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Feedback Control and Nonlinear Controllability of Nonholonomic Systems

Sabiha Amin Wadoo

(ABSTRACT)

In this thess we study the methods for motion planning for nonholonomic
systems. These systems are characterized by nonholonomic constraints on their
generalized velocities. The motion planning problem with constraints on the velocities is
transformed into a control problem having fewer control inputs than the degrees of
freedom. The main focus of the thesis is on the study of motion planning and design of
the feedback control laws for an autonomous underwater vehicle: a nonholonomic
system. The nonlinear controllability issues for the system are also studied. For the
design of feedback controllers, the system is transformed into chained and power forms.
The methods of transforming a nonholonomic system into these forms are discussed. The
work presented in this thesis is a step towards the initial study concerning the

applicability of kinematic-based control on underwater vehicles.
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Chapter 1

| ntr oduction

This chapter gives the brief overview on the thesis topic and the motivation
behind the research work presented here. The chapter also gives a brief overview and the

organization of the chapters following in the text.

1.1 Overview

The purpose of this research is to study the issues related to motion planning,
nonlinear controllability and design of the feedback controllers for a specific class of
nonholonomically constrained mechanical systems. Specificaly, differential geometric
control theory, nonlinear system analysis and control design techniques, and the results of
recent research in the motion planning of nonholonomic systems are used and presented
for the support of the current research work.

Finally, a mathematical model of an autonomous underwater vehicle is developed.
The kinematic modeling and the feedback controller design for the same are presented in
detail and simulation results are obtained. The methods for converting the system into
chained and power forms are aso discussed. A brief mathematical analysis of the
concepts involved in the study of controllability, control design and modeling is
presented. The work presented in this thesis is a step towards the initial study concerning

the applicability of kinematic- based control on underwater vehicles.



1.2 Motivation

The initia motivation for the thesis came from the need of motion planning of
nonholonomic systems. These systems are characterized by the presence of
nonholonomic constraints on their generalized velocities. The control model for such

systems is drift free, nonlinear and under actuated, given by
4=0,(vs +g AV ..cenn. *+ On(QDVin (1.1)
Here q1 M isthe state of the system, M isthe state space and M I R". Thus ¢ belongs

to a configuration space of dimension n. vi R™ is the input or the control vector of
dimension m. g, ()T R"; i =1,2......,m are vector fieldson M and are assumed to be

smooth and linear time invariant. The system is called drift free, because the system state
does not change under zero input conditions. Also the system is under actuated because
the dimension of the space spanned by the control vector is less than the dimension of the
configuration space.

A specia case of (1.1) with two inputs was presented in [1]. In [1] the motion
planning tasks for a car-like robot were defined and the feedback control design was
studied. The control was achieved using various control strategies for each task. This
work is motivated by the desire to extend the similar work to an underwater vehicle. The
extended problem is higher dimensional with four inputs. In [1] the design is dore using
the chained forms. In our work we will make use of chained and power forms to achieve
control.

The motivation also comes from the fact that the design of globally asymptotic

stabilizing controllers for nonholonomic systems is challenging. The design is difficult in



a sense that no time invariant smooth static stabilizing controller exists for such systems
[2]. Various control schemes have been adopted for this purpose. One way to deal with
this is to use time varying, smooth controllers. This approach has been extensively
studied in [3] [4]. In [3] it is shown that, time varying smooth, control laws for driftless
systems have necessarily algebraic (not exponential) convergence rates. Another
dternative is the use of the nonsmooth feedback controllers which can achieve
exponential convergence. These schemes have been proposed in [5], [6]. In our case we
will be adopting the former approach. The control design for stabilization used herein is

adopted from [7]. In this case global stabilization is achieved.

1.3 Thesisoutline and organization of the chapters

Chapter 2 gives an introduction and general overview of the motion planning of
the autonomous vehicles. The concepts of nonholonomy, under actuated systems,
kinematic model of the nonholonomic systems and some examples are shown. Then the
genera problem of motion planning and the related issues are formulated for a class of
the nonholonomic systems, with areview of some particular applications.

Chapter 3 presents an overview and detailed analysis of the related motion
planning tasks of an autonomous underwater vehicle. The chapter presents in detail the
derivation of the mathematical modeling of the system. For motion planning tasks, the
kinematic model of the system is obtained and the issues related to nonlinear
controllability of the system are studied in detail. Finally, for the purpose of control
design, the system is converted into chained form. The method of converting a multi

input nonholonomic system into a chained form is aso discussed.



Chapter 4 presents the control design and the simulation results obtained for the
model of an underwater vehicle developed in chapter 3. The feedback control design is
developed using the kinematic model of the system. The performance of the controllers
using various techniques of control design is obtained and evaluated for different motion
planning tasks, such as trajectory tracking, point stabilization and path following. The
chapter aso presents the simulation results obtained for different controllers. The
simulation results are used to compare and evaluate the performance of the various
controllers for different path following tasks.

Chapter 5 presents the conclusions of the work. The contributions of the presented
research work and the expansion or scope for the future work on the topic are aso

discussed.

1.4 Previous research and contributions of the thesis

In this thesis we will be studying the motion planning for an example of
nonholonomic systems. Our example is the four-input nonholonomic system of an
underwater vehicle. The configuration of an underwater vehicle is given by six

dimensional special Euclidian group SE(3). If the velocity of the vehicle is constrained

so that only the forward velocity component can be non zero, the vehicle has four degrees
of freedom and two non holonomic constraints. The control inputs are the linear velocity
in x direction and three angular velocities along the x, y and zcoordinate axes. The
controllability of the system is discussed and proved as related to motion planning. We
present feedback control laws which give global stabilization of the vehicle about a

desired tragjectory and about a point. Thisis achieved by transforming the kinematic into a



canonical chained form. The thesis presents the method of converting the kinematic
model into the chained form via state feedback and coordinate transformation.

For trgectory tracking of underwater vehicles [23] proposed a stable tracking
control method based on a Lyapunov function. In [23] and [22] Lyapunov like function is
used to develop a nonlinear feedback control scheme. The control achieves global
stabilization about a desired trajectory. However the system is not point stablizable with
the use of the proposed controller. In our case first we will be making use of the full state
feedback (approximate linearization) scheme for trgjectory tracking. This scheme results
in local asymptotic stabilization only. Exact nonlinear control (full state linearization)
design is used to achieve the global stabilization. In this case static state feedback fails to
achieve the goal. However the dynamic state feedback is used to serve the purpose. Here
the control design is done on the chained form system.

The kinematic model of underwater vehicle belongs to a class of systems which
cannot be stabilized by a pure state feedback law [2]. Thus to achieve point stabilization
different schemes have been implemented. Asymptotic stabilization for underwater
vehicles using time varying smooth feedback laws was achieved in [4]. In [25] a
discontinuous piecewise smooth control law was proposed and exponential convergence
to a constant desired configuration was achieved. In [15] a non smooth time invariant
controller was proposed to achieve the exponential convergence with stability to a
constant desired configuration. The controller was implemented using chained form. In
our case we will be making use of a time varying ard smooth feedback. The controller

achieves global stabilization to a constant configuration for an underwater vehicle. To



this end, a transformation of the kinematic model into power form is derived and the

controller proposed in [7] is applied.



Chapter 2

Problem Formulation and Examples

This chapter gives an overview of motion planning and issues related to motion
planning tasks of autonomous vehicles. The control or the kinematic model obtained for
such vehicles involves the concepts of nonholonomy. It will be seen that the vehicles are
nonlinear and under actuated in nature because of nonholonomic constraints on their
generalized velocities. Finally some examples will be cited and motion planning problem
will be formulated for two specific examples of autonomous vehicles and issues related
to the various motion planning tasks and the feedback control design for these examples

will be discussed.

2.1 Motion planning of nonholonomic systems

The initial motivation for the work presented here comes from the research work
done in order to do the motion planning and control design for the nonholonomically
constrained systems. Motion planning for nonholonomic systems has been studied in
great detail and a lot of research is being done in this field. This problem has attracted
researchers because of its challenging theoretical nature and practical importance. The
nonholonomic constraints arise in a number of advanced robotic systems and the
application of such systems is numerous. The problem is also interesting because its
theoretical behavior presents a number of challenges. Firstly, such systems are under
actuated, i.e.; the number of control inputs is less than the number of the states or the

variables of the system to be controlled. Thus motion planning implies that the systems



can be completely controlled with a fewer number of actuators, thereby improving the
overall cost effectiveness of the system. Also under actuation can provide backup control
techniques for a fully actuated system. Secondly, both planning and control are more
difficult than for holonomic systems. Some of the motion control problems which have
been studied in detail are those of regulation (stabilization) and tracking.

The problem of stabilizing such systems is a big issue, as it has been proved by
Brockett [2], that the nonholonomic control systems with restricted mobility cannot be
stabilized to a desired configuration (equilibrium) using a smooth, time invariant state
feedback law. Because of this fact there has been extensive study of this problem. Some
authors have proposed non smooth or discontinuous control laws. Others have proposed
smooth but time-varying control laws for the purpose of regulation and some have
proposed the combination of both i.e. discontinuous time varying control laws [8], [9].
The method of transforming the kinematic model into the chained from model and doing
the control on the same was first proposed by [10] for the case of a car like robot. The
study of feedback control of a nonholonomic car like robot is done in [1]. Various motion
planning tasks such as tracking a time varying reference trgjectory, path following and
point to point stabilization of a car like robot were presented in [1]. The work presented
in chapter 3 is adong the same lines as [1], extended and modified for the application of
underwater vehicles. The design of feedback controllers will be used for different motion
tasks utilizing the kinematic model of the system. The kinematic model will be developed
using the definition of nonholonomic constraints. The work presented in this thesis is a
step towards the initial study concerning the applicability of kinematic- based control on

underwater vehicles.



