
Escape Simulation Suite

Thomas Y Merrell

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Masters of Science
in

Computer Engineering

Dr. Pushkin Kachroo,Chair
Dr. A Lynn Abbott

Dr. Binoy Ravindran
Dr. M . P. Singh

April 15, 2005
Blacksburg Virginia

Keywords: simulation, real-time, 3D graphics, networking, Win32, DirectX, dynamically
linked library (DLL)

Copyright 2005, Thomas Yates Merrell

http://www.go2pdf.com

Escape Simulation Suite

Thomas Y. Merrell

Abstract

Ever since we were children the phrase “In case of an emergency, walk, DON’T run, to
the nearest exit” has been drilled into our heads. How to evacuate a large number of
people from a given area as quickly and safely as possible has been a question of great
importance since the first congregation of man; a question that has yet to be optimally
answered. There have been many attempts at finding an answer and many more yet to be
made.

In light of recent world events, 9/11 for instance, the need for a better answer is apparent.
While finding a solution to this problem is the end objective, the goal of this thesis is to
develop an application or tool that will aid in the search of an answer to this problem.

There are several aspects of traditional evacuation plans that make them inherently
suboptimal. First among these is that they are static by nature. When a building is
designed, there is some care taken in analyzing its floor plan and finding an optimal
evacuation route for everyone. These plans are made under several assumptions and with
the obvious constant that they cannot be modified during the actual emergency. Yes, it is
possible for such a plan to actually end up being the optimal plan during any given
evacuation, but the likelihood of this being the case is most definitely less then 100%.
There are many reasons for this. The most obvious is this: the situation that the plan is
trying to solve is a very dynamic one. People will not be where they should be or in the
quantities that the static plan was prepared for. Many of them will probably not know
what they should do in an emergency and so most likely will follow any large group of
people, like lemmings. Finally, most situations that require the evacuation of a building
or area occur because all or part of the building has become, or is becoming, unsafe. It is
impossible for a static evacuation plan to take into account the way a fire or poisonous
gas is spreading, or the state of the structural stability of the building.

What is needed during a crisis is an artificially intelligent and dynamic evacuation system
that is capable of (1) analyzing the state of the building and its occupants, (2) coming up
with a plan to get everyone out as fast as possible, and (3) directing all occupants along
the best exit routes. Furthermore, the system should be able to modify its plan as the
evacuation progresses.

This application is intended to provide researchers in this area the means to quickly and
accurately simulate different evacuation theories and ideas. That being the case, it will
have powerful graphical capabilities, thus allowing the researchers to easily see the real-
time results of their work. It will be able to use diverse modeling techniques in order to

http://www.go2pdf.com

iii

handle the many different ways of approaching this problem. It will provide a simple
way for equations and mathematical models to be entered which can affect the behavior
of most aspects of the world being simulated. This work is in conjunction with, and
closely tied to, Dr Pushkin Kachroo’s research on this same topic.

The application is designed so that future developers can quickly add to and modify its
design to meet their specifications. It is not the goal of this work to provide an
application that directly solves the optimal evacuation problem, or one that inherently
simulates everything perfectly. It is the job of the researchers using this application to
define the specific physics equations and models for each component of the simulation.
This application provides an easy way to add these definitions into the simulation
calculations.

In brief, this Escape Simulator is a client server application. All of the graphics and
human interaction are handled client side using Win32 and Direct3D. The actual
simulation world calculations are handled server side, and both the client and server
communicate via DirectPlay. The algorithm being used to model the objects and world
by the server will be completely configurable. In fact, everything in the world, including
the world physics, will be completely modifiable. Though the researchers will need to
write the necessary pluggins that to define the actual models and algorithms used by the
agents, objects, and world, ultimately this will give them much more power and
flexibility. It will also allow for third parties to develop libraries of commonly used
algorithms and resources that the researchers can use.

http://www.go2pdf.com

iv

Acknowledgments

The author would like to thank Dr. Kachroo for his unending encouragement and support
throughout the research process, and also for his work in the area of evacuation which in
large part was the motivation and inspiration for the author’s initial choice to pursue this
thesis.

The author would like to thank Dr. Lynn Abbott and Dr. Binoy Ravindran for
participating in the advisory committee for this thesis.

The author would like to also thank Greg Dean, Ryan Wilson, and Jad Meouchy for their
independent research studies and help.

