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(ABSTRACT)

The traditional line stuck-at fault model does not properly re_present transistor stuck-
open (SOP) faults in complementary metal oxide semiconductor (CMOS) circuits. In general,
test generation methods for detecting CMOS SOP faults are complex and time consuming due
to the sequential behavior of faulty circuits. The majority of integrated circuit manufacturers
still rely on stuck—at test sets to test CMOS combinational circuits at the risk of some SOP
faults not being detected.

In _this thesis we investigate two aspects regarding the detection of SOP faults using
stuck-at test sets. First, we measure the SOP fault coverage of stuck-at test sets for various

CMOS combinational circuits. The SOP fault coverage is compared with that of random pat-

tern test sets. Second, we propose a method to improve the SOP fault coverage of stuck-at test

sets by organizing the test sequences of stuck-at test sets. The performance of the proposed
method is compared with those of competing methods. Experimental results show that the
proposed method leads to smaller test sets and shorter processing time while achieving high

SOP fault coverage.
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I. Introduction

Complementary metal oxide semiconductor (CMOS) has become a dominant technology
in very large §cale integration (VLSI) circuits due to advqntages such as low power con-
sumption and high fabrication density. However, the testing of CMOS circuits is complex and
time consuming. Conventional circuit testing schemes that use the gate level circuit repre-
sentation and the line stuck-at fault model are known to be inadequate for testing CMOS cir-
cuits. A major difficulty in testing CMOS circuits stems from the inadequacy of the line
stuck-at fault model. Transistor stuck-open (SOP) faults in which faulty transistors are turned
off permanently are not modeled properly by the line stuck-at fault model in CMOS circuits [1].
A combinational circuit under the presence of SOP faults may behave as a sequential circuit.
A sequence of two test patterns is required to detect a SOP fault [2-5].

Since Wadsack introduced the SOP fault. model in the late 1970’s [1], many test gener-
ation algorithms detecting SOP fauits have been proposed [2-15]. CMOS test geﬁeration al-
gorithms can be classified into two éategories, switch level test generation algdrithms [9-15]
and gate level test generation algorithms [2-8]. In switch Ievél test generation algorithms,
CMOS circuits are represented in terms of switches and their interconnections. A gate level
test generation algorithm attempts to take advantage of well establiéhed test generation

schemes developed for the line stuck-at fault model. In general, gate level test generation

I. Introduction 1



algorithms are relatively simple, but give low fault coverage when compared to switch level
test generation aléorithms. Both types of algorithms, gate level algorithms and switch level '
algorithms, are still complex and time consuming, hence they may not be practical for large
circuits. |

The majority of integrated circuit (IC) manufacturers rely on test sets derived based on
the single stuck-at fault model, called stuck-at test sets, to test CMOS circuits. There are three

main reasons for using stuck-at test sets in testing CMOS circuits:

1. test generation algorithms for the detection of stuck-at faults are much simpler than those
for the detection of SOP faults,

2. well established test generation algorithms developed for the detection of stuck-at faults,
such as D-algorithm [16], can be used, and

3. conventional gate level circuit descriptions can be used directly for stuck-at test gener-
ation, so additional efforts to convert the circuit descriptions or to create other circuit
descriptions, wﬁich are, in general, necessary for SOP fault test generation, can be

avoided.

Though the use of stuck-at test sets has the advantages listed above, the cost for the advan-

tages is low SOP fault coverage. Two important issues relate to the use of stuck-at test sets:

1. how good are stuck-at test sets for the detection of SOP faults, i.e., what is the SOP fault
coverage of stuck-at test sets, and

2. how can We improve the SOP fault coverage of stuck-at test sets.

Although stuck-at test sets are widely used for testing CMOS circuits, to our knowledge,
there has been only one report on the effectiveness of the method. Woodhall et al. presented
empirical data on the SOP fault escaping rate of a stuck-at test set [17]. The observed SOP
fault escaping rate for 4,522 die examined was 0.121%. However, the experiment doés not

give the SOP fault coverage of the stuck-at test set, i.e., it does not tell how many SOP faults
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are covered by the stuck-at test set. Moreover, the results are based on one tybe of combi-
national circuit imblemented on many die.

In this thesis, we present the SOP fault coverage of stuck-at test sets for various CMOS
combinational circuits. The SOP fault coverage of stuck-at test sets is. compared with that of
random pattern test sets. The next issue of this thesis is improvement of the SOP fault cov-
erage of stuck-at test sets. Several methods of using stuck-at test sets in deiecting SOP faults
have been proposed [2-4]. In El-ziq’s method [2], a stuck-at test set of the circuit under test is
épplied first to detect some SOP faults. Test patterns are generated for the remaining unde-
tected SOP faults. Unlike the above method, Chandramouli proposed a method of organizing

the test sequence of stuck-at test sets [4]. The method requires the application of a sequence

of two or three stuck-at test patterns for each primary input or fan-out branch. El-ziq also

proposed a method to organize the test sequence of a stuck-at test set {3]. The method sorts
the stuck-at faults for ali primary inputs and fan-out branches in a specific order and generates
stuck-at test patterns to detect the faults in the given sequence. The method is essentially the
same as Chandramouli’s method except the consideration of CMOS compiex cells. Both
methods, El-Ziq’'s method [3] and Chandramouli’s method [4], are based on the -path
sensitization scheme developed for detection of stuck-at faults. Unlike the above methods, we
' propose a method which considers the faults on the inputs of each gate. The performance
of the proposed method is compared with those of competing methods. Experimental results
show that the proposed method gives small test set sizes and short processing time while
achieving high SOP fault coverage.

In Chapter |, background on testing CMOS circuits is presented with emphasis on the
detection of SOP faults using stuck-at test sets. Chapter Il presents the analysis of undetected
SOP faults by the stuck-at test set and the proposéd method. Chapter IV reports the exper-
imental results and observations made from the experiments. Finally, Chapter V concludes

this thesis.
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ll. Background

2.1 Overview

Since Wadsack introduced the SOP fauit mode‘I for CMOS circuits in the late 1970’s [1],
thére has been extensive research on testing CMOS circuits in which SOP faults are consid-
ered. In this chapter, the background of the proposed research is described with emphasis
on the detection of SOP faults using stuck-at test sets. Section 2.2 briefly presents conven-
tional circuit testing methods. Section 2.3 and ‘Section 2.4 review previous studies on CMOS
circuit testing and the basic scheme of SOP fault testing, respectively. Section 2.5 describes
the equivalence relation between SOP faults and stuck-at faults. Section 2.6 presents SOP

fault testing 'using stuck-at test sets. Finally, Section 2.7 describes the research of this thesis.
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2.2 Review of Conventional Circuit Testing

Traditionally, digital circuits have been implemented using basic logic gates such as
NAND, AND, NOR, OR and NOT. The circuits are represented by the basic logic gates and their
interconnections. The line stuck-at fault model has been commonly used for testing the cir-
cuits. Under the line stuck-at fault model, it is assumed that faults occur on the lines of the
gate inputs or the gate outputs. The stuck-at 1 (s-a-1) fault on line i implies that the line i is
stuck permanently at logic value 1. The stuck-at 0 (s-a-0) fault on line i implies that the line i
is stuck permanently at logic value 0.

During the last two decades, various test generation algorithms for detecting line
stuck-at faults have been proposed. For example, the D-algorithm [16], PODEM [18i ar;d FAN
{19] are such algorithms. Through experiences in testing digital circuits, these algorithms and
the line stuck-at fault model have been verified to be effective in testing conventional logic

circuits using as TTL and nMOS technology.

2.3 Review of CMOS Circuit Testing

The conventional circuit testing methods based on the line stuck-at fault model are no
longer adequate to test CMOS circuits [1-15,20-26]. The inadequacy of the conventional testing

methods in testing CMOS circuits is mainly due to:

1. inaccurate circuit modeling and

2. inaccurate fault modeling.
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CMOS complex gates and transmission gates are not properly represented using basic logic
gates. The stuck-ét fault model does not adequately repkesent physical fa_ilures of CMOS cir-
cuits either. A fault where a transistor is permanently on (off), called the-transistor stuck-on '
(open) fault, is not modeled properly using the stuck-at faul: model.

Several researchers studied transistor stuck-on (SON) faults [20-23]. A transistor SON
fault may cause an intermediate voltage between Vdd (logic 1) and Vss (logic 0) at the faulty
gate output node. In general, SON faults cannot be detected by a logical test, which examines
only logic values, alone. When a SON fault exists in a CMOS gate, the voltage at the gate:
output node depends on the relative values of resistances from the output node to Vdd and
ground (Vss). Thus, the output may be interpreted as the correct logic value. Detecting SON
faults méy require monitoring the static supply currents of the circuit under test {22]. Under
fault-free conditions, a static CMOS circuit consumes only very small currents except during
switching. When SON faults exist in the circuit, a high conductance path from Vdd to ground
can be created through the faulty transistor causing large current consumption. Since SON
faults are not detected by a logic test alone, we do not consider the detection of SON faults
in this thesis.

Since Wadsack introduced the SOP fault model, many test generation methods have '
been developed to detect such faults. Two methods, gate level algorithms and switch level
algorithms have been proposed. Gate level algorithms attempt to use well e_stablished
stuck-at test generation techniques to test SOP faults [2-8]. Switch I.evel algorithms use switch
level descriptions to represent the circuits and the faults [8-15].

