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 (ABSTRACT) 
 
 

In this thesis we study the methods for motion planning for nonholonomic 

systems. These systems are characterized by nonholonomic constraints on their 

generalized velocities. The motion planning problem with constraints on the velocities is 

transformed into a control problem having fewer control inputs than the degrees of 

freedom. The main focus of the thesis is on the study of motion planning and design of 

the feedback control laws for an autonomous underwater vehicle: a nonholonomic 

system. The nonlinear controllability issues for the system are also studied. For the 

design of feedback cont rollers, the system is transformed into chained and power forms. 

The methods of transforming a nonholonomic system into these forms are discussed. The 

work presented in this thesis is a step towards the initial study concerning the 

applicability of kinematic-based control on underwater vehicles. 
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Chapter 1 

Introduction 

This chapter gives the brief overview on the thesis topic and the motivation 

behind the research work presented here. The chapter also gives a brief overview and the 

organization of the chapters following in the text. 

1.1 Overview 

The purpose of this research is to study the issues related to motion planning, 

nonlinear controllability and design of the feedback controllers for a specific class of 

nonholonomically constrained mechanical systems. Specifically, differential geometric 

control theory, nonlinear system analysis and control design techniques, and the results of 

recent research in the motion planning of nonholonomic systems are used and presented 

for the support of the current research work. 

Finally, a mathematical model of an autonomous underwater vehicle is developed. 

The kinematic modeling and the feedback controller design for the same are presented in 

detail and simulation results are obtained. The methods for converting the system into 

chained and power forms are also discussed. A brief mathematical analysis of the 

concepts involved in the study of controllability, control design and modeling is 

presented. The work presented in this thesis is a step towards the initial study concerning 

the applicability of kinematic- based control on underwater vehicles.  
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1.2 Motivation 

The initial motivation for the thesis came from the need of motion planning of 

nonholonomic systems. These systems are characterized by the presence of 

nonholonomic constraints on their generalized velocities. The control model for such 

systems is drift free, nonlinear and under actuated, given by 

     1 1 2 2( ) ( ) ......... ( )m mq g q v g q v g q v= + + +&                                            (1.1) 

Here q M∈ is the state of the system, M is the state space and nM ⊂ ¡ . Thus q belongs 

to a configuration space of dimension n . mv ∈¡  is the input or the control vector of 

dimension m . ( ) n
ig q ∈¡ ; 1,2......,i m=  are vector fields on M  and are assumed to be 

smooth and linear time invariant. The system is called drift free, because the system state 

does not change under zero input conditions. Also the system is under actuated because 

the dimension of the space spanned by the control vector is less than the dimension of the 

configuration space.  

A special case of (1.1) with two inputs was presented in [1]. In [1] the motion 

planning tasks for a car- like robot were defined and the feedback control design was 

studied. The control was achieved using various control strategies for each task. This 

work is motivated by the desire to extend the similar work to an underwater vehicle. The 

extended problem is higher dimensional with four inputs. In [1] the design is done using 

the chained forms. In our work we will make use of chained and power forms to achieve 

control. 

The motivation also comes from the fact that the design of globally asymptotic 

stabilizing controllers for nonholonomic systems is challenging. The design is difficult in 
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a sense that no time invariant smooth static stabilizing controller exists for such systems 

[2]. Various control schemes have been adopted for this purpose. One way to deal with 

this is to use time varying, smooth controllers. This approach has been extensively 

studied in [3] [4]. In [3] it is shown that, time varying smooth, control laws for driftless 

systems have necessarily algebraic (not exponential) convergence rates. Another 

alternative is the use of the nonsmooth feedback controllers which can achieve 

exponential convergence. These schemes have been proposed in [5], [6].  In our case we 

will be adopting the former approach. The control design for stabilization used herein is 

adopted from [7]. In this case global stabilization is achieved. 

1.3 Thesis outline and organization of the chapters  

Chapter 2 gives an introduction and general overview of the motion planning of 

the autonomous vehicles. The concepts of nonholonomy, under actuated systems, 

kinematic model of the nonholonomic systems and some examples are shown. Then the 

general problem of motion planning and the related issues are formulated for a class of 

the nonholonomic systems, with a review of some particular applications. 

Chapter 3 presents an overview and detailed analysis of the related motion 

planning tasks of an autonomous underwater vehicle. The chapter presents in detail the 

derivation of the mathematical modeling of the system. For motion planning tasks, the 

kinematic model of the system is obtained and the issues related to nonlinear 

controllability of the system are studied in detail. Finally, for the purpose of control 

design, the system is converted into chained form. The method of converting a multi 

input nonholonomic system into a chained form is also discussed. 
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Chapter 4 presents the control design and the simulation results obtained for the 

model of an underwater vehicle developed in chapter 3. The feedback control design is 

developed using the kinematic model of the system. The performance of the controllers 

using various techniques of control design is obtained and evaluated for different motion 

planning tasks, such as trajectory tracking, point stabilization and path following. The 

chapter also presents the simulation results obtained for different controllers. The 

simulation results are used to compare and evaluate the performance of the various 

controllers for different path following tasks. 

Chapter 5 presents the conclusions of the work. The contributions of the presented 

research work and the expansion or scope for the future work on the topic are also 

discussed. 

1.4 Previous research and contributions of the thesis 

In this thesis we will be studying the motion planning for an example of 

nonholonomic systems. Our example is the four- input nonholonomic system of an 

underwater vehicle. The configuration of an underwater vehicle is given by six 

dimensional special Euclidian group ( )3SE . If the velocity of the vehicle is constrained 

so that only the forward velocity component can be non zero, the vehicle has four degrees 

of freedom and two non holonomic constraints. The control inputs are the linear velocity 

in x  direction and three angular velocities along the x , y  and z coordinate axes. The 

controllability of the system is discussed and proved as related to motion planning. We 

present feedback control laws which give global stabilization of the vehicle about a 

desired trajectory and about a point. This is achieved by transforming the kinematic into a 
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canonical chained form. The thesis presents the method of converting the kinematic 

model into the chained form via state feedback and coordinate transformation.  

 For trajectory tracking of underwater vehicles [23] proposed a stable tracking 

control method based on a Lyapunov function. In [23] and [22] Lyapunov like function is 

used to develop a nonlinear feedback control scheme. The control achieves global 

stabilization about a desired trajectory. However the system is not point stablizable with 

the use of the proposed controller. In our case first we will be making use of the full state 

feedback (approximate linearization) scheme for trajectory tracking. This scheme results 

in local asymptotic stabilization only. Exact nonlinear control (full state linearization) 

design is used to achieve the global stabilization. In this case static state feedback fails to 

achieve the goal. However the dynamic state feedback is used to serve the purpose. Here 

the control design is done on the chained form system. 

 The kinematic model of underwater vehicle belongs to a class of systems which 

cannot be stabilized by a pure state feedback law [2]. Thus to achieve point stabilization 

different schemes have been implemented. Asymptotic stabilization for underwater 

vehicles using time varying smooth feedback laws was achieved in [4]. In [25] a 

discontinuous piecewise smooth control law was proposed and exponential convergence 

to a constant desired configuration was achieved. In [15] a non smooth time invariant 

controller was proposed to achieve the exponential convergence with stability to a 

constant desired configuration. The controller was implemented using chained form. In 

our case we will be making use of a time varying and smooth feedback. The controller 

achieves global stabilization to a constant configuration for an underwater vehicle. To 
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this end, a transformation of the kinematic model into power form is derived and the 

controller proposed in [7] is applied. 
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Chapter 2 

Problem Formulation and Examples 

This chapter gives an overview of motion planning and issues related to motion 

planning tasks of autonomous vehicles. The control or the kinematic model obtained for 

such vehicles involves the concepts of nonholonomy. It will be seen that the vehicles are 

nonlinear and under actuated in nature because of nonholonomic constraints on their 

generalized velocities. Finally some examples will be cited and motion planning problem 

will be formulated for two specific examples of autonomous vehicles and issues related 

to the various motion planning tasks and the feedback control design for these examples 

will be discussed. 

2.1 Motion planning of nonholonomic systems 

The initial motivation for the work presented here comes from the research work 

done in order to do the motion planning and control design for the nonholonomically 

constrained systems. Motion planning for nonholonomic systems has been studied in 

great detail and a lot of research is being done in this field. This problem has attracted 

researchers because of its challenging theoretical nature and practical importance. The 

nonholonomic constraints arise in a number of advanced robotic systems and the 

application of such systems is numerous. The problem is  also interesting because its 

theoretical behavior presents a number of challenges. Firstly, such systems are under 

actuated, i.e.; the number of control inputs is less than the number of the states or the 

variables of the system to be controlled. Thus motion planning implies that the systems 
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can be completely controlled with a fewer number of actuators, thereby improving the 

overall cost effectiveness of the system. Also under actuation can provide backup control 

techniques for a fully actuated system. Secondly, both planning and control are more 

difficult than for holonomic systems. Some of the motion control problems which have 

been studied in detail are those of regulation (stabilization) and tracking. 

The problem of stabilizing such systems is a big issue, as it has been proved by 

Brockett [2], that the nonholonomic control systems with restricted mobility cannot be 

stabilized to a desired configuration (equilibrium) using a smooth, time invariant state 

feedback law. Because of this fact there has been extensive study of this problem. Some 

authors have proposed non smooth or discontinuous control laws. Others have proposed 

smooth but time-varying control laws for the purpose of regulation and some have 

proposed the combination of both i.e. discontinuous time varying control laws [8], [9]. 

The method of transforming the kinematic model into the chained from model and doing 

the control on the same was first proposed by [10] for the case of a car like robot. The 

study of feedback control of a nonholonomic car like robot is done in [1]. Various motion 

planning tasks such as tracking a time varying reference trajectory, path following and 

point to point stabilization of a car like robot were presented in [1]. The work presented 

in chapter 3 is along the same lines as [1], extended and modified for the application of 

underwater vehicles. The design of feedback controllers will be used for different motion 

tasks utilizing the kinematic model of the system. The kinematic model will be developed 

using the definition of nonholonomic constraints. The work presented in this thesis is a 

step towards the initial study concerning the applicability of kinematic- based control on 

underwater vehicles.  
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2.2 Nonholonomic constraints        

System constraints on the mechanical systems whose expression involves 

generalized coordinates and velocities are known as kinematic constraints of the system. 

These are of the following form 

( ) 0, ,ia q q =&  1,2,........,i k n= <                                                          (2.1)                

where q is the generalized coordinate vector or the state vector. nq M∈ ⊂ ¡ , where n  is 

the dimension of the configuration space M , to which the vector q  belongs. These will 

limit the admissible motions of the system by restricting the set of generalized velocities 

that can be attained at a given configuration. Usually such constraints are in mechanics in 

Pfaffian form  

( ) 0T
ia q q =&  1,2, ........,i k n= <          (2.2) 

or 

( ) 0C q q =&                                                                                              (2.3) 

which means they are linear in the generalized velocities. ( ) n
ia q ∈ ¡  , 1,2,...,i k= are 

row vectors. The vectors : n
i Ma a ¡ are assumed to be smooth and linearly 

independent. The matrix ( ) n nC q ×∈¡  is a constraint matrix. 