2.2 Nonholonomic constraints

System constraints on the mechanica systems whose expression involves
generalized coordinates and velocities are known as kinematic constraints of the system.

These are of the following form
a(9.9)=0, i=12.....k<n (2.2)
where qis the generalized coordinate vector or the state vector. I M 1 R", wheren is

the dimension of the configuration space M , to which the vector q belongs. These will

limit the admissible motions of the system by restricting the set of generalized velocities
that can be attained at a given configuration. Usually such constraints are in mechanicsin

Praffian form
a (9)g=0 i=12,.....k<n (2.2)
or

C(g)g=0 2.3)
which means they are linear in the generalized velocities. a ()T R", i=12,....k are
row vectors. The vectors a. : M — R" are assumed to be smooth and linearly

independent. The matrix C(q)T R"" isaconstraint matrix.

The kinematic corstraints restrict the motion by limiting the set of generalized
velocities. The nonholonomic constraints cannot be integrated to the positions. Thus

while the instantaneous mobility that a system can perform is restricted to (Nn-1)
dimensional null space of the constraint matrixC(q), we can still say that it is possible

that any configuration in state spaceM can be reached. In general for a system with n



coordinates and Kk nonholonomic constraints, although the velocities are restricted to
n- k dimensional space, the global controllability in the configuration space is till
attainable.

These constraints mostly arise due to rolling of two surfaces against one another,
roll without the slip condition as in case of awheel and the road. These can also arise due
to conservation laws, applicable to the system or from the nature of the control inputs
physically applied to the system [11]. Thus nonholonomic constraints allow the global
movement of the system in the configuration space while at the same time restricting or
reducing the degrees of freedom or motion performed locally by the system.

The concept of nonholonomy is related to controllability of the corresponding
control system. Redefining the constraint specification as the directions or degrees of
freedom in which the system can move rather than the direction in which it cannot move,
is equivaent to stating the controllability problem of the corresponding control system.
Thus we can safely say that if the system is maximally nonholonomic, the system is
controllable as any point in the configuration space can be reached. This way a motion
problem can be converted into a control problem.

Nonholonomic constraints arise in a number of ways and in various mechanical
systems and applications. These can arise because of the reasons already given in the
previous paragraph. For more detailed analysis, the reader is referred to [11] and [12].

Some of the typical examples of the nonholonomic systems can be summarized as

Whedled mobile robots.
Space robots.

Underwater vehicles.

10



Satellites.

Multifingered hands manipulators.

Hopping robots.
2.3 Problem description

The motion planning tasks for nonholonomic systems as pertaining to robots are
achieved through the use of the feedback controllers. The basic motion tasks considered
for arobot are as follows

Point to point motion Here a desired goa configuration must be reached by a
robot starting from a given initial configuration.

Path following Here the robot has to reach a desired final configuration starting
from a given initial configuration while at the same time it has to follow a given
geometric path. Theinitial configuration can be considered to be either on or off the path.

Trajectory following Here the robot must reach a fina configuration while
following a trgectory in the Cartesian space (i.e. a geometric path with an associated
timing law) starting from a giveninitial configuration (either on or off the trgectory).
The tasks are assumed here such that the systems work in an obstacle free environment

and are shown in Fig. 2.1a, Fig. 2.1b, and Fig. 2.1c for a car- like robot.

11
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Figure2.1: Motion planning tasks for a car-like robot

The tasks can be obtained using either the feed forward (open loop) or feedback

(closed loop) control or a combination of the both. Since the feedback control is generally

12



robust and can work well in presence of disturbances, we will make use of feedback
control.

Thinking in terms of controls, point to point task can be thought of as a regulation
control problem or a posture stabilization problem for an equilibrium point in the state
space. Traectory following is a tracking problem such that the error between the
reference and the desired trgjectories asymptotically goes to zero.

For nonholonomic systems, tracking or path following or both is easier than
stabilization, whereas usually the reverse is true. This difference can be explained by
drawing a comparison between the numbers of inputs and outputs (or states) to be
controlled. In case of aregulation problem m inputs (two in case of a car like robot) are
required to regulate or control ‘ n’ independent control variables or states (four in case of
acar like robot) with m lessthan n. Thus point to point stabilization is the most difficult
of al the three. In case of path following and tragjectory tracking the output to be
controlled has the dimension (p) equal to that of the input (m). Thus these control
problems are square and their difficulty level is similar and less than the stabilization one.

For a car like robot, in case of path following m is one and p is one while for
trgjectory tracking m istwo and p is two, i.e. we have to stabilize to zero the two

dimensional error vector associated with the Cartesian trajectory[1].

2.4 Control model formulation

In this section we will be formulating the control model for the nonholonomic
systems. For developing the control model consider the first order kinematic constraints

on the system. As seen in section 2.2 such constraints are of the following form

13



a (q(t))g(t) =0 i=12,........ k<n
or

C(am)a =0
where q are the generalized coordinates and (] the first order derivative (velocities) of the
coordinatesand C(q) is the constraint matrix.

Let us denote the set of vector fields spanning the m dimensional distribution

Dwhich is annihilated by the constraintsasg; 's; j =1,2,...... m such that
D=span{ 9,9, -, I}
The g, 'sarethe basis for the (n- k) right null space of the constraint matrix C(q) so
that we have
a' (q) g(a) =0 =12, k<n j=12,.....(n- k) =m (24)
or
C(a)G(a)=0 (25)
The vector fields g;'s are assumed to be smooth and linearly independent as a

consequence of the assumption on &' (Q)'s being smooth and independent. By

expressing al the feasible velocities as a linear combination of these basis vectors, we

obtain the first order kinematic model of the system as

4= (v +gLQV,+......... + g (Vi (2.6)
or
n-(l)<=m
a= a (gj(Q)Vj) 2.7)

14



where v; 'sknown as psuedovelocities are taken as the control inputs and g, 's are the

input vector fields. The model directly shows the presence of k nonholonomic constraints
on the system having N states or configuration variables and m :(n- k) control inputs.

The control model of equation (1) is known as the kinematic model of the system. The
model is a drift less (i.e. no motion takes place under zero input conditions), nonlinear
and under actuated (number of control inputs is less than the number of states to be

controlled) control system.

2.5 Controllability issues

Since the control model is driftless, the terms local accessibility and
controllability can be used interchangeably. Moreover, the controllability of the whole
configuration space is the (complete) nonholonomy of the kinematic constraints. The
controllability condition can be established using the Chows theorem. According to the

theorem, for the driftless control systems, if the accessibility rank condition
dimD, (g,)=n (2.8)
holds, then the control system is locally accessible (controllable) fromq,. D, is the

accessibility distribution of the kinematic model given by equation (2.6) and is defined as

the span of all the input vector fields
D. =span{Mvl D" i3}
with

D, =D, +span{gg.vigl D,vi D j},i% 2

D, =span{ g, 9,,..., O} (2.9)

15



This implies that D, is the involutive closure under lie bracketing of the
ditribution D, associated with the input vector fieldsg, 's. The teem g9, vy is the lie
bracket of the two vector fields g and v defined as

. % fig
VE9) = ¢~ 9(0)- =v(a) (2.10)
69:V(d) = 3 99~ g

The Chows theorem provides both necessary and sufficient condition for the

controllability [12]. Moreover if the system is controllable then its dynamic extension

given by
n-cl’<=m
4= a (9,@v)
j=1
and (2.112)
Vi =uj; ] =12, ........ ,m

is also controllable. In some cases the use of the nilpotent basis is made, that is the input
vector fieldsg, 'sare the nilpotent basis. This eliminates the need for cumbersome

computations as we will see that using this concept all higher order lie brackets above

some particular order are zero [12].

2.6 Stabilization

The stabilization problem for the control system of (2.7) can be defined as finding
the feedback control law of the form u(g,t) in order to make the closed loop system
asymptotically stable about an equilibrium point or a reference (feasible) trgjectory. In

the point stabilization problem we assume equilibrium point for the open loop system i.e.

§="f(g)=0.

16



2.6.1 Controllability and stabilization at a point

For the driftless control system of (2.7), any configuration (q,) is an open loop
equilibrium point under zero input conditions. For linear systems X = AX+ BuU, it isawell
established fact that if the system satisfies the controllability rank condition given by

rank§B AB A’B ... Av1BU=n (2.12)
then the asymptotic (actually exponential) stabilization by a smooth, time invariant state
feedback is guaranteed. In other words we can say that if the controllability condition is
satisfied, there exists a feed back law u =k(Xx- x,) such that the closed loop system is
asymptotically stable about the equilibrium point X, .

For the control model of (2.7) we would like to make a similar kind of analysis.
For this purpose we will look a the approximate linearization of the system at any

equilibrium point ( g, ). The approximate linearization given by

q=dq=G(q)v (2.13)
with dg=q- g, is clearly not controllable as the rank of the controllability matrix

G(qe) is m(which is less thann). Hence we can say that a linear controller can not

achieve stabilization, not even locally.

However the controllability of the nonlinear system can be established by using
the tools from the differential geometry, i.e. we can make use of the Lie algebra rank
condition to prove its controllability. However, even if the system can be proven to be
globally controllable (in a nonlinear sense) there is still a severe theoretical limitation on
point stabilization. The limitation is in a sense that Lyapunov (asymptotic) stability can

not be achieved by means of a smooth, time invariant feedback [13].