Early approaches for testing CMOS circuits used stuck-at test sets to detect SOP faults.
These approaches are based on the gate level representation of the circuit which consist of
only primitive logic gates and/or CMOS complex cells. Chandramouli showed that all single
SOP faults in these kinds of circuits can be detected by organizing the sequence of the test
patterns of a stuck-at test set which covers all single stuck-at faults assuming zero gate delays
[4]. This method is described in Section 2.6 in detail. El-Ziq proposed an algorithm to detect

SOP faults [2]. The first part of the algorithm generates a stuck-at test set for the circuit. The
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stuck-at test set is applied to detect some SOP faults. The second part of the algorithm gen-
erates test patterﬂs for the undetected SOP faults. He also proposed a method of organizing
the test sequence of a stuck-at test set to detect SOP faults [3]. The method sorts the stuck-at
faults in proper order and generates test patterns to detect the faults in the order. The method
is essentially the same as that of Chandramouli’s method [4] except considering of CMOS
complex cells. Unlike the above methods, Jain and Agrawal broposed a procedure to gener-
ate SOP tests for general CMOS circuits including transmission gates [5]. The key idea is to
convert a CMOS circuit with SOP faults into an equivalent gate level circuit with stuck-at faults.
Then a conventional stuck-at test generation algorithm, the D-algorithm, with slight modifica-
tion, is applied to find a test set. The advantage of this method is that it is simple to apply and
it can use well established stuck-at test generation algorithms to test SOP faults. However, the
size of the equivalent gate level circuit is usually far larger than that of the original circuit.
Moreoye'r. the equivalent circuit has memory eiements to make the test generation procedure
complex. All of the methods mentioned above assume that all gates in the circuit have zero
deiay. When the circuit has different gate delays and/or different timing skew on the circuit
input lines, a pair of test patterns which is supposed to detect a SOP fault can be invalidated
[27]. To address this problem, Reddy et al. proposed a procedure to generate robust tests
which are not invalidated by gate delays and/or input timing skews [6]. The D-aigorithm was
used to derive the robust tests of circuits represented at the gate level. In geﬁeral. the test
generation of robust test patterns is complex and time consuming. Moreover, some SOP
faults may not be detected due to a lack of robust test patterns.

All of the above algorithms are gate level algorithms. Gate level algorithms suffer low
fault coverage for SOP faults due to inaccurate circuit modeling and inaccurate fault modeling.
To address the problems, switch level algorithms have been proposed. In the following, we
disc'uss switch level algorithms.

Chiang et al. proposed a test generation method using a graph model to represent cir-
cuits [9-10]. Transistor networks are modeled as a connection graph, where each transistor

is represented by an edge with a logic variable as its label. When the edge label equals logic
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1 (0), the corresponding transistor is on (off). SOP (SON) faults are represented by assigning
edge labels of fau‘lty transistors to logic O (1) permanently. Once the circuit and faults are
represented in this way, test patterns are generated by traveréing a path in the connection
graph or by analyzing the path and/or the cutset expressio.is driven from the graph repres-
entations. Unlike the above method, several researchers proposed switch level test gener-
ation algorithms based on the D-algorithm [11-13]. The D-algorithm which was originally
developed to detect line stuck-at faults is extended to switch level networks to generate tests
detecting transistor faults. Chen et al. used the PODEM algorithm to generate tests for switch
level networks [14]. The method has norestrictions on the type of circuits.

In the above algorithms, only single SOP faults are considered. Rajski'attempted to
detect muitiple SOP faults in CMOS circuits [7-8]. The test set fs based on the application of
sequences of three adjacent input vectors called trios. The test generatidn method is based
on path tracing whic‘h is similar to critical path tracing developed for stuck-at faults. Jha
studied the detection of multiple transistor faults including SON faults and SOP faults [24-25].
He showed that a test set which detects single SOP faults in a CMOS complex gate also de-
tects most of the multiple faults of the gate.

In summary, switch level test generation algorithms give higher fault coverage than gate

level test generation algorithms. However, they are more complex and time consuming.

2.4 CMOS SOP Fault Testing

In the ébove section, previous studies on CMOS testing were briefly reviewed. In this
section, the basic scheme for detecting SOP faults is discussed.

A SOP fault in a CMOS combinational circuit turns the faulty circuit into a sequential
circuit [1]. A sequence of two test patterns, say T, and T,, is required to detect a SOP fault

[2-5]. T, is used for the initialization of the faulty gate output and T, is used for the detection
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of the fault. 7, is an input pattern such that the gate output becomes floating from Vdd and
"ground under the bresence of‘the SOP fault. T, is chosen to set the faulty gate output to logic
value S, where S is the fault-free value of the faulty gate output under the application of T,. ‘
When a T, pattern is applied to the faulty circuit, the faulty gate output is floating. Hence, the
previous gate output value S is maintained due to the electric charges shared by the parasitic
capacitance at the faulty gate output node. The SOP fault is detected provided that a sensi-
tizing path exists from the faulty gate output to a primary output of the circuit.

For example, consider the 2-input CMOS NAND gate shown in Figure 1. Suppose that
the p-type transistor encircled by the broken line is stuck-open. Suppose that we apply the
input'pattern AB = 11 followed by 01 to the faulty circuit. When the second pattern AB = 01
is applied, the output F becomes floating and retains the previous value O generated by AB
= 11. Since the faulty free output is 1 under application of the second pattern AB = 01, the
fault is detected. In this case, 7, is 11 and T, is 01. Taﬁle 1 shows the truth table of fault frée
and faulty 2-input NAND gates. |n the table, F is the gate output under the fault free condition
and F; is the gate output under the transistor-i SOP fault. M denotes the floating output, i.e.,
the memory state of the faulty gate. Table 2 shows all the possible tests for the SOP faults
identified in Table 1.

Two faults, say « and §, are called equivalent if and only if any test detecting fault « al-
ways detects fault § and vice versa. In the above exampie, the SOP fault at transistor-3 is
equivalent to the SOP fault at transistor-4. In general, SOP faults occurring at the same type
of transistors connected in series from the gate output node to Vdd or ground are equivalent
[3]. Hence, n+1 distinct SOP faults exist vfor an n-input NAND (NOR) gate. Similarly, for an
n-input AND (OR) gate implemented using an n-input NAND (NOR) gate and an inverter, it can
be sleen that the SOP fault at the p (n) type transistor of the inverter is equivalent to a SOP fauit
at any n (p) type transistor of the NAND (NOR) gate. Hence, n+2 distinct SOP faults exist for
an n-input AND or ‘OR gate.

As shown in the above, SOP faults in CMOS combinational circuits can be detected by

the application of two test patterns, T, and T,. However, the application of T, and 7, does not
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a) a 2-input NAND gate

GND

b) CMOS implementation

Figure 1. A CMOS 2.input NAND gate
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Table 1. Truth Table of a 2-Input NAND Gate with SOP Fauits

A B F F, F, Fa F,
00 1 1 1 1 1
0 1 1 M 1 1 1
10 1 1 M 1 1
11 0 0 0 M M

Il. Background
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Table 2. Tests for a 2-input NAND Gate

output
faulits T, T, fault-free/faulty
F, (11) (01) 1/0
F, (11) (10) 1/0
F, (00),(01),(10) (11) 0/1
F, (00),(01),(10) (1) 0/1

il. Background
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guarantee detection of the SOP fault when arbitrary gate delays are considered. The problem
Is that spurious vélues due to hazards occurring during the transition from T, and T, may de-
initialize the faulty gate output node [27]. Hence, two pattern tests designed to detect a SOP
fault assuming zero gate delays may not detect the fault under the consideration of gate de-
lays. In CMOS circuits, it is known that charges shared by two transistors may also cause the
invalidation of the test sequence [28]. As discussed in the previous section, robust test deri-
vation algorithms try to find a pair of tests 7, and 7, which are not invalidated through arbitrary
gate delays. In general, the methods are complex and time consuming. Moreover, there may

be some SOP faults for which robust test patterns do not exist.

2.5 Fault Equivalence Between SOP Faults and Stuck-At

Faults

In this section, we investigate the fault equivalence relation between a SOP fault and a
stuck-at fault for primitive logic gates such as NAND, NOR, AND, OR and inverter. Consider
an n-input NAND gate of a circuit. Suppose that the p-type transistor connected to input i of
the NAND gate is stuck-open. Let us call this fault « . Suppose that the faulty gate output is
properly initialized to logic 0. In order to detect «, gate input i should be 0 and the other inputs
of the gate should be 1. Let us consider the s-a-1 fault on input i of the gate, say fault 8.
Obviously, the condition detecting « is the same as the one required to detect f. Hence, any
test detecting « also detects § and vice versa. This means that « is equivalent to provided

that the faulty gate output is properly initialized. We say that « is potentially equivalent to g in

this thesis. To detect an n-type transistor SOP fault of a NAND gate, all gate inputs should
be 1. It is the same condition required to detect the s-a-0 fault on any input of the gate. Hence,

an n-type transistor SOP fault of a NAND gate is potentially equivalent to an input line s-a-0
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fault of the gate. Similarly, an n-type (p-type) transistor SOP fault of a NOR gate is potentially
equivalent to the ‘input s-a-0 (s-a-1) fault. For the case of an inverter, the p-type (n-type)
transistor SOP fault is potentially equivalent to the input s-a-1 (s-a-0) fault. Since an AND (OR) ‘
gate is implemented using a NAND (NOR) gate and an i..verter, there is a potentially equiv-
alent stuck-at fault for any SOP fault of the gate. From the above discussion, we conclude that
there exists a potentially equivalent stuck-at fault for any SOP fault of a CMOS combinational
circuit consisting of only primitive logic gates.

Let us consider an n-input NAND gate again. SOP faults occurred on the n-type tran-
sistors connected in series to ground are equivalent. Hence, there are (n+1) distinct SOP
faults, n p-type and one n-type transistor SOP faults, for the n-input NAND gate. The potentially
equivalent stuck-af faults of the (n+ 1) distinct SOP faults are n s-a-1 faults on n inputs and the
s-a-0 fault on any input of the gate. In this paper, we call these stuck-at faults as the
primary faults of the NAND gate. Similarly, the primary faults of an n-input NOR gate are the
n s-a-0 faults and one s-a-1 fault on the inputs. The primary faults of an inverter are the s-a-1
and the s-a-0 faults on its input. The primary faults of an AND (OR) gate are identical to those
of a NAND (NOR) gate. Clearly, there is a one-to-one correspondence between primary faults

and SOP faults of a gate after the removal of equivalent SOP faults. It is also known that a test

set detecting all the primary faults of a gate also detects all the stuck-at faults of the gate [29].