The kinematic constraints restrict the motion by limiting the set of generalized 

velocities. The nonholonomic constraints cannot be integrated to the positions. Thus 

while the instantaneous mobility that a system can perform is restricted to ( 1n − ) 

dimensional null space of the constraint matrix ( )C q , we can still say that it is possible 

that any configuration in state space M can be reached. In general for a system with  n  
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coordinates and k nonholonomic constraints, although the velocities are restricted to  

n k−  dimensional space, the global controllability in the configuration space is still 

attainable.  

These constraints mostly arise due to rolling of two surfaces against one another, 

roll without the slip condition as in case of a wheel and the road. These can also arise due 

to conservation laws, applicable to the system or from the nature of the control inputs 

physically applied to the system [11]. Thus nonholonomic constraints allow the global 

movement of the system in the configuration space while at the same time restricting or 

reducing the degrees of freedom or motion performed locally by the system.  

The concept of nonholonomy is related to controllability of the corresponding 

control system. Redefining the constraint specification as the directions or degrees of 

freedom in which the system can move rather than the direction in which it cannot move, 

is equivalent to stating the controllability problem of the corresponding control system. 

Thus we can safely say that if the system is maximally nonholonomic, the system is 

controllable as any point in the configuration space can be reached. This way a motion 

problem can be converted into a control problem.   

Nonholonomic constraints arise in a number of ways and in various mechanical 

systems and applications. These can arise because of the reasons already given in the 

previous paragraph. For more detailed analysis, the reader is referred to [11] and [12]. 

Some of the typical examples of the nonholonomic systems can be summarized as 

• Wheeled mobile robots. 

• Space robots. 

• Underwater vehicles. 
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• Satellites. 

• Multifingered hands manipulators. 
• Hopping robots. 

2.3 Problem description   

The motion planning tasks for nonholonomic systems as pertaining to robots are 

achieved through the use of the feedback controllers. The basic motion tasks considered 

for a robot are as follows 

Point to point motion Here a desired goal configuration must be reached by a 

robot starting from a given initial configuration. 

Path following  Here the robot has to reach a desired final configuration starting 

from a given initial configuration while at the same time it has to follow a given 

geometric path. The initial configuration can be considered to be either on or off the path. 

Trajectory following Here the robot must reach a final configuration while 

following a trajectory in the Cartesian space (i.e. a geometric path with an associated 

timing law) starting from a given initial configuration (either on or off the trajectory). 

The tasks are assumed here such that the systems work in an obstacle free environment 

and are shown in Fig. 2.1a, Fig. 2.1b, and Fig. 2.1c for a car- like robot. 
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Figure2.1: Motion planning tasks for a car-like robot 

 

The tasks can be obtained using either the feed forward (open loop) or feedback 

(closed loop) control or a combination of the both. Since the feedback control is generally 
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robust and can work well in presence of disturbances, we will make use of feedback 

control.  

Thinking in terms of controls, point to point task can be thought of as a regulation 

control problem or a posture stabilization problem for an equilibrium point in the state 

space. Trajectory following is a tracking problem such that the error between the 

reference and the desired trajectories asymptotically goes to zero. 

For nonholonomic systems, tracking or path following or both is easier than 

stabilization, whereas usually the reverse is true. This difference can be explained by 

drawing a comparison between the numbers of inputs and outputs (or states) to be 

controlled. In case of a regulation problem m  inputs (two in case of a car like robot) are 

required to regulate or control ‘ n ’ independent control variables or states (four in case of 

a car like robot) with m  less than n . Thus point to point stabilization is the most difficult 

of all the three. In case of path following and trajectory tracking the output to be 

controlled has the dimension (p ) equal to that of the input (m ). Thus these control 

problems are square and their difficulty level is similar and less than the stabilization one. 

For a car like robot, in case of path following m is one and p is one while for 

trajectory tracking m  is two and p  is two, i.e. we have to stabilize to zero the two 

dimensional error vector associated with the Cartesian trajectory[1]. 

2.4 Control model formulation 

In this section we will be formulating the control model for the nonholonomic 

systems. For developing the control model consider the first order kinematic constraints 

on the system. As seen in section 2.2 such constraints are of the following form 
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( ) 0( ) ( )T
ia q t q t =&   1,2, ........,i k n= <  

or 

( ) 0( ) ( )C q t q t =&  

where q  are the generalized coordinates and q& the first order derivative (velocities) of the 

coordinates and ( )C q  is the constraint matrix. 

Let us denote the set of vector fields spanning the m  dimensional distribution 

∆ which is annihilated by the constraints as ' sjg ; 1,2,......j m=  such that 

{ }1 2, ,...., mspan g g g∆ =  

The ' sjg are the basis for the ( )n k−  right null space of the constraint matrix ( )C q  so 

that we have 

( ) ( ) 0;T
i ja q g q =  1,2,........,i k n= <  ( )1,2,......j n k m= − =  (2.4) 

or 

( ) ( ) 0C q G q =                                                                                       (2.5) 

The vector fields  'jg s  are assumed to be smooth and linearly independent as a 

consequence of the assumption on ( ) 'T
i sa q  being smooth and independent. By 

expressing all the feasible velocities as a linear combination of these basis vectors, we 

obtain the first order kinematic model of the system as 

1 1 2 2( ) ( ) ......... ( )m mq g q v g q v g q v= + + +&                                             (2.6) 

or 

( )
1

( )
n k m

j j
j

q g q v
− =

=
= ∑&                                                                               (2. 7) 
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where 'j sv known as psuedovelocities are taken as the control inputs and 'j sg  are the 

input vector fields. The model directly shows the presence of k nonholonomic constraints 

on the system having n  states or configuration variables and ( )n km −= control inputs. 

The control model of equation (1) is known as the kinematic model of the system. The 

model is a drift less (i.e. no motion takes place under zero input conditions), nonlinear 

and under actuated (number of control inputs is less than the number of states to be 

controlled) control system. 

2.5 Controllability issues 

Since the control model is driftless, the terms local accessibility and 

controllability can be used interchangeably. Moreover, the controllability of the whole 

configuration space is the (complete) nonholonomy of the kinematic constraints. The 

controllability condition can be established using the Chows theorem. According to the 

theorem, for the driftless control systems, if the accessibility rank condition 

   ( )0dim c q n∆ =                                                                                       (2.8) 

holds, then the control system is locally accessible (controllable) from 0q . c∆  is the 

accessibility distribution of the kinematic model given by equation (2.6) and is defined as 

the span of all the input vector fields 

1{ }c ispan v v i∆ = ∈ ∆ ∀ ≥  

with 

{ }1 1 1 2, , ,i i ispan g v g v i− −  ∆ = ∆ + ∈ ∆ ∈ ∆ ≥   

{ }1 1 2, ,...., mspan g g g∆ =                                                                      (2.9) 
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This implies that c∆  is the involutive closure under lie bracketing of the 

distribution 1∆ associated with the input vector fields 'j sg . The term  ,g v    is the lie 

bracket of the two vector fields g and v defined as 

( ), ( ) ( )v gg v q g q v q
q q

  
∂ ∂= −
∂ ∂

                                                           (2.10) 

The Chows theorem provides both necessary and sufficient condition for the 

controllability [12]. Moreover if the system is controllable then its dynamic extension 

given by 

( )
1

( )
n k m

j j
j

q g q v
− =

=
= ∑&  

and                                                                                                                               (2.11) 

;j jv u=&  1,2, ........,j m=                

is also controllable. In some cases the use of the nilpotent basis is made, that is the input 

vector fields 'j sg are the nilpotent basis. This eliminates the need for cumbersome 

computations as we will see that using this concept all higher order lie brackets above 

some particular order are zero [12]. 

2.6 Stabilization 

The stabilization problem for the control system of (2.7) can be defined as finding 

the feedback control law of the form ( , )u q t in order to make the closed loop system 

asymptotically stable about an equilibrium point or a reference (feasible) trajectory. In 

the point stabilization problem we assume equilibrium point for the open loop system i.e. 

( ) 0eq f q= =& . 
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2.6.1 Controllability and stabilization at a point 

For the driftless control system of (2.7), any configuration ( eq ) is an open loop 

equilibrium point under zero input conditions. For linear systems x Ax Bu= +& , it is a well 

established fact that if the system satisfies the controllability rank condition given by 
2 1...... nrank nB AB A B A B−  =                                              (2.12) 

then the asymptotic (actually exponential) stabilization by a smooth, time invariant state 

feedback is guaranteed. In other words we can say that if the controllability condition is 

satisfied, there exists a feed back law ( )eu k x x= −  such that the closed loop system is 

asymptotically stable about the equilibrium point ex . 

For the control model of (2.7) we would like to make a similar kind of analysis. 

For this purpose we will look at the approximate linearization of the system at any 

equilibrium point ( eq ).The approximate linearization given by  

( )eq q G q vδ= =& &                                                                                 (2.13) 

with eq q qδ = −  is clearly not controllable as the rank of the controllability matrix 

( )eG q is m (which is less thann ). Hence we can say that a linear controller can not 

achieve stabilization, not even locally. 

However the controllability of the nonlinear system can be established by using 

the tools from the differential geometry, i.e. we can make use of the Lie algebra rank 

condition to prove its controllability. However, even if the system can be proven to be 

globally controllable (in a nonlinear sense) there is still a severe theoretical limitation on 

point stabilization. The limitation is in a sense that Lyapunov (asymptotic) stability can 

not be achieved by means of a smooth, time invariant feedback [13]. 
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The above result can be established on the basis Brockett’s theorem [2] which 

says that the stabilization of a driftless regular system by a smooth time invariant 

feedback is not possible. For the driftless, under actuated control system (2.7) where 

vector fields 'j sg are linearly independent (regular) at eq , the theorem implies the 

number of inputs m  is equal to the number of states n  as both a necessary and sufficient 

condition for smooth stabilization. Also it should be noted that if the system can not be 

stabilized by a smooth feedback, the same negative result is true for its dynamic 

extension and also the theorem is not applicable to time varying feedback laws. 

Thus in order to design the feedback controllers for posture stabilization, it is 

obligatory either to give up the continuity requirement, i.e. include the non smooth 

feedback or to apply the time varying laws or apply a combination of both. 

