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· (ABSTRACT) , .

The traditional line stuck-at fault model does not properly represent transistor stuck-

_ open (SOP) faults in complementary metal oxide semiconductor (CMOS) circuits. ln general,

test generation methods for detecting CMOS SOP faults are complex and time consuming due

to the sequential behavior of faulty circuits. The majority of integrated circuit manufacturers

l still rely on stuck-at test sets to test CMOS combinational circuits at the risk of some SOP
l

faults not being detected.
‘ ln this thesis we investigate two aspects regarding the detection of SOP faults using

stuck-at test sets. First, we measure the SOP fault coverage of stuck-at test sets for various
A

CMOS combinational circuits. The SOP fault coverage is compared with that of random pat-

tern test sets. Second, we propose a method to improve the SOP fault coverage of stuck-at test

_ sets by organizing the test sequences of stuck-at test sets. The performance ofthe proposed
' method is compared with those of competing methods. Experimental results show that the

proposed method Ieads to smaller test sets and shorter processing time while achieving high

l SOP fault coverage. 4 .
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- I. Introduction[

' .

Complementary metal oxide semiconductor (CMOS) has become a dominant technology
l

in very large scale integration (VLSI) circuits du-e to advantages such as low power con-
' sumption and high fabrication density. However, the testing of CMOS circuits is complex and

t I
time consuming. Conventional circuit testing schemes tha_t use the gate level circuit repre-

I sentation and the line stuck-at fault model are known to be inadequate for testing CMOS Icir-
O

cuits. A major difticulty in testing CMOS circuits stems from the inadequacy of the line

stuck-at fault model. Transistor stuck-open (SOP) faults in which faulty transistors are turned IA I
off permanently are not modeled properly by the line stuck-at fault model in CMOS circuits [1].

_
,

A combinational circuit under the presence of SOP faults may behave as a sequential circuit.
Ü A sequence of two test patterns is required to detect a SOP fault [2-5].

Since Wadsack introduced the SOP fault model in the late 1970’s [1], many test gener-

ation algorithms detecting SOP faults have been proposed [2-15]. CMOS test generation al-I
· gorithms can be classitied into two categories, switch level test generation algorithms [9-15]

and gate level test generation algorithms [2-8]. ln switch level test generation algorithms,

CMOS circuits are represented in terms of switches and their interconnections. A gate level

test generation algorithm attempts to take advantage of well established test generation

schemes developed for the line stuck-at fault model. In general, gate level test generation

n
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algorithms are relatively simple, but give low fault coverage when compared to switch level
test generation algorithms. Both types of algorithms, gate level algorithms and switch level l
algorithms, are still complex and time consuming, hence they may not be practical for large V

I' circuits.
A

The majority of integrated circuit (IC) manufacturers rely on test sets derived based on I I
° the single stuck—at fault model, called stuck-at test sets, to test CMOS circuits. There are three

main reasons for using stuck-at test sets in testing CMOS circuits:

1. test generation algorithms for the detection of stuck-at faults are much simpler than those

for the detection of SOP faults,

2. well established test generation algorithms developed for the detection of stuck-at faults,

such as D-algorithm [16], can be used, and . « _

I 3. conventional gate level circuit descriptions can be used directly for stuck—at test gener-

ation, so additional efforts to convert the circuit descriptions or to create other circuit

descriptions, which are, in general, necessary for SOP fault test generation, can be

I
l

avoided. ‘

Though the use of stuck-at test sets has the advantages listed above, the cost for the advan-

· tages is low SOP fault coverage. Two important issues relate to the use of stuck—at test sets:

. 1. how good are stuck-at test sets for the detection of SOP faults, i.e., what is the SOP fault
‘ coverage of stuck-at test sets, and . ‘

2. how can we improve the SOP fault coverage of stuck-at test sets. ·

Although stuck-at test sets are widely used for testing CMOS circuits, to our knowledge,
4

I.
there has been only one report on the effectiveness of the method. Woodhall et al. presented

empirical data on the SOP fault escaping rate of a stuck-at test set [17]. The observed SOP
I

fault escaping rate for 4,522 die examined was 0.121%. However, the experiment does notI
give the SOP fault coverage of the stuck-at test set, i.e., it does not tell how many SOP faults -

I. Introduction « 2
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l
are covered by the stuck-at test set. Moreover, the results are based on one type of combi-
national circuit implemented on many die. U

In this thesis, we present the SOP fault coverage of stuck—at test sets for various CMOS
I

S combinational circuits. The SOP fault coverage of stuck-at test sets is. compared with that of _l
random pattern test sets. The next issue of this thesis is improvement of the SOP fault cov-l
erage of stuck-at test sets. Several methods of using stuck—at test sets in detecting SOP fauits
have been proposed [2-4]. ln EI·ziq's method [2], a stuck-at test set of the circuit under test is

· applied first to detect some SOP faults. Test patterns are generated for the remaining unde-
· tected SOP faults. Unlike the above method, Chandramouli proposed a method of organizing

the test sequence of stuck-at test sets [4]. The method requires the application of a sequence
of two or three stuck—at test patterns for each primary input or fan-out branch. EI-ziq also
proposed a method to organize the test sequence of a stuck-at test set [3]. The method sorts
the stuck-at fauits for all primary inputs and fan-out branches in a specific order and generates
stuck—at test patterns to detect the fauits in the given sequence. The method is essentially the

3
same as Chandramouli’s method except the consideration of CMOS complex cells. Both
methods, El-Ziq’s method [3] and Chandramouli’s method [4], are based on the path

· sensitization scheme developed for detection of stuck-at faults. Unlike the above methods, we
I

propose a method which considers the fauits on the inputs of each gate. The performance
. of the proposed method is compared with those of competing methods. Experimental resultsV

show that the proposed method gives small test set sizes and short processing time while
achieving high SOP fault coverage. ‘ [ ‘

_ In Chapter II, background on testing CMOS circuits is presented with emphasis on the _
detection of SOP fauits using stuck-at test sets. Chapter III presents the analysis of undetected

· SOP fauits by the stuck—at test set and the proposed method. Chapter IV reports the exper- ß
ä

imental results and observations made from the experimenfs. Finally, Chapter V concludesY
this thesis.

O A

I. Introduction
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II. Background

2.1 Overview [

.SinceWadsack introduced the SOP fault model for CMOS circuits in the late 1970’s [1],

there has been e><tensive research on testing CMOS circuits in which SOP faults are consid-

ered. ln this chapter, the background oi the proposed research is described with emphasis
’ on the detection of SOP faults using stuck-at test sets. Section 2.2 briefly presents conven-

tional circuit testing methods. Section 2.3 and Section 2.4 review previous studies on CMOS

circuit testing and the basic scheme of SOP fault testing, respectively. Section 2.5 describes

the equivalence relation between SOP faults and stuck-at faults. Section 2.6 presents SOP

fault testing 'using stuck-at test sets. Finally, Section 2.7 describes the research of this thesis. ,

II. Background [ 4



2.2 Review of Conventional Circuit Testing

Traditionally, digital circuits have been implemented using basic logic gates such as

NAND, AND, NOR, OR and NOT. The circuits are represented by the basic logic gates and their

interconnections. The line stuck-at fault model has been commonly used for testing the cir-

cuits. Under the line stuck-at fault model, it is assumed that faults occur on the lines of the

gate inputs or the gate outputs. The stuck-at 1 (s-a·1) fault on line i implies that the line i is

stuck permanently at logic value 1. The stuck-at 0 (s—a-0) fault on line i implies that the line i

is stuck permanently at logic value 0.

. During the last two decades, various test generation algorithms for detecting line

stuck-at faults have been proposed. For example, the D-algorithm [16], PODEM [18] and FAN

[19] are such algorithm-s. Through experiences in testing digital circuits, these algorithms and

the line stuck-at fault model have been verified to be effective in testing conventional logic .

circuits using as TTL and nMOS technology.

T 2.3 Review of CMOS Circuit Testing

The conventional circuit testing methods based on the line stuck-at fault model are no
longer adequate to test CMOS circuits [1-15,20-26]. The inadequacy ofthe conventional testing

methods in testing CMOS circuits is mainly due to:

_ 1. inaccurate circuit modeling and

_ 2. inaccurate fault modeling.

ll. Background 5
U



CMOS complex gates and transmission gates are not properly represented using basic logic
gates. The stuck-at fault model does not adequately represent physical failures of CMOS cir-
cuits either. A fault where a transistor is permanently on (off), called thetransistor stuck·on

'

(open) fault, is not modeled properly using the stuck-at fault model.

Several researchers studied transistor stuck·on (SON) faults [20-23]. A transistor SON
fault may cause an intermediate voltage between Vdd (logic 1) and Vss (logic 0) at the faultyN
gate output node. ln general, SON faults cannot be detected by a logical test, which exarnines
only logic values, alone. When a SON fault exists in a CMOS gate, the voltage at the gate-
output node depends on the relative values of resistances from the output node to Vdd and
ground (Vss). Thus, the output may be interpreted as the correct logic value. Detecting SON
faults may require monitoring the static supply currents of the circuit under test [22]. Under
fault-free conditions, a static CMOS circuit consumes only very small currents except during ~

. switching. When SON faults exist in the circuit,
Aa

high conductance path from Vdd to ground
·can be created through the faulty transistor causing large current consumption. Since SON

faults are not detected by a logic test alone, we do not consider the detection of SON faults
l in this thesis. ‘

Since Wadsack introduced the SOP fault model, many test generation methods have
l 4

been developed to detect such faults. Two methods, gate level algorithms and switch level

algorithms have been proposed. Gate level algorithms attempt to use well established (

stuck-at test generation techniques to test SOP faults [2-8]. Switch level algorithms use switch

level descriptions to represent the circuits and the faults [9-15]. ’

Early approaches for testing CMOS circuits used stuck-at test sets to detect SOP faults.

These approaches are based on the gate level representation of the circuit which consist of
only primitive logic gates and/or CMOS complex cells. Chandramouli showed that all single

SOP faults in these kinds of circuits can be detected by organizing the sequence of the test
V

patterns of a stuck-at test set which covers all single stuck-at faults assuming zero gate delays
° [4]. This method is described in Section 2.6 in detail. El-Ziq proposed an algorithm to detect .