2.6 Detection of SOP Faults Using Stuck-At Faults

In Section 2.3, various test derivation algorithms for ‘detecting CMOS SOP faults were
discussed. As was shown, some of the early approaches attempted to use the stuck-at test
set to test SOP faults [2-4]. In this section, previous studies on CMOS SOP fault testing using

stuck-at test sets are described in detail since it is the essential part of this thesis.
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Consider a CMOS circuit consisting of only primitive logic gates. As shown in Section
2.5, there exists a;v equivalent stuck-at fault for any given SOP fault provided that the fauity
gate output is properly initialized. This implies that at least one T, pattern for any SOP fault
is included in the stuck-at test set which covers all stuck-at faults. Since the faulty gate output
should be initialized to logic 0 or 1, the test detecting the gate output s-a-1 or s-a-0 fault is a
T, pattern for the SOP fault. Hence, at least one T, pattern and one T, pattern for any SOP fault
are included in the stuck-at test set. This implies that if the sequence of the test patterns of
a stuck-at test set detecting all the stuck-at faults is properly organized, with possible repe-
titions of some patterns, they can detect all SOP faults under the assumption of zero gate
delays. ‘

For exampie, consider the circuit shown in Figure 2. Switch level and gate level de-
scriptions of the circuit are shown in Figure 2 a) and Figure 2 b), respectively. A stuck-at test
set detecting all stuck-at faults in the circuit is {1101, 0100, 1110, 1010, 0000}. The SOP fault
encircled by the broken line is equivalent to the line ‘h’ s-a-1 fault provided that the gate out-
put line ‘j’ is initialized to 0. The SOP faulf is detected by the test pattern ABCD = 1110, which
detects the line "h’ s-a-1 fault, after the application of an initialization pattern T, , for example
ABCD = 1010. In fact, ABCD = 1010 is a test pattern which detects the line ‘h’ s-a-0 fault.
However, a T, pattern need not be a test battern detecting the Ii’ne ‘h’ s-a-0 fault. In the ex-
ample circuit, the test sequence (1110, 0100, 06000, 0100, 1101, 0100, 1110, 1010, 0000, 1010)
detects all SOP fauits of the circuit assuming zero gate delays.

Based on the ébove observation, El-ziq [3] and Chandramouli [4] suggested methods of
organizing a sequence of test patterns for stuck-at faults to detect SOP fauits. Both methods
are based on thé path sensitization scheme developed for detection of stuck-at faults. The
methods organize the stuck-at test patterns in the order of detecting the s-a-0 fault followed
by the s-a-1 fault, or vice versa, for every primary input and fan-out branch. Since the two
methods are the same in the organization of the test patterns, we consider Chandramouli’s
method in this thesis. The method applies {($2),(S0)} or {{SZ),(SO).(SZ)} at every primary

input which does not fan-out and at every fan-out branch, where (SZ) and (SO) denote the
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Figure 2. A CMOS combinational circuit
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s-a-0 test and the s-a-1 test of the input or the fan-out branch, respectively. {($2),(S0).(SZ)}
is needed for only(one input of a gate in which all the inputs are connected to primary inputs
or fan-out branches. Otherwise, {(SZ),(SO)} is applied. The method is proved to be valid for ‘
NAND networks. However, we found that the method can not be directly applied to NOR net-
works. Suppose that an n-type transistor connected to input A of a 2-input NOR gate is stuck-
open. B denotes the other input of the gate. For the SOP fault, the T, pattern is AB = 00,
which is the séme as the s-a-1 test for input A, and the T, pattern is AB = 10, which is the
same as the s-a-0 test for input A. This implies that {(S0O),(SZ)} instead of {(SZ),(S0)} shbuld
be applied to detect an n-type transistor SOP fault of a NOR gate. In general CMOS combi-
national circuits, {{SZ),(S0),(SZ)} should be applied to one input of each gate whose, inputs
are connected to primary inputs and/or fan-out branches. {(SZ),(SO)} should be applied to the
other inputs of NAND or AND gates and {(S0),(SZ)} to NOR or OR gates. The above method
assures the highest SOP fault coverage assuming zero gate delays. The method requires
gate level stuck-at fault simulation to find (SZ)’s and (SO)’s for signal lines." In general, the test
set sizes are large and the processing time is long due to fault simulations to be shown in
Chapter IV.

“Instead of above algorithmic approaches, one may be tempted to consider a simple
heuristic of rearranging test patterns to maximize the output distanée of two adjacent test
patterns. The output distance of two patterns is the number of different bits in the fault-free
output responses of the circuit under application of the two patterns. Once a test pattern is
chosen, the next pattern is selected among the remaining test patterns to maximize the output
distance of the two patlerﬁs. Since the heuristic requires only logic simulation, the processing
time is far shorter than that of Chandramouli’s method and that of our method to be proposed.

It does not increase the size of a test set. However, our experimental results in Chapter IV

show that this method suffers from low SOP fault coverage.
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2.7 The Proposed Research

As discussed in the above section, stuck-at test sets can be used to detect SOP faults
of a CMOS circuit. Assuming zero gate delays, a proper organization of the sequence of test
patterns of a stuck-at test set, with possible repetitions of some patterns, can detect all SOP
faults. However, when gate delays are considered, it does not guarantee the detection of all
SOP faults. When arbitrary gate delays are considered, two important issues related to testing

of CMOS circuits using stuck-at test sets are

1. the SOP fault coverage of stuck-at test sets, that is, how many SOP faults of the CMOS
~ circuit under test are detected by a stuck-at test set, and

2. improvement of the SOP fault coverage of the stuck-at test sets.

The first item is important since many IC manufacturers rely on stuck-at test sets without or-
ganizing their test patterns to test CMOS circuits. In this thesis, we study the above two is-
sues.

Although extensive research has been done on testing CMOS circuits, to our knowledge,
there has been only one experimental report related tobthe SOP fault coverage of stuck-at test
sets. Woodhall et al. reported empirical data on a purely combinational ASIC CMOS circuit
implemented on many die [17]. They performed an experiment to measure the SOP fault es-
caping rate of a stuck-at test set. Among 4552 die examined, 44 die have one or more SOP
faults. Out of 44 die with SOP faults, only 4 die escaped detection by the stuck-at test set which
covers all stuck-at faults of the circuit. The observed SOP fault escaping rate was 0.121%.
However, the experiment does not give the SOP fault coverage of the stuck-at test set, i.e., it
does not tell how many SOP faults are covered by the stuck-at test set. Moreo_ver. the results
are based on one type of combinational circuit implemented on many die. In order to evaluate

the SOP fault coverage of stuck-at test sets, we performed experiments on various CMOS
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combinational circuits. The SOP fault coverage of stuck-at test sets is compared with that of
random pattern teét seté. _

A The next issue of this thesis is improvement of the SOP fault coverage of stuck-at test"
sets. We propose a method of improving the SOP fault coverage through the organization of
the test sequence of a given stuck-at test set. In general, a SOP fault under the application

of a stuck-at test set may not be detected dUe to two reasons:

1. lack of the necessary test patterns in the stuck-at test set and/or

2. improper initialization of the faulty gate output.

Through experiments performed on various CMOS combinational circuits, we found that im-
proper initialization is the major reason for SOP fauits escaping detection. This suggests that
proper rearrangement of the stuck-at test set may improve the SOP fault coverage substan-
tially. The method propbsed is to rearrange the test sequence of a given stuék-at test set to
achieve proper initialization of the faulty gate output. The method attempts to obtain near
minimal sizes of test sets while achieving high SOP fault coverage. The method is based on
stuck-at fault simulation assuming zero gate delays. For simplicity, circuits consisting of only
primitive logic gates are considered in this thesis. However, the method can be directly ap-

plied to CMOS combinational circuits consisting of complex gates.
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Ill. Test Sequence Organization of Stuck-At Test

Sets

3.1 Introduction

The two major objectives of this thesis related to the testing of SOP faults using stuck-at

test sets are

the measurement of the SOP fault coverage of stuck-at test sets in CMOS combinational

circuits and

the investigation of a method to improve the SOP fault coverage of stuck-at test sets.

Towards the objectives given above, we present the evaluation methods to measure the SOP _
fault coverage of various stuck-at test sets and the proposed method including its implemen-
tation in this chapter. Section 3.2 describes the analysis of undetected faults by the stuck-at

test sets. Section 3.3 describes the proposed method and its implementation. Section 3.4
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describes the implementation of_ Chandramouli’s method. Finally, Section 3.5 describes the

SOP fault simulator and its implementation.

3.2 Analysis of Undetected SOP Faults

As explained in Section 2.7, under application of a stuck-at test set, a SOP fault may not
be detected due to two causes, the lack of necessary test patterns in the test set, or improper
initialization of the faulty gate output. In this section, we quantify the contribution of each
cause to understand the capability and the limit of using stuck-at test sets in detecting SOP
faults.

Suppose that a test pattern t, detects a SOP fault under proper initialization of the fauity
gate output. The proper initialization is highly likely to be determined by the previous test
pattern t,_, and the transvition from t,_, to the current pattern t. Hence, we assume that the
initialization of a gate is détermined only by the previous pattern t,_, and the current pattern
{; throughout this thesis.

Let us consider the possible highest SOP fault coverage that can be obtained by a
stuck-at test set. Suppose that the stuck-at test set consists of n patterns enumerated by 1,
2, 3,‘ .., N. To achieve the possible highest SOP coverage, every pair of patterns (i,j), i # j,
should be applied to the circuit at least once during the test. We call a test sequence con-

taining every pair of (i,j), i # j, an Exhaustive Test Sequence (ETS).

Suppose that an ETS of a stuck-at test set fails to detect a SOP fault in the circuit under

test. This is due to one of two cases:

1. atest pattern, say T,, detecting the fault is not included in the stuck-at test set, or
2. there is a test pattern T, in the stuck-at test set, however a proper initialization pattern

' T, is not included in the test set. (It should be noted that such a pattern T, may not exist.)
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In either case, the stuck-at test set lacks a necessary test pattern to detect the fauh. i.e., the
ETS can not detect. the fault since the necessary pattern is not included in the test set. Clearly,
the SOP fault coverage of a stuck-at test set (in which the test set is ovrganized or not) is al- ‘
ways less than or equal to that of an ETS of the stuck-at test set. Organization of a test set is
an attempt to reduce the number of undetected fauits due to improper initialization, i.e., T, and
T, patterns of a fault are included in the test set, however they are not applied in the proper

order to detect the fault.