Finally, the author would like to thank his wife, whose support and encouragement were
instrumental in the completion of this thesis.

http://www.go2pdf.com

v

Table of Contents
Escape Simulation Suite ... ii
Introduction... 1

1.1 Common application development issues... 2
1.1.1 Optimization problem ... 2
1.1.2 Language... 2
1.1.3 Object oriented code ... 3
1.1.4 Multithreading .. 3
1.1.5 Client/Server vs. single application .. 5
1.1.6 Graphics .. 6
1.1.7 User interface and input handling... 9
1.1.8 Application types .. 10
1.1.9 Platform .. 11
1.1.10 Contributions .. 12

CHAPTER 2: Preliminary Research .. 13
2.1 Research work on graphics ... 13

2.1.1 Win32.. 13
2.1.2 DirectX.. 18

2.2 Research work on networks .. 27
2.2.1 Personal Winsock Library .. 28
2.2.2 DirectPlay ... 29

2.3 Research work on application types ... 30
2.3.1 MFC .. 30
2.3.2 Win32.. 30
2.3.3 Console ... 59
2.3.4 DLLs ... 60

2.4 Final decisions .. 66
2.4.1 Client... 66
2.4.2 Server .. 66

CHAPTER 3: Issues... 67
3.1 State machine.. 67
3.2 Inter-module communication.. 68
3.3 Win32 vs. DirectX .. 68
3.4 Console vs. DirectX.. 69
3.5 Client Server ... 69
3.6 In general .. 70

CHAPTER 4: Escape Simulator .. 71
4.1 Application Classes... 71

4.1.1 Setting up your computer.. 71
4.1.2 Escape Simulation Client Class .. 72
4.1.3 Graphics Engine – D3D_GRAPHICS Class .. 89

4.2 Menus & UI .. 110
4.2.1 Win32 GUI ... 110
4.2.2 DirectInput .. 111

4.3 Network Engine .. 115
4.3.1 Evacuation Client Message Handler... 121

http://www.go2pdf.com

vi

4.3.2 Evacuation Server Message Handler .. 126
4.4 Simulation File.. 130

4.4.1 Simulation File Format ... 130
4.4.2 Current and Future Integration ... 132
4.4.3 Secondary File formats ... 133
4.4.4 ESPaint.. 135

4.5 World Engine.. 136
4.6 Math Engine.. 136
4.7 Object Pluggins... 137

4.7.1 Setting up the pluggin project ... 137
4.7.2 Coding the Pluggin ... 137
4.7.3 Object Pluggin Hooks... 142

CHAPTER 5: Conclusion .. 145
5.1 Achievement of Goals .. 145
5.2 Application’s overall performance ... 145
5.3 Where to go from here? .. 148

CHAPTER 6: APPENDIX... 150
6.1 UML and Secondary Components/ APIs Documents 150
6.2 Sample Code ... 150

CHAPTER 7: References... 152

http://www.go2pdf.com

vii

Table of Figures

Figure 1 Screen Shot of Random Pixel Win32 Application... 14

Figure 2 Screen shot of Random Rectangles Win32 Application 15

Figure 3 Screen shot of charged particles Win32 application called Pinball. In this the

blue and red dots represent zeros and poles respectively. The other dots are particles.... 16

Figure 4 Another version of Pinball, this time without poles and zeros, but with each

particle having a repelling force on all other particles. This force is inversely

proportional to distance. ... 17

Figure 5 Screen shot of Fish Pond Win32 Application. Here all the colored dots, except

green, represent different types of fish. Some are carnivores and some herbivores, and the

window at the top right gives the current populations of the different types of fish. 18

Figure 6 Screen shot of the Space Flight DirectDraw application. In this application a

3D space world was rendered using 2D DirectX calls. The user is able to both "fly"

around this world and change the FOV characteristics. ... 19

Figure 7 Diagram of the Field of View.. 22

Figure 8 Screen shot of the Density Win32 application. The top left window is the

command window; the bottom left is the density field being rendered. The different

colors represent different densities, ranging from low (purple), to high (red). The right

window is the output window... 24

Figure 9 CubeTest application screen shot. .. 26

Figure 10 DirectPlay network application ... 27

Figure 11 Adding a resource to a Win32 project.. 38

Figure 12 Adding an entry to a Win32 menu resource... 39

Figure 13 Screen shot of the menu before the change from “&Done” to “Do&ne”. 40

Figure 14 Screen shot of after the change.. 41

Figure 15 Screen shot of the finished menu. .. 42

Figure 16 Toolbar creation tool and finished toolbar bitmap. .. 44

Figure 17 Completed popup menu and properties.. 46

Figure 18 Completed "About" dialog box. ... 50

Figure 19 Screen shot of RIS application using the "About" dialog box. 52

Figure 20 Finished "Display" dialog box creation.. 53

http://www.go2pdf.com

viii

Figure 21 Screen shot of RIS application using th "Display" dialog box....................... 58

Figure 22 This is a screenshot of the Escape Simulation client and server running. In this

case, a three story building (only two floors visible) was loaded up and a single agent

object was added to the middle. The current rendering is set to microscopic. 147

Figure 23 This is the Escape simulator running the same setup as in the last screen shot,

but this time it generated random density fields for each of the floors. Also, the rendering

is set to macroscopic ... 148

http://www.go2pdf.com

1

Introduction
Computer simulation plays a critical role in the development of any large or important
project. This is especially true when human life is concerned. Long before a new aircraft
design is ever built and tested by professional pilots and wind tunnels, the model has
undergone thousands of hours of computer simulation and testing. Long before the latest
model of a car hits the pavement; it has already logged thousands, if not millions, of
miles along computerized tracks and streets.