· SOP faults [2]. The first part of the algorithm generates a stuck-at test set for the circuit. The

Il. Background ‘
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— stuck-at test set is applied to detect some SOP faults-. The second part of the algorithm gen-

erates test patterns for the undetected SOP faults. He also proposed a method of organizing

A the test sequence of a stuck—at test set to detect SOP faults [3]. The method sorts the stuck-at
l

‘ faults in proper order and generates test patterns to detect the faults in the order. The method

is essentially the same as that of ChandramouIi’s method [4] except considering of CMOS

complex cells. Unlike the above methods, Jain and Agrawal proposed a procedure to gener-

ate SOP tests for general CMOS circuits including transmission gates [5]. The key idea is to

convert a CMOS circuit with SOP faults into an equivalent gate level circuit with stuck-at faults.

Then a conventional stuck-at test generation algorithm, the D-algorithm, with slight modiüca·

tion, is applied to find a test set. The advantage of this method is that it is simple to apply and

it can use well established stuck-at test generation algorithms to test SOP faults. However, the
U

size of the equivalent gate level circuit is usually far larger than that of the original circuit.

Moreover, the equivalent circuit has memory elements to make the test generation procedure —

complex. All of the methods mentioned above assume that all gates in the circuit have zero

delay. When the circuit has different gate delays and/or different timing skew on the circuit

input lines, a pair of test patterns which is supposed to detect a SOP fault can be invalidated

[27]. To address this problem, Reddy et al. proposed a procedure to generate robust tests
' which are not invalidated by gate delays and/or input timing skews [6]. The D·algorithm was

used to derive the robust tests of circuits represented at the gate level. ln general, the test

generation of robust test patterns is complex and time consuming. Moreover, some SOP

faults may not be detected due to a lack of robust test patterns.

All of the above algorithms are gate level algorithms. Gate level algorithms suffer low

fault coverage for SOP faults due to inaccurate circuit modeling and inaccurate fault modeling.

To address the problems, switch level algorithms have been proposed. In the following, we
V ' discuss switch level algorithms.

Chiang et al. proposed a test generation method using a graph model to represent cir-

cuits [9-10]. Transistor networks are modeled as a connection graph, where each transistor

_ is represented by an edge with a logic variable as its label. When the edge label equals logic

ll. Background 7



1 (0), the correspondingtransistor is on (oft). SOP (SON) faults are represented by assigning
edge labels of faulty transistors to logic 0 (1) permanently. Once the circuit and faults are

i
represented in this way, test patterns are generated by traversing a path in the connection

U

graph or by analyzing the path and/or the cutset expressiogls driven from the graph repres-S
entations. Unlike the above method, several researchers proposed switch level test gener-
ation algorithms based on the D-algorithm [11-13]. The D-algorithm which was originallyi
developed to detect line stuck-at faults is extended to switch level networks to generate tests

·

detecting transistor faults. Chen et al. used the PODEM algorithm to generate tests for switch ‘

level networks [14]. The method has norestrictions on the type of circuits. ,
ln the above algorithms, only single SOP faults are considered. Rajskiattempted to

detect multiple SOP faults in CMOS circuits [7-8]. The test set is based on the application of
sequences of three adjacent inputvectors called trios. The test generation method is based

S

on path tracing which is similar to critical path tracing developed for stuck-at faults. Jha
studied the detection of multiple transistor faults including SON faults and.SOP faults [24-25].
He showed that a test set which detects single SOP faults in a CMOS complex gate also de-
tects most of the multiple faults of the gate.

A
ln summary, switch level test generation algorithms give higher fault coverage than gate

level test generation algorithms. However, they are more complex and time consuming.

2.4 CMOS SOP Fault Testing

ln the abeve section, previous studies on CMOS testing were briefly reviewed. ln this
section, the basic scheme for detecting SOP faults is dlscussed.

A SOP fault in_a CMOS combinatlonal circuit turns the faulty circuit into a sequential

circuit [1]. A sequence of two test patterns, say T, and T,. is required to detect a SOP fault
[2-5]. T, is used for the initialization of the faulty gate output and T, is used for the detection

Il. Background
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l

of the fault. T2 is an input pattern such that the gate output becomes floating from Vdd and
ground under the presence of the SOP fault. T, is chosen to set the faulty gate output to logic

value S, where S is the fault~free value of the faulty gate output under the application of T,.
I

When a T, pattern is applied to the faulty circuit, the faulty gate output is floating. Hence, the
previous gate output value S is maintained due to the electric charges shared by the parasitic

l

capacitance at the faulty gate output node.] The SOP fault is detected provided that a sensi-

tizing path exists from the faulty gate output to a primary output of the circuit.

For example, consider the 2-input CMOS NAND gate shown in Figure 1. Suppose that
A

the p—type transistor encircled by the broken line is stuck-open. Suppose that we apply the

inputpattern AB = 11 followed by 01 to the faulty circuit. When the second pattern AB = 01

is applied, the output F becomes t'loating and retains the previous value 0 generated by AB
~ = 11. Since the faulty free output is 1 under application of the second pattern AB = 01, the

fault is detected. ln this case, T, is 11 and T, is 01. Table 1 shows the truth table of fault free

and faulty 2-input NAND gates. In the table, F is the gate output underthe fault free condition

and F, is the gate output under th·e transistor-i SOP fault. M denotes the floating output, i.e.,

the memory state of the faulty gate. Table 2 shows all the possible tests for the SOP faults0
identiüed in Table 1.

Two faults, say a and ß, are called equivalent if and only if any test detecting fault iz al-

ways detects fault ß and vice versa. ln the above example, the SOP fault at transistor-3 is

equivalent to the SOP fault at transistor-4. ln general, SOP faults occurring at the same type

of transistors connected in series from the gate output node to Vdd or ground are equivalent

[3]. Hence, n+1 distinct SOP faults exist for an n-input NAND (NOR) gate. Similarly, for an

. n-input AND (OR) gate implemented using an n-input NAND (NOR) gate and an inverter, it can

be seen that the SOP fault at the p (n) type transistor ofthe inverter is equivalent to a SOP fault V

at any n (p) type transistor of the NAND (NOR) gate. Hence, n+2 distinct SOP faults exist for

an n-input AND or OR gate. '

As shown in the above, SOP faults in CMOS combinational circuits can be detected by

the application of two test patterns, T, and T,. However, the application of T, and T2 does not

Il. Background 9
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a) a 2-input NAND gate

Vdd
A

A ‘ O B

F

7
l

GND
A

i b) CMOS implementation

Figure 1. A CMOS 2-input NAND gate
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Table 1. Truth Table of a 2-Input NAND Gate wlth SOP Faults

N

‘ ‘ 0 0 1 1 1
I

0 1 1 1 1
. 1 0 1 1 1

_ 1 1 ‘ 0 M M

ll. Background I ‘ 11



· Table 2. Tests for a 2-Input NAND Gate ”

i output
faults T, T, fault-free/faulty

F, (11) (01) 1/0
F, (11) (10) 1/0 ’
F, (00),(01),(10) (11) 0/1
F, (00),(01),(10) (11) 0/1

II. Background . 12
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guarantee detection of the SOP fauit when arbitrary gate delays are considered. The problem
~ is that spurious values due to hazards occurring during the transition from T, and T, may de-

I initialize the faulty gate output node [27]. Hence, two pattern tests designed to detect a SOP
l

fault assuming zero gate delays may not detect the fauit under the consideration of gate de- ’

lays. ln CMOS circuits, it is known that charges shared by two transistors may also cause the
invalidation of the test sequence [28]. As discussed in the previous section, robust test deri-
vation algorithms try to find a pair oftests T, and T2 which are not invalidated through arbitrary
gate delays. In general, the methods are complex and time consuming. Moreover, there may
be some SOP faults for which robust test patterns do not exist.

t

2.5 Fault Equivalence Between SOP Faults and Stuck-At

Faults

ln this section, we investigate the fauit equivalence relation between a SOP fauit and a
T stuck-at fault for primitive logic gates such as NAND, NOR, AND, OR and inverter. Consider

an n-input NAND gate of a circuit. Suppose that the p-type transistor connected to input i of
. the NAND gate is stuck-open. Let us call this fauit a . Suppose that the faulty gate output is

A

properly initialized to logic 0. In order to detect ix, gate input i should be 0 and the other inputs
of the gate should be 1. Let us consider the s-a-1 fault on input i of the gate, say fault ß.
Obviously, the condition detecting a is the same as the one required to detect ß. Hence, any
test detecting a also detects ß and vice versa. This means that a is equlvalent to ß provided
that the faulty gate output is properly initialized. We say that a is potentially equlvalent to ß in
this thesis. To detect an n-type transistor SOP fault of a NAND gate, all gate inputs should
be 1. lt is the same condition required to detect the s—a-0 fault on any input ofthe gate. Hence,

l

an n-type transistor SOP fault of a NAND gate is potentially equlvalent to an inputline s-a-0

ll. Background 13 ‘



fault of the gate. Similarly, an n-type (p-type) transistor SOP fault ofa NOR gate is potentially
equivalent to the input s—a-0 (s-a·1) fault. For the case of an inverter, the p-type (n-type)
transistor SOP fault is potentially equivalent to the input s~a·1 (s-a·0) fault. Since an AND (OR)

I

gate is implemented using a NAND (NOR) gate and an inverter, there is a potentially equiv-
alent stuck-at fault for any SOP fault of the gate. From the above discussion, we conclude that

. there exists a potentially equivalent stuck-at fault for any SOP fault of a CMOS combinational
circuit consisting of only primitive logic gates.

Let us consider an n·input NAND gate again. SOP faults occurred on the n·type tran-
· sistors connected in series to ground are equivalent. Hence, there are (n+1) distinct SOP

faults, n p-type and one n·type transistor SOP faults, for the n·input NAND gate. The potentially
l

equivalent stuck-at faults of the (n +1) distinct SOP faults are n s-a-1 faults on n inputs and the
s-a·0 fault on any input of the gate. ln this paper, we call these stuck—at faults as the
primary faults of the NAND gate. Similarly, the primary faults of an n-input NOR gate are the
n s-a·0· faults and one s-a-1 fault on the inputs. The primary faults of an inverter are the s-a-1

and the s-a-0 faults on its input. The primary faults of an AND (OR) gate are identical to those
of a NAND (NOR) gate. Clearly, there is a one-to·one correspondence between primary faults

and SOP faults of a gate after the removal of equivalent SOP faults. lt is also known that a test

set detecting all the primary faults of a gate also detects all the stuck-at faults ofthe gate [29].

2.6 Detection of SOP Faults Using Stuck-At Faults

ln Section 2.3, various test derivation algorithms for [detecting CMOS SOP faults were

discussed. As was shown, some ofl the early approaches attempted to use the stuck-at test

set to test SOP faults [2-4]. ln this section, previous studies on CMOS SOP fault testing using
stuck-at test sets are described in detail since it is the essential part of this thesis.