We use the following notation to represent the escaping rate of SOP faulits of a stuck-at

test set.

E Escaping rate of SOP faults (%)

ET Escaping rate due to lack of test patterns (%)
El Escaping rate due to improper initialization (%)

nSOP Number of SOP faults
nSAT Number of SOP faults detected by the stuck-at test set

nETS Number of SOP faults detected by an ETS

As a SOP fault is not detected due to either the lack of a test pattern or improper initialization,
but clearly not by both,

E = ET + El.

From the above discussion, the escaping rate due to lack of test patterns is

_ .nSOP — nETS o
ET = S0P x 100 (%).
Since
E nSOP_— nSAT o9 (%),

nSOP
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the escaping rate due to improper initialization is

El = E — ET
_ (nSOP — nSAT _ nSOP_— nETS .
= ( nSOP nsop ) X% 100 (%)
nETS — nSAT
TS x 100 (%).

Through the proper organization of the test patterns, El for a stuck-at test set can be reduced
to increase the SOP fault coverage of the stuck-at test set. However, ET cannot be reduced
unless a different stuck-at test set is chosen. Hence, the SOP fault coverage of a stuck-at test
set is bounded by (100-ET) %.

For the rest of this section, we discuss the minimal length ETS of a stuck-at test set.
Suppose that a stuck-at test set consists of n patterns enumerated by 1, 2, ... n. Let us con-
sider the application of all the pairs of test patterns (i,j) such thati<j, in order. We ignore the
appliéation of the reverse order (j,i) for a moment. The number of pairs of (i,j), i<j , is ,C,.

As each pair has two patterns, i and j, the total number of patterns is

2x,C, = (72_12';:—2'— = n(n-1).

All n(n-1) patterns are shown in row 1 through row (n-1) of Table 3. Suppose that we apply thé
n(n-1) patterns in the order of left to right and top to bottom. As shown in the table, row i
contains all (i,j) and (j,i), j = i+1, i+2, ..., n, pairs except (n,i) Ipairs. For example, the first
three patterns of row 1 are (1, 2, 1). The first two patterns form the (1, 2) pair and the last two
patterns form the (2, 1) pair. As the last pattern of each row is n and the first pattern of row
i is i, all pairs (n,i) are also contained in the sequence éxcept the pair (n,1). Row n is added

in Table 3 to include the (n,1) pair. Hence, Table 3 gives a minimal length ETS of a stuck-at test

set. From the above observation, we have the following theorem.

THEOREM:‘ The minimal length of an ETS of a stuck-at test set with size n is n{n-1)+1.
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Table 3. A Minimal Length Exhaustive Test Sequence

. row sequence no. of patterns
1 1213124 1l n-1 ln 2n-2
2 2324 ...... 2 n-1 2 n 2n-4
3 34 ..... . n-1 3 n 2n-6
n=-2 n-2 n-1 n-2 n 4
n-1 n-1ln 2
n 1 1
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From the above theorem, the order of a minimal length ETS of a stuck-at test set is n2. Hence

it may not be practical to apply an ETS for a large stuck-at test set.

3.3 The Proposed Method

In this section, we describe our method to organize the sequence of test patterns of
stuck-at test sets. Our approach is based on the detection of primary faults of individual gétes
rather than the faults on the primary inpUts and fan-out branches which forms the basis for
El-Ziq’s [3] and Chandramouli’s [4] methods. Suppose that a test pattern T, of a stuck-at tes_t
set detects a primary fault. In order to detect the corresponding SOP fault of the primary farult,
the gate output should be initialized first. An initialization pattern of the test pattern is ob-
tained in the following way. Let D (5) denote that the fault free value of a gate under the ap-
plication of a test pattern is 1 (0) and the faulty value is 0 (1). Suppose that a test pattern T,
detects a primary fault of a gate. If the gate output is D (5) under the application of T,, then
any pattérn which produces logic 0 (1) at the gate output is an initialization pattern for 7,.
Obviously, the test pattern detecting the s-a-1 (s-a-0) fault on the gate output can be one of the
initialization patterns. In fact, the pattern detecting the s-a-1 (s-a-0) fault is used as an initial-
ization pattern in El-Ziq’s [3] and Chandramouli’s [4] methods.

In the following, we present a procedure organizing the sequence of test patterns. The
essence of the procedure is to apply the stuck-at test in the given sequence. Then a sequence
of additional test patterns .is obtained to cover any remaining faults. A gate level fault

simulation assuming zero gate delays is used for this purpose. The procedure is divided into

five steps. The first step is an initialization step. In the second step, the original test set is
applied to the circuit in the given sequence and ali faults detected by the test set are elimi-
nated from further processing. In the third and fourth steps, the sequence of test patterns is

organized to cover undetected faults in step 2. First, we construct a test table which contains
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all T, and T, patterns for each fault using fault simulation. Next, a sequence of test patterns
is obtained by sea}ching the test table. Finally, Step 5 reduces the test set size by eliminating

unnecessary test patterns. For this purpose, we divide the test sequence into subsequences "
such that the first patterns of each subsequence do not detect any fault. Then, we apply the
subsequences in the reverse order and eliminate all test patterns which do not detect new

faults. The procedure is given below.

PROCEDURE TEST_SEQUENCE_ORGANIZER;

Step 1: { Initialization }

Set up the fault list (FL) of all the primary faults.
Set all the logic values to x (unknown).
Step 2: { Eliminate all faults detected by the original stuck-at test set (SAT). }
Apply all the patterns in SAT in the given sequence.
Eliminate all detected faults from FL.
If FL is empty then go to Step 5.
Step 3: { Create the test table containing all T, and 7‘2 patterns of each fault. }
FOR each test t e SAT DO
FOR each fault f, e FL DO
ift;is a T, pattern of £,
then mark f; as T, of f.
if t; is a T, pattern of 7,
then mark t;as a 7, of f,.
END FOR
END FOR
Eliminate all faults lacking a T, or a T, pattern.
{ These faults are undetectable for the given SAT. }

STEP 4: { Organize the sequence of test patterns to be added to the test set. }
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Pick the last pattern t from SAT.
Set the cur}ent pattern f, <-1t.
WHILE FL is not empty DO
Find a fault f; e FL suct that ¢_is a T, of f.
IF such an f; exists THEN
Find a test , which is a T, of f.
Eliminate all the faults (including f) detected by (t., t,) pair from FL.
ELSE
Select a new f; e FL.
Find a test t, which is a T, of £,
END IF
{t,isthe nextt. Sett, as t.. }.
t. <—t,
END WHILE
Step 5: { This procedure compacts the above test set. }
Apply the test patterns in the reverse order of subsequences.
Eliminate all patterns which do not detect any new faults (i.é., eliminate

those that detect only faults detected by the previous test patterns).
END TEST_SEQUENCE_ORGANIZER.

Step 2 is needed to reduce the overall processing time. A substantial number of faults are
detected in Step 2 and are eliminated from further processing. The above procedure guar-
antees to achieve the possible highest SOP fault coverage using a given stuck-at test set as-
suming zero gate delays.

In the following, we illustrate the proposed method by using the example circuit shown
in Figure 1. The stuck-at test set {1101, 0100, 1110, 1010, 0000} detects all single stuck-at faults

of the circuit.
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Step 1: The fault list consisting of all the primary stuck-at faults is

FL = {(a/0). (a/1). (c/0). (c/1), (d/0). (d]1), (e/0). (f]1). (g/O). (g/1). (h/O),
(h/1). (1), G/0)}-

(z/1) and (2/0) denote a s-a-1 fault and a s-a-0 fauit on line z, respectively. Since the stuck-at
faults represent corresponding SOP faults, the gate outputs should be initialized properly for

the detection of the faults.

Step 2. The stuck-at test set {1101, 0100, 1110, 1010, 0000) is applied in the given order. Since
all gate outputs are initialized to x, the first input, 1101, does not detect any fault. The second
input, 0100, turns line d into D under the presence of (d/1) and the output F becomes D. Hence,
0100 is a T, pattern for (d/1). Since the gate output, line i, is properly initialized to 0 under
application of 1101, the fault is detected. Similarly, (h/0) and (g/1) are detected by the se-
quence (1101, 0100). This step repeats until the test patterns are exhausted. Table 4 shows
the faults detected by the stuck-at test set. In this example, 9 faults among 14 faults are de-

tected by the stuck-at test set. The detected faults are eliminated from the fault list FL.

Step 3: The remaining faults in Step 2 are {(a/0), (c/1), (d/0), (€/0), (i/1)}. All T, and T, patterns
for the faults are obtained through fault simulation. Table 5 is the test table for undetected

faults. For example, the test 0100 is a T, pattern of (c/1) and 0000 is a T, pattern of (d/0).

Step 4: Once the test table is set up, the sequence of additional test patterns is organized to
cover undetected faults using the table. Since 0000 is the last input of the stuck-at test set, the
current pattern is t, = 0000. From Table 5, {, = 0000 is a T, pattern for (a/0), (d/0), (e/0) and
(i/1). (a/0) is chosen to be processed. The test pattern 1010 is a T, pattern for (a/0), hence the
next pattern is t, = 1_610. No other faults are detected by the (0000, 1010) pair. In the next it-
eration, t. becomes 1010. The fault (d/0) is chosen and the next pattern is £, = 1101. Since

(1010, 1101) detects (i/1) as well as (d/0), both (d/0) and (i/1) are eliminated from FL. In the
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Table 4. Faults Detected by The Stuck-At Test Set

test test detected faults # of detected
sequence pattern faults
1 1101 - 0]
2 0100 (d/1), (g/1), (h/0) 3
3 1110 (¢/0), (h/1), (j/0) 3
4 1010 (f/1) 1
5 0000 (a/1), (g/0) 2
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Table 5. Test Table for Undetected Faults

fault (a/0) (c/1) (d/0) (e/0) (i71)

test Ty | T2 T | T2 T, | T2 T, | T2 Ti | T2
1101 J J
0100 v |V v |V
1110 J J :
1010 J J J
0000 J J J N
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third iteration, the remaining faults in FL are (c/1) and (e/0) and the current pattern ¢, is 1101.
Since no faults are initialized by {, = 1101, fault (e/0) is selected. Two patterns {0000, 0100)
are added to the sequence to detect the fault. In the final iteration, (1110, 0100) are added to’
detect (c/1). The test sequence organized to this step is shown in Table 6. The test sequence
numbered 1 through 5 is the original test set and the remaining test sequence contains the

added test patterns.