Buildings are no exception to this rule. Whenever a large structure is to be erected for
general public use it must provide its occupants a quick and safe way to evacuate in the
event of an emergency. According to [1] this has in large part been achieved in one of
two ways.

First is the strict adherence to established building codes that have been designed to
ensure, for the general case, safety in an evacuation. Unfortunately these codes cannot
take into account every possible building structure, nor the constant changes and
improvements in architecture. Finally, they cannot take into account the possible worst
case and dynamic situations that can happen in any emergency.

The second method comes closer to achieving the desired goal of ensuring safety in an
emergency. This method is computer simulation. Since introduction of simulating
building designs into the design process of a structure, it has quickly become an essential
and important part of any large-scale building project. This is for many reasons, money
not being least of which. It costs quite a bit less to move a stairwell in a computer
generated world than in the real world. Computer simulation of a building’s structure in
an evacuation situation has become so important that there have been a very large number
of simulators that have already been developed and are in use. At the time [1] was
written there were over 22 models either in use or being developed.

There are several critical differences between this application and those mentioned in [1].
First, each of the models described were only interested in improving the actual structure
of the buildings being designed in order to offer the safest and quickest paths for the
occupants in case of an emergency. None were interested in developing a dynamic
feedback driven system that not only monitors occupants in real-time during an
emergency, but actually directs the occupants and possibly controls the building’s
automated structures, such as doors and ducting, to get all the occupants out in the least
time possible. Nor are they capable of adding such a system easily.

Second, all of the above applications used statically defined modeling and algorithms,
thus restricting their abilities.

http://www.go2pdf.com

2

Background Information

1.1 Common application development issues

1.1.1 Optimization problem
As with almost anything in life, “you can’t have it all” in computer programming. There
are no sports cars in programming, small and fast. Likewise, there are no universal tools,
infinitely flexible with great performance. When programming, you have to make
tradeoffs. On one hand you can make your code incredibly fast, but to do so you have to
increase your memory usage. In order to decrease the memory requirement of your
program you have to add many extra and often inefficient steps to your program’s
algorithm to compensate for the lack of ready information. Similarly, if you want a
program that takes into account all possibilities, you cannot expect it to make decisions or
react very fast.

So the question is, where is that “happy medium”? There are many methods to aid
designers in finding the right answer to this question. Some of the best involve getting
out a pencil and good old pad of engineering paper and writing/drawing. For the rest of
this section, background information will be given on many of the different issues and
considerations that were addressed in designing this application.

1.1.2 Language
Though it may seem a trivial thing, which programming language to use is an important
consideration. The language one uses can have a major impact on the different
optimization issues raised in the first section. There are plusses and minuses for each.

Because of the original specifications for this application, something fast and
maintainable was needed. Of the different programming languages in use, the most
maintainable ones fall under the object-oriented group. There are several different
languages that fall under this category, C++, Java, J#, C#… From this list most of these
languages cannot be considered because of their speed. This is because they are mainly
“interpreted” languages, meaning they do not compile down to byte code that is run
directly by the computer. Instead, they are compiled to intermediate code that is
“interpreted” and run by some other application. Such languages are for the most part
platform independent, but such freedom comes at the cost of extra code and slower
execution time.

From the list that remains, C++ is one of the best options as it is, in general, very fast.
Even though C is faster and hand written assembly faster still, assuming that the
programmer writes good code, C++ was designed to allow pure C code and assembly to
be interjected at time critical points to allow those points to be optimized.

Though the majority of the code written for the Escape Simulator will be C++, it is
strongly recommended that a reader not familiar with C briefly look over [2] as many of
the commonly called C++ calls actually call the C equivalent, and it would be a good idea
to understand what those functions or methods are actually doing.

http://www.go2pdf.com

3

1.1.3 Object oriented code
In a nutshell, object oriented code is, as its name implies, code that has been divided up
into different functional groups or objects. These groups are designed so that they can be
easily connected together in order to add to the overall functionality of the application.

For example: A modern watch can be made up of several components. It may or may not
have a band; it may or may not have hands; it may or may not have a stopwatch; and it
may or may not have something that tells you the current day of the month. Each of
these things by themselves do not constitute a watch, and you do not need all of them to
have a watch, but each has a distinct job to do that is unique and, for the most part,
independent of the other components. If your watch’s band breaks, your watch will still
tell time.

There are several benefits to using object-oriented code. First, by breaking the
application into its functional components it allows for easy creation and maintenance of
each part. Each component can be developed independent of the other components. If
one component is broken, the other components can still function while the broken
component is fixed. Upgrades can also be made without breaking the overall application.
For instance, if you create a graphics application that uses a DirectX interface to handle
all the rendering, and then wish to change your rendering to OpenGL, this change is just a
matter of writing a new rendering Object with the same functionality as the DirectX one,
but in OpenGL. As far as the rest of the application is concerned, nothing has changed
even though you are now using a completely new graphics interface.

There is one downside to object-oriented code. In general, it is not as efficient as straight
liner code. However, modern compilers are getting much better at creating machine code
that is closer to the linear runtime equivalent.