Il. Background
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_ Consider a CMOS circuit consisting of only primitive logic gates. As shown in Section
2.5, there exists an equivalent stuck—at fault for any given SOP fault provided that the faulty .
gate output is properly initialized. This implies that at least one T, pattern for any SOP fault44
is included in the stuck-at test set which covers all stuck-at faults. Since the faulty gate output

should be initialized to logic 0 or 1, the test detecting the gate output s·a·1 or s-a-0 fault is a

_ T, pattern for the SOP fault. Hence, at least one T, pattern and one T, pattern for any SOP fault

are included in the stuck-at test set. This implies that if the sequence of the test patterns of
a stuck—at test set detecting all the stuck-at faults is properly organized, with possible repe-

titions of some patterns, they can detect all SOP faults under the assumption of zero gate
delays.For

example, consider the circuit shown in Figure 2. Switch level and gate level de-

scriptions of the circuit are shown in Figure 2 a) and Figure 2 b), respectively. A stuck-at test

— set detecting all stuck-at faults in the circuit is {1101, 0100, 1110, 1010, 0000}. The SOP fault
, encircled by the broken line is equivalent to the line ’h’

s-a-1 fault provided that the gate out- V
put line ’j’ isinitialized to 0. The SOP fault is detected by the test pattern ABCD = 1110, which
detects the line ’h’ s-a-1 fault,»after the application of an initialization pattern T, , for example

ABCD = 1010. ln fact, ABCD = 1010 is a test pattern which detects the line ’h’ s·a-0 fault.

However, a T, pattern need not be a test pattern detecting the line ’h’ s-a-0 fault. ln the ex-

ample circuit, the test sequence (1110, 0100, 0000, 0100, 1101, 0100, 1110, 1010, 0000, 1010)

detects all SOP faults of the circuit assuming zero gate delays.

Based on the above observation, El-ziq [3] and Chandramouli [4] suggested methods of

l organizing a sequence of test patterns for stuck—at faults to detect SOP faults. Both methods

are based on the path sensitization scheme developed for detection of stuck-at faults. The

methods organize the stuck—at test patterns in the order of detecting the s-a-0 fault followed
by the s·a·1 fault, or vice versa, for every primary input and fan-out branch. Since the two

methods are the same in the organization of the test patterns, we consider ChandramouIi’s

method in this thesis. The method applies {(SZ),(SO)} or {(SZ),(SO),(SZ)} at every primary ·
input which does not fan-out and at every fan-out branch, where (SZ) and (SO) denote the

u
Il. Background 15



F Vdd 1^ · 14 , • 17 ‘
B B

I F
4 C

_I

7l CD1
GND 1 —a)

Switch levelldescription

7 1 B
1

tb Q
°

k .F
C 1C 0 _
D 0 d i 1 1 ’ 1

I
b) Gate level description

I Figure 2. ACMOS combinationalcircuit _

II. Background
l

16



s·a·0 test and the s-a-1 test of the input or the fan·out branch, respectively. {(SZ),(.SO),(SZ)}

is needed for onlyione input of a gate in which all the inputs are connected to primary inputs

or fan-out branches. Otherwise, {(SZ),(SO)} is applied. The method is proved to be valid for
l

NAND networks. However, we found that the method can not be directly applied to NOR net-

. works. Suppose that an n-type transistor connected to input A of a 2-input NOR gate is stuck- -
‘ open. B denotes the other input of the gate. For the SOP fault, the T, pattern is AB = 00,

l
which is the same as the s-a-1 test for input A, and the T, pattern is AB = 10, which is the

same as the s—a-0 test for input A. This implies that {(SO),(SZ)} instead of {(SZ),(SO)} should

_ be applied to detect an n-type transistor SOP fault of a NOR gate. In general CMOS combi- -

national circuits, {(SZ),(SO),(SZ)} should be applied to one input of each gate whose_inputs

are connected to primary inputs and/or fan·out branches. {(SZ),(SO)} should be applied to the

other inputs of NAND or AND gates and {(SO),(SZ)} to NOR or OR gates. The above method

assures the highest SOP fault coverage assuming zero gate delays. The method requires

gate level stuck-at fault simulation to find (SZ)’s and (SO)’s for signal lines; In general, the test

set sizes are large and the processing time is long due to fault simulations to be shown in

Chapter IV. _

·Instead of above algorithmic approaches, one may be tempted to consider a simple

heuristic of rearranging test patterns to maximize the output distance of two adjacent test

patterns. The output distance of two patterns is the number of different bits in the fault-free

output responses of the circuit under application of the two patterns. Once a test pattern is

chosen, the ne><t pattern is selected among the remaining test patterns to maximize the output
A

distance of the two patterns. Since the heuristic requires only logic simulation, the processing

time is far shorter than that of Chandramouli’s method and that of our method tobe proposed.

It does not increase the size of a test set. However, ourlexperimental results in Chapter IV

show that this method suffers from low SOP fault coverage.
l
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2.7 The Proposed Research

· As discussed· in the above section, stuck-at test sets can be used to detect SOP faults
l

of a CMOS circuit. Assuming zero gate delays, a proper organization ofthe sequence of test
patterns of a stuck-at test set, with possible repetitions of some patterns, can detect all SOP

”
faults. However, when gate delays are considered, it does not guarantee the detection of all
SOP faults. When arbitrary gate delays are considered, two important issues related to testing
of CMOS circuits using stuck-at test sets are

l

_ 1. the SOP fault coverage of stuck-at test sets, that is, how many SOP faults of the CMOS
' circuit under test are detected by a stuck-at test set, and

4 2. improvement of the SOP fault coverage of the stuck-at test sets.

B
The first item is important since many IC manufacturers rely on stuck-at test sets without or-

ganizing their test patterns to test CMOS circuits. ln this thesis, we study the above two is-
sues. T l

' _ '

Although extensive research has been done on testing CMOS circuits, to our knowledge,

~ there has been only one experimental report related tothe SOP fault coverage of stuck-at test

sets. Woodhall et al. reported empirical data on a purely combinational ASIC CMOS circuit

implemented on many die [17]. They performed an experiment to measure the SOP fault es-
2

caping rate of a stuck-at test set. Among 4552 die examined, 44 die have one or more SOP

faults. Out of 44 die with SOP faults, only 4 die escaped detection by the stuck-at test set which
covers all stuck-at faults of the circuit. The observed SOP fault escaping rate was 0.121%.
However, the experiment does not give the SOP fault coverage of the stuck-at test set, i.e., it

V does not tell how many SOP faults are covered by the stuck-at test set. Moreover, the results
. are based on one type of combinational circuit implemented on many die. In order to evaluate

B
. the SOP fault coverage of stuck-at test sets, we performed experiments on various CMOS

a
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combinational circuits. The SOP fault coverage of stuck-at test sets is compared with that of
random pattern test sets.

A
The next issue of this thesis is improvement of the SOP fault coverage of stuck-at test"

sets. We propose a method of improving the SOP fault coverage through the organization of
the test sequence of a given stuck-at test set. ln general, a SOP fault under the application
of a stuck-at test set may not be detected due to two reasons:

1. lack of the necessary test patterns in the stuck-at test set and/or
2. improper initialization of the faulty gate output.

· Through experiments performed on various CMOS combinational circuits, we found that im-
proper initialization is the major reason for SOP faults escaping detection. This suggests that
proper rearrangement of the stuck-at test set may improve the SOP fault coverage substan-
tialiy. The method proposed is to rearrange the test sequence of a given stuck-at test set to
achieve proper initialization of the faulty gate output. The method attempts to obtain near
minimal sizes of test sets while achieving high SOP fault coverage. The method is based on -

T stuck-at fault simulation assuming zero gate delays. For simplicity, circuits consisting of only
primitive logic—gates are considered in this thesis. However, the _method can be directly ap-
plied to CMOS combinational circuits consisting of complex gates.

”
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Ill. Test Sequence Organization of Stuck-At Test

Sets

3.1 Introduction

The two major objectives of this thesis related to the testing of SOP faults using stuck-at

test sets are

1. the measurement of the SOP fault coverage of stuck-at test sets in CMOS combinational

circuits and
l

2. the investigation of a method to improve the SOP fault coverage of stuck-at test sets. _

Towards the objectives given above, we present the evaluation methods to measure the SOP _
fault coverage of various stuck-at test sets and the proposed method including its implemen- .

_ tation in this chapter. Section 3.2 describes the analysis of undetected faults by the stuck-at

test sets. Section 3.3 describes the proposed method and its implementation. Section 3.4

Ill. Test Sequence Organization of Stuck·At Test Sets
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describes the implementation of Chandramouli’s method. Finally, Section 3.5 describes theA
SOP fault simulator and its implementation.

3.2 Analysis of Undetected SOP Faults

As explained in Section 2.7, under application of a stuck·at test set, a SOP fault may not
be detected due to two causes, the lack of necessary test patterns in the test set, or improper
initialization of the faulty gate output. ln this section, we quantify the contribution of each

4
j

cause to understand the capability and the limit of using stuck·at test sets in detecting SOP

faults. l _
Suppose that a test pattern t, detects a SOP fault under proper initialization of the faulty

gate output. The proper initialization is highly likely to be determined by the previous test
pattern t,_, and the transition from t,_, to the current pattern t,. Hence, we assume that the Q

‘ initialization of a gate is determined only by the previous pattern t,_, and the current pattern
° t, throughout this thesis.

Let us consider the possible highest SOP fault coverage that can be obtained by a

stuck-at test set. Suppose that the stuck·at test set consists of n patterns enumerated by 1,
. 2, 3,. ..., n. To achieve the possible highest SOP coverage, every pair of patterns (i,j), i aß j,

should be applied to the circuit at least once during the test. We call a test sequence con-

taining every pair of (i,j), i aé j, an Exhaustive Test Seguence (ETS).
S

Suppose that an EIS of a stuck·at test setfails to detect a SOP fault in the circuit under
· test. This is due to one of two cases:

l ”

1. a test pattern, say T,. detecting the fault is not included in the stuck-at test set, or l

2. there is a test pattern T, in the stuck-at test set, however a proper initialization pattern
S

T, is not included in the test set. (It should be noted that such a pattern T, may not exist.)
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l

‘ ln either case, the stuck-at test set Iacks a necessary test pattern to detect the fault, i.e., the ·

ETS can not detect the fault since the necessary pattern is not included in the test set. Clearly,
the SOP fault coverage of a stuck-at test set (in which the test set is organized or not) is al-
ways less than or equal to that of an ETS of the stuck-at test set. Organization of a test set is
an attempt to reduce the number of undetected faults due to improper initialization, i.e., T, and
T, patterns of a fault are included in the test set, however they are not applied in the proper .