Step 5: This step eliminates unnecessary test patterns from the test sequence. The test se-
quence of Table 6 is divided into three subsequences, (1101, 0100, 1110, 1010, 0000, 1010,
1101), (0000, 0100) and (1110, 0100). Note that the first patterns of each subsequence, 1101, '
0000 and 1110, do not detect any fault. The subsequences are applied to the circuit in the
reverse order. The applied test sequence is (1110, 0100), (0000, 0100), (1101, 0160, 1110, 1010,
0000, 1010, 1101). All faults are detected by the first 10 test patterns. The last test pattern,
1101, does not detect any new fault and hence it is eliminated from the test sequence. The
final test sequence is (1110, 0100, 0000, 0100, 1101, 0100, 1110, 1010, 0000, 1010) as shown in

Table 7.
Comparison with EI-Ziq’s and Chandramoull’s Methods

The major differences between the proposed method and El-Zig’s [3] and
Chandramouli’s [4] methods lie in selecting initial faults and in choosing initialization patterns.
Initially, the number of faults considered for our method is larger than that for the two meth-
ods. However, since many faults are eliminated in Step 2 in our method, it has little effect in
the overall processing time. As described in the early part of this section, the proposed
rbethod has more choices in selecting the initializatibn patterns. This leads to smaller test
sizes as will be shown in Chapter IV. Moreover, the method does not require a path to be
sensitized from the faulty gate output to a primary output for the initialization. The reason for

this is that a necessary initialization for the proposed method is determined directly by ob-
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Table 6. Test Sequence Organized Before Compaction

test test detected faults # of detected
sequence pattern faults
1 1101 - 0
2 0100 (d/1), (g/1), (h/0) 3
3 1110 (c/0), (h/1), (j/0) 3
4 1010 (/1) 1
5 0000 (a/1), (g/0) 2
6 1010 (a/0) 1
7 1101 (d/0), (i/1) 2
8 0000 - 0
9 0100 (e/0) 1
10 1110 - 0
11 0100 (c/1) 1
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Table 7. Compacted Test Sequence

test test detected faults # of detected
sequence pattern faulits
1 1110 - 0
2 0100 (c/1), (g/1), (h/0) 3
3 0000 (a/1), (g/0) 2
4 0100 (e/0) 1
5 1101 (d/0), (i/1), (j/0) 3
6 0100 (d/1) 1
7 1110 {c/0), (h/1) 2
8 1010 (/1) 1
9 0000 - 0
10 1010 (a/0) 1
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serving the faulty gate output. However, El-Ziq's [3] and Chandramouli’s [4] methods require
the faulty line value to be propagated to a primary output. This requires substantial process-

ing time.

3.4 Implementation of Chandramouli’s Method

As described in Section 2.6, El-Ziq [3]) and Chandramouli [4] suggested methods of test
generation for SOP faults using stuck-at test sets. Since El-Zig’s method is essentially the
same as Chandramouli’s method, we implemented only Chandfamouli’s method to compare
the performance of the proposed method with that of Chandraouri’'s method. In this section,
we describe the implementation of Chandramouli’s method. The method‘is to apply test pat-
terns of a stuck-at test set in the order of {(SZ), (SO), {(S2)} or {(SZ), (SO)} for all primary in-
puts which do not fan-out and for all fan-out branches (in case of NAND, AND and inverter).
For NOR and OR gates, the sequence {(S0O), (S2), (SO)} or {(SO), (S2)} is applied as explained
in Section 2.6. Since he does not provide alny detailed procedure for implementing the
method, we used similar techniqueé used in the proposed method for unspecified parts.

The procedure is divided into 4 steps. The first step is the initialization step. A check
point list consisting of all primary inputs which do not fan-out and all fan-out branches is
constructed instead of the fault list. Application of two or three test patterns, say (T,, 7,) or (
T,, T, T3), is required for each check point. in the second and third steps, the sequence of test
patterns is organized. First, we construct the test table which contains all (SZ) and (SO) pat-
terns for each check point using fault simulation. Next, a sequence of test patterns are ob-
tained by searching the test tabie. Finally, we compact the obtained test sequence by applying
the subsequences in the reverse order as in Step 5 of the proposed method. The procedure

is given below.
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PROCEDURE CHANDRAMOULI_METHOD;

Step 1: { Initialization }
Set up the check point list (CPL).

Set all the logic values to x (unknown).

Step 2: { Create the test table containing all (SZ) and (SO) patterns for each check point. }

FOR each test t; e SAT DO
FOR each check point j e CPL DO
if t; is {SZ) pattern of j, then mark ¢; as (SZ) of j.
if t; is (SO) pattern of j, then mark ¢, as (SO) of j.
- END FOR
END FOR
Eliminate all check points lacking a (SZ) or (SO) pattern.
{ The SOP faults related to these check points are undetectable
for the given stuck-at test set. }
Step 3: { Organize the sequence of test patterns using the test table. }
Pick the first pattern t from SAT.
Set the current pattern f, <-—t.
WHILE CPL is not empty DO
Find a check point i e CPL such thatt, is a T, of i.
IF such an i exist THEN
Find a test £, whichis a T, of i.
Eliminate all check points (including i) covered by (T, T,) from CPL.
IF T, is needed for i THEN
t, <—t,
“Find a test ¢, which is a T, of i.
Eliminate all check points covered by (T., T,) from CPL.

END IF
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ELSE
Select a new check point j e CPL.
Find a test £, which is a T, of j.
END IF
{t, is the next t.. Set t, as the current test pattern. }
t, <—t,
END WHILE
Step 4: { This procedure compacts the above test set. }
Apply the test patterns in the reverse order of subsequences.
Eliminate all patterns which do not cover any new check points (i.e., cover

only the check points covered by the previous test patterns).

END CHANDRAMOULI_METHOD.

Step 4 in the above procedure is not included in Chandramouli’s paper. - However, we added

this routine to allow fair comparison with the proposed method.

3.5 The SOP Fault Simulator

Fault simulation is essential for measuring the fault coverage of test sets. To measure
the SOP fault coverage of stuck-at test sets and the performance of the proposed method, we
implemented a SOP fault simulator. In this section, we present the SOP fault simulator. The
simulator is written in FORTRAN 77 and runs on an IBM 3090 computer. Since the simulator
is developed specifically for our purpose, the simulator deals with CMOS circuits consisting

of only primitive logic gates.
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As explained in Section 2.3, there are two different approaches for modeling the SOP
fault, gate level modeling and switch level modeling. In this thesis, we have chosen the gate
level approach. In gate level modeling, a CMOS gate is represented by an equivalent gate
level circuit using additional gates and a memory element io represent the sequential be-
havior of the faulty circuit. A SOP fault is represented by its equivalent stuck-at fault [5].
Unlike this method, we use a rather direct approach to represent SOP faults. Insiead of con-
verting the faulty gate into its equivalent circuit with the equivalent stuck-at fault, we describe
the faulty behavior of the circuit directly in the form of a truth table such as Table 1 in Section
2.4. When a test pattern is applied to the circuit, the simulator matches the pattern with a T,
pattern detecting the fault. If the pattern is a 7, pattern for the SOP fault, the_faulty gate output
becomes M. Then the simulator maintains the previous logic value of the gate output as the
current value. Otherwise, the faulty gate behaves the same as the fault free gate. For this
purpose, the simulator preserves the previous logic values for all gates.

Another problem in SOP fault simulation stems from the fact that the behavior of a faulty
éircuit can be affected by hazards occurring in the circuit. As described in Section 2.4, two test
patterns designed to detect a SOP fault assuming zero gate delays can be invalidated by
hazards occurring due to unequal delays through different signal paths. In the simulator, we
employ the transport delay model to consider the effects of hazards on detecting SOP faults.
The transport delay is the time taken for an input change to reach the output of the gate, in-
dependent of the direction of the signal change [29]. The approach used for the fault simu-
lation is that the simulator detects a SOP fault only if the faulty gate output is properly
initialized considering gate delays upon application of a T, pattern. The delay values are
specified by the user depending on the type and the number of inputs of each gate.

In the following, we present the algorithm used for the fault simulation. In the simulator,
several features are considered to enhance the speedup of the fault simulation. The basic
feature of the simulator is the concurrent fault simulation scheme. Suppose that a transistor
in a CMOS combinational circuit is stuck-open. When a T, pattern is applied to the circuit, the

faulty gate output becomes M. Then the previous logic value is maintained at the faulty gate
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output node. Clearly, the effect of the fault on the circuit occurs only at the faulty gate and the
gates in the path from the faulty gate output to primary outputs. The other portions of the
circuit behave the same as the fault free circuit. In the serial fault simulation scheme, which‘
simulates one fault at a time, a large amount of simulations are repeuted. These repeated
simulations of the faulty circuits can be avoided by simulating the fault free circuit and the
faulty circuits concurrently. In the simulator, the fauit free behavior of the circuit is first eval-
uated and all the faulty functions are evaluated based on the fault free response of the circuit.