2.6.2 Controllability and stabilization about trajectory 

In case of trajectory following, for stabilization about a trajectory it is ensured that 

the reference trajectories are feasible for the system. In other words we should take or 

generate only those state and input trajectories that satisfy the nonholonomic constraints 

of the system, i.e. should satisfy (2.2)  

2.6.3 Approximate linearization 

For approximate linearization of the system (2.7) we take the desired state 

trajectory as ( )dq t  and the input trajectory as ( )dv t . It can be easily seen that the 

linearization about a smooth trajectory results into a linear time varying system. The 

system can easily be shown to satisfy the controllability condition i.e. the controllability 

Grammian is nonsingular [21], as long as the input reference trajectory is persistent, i.e. it 

does not come to a stop. Thus it implies that we can achieve stabilization about the 
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desired trajectory via a smooth, time invariant control law as long as the trajectories do 

not come to a stop. One observation should be made here. As we know that the control 

scheme presented here is based on the approximate linearization of the original system in 

the neighborhood of a reference trajectory, the closed loop system is asymptotically 

stable only locally. In order to achieve global stabilization for trajectory tracking error, 

we have to make use of the nonlinear feedback design.    

 2.6.4  Exact feedback linearization 

It is well known in robotics that if the number of generalized coordinates equals 

the number of control inputs i.e. n m= , the system kinematics or dynamics can be 

transformed into a linear system with the use of a nonlinear static state feedback [14]. 

The linearity is displayed by the system equations only after a coordinate transformation 

in the state space.  

For exact linearization of nonlinear systems outputs are chosen to which a desired 

behavior is assigned. Two types of exact linearization are possible. The two schemes are 

full state feedback linearization and input output linearization. In the first case the 

feedback transformation is such that the whole set of system equations become linear 

while as in the second case the transformation is such that the input and output response 

of the closed loop system is linear. For MIMO systems this transformation results in 

decoupling of the input and output vectors.  

Both the transformations can be achieved through static feedback or the dynamic 

feedback [14]. 
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2.6.5 Static feedback linearization 

For the nonholonomic kinematic model the full state feedback linearization 

cannot be achieved using a static (time invariant) state feedback. The reason for this is the 

violation of the necessary condition for the full state feedback linearization according to 

[14]. The controllability condition for the system derived in section 2.6 requiring that the 

distribution o∆  generated by jg s not be involutive violates the necessary condition for 

static feedback transformation.  

However, input output linearization is possible with the use of static feedback. 

Here m  equations are transformed via feedback into simple decoupled integrators. 

However the choice of outputs which are linearized is not unique. Here it is worth 

noticing that in the case of (2, n ) chained form transformation, the two variables are 

indeed the examples of linearizing outputs with static feedback given by the input 

transformation equation. Also it must be noted that in case of input output linearization 

the internal dynamics may be left in the closed loop system. Thus for the exponential 

(global) convergence of the trajectory error to go to zero, these internal dynamics should 

be properly modeled, analyzed and their stability guaranteed.  

2.6.6 Dynamic feedback linearization 

For exact feedback linearization, if the static feedback design fails, we can make 

use of dynamic feedback for nonholonomic systems. The use of dynamic feedback can 

also result in full state feedback linearization. For model (2.7) 

( ) ;q G q v=&  ;n mq v∈ ∈¡ ¡                                                               (2.14) 

the dynamic feedback compensator is of the form  

( , ) ( , )v a q b q rζ ζ= +  
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( , ) ( , )c q d q rζ ζ ζ= +&                                                                            (2.15)                           

where ( ) vtζ ∈¡ is the compensator state vector of dimensions v  and  ( ) vr t ∈¡  (having 

the same dimensions as the compensator state vector ( )tζ ) is the auxiliary input. (2.15) is 

such that the closed loop system obtained from (2.14) and (2.15) is equivalent to a linear 

system under a state transformation ( , )z q ζ= Τ . For the applications to nonholonomic 

systems, the linearization process involves the following procedure.  

Initially we define the output of the system (2.14) as ( )y h q= . To this output a 

desired behavior is assigned (track a trajectory). Then the output y  is successively 

differentiated until the system inputs appear explicitly in a nonsingular way. The non 

singularity is a must for the inversion of the differentiated equations to solve for the 

inputs. If in a step involving differentiation of system outputs, the decoupling matrix 

(differential map) of the system is singular (which means that some input is still not 

appearing), integrators are added on some of the input channels and the process of 

differentiation is continued. It is also necessary to avoid direct differentiation of the 

system inputs in the next differentiation. This operation is known as dynamic extension 

and converts a system input into a state of dynamic compensator. The dynamic 

compensator has the new auxiliary input r as its input. The process of differentiation 

continues until at some point the system is invertible (i.e. solution for new inputs can be 

obtained) from the chosen output vector y and the process terminates. The number of 

successive addition of integrators gives dimensions of the state ζ of the dynamic 

compensator. Also, if the sum of the orders of the output differentiation is equal to the 

dimensions of the extended state space system (original and dynamic compensator state) 
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which is n v+ , then the full state linearization of the system is obtained as there are no 

internal dynamics left in the system. 

2.7 Examples of nonholonomic systems     

The simplest example of a nonholonomic system can be a wheel that rolls on 

plane surface, such as a unicycle. The constraints here arise due to the roll without slip 

condition. The configuration or the generalized coordinate vector is ( ), ,q x y θ= . The 

coordinates x and y are the position coordinates of the wheel and θ  is the angle which 

the wheel makes with the x axis. The unicycle is shown in Fig. 2.2. The constraint here is 

that the wheel cannot slip in the lateral direction. 

 

Figure2.2: The nonholonomic constraints on a unicycle. 

 

The generalized velocities are subject to the following kinematic constraint 

sin cos 0x yθ θ− =& &                                                                               (2.16) 
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In other words the velocity along the plane perpendicular to the point of contact between 

the wheel and the ground is zero. The above equation is of the form  ( ) 0C q q =&  with 

constraint matrix ( ) [ ]sin cos 0C q θ θ= − .  

Expressing the feasible velocities as a linear combination of vector fields 

spanning the null space of the matrix ( )C q , we get the following kinematic model 

1 1 2 2( ) ( )q g q v g q v= +&  

Or                                                                                                                                  (2.17) 

1 2

cos 0

sin 0
0 1

x

y v v

θ

θ
θ

     
     = +     
     
     

&
&
&

 

where 1v is the linear velocity of the wheel and 2v  is its angular velocity around the 

vertical axis. Here we observe that the number of states 3n = , number of control inputs 

2m = and the number of nonholonomic constraints 1k = . 

Another example is that of a car like robot shown in Fig.2.3. The robot has two 

wheels and each wheel is subject to one nonholonomic constraint. The constraint is the 

same as in the case of unicycle. The generalized coordinate vector is ( ), , ,q x y θ φ= , with   

,x y and θ  same as before. The angle φ  is the steering angle. 
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Figure2.3: The nonholonomic constraints on a car- like robot. 

 

The two nonholonomic constraints on the front and the rear wheels respectively 

are  

( ) ( )sin cos cos 0x y lθ φ θ φ θ φ+ − + − =&& &  

sin cos 0x yθ θ− =& &                                                                               (2.18)            

Here l  is the distance between the wheels. Again this is of the form ( ) 0C q q =&  with  

( ) ( ) ( )sin cos cos 0

sin cos 0 0

l
C q

θ φ θ φ φ

θ θ

 + − + − 
=  − 

 

Choosing the rear wheel drive the kinematic model is obtained as 

1 1 2 2( ) ( )q g q v g q v= +&  

                                                                                                              

1 2

cos 0
sin 0

tan 0
0 1

x
y

v v
l

θ
θ

θ φ
φ

     
     
     = +
     
          
     

&
&
&
&

                                                                    (2.19) 
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 Here 1v is the rear driving velocity input and 2v  is the steering velocity input. The above 

model is not defined at 2φ π= , where 1g  is discontinuous. Physically this corresponds to 

car becoming jammed because of its front wheel being normal to axis of the body. 

The feedback   control design, controllability analysis and the motion planning for all the 

three motion tasks are done in [1]. Another example of nonholonomic systems is that of 

an underwater vehicle which is discussed in next chapter. In next chapter we will be 

studying the motion planning for the same and controllability of the system is discussed 

and proved. We also present feedback control laws which give global stabilization of the 

vehicle about a desired trajectory and about a point.  
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Chapter 3 

Mathematical Modeling and Controllability Analysis of 

an Underwater Vehicle  

In this chapter an overview of an underwater vehicle is given and mathematical 

model of the vehicle is derived. The chapter presents in detail the derivation of the 

mathematical modeling of the system. For motion planning tasks, the kinematic model of 

the system is obtained and the issues related to nonlinear controllability of the system are 

studied in detail. Finally for the purpose of control design, the system is converted into 

chained form.  

3.1 Mathematical modeling 

In this section the mathematical model of the under water vehicle is briefly 

discussed. An underwater vehicle is generally defined as a six degree of freedom body. It 

follows the laws of rigid body motion. The dynamics of the system are highly non linear 

due to rigid body coupling and hydrodynamic forces on the vehicle. The mathematical 

model of the underwater vehicle is obtained through the following two models. 

Dynamic model This type of model allows for the actual forces, causing the 

motion and the dynamic properties of the vehicle to be taken into account. The equations 

of translation and rotation are obtained using Newton’s law [15]. 

Kinematic model The kinematic model of the system is the model where actual 

forces causing the motion and the dynamic properties of the vehicle do not enter the 
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equations of motion. This type of model allows for the decoupling of the vehicle 

dynamics from its movement. An autonomous underwater vehicle has nonholonomic 

nature due to its nonlinear kinematic model [22]. In the following section the kinematic 

model of the vehicle is derived. For the remaining chapter and the chapter following, the 

kinematic model of the system will be used for analysis and control purposes.  

3.1.1  Kinematic modeling and nonholonomic constraints 

The kinematic model of the system is obtained by taking into consideration the 

nonholonomic constraints on the linear velocity. The nonholonomic constraints restrict 

the velocity of the system to be zero in certain directions but these restrictions do not 

restrict the global movement of the system. For the development of the kinematic model 

of the underwater vehicle model we assume two orthogonal coordinate systems [23].  

Global coordinates The global or the inertial frame coordinates are denoted 

by ( ), , ,P X Y Z . The frame remains fixed at the ocean surface with origin P .The unit 

vector in the Z  direction points up into the water while the unit vectors along X  and Y  

direction complete a right handed system.  

Local coordinates The local or the body frame coordinates are denoted 

by ( ), , ,p x y z . The frame remains fixed on the vehicle with origin surface with origin p .  

The two coordinate systems are as shown below in Fig. 3.1[23].   
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Figure3.1: The coordinate systems of an under water vehicle. (From [23]. Copyright © 
1991 IEEE.) 

 
3.1.2 Kinematic model with respect to global coordinates 
 

The kinematics of the vehicle are described by six state variables and four input 

variables. The kinematic relationships describing the transformations between the two 

coordinate systems can have a number of parameterizations. The one used here is the 

Euler angle parameterization [25]. In the Euler angle representation the orientation 

between the inertial and the local coordinate frame is expressed in terms of a sequence of 

three rotations: roll (φ ), pitch (θ ) and yaw (ψ ) about the axes x, y and z respectively. 