For a project as large as this, using an object-oriented approach is a must. It would be
possible to make a linear version, but the code would be insanely complicated and
inefficient! The big question is how to divide the different specifications for this
application into appropriate objects.

There are some obvious places where the code can be divided. One component will
handle the graphics. Another component will keep track of the world’s state and
calculate whatever changes happen as a simulation progresses. A third component will
directly interact with the user. If the application is networked it will need a component of
code to handle the network communication. It will need to be able to read and write
information to a file….

For those not familiar with object-oriented coding and C++ please refer to [3]

1.1.4 Multithreading
Computers are linear by nature. They lack the ability to truly multitask. However,
computers also are very fast, at least modern ones. Because of this, modern operating
systems are able to fake multitasking. To do this they use time division multiplexing, or

http://www.go2pdf.com

4

more simply put, they jump between each of the running applications, or processes,
giving each a short chunk of time, or time slice, in order to get the work done. Because
they jump around so fast it seems to us as if they are actually doing many tasks at once.

A program is made up of a series of instructions that are executed in a linear fashion.
This path of execution has been nick-named a “thread”. By default there is initially one
thread created for each process. For many linear applications it is sufficient to only use
this single thread, but there are instances where it is very beneficial to create multiple
threads of execution in an application. When multiple threads are created within a
process, the operating system treats them as individual tasks within the process, and gives
each a portion of the application’s original time slice. Again, this makes it appear as if
the program is doing many things at once.

A good example of multithreading, is a server which needs to handle several different
client requests at once. If the server were singly threaded it would only be able to handle
one request at a time on a first come first serve basis. All other clients would have to
wait for the server to finish handling the client in front of it. This would be similar to
waiting in line at a grocery store with only one checkout. On the other hand, if the server
were multithreaded it would dedicate the main thread to looking for clients requesting a
connection. When it received one it would spawn another thread to handle the request
while it went back to looking for more requests. This way there is no line and all the
clients can be handled at the same time.

As you might suspect, multithreading is a very powerful and useful tool when used
correctly. There are several things that one must consider when deciding to make an
application multithreaded.

• Is the benefit seen from using multiple threads greater then the overhead created
by the operating system switching between the different threads?

• Is it possible to ensure that the mutual data used by the different threads will stay
safe and there will be no mutual exclusion problems?

• How time-critical is each thread? If a thread must be executed for a specified
amount of time at a certain frequency, then multithreading might not be a
possibility because there are no guarantees as to how much of each time slice each
thread gets.

• Finally, the programmer must ensure that there are no “deadly embraces” in
his/her multithreaded code. This is when one thread locks up a resource that
another thread needs, but the other thread also locks up a resource that the first
thread needs, so they both sit and wait forever for their needed resource to
become free. Another way this happens is if one thread uses a resource and
forgets to free it once done. From that point on no one can use this resource. It is
highly likely that eventually some or all of the threads will halt progression and
just sit waiting on the un-freed resource.

http://www.go2pdf.com

5

Multithreading makes a program in some ways much more complicated, and in others far
simpler. It is up to the designer to decide whether or not it is warranted.

In the Evacuation Simulator multithreading is used sparingly. The majority of the code is
linear execution. Only the network component is fully multithreaded.

1.1.5 Client/Server vs. single application
Many projects require that the workload and functionality be divided between multiple
applications or computers. A good example of this is a simple FTP program. One single
application by itself is not enough to provide the functionality of an FTP program. In
order to perform an FTP transaction there must be at least two applications running, each
on a separate computer. The first is a “server” which resides on the computer that
contains the desired file. This application’s job is to listen for other applications that
want to have a file transferred to them, and when a request is received, to send the file.
The second is a “client” which resides on the computer requesting the file. It is his job to
connect to the server, request the file, and handle it when it is received. This type of
structure is called a “client/server” model.

Another reason for separating a project into two applications is to divide the computation
load between two processors. Often times there are several segments of code that are
very computationally intensive. Running all these segments on a single computer can
very easily bring a single processor to its knees, and obviously result in very poor overall
application performance. If the workload could be distributed between two or more
processors then things likely would run more smoothly. A programmer needs only to
decide how best to divide the workload. However, it might turn out that it is impossible
to divide the load in a way that would allow for significant benefits.

Aside from the advantages noted above, there are also disadvantages with distributing an
application’s workload across multiple processors. There is a significant amount of
overhead associated with setting up network communication. There is also overhead
associated with the type of protocol chosen. Some protocols are worse than others.
Finally, there is the network reliability, bandwidth, and throughput to consider. All of
these issues are ones for which there is no “right” answer. Part of deciding whether or
not to network an application requires the designer to address each of these issues.

Depending on the type of protocol being used, there may or may not be a way to greatly
reduce the overhead associated with establishing a connection, but you can reduce the
times it is required to establish or reestablish a connection.