17



The above result can be established on the basis Brockett’s theorem [2] which
says that the stabilization of a driftless regular system by a smooth time invariant
feedback is not possible. For the driftless, under actuated control system (2.7) where

vector fields g, 'sare linearly independent (regular) atq,, the theorem implies the

number of inputs M is equal to the number of states N as both a necessary and sufficient
condition for smooth stabilization. Also it should be noted that if the system can not be
stabilized by a smooth feedback, the same negative result is true for its dynamic
extension and also the theorem is not applicable to time varying feedback laws.

Thus in order to design the feedback controllers for posture stabilization, it is
obligatory either to give up the continuity requirement, i.e. include the non smooth

feedback or to apply the time varying laws or apply a combination of both.

2.6.2 Controllability and stabilization about trajectory

In case of trgjectory following, for stabilization about a trgjectory it is ensured that
the reference trajectories are feasible for the system. In other words we should take or
generate only those state and input trajectories that satisfy the nonholonomic constraints
of the system, i.e. should satisfy (2.2)

2.6.3 Approximate linearization
For approximate linearization of the system (2.7) we take the desired state
trgjectory as Qg (t) and the input tragjectory as Vg (t) It can be easily seen that the

linearization about a smooth trgjectory results into a linear time varying system. The
system can easily be shown to satisfy the controllability condition i.e. the controllability
Grammian is nonsingular [21], as long as the input reference trgectory is persistent, i.e. it

does not come to a stop. Thus it implies that we can achieve stabilization about the
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desired trajectory via a smooth, time invariant control law as long as the trajectories do
not come to a stop. One observation should be made here. As we know that the control
scheme presented here is based on the approximate linearization of the original systemin
the neighborhood of a reference trgectory, the closed loop system is asymptotically
stable only localy. In order to achieve global stabilization for trajectory tracking error,
we have to make use of the nonlinear feedback design.

2.6.4 Exact feedback linearization

It is well known in robotics that if the number of generalized coordinates equals
the number of control inputs i.e.n=m, the system kinematics or dynamics can be
transformed into a linear system with the use of a nonlinear static state feedback [14].
The linearity is displayed by the system equations only after a coordinate transformation
in the state space.

For exact linearization of nonlinear systems outputs are chosen to which a desired
behavior is assigned. Two types of exact linearization are possible. The two schemes are
full state feedback linearization and input output linearization. In the first case the
feedback transformation is such that the whole set of system equations become linear
while as in the second case the transformation is such that the input and output response
of the closed loop system is linear. For MIMO systems this transformation results in
decoupling of the input and output vectors.

Both the transformations can be achieved through static feedback or the dynamic

feedback [14].
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2.6.5 Static feedback linearization

For the nonholonomic kinematic model the full state feedback linearization
cannot be achieved using a static (time invariant) state feedback. The reason for thisis the
violation of the necessary condition for the full state feedback linearization according to

[14]. The controllability condition for the system derived in section 2.6 requiring that the

digtribution D, generated by g, s not be involutive violates the necessary condition for

static feedback transformation.

However, input output linearization is possible with the use of static feedback.
Here m equations are transformed via feedback into smple decoupled integrators.
However the choice of outputs which are linearized is not unique. Here it is worth
noticing that in the case of (2,n) chained form transformation, the two variables are
indeed the examples of linearizing outputs with static feedback given by the input
transformation equation. Also it must be noted that in case of input output linearization
the internal dynamics may be left in the closed loop system. Thus for the exponential
(global) convergence of the trgectory error to go to zero, these internal dynamics should
be properly modeled, analyzed and their stability guaranteed.

2.6.6 Dynamic feedback linearization

For exact feedback linearization if the static feedback design fails, we can make
use of dynamic feedback for nonholonomic systems. The use of dynamic feedback can

also result in full state feedback linearization. For model (2.7)
q=G(@v; ql R"vi R" (2.14)
the dynamic feedback compensator is of the form

v=a(q.z)+b(qz)r
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z =c(q,z)+d(q,z)r (2.15)
where z (t)T R"is the compensator state vector of dimensions v and r(t)T R" (having

the same dimensions as the compensator state vectorz (t)) is the auxiliary input. (2.15) is

such that the closed loop system obtained from (2.14) and (2.15) is equivaent to a linear
system under a state transformationz =T(qg,z ). For the applications to nonholonomic
systems, the linearization process involves the following procedure.

Initially we define the output of the system (2.14) as y=h(q) . To this output a
desired behavior is assigned (track a trgjectory). Then the output y is successively
differentiated until the system inputs appear explicitly in a nonsingular way. The non
singularity is a must for the inversion of the differentiated equations to solve for the
inputs. If in a step involving differentiation of system outputs, the decoupling matrix
(differential map) of the system is singular (which means that some input is till not
appearing), integrators are added on some of the input channels and the process of
differentiation is continued. It is aso necessary to avoid direct differentiation of the
system inputs in the next differentiation. This operation is known as dynamic extension
and converts a system input into a state of dynamic compensator. The dynamic
compensator has the new auxiliary input r as its input. The process of differentiation
continues until at some point the system is invertible (i.e. solution for new inputs can be
obtained) from the chosen output vector y and the process terminates. The number of
successive addition of integrators gives dimensions of the state z of the dynamic
compensator. Also, if the sum of the orders of the output differentiation is equal to the

dimensions of the extended state space system (original and dynamic compensator state)
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which isn+v, then the full state linearization of the system is obtained as there are no

internal dynamics left in the system.

2.7 Examples of nonholonomic systems

The smplest example of a nonholonomic system can be a wheel that rolls on

plane surface, such as a unicycle. The constraints here arise due to the roll without slip
condition. The configuration or the generalized coordinate vector isq = (x, y,q). The

coordinates xand y are the position coordinates of the wheel and ¢ is the angle which

the wheel makes with the x axis. The unicycle is shown in Fig. 2.2. The congtraint here is

that the wheel cannot dip in the latera direction.

Figure2.2: The nonholonomic constraints on a unicycle.

The generalized velocities are subject to the following kinematic constraint

Xsing - ycosq =0 (2.16)
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In other words the velocity along the plane perpendicular to the point of contact between
the whedl and the ground is zero. The above equation is of the form C(q)q =0 with
constraint matrix C(q) =[sing - cosq 0].
Expressing the feasible velocities as a linear combination of vector fields
gpanning the null space of the matrixC(q) , we get the following kinematic model
4= gu(a)v + g, (A)V;
Or (2.17)

nq v+0v
éq o 2

élﬂ

where V;is the linear velocity of the wheel and V, is its angular velocity around the

vertical axis. Here we observe that the number of statesn =3, number of control inputs

m =2 and the number of nonholonomic constraintsk =1.
Another example is that of a car like robot shown in Fig.2.3. The robot has two

wheels and each wheel is subject to one nonholonomic constraint. The constraint is the
same as in the case of unicycle. The generalized coordinate vector isq = (x, v,q.f ) , With

X, yand q same as before. Theangle f isthe steering angle.
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Figure2.3: The nonholonomic constraints on a car- like robot.

The two nonholonomic constraints on the front and the rear wheels respectively

are
xsin(q +f )- ycos(q +f)- ql cosf =0
Xxsing - ycosq =0 (2.18)
Here | isthe distance between the wheels. Again thisis of the form C(q)q =0 with

ésin(q+f) -cos(q+f) -lcosf Ou
sng - Cosq 0 OH

Choosing the rear whedl drive the kinematic model is obtained as

d=g (v + g (aVv,

aXo @c0sq 6 a6
(;, - (; . - g =
¢Veog SN 4 O (2.19)
¢g = ctanf /=~ ¢O+

¥58 0 5 &5
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Here v, istherear driving velocity input and V, is the steering velocity input. The above
model is not defined atf =p/2, where g, isdiscontinuous. Physically this corresponds to

car becoming jammed because of its front wheel being normal to axis of the body.

The feedback control design, controllability analysis and the motion planning for al the
three motion tasks are done in [1]. Another example of nonholonomic systems is that of
an underwater vehicle which is discussed in next chapter. In next chapter we will be
studying the motion planning for the same and controllability of the system is discussed
and proved. We aso present feedback control laws which give global stabilization of the

vehicle about a desired trgjectory and about a point.
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Chapter 3

Mathematical M odeling and Controllability Analysis of

an Underwater Vehicle

In this chapter an overview of an underwater vehicle is given and mathematical
model of the vehicle is derived. The chapter presents in detail the derivation of the
mathematical modeling of the system. For motion planning tasks, the kinematic model of
the system is obtained and the issues related to nonlinear controllability of the system are
studied in detail. Finally for the purpose of control design, the system is converted into

chained form.

3.1 Mathematical modeling

In this section the mathematica model of the under water vehicle is briefly
discussed. An underwater vehicle is generally defined as a six degree of freedom body. It
follows the laws of rigid body motion. The dynamics of the system are highly non linear
due to rigid body coupling and hydrodynamic forces on the vehicle. The mathematical
model of the underwater vehicle is obtained through the following two models.

Dynamic model This type of model alows for the actual forces, causing the
motion and the dynamic properties of the vehicle to be taken into account. The equations
of trandation and rotation are obtained using Newton's law [15].

Kinematic model The kinematic model of the system is the model where actual

forces causing the motion and the dynamic properties of the vehicle do not enter the

26



equations of motion. This type of model alows for the decoupling of the vehicle
dynamics from its movement. An autonomous underwater vehicle has nonholonomic
nature due to its nonlinear kinematic model [22]. In the following section the kinematic
model of the vehicle is derived. For the remaining chapter and the chapter following, the
kinematic model of the system will be used for analysis and control purposes.