In the following, we present the fault simulation procedure. The essence of the proce-
dure is to simulate the circuit assuming zero gate delays and to identify all detectable faults
using the current test pattern. We define that a SOP fault is detectable by the current test
pattern provided that the faulty gate output becomes M under the application of the current
test pattern. Only these faults are applied to further processing that considers gate delays.
The procedure is divided into 5 steps. The first step is an initialization step. In this step, all
equivalents faults are collapsed using simple fault collapsing techniques described in Section
2.4. In the second step, the current test pattern is applied to the circuit and the circuit is
simulated assuming zero gate delays. All detectable faults by the current test pattern are
identified and tagged for further processing. In the third and fourth steps, all detected faults
are identified and eliminated from the fault list. The third step simulates the tagged faults until
the circuit reaches a stable state which is pre-calculated at the initialization step. Once the
circuit becomes stable, the fourth step checks the initialization of the faulty gate output. If a
faulty gate output is properly initialized, i.e., the faulty gate output is different from the fault
free output, it is propagated toward the primary outputs of the circuit. If there exis_ts a sensi-
tizing path from the fauity gate output to a primary output, the fault is detected. All detected
faults are eliminated from the fault list. Finally, the fifth step sets the next test pattern as the
current test pattern and repeats the simulation. The above procedure is repeated until a pre-
defined fault coverage is obtained or the test patterns are exhausted. The procedure is de-

scribed below.
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PROCEDURE CMOS_FAULT_SIMULATION;

Step 1: { Initialization }
Set up fauit list (FL).
Set up unit_time and max_fault_coverage.
Set all the logic values into x (don‘t care).
{ Set the first test pattern as the current test pattern. }
ot <—t,.
Step 2: { This procedure simulates the circuit assuming zero gate delays
and tags all the detectable faults. }
Apply {. to the circuit.
Perform fault free simulation and store fault free output Y, of the circuit.
FOR every fault f, e FL DO '
Evaluate faulty gate output y,
Ify, == M, then tag /. |
END FOR
If no detectable faul;ts exist, then go to step 5. ,
Step 3: { This procedure simulates the circuit considering gate delays until the circuit
becomes stable and updates faulty gate outputs.}
{ Set current time t into 0. }
t <-0.
WHILE t < £, DO
Perform fault free simulation.
FOR every tagged fault f, DO
Evaluate the faulty gate output y,.
IF y, == M THEN
y, <-- previous output of the gate.

ELSE

"~ Ill. Test Sequence Organization of Stuck-At Test Sets
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y, <- fault free output of the gate.
END IF
END FOR
t =t + unit_time.

END WHILE

Step 4: { This procedure identifies all the detected faults and eliminates

the detected faults from FL. }

FOR every tagged fault f; DO

Check the faulty gate output y, and the fault free output y,.

IF y, # ¥, THEN

Compute primary output Y, of the circuit.

If Y, # Y,, then set f; detected and eliminate £, from FL.

END IF
END FOR
Step 5: { This procedure checks the stop condition. }
Clear all tags.
Update the fault_coverage.
If fault_coverage > max_fault_coverage, then stop.
If no test input exist, then stop.

Go to step 2.

END CMOS_FAULT_SIMULATION.

1ll. Test Sequence Organization of Stuck-At Test Sets
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IV. SOP Fault Coverage of Stuck-At Test Sets

4.1 Objectivés of the Experiments

As described earlier, the objectives of this thesis are the evaluation of the SOP fault
coverage of stuck-at test sets and improvement of the SOP fault coverage of stuck-at test sets.
In Chapter lil, we proposed a method for improving the SOP fault coverage of stuck-at test
sets. In order to measure the SOP fault coverage of stuck-at test sets and the performance
of the proposed method, we conducted experiments using various CMOS combinational cir-
cuits. In this chapter, experimental results and related analysis are reported.

The experiments can be classified into 3 categories according to the objectives of the

experiments:

1. evaluation of the SOP fault coverage of original stuck-at test sets and comparison with
that of random pattern test sets,

2. measurement of the performance of the proposed method and comparison with that of
other competing methods, and

3. measurement of the SOP fault escaping rate of stuck-at test sets.
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The experimental results of each category are presented _in Section 4.2 through Section 4.4.

A 4-bit carry look-ahead adder, a 4-bit arithmetic and logic unit (74181 ALU), and 5
benchmark circuits presented by Brglez and Fujiwara [30] are used for the experiments. AII.
the circuits consist of only primitive logic gates and the numbers of gates range from 6 to 1669.
Stuck-at test sets of the circuits are derived using HILO [31], a commercial stuck-at test pattern
generator. The SOP fault coverage of a given test set is measured using the SOP fault simu-
lator described in Section 3.5. The transport delay model is employed in the simulator to
consider the effect of de-initialization of the faulty gate output as described in Section 3.5. The
delay values for the gates used in the simulator are shown in Table 8. The unit (1) delay is
assigned to each inverter. Delays of 2 to 6 are assigned to other types of gates depending on

the number of inputs of the gate.

4.2 SOP Fault Coverage of Original Stuck-At Test Sets

This section reports the SOP fault coverage of origina!l stuck-at test sets and that of
random pattern test sets. The first part of the experiment is to measure the SOP fault cover-
age of original stuck-at test sets and increase@ size stuck-at test sets. Four different size test
sets are applied to each circuit under test. The size of a test set is increased by repeating the
original test sets by two, five and ten times. The sequence of tést patterns is rearranged
randomly. The second part of the experiment uses random pattern test sets. The random
patterns are generated using a pseudo—random number generator.

The experimental results are given in Table 9. Each fault coverage given in the table is
the average of 10 experiments. For the stuck-at test sets, the sequence of the test patterns is
rearranged randomly for each experiment. For the random pattern test sets, the test patterns
are generated randomly with a different initial seed for each experiment.

The column headings of the table are described below.
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Table 8. Gate Delay Assignment

number of inputs
gate
1 2 3 =5
Inverter 1 - - -
NAND/NOR - 2 3 5
AND/OR - 3 4 6
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name name of the circuit

ng number of gates

nSOP number of SOP faults after collapsing equivalent fauits
nt number of test patterns

SA stuck-at fault coverage of the stuck-at test set (%)

SOP_s SOP fault coverage of the stuck-at test set (%)

SOP_r SOP fault coverage of the random pattern test set (%)

In Table 9, four entries are given for each circuit under the column headings "SOP_s” and
"SOP_r". The top entry is the SOP fault coverage of the original stuck-at test set. The re-
maining entries are the SOP fault coverage of the test sets increased in size by two, five and
ten times, respectively.

From Table 9, the average SOP fault coverage of the original stuck-at test sets for the
seven circuits is 81.7%. When the sizes of stuck-at test sets are increased by two, five and ten
times, the average fault coverage is increased to 87.8%, 93.1% and 85.2%, respectively.
When the size of a test set is small, the fault coverage increases rapidly as the size of the
stuck-at test set increases. However, the fault coverage is saturated for test sets increased
in size by five to ten times.

The experimental resuits show that the SOP fault coverage of a stuck-at test set is higher
than that of the same size random pattern test set. However, the difference becomes smaller
as the test set size increases. This is mainly due to the fact that a stuck-at test set contains
many T, and T, patterns of SOP faults, while a random test set doés not. As the number of test
patterns increases, the fault coverage of a stuck-at test set saturates earlier than that of a
random pattern test set. Hence, the difference becomes small as the test set size increases.

in summary, we can make the following observations. First, the SOP fault coverage of
a stuck-at test set increases as the test set size increases. However, the fault coverage is
saturated when the test size is increased by five to ten times depending on the circuit. Second,

stuck-at test sets achieve higher SOP fault coverage than random pattern test sets.

IV. SOP Fault Coverage of Stuck-At Test Sets 44




Table 8. SOP Fault Coverage of Stuck-At Test Sets and Random Pattern Test Sets

name ng nSOP nt SA(%) | SOP_s(%) | SOP_r(%)
c17 6 18 6 100.0 70.0 47.8
12 86.7 68.9
30 97.8 80.0
‘ 60 98.4 98.3
Adder 15 70 12 100.0 65.1 1.7
24 75.6 54.0
60 88.0 68.3
120 849 - 778
74181 91 304 29 100.0 - 828 78.9
58 89.5 88.2
145 96.3 95.8
290 98.2 98.6
C880 383 1206 57 100.0 89.8 74.5
114 83.6 82.1
285 87.1 88.2
570 98.3 81.3
C1355 546 1604 87 99.4 91.9 76.5
174 924 83.2
435 92.7 88.1
870 92.9 81.3
C1908 880 2117 122 99.3 85.9 67.3
244 87.5 72.5
610 89.2 79.6
1220 90.2 84.5
C3540 1669 4752 179 95.8 86.4 75.7
358 89.1 81.7
895 91.4 87.8
1790 92.7 91.1
avg 513 1439 70 99.2 81.7 66.1
140 87.8 75.8
351 83.1 85.4
702 85.2 90.4
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4.3 SOP Fault Coverage of the Proposed Method

This section reports the SOP fault coverage of the stuck-at test sets organized using the
proposed method. The results are compared with those of two competing methods,
Chandramouli’s method and the heuristic presented in Section 2.6. Since El-Ziq’s method [3]
is essentially the same as Chandramouli’s method t4], results are only compared with
Chandramouli’s method. Implementation of Chandramouli’s method is described in Section
3.4. 1t should be noted that a\simi-lar compaction technique to reduce the test set size is also
employed for Chandramouli’s method. The heuristic is to organize the sequence of test pat-
terns so that thei Hamming distance between two consecutive fault-free outputs is maximized.
It should be noted_ that the sequence of an organized test set, obtained using any one of the
three methods, depends on the sequence of the original stuck-at test set.

The experimental results for the three methods are given in Table 10. The SOP fauit
coverage of the original stuck-at test sets is also given for comparison. Each SOP fault cov-
erage given in the vtable is the average of 10 simulations in which the sequence of the original
stuck-at test set is chosen randomly.