”

order to detect the fault.

We use the following notation to represent the escaping rate of SOP faults of a stuck-at
test set.

E Escaping rate of SOP faults (%) „
ET Escaping rate due to lack of test patterns (%)

EI Escaping rate due to improper initialization (%)
nSOP Number of SOP faults

nSAT Number of SOP faults detected by the stuck-at test setE
nETS Number of SOP faults detected by an ETS l

As a SOP fault is not detected due to either the lack of a test pattern or improper initialization,
but clearly not by both, A

· E = ET + El.

From the above discussion, the escaping rate due to lack of test patterns is

_ nSOP - nETS —
A,

.ET - -————rP x 100 (A).

Since

= nSOP - nSAT OE nSOP x 100 (A),
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the escaping rate due to improperinitialization isEl = E — ET ‘ _ ·· _ nSOP — nSAT _ nSOP — nETS_ ( nSOP nSOP ) X 100 (%)
. _ nETS — nSAT- nSOP x 100 (%). l

Through the proper organization of the test patterns, El for a stuck-at test set can be reduced
to increase the SOP fault coverage of the stuck·at test set. However, ET cannot be reduced

unless a different stuck-at test set is chosen. Hence, the SOP fault coverage of a stuck·at test

set is bounded by (100-ET) %. ‘

. For the rest of this section, we discuss the minimal length ETS of a stuck·at test set.
Suppose that a stuck-at test set consists of n patterns enumerated by 1, 2, ..., n. Let us con-
sider the application of all the pairs of test patterns (i,j) such that i<j , in order. »We ignore the
application of the reverse order (j,i) for a moment. The number of pairs of (i,j), i<j , is „C,.

As each pair has two patterns, i and j, the total number of patterns is

_ — 2 x nl _ _ _2 x„C2 - (n _ am — n(n 1).

All n(n-1) patterns are shown in row 1 through row (n-1) of Table 3. Suppose that we apply the
n(n-1) patterns in the order of left to right and top to bottom. As shown in the table, row i
contains all (i,j) and (j,i), j = i+1, i+2, ..., n, pairs except (n,i) pairs. For example, the first

three patterns of row 1 are (1, 2, 1). The ürst two patterns form the (1, 2) pa-ir and the last two

patterns form the (2, 1) pair. As the last pattern of each row is n and the first pattern of row
i is i, all pairs (n,i) are also contained in the sequence except the pair (n,1). Row n is added
in Table 3 to include the (n,1) pair. Hence, Table 3 gives a minimal length ETS ofa stuck-at test
set. From the above observation, we have the following theorem. .

THEOREM: The minimal length of an ETS ofa stuck-at test set with size n is n(n-1)+1.
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Table 3. A Minimal Length Exhaustlve Test Sequence _

’ sequence no. of patterns
.1

121314 ...... 1:1-1 1:1 2:1-22 2 3 2 4 ...... 2 n-1 2 n Zn-4- 3 3 4 ...... 3 n-1 3 n 2:1-6

n-2 A
n-2 n-1 n-2 n 4

**1 n-1_11· 2. ¤ 1 1
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· From the above theorem, the order of a minimal length ETS of a stuck-at test set is nz. Hence
it may not be practical to apply an ETS for a large stuck-at test set.

3.3 The Proposed Method

ln this section, we describe our method to organize the sequence of test patterns of
stuck-at test sets. Our approach is based on the detection of primary faults of individual gates
rather than the faults on the primary inputs and fan-out branches which forms the basis for

V

°El-Ziq’s [3] and Chandramouli’s [4] methods. Suppose that a test pattern T, of a stuck-at test _
set detects a primary fault. In order to detect the corresponding SOP fault ofthe primary fault, ·

the gate output should be initialized first. An initialization pattern of the test pattern is ob-
tained in the following way. Let D (D-) denote that the fault free value of a gate under the ap-

T

plication of a test pattern is 1 (0) and the faulty value is 0 (1). Suppose that a test pattern T,
detects a primary fault of a gate. lf the gate output is D (Ü) under the application of T2, then
any pattern which produces logic 0 (1) at the gate output is an initialization pattern for T,.
Obviously, the test pattern detecting the s·a·1 (s-a·0) fault on the gate output can be one ofthe

· initialization patterns. In fact, the pattern detecting the s·a·1 (s-a-0) fault is used as an initial-
ization pattern in El-Ziq’s [3] and ChandramouIi’s [4] methods. _

ln the following, we present a procedure organizing the sequence of test patterns. Thel
essence of the procedure is to apply the stuck-at test in the given sequence. Then a sequence
of additional test patterns is obtained to cover any remaining faults. A gate level fault
simulation assuming zero gate delays is used for this gurpose. The procedure is divided into
five steps. The first step is an initialization step. ln the second step, the original test set is
applied to the circuit in the given sequence and all faults detected by the test set are elimi-
nated from further processing. ln theuthird and fourth steps, the sequence of test patterns is
organized to cover undetected faults in step 2. First, we construct a test table which contains

u
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all T, and T, patterns for each fault using fault simulation. Next, a sequence of test patterns
is obtained by searching the test table. Finally, Step 5 reduces the test set size by eliminating
unnecessary test patterns. For this purpose, we divide the test sequence into subsequences

W

such that the first patterns of each subsequence do not detect any fault. Then, we apply the {

' ’ subsequences in the reverse order and eliminate all test patterns which do not detect new
faults. The procedure is given below.

PROCEDURE TEST_SEQUENCE_,ORGANlZER;

Step 1: { lnitialization }

Set up the fault list (FL) of all the primary faults. °

Set all the logic values to x (unknown).
T

Step 2: { Eliminate all faults detected by the original stuck—at test set (SAT). }
Apply all the patterns in SAT in the given sequence.

Eliminate all detected faults from FL.

lf FL is empty then go to Step 5.

Step 3: { Create the test table containing all T, and T, patterns of each fault. }
FOR each test t, 6 SAT DO

FOR each fault Q 6 FL DO ” ‘

if t, is a T, pattern of Q,
{

then mark t, as T, of Q.
T if t, is a T, pattern of Q,

é then mark t, as a T, of Q.
l

END FOR V

END FOR

Eliminate all faults lacking a T, or a T, pattern. Q
{These faults are undetectable for the given SAT. }

STEP 4: { Organize the sequence of test patterns to be added to the test set. }
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Pick the last pattern tfrom SAT.

Set the current pattern tc <- t.

WHILE FL is not empty DO
I

Find a fault L 6 FL such that tc ls a T, of L.

IF such an L exists THEN

Find a test t,, which is a T, of L.

Eliminate all the faults (including L) detected by (tc, t„) pair from FL.
ELSE z ,

Selecta new L 6 FL. 4
‘ Find a test t„ which is a T, of L. ' °

END IF
‘ { t,, is the next tc. Set t,, as tc.

}A
»

tc <- t„

ENDWHILEStep

5: { This procedure compacts the above test set. }

Apply the test patterns in the reverse order of subsequences.
V

Eliminate all patterns which do not detect any new faults (i.e., eliminate
— those that detect only faults detected by the previous test patterns). _

4 ‘
END TEST_SEQUENCE_ORGANIZER.

Step 2 is needed to reduce the overall processing time. A substantial number of faults are
detected in Step 2 and are eliminated from further processing. The above procedure guar-
antees to achieve the possible highest SOP fault coverage using a given stuck-at test set as-
suming zero gate delays.

In the following, we illustrate the proposed method by using the example circuit shown
~ in Figure 1. The stuck-at test set {1101, 0100, 1110, 1010, 0000} detects all single stuck-at faults

of the circuit.
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I

Step 1: The fault list consisting of all the primary stuck-at faults is

FL = {(@•/0). (@/1). (9/0). (9/1). (d/0). (d/1). (@/0). (//1). (9/0). (9/1). (h/0). ’
(h/1). (//1). (//0)}-

(z/1) and (z/0) denote a s-a-1 fault and a s-a-0 fault on line z, respectively. Since the stuck-at
faults represent corresponding SOP faults, the gate outputs should be initialized properly for
the detection of the faults.

Step 2: The stuck-at test set {1101, 0100, 1110, 1010, 0000) is applied in the given order. Since _

all gate outputs are initialized to x, the first input, 1101, does not detect any fault. The second ‘

input, 0100, turns line d into Ü under the presence of (d/1) and the output F becomes D. Hence,
0100 is ia T, pattern for (d/1). Since the gate output, line i, is properly initialized to 0 under
application of 1101, the fault is detected. Similarly, (h/0) and (g/1) are detected by the se-
quence (1101, 0100). This step repeats until the test patterns are exhausted. Table 4 shows
the faults detected by the stuck·at test set. ln this example, 9 faults among 14 faults are de-

U
tected by the stuck-at test set. The detected faults are eliminated from the fault list FL.

‘ — Step 3: The remaining faults in Step 2 are {(a/0), (c/1), (d/0), (e/0), (i/1)}. All T, and T, patterns
for the faults are obtained through fault simulation. Table 5 is the test table for undetected
faults. For example, the test 0100 is a T, pattern of (c/1) and 0000.is a T, pattern of (d/0).