3.1.1 Kinematic modeling and nonholonomic constraints

The kinematic model of the system is obtained by taking into consideration the
nonholonomic constraints on the linear velocity. The nonholonomic constraints restrict
the velocity of the system to be zero in certain directions but these restrictions do not
restrict the global movement of the system. For the development of the kinematic model
of the underwater vehicle model we assume two orthogonal coordinate systems [23].

Global coordinates The global or the inertial frame coordinates are denoted
by (P, X,Y,Z). The frame remains fixed at the ocean surface with origin P .The unit

vector inthe Z direction points up into the water while the unit vectorsalong X and Y

direction complete a right handed system.

Local coordinates The loca or the body frame coordinates are denoted
by( P, X, Y, z) . The frame remains fixed on the vehicle with origin surface with origin p .

The two coordinate systems are as shown below in Fig. 3.1[23].
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Figure3.1: The coordinate systems of an under water vehicle. (From [23]. Copyright ©
1991 |EEE.)

3.1.2 Kinematic model with respect to global coordinates

The kinematics of the vehicle are described by six state variables and four input
variables. The kinematic relationships describing the transformations between the two
coordinate systems can have a number of parameterizations. The one used here is the
Euler angle parameterization [25]. In the Euler angle representation the orientation
between the inertial and the local coordinate frame is expressed in terms of a sequence of
three rotations: roll (f ), pitch (q) and yaw (y ) about the axes x, y and z respectively.

Letgqbe the vector of six generalized coordinates required to specify the

kinematics of the vehiclee The six coordinates are the Cartesian coordinate
vector P=[X,Y,Z]" of the vehicle in the local frame and the Orientation coordinate

vectorh =[f ,q,y ]". The orientation vector is the vector of Euler angles which give the

orientation of the body frame with respect to the inertial frame. The transformation from
the local coordinate frame to the global coordinate frame is given by means of a Rotation

matrix R.RT S(03), where S(O3) is the group of rigid body rotations. R satisfies the
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relation RR" =1,i.e. R" =R"' or R is an orthogona matrix and det(R)=1[16]. The

matrix R isgiven below as

érn I, r13l;|
R= gr21 [ r233 =[n s 4 (3.1
@31 r32 r%é
with

r,, = COS( COoSy

r, =SNqg snj cosy - cosj siny

r,, =Cosq siny

r,, =9NQsinj siny +cosj cosy

r,, =SiNQ cosj siny - sinj cosy

ry =~ Sng

I, =Sinj cosq

f =COSj COSq (3.2

Let V=[V,,0,0]' be the linear velocity of the vehicle i.e. the vehicle has linear

velocity along the x-axis only and W = [w,,w, ,WZ]T be the angular velocity components

aongx, yand z directions respectively in the body frame. The velocity vector along

three coordinate axes and the time derivative of the Euler angles are obtained from the

following relations:
p=Rv=[n s a]v (3.3)

R=RS(Ww) (34)
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where S(w)is the skew symmetric matrix given as

€0 -w, w,u
é U
S(w)=agw, 0 -wyy
gw, w, 04y

The above equations give the following on solving
p=Jdih)v
h=J,h)w

With
J,(h) =[cosg cosy ,cosq siny , - sing]’

él sinf tang cosf tanqu

=P cosf -sinf

@ snf secq cosf secq
The above set of equations can be written as the following equations.
X =1,V =C0Sy cosqV
Yy =r,v=8ny cosqv
Z=ryv=-snqv
f =w, +sinf tanqu+ cosf tanqw,
q = cosf w, - sinfw,
y =sinf secqu + cosf secqw,,

This can be written in the matrix form as
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éx (g écosqcosy O 0 0 U
é,u é : gé v u
&y &cosqsiny 0 0 0 (6, C
ézu é -sding 0 0 0 ue xu 37)
& e - Uy U '
éf.(] & O 1 gnf tanq cosf tanqqg y(
Ggué o 0 cosf -sinf u§, U
e g e . 08"z
dge O 0 sinf secq cosf secqp
The eguations can be written in the generalized vector form as
¢xu &osqoosyy Ou ¢ O w € 0
é.u é .U a é a é a
&y ecosqsiny goﬂ é 0 @ é 0 G
ézUu é -sing U +é0L’J L& 0O U L8 0 uW
& u=é avtée aw_t+é. aw,_té a
@f.@ & 0 0 &k X (:esnf tandg y ecosf tand z (39
ue o U @Qu € cosf U € -sinf U
é. u é a éu é . a é a
&ae O g €0 ésinf secq gcosf secq g

The system here is subject to two non holonomic constraints. The constraints are
on thelinear velocitiesalong y and z directions. The velocities along these directions are
zero. The two constraints are

sSp=0

a'p=0 (3.8)
This can be written as

r12X+ r.22y+ r3ZZ: 0

MaX+r,y+r,2=0
Or
(cosy sing sinf - siny cosf )x+ (siny sing sinf +cosy cosf )y+(cosq sinf)z=0

(siny sinqcosf - siny sinf )x+ (siny singcosf - cosy sinf )y +(cosq cosf )z =0 (3.9)
The above equation is of the form

AQq=0
with
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A(q)=glz r, I, 0 0 Ou

(3.10)
& Ts Ty O 0 Of

Expressing the feasible velocities as the linear combination of vector
fieldsg,(0),9,(9), 9;(a)and g,(q) spanning the null space of matrix A(q) we have the
following kinematic model

4= g,(9v +9,(QV, +g4(@)Vs +g {a)v,
&, 0

U
q=[g(a) 9,(a) g(a) 94(q)]gvzg (3.11)

°(
8’49

where
as0s0 COsY 6 a0
écosq.siny; ég:
g, =¢ 0 gz(q):(;‘lf
G - G+
¢ o < 6o+
& o %05
e 0 o) e O 0
¢ - ¢ -
¢ ol ¢,
= -~ = - 3.12
ds(a) gsinf tang * g.(a) gcosf tang - (312
¢ cosf : ¢ -dgnf :
sinf secq gcosf secq
ad

Vp SV SV, 3WGV S5V, =W,

More generaly we can write
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q=G(q)v (3.13)

The above equations are the kinematic model of the system. The system is
nonlinear and under actuated, which means that the number of inputs to the system is less
than its states. The generaized velocity vector ¢cannot assume any independent value

unless it satisfies the nonholonomic constraints. The constraints are the examples of the

Pfaffian Constraints which are linear in velocities. The admissible generalized velocities

asgiven by (3.1) are contained in the null space of the constraint matrix A(Q) .

3.2 Controllability analysis

Consider the system =G(q)v. The system is nonlinear, under actuated and

driftless. Thus, in order to establish the controllability of the vehicle we make use of the

mathematical concepts that are involved in Lie agebrarank condition.

3.21 Controllability about a point
Consider the linear approximation of the system (3.13) at equilibrium point

g, While setting the input Vv, equal to zero. Let the error associated with the equilibrium
point be given as

d=q- 0.
The time derivative of the error is given as

0= G(A)Vs + 02 (AV, + G (Ae)Va + 94 (0e)V,

§=G(ge)v (314)
Here G(q.)is the controllability matrix at the equilibrium point. The rank of the

controllability matrix is four. Thus if we linearize the system about an equilibrium point
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the linearized system is not controllable. Hence the linear controller will not work here.
To test the controllability of the above system we make use of the lie algebra rank
condition and nilpotent basis concepts

Nilpotent basis The definition of nilpotent basis for a distribution is recalled here.
Given a set of generators or basis vector fieldsg, g, ......... , 0, we define the length of a
Lie product recursively as
{g}=1 1 =1,2,0ii m
((AB])=1[A]+1[8]
Where A and B are themselves Lie products. Alternatively, [[A] is the number of

generators in the expansion for A. A Lie agebra or basis is nilpotent if there exists an
integer k such that all Lie products of length greater than k are zero. The integer k is
called the order of nilpotency [17].The use of the nilpotent basis eliminates the need for
cumbersome computations as we see al higher order lie brackets above some particular
order are zero.

In the light of the above definition and conditions we see that the lie algebra
L{ d, & G .} isnilpotent algebra of order 2 (k= 2) i.e. the vector fields g,, g,, g, and
g, arethe nilpotent basis. Thus all lie brackets of order more than two are zero. The only

independent Lie brackets computed from the four besis vector fields are[g;,g,]
and[g,,9,]. Thus for our system the lie algebra rank condition becomes

rank[C.] =6
rank[g;,9,.93,9,[9, 9:1[9 ,9,11=6 (3.15)
where [g,,9,] and [g,,0,] are the two independent lie brackets computed from the four

vector fields (g, ,9,,0,4,) as per the following definition.

_fh, . Tg
[g,h](x)—ﬂxg ﬂxh (3.16)



Thus we have

écosy sngcosf +siny sinfg
é%iny sing cosf - cosy sinf 3

ke Ke é cosq cosf a
[gl’g3]: 391' 193:é U
1 x I x & 0 U

: 0 G

& Y

e 0 i

é cosy dnqgsnf +dny cosf

g- siny sing sinf - cosy cosf 3

_fa9,  fa :(:a - cosq sinf U
[91194] ﬂXgl ﬂXg4 g 0 H
e 0 a

e y

e 0 i

Using the above expressions for the Lie brackets the controllability matrix C, becomes.

écosy cosq O 0 0 cosy singcosf +siny sinf - cosy singsinf +siny cosf u
gsiny cosq O 0 0 siny sinqcosf - cosy sinf - sny sing snf - cosy cosf 3

c :g - sing 0 0 0 cosq cosf - coxy sinf 3
e O 1 sinf tang cosf tanq 0 0 a
¢ o 0  cosf - sinf 0 0 a

8 0 0 sinf secq cosf secq 0 0 ld

The above matrix has one nonzero minor of order 6.Thus the rank of the

controllability matrix is full as long asq * A which is the singularity of the system.