The column headings of the table are described below.

name name of the circuit

ng number of gates

nSOP number of SOP faults after collapsing equivalent faults
SA stuck-at fault coverage of the stuck-at test set (%)

nt number of test patterns

SOP SOP fault coverage 6f the test set (%)

Two entries are given under column heading “stuck-at” in the table. The top entry is the

number of test patterns and the SOP fault coverage of the original stuck-at test set which is
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Table 10. SOP Fault Coverage of Organized Test Sets

Stuck-At Proposed Chandramouli Heuristic

name ng |nSOP
nt SOP(%)| nt SOP(%)| nt SOP(%)| nt SOP(%)

c17 6 18 6 700 11 100.0 10 100.0 6 733
11 80.6

Adder 15 70| 12 651 34 100.0 33 100.0 12 69.2
34 80.4

74181 91| 304 | 29 828 74 97.2 88 97.7 29 88.3
74 91.2

C880 383 | 1206 | 57 89.8 134 976 207 98.2 57 90.3
134 946

C1355 | 546 | 1604 | 87 81.9 304 927 355 826 87 91.8
304 926

Cc1908 | 880 | 2117 | 122 859 358 89.7 425 89.6 122 85.3
358 88.2

C3540 | 1669 | 4752 | 179 86.4 506 92.7 832 90.1 179 86.4
506 90.1

avg 513 [ 1439 | 70 817 203 957 | 279 955 70 835
- 203 88.2
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also given in Table 9. For the second entry, the size of the test set is increased to be equal
to that for the proposed method. The increased size test set is obtained by randomly selecting
the necessary number of test patterns from the original stuck-at test set. |

From Table 10, the average SOP fault coverage of the proposed method is 85.7% and
that of Chandramouli’s method is 95.5%. The average SOP fault coverage of the heuristic is
very low (83.5%) and comparable to that of the original stuck-at test sets. The aVerage num-
ber of test patterns for the proposed method is 203 and that for Chandramouli’s method is 279.
The average size of the test sets for the proposed method is 27.2% less than that for
Chandramouli’s method.

The processing time to organiée the sequence of test patterns for the three methods is
given in Table 11. The processing time is the average of CPU times from ten runs on an IBM

3090. The column headings of Table 11 are described below.

name name of the circuit

ng number of gates

nt numbef of test patterns

time average CPU processing time (seconds)

The average CPU times for the proposed method and Chandramouli’'s method are 107.6 _
seconds and 357.53 seconds, respectively. The processing time for the heuristic is negligible.
The average processing time for the proposed method is less than one-third of the time for
Chandramouli‘'s method. The main reason for the short processing time is that the proposed.
method does not require sensitizing a path from the faulty gate output to primary outputs for
the initialization patterns, while Chandramouli’'s method does as explained in Section 3.3.

In summary, the proposed method gives small test set sizes and needs substantially less
processing time than Chandramouli’s method, while achieving high SOP fault coverage. The

increase in the SOP fault coverage is negligible for the heuristic.
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Table 11. Processing Time of Test Organizing Methods

Proposed Chandramouli Heuristic
name ng

nt time nt time nt time
c17 6 11 0.03 10 0.03 6 0.03
Adder 15 34 0.07 33 0.07 12 0.04
74181 91 74 0.63 88 1.30 29 0.08
C880 383 134 8.16 207 38.59 57 0.41
C1355 546 304 21.96 355 164.38 87 0.76
C1808 880 358 70.69 425 345.59 122 1.27
C3540 | 1669 506 651.68 832 1851.80. 179 3.14
avg 513 203  107.60 279  357.53 70 0.82
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4.4 SOP Fault Escaping Rate

-This section reports the SOP fault escaping rate of the original stuck-at test sets and that
of the proposed method. We applied an exhaustive test sequence (ETS) of an original stuck-at
test set to each circuit and measured its SOP fault coverage. The ETS of a stuck-at test set
is obtained as shown in Table 3 in Section 3.2. The escaping rates due to the lack of test
patterns and improper initialization are computed using the equations given in Section 3.2.
In this experiment, we used only the first 6 circuits since the processing time for C3540 is
prohibitive. The experimental results are given in Table 12. Each escaping rate given in the
table is the average of 10 simulations.

The column headings of the table are described below.

name name of the circuit

nSOP number of SOP faults after collapsing equivalent faults
SoP SOP fault coverage of the test set (%)

E | total SOP fault escaping rate (%)

ET SOP fault escaping rate due to lack of test patterns (%)
El SOP fadlt escaping rate due to improper initialization (%)

From Table 12, the average SOP fault escaping rate of the original stuck-at test sets is
18.1%. Among the escaped faults, only 2.3% of the faults are undetected due_ to the lack of
necessary test patterns. The rest of the faults (16.8%) are undetected due to improper in-
itialization. This implies that the SOP fault coverage of an original stuck-at test set can be
improx)ed substantially (up to 16.8%) by organizing the test sequence in a proper order. This"
is achieved by the proposed method. The average SOP fault escaping rate of the proposed
method is 3.6%. Among the escaped faults, only 1.5% of SOP faults are undetected due to

improper initialization. This means that the SOP fault coverage of the proposed method is
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Table 12. SOP Fault Escaping Rate

Stuck-At Proposed ETS

name nSOP

SOP E ET EI| SOP E ET EI| SOP E ET E
c17 18| 700 300 00 300 1000 00 00 00| 1000 00 00 00
Adder 70| 651 349 00 349 | 1000 00 00 00| 1000 00 00 00
74181 304 | 828 172 13 159 972 28 13 15| 987 13 13 00
Cc880 | 1206 | 89.8 102 00 102 | 976 24 00 24| 1000 00 00 00
c1355 | 1604 | 919 81 64 17| 927 73 64 09| 936 64 64 00
Cc1908 | 2117 | 859 141 60 81| 897 103 60 43| 940 60 60 00
avg 887 | 809 191 23 168 | 962 38 23 15| 977 23 23 00
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slightly (1.5%) below the possible highest SOP fault coverage of the stuck-at test sets. This

would be also true for Chandramouli’s method.

4.5 Remarks

As pointed out earlier, the SOP fault coverage depends on the ordering of the original
stuck-at test set. In our experiment, we performed 10 simulations for each circuit, in which the
original test set is rearranged in an arbitrary order. We noticed that the effect of the order in
the original stuck-at test set is insignificant for large circuits. In the case of C880, which is the
most sensitive among the last four large circuits in Table 9, the minimum and the maximum
fault coverage among 10 simulations are 88.64% and 90.88% for the original stuck-at test set.
When the test sets are organized by the proposed method, the minimum fault coverage is
97.93% and the maximum fault coverage is 98.43%.

The SOP fault coverage may depend on the test patterns of the original stuck-at test set.
Even though we did not perform experiments with different test sets, we believe that the SOP

fault coverage is not sensitive to the original stuck-at test sets for large circuits.
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V. Conclusions

The traditional line stuck-at fault model does not represent SOP faults properly in CMOS
circuits. In general, test generation methods detecting CMOS SOP faults are complex and
time consuming due to the sequential behavior of faulty circuits. In practice, most testing stili
relies on stuck-at test sets to test CMOS combinational circuits without organizing the test set
at the risk of some SOP faults not being detected.

In this thesis, we conducted experiments to evaluate the SOP fault coverage of various
stuck-at test sets for CMOS combinational circuits. The SOP fault coverage is compared with
that of random pattern test sets. We proposed a method that improves the SOP fault coverage
df the stuck-at test sets. The basic idea of the method is to organize a inen test set in a
specific sequence to cover undetected faults. The proposed method leads to small test sets
and short processing time, while maintaining high SOP fault coverage. The performance of
the proposed method is compared with that of two other methods.

The experimental results based on seven circuits show that the average SOP fault cov-
erage of the original stuck-at test sets is 81.7%. The average SOP fault coverage of random
pattern test sets is 66.1%. Hence, stuck-at test sets are effective for detecting SOP faults when

compared with random pattern test sets.
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The experimental results show that the average SOP fault coverage of the proposed
method is 95.7% and that of Chandramouli’s method is 95.5%. The average size of test sets
for the proposed method is 27.8% less than that for Chandramouli’s method. Moreover, the—
average processing time of the proposed method is less than one-third of Chandramouli’s
method. '

Finally, it is worth noting that the experimental results reported in this thesis are the fruit

of more than 100 CPU hours on an IBM 3090 computer.
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Appendix A. An Example Run of the Fault

Simulation Program CMOSIM

The simulator, CMOSIM, is implemented for the SOP fault simulation of CMOS circuits
which consist of only primitive logic gates with fixed gate delays. The simulator receives 3
input files which are the circuit input file, the test input file and the delay input file. it outputs
the single SOP fault coverage of a given test set. In this appendix, we show an exampie run
of CMOSIM using circuit C17. The gate level circuit description of C17 and input and output

files of CMOSIM using this circuit are given next.
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A.1 The Gate level description of C17

11
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A.2 Circuit Input File (C17 CCT)

The format of circuit descriptions in CMOSIM is same as that of the benchmark circuits
for Automatic Test Generation (ATPG) distributed at the International Symposium On Circuits
and Systems (ISCAS), 1985. In fact, C17 is one of the benchmark circuits. The circuit is re-
presented at the gate level and in the flat (non-hierarchical) form. The signafs are
topologically sorted so that no signal is referred before its definition. Along with the
topological informaﬁon, the description includes thé definition of a collapsed set of stuck-at

faults.
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*cl7 iscas example

total number of lines in the netlist
lines from primary input gates
lines from primary output gates
lines from interior gate outputs
lines from *#%* 3 ** fanout stems

avg_fanin . max_fanin
avg_fanout = . max_fanout

simplistically reduced equivalent fault set size =

ook ok N b ok ok ok ok ok ok % b o OF

lgat inpt >sal
2gat inpt >sal
3gat inpt >sal
8fan from >sal
9fan from >sal
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7gat inpt >sal
10gat nand ‘ >sal
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llgat nand >sal
6
l4fan from >sal
15fan from >sal
l6gat nand >sal
14
20fan from >sal
21fan from >sal
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In the above description, the line which begins with **’ is a comment line and it is ignored

during processing. Each line represents a line specification or input lists of a gate. Seven
columns are given for each line in the circuit format unless the line specifies input lists of the
gate. The first column is the line number. The second column is the name of the line which
is used for the connections. The third column represents the type of line or gate which can
be "inpt” or “from” or one of logic functions such as "and”, "nand”, “or”, "nor” or "not”. The
"inpt” is a primary input of the circuit. The "from” is a fanout branch which is connected to a
source line which is specified in the next column after “from”. The third column and the forth
column of each line except the line with “from” represent the number of fanout branches and
the number of fan-in lines of the line, respectively. If the type of the line is a logic function, the
ﬁext row to the current line specifies the line numbers of input Iisté of the gate. The "> SA0”
("> SA1") on the last two columns of the row indicate fhat a stuck-at-0 (stuck-at-1) fault on this
line is included in the fault list, a blank indicates it is not included. These two columns are
ignored in CMOSIM. The SOP fault list of the circuit is automatically created internally by
CMOSIM. Hence no fault specification is required. Finally the circuit input file should end with