Step 4: Once the test table is set up, the sequence of additional test patterns is organized to
cover undetected faults using the table. Since 0000 is the last input of the stuck-at test set, the
current pattern is tc = 0000. From Table 5, tc = 0000 is a T, pattern for (a/0), (d/0), (e/0) and
(i/1). (a/0) is chosen to be processed. The test pattern 1010 is a T, pattern for (a/0), hence the
next pattern is t„ = 1010. No other faults are detected by the (0000, 1010) pair. ln the ne><t it-
eration, tc becomes 1010. The fault (d/0) is chosen and the next pattern is t,, = 1101. Since

(1010, 1101) detects (i/1) as well as (d/0), both (d/0) and (i/1) are eliminated from FL. ln the
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Table 4. Faults Detected by The Stuck-At Test Set

test test detected faults »
A
# of detected ·

sequence pattern faults Tl11w1Ä
¤w¤ <¤/1>„ <¤/1>. <¤w> ll<1w>11 ww <111> 1¤w1w
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Table 5. Test Table for Undetected Faults 1

(4;/1) (d/0) (e/0) (1/1)
S

T1 T2 T1 T2 T1 T2 T1 T2 T1 T2

MM ————— J ——— J 1¤w¤
___

JJJMw—— J — J —————
ww J —— ——— Jww ——————
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third iteration, the remalning faults in FL are (c/1) and (e/0) and the current pattern tc is 1101.
Since no faults are initialized by tc = 1101, fault (e/0) is selected. Two patterns (0000, 0100)

are added to the sequence to detect the fault. In the final iteration, (1110, 0100) are added
tor

detect (c/1). The test scquence organized to this step is shown in Table 6. The test sequence _
l

l numbered 1 through 5 is the original test set and the remaining test sequence contains the
l

added test patterns. ‘

Step 5: This step eliminates unnecessary test patterns from the test sequence. The test se-

quence of Table 6 is divided into three subsequences, (1101, 0100, 1110, 1010,. 0000, 1010,

1101),‘(0000, 0100) and (1110, 0100). Note that the first patterns of each subsequence, 1101,
A

0000 and 1110, do not detect any fault. The subsequences are applied to the circuit in the V
reverse order. The applied test sequence is (1110, 0100), (0000, 0100), (1101, 0100, 1110, 1010,

0000, 1010, 1101). All faults are detected by the first 10 test patterns. The last test pattern,
1101, does not detect any new fault and hence it is eliminated from the test sequence. The

final test sequence is (1110, 0100, 0000, 0100, 1101, 0100, 1110, 1010, 0000, 1010) as shown in

Table 7.

Comparison wlth -EI-Ziq's and Chandramouli’s Methods

The major differences between the proposed method and EI-Ziq’s [3] and

Chandramouli’s [4] methods lie in selecting initial faults and in choosfng inltialization patterns.

lnitially, the number of faults considered for our method is larger than that for the two meth-

ods. However, since many faults are eliminated in Step 2 in our method, it has little effect in

the overall processing time. As described in the early part of this section, the proposed

method has more choices in selecting the initialization patterns. This leads to smaller test

sizes as will be shown in Chapter IV. Moreover, the method does not require a path to be

sensitized from the faulty gate output to a primary output for the initialization. The reason for

this ls that a necessary initialization for the proposed method is determined directly by ob-
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Table 6. Test Sequence Organlzed Before Compactlon

test test A detected faults # of detected
SGQUGHCQ paüéfll f8UltS

11 1101 111/01 11K1 111¤
1010 (1/1) 1
1010 1a/0) 1

711011
A 0100 16/0) 0 110111¤11

0100 (cm 1
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Table 7. Compacted Test Sequence .
I

test test detected faults # of detected
sequence pattern I faultsI 1111¤Ä

¤1¤¤ 1<=/111 1¤/1>1 <¤/¤> 11¤¤¤¤ 1¤/1>.
1g/¤>lll<¤1¤> 1 aÄ 1101 1 11/¤>. 11/1>. 11/1111

0100 (d/1) 1I 7 1110
1010 (1/1) 1

10 1010 ra/0) 1
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I

serving the faulty gate output. However, El-Ziq’s [3] and Chandramouli’s [4] methods require ·

the faulty line value to be propagated to a primary output. This requires substantial process-
ing time.

I

3.4 Implementation of ChandramouIi’s Method I

As described in Section 2.6, El-Ziq [3] and Chandramouli [4] suggested methods of test
generation for SOP faults using stuck-at test sets. Since El-Ziq’s method is essentially the
same as ChandramouIi’s method, we implemented only Chandramouli’s method to compare
the performance of the proposed method with that of Chandraouri’s method. ln this section,
we describe the implementation of Chandramouli’s method. The methodis to apply test pat-A
terns of a stuck-at test set in the order of {(SZ), (SO), (SZ)} or {(SZ), (SO)} for all primary in-
puts which do not fan-out and for all fan-out branches (in case of NAND, AND and Inverter).
For NOR and OR gates, the sequence {(SO), (SZ), (SO)} or {(SO), (SZ)} is applied as explained
in Section 2.6. Since he does not provide any detailed procedure for implementing the

I
method, we used similar techniques used in the proposed method for unspecified parts.

The procedure is divided into 4 steps. The first step is the initialization step. A check

. point list consisting of all primary Inputs which do not fan-out and all fan-out branches is
constructed instead of the fault list. Application of two or three test patterns, say (T., T2) or (

. T,, T2, T2), is required for each check point. ln the second and third steps, the sequence of test

patterns is organized. First, we construct the test table which contains all (SZ) and (SO) pat-
terns for each check point using fault simulation. Next, a sequence of test patterns are ob-
tained by searching the test table. Finally, we compact the obtained test sequence by applying
the subsequences in the reverse order as in Step 5 of the proposed method. The procedure
is given below. «
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_ PROCEDURE CHANDRAMOULI_METHOD;

Step 1: {InitializationSet

up the check point list (CPL). C
Set all the logic values to x (unknown).

C Step 2: { Create the test table containing all (SZ) and (SO) patterns for each check point. }
FOR each test t, 6 SAT DO

FOR each check point] 6 CPL DO

if t, is (SZ) pattern ofj, then mark t, as (SZ) ofj.

if t, is (SO) pattern ofj, then mark t, as (SO) ofj.

C
A 4 l — END FOR

END FOR
‘

”
Eliminate all check points lacking a (SZ) or (SO) pattern. .
{ The SOP faults related to these check points are undetectable

for the given stuck-at test set. }

Step 3: { Organize the sequence of test patterns using the test table. }

Pick the first pattern t from SAT.

Set the current pattern tC <— t.

WHILE CPL is not empty DO

Find a check point i 6 CPL such that tC is a T, of i.

IF such an i exist THEN °

Find a test t„ which is a T, of i. ‘

‘ Eliminate all check points (including i) covered by (TC, T„) from CPL.
IF T, is needed for i THEN

tc <—— t„.
”
Find a test t„ which is a T, of i.

Eliminate all check points covered by (TC, T,,) from CPL.
. END IF
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ELSE

Select a new check pointj 6 CPL. _
Find a test t„ which is a T, ofj.

7

_ ‘ END IF

{ t„ is the next t,. Set t„ as the current test pattern. }

tc <- t„.

END WHILE . 4
Step 4: { This procedure compacts the above test set. } _

Apply the test patterns in the reverse order of subsequences.

Eliminate all patterns which do not cover any new check points (i.e., cover

only the check points covered by the previous test patterns). 4

END CHANDRAMOULI_METHOD.

Step 4 in the above procedure is not included in Chandramouli’s paper.·However, we added

this routine to allow fair comparison with the proposed method.

3.5 The SOP Fault Simulator S .

Fault simulation is essential for measuring the fault coverage of test sets. To measure
the SOP fault coverage of stuck·at test sets and the performance of the proposed method, we

implemented a SOP fault simulator. In this section, we present the SOP fault simulator. The

simulator is written in FORTRAN 77 and runs on an IBM 3090 computer. Since the simulator _

is developed speciücally for our purpose, the simulator deals with CMOS circuits consisting

of only primitive logic gates.
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As explained in. Section 2.3, there are two different approaches for modeling the SOP _
fault, gate level modeling and switch level modeling. ln this thesis, we have chosen the gate
level approach. ln gate level modeling, a CMOS gate is represented by an equivalent gate
level circuit using additional gates and a memory element to represent the sequential be-
havior of the faulty circuit. A SOP fault is represented by its equivalent stuck-at fault [5].
Unlike this method, we use a rather direct approach to represent SOP faults. lnsteadof con-
verting the faulty gate into its equivalent circuit with the equivalent stuck·at fault, we describe
the faulty behavior of the circuit directly in the form of a truth table such as Table 1 in Section
2.4. When a test pattern is applied to the circuit, the simulator matches the pattern with a T, .
pattern detecting the fault. If the pattern is a T, pattern for the SOP fault, thefaulty gate output
becomes M. Then the simulator maintains the previous logic value of the gate output as the

_ current value. Othervvise, the faulty gate behaves the same as the fault free gate. For this
V

purpose, the simulator preserves the previous logic values for all gates. .

Another problem in SOP fault simulation stems from the fact that the behavior of a faulty
circuit can be affected by hazards occurring in the circuit. As described in Section 2.4, two test
patterns designed to detect a SOP fault assuming zero gate delays can be invalidated by
hazards occurring due to unequal delays through different signal paths. ln the simulator, we '

employ the transport delay model to consider the effects of hazards on detecting SOP faults.
T

The transport delay is the time taken for an input change to reach the output of the gate, in-
dependent of the direction of the signal change [29]. The approach used for the fault simu-
lation is that the simulator detects a SOP fault only if the faulty gate output is properly
initialized considering gate delays upon application of a T, pattern. The delay values are
speciüed by the user depending on the type and the number of inputs of each gate.

ln the following, we present the algorithm used for the fault simulation. ln the simulator,
several features are considered to enhance the speedup of the fault simulation. The basic
feature of the simulator is the concurrent fault simulation scheme. Suppose that a transistor

in a CMOS combinational circuit is stuck-open. When a T, pattern is applied to the circuit, the
faulty gate output becomes M. Then the previous logic value is maintained at the faulty gate
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output node. Clearly, the effect of the fault on the circuit occurs only at the faulty gate and the

gates in the path from the faulty gate output to primary outputs. The other portions of the

circuit behave the same as the fault free circuit. In the serial fault simulation scheme, which, _
simulates one fault at a time, a large amount of simulations are repeated. These repeated

simulations of the faulty circuits can be avoided by simulating the fault free circuit and the

faulty circuits concurrently. In the simulator, the fault free behavior of the circuit is first eval-
·

uated and all the faulty functions are evaluated based on the fault free response ofthe circuit. ·

ln the following, we present the fault simulation procedure. The essence of the proce-

dure is to simulate the circuit assuming zero gate delays and to identify all detectable faults

using the current test pattern. We define that a SOP fault is detectable by the current test

~ pattern provided that the faulty gate output becomes M under the application of the current

test pattern. Only these faults are applied to further processing that considers gate delays.

