
Chapter 2

Multivariate Statistical Process

Control

2.1 Multivariate Data

It is assumed that the Phase I historical data set consists of m time ordered vectors that

are independent of each other. Each vector is of dimension p, so ai is a vector containing p

elements for the ith time period. When the process is in-control, each ai is assumed to come

from the same multivariate normal distribution, that is, ai ∼ MN(µ,Σ). Here µ is the

population mean vector that determines a point in p-dimensional space that represents the

location and Σ is a p by p positive definite variance-covariance matrix that determines the

dispersion, which is also referred to as scatter or shape. The two major types of instability

that we consider in this research are outliers and step changes. Methods that work well for

these two types of instability will often work well for other types of instability that are more

difficult to study.

Outliers

Outliers in multivariate data are more difficult to detect than outliers in univariate data.
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One reason for this is because simple graphical methods that can be used to detect univariate

outliers are often not available in higher dimensions. Another reason is because there are

many more ways that the multivariate data can come from an out-of-control process. For

example, there could be outliers due to changes of location in random directions for each

outlier, a cluster of outliers due to a location shift in a particular direction, multiple clusters

of outliers in different directions, points with the same location as the good data but with

more variability, or the outliers can be due to a shift in some of the elements of the location

vector but not all of them. The term “masking effect” has been coined to describe the

situation where multiple outliers are present and inflate the variance-covariance estimates in

such a way that they mask each other and escape detection. See Rocke and Woodruff (1993)

for a discussion of various types of outliers.

Rocke and Woodruff (1996) stated that the most difficult type of multivariate outliers

to detect are those that have the same variance-covariance matrix as the good data. These

difficult-to-detect outliers are referred to as “shift outliers” because the center of the outlying

points has been shifted by some distance from the center of the good data. The categorization

of shift outliers includes individual points as well as clusters of points. If shift outliers can

be detected by the particular estimation method, then the method will likely work well for

other kinds of outliers, hence the focus on shift outliers here. Figure 2.1 gives an example of

time-ordered quality control statistics where outliers are present. The plotted statistics for

each time period can represent a univariate measure or a multivariate measure that combines

several components into a single statistic.

Step Changes

A step change occurs when something has happened in the process so that the mean

vector, µ, has changed to some new vector, µ1. We assume that Σ remains the same
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Figure 2.1: A sample of quality control data with outliers.

when a step change occurs and that the step change occurs at some time between two

successive observations. The step change remains for the rest of the Phase I data. While these

assumptions may not always hold in practice, they are used here to simplify the properties of

the control chart and makes for easier comparison of analysis methods. Charts that perform

well for step changes often perform well for other types of changes, such as temporary step

changes or for an increasing trend. Figure 2.2 gives an example of quality control data with

two distinct step changes.

2.2 T 2 Statistic

Identification of outliers can be done with the T 2 statistic with a single control limit which

is widely used for multivariate data analysis. A comprehensive review of the T 2 statistic,

its properties and alternative forms can be found in Mason and Young (2002). The general
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Figure 2.2: A sample of quality control data with step changes.

form of the statistic is

T 2

i = (ai − µ)′ Σ−1 (ai − µ) for i = 1, 2, . . . ,m, (2.1)

which has a χ2
p distribution when µ and Σ are known.

Because µ and Σ are usually not known, they are replaced with appropriate estimators.

The classical estimators are the sample mean vector and sample variance-covariance matrix

given by,

a =

∑m

i=1
ai

m
, (2.2)

and

S1 =

∑m

i=1
(ai − a) (ai − a)′

m − 1
. (2.3)

It is important to realize that once an estimator is used in place of parameters that the

T 2 statistics are no longer independent of each other in Phase I because they the data

are often not independent of the estimator based on the data. For Phase II, the future

observations are independent of the estimators but probability calculations involving the
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plotted statistics cannot assume independence because they are based on the same Phase I

control limit. Discussion of this idea can be found in Jensen et al. (2006). The correlation of

the T 2 statistics calculated from Phase I data was given as 1/(m − 1) in Mason and Young

(2002, p. 25).