Hence we conclude that the system is controllable locally and also globally as long as it

avoids the singularity condition.

3.2.2 Controllability about a trajectory

For the nonlinear system =G(q)v let the reference state traectory be

Qo (1) =[ % (), Ya (€), Zo(0).F 40,0 LDy 4(D] and the reference input trajectory be
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Vg (t) =vg (t),vyo(t),vys(t), vy, (t) . The reference trajectory should satisfy the
nonholonomic constraints on the system.

For the linear systems X = Ax+Bu controllability implies asymptotic (actually
exponential) gabilization by smooth state feedback. Thus if the following accessibility

rank condition rankgs,AB,AzB .............. A”‘lBH=n is satisfied, then there exists a

feedback gain so that the following control law

u=k(xd- x)
makes the desired trgjectory xd asymptotically stable or in other words the error
associated with the desired solution goes to zero exponentialy.

For nonlinear systems the condition does not apply as such. But for local
accessibility we may look at the approximate linearization of the system in the
neighborhood of xd . Thus in particular if the linearized system is controllable, the
nonlinear system can be stabilized locally a xd by a smooth feedback u=kx,. The
condition is sufficient but not necessary.

Let the errors associated with the desired state trajectory and input trajectory be
denoted as q,(t) =q(t) - q,(t) and v (t) =wv(t) - v, (t) respectively. Linearizing the
system about the desired trgjectory we obtain the following system

d(t) =q,(t) + 6. (1)
={G(gy +0, D}H{vy () + v O} (3.17)

The Taylor series expansion of G(q, t) about the rominal solution g, (t) is given as:

1 i
60 =1 6(6, 0+ 12D g 1)+ hotl{v, () + v, ()
f 9 lg=q, b
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Since the nominal solution satisfies (3.16) we have:

1 il
= 12D g v, 0 +6@. w0

f Ta q=0qy b
Or (3.17)
A, (t) = A()q, (1) + B(Dv. (1)

With

I

A= &
n=117d q=10

Van (1) B(t) =G(q, 1) (3.18)

Upon computations we get

€5 A(Du

A& amd

éo - Cosy d(t) Si ngq (t)le(t) - Siny d (t)COSQd(t)le(t)l;l
AM=g0 - sny (sind, Ve () cosy s(hcosa, MV ()
€0 - C0S0lq (F) Vi (1) 0 |

0sf 4 (§tand (v,,(1) - Sinf , (Ytang, (E)v,(t) Sinf , 9sec? g (t)Vye(t) + Cosf , (t)sec?q (V4 ) 0

(@]
o ox en en e ey ey e wd

A =

- sinf  (t)v,,(t) - cosf ,(t)v,,(t) 0

@ > D D D> DD

>

cosf , (9§ secq, (t)Vys(t) - sinf ,(§secq, (t)v,, () sinf () secq, (htanqg, (t)v,,(t) +cosf 4 (t)secq, (htang, (v () O

@D;

él,(t) O,,u
B(t) — é 1 33 L;I
80, J,(t)G

Here

écosq (t)cosy 4(t)u
3,(t) = goosdly O'siny 4(t)g
g -sng® f
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él sinf (Htang,(t) cosf (1) tang,(t)u

J,()=g0 cosf 4(1) -snfy ()

80 sinf o (t) secqq(t) cosf 4 (9 secq, ()Y
The above system is linear time varying. For a linear reference trajectory with

constant velocitiesvy, (t) =V, and q4(0) =q(0) the controllability condition becomes
rank{B, AB,A’B,A°B,A'B, A®B} =6

Upon computations we see that the above matrix has a nonzero minor of order 6 as long

as Vy, =V, =V, 10 andq, t % Thus the linearized system is controllable along a

reference trgjectory aslong as the trgectory does not collapse to a point.

3.3 Chained forms

The chained form systems were first introduced in [18].The chained form
introduced in [18] had one chain i.e. two input chained forms. The method for converting
the multi input drift free non holonomic systems into chained forms is given in [19].
Sufficient conditions under which an m input system of (3.13) can be transformed to
m- 1chain single generator form were given in [19]. The method presented in [19] for
transforming is smilar to the method of exact linearization of nonlinear systems with
drift via state feedback as presented in [14]. The same method will be applied for our
system with some modifications.

The following system

4= g (v +9,(AV, +94A)Vs + g LAV,
can be transformed into the chained form by a feedback transformation. In the above

equation g being smooth and linearly independent vector fields, there exists a feedback
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transformation (x,a,h,g)=F (g)and v=b(q)that transforms our system into the
following chained form [20].
X, =X =y, d,=x¢=u, h, =X =u, d, =X =u,
a, =x5,=au  h=x,=hu (3.19)
where )'(}‘is the state for the kth level. We call this as a chained form because the

derivative of each state depends on the state directly above it in a chained fashion. The
4

form has input U, as the generator for the chains and é_ n; =2. Thus for our system
j=2

n,=n,=l1landn, = 0.

There exists a basis functionf,, f, f,,f, , for the distribution

& (o I
DO:spangq g g g45hav|ngtheform

i=2 ﬂq
6
£
f,=a fa(q)—
a (9
9 i 1
f,=a f,(q)=— 3.20
92 (q) |[o? (320

The basis function is such that the following distributions

G, :span{ £, f4}
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G = span{ b, f3’f41[ £, f2]’ [ f, f3]’ [ f f“]}

G = span{ad, f,,ad; f;,ad; f,;0£i£5}
with
adf f, = gf;,ad{ *f, ad; f, = f,
have constant dimension on the same open set U1 R", are al involutive and G, has
dimenson5o0n U .
The vector fields f,, f,, f, and f, which satisfy these conditions are

tany

f = oN _ tanq secy

" cosy cosq

@XD> (D> D> > (P> D> (D> Dy
co\o\no\nononononoy

f,=0,;f,=g;and f, =g, (3.21)
The coordinate transformation for the system thusis
Xo=h aoleflhl ho:L?lhs g, =h,

a,=Loh, h,=h, (3.22)

where h, h,, h,, h, are the smooth functions such that the following conditions are met
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dh * G;; O£ jES
and the distributionG, is annihilated by dh,, dh,, dL‘:hz, o||_1f h,, dh;, dL‘:m, d|_1fh3
1 1 1 1

dh,. Here L h; isthe Lie derivative of h,with respect to f,. The detailed proof of the

above conditions is in [19]. Here it should also be noted that the choice of functions

h,, h,, hy, h, isnot unique. Choosing

1

4 1+trace(R)

(rsz - rzs)

with R being the rotation matrix and trace( R) = (r11+ r,+ r33) .Thus the coordinate

transformation for the system becomes

X =X, =X

1

R —— - 3.23
% 1+trace(R)(r32 ) (323)

which gives the following chained form system

X =
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Or

X3 = XU
X, = Uy
X5 = XU
X = U, (3.24)

U =%
U, =%
U; =X,
U, =%,

(3.25)
U, = Cosy cosgn,
u, =sec’y sinf secqn, +sec’y cosf secgn,

_ (-siny sinf sing -cosy cosf )rl (-siny cosf sinqg -cosy smf)
cos’y cos’q o cos’y cos’q

3 4

_[(A+cosy cosq)n, +(cosy singsinf -siny cosf )n;+(siny sinqcosf +siny sinf n,]

(3.25) gives

1+cosy cosg +siny sing sinf +cosy cosf +cosq cosf

42



—_— [— ul
VS = —
CoSy CosQ

w, =V, =cosy cosq{(cosy sinf - siny singcosf )u, - (cosf cosq)u,}

w, =V, =cosy cosq{(siny singsinf +cosy cosf )u, +(sinf cosq)u,}

v, :;{(H cosy cosq +siny sing sinf +cosy cosf +cosq cosf )u,
CoSy cosq

- (cosy singsinf - siny cosf )y, - (siny singcosf +siny sinf )v4}

\W

X

The inputs v,V,,v,v, can be cdculated from the above equations
providedcosy cosq t 0. Also here it should be noted that the chained form system is

completely controllable as the controllability is not affected by state feedback and

coordinate transformations i.e. they are invariant under the transformations.
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Chapter 4

Control Design and Simulation Results

In this chapter controllers will be designed for the vehicle to track a desired
trgjectory, follow a path and for point to point stabilization. The chapter presents the
control design and the simulation results obtained for the model of an underwater vehicle
developed in the previous chapter. The feedback control design is developed using the
kinematic model of the system. The performance of the controllers obtained using
various techniques of control design is evaluated for different motion planning tasks
mentioned above. The chapter also presents the simulation results obtained for different
controllers. The simulation results are used to compare and evaluate the performance of

the various controllers.

4.1 Trajectory tracking and controller design

The system is supposed to track a given (desired) Cartesian trgjectory .The problem is
to regulate both the vehicles position and orientation with respect to that of a reference
system: the trgectory of which is parameterized by the variable ‘t’. The goa will be
achieved using feedback control law with the following control schemes

Full state feedback using approximate linearization
Feedback linearization using input output linearization or full state linearization
Before going for the feedback design the problem of generating the desired output

trgjectory is discussed both for original system and chained form system.



4.2 Referencetrajectory generation

Let the reference state trajectory and reference input tragjectory for the system be

0o (t) = %3 (1) Ya (1), 24 (1), F 4(0).9 L9y o(1) and Vg (t) =Vgs(t), Vaa(t),Vas(t), Vaa(t) - The
desired trgectory is feasible only when it satisfies the nonholonomic constraints on the
system.