The procedure is divided into 5 steps. The first step is an initialization step. ln this step, all

eq·uivalents faults are collapsed using simple fault collapsing techniques described in Section
\<>.“, 2.4. In the second step, the current test pattern is applied to the circuit and the circuit is

simulated assuming zero gate delays. All detectable faults by the current test pattern are

identiüed and tagged for further processing. ln the third and fouuth steps, all detected faults

are identified and eliminated from the fault list. The third step simulates the tagged faults until —

· T
the circuit reaches a stable state which is pre-calculated at the initialization step. Once the

circuit becomes stable, the fourth step checks the initialization of the faulty gate output. lf a

faulty gate output is properly initialized, i.e., the faulty gate output is different from the fault

j free output, it is propagated toward the primary outputs of the circuit. lf there exists a sensi- ,

tizing path from the faulty gate output to a primary output, the fault is detected. All detected
¢„«/i ‘ faults are eliminated from the fault list. Finally, the fifth step sets the ne><t test pattern as the

current test pattern and repeats the simulation. The above procedure is repeated until a pre-

defined fault coverage is obtained or the test patterns are exhausted. The procedure is de-

scribed below. ,

Ill. Test Sequence Organization of Stuck-At Test Sets 38



PROCEDURE CMOS_FAULT_SlMULATlON;

Step 1: { Initialization }
E

Set up fault list (FL).

Set up unit_time and max_fault_coverage.E
Set all the logic values into x (don't care).

E

{ Set the first test pattern as the current test pattern. }
— tc <- t,. L

Step 2: {This procedure simulates the circuit assuming zero gate delays

and tags all the detectable faults. }
· Apply tc to the circuit. _ ‘

Perform fault free simulation and store fault free output Y,, of the circuit. .

. FOR every fa.ult L e FL DO
E

Evaluate faulty gate output y, .
« lf y, = = M, then tag L.

l E

END FOR
_ lf no detectable faults exist, then go to step 5. ~

Step 3: {This procedure simulates the circuit considering gate delays until the circuitl
becomes stable and updates faulty gate outputs.} ’

{ Set current time t into 0. }
· t <- 0. E

WHILE t s t,„,,,, DO

Perform fault free simulation.

, FOR every tagged fault L DO

Evaluate the faulty gate output y,. ·

_ ‘ IF y, = = M THEN

y, <- previous output of the gate.

ELSE
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y, <- fault free output of the gate. .

END IF

END FOR
E ~ F

t = t + unit_time.

END WHILE

Step 4: { This procedure identities all the detected faults and eliminates l
the detected faults from FL. }

FOR every tagged fault 6 DO

Check the faulty gate output y, and the fault free output y„.

IF y, ab y„ THEN ‘

Compute primary output Y, of the circuit.

lf Y, aé Y„, then set t} detected and eliminate ßfrom FL.

END IF

END FOR

Step 5: { This procedure checks the stop condition. }

Clear all tags.

Update the fault_coverage.

If fault_coverage 2 max_fault_coverage, thenstop._

If no test input exist, then stop.

Go to step 2.

END CMOS_FAULT_SIMULATION.
·
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IV. SOP Fault Coverage of Stuck-At Test Sets

4.1 Objectives of the Experiments

As described earlier, the objectives of this thesis are the evaluation of the SOP fault
U

coverage of stuck-at test sets and improvement of the SOP fault coverage of stuck-at test sets.
E ln Chapter lll, we proposed a method for improving the SOP fault coverage of stuck-at test .

sets. In order to measure the SOP fault coverage of stuck-at test sets and the performance

of the proposed method, we conducted experiments using various CMOS combinational cir-

cuits. ln this chapter, experimental results and related analysis are reported.

The experiments can be classitied into 3 categories according to the objectives of the

experiments: · ° ‘

1. evaluation of the SOP fault coverage of original stuck-at test sets and comparison with
C

that of random pattern test sets,

2. measurement of the performance of the proposed method and comparison with that of

other competing methods, and

3. measurement of the SOP fault escaping rate of stuck-at test sets.
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_ The experimental results of each category are presented in Section 4.2 through Section4.4.A
4-bit carry look·ahead adder, a 4-bit arithmetic and logic unit (74181 ALU), and 5

benchmark circuits presented by Brglez and Fujiwara [30] are used for the experiments. All
the circuits consist of only primitive logic gates and the numbers ofgates range from 6 to 1669.
Stuck-at test sets of the circuits are derived using HILO [31], a commercial stuck-at test pattern

I generator. The SOP fault coverage of a given test set is measured using the SOP fault simu-
lator described in Section 3.5. The transport delay model is employed in the simulator to
consider the effect of de—initialization ofthe faulty gate output as described in Section 3.5. The
delay values for the gates used in the simulator are shown in Table 8. The unit (1) delay is
asslgned to each inverter. Delays of 2 to 6 are asslgned to other types of gates depending on

I

the number of inputs of the gate.

4.2 SOP Fault Coverage of Original Stuck-At Test Sets

This section reports the SOP fault coverage of original stuck-at test sets and that of
random pattern test sets. The lirst part of the experiment is to measure the SOP fault cover-
age of original stuck-at test sets and increase@ size stuck-at test sets. Four different size test
sets are applied to each clrcuit under test. The size of a test set is increased by repeating the
original test sets by two, live and. ten times. The sequence of test patterns is rearranged
randomly. The second part of the experiment uses random pattern test sets. The random

I

A ‘ patterns are generated using a pseudo-random number generator. ll
The experimental results are given in Table 9. Each fault coverage given in the table is

i
I

the average of 10 experiments. For the stuck-at test sets, the sequence of the test patterns is
' rearrangedrandomly for each experiment. For the random pattern test sets, the test patterns

are generated randomly with a different initial seed for each experiment.
The column headlngs ofthe table are described below. ·
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‘ Table 8. Gate Oelay Assignment

number of Inputs
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name name ofthe circuit
4

_
A

ng number of gates

, nSOP number of SOP faults after collapsing equivalent faults
Int

number of test patterns
‘

SA stuck·at fault coverage of the stuck·at test set (%)
I SOP_s SOP fault coverage of the stuck-at test set (%) ’ I

SOP_r SOP fault coverage of the random pattern test set (%) ,

ln Table 9, four entries are given for each circuit under the column headings "SOP_s" and

"SOP_r”. The top entry is the SOP fault coverage of the original stuck·at test set. The re-

maining entries are the SOP fault coverage of the test sets increased in size by two, tive and

ten times, respectively.

From Table 9, the average SOP fault coverage of the original stuck-at test sets for the

seven circuits is 81.7%. When the sizes of stuck-at test sets are increased by two, tive and ten ~—

times, the average fault coverage is increased to 87.8%, 93.1% and 95.2%, respectively.

. When the size of a test set is small, the fault coverage increases rapidly as the size of the „

stuck·at test set increases. However, the fault coverage is saturated for test sets increased

in size by tive to ten times. l
The experimental results show that the SOP fault coverage of a stuck-at test set is higher

than that ofthe same size random pattern test set. However, the difference becomes smaller

as the test set size increases. This is mainly due to the fact that a stuck·at test set contains _
‘ many T, and T2 patterns of SOP faults, while a random test set does not. As the number oftest

patterns increases, the fault coverage _of a stuck·at test set saturates earlier than that of a .

random pattern test set. Hence, the difference becomes small as the test set size increases.
In summary, we can make the following observations. First, the SOP fault coverage of

_ a stuck·at test set increases as the test set size increases. However, the fault coverage is

saturated when the test size is increased by five to ten times depending on the circuit. Second,

stuck·at test sets achieve higher SOP fault coverage than random pattern test sets.
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Table 9. SOP Fault Coverage of Stuck·At Test Sets and Random Pattern Test Sets

,4

C17 6 100.0 70.0 47.8
12 86.7 68.9
30 97.8 90.0 ·

_ 60 99.4 98.3
Adder 15 70 12 65.1 41.7

. 24 75.6 54.0
60 88.0 68.3

120 94.9 · 77.9
74181 91 29 100.0 · 82.8 78.9 _

58 89.5 88.2
145 96.3 95.8
290 98.2 98.6

C880 1206 57 89.8 74.5
4 114 93.6 82.1 .

. 285 97.1 88.2_ 570 98.3 91.3
C1355 87 91.9 76.5

174 92.4 83.2
435 92.7 88.1
870 92.9 91.3

C1908 880 2117 122 85.9 67.3
244 87.5 72.5
610 89.2 79.6

1220 90.2 84.5
C3540 1669 4752 179 86.4 75.7 · 7 ‘

358 89.1 81.7
895 91.4 87.8

1790 92.7 91.1
avg 513 1439 70 81.7 66.1

140 87.8 75.8
351 93.1 85.4702 95.2 90.4 U

IV. SOP Fault Coverage of Stuck-At Test Sets 45



. 4.3 SOP Fault Coverage of the Proposed [Il/Iethod .

This section reports the SOP fault coverage of the stuck-at test sets organized using the

proposed method. The results are compared with those of twon competing methods,

Chandramouli’s method and the heuristic presented in Section 2.8. Since EI-Ziq’s method [3]
is essentially the same as ChandramouIi’s method [4], results are only compared with

Chandramouli’s method. Implementation of Chandramouli's method is described in Section
l

3.4. lt should be noted that a similar compaction technique to reduce the test set size is also

employed for Chandramouli’s method. The heuristic is to organize the sequence of test pat- -
‘ terns so that the Hamming distance between two consecutive fault-free outputs is maximized.

It should be noted that the sequence of an organized test set, obtained using any one of the

three methods, depends on the sequence of the original stuck-at test set.

The experimental results for the three methods are given in Table 10. The SOP fault

coverage of the original stuck-at test sets is also given for comparison. Each SOP fault cov-

erage given in the table is the average of 10 simulations in which the sequence of the original

stuck-at test set is chosen randomly.Q
The column headings of the table are described below.

name name of the circuit . _
ng number of gates .

r nSOP number of SOP faults after collapsing equivalent faults A

SA stuck-at fault coverage of the stuck-at test set (%)
l

nt number of test patterns

SOP SOP fault coverage of the test set‘(%) -

Two entries are given under column heading ”stuck-at" in the table. The top entry is the
number of test patterns and the SOP fault coverage of the original stuck-at test set which is
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Table 10. SOP Fault Coverage of Organlzed Test Sets .

