans) through a set of ”eyes” mounted in the head.

5.2 System Architecture

DARwIn utilizes a tri-level, Hybrid Deliberative/Reactive control architecture which can be

seen in Figure 5.3. Unlike the VictorTango scheme, this architecture follows a Remote-Reactive-

Deliberative progression. Essentially, a deliberative mission planner has been replaced with a

human operated Game Controller. This Game Controller produces a pseudo mission plan that

defines the robot position (attacker, defender, or goalie), attacking goal (blue or yellow), and

opposing team color (Black, Magenta, or Cyan), at any given time. These settings are then

used by the Behavior Control module to guide the selection of behaviors and resulting emergent

59

behavior. Asynchronous perception agents produce sensor independent perception messages in

the form of virtual sensors which populate a world model. It is important to note that the

world model used by DARwIn is not ”global” and is instead ”relative”. With no localization

software, all virtual sensors provide perception information relative to the robot’s coordinate

frame. This implies that the robot does not have explicit knowledge of where it is on the field.

Without localization, Behavior Control is faced with a more difficult problem, especially with

respect to positioning and team play. It is possible, however, to build Behavior Control in such

a way that emergent soccer playing behavior results even without any form of localization. The

virtual sensors available to Behavior Control are described here:

Goal Sensor The relative heading and distance of both the yellow goal and blue goal if cur-

rently in view. If either goal is not in view, the time since that goal was last seen is

provided along with the last known relative heading and distance.

Ball Sensor The relative heading, distance and velocity of the ball. If the ball is not in view,

the time since it was last seen is provided. Unlike the goal sensor, however, a prediction

of the relative heading, distance, and velocity is given. This prediction is calculated using

an internal model and the last known ball position and velocity.

Beacon Sensor The relative heading and distance to both the yellow-blue-yellow beacon and

the blue-yellow-blue beacon if currently in view. These beacons are always located on

the edge of the field at the halfway line, and could potentially be used for localization.

If either beacon is not in view, the time since last seen is provided along with the last

known relative heading and distance.

Obstacle Sensor The radius, relative heading, and relative distance to all obstacles currently

in view. Obstacles are primarily composed of other robots but may include any other

foreign object on the field. If the obstacle is another robot, the team identification is

provided. If no obstacles are detected, this list is empty.

Closest Bounded Green Area A series of profile points defining the edge of the green area

60

that DARwIn is currently standing on. If DARwIn were standing directly in front of the

goal, these points would define the inner boundary of the goal box.

With these virtual sensors and the high-level settings provided by the Game Controller as

inputs, Behavior Control must produce the correct emergent behavior for playing soccer by

issuing motion commands via virtual actuators. These virtual actuators dictate the physical

actions of the robot with respect to how it is walking, where the head is looking, and whether

or not a special action, such as a kick, dive or cheer, should be performed. From these virtual

actuators a low-level motion controller determines what all 22 motor position should be. Unlike

the Urban Challenge, however, this low-level motion control is not responsible for any type of

obstacle avoidance. Instead, it is primarily concerned with dynamic stability, which is a much

larger problem on DARwIn then on Odin. In fact, Motion Control has no concept of obstacles

and utilizes only inertial data for ”knee-jerk” reactions. It is also the responsibility of Motion

Control to detect when the robot has fallen over and override all virtual actuator inputs until

DARwIn has returned to a stable standing position. The virtual actuators which Behavior

Control may command are described here:

Gait Motion A parametrized gait command dictating the type of walk to perform and how

it should be performed. The available motion types are forward, backward, side left,

side right, turn in place, and stop. Both side left and side right refer to a side-stepping

motion. Depending on the motion type, certain parameters must also be provided. For

all motion types except turn in place, a desired step size and desired curvature must be

specified. Curvature is measured in centimeters and can be used to make the robot walk

in an arc. There is a minimum curvature of 10 cm, so if Behavior Control would like to

execute a turn with a smaller radius than this, it must specifically request a turn in place

gait. For the turn in place motion type, a change in angle per step must be specified. As

an example, the type of motion needed to orient the robot around a ball already at its

feet is a side step with a small curvature.

Head Motion The desired heading of DARwIn’s head with respect to the rest of its body.