Assume that a feasible and smooth desired output trajectory for the chained form
isgiven as Xy, = Xy1(t), X3 = Xg3 (1), Xg5 = X5 (t) and Xy = X446 (t) . From this information
we are able to derive the time evolution of the rest of the coordinates of the state
trajectory and the associated input trgjectory. In other words we should be able to recover

the state trgjectory and the input trgjectory from the reference output trajectory.

From (3.20) we have
Xg1(t) = Ugy(1)
Xg2(t) = Ug, (t)
X3 (1) = Xg2 () Ug (1)
44 () =U g5 (t)
X5 () = Xg4(O)ug (1)

Xg6 () = Uga (1) (4.1)

with initial conditions of the states as X, (1), X4 (1)), %42 (1) X34 (t5) s Xy5(t5)  X46 (t5) &

t=t,.

Solving for the state trgjectory from (4.1) we get
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Xz (1) = Xy (t)/ %4,(1)

Xga (1) = Xy5 )/ % (1) (4.2
The corresponding input trgjectory is given as

Uy (£) = Xy, (1)

Uga (£) = %, o(8) = (Kea () %3 (t) - Xy (1)%2(0) X, 0)

Uga(8) = Xg o(t) = (aa (D) K5 (0) - s (%2 (1) X 52 0)

Uy 4(t) = X6 () (4.3
(4.2.) and (4.3) gives the unique state and input trajectory, from which the desired output
trgectory can be reproduced or generated. As is seen, the values of the trgectories
depend upon the values of the output trajectory and its second order derivatives. Thus the
output trgjectory should be differentiable everywhere. The derivation of the reference
input and state tragjectory which generates a desired output trgectory can also be
performed on the original system. The origina state ard input trajectories can be derived

from the output trgjectory as
X (1) = Xy (1)
Yo (£) = Xy3(t)
Z,(t) = x35(t)
Y o =tan (%) =tan (¥, /%)
qy =- tan"*(x,,cosy ,) = - tan"*(z, cosy 4/ %,)

f, =cot™*(cotq,/sny 4 +tany ,/sing,) (4.4)
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Similarly the actual input trajectory is

v(d,) =\IX§+S'§ +2§ ZUdl/Cosy ¢ COSQ4
v(d,) =- rd].’l.(rdZSUdz + rc133Uds)

v(d,) =Ty, (rdZZUdZ + rd:QUdS)

v(d,) :% ((@# 1y + Ty + gz )Ud, - vl - 1vd, ) (4.5)
1
with
r,,, = COS(, COSY |
ry, =SiNQ4Sinj 4CoSy 4 - COSj 4 Siny
ry3 =SNQ4 COSj 4COSYy 4 +SiNj 4 Siny
l4o, = COSO4SINY 4 Iy, =SINQ, SINj 4SNY 4 +COS] 4 COSY
ly,s =SNQ4 CO§ 4 SNY 4 - SNj 4 COSy
l4ay = - SINQq
l4s» =SINj 4 COSQ,
l4a3 = COSj 4 COSQ (4.6)
For the tracking simulation purposes consider the following reference sinusoidal
output tragjectory
Xy, (1) =t X45(t) = Asinwt X5 () =1 X4() =0 4.7)
This gives the state trgjectory as
Xy, (1) = Av coswt, X, (t)=0 (4.8)

and the input trajectory as
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Uy () =1 Uy, (1) =- Awv*sinwt

Uys(t) =0 Uy, () =0 4.9
Theinitia states are

X1(0)=0  x,(0)=Av  x;3(0)=0

X2(0=0  x5(0=1  x,(0)=0 (4.10)
Here again it is to be noted that there is a singularity in the state and input tragjectories at

Xy, (t) =0o0r uy (t) = Oas the state and input trajectories are not defined at that point.

4.3 Control using approximate linearization.

The feedback controller for trgjectory tracking is based on standard linear control
theory. The design makes use of the approximate linearization of the system equations
about desired tragjectory which leads to a time varying system as seen before. The method
hereisillustrated for the chained form equations about the desired trgjectory. The chained
form system is linear under piecewise constant inputs.

For the chained form system the desired state and input trgjectory computed in

correspondence to the reference cartesian trgjectory is
Xa (1) = {X32(0 X420 X5 (94 %4(0), %5(0), %6 (D}
and (4.11)
U (£) ={u gy (1), U o (1), U g (1), U s (1)}
An equivalent way to state the tracking problem is to require the difference
between the actual configuration and the desired configuration approach to zero. This
difference is denoted as the error. Since the vehicle will not necessarily share the same

initial conditions as the desired system, the tracking controller will drive the error to zero
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and minimize the effect of the disturbances as the vehicle converges to the reference
trgectory.
In order for the system to track the trgjectory of error should approach to zero

with time. Denoting the error variables for states and inputs as the following
Xo = X- X4

and (4.12)
U, =U- Uy

The error differential equations are writtenby subtracting the desired equations from the

system (actual) equations as the following nonlinear set of equations

Xe1 = Ugy

Xey = Ugy

Xea = XUy = Xyolyy

Xeq = Ugg

Xes = Xyl = XgaUgy

Xeg =Ugy, (4.13)
Now linearizing about the desired trajectory we have the following linear system

X.(t) = A()x. (1) + B()u. (1) (4.14)

with
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& 0 0 0 0 0
o 0 0 0 00
&@ uy,t) 0 0 0 0d
AD=g G
© 0 0 0 o0 of
© 0 0 u,) 0 0f
® o 0o o o0 of
61 0 0 Oy
é G
S0 10 0
&,,() 0 0 0d
BO=e" " 5 | o
€ U
Sa(t) 0 0 Ou
5 0 0 1f

The system given by (4.14) is linear time varying and can easily be proven to be
controllable by checking its Grammian [21] to be nonsingular. For a linear trajectory with

constant velocity uy, (t) =u,, the controllability condition is given by
rank{B, AB, A’B,A°B,A'B,A’B} =6 (4.15)
The matrix in (4.15) is a nonsingular matrix and has at least one non zero minor of order
six. The controllability matrix is nonsingular only as long as the input u,, to the system is
nonzero. This corresponds to the singularity in the kinematic model of the system. Thus
the system is controllable aslongas u,, * O.
Choosing the linear time varying feedback law for the system as
u, = - KX, (4.16)
For the chained form system the control law should be such that feedback law for each

chain contains the same number of terms as the number of states in that chain. Thus

Ug =~ k1Xe1
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K,

Ug, =~ kzxez - u_xe%
dl
k
ue3 =- - _5
kX 2%
Uy =- kexee (4.17)

The feedback coefficients K, and K, are divided by Uy, so that the characteristic equation

of the closed loop system matrix does not containuy, , thus making the design global .

Thusthe matrix Kisgiven as

& 0O 0 0 0 ou

é U

= &0 k, K/u, 0 0 04
Ug, =S y (4.18)

€0 0 0 Kk, kgu, 00

é 4 dl G

g0 0 0 0 0 kg

The k'sare chosen such that k; and K are positive, and K, ,K,, K, andK;are such that

| 2+k,| +k; and | *+k,| +k; are Hurwitz. The closed loop system matrix is thus

given as
A, =A- BK

é k 0 0 0 0 0u
80 -k -kfuu(t) o0 0 0y
éx,k, Uy (t) 0 0 0 ou

=a ] 4.19
0 0 0 ko -ksfun(t) O (4.19)
gka1 0 0 Ug, (t) 0 08
8 0 0 0 0 k.0

The closed-loop system matrix has constant eigenvalues with negative real parts.

This does not guarantee the asymptotic stability of the closed- loop time varying system

[26].However, for specific choices of uy,(t), bounded away from zero and ug,(t),
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Uy, (t) and ug, (t), it is possible to use results on slowly —varying linear systems in order

to prove asymptotic stability. The feedback matrix is obtained by using pole placement
technique. Since for stability the eigen values of the closed loop matrix should have

negative real parts, the characteristic equation of the system should satisfy the following
det(sl - Ay)=(s- p)(s- p)(s- B)(s- p.)(s- ps)(s- pe)
where p, ; i=12,......, 6 are the eigen values of the system. The resulting closed loop

system (4.19) is controllable with the choice of feedback in (4.17).
4.3.1 Simulation of the controller
For simulation the following sinusoidal trgjectory is chosen:
Xy () =t y, (t) = asnwt z,(t) =1
which gives the following desired values for the chained form states and inputs
Xq(t) =t Xqo(t) =aw coswt  Xy;(t) =asinwt Xq4(t) =0

Xs(D) =1 Xge(t) =0

Ug(1)=1  uy,(t) =- aw?sinwt Ugs()=0  ug,(t)=0
Theinitial conditions for the states are

X1(0)=1  x,0)=aw x4;5(0)=2  x4,(0)=0

X5(0)=3  X4(0)=0
Choosing the six coincident closed loop poles at -2, i.e.

=== P=Ps=Ps=-2

we get the feedback matrix coefficients as
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ki=ks=2 ad k,=k;=k,=k;=4
Choosing a=1 and W =p we get the simulation results. The results show the tracking
errors for chained form states and inputs; and for actual states and inputs. Once the
tracking errors go to zero, the actual control inputs as obtained from the chained form
variables and inputs are same as the computed desired inputs. The desired inputs are
computed from actual system variables from (4.5). Since the control design is based on
the linearization of the system, the controller will make the controlled system locally

asymptotically stable.
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Figured. 1: The result of approximate linearization: tracking errors in chained form
variables x, (blue), X, (green), X, (red), X, (cyan), X, (magenta), X, (yellow), vs. time (sec).