"end”.
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A.3 Test Input File (C17 TEST)

***% cl7 stuck-at test set (100y) ****
5

10000

01100

01111

01010

10110

10101

eeeece

The test input file contains test input patterns to be applied to the circuit under test. The
first line is a comment line and is ignored during processing. The second line is the number
of primary inputs of the circuit under test. The following lines are test patterns. Each line
represent a test pattern. The input bits are arranged so that ith bit represents the ith pfimary
input appearing in the circuit input file. For example, the first bit corresponds to the line 1 and
the fifth bit to the line 7 of C17 circuit given in A.1. If the number of inputs exceeds 60, the
remaining inputs are written in next lines consecutively. The file ends with the string of e’s

whose number of characters is equal to the number of primary inputs.
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A.4 Delay Input File (DELAY INPUT)

**** DELAY VALUE OF EACH GATE ***%
GATE #INPUT #DELAY
not
buf
Xor
and
and
and
and
and
and
and
and
. and
nand
nand
nand
nand
nand
nand
nand
nand
nand
or
or
or
or
or
or
or
or
or
nor
nor
nor
nor
nor
nor
nor
nor
nor
end
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The delay input file defines the delay value of each gate. The first and the second lines .

are comments and are ignored during the processing. Three entries are given in each line.
The first entry represents the name of the gate, the second one represents the number of in-
puts of the gate and the last one represents the number of unit gate delays. The inaximum
allowable delay value is 10. If the delay of a gate is not specified, zero delay is assumed. The

file should end with "end” with "0” for the second and the third entries.
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A.5 Simulation Results

khkkkkkhkkhhid CIRCUIT STRUCTURE khkkkkhkhkkhhhd
Name of circuit : C17
# of lines = 17
# of gates = 6
#NAND= 6 #AND= O #NOR= O " #OR= 0
#NOT= 0 #XOR= O #BUF= 0O #FANOUT= 6
# of primary inputs = 5
List of primary inputs :

1 2 3 6 7
# of primary outputs = 2

List of primary outputs :

22 23

khkhkdkkkkkkkhk

# of SOP faults
# of simulated faults
# of equivalent faults

used test set
# of test patterns

FAULT SIMULATION

kkkkkkdkhdhkhk SOP FAULT COVERAGES

#run # of # of
test detected
patterns faults
1 6 13
2 6 13
3 6 -9
4 6 14
5 6 14
6 6 16
7 6 13
8 6 11
9 6 11
10 6 12

khkkkkkkkkkh

24
18
6
stuck_at
6
kkkhkkkrkkkkkk
fault
coverage
(%)
72.222
72.222
50.000
77.778
77.778
88.889
72.222
61.111
61.111
66.667
= 69.9999237

Average SOP fault coverage ( % )
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The output file of CMOSIM gives the single SOP fault coverage of the test set along with
the circuit characteristics and the number of faults considered. CMOSIM can run any number
of simulationvs depending on the internal parameters of the program. The parameters for this
simulation is given in A.6. The above file is the output of 10 simulations using the test input
file given in A.3. For the first run, CMOSIM runs using the original test set given in the input
data file. When more than one simulation is specified, CMOSIM rearranges the sequence of

the test patterns in an arbitrary order using a random number generator and applies the test

pattern into the circuit under test.
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A.6 Parameters for CMOSIM

The following parts defines internal parameters.
If MODE = 0, fault simulation.
. = 1, fault free simulation.
If MINPUT = O, uses test file.
= 1, use random patterns. ‘
MLOOP defines number of runs in fault simulation.
If MAXLEN = O, number of test patterns depends on MSIZE.
else, MAXLEN defines the number of test patterns.
MSIZE = n multiples of original test set.
COVMAX defines maximum fault coverage.
If MLOG = 0, no log file created.
= 1, creates log file.
ISEED defines initial random seed.

oNoNo oo RO RO RO RO RO RO NP O NS

MODE = 0O
MINPUT =

ISEED = 1764817

Since CMOSIM is designed to run in batch mode, the operation mode is defined
internally by setting parameters of the program. Hence the program should be compiled
again after setting the parameters. The parameters for the operation mode are defined at the

beginning of the program as shown above.

"MODE” defines the simulation mode. If MODE is set to 0, a good circuit simulation is

performed. Otherwise, a fault simulation is performed.
"MINPUT” selects the input test pattern of the program. If MINPUT is set to 0, CMOSIM

uses the given test input file for simulation. Otherwise, it generates random patterns internaily

and uses them for simulation.
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"MLOOP” defines the number of runs in a fault simulation. For the first run with MODE
= 1, the simulator simulates the given test set in the original sequence. For muitiple runs, it
rearranges the test patterns randomly each time and uses the rearranged test patterns for
simulation.

"MAXLEN" defines the number of test patterns to be applied to the circuit under test for
each run. If MAXLEN is 0, the number of test patterns is determined by the parameter "MSIZE".

"MSIZE” defines the number of test patterns to be applied to the circuit under test for
each run when MAXLEN = 0. The number of test patterns is determined by the number of test
patterns of the given test input file multiplied by MSIZE. For example, MSIZE = 10 means the
number of test patterns of the test set is increased by 10 times.

"COVMAX” defines the maximum fault coverage of a fault simulation.

MLOG determines whether the prograrh produces the log file or not. If "MLOG" is set
to 1, CMOSIM generates the log file. For the C17, the output ﬁle name is “C17 LOG”". This log
file is generated only for the first run of a simulation.

Finally, "ISEED” defines the initial seed fof the random number generator used in the

program.
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Appendix B. An Example Run of the Test

Organization Program TSORT1

TSORT1 organizes the sequences of test patterns of a given test set according to our
proposed method. This appendix gives a sample run of the test organization program
"TSORT1” using C17. TSORT1 receives 2 input files which are the circuit input file and the test
input file. It outputs the test set organized by the proposed algorithm. The circuit input file and
the test input file are same as those of CMOSIM described in Appendix A. The output file is
formatted such that it can be applied directly into “"CMOSIM” to enhance the SOP fault cover-

age of the test set. B.1 contains the output file.
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‘B.1 Result (C17 TEST1)

**%%%* C17 ORGANIZED TEST SEQUENCE *#%%%#%%
5
10101
10000
01010
10000
01100
01111
01010
10110
10101
01111
10110
eeeee

of original test patterns

of organized patterns

of compacted test patterns

of simulated faults

of undetectable faults

of potentially detectable faults

Execution times (10 msecs) :
Initialization
Process

Output

Total

Appendix B. An Example Run of the Test Organization Program TSORT1




} The format of the output file of TSORT1 is the same as that of a test input file used in
CMOSIM except for the information written in the last part of the output file. Since CMOSIM
ignores this part in processing, the output file can be applied directly to CMOSIM except that
the name of the test input file for CMOSIM should be redefined to indicate the: organized test
file. |

The first three lines displaying test data represent the number of test patterns. “# of
original test patterns” is the number of test patterns of the original stuck-at test set given in
the test input file. "# of organized patterns” is the number of test patterns of the intermediate
test set organized without compaction. “# of compacted test patterns” is the number of test
patterns of the final output test set organized by TSORT1. |

The following two lines indicate the number of simulated faults and the number of po-
tentially detectable faults, respectively. The number of potentially detectable fauits means the
number of faults whose t, and t, patterns exist in the original test set.

The last five lines show the CPU run time taken by TSORT1. The unit of the time is 10
msecs. “Initialization” means the time taken for the initialization of the program. “Process”
means the time taken to organize the test set. "Output” means the time taken to write the

output results.
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Appendix C. Circuit Format Translation Program,

TRANS

Since the netlist of a circuit used in HILO is different from that of CMOSIM or TSORT1,
the circuit format is converted using a circuit format translation program “TRANS”. "TRANS”
receives the circuit input file described in Appendix A.2 and outputs the converted circuit for-
mat for HILO. The input file name is "C17 CCT” and the output file name is "C17 HILO” for the
C17 circuit. It also generates the random patterns for HILO test input patterns. The translated
output file for C17 is given in C.1. For a detailed description of the file specification, refer to

the HILO-3 User’s Manual [31].
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C.1 Translated Output File (C17 HILO)

buf

buf

buf

buf

buf

buf

buf
nand(1,1)
nand(1,1)
buf

buf
nand(1l,1)
buf

buf
nand(1,1)
nand(1,1)
nand(1,1)
input
wire

cct ¢cl7(wl6,wl7,a[l1:5]

)
igatl(wl,all]);
igat2(w2,al2]);
igat3(w3,al[3]);
gaté(wé,w3);
gat5(w5,w3);
igat6(wb,al4]);
igat7(w7,al[5]);
gat8(w8,wl,w4d);
gat9(w9,w5,wb);
gatlO(wlO,w9);
gatll(wll,w9); ;
gatl2(wl2,w2,wl0);
gatl3(wl3,wl2);
gatl4(wléd,wl2);
gatl5(wl5,wll,w7);
gatlé(wl6,w8,wl3);
gatl7(wl7,wl4,wl5);

a;
wl,w2,w3,w4,w5,w6,w7,w8,w9

wlO,wll,wl2,wl3,wld,wl5,wl6,wl7.
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