61

Since the vertical field of view of the cameras cover from DARwIn’s feet to above the

horizon, only one degree of freedom is needed in the neck. This head position defines

where the robot is looking horizontally and has a maximum angle defined by the rules that

cannot be exceeded. This prevents the robot from being able to look directly backwards

without rotating its body.

Special Action Any type of action which requires playback of a pre-recorded motion such as

kicking, diving, or cheering. If a special action (SA) is requested, it will trump any other

type of motion command, whereas a head motion and a gait motion could be executed

simultaneously. Two categories of kicks are available, a straight kick and a side pass.

Both kicks can be performed with either foot and with any kick a strength magnitude

must be specified. Two types of dives are also available. One dive results in the robot

fully extended on the ground, while the other dive keeps the robot in a stable position

without falling down. A dive can be performed in either direction and the length of time

to remain on the ground before standing back up must be specified. Finally, a SA for

both cheering and being sad are also available.

5.3 Task Decomposition and Hierarchy

Unfortunately, due to time constraints, the Hierarchical State Machine presented in this section

has not been fully developed and tested. The following discussion should therefore be viewed as

a suggested implementation. As an exercise in behavioral decomposition, the RoboCup problem

still presents some unique challenges not present in the Urban Challenge case study.

At the most abstract level, the behavior of individual soccer players is separated by team

role, or position. For example, the behavior of a goalie should be significantly different then

that of an attacker. Furthermore, the allowable actions of a goalie are different then those of

an attacker. A goalie is allowed to dive and block the ball with its hands, whereas an attacker

may only interact with the ball by kicking it. The highest level state machine within Behavior

Control is therefore used to differentiate between goalie, attacker, and defender states. In

62

Figure 5.4: Behavior hierarchy suggested for robot soccer

each of these states a corresponding sub-behavior for each role is activated. The next level of

behaviors are more skill oriented and essentially provide a library of options that can be called

upon by either the goalie, attacker, or defender behaviors, as seen in Figure 5.4. Of these

level 2 behaviors, we see behaviors differentiated mainly by a combination of what they are

looking for and what type of action they hope to perform with respect to that object. For

example, the Ball Tracker and Goal Tracker are interested in the ball and goal respectively,

and are interested in tracking them using Head Motions. The Ball Chaser, Ball Blocker,

and Ball Kicker are all interested in the ball, but with respect to approaching it by Gait

Motions, blocking it through Special Action, or kicking it also by Special Action. In total, the

right combination of level 2 behaviors should be sufficient for performing the following tasks:

searching for the ball in an intelligent manner, approaching the ball in a manner that reduces

the necessary amount of orienting towards the goal, approaching the ball as quickly as possible,

orienting towards the opposing goal while keeping the ball at the robots feet, kicking the ball

towards an opponents goal, clearing the ball away from our own goal as quickly as possible,

63

Figure 5.5: State diagram of the Attacker

maintaining a defensive position, and blocking a shot.

5.3.1 Attacker

Following the nomenclature set in Chapter 3, the Attacker is solely a decision behavior and

therefore encodes no control policies. The main purpose of this behavior is to differentiate

between more abstract situations and establish what sub-behaviors should be activated. This

is done through the use of its internal states. A figure illustrating the state machine within the

Attacker behavior is shown in Figure 5.5. In the Search for Ball state, the Ball Finder and

Obstacle Avoider sub-behaviors are activated, resulting in the robot searching intelligently for

the ball while avoiding any immediate obstacles. Once the ball has been seen, the Attacker en-

ters the Approach Ball state, where the Ball Chaser, Obstacle Avoider, and Ball Tracker

sub-behaviors are all activated. In this situation, the robot should move to the ball as quickly

as possible while again avoiding obstacles. Now that the ball has been located, it is important

not to lose sight of it until it is within range of the lower camera, so a separate behavior is used

64

Figure 5.6: State Diagram of the Goalie

to keep track of the ball should it get kicked by another team. Once the robot has the ball at

its feet, the Attacker transitions to the Orient to Kick state, where the Kick Orienter and

Goal Tracker are activated. In this state, the robot has the ball at its feet so it searches for

the goal using head motions and orients itself for the best shot on goal. Once an open shot has

been evaluated, the Kick Ball state is entered which determines the most appropriate type of

kick for the given situation via the Ball Kicker and Goal Tracker sub-behaviors.