Information that is sent back and forth over a network is grouped into packets. An
application might have to send several packets over a network in order to send one large
chunk of data, or it might only need to send one packet for several small chunks. With
each packet that is sent there is a certain amount of extra information that must be added
to the application data. This extra information is used to properly route the packet from

http://www.go2pdf.com

6

the sender to receiver. Along with this required information there is more overhead that
may or may not be required depending on the protocol being used.

Two of the most used protocols are TCP and UDP. As always, both have their
advantages and disadvantages. TCP guarantees the data will be both intact and in order if
it arrives at its end destination. Unfortunately this requires that TCP make a connection
with the receiving application. Also, the TCP header that is added to each packet
increases the packet overhead. Finally, it can take longer for a TCP packet to completely
arrive at its destination. UDP, on the other hand, is very fast. It requires almost no extra
packet overhead, and it does not require a connection to be established between the two
applications. However, there are no guarantees on either the data integrity or order upon
arrival. If integrity and order are important then it is up to the receiving application to
find and fix any problems.

1.1.6 Graphics

1.1.6.1 Basic 3D graphics information
There are several topics that are more or less universal no matter which graphics API one
uses, even though the individual API’s handle them differently. This section tries to
address many of these topics. Afterwards, several API’s available for windows
programmers are discussed.

1.1.6.1.1 Views
Views deal with what the user sees, meaning even though there may be many different
objects defined in a world, only the ones that the user is looking at are actually seen.
Also, a programmer can create several different views, assigning a different camera or
even a completely different rendering to each, and have each be rendered to a different
part of the render window.

1.1.6.1.2 Coordinates
This is a big one. Within a graphics engine there are usually many different types of
coordinates defined and used. A single object commonly has two to three different sets
of coordinates that define its location and orientation relative to the world, other objects,
etc. There are many different types of coordinates that are used in the Escape Simulation
Suite. DirectX has its own typedefs, as does Win32. Finally, the coordinate information
can be stored in many different forms. For instance: Cartesian – standard x,y,z Polar –
r,?Rcylindrical – r,?R,z and spherical – r,?R,fR. Each is interchangeable, meaning that the
same data is stored in each, but each encoding has different benefits and drawbacks.

1.1.6.1.3 Matrices
Matrices and basic linear algebra are essential for designing a fast and efficient graphics
program. One of the Escape Simulator engines is dedicated totally to math. In this
engine there is a component dedicated to matrices and linear algebra. If the reader wants
more information on using this component please see the documentation written on the
math engine included on the Escape Simulation Suite Website (please see the appendix
for the address). For the most part, though, the graphics engine uses the D3DXMATRIX

http://www.go2pdf.com

7

class. The reason for this is that many of the Direct3D function calls require this type of
matrix and there are a significant number of method and optimized helper functions that
have already been written for this type of matrix. One important difference between the
math engine and the D3DXMATRIX class is the math engine can handle matrices of any
given size and shape, whereas D3DXMARIX classes and the associated functions are
only 3x3, i.e.:

33_32_31_
23_22_21_
13_12_11_

1.1.6.1.4 Vertices, primitives and meshes
A vertex is one point in 2D or 3D space. It can have different properties associated with
it, such as color, texture mapping, normal, etc. A primitive is usually made up of three or
more vertices. Many primitives are combined together to form a mesh.

1.1.6.1.5 Sprites
A sprite is a unique type of primitive. It only has a single vertex associated with it. This
allows for much faster rendering by the graphics card.

1.1.6.1.6 Textures
A texture is a 2D picture that is stretched across one or more primitives. Textures aid
significantly in creating the illusion that an object is real. Not only can a texture be used
to give a primitive color, but it can also be used to modify the texture a primitive appears
to have. There are some very impressive results that can be achieved by using advanced
texture mapping.

There are many more topics that could be introduced under this heading, but these should
be sufficient.

1.1.6.2 Win32
Win32 in and of itself is not really a graphics API. Rather, it is the lowest level of
windows API calls that can be used to generate windows and everything associated with
them. That being the case, there are certain simple graphics calls that are available to the
Win32 programmer. These calls are all grouped into what is known as the GDI. Using
GDI calls, a programmer can change any pixel within a window to any color desired,
draw primitives, render pictures, and accomplish many other basic things. Along with
this, Win32 is very good at handling the graphics involved with rendering menus and
toolbars. All that being said, Win32 does not come anywhere close to the speed and
performance of other graphics API’s. This is partially because it was never intended to
provide a complete rendering solution. The GDI calls it supports are just for doing quick
and dirty projects, not high end work. The main reason it cannot compare is because it
cannot take advantage of the hardware acceleration that exists on most modern graphics
cards. If a developer wants to utilize the full capabilities of his/her graphics card they
will have to use something else.

http://www.go2pdf.com

8

Another benefit of using Win32 is the common look and feel of applications created in
Win32. When a programmer wants to have menus and tool bars, as are common in many
applications today, Win32 is a good option.