Let q be the vector of six generalized coordinates required to specify the 

kinematics of the vehicle. The six coordinates are the Cartesian coordinate 

vector [ , , ]Tp x y z= of the vehicle in the local frame and the Orientation coordinate 

vector [ , , ]Tη φ θ ψ= . The orientation vector is the vector of Euler angles which give the 

orientation of the body frame with respect to the inertial frame. The transformation from 

the local coordinate frame to the global coordinate frame is given by means of a Rotation 

matrix R . R ∈  S(O3), where S(O3) is the group of rigid body rotations. R  satisfies the 
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relation TRR I= , i.e. 1TR R−=  or R  is an orthogonal matrix and det( ) 1R = [16].  The 

matrix R  is given below as  

[ ]
11 12 13

21 22 23

31 32 33

r r r

R r r r n s a
r r r

 
 = = 
  

                                                             (3.1) 

with 

11 cos cosr θ ψ=  

12 sin sin cos cos sinr θ ϕ ψ ϕ ψ= −  

21 cos sinr θ ψ=  

22 sin sin sin cos cosr θ ϕ ψ ϕ ψ= +  

23 sin cos sin sin cosr θ ϕ ψ ϕ ψ= −  

31 sinr θ= −  

32 sin cosr ϕ θ=  

33 cos cosr ϕ θ=                                                                                       (3.2)             

Let [ ],0 ,0
T

xv v=  be the linear velocity of the vehicle i.e. the vehicle has linear 

velocity along the x-axis only and [ , , ]T
x y zω ω ω ω= be the angular velocity components 

along x , y and z  directions respectively in the body frame. The velocity vector along 

three coordinate axes and the time derivative of the Euler angles are obtained from the 

following relations: 

[ ]p Rv n s a v= =&                                                                              (3.3)             

( )R RS ω=&                                                                                             (3.4)             
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where ( )S ω is the skew symmetric matrix given as 

( )
0

0
0

z y

z x

y x

S
ω ω

ω ω ω
ω ω

 −
 

= − 
 − 

 

The above equations give the following on solving 

1( )p J vη=&                                                                                              (3.4)             

2( )Jη η ω=&                                                                                             (3.5)             

With 

1( ) [cos cos ,cos sin , sin ]TJ η θ ψ θ ψ θ= −  

2

1 sin tan cos tan
( ) 0 cos sin

0 sin sec cos sec
J

φ θ φ θ
η φ φ

φ θ φ θ

 
 
 
  

= −  

The above set of equations can be written as the following equations. 

11 cos cosx r v vψ θ= =&  

21 sin cosy r v vψ θ= =&  

31 sinz r v vθ= = −&  

sin tan cos tanx y zφ ω φ θω φ θω= + +&  

cos siny zθ φω φω= −&  

sin sec cos secy zψ φ θω φ θω= +&                                                            (3.6)             

This can be written in the matrix form as 
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cos cos 0 0 0
cos sin 0 0 0

sin 0 0 0
0 1 sin tan cos tan
0 0 cos sin
0 0 sin sec cos sec

x
v

y
xz

y

z

θ ψ
θ ψ

ω
θ

ωφ φ θ φ θ
θ φ φ ω
ψ φ θ φ θ

   
    
    
    −

=     
    
    −
      

      

&
&
&
&
&
&

                         (3.7)             

The equations can be written in the generalized vector form as 

cos cos 0 0 0
cos sin 0 0 0

sin 0 0 0
0 1 sin tan cos tan
0 0 cos sin
0 0 sin sec cos sec

x
y
z

v
x y z

θ ψ
θ ψ

θ
ω ω ω

φ φ θ φ θ
θ φ φ
ψ φ θ φ θ

         
         
         
         −

= + + +         
         
         −
         
                  

&
&
&
&
&
&

     (3.8)             

The system here is subject to two non holonomic constraints. The constraints are 

on the linear velocities along y and z directions. The velocities along these directions are 

zero. The two constraints are 

0Ts p =&  

0Ta p =&                                                                                                   (3.8)                   

This can be written as 

12 22 32 0r x r y r z+ + =& & &  

13 23 33 0r x r y r z+ + =& & &  

Or  

(cos sin sin sin cos ) (sin sin sin cos cos ) (cos sin ) 0x y zψ θ φ ψ φ ψ θ φ ψ φ θ φ− + + + =& & &  

(sin sin cos sin sin ) (sin sin cos cos sin ) (cos cos ) 0x y zψ θ φ ψ φ ψ θ φ ψ φ θ φ− + − + =& & &   (3.9) 

 

The above equation is of the form 

( ) 0A q q =&  

with   



32 
 

12 22 32

13 23 33

0 0 0
( )

0 0 0
r r r

A q
r r r

 
=  

 
                                                         (3.10) 

 

Expressing the feasible velocities as the linear combination of vector 

fields 1( )g q , 2( )g q , 3( )g q and 4( )g q  spanning the null space of matrix ( )A q we have the 

following kinematic model 

1 1 2 2 3 3 4 4( ) ( ) ( ) ( )q g q v g q v g q v g q v= + + +&  

[ ]
1

2
1 2 3 4

3

4

( ) ( ) ( ) ( )

v
v

q g q g q g q g q
v
v

 
 
 =
 
 
  

&                                               (3.11) 

where  

1

cos cos
cos sin

sin
( )

0
0
0

g q

θ ψ
θ ψ

θ

 
 
 
 −
 
 
 
  
 

=   2

0
0
0

( )
1
0
0

g q

 
 
 
 

=  
 
 
  
 

  

3

0
0
0

( )
sin tan

cos
sin sec

g q
φ θ

φ
φ θ

 
 
 
 

=  
 
 
  
 

   4

0
0
0

( )
cos tan

sin
cos sec

g q
φ θ

φ
φ θ

 
 
 
 

=  
 
 −
  
 

                            (3.12) 

and 

1 2 3 4; ; ;x x y zv v v v v vω ω ω= = = = =  

More generally we can write 
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( )q G q v=&                                                                                             (3.13) 

The above equations are the kinematic model of the system. The system is 

nonlinear and under actuated, which means that the number of inputs to the system is less 

than its states. The generalized velocity vector q& cannot assume any independent value 

unless it satisfies the nonholonomic constraints. The constraints are the examples of the 

Pfaffian Constraints which are linear in velocities. The admissible generalized velocities 

as given by (3.1) are contained in the null space of the constraint matrix ( )A q .  

3.2 Controllability analysis 

Consider the system ( )q G q v=& . The system is nonlinear, under actuated and 

driftless. Thus, in order to establish the controllability of the vehicle we make use of the 

mathematical concepts that are involved in Lie algebra rank condition.  

3.2.1  Controllability about a point 

Consider the linear approximation of the system (3.13) at equilibrium point 

eq while setting the input ev equal to zero. Let the error associated with the equilibrium 

point be given as 

eq q q= −%  

The time derivative of the error is given as 

1 1 2 2 3 3 4 4( ) ( ) ( ) ( )e e e eq g q v g q v g q v g q v= + + +&%  

( )eq G q v=&%                                                                                           (3.14) 

Here ( )eG q is the controllability matrix at the equilibrium point. The rank of the 

controllability matrix is four. Thus if we linearize the system about an equilibrium point 
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the linearized system is not controllable. Hence the linear controller will not work here. 

To test the controllability of the above system we make use of the lie algebra rank 

condition and nilpotent basis concepts.  

Nilpotent basis The definition of nilpotent basis for a distribution is recalled here. 

Given a set of generators or basis vector fields 1, 2,........., mg g g we define the length of a 

Lie product recursively as 

{ } 1;il g =           1,2,...............,i m=  

[ ]( ) [ ] [ ],l A B l A l B= +  

Where A  and B  are themselves Lie products. Alternatively, [ ]l A  is the number of 

generators in the expansion for A . A Lie algebra or basis is nilpotent if there exists an 

integer k  such that all Lie products of length greater than k  are zero. The integer k  is 

called the order of nilpotency [17].The use of the nilpotent basis eliminates the need for 

cumbersome computations as we see all higher order lie brackets above some particular 

order are zero. 

In the light of the above definition and conditions we see that the lie algebra 

{ }1 2 3 4, , ,L g g g g is nilpotent algebra of order 2 ( )2k =  i.e. the vector fields 1 2 3, ,g g g  and 

4g  are the nilpotent basis. Thus all lie brackets of order more than two are zero. The only 

independent Lie brackets computed from the four basis vector fields are[ ]1 3,g g  

and [ ]1 4,g g . Thus for our system the lie algebra rank condition becomes  

[ ] 6crank C =  

1 2 3 4 1 3 1 4[ , , , ,[ , ][ , ]] 6rank g g g g g g g g =                                                  (3.15) 

where 1 3,[ ]g g  and 1 4[ , ]g g  are the two independent lie brackets computed from the four 

vector fields 1 2 3 4( , , , )g g g g as per the following definition. 

[ ], ( )
h g

g h x g h
x x

∂ ∂
∂ ∂

= −                                                                       (3.16) 



35 
 

Thus we have 

3 1
1 3 1 3

cos sin cos sin sin
sin sin cos cos sin

cos cos
,

0
0
0

[ ]g g
g gg g
x x

ψ θ φ ψ φ
ψ θ φ ψ φ

θ φ∂ ∂
∂ ∂

+ 
 − 
 
 
 
 
 
  

= − =  

4 1
1 4 1 4

cos sin sin sin cos
sin sin sin cos cos

cos sin
[ , ]

0
0
0

g g
g g g g

x x

ψ θ φ ψ φ
ψ θ φ ψ φ

θ φ∂ ∂
∂ ∂

− + 
 − − 
 −

= − =  
 
 
 
  

 

Using the above expressions for the Lie brackets the controllability matrix cC  becomes. 

cos cos 0 0 0 cos sin cos sin sin cos sin sin sin cos
sin cos 0 0 0 sin sin cos cos sin sin sin sin cos cos

sin 0 0 0 cos cos cos sin
0 1 sin tan cos tan 0 0
0 0 cos sin 0 0
0 0 sin sec cos sec 0 0

cC

ψ θ ψ θ φ ψ φ ψ θ φ ψ φ
ψ θ ψ θ φ ψ φ ψ θ φ ψ φ

θ θ φ θ φ
φ θ φ θ

φ φ
φ θ φ θ

+ − + 
 − − −
 − −

= 

 −












 

The above matrix has one nonzero minor of order 6.Thus the rank of the 

controllability matrix is full as long as 2
πθ ≠ , which is the singularity of the system. 

Hence we conclude that the system is controllable locally and also globally as long as it 

avoids the singularity condition.   

3.2.2   Controllability about a trajectory 

For the nonlinear system ( )q G q v=&  let the reference state trajectory be 

[ ]( ) ( ), ( ), ( ), ( ), ( ), ( ) T

d d d d d d dq t x t y t z t t t tφ θ ψ=  and the reference input trajectory be 



36 
 

1 2 3 4( ) ( ), ( ), ( ), ( )d d d d dv t v t v t v t v t= . The reference trajectory should satisfy the 

nonholonomic constraints on the system. 