5.3.2 Goalie

The Goalie, like the Attacker is a decision behavior, and not a command behavior. The internal

states are fairly similar to the Attacker with the exception of a few key differences. The state

machine diagram with transitions shown is seen in Figure 5.6. In the Goalie state machine,

there is an additional Defend Ball state. In this state the activated sub-behaviors are the Ball

Blocker and Ball Tracker. The Ball Blocker is responsible for staying in front of the ball,

without approaching it, and in the case of a shot, selecting the appropriate dive to block it.

Once the ball enters the goal box, however, the behavior becomes much more like a regular

65

field player. In this situation, the goalie should approach the ball, orient so as to clear the ball

away from the goal, and select the most appropriate kick for doing so.

5.4 Command Fusion Mechanisms

While the majority of level 2 behaviors seen in Figure 5.4 have not yet been implemented

and tested, their outputs in terms of control policies are already known. No matter what the

situation is, at least one control policy with respect to each virtual actuator, πgait, πhead, and

πSA must be active. It is therefore still possible to look at useful ways of resolving conflicts by

the selection of command fusion mechanisms.

Similar to situations seen in the Urban Challenge, the Special Action virtual actuator has

a finite set of possibilities. It therefore makes the most sense to use an urgency based voting

mechanism similar to what was used on Odin. Using such a method is also important because

Special Actions override all other motion types and take complete control of the robot. All

behaviors that maintain a Special Action control policy must therefore incorporate an urgency

policy as well.

Both the Head Motion and Gait Motion virtual actuators pose a very different problem,

however. A potentially infinite range of both Head and Gait Motions exist, allowing for the

possibility of greater cooperation amongst competing behaviors. For example, it is usually

desirable to both avoid an obstacle and proceed towards a goal at the same time. This is a well

known problem for behavior-based obstacle avoidance and methods such as potential fields [13]

and motor schemas [4] have long since been used. These mechanisms work by finding a weighted

average of all competing behavior’s desires and executing this average. When the desires of

competing behaviors are in the same general ballpark, such mechanisms usually prove sufficient.

However, when behavioral outputs are completely contradictory, average-based superposition

mechanisms can result in action that is beneficial to neither behavior. For example, it would be

undesirable if in an attempt to track both the goal and the ball, the robot were to look directly

in between the two and subsequently lose sight of both.

66

Another, potentially more robust command fusion ASM takes advantage of multi-valued

behavior outputs. Behaviors typically produce a single-valued output that from their perspec-

tive is the optimal action to perform. Using the aforementioned fusion ASM, the output with

the highest urgency is then selected. Suppose now that each behavior produced a multi-valued

output such that the behavior would be satisfied with all values. This range, or subset, of val-

ues could be ranked by preference, and when compared to another behavior’s outputs, a final

selection can be made that satisfies both behaviors. This allows for the ability to trade-off the

benefits of different behaviors. Examples of utilizing multi-valued behavior outputs has been

performed by Rosenblatt and Payton in [24]. Of course, such a fusion ASM would still require

tweaking by the designer to find the appropriate degree to which the mediocre satisfaction of

multiple behaviors outweighs the complete satisfaction of one behavior. A cooperative fusion

mechanism such as this could be useful for balancing the desire to use a Head Motion to track

both the ball and the goal. Should no solution exist that satisfies both behaviors, it is still

possible to choose an action which best satisfies one behavior.

5.5 Performance Results

As with the Urban Challenge, exhaustive testing in simulation and on the actual robot are

paramount to the overall performance. For this purpose, a simulation environment developed at

the Technische Universitat Darmstadt (TUD) has been taken advantage of. The Multi-Robot-

Simulation-Framework (MuRoSimF) [10] provides real-time kinematic motion simulation, col-

lision detection, and sensor simulation for multiple robots at once. Interfacing DARwIn’s

complete control and perception architecture with MuRoSimF allows for behavioral testing on

an individual and team level. With accurate camera simulation, it is also possible to test the

behavioral robustness to realistic sensor input. A screen shot of the simulation environment is

seen in Figure 5.7.