1.1.6.3 OpenGL
OpenGL was written a while back to specifically answer the problem of not being able to
access hardware acceleration in a standard way. In the past, every application developer
had to rewrite the graphic portion of his/her code for each type of graphics card he/she
decided to support. If a new card came out, the application would not be able to use the
new hardware acceleration until a new component was written to access it. Obviously
this was the cause of many sleepless nights and frustration for many a graphics
programmer.

What OpenGL and DirectX did was provide a common interface for the programmer. No
matter what graphics card was being used, all he/she had to do was write one graphics
component in OpenGL or DirectX and, provided the card’s drives supported OpenGL
and DirectX, the application would work fine.

One of the benefits of OpenGL is it has been designed to be cross platform. An
application written in OpenGL can be compiled and run for either Windows or Linux.
Performance-wise it used to be far better than DirectX, but as of the last three to four
years they have become virtually equivalent. One of the places it falls short, though, is it
can only handle graphics, rather than all types of multimedia.

1.1.6.4 DirectX
Where DirectX excels over OpenGL is as follows. It is made up of several components
that each handle different aspects of multimedia. Some of these components are
DirectDraw for 2D drawing, Direct3D for 3D rendering, DirectSound for sounds,
DirectPlay for networking, and DirectInput for all types of user input. Each of these
components have the ability to provide a standard API to the different interfaces allowing
the programmer to directly access the hardware accelerators for each device regardless of
make or model. Any functionality that is missing from the hardware is faked in software,
so the programmer does not need to worry as much about missing functionality.

The problem with DirectX is that it only works on Windows. So any application that
uses it is restricted to Windows only.

1.1.6.5 DirectX/Win32 hybrid
In the end the choice was made to go with a DirectX/Win32 hybrid. This is because the
application needed to have menus and tool bars that would look and feel intuitive, but at
the same time it needed to be able to access the hardware acceleration capabilities of the
hosting computer. DirectX was chosen instead of OpenGL because it could be used for
all of the following areas: multimedia, I/O, networking, sound, and graphics. Choosing
OpenGL would have necessitated still other API’s to handle the other non-graphical

http://www.go2pdf.com

9

components listed above, and the only advantage would have been that the graphics
would now be portable to Linux. Even with this there are certain design issues that arise
from this hybrid that will be discussed in a later chapter.

1.1.7 User interface and input handling
The user interface (UI) of a program can be as important to the usefulness of an
application as the internal functionality. There are many aspects that must be considered
in designing a good UI. What are the input and output types required? What interfaces
would be best suited for each? What should the overall layout and presentation be? Too
many options can be just as bad as too few.

Under the category of input/output types you have such things as command line consoles,
windows, and rendering pages. Command line consoles are useful for linear applications
where there is very little user input required, and where the program’s output will be
fairly linear and straightforward. Windows, on the other hand, are very useful for
nonlinear programs where menus and toolbars are needed and where the output can be
moderately complex and nonlinear. Windows are also good for outputting the status of
applications which do multitasking and parallel processes. Windows applications,
however, typically fall short when complex graphics rendering is required. In such
situations a full blown page rendering API is required, such as the DirectX or OpenGL,
which were discussed above.

There are many devices which are categorized as input peripherals, though they generally
fall under three headings: keyboard devices, mice, and game-pads/joysticks. Each of the
input/output types above lends itself more or less to a specific input peripheral.
Command line consoles are ideally used with keyboard peripherals. Windows work well
with both keyboard and mouse input. DirectX and OpenGL applications typically are
used for keyboard and game-pad/joystick input, and can be used for mouse input with a
little amount of extra work.

This application uses a simple command line console for the server side component. This
is because the server, for the most part, requires very little direct user input, and receives
most of its commands via the network communication to the client. As far as outputs are
concerned, the server requires only simple basic status messages to be reported to the
user.

The client, on the other hand, requires multiple types of input from multiple peripherals
and reports back through many different types of output. There are special dialogue boxes
which provide for strictly text based output to report on the client’s behavior and status.
There is a basic menu, toolbars, and dialog box structure which allows the user to easily
modify the behavior and properties of the application. Finally there is a DirectX page
being rendered within the window’s client area. The menu, toolbars, and dialog boxes
will accept both mouse and keyboard input. The rendering page accepts keyboard, game
pad/joystick, and mouse input.

http://www.go2pdf.com

10

Once again, from a user interface standpoint, the server is implemented as a command
console, and the client as the Win32/DirectX hybrid

1.1.8 Application types
Although they have already been presented to some degree in the sections above, the
different types of possible applications that were considered for this program should be
addressed in a little bit more depth.

1.1.8.1 Console
Among the most basic, and most widely used, programs is the command console
application. It supports the most basic input and output types and peripherals, and adds
very little overhead to run the application code. It is also the simplest to set up and code
for. Such an interface is ideal for linear applications, and also is very good for
multithreaded applications where minimal user output is required.

1.1.8.2 Win32
Within windows there are two main types of windows applications. The first is a pure
Win32 application. Win32 is the underlying API upon which windows applications are
built. It allows the user to be able to create windows with menus, toolbars, buttons,
dialogues, text output, and draw basic graphics.