For the linear systems x Ax Bu= +&  controllability implies asymptotic (actually 

exponential) stabilization by smooth state feedback. Thus if the following accessibility 

rank condition 2 1, , .............. nrank B AB A B A B n−  =   is satisfied, then there exists a 

feedback gain so that the following control law 

( )u k xd x= −  

makes the desired trajectory xd asymptotically stable or in other words the error 

associated with the desired solution goes to zero exponentially. 

For nonlinear systems the condition does not apply as such. But for local 

accessibility we may look at the approximate linearization of the system in the 

neighborhood of xd . Thus in particular if the linearized system is controllable, the 

nonlinear system can be stabilized locally at xd  by a smooth feedback eu kx= . The 

condition is sufficient but not necessary.  

Let the errors associated with the desired state trajectory and input trajectory be 

denoted as ( ) ( ) ( )e dq t q t q t= −  and ( ) ( ) ( )e dv t v t v t= −  respectively. Linearizing the 

system about the desired trajectory we obtain the following system 

( ) ( ) ( )d eq t q t q t= +& & &  

{ }{ }( , ) ( ) ( )d e d eG q q t v t v t= + +                                                              (3.17) 

The Taylor series expansion of  ( , )G q t  about the nominal solution ( )dq t  is given as:  

{ }( )
( ) ( , ) ( ) . . ( ) ( )d e d e

d

G q
q t G q t q t h o t v t v t

q q q

∂
∂

  = + + + 
 = 

&  
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Since the nominal solution satisfies (3.16) we have:     

( )
( ) ( ) ( ) ( , ) ( )e e d d e

d

G q
q t q t v t G q t v

q q q
t∂

∂

  = + 
 = 

&  

Or                                                                                                                                  (3.17) 

( ) ( ) ( ) ( ) ( )e e eq t A t q t B t v t= +&  

With 

4
( ) ( )

1

n
dn

d

g
A t v t

qn q q

∂
∂

= ∑
= =

  ( ) ( , )dB t G q t=                          (3.18) 

Upon computations we get  

3 3 1

3 3 2

( )
( )

( )
O A t

A t
O A t

×

×

 
=  

 
 

1 1

1 1 1

1

0 cos ( ) s in ( ) ( ) sin ( )cos ( ) ( )

( ) 0 sin ( ) s in ( ) ( ) cos ( )cos ( ) ( )
0 cos ( ) ( ) 0

d d d d d d

d d d d d d

d d

t t v t t t v t

A t t t v t t t v t
t v t

ψ θ ψ θ

ψ θ ψ θ
θ

− − 
 = − 
 − 

 

3 4 3 4

3 4

3 4

2

2 2cos ( ) t an ( ) ( ) sin ( ) t an ( ) ( ) sin ()sec ( ) ( ) cos ( )sec ( ) ( ) 0

( ) sin ( ) ( ) cos ( ) ( ) 0 0

cos ( ) sec ( ) ( ) sin ()sec ( ) ( ) sin ( ) sec ( ) t an ( )
d

d d d d d d d d d d d d

d d d d

d d d d d d d d

t t v t t t v t t t v t t t v t

A t t v t t v t

t t v t t t v t t t t

φ θ φ θ φ θ φ θ

φ φ

φ θ φ θ φ θ θ

− +

= − −

− 3 4( ) cos ( )sec ( ) t an ( ) ( ) 0d d d d dv t t t t v tφ θ θ

 
 
 
 
 
 
 

+  
 

1 3 3

3 1 2

( )
( )

( )
J t O

B t
O J t

×

×

 
=  

 
 

Here  

1

cos ( )cos ( )
( ) cos ()s in ( )

sin ( )

d d

d d

d

t t
J t t t

t

θ ψ
θ ψ

θ

 
 
 
  

=
−
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2

1 sin ( ) tan ( ) cos ( ) tan ( )
( ) 0 cos ( ) sin ( )

0 sin ( ) sec ( ) cos ()sec ( )

d d d d

d d

d d d d

t t t t
J t t t

t t t t

φ θ φ θ
φ φ

φ θ φ θ

 
 
 
  

= −  

The above system is linear time varying. For a linear reference trajectory with 

constant velocities ( )dn dnv t v=  and  (0) (0)dq q=  the controllability condition becomes  

{ }2 3 4 5, , , , , 6rank B AB A B A B A B A B =  

Upon computations we see that the above matrix has a nonzero minor of order 6 as long 

as 1 3 4 0d d dv v v= = ≠  and 2d
πθ ≠ . Thus the linearized system is controllable along a 

reference trajectory as long as the trajectory does not collapse to a point.  

3.3 Chained forms 

The chained form systems were first introduced in [18].The chained form 

introduced in [18] had one chain i.e. two input chained forms. The  method for converting 

the multi input drift free non holonomic systems into chained forms is given in [19]. 

Sufficient conditions under which an m  input system of (3.13) can be transformed to 

1m − chain single generator form were given in [19]. The method presented in [19] for 

transforming is similar to the method of exact linearization of nonlinear systems with 

drift via state feedback as presented in [14]. The same method will be applied for our 

system with some modifications. 

The following system  

1 1 2 2 3 3 4 4( ) ( ) ( ) ( )q g q v g q v g q v g q v= + + +&  

can be transformed into the chained form by a feedback transformation. In the above 

equation ig  being smooth and linearly independent vector fields, there exists a feedback 
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transformation ( ) ( ), , , qξ α η γ = Φ and ( )v qβ= that transforms our system into the 

following chained form [20]. 

0
0 1 1x uξ ==& &            0

0 2 2x uα ==& &            0
0 3 3x uη ==& &             0

0 4 3x uγ ==& &  

     1

0
2 0 1nx uα α==& &         0

1 3 0 1nx uη η==& &                         (3.19) 

where k
jx& is the state for the kth level. We call this as a chained form because the 

derivative of each state depends on the state directly above it in a chained fashion. The 

form has input 1u  as the generator for the chains and  
4

2

2j
j

n
=

=∑ . Thus for our system 

2 3 1n n= = and 4 0n = . 

There exists a basis function 1 2 3 4, , ,f f f f  , for the distribution 

0 41 2 3
span g g g g ∆ =  

 
 having the form 

( )1

6

21
i

i i

f f q
q q=

∂ ∂= +
∂ ∂∑  

( )2 2

6

2

i

i i

f f q
q=

∂=
∂∑  

( )3 3

6

2

i

i i

f f q
q=

∂=
∂∑  

( )4 4

6

2

i

i i

f f q
q=

∂=
∂∑                                                                                (3.20) 

The basis function is such that the following distributions  

{ }0 2 3 4, ,G span f f f=  
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[ ] [ ] [ ]{ }1 2 3 4 1 2 1 3 1 4, , , , , , , ,G span f f f f f f f f f=  

 
:

:
   

{ }1 1 15 2 3 4, , ;0 5i i i
f f fG span ad f ad f ad f i= ≤ ≤  

with     

1 1

1
2 1 2: ,k k

f fad f f ad f− =    
1

0
2 2:fad f f=  

have constant dimension on the same open set  nU R∈ , are all involutive and 5G  has 

dimension 5 on U .  

The vector fields 1 2 3, ,f f f  and 4f  which satisfy these conditions are 

1
1

1
tan

tan sec
0
0
0

cos cos
gf

ψ
θ ψ

ψ θ

 
 
 
 −

=  
 
 
 
  

=  

   2 2 3 3;f g f g= =  and 4 4f g=                                                                 (3.21) 

The coordinate transformation for the system thus is 

0 1hξ =            1
0 1

1f
hLα =            0

0
3

1f
hLη =            0 4hγ =  

0
1 2

1f
hLα =              1 3hη =                                             (3.22) 

where 1 2 3 4, , ,h h h h  are the smooth functions such that the following conditions are met 
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1 ;jdh G⊥  0 5j≤ ≤  

and the distribution 0G  is annihilated by 1,dh 2,dh  0
2

1
,

f
hdL  1

2
1

,
f
hdL  3 ,dh  0

3
1

,
f
hdL  1

3
1f
hdL  

4dh . Here 
1 3fL h  is the Lie derivative of 3h with respect to 1f . The detailed proof of the 

above conditions is in [19]. Here it should also be noted that the choice of functions 

1 2 3 4, , ,h h h h  is not unique. Choosing  

1h x=   2h y=   3 zh =   

( )32 234
1

1 ( )
r r

trace R
h −

+
=  

with R  being the rotation matrix and ( ) ( )11 22 33trace R r r r= + + .Thus the coordinate 

transformation for the system becomes 

1 0x xξ= =  

2 0 tanx α ψ= =  

3 1x yα= =  

4 0 tan secx η θ ψ= = −  

5x z=  

( )6 32 23
1

1 ( )
x r r

trace R
= −

+
                                                                   (3.23) 

which gives the following chained form system 

1 1x u=&  
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2 2x u=&  

3 2 1x x u=&  

4 3x u=&  

5 4 1x x u=&  

6 4x u=&                                                                                                  (3.24) 

Solving (3.23) and (3.24) and inserting (2.8) we get the input transformation as 

1 1u x= &  

2 2u x= &  

3 4u x= &  

4 6u x= &  

Or                                                                                                                                  (3.25) 

1 1cos cosu ψ θν=  

2 2
2 3 4sec sin sec sec cos secu ψ φ θν ψ φ θν= +  

3 3 42 2 2 2

(-sin sin sin -cos cos ) (-sin cos sin -cos sin )
cos cos cos cos

u
ψ φ θ ψ φ ψ φ θ ψ φ

ν ν
ψ θ ψ θ

= +  

2 3 4
4

[(1 cos cos ) (cos sin sin -sin cos ) (sin sin cos sin sin ) ]
1 cos cos sin sin sin cos cos cos cos

u ψ θ ν ψ θ φ ψ φ ν ψ θ φ ψ φ ν
ψ θ ψ θ φ ψ φ θ φ

+ + + +=
+ + + +

 

(3.25) gives 
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1
1 cos cosx

u
v v

ψ θ
= =  

{ }3 2 3cos cos (cos sin sin sin cos ) (cos cos )y v u uω ψ θ ψ φ ψ θ φ φ θ= = − −  

{ }4 2 3cos cos (sin sin sin cos cos ) (sin cos )z v u uω ψ θ ψ θ φ ψ φ φ θ= = + +  

{2 4
1

(1 cos cos sin sin sin cos cos cos cos )
cos cosx v uω ψ θ ψ θ φ ψ φ θ φ

ψ θ
= = + + + +

                      }3 4(cos sin sin sin cos ) (sin sin cos sin sin )v vψ θ φ ψ φ ψ θ φ ψ φ− − − +   

The inputs v1,v2 ,v3,v4  can be calculated from the above equations 

provided cos cos 0ψ θ ≠ . Also here it should be noted that the chained form system is 

completely controllable as the controllability is not affected by state feedback and 

coordinate transformations i.e. they are invariant under the transformations.   
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Chapter 4 

Control Design and Simulation Results  

In this chapter controllers will be designed for the vehicle to track a desired 

trajectory, follow a path and for point to point stabilization. The chapter presents the 

control design and the simulation results obtained for the model of an underwater vehicle 

developed in the previous chapter. The feedback control design is developed using the 

kinematic model of the system. The performance of the controllers obtained using 

various techniques of control design is evaluated for different motion planning tasks 

mentioned above. The chapter also presents the simulation results obtained for different  

controllers. The simulation results are used to compare and evaluate the performance of 

the various controllers.  