Through simulation and live testing, controlled, repeatable testing can be performed to

evaluate the action selection process on DARwIn. Realistic game scenarios can be created and

67

Figure 5.7: MuRoSimF screen shot used for testing and evaluation

the overall performance can be examined. With the ability to run multiple robots at once, it

is also possible to investigate the effect of small behavioral changes over the course of an entire

game. Unlike the urban driving scenario, it is not wholly sufficient to simply follow the rules

of the road. Due to the unstructured nature of soccer, small differences in behavior can have

great effect on the outcome of the game. Evaluating the performance of higher-level strategy

will therefore be imperative to being competitive at competition.

5.6 Lessons Learned

The work performed so far on a behavioral module for the RoboCup problem illustrates the

potential portability of the general approach to behavioral programming presented in Chapter 3.

A formulation of the problem in terms consistent with the Urban Challenge case study is clearly

possible. While the inputs, as virtual sensors, outputs, as virtual actuators, and behavioral

requirements are completely different, the same methodology for behavioral coordination can

clearly be used. The details of the hierarchical behavior tree and the internal state machines

within those behaviors may not yet be solved for, but with a capable simulator and testing

68

plan, the solution is within reach.

The unique virtual actuators on DARwIn also allow for more intelligent command fusion

mechanisms not used on Odin. Specifically, superposition, fuzzy, and multiple-value mecha-

nisms can be integrated, reducing the reliance on the designer to be aware of all behavioral

interactions. These methods also make it possible to add important responsibilities to the be-

havioral component that may otherwise be handled elsewhere in the Hybrid architecture, such

as obstacle avoidance and directed sensor focus. While performing behavior-based obstacle

avoidance is clearly possible, it is important to remember that doing so comes with the short-

comings of any reactive paradigm, such as the lack of optimality and performance guarantees.

Finally, the RoboCup formulation shows some of the portability of low-level behaviors within

the hierarchical tree. In this implementation, we see the reuse of level 2 behaviors such as the

Ball Chaser by all three level 1 behaviors, Goalie, Attacker and Defender. The lower-

level behavior can remain active through transitions between higher-level behaviors and there

should be no interruption in the execution of the lower behavior. Looking at these situations

has provided further insight into the hierarchical relationship between behaviors in the case of

commonality. In essence, if a behavior should be activated with multiple other behaviors, but

only when those behaviors are in certain states, then it should be placed lower in the hierarchy.

If a behavior should be activated during all states of only one other behavior, then they should

be in parallel. Finally, if a behavior should be activated during all states of multiple behaviors

all on the same level, then that behavior should be higher in the hierarchy.

69

Chapter 6

Conclusions, Contributions,
Observations, and Future Work

The potential uses for mobile robots in industry, the home, the military, and entertainment

are continually growing. Robots capable of performing dull, dirty, and dangerous jobs have the

ability to save countless human lives and improve people’s everyday quality of life. Before this

is possible, however, significant advances must be made to bring robots out of the lab and into

the field.

6.1 Summary of Contributions

Research in mobile robotic control architectures over the past 30 years have brought robots

significantly closer to this reality. From the Hierarchical Paradigm to the Reactive Paradigm,

we have seen robots gain the ability to tackle both small and large technical challenges, mim-

icking biological intelligence in some aspects and taking advantage of brute force computing

in others. Uniting these abilities in a coherent, fully autonomous system capable of solving

complex, sophisticated tasks remains the challenge for most researchers today. Hybrid Delib-

erative/Reactive approaches hope to bridge this gap, but the division of responsibilities within

such architectures remain in question. Most traditional Hybrid architectures take a bi-level

approach, with deliberative components responsible for advanced cognitive functions placed at

a higher level, and reactive, behavior-based components responsible for direct actuator con-

70

trol placed at a lower level. With the rapid growth of computing technology, however, there

has been a re-emergence of deliberative methods for low-level motion planning. Such methods

provide the important traits of predictability and optimality, which are extremely useful from

an engineering point of view. This trend, along with the need for robots capable of handling

more and more complex problems, has resulted in the growth of tri-level Hybrid architectures.