Figured. 2: The result of approximate linearization: tracking errors (m/sec) in chained
form inputs u, (blue), u, (green), u,(red), u, (cyan) vs. time (Sec).



Figured. 3: The result of approximate linearization: actual (--) and desired (- ) chained
form variables x, (blue), X, (green), x, (red), X, (cyan), X, (magenta), x, (yellow), vs. time
(sec).
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Figured. 4: The result of approximate linearization: actual (--) and desired (- ) chained
form inputs u, (blue), u, (green), u, (red), u, (cyan) vs. time (Sec).
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Figured. 5:The result of approximate linearization: tracking errors (m) in variables x
(blue), y (green), z (red) vs. time (sec).
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Figured. 6: The result of approximate linearization: tracking errors (rad) in variables y
(blue), g (green), f (red) vs. time (sec).
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Figured. 7: The result of approximate linearization: actual (--) and desired (- ) original
variables x (blue), y (green), z (red) vs. time (sec).
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Figured. 8: The result of approximate linearization: actual (--) and desired (- ) original
variablesy (blue), q (green), f (red) vs. time (sec).

57



T = < [
— —
; WM T T T T T T -
m — : : : : : :
...................................................... — () ' ' ' :
S B : : : : =
_ b= : : : :
“1 ||||||| — Wm oo L” |||||| I m ||||||| [, oo m. ||||||||||| —m
m m : : :
e R o L ISR S R SN SO S B 1
; W m ! m ! ! m
m = : : m _ : :
[ = .. [ R e S S S S S S S e Sae e S et -
U C
S
.................................................... s H
b ~ = =
: o)
" o)
............................................ beeeeeeedm &
! 2
. o
i P
......................................... Ly m
ks]
CTT———— = >
m g
1 (] Q
© o <
T
o))
P —
=)
2
[

58

Figured. 10: The result of approximate linearization: v, (rad/sec) vs. time (sec).
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Figured. 11: The result of approximate linearization: v, (rad/sec) vs. time (sec).
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Figured. 12: Theresult of approximate linearization: v, (rad/sec) vs. time (sec).
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4.4 Control using exact feedback linearization

In this section nonlinear feedback design is used for the global stabilization of the
tracking error associated with the trgjectory. For nonlinear systems two types of exact
linearization methods are generally used. One is full state feedback transformation in
which the differential egquations of the system are transformed into a linear system.
Another is the input-output linearization which results in the input-output differential
map being linear. Both the feedback problems can either be solved using the static or the
dynamic feedback.

For the nonholonomic driftless system ¢ =G(qQ)Vv the full state linearization of

the system can not be achieved by using a smooth static (time invariant) state feedback.

The reason for this is the controllability  condition given by

rank[g, ,9,,9,.9,.[9,,9.1[g,,09,]] =6. This means that the distribution generated by the

vector fields g,, 9,,0,9, is not involutive which violates the necessary condition for full
satic state feedback linearization [13]. Thus for exact linearization, the method of
dynamic state feedback is used.
For the above non linear system, dynamic feedback linearization consists of

finding a dynamic feedback compensator of the form

z =a(q,z)+b(q,z)r

u=c(qgz)+d(qz)r (4.20)
The state vector z is the compensator state whose dimensions depend upon the number of

integrators added on the input channels. The vector r is the auxiliary input vector which

is the new input to the integrators added.
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The starting point of the dynamic extension for our problem is to define an m (4)
dimensional output z=h(q) . A certain desired behavior is assigned to this output vector.
The output vector is then successively differentiated until each and every input in the
system appears and the invertible map (or matrix) is non singular. During the successive
differentiations of the output vector, it becomes necessary to add the chain of integrators
on inputs so as to avoid their direct differentiation. The number of integrators results in
the compensator state vector z . The inputs to these integrators become the new
auxiliary input vectorr . The process continues and terminates after a finite number of
differentiations if the system is invertible from the chosen output vector z. If the sum of
the orders of the output differentiations is equal to the sum of the order of the original
system ) and the dimensions of the compensator, then the full state linearization is
achieved in the sense that no internal dynamics are left in the system. The process aso
results in the decoupling of the output vector from the new auxiliary input.

If at some point of differentiation of output in the algorithm the decoupling matrix
of the system is non singular without the addition of any compensator state, the process

results in the input output linearization of the system. The static feedback law of the form

u=a(q)+b(q)r (4.21)
is used to linearize the system.

4.4.1 Control using exact feedback linearization via static feedback

For our system let the output vector in the chained form be defined as

g -
- cg;xXZ: (4.22)
&% 5
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The derivative of the output is given as

aé(lo &l 0 0 O(‘jaejlc'j
™ € ~C
5=C 3—_gX 00 0_gu2_
Cx,* €x, 0 0 O*Cu,~
gxez go 00 1ﬂgu4ﬂ
or (4.23)
z=H(@Q)u

Theinputs u, and u, do not appear after differentiation and aso the decoupling matrix

H (q) is singular and not invertible. Hence the static feedback cannot be applied and the
system cannot be linearized by input output linearization. The same result follows if the
above procedure is repeated by choosing the actual state variable as the output vector.

4.4.2 Control using exact feedback linearization via dynamic feedback

Since the static feedback fails to solve the problem, we will be making use of
dynamic feedback extension. For the linearization via dynamic feedback let us again
define the linearizing output vector for the chained form as

aex1 o
9"3 +
stf
&5 5

(4.24)

Differentiating w.r.t time we get

aé(io ael 0 0O Odeay, 6
+(; -

5 gxg__gxz 0 0 0.2u,.-
C%*™ Cx, 0 0 0%Cu,*
8.5 80 0 0 13u}

(4.25)
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In order for the algorithm to proceed we need to add two integrators whose states
are denoted byz,and z, ontheinputs u and u, respectively so that their differentiation

in the next step is avoided. Thus

u =z, u, =z,

z,=ul z,=u,¢ (4.26)
where u%and u,%are the new auxiliary inputs on the system. Substituting the above values

and differentiating the output vector again we obtain

e u 0o & z, 0
R TR R ST

(})'(4U1+X4L'I1f (’:X4U1+X421?
€ o 5§ 7, ;

or (4.27)

e ug 0 &l 0 0 Ooaejl¢o
ik xU &, z, 0 0,
Cz,u; +xuf= ¢x, 0 z; O%Cu,~
g 5 80 0 o 138us}
In the above equations al the inputs appear in a nonsingular way i.e. the
decoupling matrix is nonsingular. The value of the determinant of the matrix is z;. Thus
the algorithm terminates after two differentiations. The matrix is nonsingular only as long

as z,* 0oru * 0. Here the order of the compensator is two (b=2) and the number of
states in the system is six (n=6). The sum of the order of differentiations which is eight is
equal ton+ b. Thus full state linearization is achieved.

Let the equation (4.27) be rewritten as 2=r where r is the auxiliary reference

input. Therefore we have the following decoupled chains of integrators
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2, =1, (4.28)
The resulting nonlinear dynamic feedback controller is

W=z,

u, = (5 - %1)/z,

U =(ry- X,1)/2,

u, =z,

z, =yb=r,

z,=ut=r, (4.29)

Assuming the system follows a smooth desired reference trajectory in chained

form coordinates as z,(t) = (X (t), Xss(t), %5(t), %4(t)), the exponentialy stabilizing
feedback control law for the linear and decoupled system about this desired trgjectory is
given as

=2, +k, (2, (0- z(®) +k, (z®- z(®);  i=12..4 (4.30)
where k; and k;(the PD gains) are chosen such that they are positive and the
characteristic polynomials

s*+k,st+ky; i=1,2....4 (4.31)



are Hurwitz. The desired values for the variables z, and 2, are obtained from the (4.25)
and (4.27). For the simulation the other state variables can be expressed in terms of the
desired output trajectory at the initial time t =t,

% (to) = Z41 (t) = X4 (t,)

X, (1) = 242 (t0)/Za (t0) = Ya (to)/ % (to)

X3(to) = 212 (to) = Yu (to)

X, () = 243(t0)/241(t) = 2 (t) /%, (to)

Xa5(to) = Zus () = Z4(t)

X35 (to) = Z4a(to)

Z,(ty) = Zu (L)

Z,(to) = 244(t)) (4.32)

From this initialization, the output trgectory is reproducible. Any other
initialization gives tracking error which exponentialy goes to zero with time. The same

results will follow if the dynamic extension is applied to the original kinematic equations.

4.4.3 Simulation of the controller

For simulation again the same desired trgjectory is used as was done in the linear

case. The trgjectory chosenis
Zy(t) =x,() =t Zy,(t) = y,(t) = asinwt

Zy3(t) =z,(t) =1 Z34(t) =X46() =0
which gives the desired values for the chained form states and inputs as

Xq(t) =t Xqo(t) =aw coswt  Xxy;(t) =asinwt
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X20) =0  xu(t)=1  X4,(t)=0

Zat)=uu®) =1 Zz,)=ugy,l)=0
Ug,(t) =- aw?sinwt Ugs(t) =0
Theinitial conditions for the states are
X100 =0  x4,(0)=aw x4(0)=0
%4(0=0  x5(0)=1  x,,(0)=0
Zy(0)=uy(0)=1 z,(0)=uyu()=0
Choosing again the gix coincident closed loop poles a -2, that is
p=-2i=1,..,6 weget the PD gainsas k, =4and k; =4.Choosing a=1 and W =p

we get the simulation results. The results show tracking errors for the chained form states
and inputs; and for actual states and inputs. Once the tracking errors go to zero, the actual

inputs (control inputs) are same as the desired inputs.
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Figured. 13: The result of dynamic feedback: tracking errorsin chained form variables
X, (blue), x, (green), x, (red), x, (cyan), x; (magenta), x, (yellow),vs. time (sec).
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Figured. 14: The result of dynamic feedback: tracking errors in chained form inputs
u, (blue), u, (green), u,(red), u, (cyan) vs. time (sec).
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Figured. 15: The result of dynamic feedback: actual (--) and desired (- ) chained form
variables x, (blue), x, (green), x, (red), X, (cyan), x; (magenta), x, (yellow), vs.time
(sec).
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Figured. 16: Theresult of dynamic feedback: actual (--) and desired (- ) chained form
inputs u, (blue), u, (green), u,(red), u, (cyan) vs. time (sec).