4.1   Trajectory tracking and controller design  

The system is supposed to track a given (desired) Cartesian trajectory .The problem is 

to regulate both the vehicles position and orientation with respect to that of a reference 

system: the trajectory of which is parameterized by the variable ‘t ’. The goal will be 

achieved using feedback control law with the following control schemes 

• Full state feedback using approximate linearization 

• Feedback linearization using input output linearization or full state linearization 

Before going for the feedback design the problem of generating the desired output 

trajectory is discussed both for original system and chained form system. 
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4.2 Reference trajectory generation 

Let the reference state trajectory and reference input trajectory for the system be 

 ( )( ) ( ), ( ), ( ), ( ), ( )d d d d d d dtq t x y t z t t t tφ θ ψ=  and 1 2 3 4( ) ( ), ( ), ( ), ( )d d d d dv t v t v t v t v t= . The 

desired trajectory is feasible only when it satisfies the nonholonomic constraints on the 

system. 

Assume that a feasible and smooth desired output trajectory for the chained form 

is given as 1 1 3 3 5 5( ), ( ), ( )d d d d d dx x t x x t x x t= = = and 6 6( )d dx x t= . From this information 

we are able to derive the time evolution of the rest of the coordinates of the state 

trajectory and the associated input trajectory. In other words we should be able to recover 

the state trajectory and the input trajectory from the reference output trajectory. 

From (3.20) we have 

1 1( ) ( )d dx t u t=&  

2 2( ) ( )d dx t u t=&  

3 2 1( ) ( ) ( )d d dx t x t u t=&  

4 3( ) ( )d dx t u t=&  

5 4 1( ) ( ) ( )d d dx t x t u t=&  

6 4( ) ( )d dx t u t=&                                                                                         (4.1) 

                                                      

with initial conditions of the states as 1 0 2 0 3 0 4 0 5 0 6 0( ), ( ), ( ), ( ), ( ), ( )d d d d d dx t x t x t x t x t x t at 

0t t= . 

Solving for the state trajectory from (4.1) we get 
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2 3 1( ) ( ) ( )d d dx t x t x t= & &  

4 5 1( ) ( ) ( )d d dx t x t x t= & &                                                                                (4.2) 

The corresponding input trajectory is given as 

1 1( ) ( )d du t x t= &  

2
2 2 1 3 3 1 1( ) ( ) ( ( ) ( ) ( ) ( )) ( )d d d d d d du t x t x t x t x t x t x t= = −& & && & && &  

2
3 4 1 5 5 1 1( ) ( ) ( ( ) ( ) ( ) ( )) ( )d d d d d d du t x t x t x t x t x t x t= = −& & && & && &  

4 6( ) ( )d du t x t= &                                                                                         (4.3) 

(4.2.) and (4.3) gives the unique state and input trajectory, from which the desired output 

trajectory can be reproduced or generated. As is seen, the values of the trajectories 

depend upon the values of the output trajectory and its second order derivatives. Thus the 

output trajectory should be differentiable everywhere.  The derivation of the reference 

input and state trajectory which generates a desired output trajectory can also be 

performed on the original system. The original state and input trajectories can be derived 

from the output trajectory as 

1( ) ( )d dx t x t=  

3( ) ( )d dy t x t=  

5( ) ( )d dz t x t=  

1 1
2tan ( ) tan ( )d d d dx y xψ − −= = & &  

1 1
4tan ( cos ) tan ( cos )d d d d d dx z xθ ψ ψ− −= − = − &&  

( )1cot cot sin tan sind d d d dφ θ ψ ψ θ−= +                                               (4.4) 

 



47 
 

Similarly the actual input trajectory is 

2 2 2
1 1( ) cos cosd d d d dv d x y z ud ψ θ= + + =& & &  

( )3 2 311 23 33( ) d d dv d r r ud r ud= − +  

( )4 2 311 22 32( ) d d dv d r r ud r ud= +  

( )2 4 3 411 22 33 12 13
11

1
( ) (1 )

1 d d d d d
d

v d r r r ud r vd r vd
r

= + + + − −
+

                    (4.5) 

with 

11 cos cosd d dr θ ψ=  

12 sin sin cos cos sind d d d d dr θ ϕ ψ ϕ ψ= −  

13 sin cos cos sin sind d d d d dr θ ϕ ψ ϕ ψ= +  

21 cos sind d dr θ ψ= 22 sin sin sin cos cosd d d d d dr θ ϕ ψ ϕ ψ= +  

23 sin cos sin sin cosd d d d d dr θ ϕ ψ ϕ ψ= −  

31 sind dr θ= −  

32 sin cosd d dr ϕ θ=  

33 cos cosd d dr ϕ θ=                                                                                    (4.6) 

For the tracking simulation purposes consider the following reference sinusoidal 

output trajectory 

1( )dx t t=  3( ) sindx t A tω=  5 ( ) 1dx t =  6 ( ) 0dx t =             (4.7) 

This gives the state trajectory as  

2 ( ) cosdx t A tω ω= , 4 ( ) 0dx t =                                                            (4.8) 

and the input trajectory as 
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1( ) 1du t =  2
2 ( ) sindu t A tω ω= −  

3( ) 0du t =  4 ( ) 0du t =                                                                         (4.9)    

The initial states are 

1(0) 0dx =  2(0)dx Aω=  3(0) 0dx =  

4 (0) 0dx =   5(0) 1dx =  6 (0) 0dx =                                              (4.10) 

Here again it is to be noted that there is a singularity in the state and input trajectories at 

1( ) 0dx t =& or 1( ) 0du t = as the state and input trajectories are not defined at that point. 

4.3  Control using approximate linearization. 

The feedback controller for trajectory tracking is based on standard linear control 

theory. The design makes use of the approximate linearization of the system equations 

about desired trajectory which leads to a time varying system as seen before. The method 

here is illustrated for the chained form equations about the desired trajectory. The chained 

form system is linear under piecewise constant inputs. 

For the chained form system the desired state and input trajectory computed in 

correspondence to the reference cartesian trajectory is 

1 2 3 4 5 6( ) { ( ), ( ), ( ) , ( ), ( ), ( )}d d d d d d dx t x t x t x t x t x t x t=  

and                                                                                                                                (4.11) 

1 2 3 4( ) { ( ), ( ), ( ), ( )}d d d d du t u t u t u t u t=  

An equivalent way to state the tracking problem is to require the difference 

between the actual configuration and the desired configuration approach to zero. This 

difference is denoted as the error. Since the vehicle will not necessarily share the same 

initial conditions as the desired system, the tracking controller will drive the error to zero 
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and minimize the effect of the disturbances as the vehicle converges to the reference 

trajectory. 

In order for the system to track the trajectory of error should approach to zero 

with time. Denoting the error variables for states and inputs as the following 

e dx x x= −  

and                                                                                                                                (4.12) 

e du u u= −  

The error differential equations are written by subtracting the desired equations from the 

system (actual) equations as the following nonlinear set of equations 

 

1 1e ex u=&  

2 2e ex u=&  

   3 2 1 2 1e d dx x u x u= −&  

4 3e ex u=&  

5 4 1 4 1e d dx x u x u= −&  

6 4e ex u=&                                                                                                 (4.13) 

Now linearizing about the desired trajectory we have the following linear system    

( ) ( ) ( ) ( ) ( )e e ex t A t x t B t u t= +&                                                                  (4.14) 

with 
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1

1

0 0 0 0 0 0
0 0 0 0 0 0
0 ( ) 0 0 0 0

( )
0 0 0 0 0 0
0 0 0 ( ) 0 0
0 0 0 0 0 0

d

d

u t
A t

u t

 
 
 
 

=  
 
 
 
  

 

2

4

1 0 0 0
0 1 0 0
( ) 0 0 0

( )
0 0 1 0
( ) 0 0 0

0 0 0 1

d

d

x t
B t

x t

 
 
 
 

=  
 
 
 
  

 

The system given by (4.14) is linear time varying and can easily be proven to be 

controllable by checking its Grammian [21] to be nonsingular. For a linear trajectory with 

constant velocity 1 1( )d du t u=  the controllability condition is given by 

{ }2 3 4 5 6, , , , ,rank B AB A B A B A B A B =                                              (4.15) 

The matrix in (4.15) is a nonsingular matrix and has at least one non zero minor of order 

six. The controllability matrix is nonsingular only as long as the input 1du to the system is 

nonzero. This corresponds to the singularity in the kinematic model of the system. Thus 

the system is controllable as long as 1 0du ≠ . 

Choosing the linear time varying feedback law for the system as 

e eKu x= −                                                                                              (4.16) 

For the chained form system the control law should be such that feedback law for each 

chain contains the same number of terms as the number of states in that chain. Thus 

1 1 1e eu k x= −  
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2 2 3
3

2
1

e e e
d

u
u
kk x x= − −  

3 4 5
5

4
1

e e e
d

u
u
kk x x= − −  

4 6 6e eu k x= −                                                                                          (4.17) 

The feedback coefficients 3k and 5k  are divided by 1du  so that the characteristic equation 

of the closed loop system matrix does not contain 1du , thus making the design global. 

Thus the matrix K is given as 

1

2 3 1
4

54 1

6

0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0

d

d
e

u
u

u

k
k k

k k
k

 
 
 
 
 
  

=                                        (4.18) 

The 'sk are chosen such that 1k  and 6k are positive, and 2k , 3k , 4k and 5k are such that 

2
2 3k kλλ + +   and 2

54k kλλ + +  are Hurwitz. The closed loop sys tem matrix is thus 

given as 

clA A BK−=  

       

( )
( )

( )
( )

1

2 3 1

2 1 1

4 5 1

4 1 1

6

0 0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0 0

d

d d

d

d d

k

k k u t
x k u t

k k u t
x k u t

k

 
 − − 
 

=  
− − 

 
 
  

           (4.19) 

The closed- loop system matrix has constant eigenvalues with negative real parts. 

This does not guarantee the asymptotic stability of the closed- loop time varying system 

[26].However, for specific choices of ( )1du t , bounded away from zero and ( )2du t , 
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( )3du t and ( )4du t , it is possible to use results on slowly –varying linear systems in order 

to prove asymptotic stability. The feedback matrix is obtained by using pole placement 

technique. Since for stability the eigen values of the closed loop matrix should have 

negative real parts, the characteristic equation of the system should satisfy the following 

( ) ( ) ( ) ( )( ) ( ) ( )1 2 3 4 5 6det clsI A s p s p s p s p s p s p− = − − − − − −  

where ip  ; 1,2,......,6i =  are the eigen values of the system. The resulting closed loop 

system (4.19) is controllable with the choice of feedback in (4.17). 