A Win32 application requires a decent amount of extra code in order to get even the most
basic application running. It also adds some overhead to the overall execution of the
code.

Win32 applications are by nature nonlinear. They require a callback function that the
operating system calls whenever a message is sent directly to the application. Within the
callback function the different messages must be either handled or passed along to the
default system handler. The windows messages can originate from many sources. They
can be generated from the operating system itself when the application is created,
destroyed, or its status is changed, such as the window being minimized, maximized, or
changed in size. These messages can originate from key presses from the keyboard, from
mouse activity within the window’s client area, or from clicks on menus, buttons, or
toolbars. The user can even create application specific messages which are unique to the
given application itself.

The Win32 window itself is divided into several sections. There are two required sections
for a new window: the title bar, and the client area. The windows title bar exists at the
top of the application window, and may contain such things as maximizing, minimizing,
and closing buttons. Immediately below the title bar there may or may not be a menu.
There also may or may not be a status bar located at the bottom of the window. The rest
of the space within the window is considered to be the client section. This is the section
of the window where text, primitives, and basic graphics are usually drawn. Also, if
toolbars are used they are placed within this portion of the window.

http://www.go2pdf.com

11

1.1.8.3 MFC
MFC was designed to allow for rapid development of windows applications. Internally it
uses Win32 commands to get a lot of its work done, but wraps these commands in a very
powerful and object oriented API. For the most part it is best to use MFC when quick and
dirty applications need to be written where performance is not a concern. MFC tends to
add significant size and overhead to an application. As a result this slows the application
down and increases the memory and storage requirements. Due to the speed constraints
of the Escape Simulation, MFC was not a good choice for this particular application.

1.1.9 Platform
Choosing the target platform for an application is another important decision for a
program developer. In designing this particular application two particular operating
systems were considered: Windows, and Linux. Both of these operating systems offer
solutions to the specific requirements for this application.

1.1.9.1 Windows
There are many advantages to programming in Windows. First, and most obvious, is that
Windows is one of the most widespread operating systems in use today. If a programmer
writes an application for the Windows operating system, it is guaranteed that the majority
of users would be able to run the code.

Windows also offers a complete solution to graphics, input, and networking
requirements—namely, DirectX. It also provides a convenient way for researchers to
write pluggins and have them quickly and easily added to the main application. This is
accomplished through the use of dynamically linked libraries (DLLs).

Along with these advantages, coding in Windows allows for the use of Visual Studio,
which is one of the best integrated development environments (IDEs) in use today.

1.1.9.2 Linux/Unix
In today’s R&D environment some flavor of Linux is often the operating system of
choice. Linux is a very powerful and configurable operating system.

Like Windows, Linux offers solutions to many of the program’s requirements. It also
provides an environment where there would be less overhead during the application’s
actual runtime. This would be especially important for the server side portion of the
application. Unfortunately, unlike the Windows’ DirectX API, the solutions are not
packaged together..

Ideally it would be nice to be able to run the server on a Linux box and run the client on
the windows machine, but due to time constraints, the initial Alpha and Beta versions of
this application are restricted solely to Windows. Future versions can be made to be
cross platform.

http://www.go2pdf.com

12

1.1.10 Contributions
The goal for this thesis is to create a software tool for simulation and experimentation to
be used for the development of dynamic evacuation systems. The name for this tool is
the Escape Simulation Suite.

The main goal of the Escape Simulation Suite is not to solve the evacuation problem, but
rather to provide a tool that researchers can use to test their theories quickly. This tool
must be both flexible and easy to use.

One of the main characteristics of the Escape Simulation Suite is its adaptability.
Researchers are able, through pluggins, to create objects for the simulated world giving
them whatever level of AI or behavior they want. Some of the objects that might be
rendered might be; people, chairs, cameras, lights… It is also possible to add non-
rendered objects, such as high level controllers and data collectors. This adaptability is
one of the key features that makes the Escape Simulation Suite different from all the
other simulators currently available.

There are several other goals that need to be met. These goals are as follows:

• The ESS must be fast. Meaning there must be as little overhead as possible. The
algorithms and data structures used must be ones that provide for the best overall
performance.

• The ESS must be extendable. Meaning that future work and improvements must
be possible without completely overhauling the application code.

• The ESS must be intuitive. The user interface and overall runtime flow for the
suite must be easy to understand and use.

http://www.go2pdf.com

13

CHAPTER 2: Preliminary Research
In researching the different components that ultimately would go into the Escape
simulation, many sample and test application were written. This chapter covers many of
these applications and the information learned from them..

2.1 Research work on graphics

2.1.1 Win32
In order to test the graphics and window capabilities of Win32 there were several
applications written. The first few applications were very simple and for the most part
only rendered different primitives and text to the window client area. The next
applications were more complex, rendering a lot of multiple moving objects, and stress
testing the a APIs rendering capabilities. Finally, a simple artificial intelligence
application was created to simulate a mock “fishpond,” to stress test and evaluate the
APIs performance under a more heavy load.