1
Stuck·At Proposed Chandramouli Heuristic

I

n1 SOP(%) nt SOP(%) nt SOP(%) nt SOP(%)
C17 18 6 70.0 11 100.0 10 100.0 6 73.3

11 80.6
Adder 15 70 12 65.1 34 100.0 33 100.0 12 69.2

34 80.4
_ 74181 91 29 82.8 74 97.2 88 97.7 29 88.3

74 91.2
C880 383 1206 57 89.8 134 97.6 207 98.2 57 90.3” 134 94.6 .
C1355 1604 87 91.9 304 92.7 87 91.8

304 92.6
C1908 880 2117 122 85.9 358 89.7 425 89.6 122 85.3 ‘

358 88.2
C3540 1669 4752 179 86.4 506 92.7 832 90.1 179 86.4

506 90.1
avg 513 1439 70 81.7 203 95.7 279 95.5 70 83.5

· 203 88.2
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also given in Table 9. For the second entry, the size of the test set is increased to be equal °
i

to that for the proposed method. The increased size test set is obtained by randomly selecting
i

, the necessary number of test patterns from the original stuck-at test set.
B

From Table 10, the average SOP fault coverage of the proposed method is 95.7% and

that of Chandramouli’s method is 95.5%. The average SOP fault coverage of the heuristic is

very low (83.5%) and comparable to that of the original stuck-at test sets. The average num-

ber of test patterns for the proposed method is 203 and that for Chandramouli’s method is 279. g
The average size of the test sets for the proposed method is 27.2% less than that for .

Chandramouli’smethod.The

processing time to organize the sequence of test patterns for the three methods is

given in Table 11. The processing time is the average of CPU times from ten runs on an IBM

3090. The column headings of Table 11 are described below.

name name of the circuit
U

ng number of gates

nt number of test patterns

time · average CPU processing time (seconds) . «

The average CPU times for the proposed method and Chandramouli’s method are 107.6 l
seconds and 357.53 seconds, respectively. The processing time for the heuristic ls negligible.

‘ The average processing time for the proposed method is less than one-third of the time for

Chandramouli’s method. The main reason for the short processing time is that the proposed.

· method does not require sensitizing a path from the faulty gate output to primary outputs for

the initialization patterns, while Chandramouli’s method does as explained in Section 3.3.

ln summary, the proposed method gives small test set sizes and needs substantially less

processing time than Chandramouli’s method, while achieving high SOP fault coverage. The

increase in the SOP fault coverage is negligible for the heuristic.
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III

Table 11. Processing Time of Test Organlzlng Methods .

Proposed Chandramouli Heuristlc
C17 11 663 10¤-63Adder15 34 0.07 33 0.07 12 0.04A 74181 91 74 0.63 88 1.30 29 0.09
C880 383 134 8.16 207 39.59 57 0.41 4
c1266 E 304 21.96 355 164.38 87 0.76 47 C1908 880 358 70.69 122 1.27
C3540 1669 506 651.68 832 1951.80. 179 3.14
avg 513 203 107.60 279 357.53 70 0.82

IV. SCP Fault Coverage of Stuck·At Test Sets 49



4.4 SOP Fault Escaping Rate

This section reports the SOP fault escaping rate ofthe original stuck-at test sets and that

A of the proposed method. We applied an exhaustive test sequence (ETS) of an original stuck-at

test set to each circuit and measured its SOP fault coverage. The ETS of a stuck-at test set

is obtained as shown in Table 3 in Section 3.2. The escaping rates due to the lack of test

patterns and improper initialization are computed using the equations given in Section 3.2.

In this experiment, we used only the first 6 circuits since the processing time for C3540 is

prohibitive. The experimental results are given in Table 12. Each escaping rate given in the

table is the average of 10 simulations.

The column headings of the table are described below.

name name of the circuit _
nSOP number of SOP faults after collapsing equivalent faults

SOP SOP fault coverage of the test set (%)

_ E
l

total SOP fault escaping rate (%) - '

ET SOP fault escaping rate due to lack of test patterns (%)

El SOP fault escaping rate due to improper initialization (%)

- From Table 12, the average SOP fault escaping rate of the original stuck-at test sets is
' 19.1%. Among the escaped faults, only 2.3% of the faults are undetected due to the lack of

necessary test patterns. The rest of the faults (16.8%) are undetected due to improper in-

itialization. This implies that the SOP fault coverage of an original stuck-at test set can be

improved substantially (up to 16.8%) by organizing the test sequence in a proper order. This

is achieved by the proposed method. The average SOP fault escaping rate of the proposed

method is 3.6%. Among the escaped faults, only 1.5% of SOP faults are undetected due to

improper initialization. This means that the SOP fault coverage of the proposed method is
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Table 12. SOP Fault Escaping Rate

Stuck·At ' Proposed ETS
E SOP E ET EI SOP E ET EI SOP E ET EI

C17 70.0 00.0 0.0 00.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0
Addef 70 65.1 34.9 0.0 34.9 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0
74181 82.8 17.2 1.3 15.9 97.2 2.8 1.3 1.5 98.7 1.3 1.3 0.0
C880 1206 89.8 10.2 0.0 10.2 97.6 2.4 0.0 2.4 100.0 0.0 0.0 0.0
C1355 1604 91.9 8.1 6.4 1.7 92.7 7.3 6.4 0.9 93.6 6.4 6.4 0.0

u ”

C1908
I

2117 85.9 14.1 6.0 8.1 89.7 10.3 6.0 4.3 94.0 6.0 6.00 0.0
avg 887 80.9 19.1 2.3 16.8 96.2 3.8 2.3 1.5 97.7 2.3 2.3 0.0
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slightly (1.5%) below the possible highest SOP fault coverage of the stuck-at test sets. This

would be also true for Chandramouli’s method. .

‘ 4.5 Remarks T

. As pointed out earlier, the SOP fault coverage depends on the ordering of the originalT
stuck-at test set. In our experiment, we performed 10 simulations for each circuit, in which the

original test set is rearranged in an arbitrary order. We noticed that the effect of the order in
T

the original stuck-at test set is insigniticant for large circuits. ln the case of C880, which is the

most sensitive among the last four large circuits in Table 9, the minimum and the maximum

» fault coverage among 10 simulations are 88.64% and 90.88% for the original stuck-at test set.

When the test sets are organized by the proposed method, the minimum fault coverage is
4

97.93% and the maximum fault coverage is 98.43%. .
l

I
The SOP fault coverage may depend on the test patterns of the original stuck-at test set.

Even though we did not perform experiments with different test sets, we believe that the SOP

fault coverage is not sensitive to the original stuck-at test sets for large circuits.
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V. Conclusions T

The traditional line stuck-at fault model does not represent SOP faults properly in CMOS

circuits. In general, test generation methods detecting CMOS SOP faults are complex and

time consuming due to the sequential behavior offaulty circuits. ln practice, most testing still

relies on stuck-at test sets to test CMOS combinational circuits without organizing the test set

at the risk of some SOP faults not being detected.

ln this thesis, we conducted experiments to evaluate the SOP fault coverage of various

stuck-at test sets for CMOS combinational circuits. The SOP fault coverage is compared with

that of random pattern test sets. We proposed a method that improves the SOP fault coverage

of the stuck-at test sets. The basic idea of the method is to organize a given test set in a

specific sequence to cover undetected faults. The proposed method Ieads to small test sets
”

and short processing time, while maintaining high SOP fault coverage. The performance of

the proposed method is compared with that of two other methods. _

The experimental results based on seven circuits show that the average SOP fault cov-

erage of the original stuck-at test sets is 81.7%. The average SOP fault coverage of random _

pattern test sets is 66.1%. Hence, stuck-at test sets are effective for detecting SOP faults when

compared with random pattern test sets. ‘ 8

U
A V. Conclusions l 53



The experimental results show that the average SOP fault coverage of the proposed-

method is 95.7% and that of Chandramouli’s method is 95.5%. The average size of test sets
for the proposed method is 27.8% less than that for Chandramouli’s method. Moreover, the,

average processing time of the proposed method is less than one-third of ChandramouIi’s _

method. l
' Finally, it is worth noting that the experimental results reported in this thesis are the fruit

of more than 100 CPU hours on an IBM 3090 computer.
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Appendix A. An Example Run of the Fault

Simulation Program CMOSIM

. The simulator, CMOSIM, is implemented for the SOP fault simulation of CMOS circuits
which consist of only primitive logic gates with fixed gate delays. The simulator receives 3

input files which are the circuit input file, the test input file and the delay input file. lt outputs

the single SOP fault coverage of a given test set. ln this appendix, we show an example run

of CMOSIM using circuit C17. The gate level circuit description of C17 and input and output

files of CMOSIM using this circuit are given next.
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A.1 The Gate level description of C17

'I 4
·

83 ·• 13
'I 36 I· j-
'I 4 ‘ _

2 „ ·• 17
- ··
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A.2 Circuit Input File (C17 CCT)

The format of circuit descriptions in CMOSIM is same as that of the benchmark circuits

for Automatic Test Generation (ATPG) distributed at the International Symposium On Circuits

and Systems (ISCAS), 1985. In fact, C17 is one of the benchmark circuits. The circuit is re-

presented at the gate level and in the flat (non-hierarchical) form. The signals are

topologically sorted so that no signal is referred before its definition. Along with the

topological information, the description includes the definition of a collapsed set of stuck-at

faults.
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*c17 iscas example
*...................................................
4
4
* total number of lines in the netlist .............. 17
* lines from primary input gates ....... 5
* lines from primary output gates ....... 2
* lines from interior gate outputs ...... 4
* lines from ** 3 ** fanout stems ... 6
*
* avg_fanin = 2.00, max_fanin = 2
* avg_fanout =A 2.00, max_fanout = 2‘
*_*
* simplistically reduced equivalent fault set size = 22
*
* 1 lgat inpt 1 0 >sa1

2 . 2gat inpt 1 O >sal
_ 3 3gat inpt 2 0 >sa0>sal8

8fan from 3gat >sal
9 9fan from 3gat >sal
6 6gat inpt 1 O >sal
7 7gat inpt 1 0 >sal

10 10gat nand 1 2‘ >sal
1 8

11 llgat nand 2 2 >sa0 >sal
9 6 ·

14 14fan from llgat >sal
15 15fan from 11gat >sal
16 16gat nand 2 2 >sa0 >sal

2 14
20 20fan from 16gat >sal __ 21 21fan from 16gat >sal _
19 19gat nand 1 2 >sal

15 7
22 22gat nand 0 2 >sa0 >sa1

10 20
23 23gat nand 0 2 >sa0 >sal

21 19 ·
end
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In the above description, the line which begins_ with '*' is a comment lineand it is ignored · .

during processing. Each line represents a line specification or input lists of a gate. Seven

columns are given for each line in the circuit format unless the line speciües input lists of the

gate. The ürst column is the line number. The second column is the name of the line which

is used for the connections. The third column represents the type of line or gate which can

be "inpt” or "from” or one of logic functions such as "and", "nand", ”or", "nor" or ”not". The

"inpt” is a primary input of the circuit. The "from” is a fanout branch which is connected to a

source line which is specified in the next column after ”from". The third column and the forth

column of each line except the line with "from” represent the number of fanout branches and
— the number of fan-in lines of the line, respectively. lf the type of the line is a logic function, the

next row to the current line specilies the line numbers of input lists of the gate. The ">SAO”

(">SA1") on the last two columns of the row indicate that a stuck-at-0 (stuck-at-1) fault onthisline

is included in the fault list, a blank indicates it is not included. These two columns are
l

ignored in CMOSIM. The SOP fault list of the circuit is automatically created internally by
_ CMOSIM. Hence no fault specification is required. Finally the circuit input üle should end with

”end".
U
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A.3 Test Input File (C17 TEST) T .