4.3.1 Simulation of the controller 

For simulation the following sinusoidal trajectory is chosen: 

( )dx t t=            ( ) sindy t a tω=            ( ) 1dz t =  

which gives the following desired values for the chained form states and inputs  

1( )dx t t=  2( ) cosdx t a tω ω=  3( ) sindx t a tω=  4( ) 0dx t =

 5( ) 1dx t =  6( ) 0dx t =  

and 

1( ) 1du t =   2
2 ( ) sindu t a tω ω= −  3( ) 0du t =  4( ) 0du t =  

The initial conditions for the states are  

1(0) 1dx =  2(0)dx aω=   3(0) 2dx =  4(0) 0dx =  

5(0) 3dx =   6(0) 0dx =  

Choosing the six coincident closed loop poles at -2, i.e.  

51 2 3 4 6 2p p p p p p= = = = = = −  

we get the feedback matrix coefficients as  
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1 6 2k k= =  and 52 3 4 4k k k k= = = =  

Choosing 1a =  and ω π=  we get the simulation results. The results show the tracking 

errors for chained form states and inputs; and for actual states and inputs. Once the 

tracking errors go to zero, the actual control inputs as obtained from the chained form 

variables and inputs are same as the computed desired inputs. The desired inputs are 

computed from actual system variables from (4.5). Since the control design is based on 

the linearization of the system, the controller will make the controlled system locally 

asymptotically stable. 
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Figure4. 1: The result of approximate linearization: tracking errors in chained form 
variables 1x (blue), 2x  (green), 3x  (red), 4x  (cyan), 5x  (magenta), 6x  (yellow), vs. time (sec). 

 

 

Figure4. 2: The result of approximate linearization: tracking errors (m/sec) in chained 
form inputs 1u (blue), 2u  (green), 3u (red), 4u  (cyan) vs. time (sec). 
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Figure4. 3: The result of approximate linearization: actual (--) and desired ( − ) chained 
form variables 1x (blue), 2x  (green), 3x  (red), 4x  (cyan), 5x  (magenta), 6x  (yellow), vs. time 
(sec).  

 

Figure4. 4: The result of approximate linearization: actual (--) and desired ( − ) chained 
form inputs 1u (blue), 2u  (green), 3u  (red), 4u  (cyan) vs. time (sec). 
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Figure4. 5:The result of approximate linearization: tracking errors (m) in variables x 
(blue), y (green), z (red) vs. time (sec). 

 

Figure4. 6: The result of approximate linearization: tracking errors (rad) in variables ψ  
(blue), θ  (green), φ  (red) vs. time (sec). 
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Figure4. 7: The result of approximate linearization: actual (--) and desired ( − ) original 
variables x (blue), y (green), z (red) vs. time (sec). 

 

Figure4. 8: The result of approximate linearization: actual (--) and desired ( − ) original 
variables ψ  (blue), θ  (green), φ  (red) vs. time (sec). 
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Figure4. 9: The result of approximate linearization: 1v  (m/sec) vs. time (sec). 

 

Figure4. 10: The result of approximate linearization: 2v  (rad/sec) vs. time (sec). 
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Figure4. 11: The result of approximate linearization: 3v  (rad/sec) vs. time (sec). 

 

Figure4. 12: The result of approximate linearization: 4v  (rad/sec) vs. time (sec). 
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4.4 Control using exact feedback linearization  

In this section nonlinear feedback design is used for the global stabilization of the 

tracking error associated with the trajectory. For nonlinear systems two types of exact 

linearization methods are generally used. One is full state feedback transformation in 

which the differential equations of the system are transformed into a linear system.  

Another is the input-output linearization which results in the input-output differential 

map being linear. Both the feedback problems can either be solved using the static or the 

dynamic feedback.   

  For the nonholonomic driftless system ( )q G q v=&  the full state linearization of 

the system can not be achieved by using a smooth static (time invariant) state feedback. 

The reason for this is the controllability condition given by  

1 2 3 4 1 3 1 4[ , , , , [ , ][ , ]] 6rank g g g g g g g g = . This means that the distribution generated by the 

vector fields 1 2 3 4, , ,g g g g  is not involutive which violates the necessary condition for full 

static state feedback linearization [13]. Thus for exact linearization, the method of 

dynamic state feedback is used. 

For the above non linear system, dynamic feedback linearization consists of 

finding a dynamic feedback compensator of the form 

( ) ( ), ,a q b q rζ ζ ζ= +&  

( ) ( ), ,u c q d q rζ ζ= +                                                                          (4.20) 

The state vectorζ is the compensator state whose dimensions depend upon the number of 

integrators added on the input channels. The vector r  is the auxiliary input vector which 

is the new input to the integrators added.  
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The starting point of the dynamic extension for our problem is to define an m (4) 

dimensional output ( )z h q= . A certain desired behavior is assigned to this output vector. 

The output vector is then successively differentiated until each and every input in the 

system appears and the invertible map (or matrix) is non singular. During the successive 

differentiations of the output vector, it becomes necessary to add the chain of integrators 

on inputs so as to avoid their direct differentiation. The number of integrators results in 

the compensator state vector  ζ  . The inputs to these integrators become the new 

auxiliary input vector r . The process continues and terminates after a finite number of 

differentiations if the system is invertible from the chosen output vector z. If the sum of 

the orders of the output differentiations is equal to the sum of the order of the original 

system (n) and the dimensions of the compensator, then the full state linearization is 

achieved in the sense that no internal dynamics are left in the system. The process also 

results in the decoupling of the output vector from the new auxiliary input.  

If at some point of differentiation of output in the algorithm the decoupling matrix 

of the system is non singular without the addition of any compensator state, the process 

results in the input output linearization of the system. The static feedback law of the form 

( ) ( )u a q b q r= +                                                                                  (4.21) 

is used to linearize the system.  

4.4.1 Control using exact feedback linearization via static feedback 

For our system let the output vector in the chained form be defined as  

1

3

5

6

x
x

z
x
x

 
 
 =
 
  
 

                                                                                               (4.22) 
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The derivative of the output is given as 

1 1

3 22

5 34

6 4

1 0 0 0
0 0 0
0 0 0

0 0 0 1

x u
x ux

z
x ux
x u

    
    
    = =
    
       

   

&
&& &
&

 

or                                                                                                                                   (4.23) 

( )z H q u=&  

The inputs 2u  and 3u  do not appear after differentiation and also the decoupling matrix 

( )H q  is singular and not invertible. Hence the static feedback cannot be applied and the 

system cannot be linearized by input output linearization. The same result follows if the 

above procedure is repeated by choosing the actual state variable as the output vector.  

4.4.2 Control using exact feedback linearization via dynamic feedback 

Since the static feedback fails to solve the problem, we will be making use of 

dynamic feedback extension. For the linearization via dynamic feedback let us again 

define the linearizing output vector for the chained form as 

1

3

5

6

x
x

z
x
x

 
 
 =
 
  
 

                                                                                               (4.24) 

Differentiating w.r.t time we get 

1 1

3 22

5 34

6 4

1 0 0 0
0 0 0
0 0 0

0 0 0 1

x u
x ux

z
x ux
x u

    
    
    = =
    
       

   

&
&& &
&

                                                           (4.25) 
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In order for the algorithm to proceed we need to add two integrators whose states 

are denoted by 1ζ and 2ζ  on the inputs 1u and 4u  respectively so that their differentiation 

in the next step is avoided. Thus 

1 1u ζ=   4 2u ζ=  

1 1uζ ′=&  2 4uζ ′=&                                                                          (4.26)                

where 1u ′ and 4u ′ are the new auxiliary inputs on the system. Substituting the above values 

and differentiating the output vector again we obtain 

1

2 1 2 1

4 1 4 1

4

u
x u x u

z
x u x u

u

 
 + =
 +
  
 

&
& &&& & &

&

1

2 1 2 1

4 1 4 1

2

x x
x u x

ζ
ζ ζ

ζ
ζ

 
 

+ =  +
  
 

&
&&
&&

&
 

or                                                                                                                                   (4.27)                

1 1

1 2 2 1 22 1

1 3 4 1 34 1

4 4

1 0 0 0
0 0

0 0
0 0 0 1

u u
u x u ux

z
u x u ux

u u

ζ ζ
ζ ζ

′ ′    
    ′+    = =
    ′+
        ′ ′    

&&  

In the above equations all the inputs appear in a nonsingular way i.e. the 

decoupling matrix is nonsingular. The value of the determinant of the matrix is 2
1ζ . Thus 

the algorithm terminates after two differentiations. The matrix is nonsingular only as long 

as 1 0ζ ≠ or 1 0u ≠ . Here the order of the compensator is two (b=2) and the number of 

states in the system is six (n=6). The sum of the order of differentiations which is eight is 

equal to n + b. Thus full state linearization is achieved. 

Let the equation (4.27) be rewritten as z r=&&  where r  is the auxiliary reference 

input. Therefore we have the following decoupled chains of integrators 
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1 1z r=&&  

2 2z r=&&  

3 3z r=&&  

4 4z r=&&                                                                                                    (4.28)                

The resulting nonlinear dynamic feedback controller is  

1 1u ζ=  

( )2 2 2 1 1u r x r ζ= −  

( )3 3 4 1 1u r x r ζ= −  

4 2u ζ=  

1 1 1u rζ ′= =&  

2 4 4u rζ ′= =&                                                                                            (4.29)                

Assuming the system follows a smooth desired reference trajectory in chained 

form coordinates as ( )1 3 5 6( ) ( ), ( ), ( ), ( )d d d d dz t x t x t x t x t= , the exponentially stabilizing 

feedback control law for the linear and decoupled system about this desired trajectory is 

given as 

( ) ( )( ) ( ) ( ) ( ) ( )i di vi di i pi di ir z t k z t z t k z t z t= + − + −&& & & ; 1,2...,4i =         (4.30)                

where vik  and pik (the PD gains) are chosen such that they are positive and the 

characteristic polynomials  

2
vi pis k s k+ + ; 1,2...,4i =                                                                     (4.31)                
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are Hurwitz. The desired values for the variables dz& and dz&& are obtained from the (4.25) 

and (4.27). For the simulation the other state variables can be expressed in terms of the 

desired output trajectory at the initial time 0t t=  

1 0 1 0 0( ) ( ) ( )d dx t z t x t= =  

2 0 2 0 1 0 0 0( ) ( ) ( ) ( ) ( )d d d dx t z t z t y t x t= = && &  

3 0 2 0 0( ) ( ) ( )d dx t z t y t= =  

4 0 3 0 1 0 0 0( ) ( ) ( ) ( ) ( )d d d dx t z t z t z t x t= = && & &  

5 0 3 0 0( ) ( ) ( )d d dx t z t z t= =  

6 0 4 0( ) ( )d dx t z t=  

1 0 1 0( ) ( )dt z tζ = &  

2 0 4 0( ) ( )dt z tζ = &                                                                                      (4.32)                

From this initialization, the output trajectory is reproducible. Any other 

initialization gives tracking error which exponentially goes to zero with time. The same 

results will follow if the dynamic extension is applied to the original kinematic equations. 