Such architectures exhibit a deliberative-reactive-deliberative progression, thereby changing the

typical scope and application of behavior-based software agents.

Behavioral control components now have the responsibility of bridging the gap between high-

level mission planning and low-level motion control. Within the tri-level Hybrid architecture,

such a component receives perception information through virtual sensors and dictates desired

action through virtual actuators. This behavioral component requires the ability to break down

complex problems into smaller sub-goals and tasks whose importance may change dynamically

depending on the robot’s current situation. Based on this contextual intelligence, the right

selection of behaviors must be made, whose outputs can then be combined to produce the proper

emergent behavior for the task at hand. These two important properties of biological intelligence

are encompassed in the action selection problem. Traditional action selection mechanisms have

not typically been used for such higher-level problem solving, and so most mechanisms are

not individually sufficient. It is possible, however to combine existing approaches to unite

their individual advantages and reduce the effect of their individual drawbacks. In this thesis, a

novel method of placing an arbitration ASM in sequence with a command fusion ASM has been

presented. Specifically a Hierarchical State Machine is used for behavioral selection, followed

by an application-specific command fusion mechanism for handling behavioral conflict.

This approach to behavioral programming and action selection has been validated in the

DARPA Urban Challenge, a landmark robotics problem. In this event, Odin, team Victor-

Tango’s entry was able to negotiate difficult scenarios involved with driving a large unmanned

ground vehicle through intersections, parking lots, and multi-lane roads, all in the presence of

live traffic. Placing third overall, Odin’s behavioral implementation proved flawless throughout

the course of the race. The general approach to behavioral programming presented in this

71

thesis is also being applied to the RoboCup soccer competition, another landmark challenge.

Through this new implementation, we see the versatility and portability of such an approach

despite drastically different base platforms, virtual sensors, virtual actuators, and behavioral

requirements. Together, these two important case studies have exposed some important obser-

vations which are summarized here.

6.2 Important Observations

6.2.1 Hierarchy

By using hierarchy for behavior decomposition, there exists an intuitive method for the robot

designer to breakdown tasks according to their level of abstraction. This top-down approach is a

natural thought process which can be applied to a variety of problems and scenarios. When im-

plemented properly, such a behavioral tree provides the robot with adequate situatedness. The

proper use of hierarchy also encourages the reuse of lower-level behaviors in different situations

and supports ideas behind object-oriented programming. For example, behavioral commonal-

ities should not be reproduced multiple times and can instead be simply placed higher in the

hierarchy. Finally, using a hierarchical breakdown as opposed to a completely flat structure

prevents massive growth in computational requirements as the number of behaviors in a system

grows.

6.2.2 State Machines

By utilizing state machines within each behavior, the robot designer is again provided with

important behavioral tools. State machines allow for the definition of temporal sequencing when

necessary. The designer can use state transitions to easily differentiate when order is important

and when it is not with respect to the completion of certain tasks. State transitions are also

useful from a systems engineering point of view by predefining the perception requirements of

the robot. Furthermore, the correct design of state transitions provides a simple mechanism

72

for handling perception noise. Being robust to perception error is not only essential, but

particularly useful with respect to goal-orientedness and persistence.

6.2.3 Command Fusion

Through the use of multiple command fusion mechanisms organized by virtual actuator, flex-

ibility is given to the overall action selection system. How behavioral conflict is resolved has

the greatest effect on the emergent behavior of the robot. Constricting the designer to only one

method is detrimental when certain methods work better for certain applications and certain

virtual actuators.

6.3 Future Work

While this approach to behavioral programming provides the designer with a useful tool set, the

final performance is still completely reliant on how well these tools are used. There is no ”silver

bullet” solution that will immediately produce intelligent behavior. Exhaustive testing both in

simulation and on the actual robot is imperative to success. Because of this shortcoming, two

major areas for future research should be addressed. First, research into better methods for

generation of the hierarchical state machine should be performed. Being able to formulate a

behavioral problem in a standard way such that construction of the HSM is simplified, would

be extremely beneficial. It would result in more consistent performance amongst different

implementations and make the job of the robot designer significantly easier. Establishing such

a method would first require a deeper analysis of behavioral HSMs. The effect of tree size

and shape on overall performance must be analyzed, and a greater understanding of state

reachability, structural succinctness, and equivalence is needed. Some research in this area

with respect to general HSMs can be found in [2] and should be applied to the behavioral

variation presented here.