**** c17 stuck-at test set (100%) ****5 .
10000 ( 1
01100 ‘
0111101010
10110

10101
eeeee

The test input file contains test input patterns to be applied to the circuit under test. The
first line is a comment line and is ignored during processing. The second line is the number
of primary inputs of the circuit under test. The following lines are test patterns. Each lineC
represent a test pattern. The input bits are arranged so that ith bit represents the ith primary

”
input appearing in the circuit input file. For example, the first bit corresponds to the line 1 and
the fifth bit to the line 7 of C17 circuit given in A.1. lf the number of inputs exceeds 60, the
remaining inputs are written in next lines consecutively. The file ends with the string of e’s

whose number of characters isequal to the number of primary inputs.
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. II · I

Delay Input File (DELAY INPUT)

DELAY VALUE OF EACH GATE ***GATE #INPUT #DELAY
not 1 1
buf 1 0 '
xor 2 2
and 2 3 -E and 3 4
and 4 5
and 5 6
and 6 6
and 7 6i and 8 6
and 9 6

_ I and _ 10 6
nand 2 2
nand 3 3
nand 4 4 '
nand 5 5
nand 6 5
nand 7 5
nand 8 5
nand 9 5
nand 10 5

. or 2 3
or 3 4
or 4 5
or 5 6
or 6 6
or 7 6
or 8 6
or 9 6

· ' or 10 6
nor 2‘ 2 '
nor 3 3 _
nor 4 4
nor 5 5
nor 6_ 5
nor 7l 5
nor 8 5 ”
nor 9 5
nor 10 5
end 0 0
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The delay input file defines the delay value of each gate. The first and the second lines . ‘

are comments and are ignored during the processing. Three entries are given in each line._
l

The first entry represents the name of the gate, the second one represents the number of in-
puts of the gate and the last one represents the number of unit gate delays. The maximum
allowable delay value is 10. lf the delay ofa gate is not specified, zero delay is assumed. The
file should end with "end” with "0" for the second and the third entries.
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A.5 SimulationResults************

OIROUIT STRUOTURE ************
Name of circuit : C17
# of lines = 17

. # of gates = 6#NAND= 6 #AND= O #NOR= O ‘#OR= O#NOT= O #XOR= O #BUF= O #FANOUT= 6# of primary inputs = O 5. . List of primary inputs :
1 2 3 6 7

# of primary outputs = 2List of primary outputs :
22 23

************ PAULTSIMULATION#
of SOP faults = 24 l

# of simulated faults = 18
# of equivalent faults = 6
used test set = stuck_at

_ # of test patterns = 6 _4
************ SOP FAULT OOVERAOES **********+*
#run # of # of fault ‘‘ test detected coverage

patterns faults ( % )
1 6 13 72.222 4 4
2 6 13 72.222 A
3 6 —9 50.000
4 6 14 77.778 .5 6 4 14 77.778 4
6 6 16 88.889 '
7 6 13 72.2228 6 11 61.111
9 6 11 61.111 4 „1O 6 12 66.667

Average SOP fault coverage ( % ) = 69.9999237
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The output file of CMOSIM gives the single SOP fault coverage ofthe test set along with

the circuit characteristics and the number of faulfs considered. CMOSIM can run any number , T
' of simulations depending on the internal parameters of the program. The parameters for this

simulation is given in A.6. The above file ls the output of 10 simulations using the test input

file given in A.3. For the first run, CMOSIM runs using the original test set given in the input

data file. When more than one simulation is speciüed, CMOSIM rearranges the sequence of '

the test patterns in an arbitrary order using a random number generator and applies the test

pattern into the circuit under test. .

Appendix A. An Example Run of the Fault Simulation Program CMOSIM 67



I‘ I

i

A.6 Parameters for CMOSIM

C The following parts defines internal parameters.
C If MODE = 0, fault simulation. I
C _ = 1, fault free simulation.
C If MINPUT = O, uses test file. ‘

C = 1, use random patterns. _
C MLOOP defines number of runs in fault simulation.
C If MAXLEN = 0, number of test patterns depends on MSIZE. —
C else, MAXLEN defines the number of test patterns.
C MSIZE = n multiples of original test set.l
C COVMAX defines maximum fault coverage. a
C If MLOG = 0, no log file created. ·
C = 1, creates log file.
C ISEED defines initial random seed.
C

MODE = 0
MINPUT = 0 ‘
MLOOP = 10
MAXLEN = 0
MSIZE = 5
COVMAX = 100.0
MLOG = 0
ISEED = 1764817 I

Since CMOSIM is designed to run in batch mode, the operation mode is deüned .

. internally by setting parameters of the program. _Hence the program should be compiled

again after setting the parameters. The parameters for the operation mode are defined at the

beginning of the program as shown above. _

"MODE” defines the simulation mode. If MODE is set to 0, a good circuit simulation is

performed. Otherwise, a fault simulation is performed.

”MlNPUT" selects the input test pattern of the program. lf MINPUT is set to 0, CMOSIM

uses the given test input üle for simulation. Otherwise, it generates random patterns internally
and uses them for simulation. _
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‘"MLOOP" deünes the number of runs in a fault simulation. For the first run with MODE .

= 1, the simulator simulates the given test set in the original sequence. For multiple runs, it

rearranges the test patterns randomly each time and uses the rearranged test patterns for,

simulation.

"MAXLEN” detines the number of test patterns to be applied to the circuit under test for

each run. If MAXLEN is 0, the number of test patterns is determined by the parameter "MSIZE".

"MSlZE" detines the number of test patterns to be applied to the circuit under test for

each run when MAXLEN = 0. The number of test patterns is determined by the number of test

patterns of the given test input file multiplied by MSIZE. For example, MSIZE = 10 means the
number of test patterns of the test set is increased by 10 times.

"COVMAX" detines the maximum fault coverage of a fault simulation.

~ MLOG determines whether the program produces the log file or not. lf "MLOG" is set

to 1, CMOSIM generates the log file. For the C17, the output file name is "C17 LOG". This log

file is generated only for the first run of a simulation.
l

Finally, "lSEED" detines the initial seed for the random number generator used in the

program.
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II

Appendix B. An Example Run of the

TestOrganizationProgram TSORT1 1

. TSORT1 organizes the sequences of test patterns of a given test set according to our
proposed method. This appendix gives a sample run of the test organization program
”TSORT1” using C17. TSORT1 receives 2 input files which are the circuit input file and the test
input file. lt outputs the test set organized by the proposed algorithm. The circuit input file and
the test input file are same as those of CMOSIM described in Appendix A. The output file is

I

formatted such that it can be applied directly into "CMOSlM” to enhance the SOP fault cover-
I

age of the test set. B.1 contains the output file.

Appendix B. An Example Run of the Test Organization Program TSORT1 70



B.1 Result (C17 TEST1)

****** C17 ORGANIZED TEST SEQUENCE ******5
10101
10000
01010
10000
0110001111 ‘
0101010110 .10101
01111 — .10110A eeeee 1
# of original test patterns = 6# of organized patterns = 13# of compacted test patterns = 11# of simulated faults = 18# of undetectable faults = 0# of potentially detectable faults = 18 ( 100.0 Z )
Execution times (10 msecs) : °
Initialization = 2 _Process = 1 ‘
Output = 1 ‘Total = 4
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4 The format of the output file of TSORT1 is the same aslthat of a test input file used in
CMOSIM except for the information written in the last part of the output file. Since CMOSIM

V
ignores this part in processing, the output file can be applied directly to CMOSIM except that
the name of the test input tile for CMOSIM should be redefined to indicate the organized testfile. ß

The first three lines displaying test data represent the number of test patterns. "# of

- original test patterns" is the number of test patterns of the original stuck·at test set given in

the test input file. "# of organized patterns" is the number of test patterns ofthe intermediate

test set organized without compaction.
”#

of compacted test patterns" is the number of test

patterns of the final output test set organized by TSORT1.
A

. The following two lines indicate the number of slmulated faults and the number of po-

tentially detectable faults, respectively. The number of potentially detectable faults means the

number of faults whose t, and t, patterns exist in the original test set.

The last five lines show the CPU run time taken by TSORT1. .The unit of the time is 10

msecs. "Initialization" means the time taken for the initiallzation of the program. "Process"

means the time taken to organize the test set. "Output” means the time taken to write the
E

output results.
T
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Appendix C. Circuit Format Translation Program,

Since the netlist of a circuit used in HILO is different from that of CMOSIM or TSORT1,A
the circuit format is converted using a circuit format translation prog-ram ”TRANS”. "TRANS"
receives the circuit input file described in Appendix A.2 and outputs the converted circuit for·
mat for HILO. The input file name is 'C17 CCT" and the output file name is ”C17 HILO" for the
C17 circuit. lt also generates the random patterns for HILO test input patterns. The translated
output file for C17 is given in C.1. For a detailed description of the file speciücatlon, refer to
the HILO-3 User’s Manual [31].
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C.1 Translated Output Flle (C17 HILO)

cct c17(w16,w17,a[1:5])
buf igat1(w1,a[1]);
buf igat2(w2,a[2]); ‘
buf igat3(w3,a[3]);
buf gat4(w4,w3);
buf gat5(w5,w3);
buf igat6(w6,a[4]); ~

· buf igat7(w7,a[5]);
nand(1,1) gat8(w8,w1,w4);
nand(1,l) gat9(w9,w5,w6);
buf gat10(w10,w9);
buf gat11(w11,w9); .
nand(1,1) gat12(w12,w2,w10);

. buf gat13(w13,w12); ·
buf gat14(wl4,w12);
nand(1,1) gat15(w15,w11,w7);
nand(1,1) gat16(w16,w8,w13);
nand(1,l) gat17(w17,w14,w15);
input a; l
wire w1,w2,w3,w4,w5,w6,w7,w8,w9

w10,w11,w12,w13,w14,w15,w16,w17. _
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