4.4.3 Simulation of the controller 

For simulation again the same desired trajectory is used as was done in the linear 

case. The trajectory chosen is 

1 ( )( ) dd x t tz t ==  2 ( ) sin( ) dd y t a tz t ω==  

3 ( ) 1( ) dd z tz t ==  4 6( ) ( ) 0d dz t x t= =  

which gives the desired values for the chained form states and inputs as 

1( )dx t t=  2( ) cosdx t a tω ω=  3( ) sindx t a tω=  
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4( ) 0dx t =  5( ) 1dx t =  6( ) 0dx t =                                       

and 

1 1( ) ( ) 1d dt u tζ = =   2 4( ) ( ) 0d dt u tζ = =  

2
2 ( ) sindu t a tω ω= −  3( ) 0du t =  

The initial conditions for the states are  

1(0) 0dx =  2(0)dx aω=   3(0) 0dx =  

4(0) 0dx =   5(0) 1dx =   6(0) 0dx =  

1 1(0) (0) 1d duζ = =  2 4(0) (0) 0d duζ = =  

Choosing again the six coincident closed loop poles at -2, that is 

2; 1,...,6i ip = − =  we get the PD gains as 4vik = and 4pik = .Choosing 1a =  and ω π=  

we get the simulation results. The results show tracking errors for the chained form states 

and inputs; and for actual states and inputs. Once the tracking errors go to zero, the actual 

inputs (control inputs) are same as the desired inputs. 
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Figure4. 13: The result of dynamic feedback: tracking errors in chained form variables 

1x (blue), 2x  (green), 3x  (red), 4x  (cyan), 5x  (magenta), 6x  (yellow),vs. time (sec). 

 

Figure4. 14: The result of dynamic feedback: tracking errors in chained form inputs 
1u (blue), 2u  (green), 3u (red), 4u  (cyan) vs. time (sec). 
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Figure4. 15: The result of dynamic feedback: actual (--) and desired ( − ) chained form 
variables 1x (blue), 2x  (green), 3x  (red), 4x  (cyan), 5x  (magenta), 6x  (yellow),  vs. time 
(sec). 

 

Figure4. 16: The result of dynamic feedback: actual (--) and desired ( − ) chained form 
inputs 1u (blue), 2u  (green), 3u (red), 4u  (cyan) vs. time (sec). 
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Figure4. 17: The result of dynamic feedback: tracking errors (m) in variables x (blue), y 
(green), z (red) vs. time (sec). 

 

Figure4. 18: The result of dynamic feedback: tracking errors (rad) in variables ψ  (blue), 
θ  (green), φ  (red) vs. time (sec). 
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Figure4. 19: The result of dynamic feedback: actual (--) and desired ( − ) original 
variables x (blue), y (green), z (red) vs. time  

 

Figure4. 20: The result of dynamic feedback: actual (--) and desired ( − ) original 
variables ψ  (blue), θ  (green), φ  (red) vs. time  
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Figure4. 21: The result of dynamic feedback: 1v  (m/sec) vs. time (sec). 

 

Figure4. 22: The result of dynamic feedback: 2v  (rad/sec) vs. time (sec). 
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Figure4. 23: The result of dynamic feedback: 3v  (rad/sec) vs. time (sec). 

 

Figure4. 24: The result of dynamic feedback: 4v  (rad/sec) vs. time (sec). 
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4.5 Point to point stabilization 

In the following section the problem of point to point stabilization is addressed. 

The system is supposed to reach a final desired configuration starting from an initial 

point, without the need to plan a trajectory. 

As stated earlier the point stabilization can not be achieved by a smooth time invariant 

feedback. Only non-smooth or time varying feedback laws are of interest for the task. For 

our system we will adopt the latter approach. 

4.5.1 Control with smooth time varying feedback 

The method of designing a stabilizing control law here is the one proposed in [7]. 

The control law presented there was for a two input nonholonomic system. The controller 

here is an extension of the same. The statement of the problem is as: given a nonlinear 

drift free control system (3.11) 

1 1 2 2 3 3 4 4( ) ( ) ( ) ( )q g q v g q v g q v g q v= + + +&                         (4.33) 

we have to find a control law of the form ( , )v q t which makes the origin globally stable.  

In [7] the origin of the control system (4.33) is represented in power form and is then 

stabilized. Thus before going for the control design we will convert (4.33) into a power 

form. 

4.5.2 Power form 

The method of converting (4.33) to power form is as presented in [24]. The 

transformation is done in two steps. In first step the original system is converted into a 

three chain, single generator chained form as described in section 3.3. The chained form 

obtained is given as 
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0
1 1 1xx u= =&   0

22 2xx u==&   0
34 3xx u==&   0

46 4xx u==&    

0
203 2 1xx x u==&  0

315 4 1xx x u==&      (4.34)                                                  

In the second step the chained form system (4.34) is converted into power form. 

For the three chain single generator chained form the global transformation to power 

form is given below [24]: 

0;j jy x= 1 4j≤ ≤  

( ) ( ) ( ) ( )
1

0
0 0 1 0

0

1
1 1

!

k k nk nk k n
j j j

n

z x x x
k n

− −

=

= − + −
−∑ 2 4j≤ ≤ 1 jk n≤ ≤         (4.35) 

which gives the power form as: 

;j jy u=&  1 4j≤ ≤  

( )0 1

1
!

kk
j jz y u

k
= 2 4j≤ ≤ 1 jk n≤ ≤                                                      (4.36) 

Here we should recall from section 3.3 that 0 0
0j jx x=  which are identified as the 

top of the chains and 
4

2

2j
n

n
=

=∑ . Thus we have 2 3 1n n= = and 4 0n = .Using (4.34) and 

taking the above values, the transformation (4.35) becomes  

1 1y x=   

2 2y x=   

3 4y x=   

4 6y x=    

1
1 20 3 1 2z z x x x= = − +     

1
2 30 5 1 4z z x x x= = − +   
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0
3 40 6z z x= =                                                                                           (4.37) 

and the corresponding power form is 

   1 1y u=&   

2 2y u=&   

3 3y u=&   

4 4y u=&   

1
20 1 2z y u=&   

1
30 1 3z y u=&   

0
40 4z u=&                                                                                                  (4.38) 

4.5.3 Control law 

The control law for (4.38) from [7] is given here as 

1 1 ( )(cos sin )u y z t tρ= − + −   

2 2 1 1 cosu y c z t= − +   

3 3 2 2 cosu y c z t= − +   

      4 4u y= −                                                                                                 (4.39) 

with 1c  , 2c >0 and ( ) ( ) ( )2 2 2

1 2 3( )z z z zρ = + + The controls (4.39) asymptotically stabilize 

the origin of (4.38).  

For global stabilization the saturation functions are introduced in the control law. 

These functions eliminate the destabilizing effects away from the origin. The control is 

thus given as 

1 1 ( ( ))(cos sin )u y z t tσ ρ= − + −  
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   2 2 1 1( )cosu y c z tσ= − +   

3 3 2 2( )cosu y c z tσ= − +  

 4 4u y= −                                                                                                 (4.40) 

where 0jc >  and : R Rσ → is a non decreasing 3C saturation function with a magnitude 

less than some 0δ > and is linear between ( , )δ δ− .For global stabilization δ  should be 

small enough. The saturation function then satisfies the following [7]: 

1.  ( )z zσ =    when z ε≤  

2.  ( )zσ δ≤    for all z such that 0 ε δ< <  

The closed loop dynamics are given as:  

1 1 ( ( ))(cos sin )y y z t tσ ρ= − + −&   

2 2 1 1( )cosy y c z tσ= − +&   

3 3 2 2( )cosy y c z tσ= − +&   

4 4y y= −&                                                                                                 (4.41) 

For some 0 ε δ< < , 0δ∃  such that if 0ε ε< , then the closed loop dynamics are globally 

asymptotically stabilized to zero. 

4.5.4 Simulation 

For simulation the value of δ is chosen to be 0.001 and the saturation functions, 

( ( ))zσ ρ , 1( )zσ and 2( )zσ are 0.26, 0.5 and 0.1. The constants 1c and 2c  are both chosen 

as 2. The initial values for 1y , 2y , 3y and 4y are chosen as -5, -2, -7 and -5 respectively. 
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Figure4. 25: Point stabilization using time varying feedback: x  (m) vs. time (sec). 

 

Figure4. 26: Point stabilization using time varying feedback: y  (rad) vs. time (sec). 
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Figure4. 27: Point stabilization using time varying feedback: z  (m) vs. time (sec). 

  

Figure4. 28: Point stabilization using time varying feedback: ψ  (rad) vs. time (sec). 
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Figure4. 29: Point stabilization using time varying feedback: θ  (rad) vs. time (sec). 

 

Figure4. 30: Point stabilization using time varying feedback: φ  (rad) vs. time (sec). 
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Figure4. 31: Point stabilization using time varying feedback: 1v  (m/sec) vs. time (sec). 

 

Figure4. 32: Point stabilization using time varying feedback: 2v  (m/sec) vs. time (sec). 
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Figure4. 33: Point stabilization using time varying feedback: 3v  (rad/sec) vs. time (sec). 

 

Figure4. 34: Point stabilization using time varying feedback: 4v  (rad/sec) vs. time (sec). 
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Chapter 5 

Conclusions 

This chapter presents some final considerations on our work and an outline of 

future work on the topic. 

5.1 Concluding remarks   

This thesis described the issues related to the motion planning of nonholonomic 

systems with application to underwater vehicles. It also described the development of the 

kinematic control model for the vehicle. The issues related with nonlinear controllability 

were discussed. The design of the feedback controllers was done. 

The thesis used the mathematical concepts involved in Lie algebra for the study of 

nonlinear controllability. The concept of nilpotent basis was also invoked fo r establishing 

the Lie algebra rank condition for the controllability. For design purpose, the system had 

to be converted into chained form and power form. The thesis discussed the method for 

transformation into chained and power forms. The method of transformations utilized the 

concepts of nonlinear feedback transformation. 

This thesis discussed the generation of a reference trajectory for an under water 

vehicle. The controllers were then designed for the trajectory tracking. The control design 

for trajectory tracking was done using both linear and nonlinear strategies. The 

stabilization of the system was discussed and the controllers were designed for achieving 

point-to-point stabilization.  Stabilization was achieved using the time varying smooth 

control law. 
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5.2 Future work 

For future work it is possible to extend similar analysis to a higher dimensional 

nonholonomic problem. For the same problem as discussed here, the design of stabilizing 

laws for path following can be done. For path following, the model can be transformed 

into parametric form in order to apply the control schemes. The method of control with 

input scaling can also be used.  

The stabilization in both point-to-point and path following tasks can also be 

achieved through other control methods. The use of nonsmooth control and open loop 

control can be used. Also for underwater vehicle, motion planning can also be done while 

taking the actual dynamics of the system into consideration.    
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