A T 2
i statistic based on these classical estimators in (2.2) and (2.3) is denoted by T 2

1,i and

values are given by

T 2

1,i = (ai − a)′ S−1

1 (ai − a) for i = 1, 2, . . . ,m. (2.4)

This statistic is equivalent to the squared Mahalanobis distances and has been shown to be

effective in detecting a single moderately-sized multivariate outlier as shown in Figure 1 of

Vargas (2003). In addition, it can be shown that the distribution of T 2
1,i is proportional to a

beta distribution (Chou, Mason, and Young, 1999; Atkinson, Riani, and Cerioli, 2004), that

is,

T 2

1,i

m

(m − 1)2
∼ Beta

(

p

2
,
m − p − 1

2

)

for i = 1, 2, . . . ,m. (2.5)

This known distributional result makes it easy to calculate a control limit for T 2
1,i, assuming

that the sample size m is large enough so that the correlation of the T 2 statistics has little

effect. Justification for why the beta distribution, a bounded distribution, is found in the

fact that
∑m

i=1
T 2

1,i = p(m − 1) (Atkinson, Riani, and Cerioli, 2004. p. 44).

Note that this distributional result in (2.5) holds as long as the data are independent and

identically distributed (i.i.d.) with a multivariate normal distribution. The matrix Σ can

be any positive definite variance-covariance matrix. Thus when the observations within a

vector are correlated with each other, the T 2
1,i statistics will still be proportional to a beta

distribution.

However, as shown by Sullivan and Woodall (1996), use of the estimator in (2.3) is not

effective in detecting sustained step changes in the mean vector, nor is it effective in detecting
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multiple outliers (Vargas, 2003). While T 2
1,i has been shown to be effective in detecting a

single moderately-sized multivariate outlier as shown in Figure 1 of Vargas (2003), a single

arbitrarily large outlier or step change can render the T 2
1,i statistic useless. Chou, Mason and

Young (1999) recommended the T 2
1,i statistic to detect outliers but it is not clear the number

of outliers that they used in their simulation studies nor is it clear that their simulation results

are correct. Based on our studies shown in Chapter 5, we concur with the conclusions of

Sullivan and Woodall (1996) and Vargas (2003) and do not recommend the use of the T 2
1,i

statistic for Phase I analysis when outliers or step changes may be present.

2.3 Alternative T 2 Statistics

An alternative is to base the T 2
i statistics on the sample mean vector and the variance-

covariance matrix estimated using the successive differences between vectors, denoted by T 2
2,i

(Holmes and Mergen, 1993). If vi = ai+1 − ai is the vector of the ith successive difference,

then an unbiased estimator of the variance-covariance matrix is

S2 =
1

2(m − 1)

m−1
∑

i=1

viv
′

i. (2.6)

This statistic is analogous to the use of the moving range to construct an univariate Shewhart

Individuals chart. Sullivan and Woodall (1996) showed that T 2
2,i is effective in detecting

sustained step changes in the process that occur in Phase I data. While the distribution of

T 2
2,i,MIX does not have a simple closed form, its asymptotic distribution is χ2

p. A discussion of

the various approximate distributions and the preferred χ2
p approximation for large samples

is given in Williams et al. (2006b). The sample sizes that we use here are large enough

to justify use of the χ2
p approximation to obtain the control limit. However, like T 2

1,i,MIX ,

T 2
2,i,MIXwill not be effective in detecting multiple multivariate outliers (Vargas, 2003).
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Robust alternatives of the T 2 statistics considered here are based on either the minimum

volume ellipsoid (MVE) estimators or the minimum covariance determinant (MCD) esti-

mators of µ and Σ. These will be denoted by T 2
mve,i and T 2

mcd,i respectively, and defined

as

T 2

mve,i = (xi − xmve)
′

S−1

mve (xi − xmve) i = 1, 2, . . . ,m, (2.7)

T 2

mcd,i = (xi − xmcd)
′

S−1

mcd (xi − xmcd) i = 1, 2, . . . ,m. (2.8)

where xmve and xmcd are the corresponding location estimators and Smve and Smcd are the

corresponding estimators of the variance-covariance matrix. In Chapter 3 we discuss these

robust estimators in more detail, explain how they are calculated, and show when it is

preferable to use them.

2.4 Other Multivariate Charts

For those familiar with multivariate quality techniques, it is often thought that alternative

multivariate control charts, such as the multivariate exponentially weighted moving average

(MEWMA) or multivariate CUSUM (MCUSUM) charts will be useful. However, for Phase

I applications, it is best to use charts that do not use prior information as the MEWMA

and MCUSUM do. They are designed to detect small or gradual changes in the mean vector

and work well for Phase II application. They do not work as well as a T 2 based chart for

larger outliers and step changes in Phase I applications. In addition, if a signal is present

on a MEWMA or MCUSUM chart, it is not clear which point(s) is different from the others

and no guidance is given on how to clean the Phase I dataset in preparation for Phase II

applications. This issue was noted for univariate charts such as the exponentially weighted

moving average (EWMA) by Kim, Mahmoud, and Woodall (2003).
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