68



Figured. 17: The result of dynamic feedback: tracking errors (m) in variables x (blue), y
(green), z (red) vs. time (sec).
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Figured. 18: The result of dynamic feedback: tracking errors (rad) in variablesy (blue),
g (green), f (red) vs. time (sec).
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Figured. 19: The result of dynamic feedback: actual (--) and desired (- ) origind
variables x (blue), y (green), z (red) vs. time

, . . . . .
1.4
1
0.4 -

1]

0.5

-1

-1.5

2

0

Figured. 20: The result of dynamic feedback: actual (--) and desired (- ) origina
variablesy (blue), q (green), f (red) vs. time
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Figured. 21: The result of dynamic feedback: v, (m/sec) vs. time (sec).

Figured. 22: The result of dynamic feedback: v, (rad/sec) vs. time (sec).
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Figured. 24: Theresult of dynamic feedback: v, (rad/sec) vs. time (sec).
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4.5 Point to point stabilization

In the following section the problem of point to point stabilization is addressed.
The system is supposed to reach a final desired configuration starting from an initial
point, without the need to plan atrgjectory.
As stated earlier the point stabilization can not be achieved by a smooth time invariant
feedback. Only non-smooth or time varying feedback laws are of interest for the task. For
our system we will adopt the latter approach.

45.1 Control with smooth time varying feedback

The method of designing a stabilizing control law here is the one proposed in [7].
The control law presented there was for a two input nonholonomic system. The controller
here is an extension of the same. The statement of the problem is as. given a nonlinear
drift free control system (3.11)

q=0,(@V; +gLQVv, +g4a)vs+ g fa)v, (4.33)

we have to find a control law of the form Vv(Q,t) which makes the origin globally stable.
In [7] the origin of the control system (4.33) is represented in power form and is then
stabilized. Thus before going for the control design we will convert (4.33) into a power
form.
452 Power form

The method of converting @.33) to power form is as presented in [24]. The
transformation is done in two steps. In first step the origina system is converted into a

three chain, single generator chained form as described in section 3.3. The chained form

obtained is given as
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1
-b><o
1
c

N

X5 = X = XUy X6 = X5y = XUy (4.34)

In the second step the chained form system (4.34) is converted into power form.

For the three chain single generator chained form the globa transformation to power

form is given below [24]:
y,=X;1£ | £4

Igl n 1 BRL .
25 =(-1)x+a (-1) o (%) "X, 2 jE41EKEN,  (4.35)

n=0

which gives the power form as:

Y, =u;; 1££4
1 .
z}‘O:E(yl)k u 2£j£41EkEN, (4.36)
Here we should recall from section 3.3 that X7, =X, which are identified as the

4
top of thechainsand n; =2. Thuswe have n, =n, =1and n, = 0.Using (4.34) and

n=2

taking the above values, the transformation (4.35) becomes
Yi=%

Y =%

Ys =%
2,52y = - X%+ %%

Zzzzéo:'xs"'xlxzt
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Z, =20 =X (4.37)
and the corresponding power form is

=y

Y. =4,

Y5 =

2 =u, (4.38)
45.3 Control law
The control law for (4.38) from [7] is given here as
u, =- y+r(2(cost- sint)
u, =-Y, +cz cost
U, = - Y, +C,Z, cost
u,=-Y, (4.39)

with ¢, ,c,>0and r (2) :(21)2 +(22)2 +(23)2Thecontrols(4.39) asymptotically stabilize
the origin of (4.38).

For global stabilization the saturation functions are introduced in the control law.
These functions eliminate the destabilizing effects away from the origin. The control is

thus given as

u =-Y,+s (r(2z)(cost - sint)
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u, =-Y,+cs (z)cost

U, =- y,+ cs (z,)cost

u,=-y, (4.40)
where ¢, >0 and s :R® Ris anon decreasing C*saturation function with a magnitude
less than some d >0and is linear between (-d,d).For global stabilization d should be
small enough. The saturation function then satisfies the following [7]:
1. s(2)=z when |4£e
2. s (2| £d foral zsuchthat 0<e <d
The closed loop dynamics are given as.

Y, =-V,+s (r(z)(cost - sint)

Y, =- Y, +cs (z)cost

Ys=-Y;+ Cs (z,)cost

Ve =- Yy (4.40)
For some0O<e <d, $d, suchthat if e <e,, then the closed loop dynamics are globally
asymptotically stabilized to zero.
4.54 Simulation

For simulation the value of d is chosen to be 0.001 and the saturation functions,

s(r(2),s(z)and s (z,)are 0.26, 0.5 and 0.1. The constants ¢, and c, are both chosen

as 2. Theinitial valuesfor vy, v,, y,and y, arechosen as-5, -2, -7 and -5 respectively.
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Figured. 25: Point stabilization using time varying feedback: x (m) vs. time (sec).
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Figured. 26: Point stabilization using time varying feedback: y (rad) vs. time (sec).
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Figured. 27: Point stabilization using time varying feedback: z (m) vs. time (Sec).

I I I I I
1 I I 1 1 1 I I 1
' ' ' ' ' ' ' '
1 Eaooooliaaosoadaocooad Hoooooo Lo oo ooal oo oodoooaooc: == e = 1=1= hoooas —
0 i i v T d I b
1 I I 1 1 1 I I 1
' ' ' ' ' ' '
I I 1 I 1
' ' ' '
I 1 I I 1
I ' ' v ' '
l I ! 1 | 1
0k 1 | -
1 I 1 1 [ '
' | ' ' i \
1 | I 1 ! 1
' i " ' '
' I ' ' ' !
' ' d ' '
' ' ' ' ' ' '
' ' ' ' ' ' '
A | TSP SIS NSNS VNSNS NN PN N - - Y — -
' ' ' ' ' ' '
' ' ' ' ' ' '
' ' ' ' ' ' '
' ' ' ' ' ' '
' ' ' ' ' ' '
' ' ' ' ' ' '
' ' ' ' ' ' '
' ' ' ' ' ' '
e LR e EEEEEEE r------ To----- LEEEEE e r------ r----- —
' ' ' ' ' ' '
1 I I 1 1 1 I I 1
' ' ' ' ' ' '
1 I I 1 1 1 I I 1
' ' ' ' ' ' '
1 I I 1 1 1 I I 1
' ' ' ' ' ' '
_3 Eaooooliaaosoadaocooad Hoooooo Lo oo ooal oo oodoooaooc: == e = 1=1= hoooas —
0 i i v T d b
1 I I 1 1 1 I I 1
' ' ' '
1 I I 1 1 1 I I 1
' ' ' '
' ' ' '
' '
' '
‘-_1 _______ IS | PP Sy Losoaon IS SIS S I ISP —
v v
' '
' '
'
'
'
'
5 | | | | | | | | |

0 20 40 &0 80 100 120 140 160 180 200

Figured. 28: Point stabilization using time varying feedback: y (rad) vs. time (sec).
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Figured. 29: Point stabilization using time varying feedback: g (rad) vs. time (sec).
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Figured. 30: Point stabilization using time varying feedback: f (rad) vs. time (sec).
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Figured. 31: Point stabilization using time varying feedback: v, (m/sec) vs. time (Sec).
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Figured. 32: Point stabilization using time varying feedback: v, (m/sec) vs. time (sec).
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Figured. 34: Point stabilization using time varying feedback: v, (rad/sec) vs. time (sec).
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Chapter 5

Conclusions

This chapter presents some final considerations on our work and an outline of

future work on the topic.

5.1 Concluding remarks

This thesis described the issues related to the motion planning of nonholonomic
systems with application to underwater vehicles. It aso described the development of the
kinematic control model for the vehicle. The issues related with nonlinear controllability
were discussed. The design of the feedback controllers was done.

The thesis used the mathematical concepts involved in Lie algebra for the study of
nonlinear controllability. The concept of nilpotent basis was also invoked for establishing
the Lie algebra rank condition for the controllability. For design purpose, the system had
to be converted into chained form and power form. The thesis discussed the method for
transformation into chained and power forms. The method of transformations utilized the
concepts of nonlinear feedback transformation.

This thesis discussed the generation of a reference trgjectory for an under water
vehicle. The controllers were then designed for the trgjectory tracking. The control design
for trgectory tracking was done using both linear and nonlinear strategies. The
stabilization of the system was discussed and the controllers were designed for achieving
point-to-point stabilization. Stabilization was achieved using the time varying smooth

control law.
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5.2 Futurework

For future work t is possible to extend similar analysis to a higher dimensiona
nonholonomic problem. For the same problem as discussed here, the design of stabilizing
laws for path following can be done. For path following, the model can be transformed
into parametric form in order to apply the control schemes. The method of control with
input scaling can also be used.

The stabilization in both point-to-point and path following tasks can also be
achieved through other control methods. The use of nonsmooth control and open loop
control can be used. Also for underwater vehicle, motion planning can also be done while

taking the actual dynamics of the system into consideration.
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