The other major area for future research involves the use of machine learning and optimiza-

tion techniques to tweak control policies, state transitions, and command fusion parameters.

73

Formalizing such an approach to work across all behaviors poses some very difficult problems.

While simulation would still be required for extensive training, the need for supervision and

intervention of a human overseer would at least be removed. The reliability of training a system

in simulation, however, and then moving it to the real world poses further problems of its own.

Either way, a behavioral structure capable of learning from experience would be paramount as

robots are expected to complete more and more complex tasks with situations that a designer

could not possibly predict.

74

Bibliography

[1] Albus, J. S. (1991). “Outline for a Theory of Intelligence.” In IEEE Trans. on Systems,
Man, and Cybernetics, Vol. 21, No. 3, May/June.

[2] Alur, R., Yannakakis, M. (2001). “Model Checking of Hierarchical State Machines.” ACM
Transactions on Programming Languages and Systems, Vol. 23(3): 273-303.

[3] Argall, B., Browning, B., Veloso, M. (2007). “Learning to Select State Machines using
Expert Advice on an Autonomous Robot.” In IEEE International Conference on Robotics
and Automation, pages 2124-2129.

[4] Arkin, R. C. (1987). “Motor schema based navigation for a mobile robot: An approach to
programming by behavior.” In IEEE International Conference on Robotics and Automa-
tion, pages 264-271.

[5] Arkin, R. C., Riseman, E. M., and Hansen, A. (1987). “AuRA: An Architecture for Vision-
Based Robot Navigation,” proceedings of the DARPA Image Understanding Workshop,
pp. 413-417. Los Angeles, CA.

[6] Brooks, R. A. (1986). “A Robust Layered Control System for a Mobile Robot.” In IEEE
Journal of Robotics and Automation, Vol. 2 (1): 14-23.

[7] Bryson, J. (2000). “Hierarchy and Sequence vs. Full Parallelism in Action Selection.” In
J.A. Meyer, A. Berthoz, D. Floreano, H. Roitblat, and S.W. Wilson, eds., Proc. Sixth Intl.
Conf. on Simulation of Adaptive Behavior, 147-156. Cambridge, MA: MIT Press.

[8] DARPA. (2007). “Urban Challenge Technical Evaluation Criteria.”
http://www.darpa.mil/grandchallenge/rules.asp. Defense Advanced Research Projects
Agency, Arlington, VA.

[9] Dechter, R., Pearl, J. (1985). “Generalized best-first search strategies and the optimality
of A*.” In Journal of the ACM, Vol. 32(3): 505-536.

[10] Friedmann, M., Perterson, K., Stryk, O. v. (2007).“Adequate Motion Simulation and Colli-
sion Detection for Soccer Playing Humanoid Robots” In Proc. 2nd Workshop on Humanoid
Soccer Robots at the 2007 IEEE-RAS Int. Conf. On Humanoid Robots.

75

[11] Gat, E., (1998). “Three-layer Architectures,” Artificial Intelligence and Mobile Robots, D.
Kortenkamp, R. Bonasson, R. Murphy, editors, Cambridge, MA: MIT Press.

[12] Harel, D. (1987). “Statecharts: A Visual Formalism for Complex Systems.” In Science of
Computer Programming, Vol. 8: 231-274.

[13] Khatib, O. (1986). “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots.”
The International Journal of Robotics Research, 5(1):90 - 98.

[14] Konolige, K., and Myers, K. (1998). “The Saphira Architecture for Autonomous Mobile
Robots,” Artificial Intelligence and Mobile Robots, D. Kortenkamp, R. Bonasson, R. Mur-
phy, editors, Cambridge, MA: MIT Press.

[15] Kristensen, S. (1996). Sensor Planning with Bayesian Decision Analysis. PhD thesis, De-
partment of Medical Informatics and Image Analysis, Aalborg University.

[16] Mackenzie, D., Arkin, R., and Cameron, J. (1997). “Specification and Execution of Multi-
agent Missions.” Autonomous Robots, 4(1).

[17] Maes, P. (1989). “How To Do the Right Thing.” Technical Report NE-43-836, AI Labora-
tory, MIT. Cambridge, MA.

[18] Minsky, M. (1985). The Society of Mind. Simon and Schuster, New York, NY.

[19] Muecke, K., and Hong, D. W. (2008). “The Synergistic Combination of Research, Edu-
cation, and International Robot Competitions Through the Development of a Humanoid
Robot.” 32nd ASME Mechanisms and Robotics Conference, New York City, NY.

[20] Muecke, K., and Hong, D. W. (2007). “DARwIn’s Evolution: Development of a Humanoid
Robot.” IEEE International Conference on Intelligent Robotics and Systems. October 29 -
November 2, 2007.

[21] Murphy, R. R. (2000). Introduction to AI Robotics. Cambridge, MA: MIT Press.

[22] Murphy, R., and Mali, A. (1997).“Lessons Learned in Integrating Sensing into Autonomous
Mobile Robot Architectures.” Journal of Experimental and Theoretical Artificial Intel-
ligence special issue on Software Architectures for Hardware Agents, vol. 9, no. 2, pp.
191-209.

[23] Pirjanian, P. (1999). “Behavior Coordination Mechanisms - State-of-the-Art.” Tech Re-
port IRIS-99-375, Institute for Robotics and Intelligent Systems, University of Southern
California, Los Angeles, California.

[24] Rosenblatt, J. (1995). “DAMN: A Distributed Architecture for Mobile Navigation.” In
AAAI Spring Symposium on Lessons Learned from Implemented Software Architectures
for Physical Agents, Stanford, CA. AAAI Press, Menlo Park, CA.

[25] Russel, S., and Norvig, P. (2003). Artificial Intelligence - A Modern Approach. Upper
Saddle River, New Jersey, Pearson Education, Inc.

76

[26] Saffiotti, A. (1997). “The Uses of Fuzzy Logic in Autonomous Robot Navigation: a cat-
alogue raisonne.” Technical Report 2.1, IRIDA, Universite Libre de Bruxelles, 50 av. F.
Roosevelt, CP 194/6, B-1050 Brussels, Belgium.

[27] Simmons, R., Goodwin, R., Haigh, K., Koenig, S., and O’Sullivan, J. (1997). “A Layered
Architecture for Office Delivery Robots,” proceedings Autonomous Agents 97, pp. 245-252.

[28] Simon, H. A. (1960). The New Science of Management Decision. Harper and Row, New
York.

[29] Thrun, S., Montemerlo, M, et. Al. (2006). “Stanley: The robot that won the DARPA
Grand Challenge: Research Articles,” Journal of Field Robotics, vol. 23, no. 9, September,
2006, pp. 661-692.

[30] Tyrell, T. (1993). Computational Mechanisms for Action Selection. PhD thesis, University
of Edinburgh.

[31] Urmson, C., et. Al. (2006).“A Robust Approach to High-Speed Navigation for Unrehearsed
Desert Terrain.” Journal of Field Robotics, vol. 23, no. 8, August, 2006, pp. 467.

[32] VictorTango et Al. (2008). “Odin: Team VictorTango’s Entry in the DARPA Urban Chal-
lenge.” In Journal of Field Robotics - Special Edition on the DARPA Urban Challenge
(submitted).

[33] Yen, J., and Pfluger, N. (1995). “A Fuzzy Logic Based Extension to Payton and Rosen-
blatt’s Command Fusion Method for Mobile Robot Navigation.” IEEE Transactions on
Systems, Man, and Cybernetics, 25(6):971 - 978.

77

Appendix A

Behavioral State Diagrams

Figure A.1: State Diagram of the Precedence Driver

78

Figure A.2: State Diagram of the Merge Driver

Figure A.3: State Diagram of the Left Turn Driver

79

Appendix B

Detailed System Architectures

Figure B.1: System Architecture used for the DARPA Urban Challenge

80

Figure B.2: System Architecture used for RoboCup

81