2.1.1.1 Other small applications
As stated above there were many simple programs written at the beginning of the
author’s excursion into the wonderful world of Win32 programming. These programs
range from being able to generate thousands of random pixels or primitives, to creating
the equivalent of a command line console application.

http://www.go2pdf.com

14

Figure 1 Screen Shot of Random Pixel Win32 Application

http://www.go2pdf.com

15

Figure 2 Screen shot of Random Rectangles Win32 Application

There were also many applications written for testing out menus, toolbars, buttons, child
windows, and dialog boxes.

The simplicity and cleanliness of the Win32 code proved, for the most part, very
pleasing. One of the problems with picking Win32, MFC or some other kind of window
API is that they can add a significant amount of clutter and overhead to the end
application. So far Win32 has proved to be a good candidate.

2.1.1.2 Charged particles application
This application was designed to stress test the graphics environment , and perform some
simple mathematical calculations. It allows the user to create multiple charged particles
being represented as simple circle primitives. These charged particles use a simple
calculation based on the inverse of their distance from each other to decide their current

http://www.go2pdf.com

16

force vector. This vector is then applied to modify their current velocity accelerations
and momentum. Along with placing these particles within the world, the user can place
poles and zeros which effectively attract or repel these particles. The size of the actual
rendered particle can be varied to increase the stress on the graphics rendering. Also, an
unlimited number of particles, nodes, and poles may be placed to increase the
computational load.

Figure 3 Screen shot of charged particles Win32 application called Pinball. In this the blue and red
dots represent zeros and poles respectively. The other dots are particles

http://www.go2pdf.com

17

Figure 4 Another version of Pinball, this time without poles and zeros, but with each particle having
a repelling force on all other particles. This force is inversely proportional to distance.

For the most part, the API seemed to hold up fairly well under a small number of
particles. However, when a large number of particles were placed the particles began to
be choppy and the rendering and overall engine slowed down significantly.

Unfortunately, the requirement to calculate and render even a reasonable number of two
dimensional objects appears to be fairly taxing on the system when using Win32 GDI
calls. It would also seem that some other solution would have to be found for a three
dimensional environment.

2.1.1.3 Fishpond Application
After writing the simple applications described above and doing some preliminary
graphics stress tests, a more involved test which would combine both graphics and a
simple artificial intelligence was needed. This test would use mathematical calculations
similar to those used by the Evacuation Simulator in a macroscopic mode. This test
application also was used to test out other Win32 functionalities such as toolbars, menus,
and child windows.

http://www.go2pdf.com

18

Figure 5 Screen shot of Fish Pond Win32 Application. Here all the colored dots, except green,
represent different types of fish. Some are carnivores and some herbivores, and the window at the
top right gives the current populations of the different types of fish.

For a two dimensional environment, the results from this application were interesting.
Again, the general rendering speed and quality was unacceptable for the finished Escape
Simulator, but the menus and buttons, as well as the general nonlinear behavior of the
application were very encouraging.

2.1.2 DirectX
DirectX provides a powerful interface API to many of the computer’s hardware systems.
Among these components are DirectDraw, Direct3D, DirectInput, and DirectPlay.

DirectX implements each of these components as COM objects. These objects allow
multiple users to share the API’s functionality with very little overhead. Also, Microsoft
has worked with the hardware companies to make sure that all new hardware devices
used by DirectX, such as video cards, sound cards, network cards, etc, are completely
compatible with the DirectX API. This collaboration has allowed DirectX to provide the
least amount of overhead possible when accessing a computer’s hardware. It also allows
DirectX to access all the hardware acceleration available for the current hardware device.
Finally, DirectX is designed to provide a software solution to any missing hardware
functionality. For instance, if you write a program that uses the DirectDraw’s rotation

http://www.go2pdf.com

19

command which your graphics card happens to support, but then try to run this same
application on your friend’s computer which does not support the same, then DirectX will
provided the missing functionality in software. Obviously, this will make the application
run slower, but at least it will work.

A full description of DirectX and its components is well beyond the scope of this thesis.
Most of the details necessary for understanding its use in the Escape Simulator are
included throughout the thesis and other documentation, but it is strongly recommended
that the reader refer to and become familiar with three books which are excellent
references for DirectX and developing graphics applications using it. These books are
[5], [6] and [7]. Also, as with Win32, the MSDN provides a wealth of information on
DirectX. Please refer to [10] & [11].

2.1.2.1 Spaceflight program
This application was designed to test the amount of work involved with using DirectX’s
2D API DirectDraw. It draws a 3D space flight world in which the user can fly around
and explore. All the calls used are 2D. Basic trig and geometry were used to display the
objects in a way that appears 3D.

Figure 6 Screen shot of the Space Flight DirectDraw application. In this application a 3D space
world was rendered using 2D DirectX calls. The user is able to both "fly" around this world and
change the FOV characteristics.

http://www.go2pdf.com

20

Among the obstacles that had to be overcome was sorting the objects in the world based
on their current depth relative to the camera’s current position and look direction. For
small numbers of objects this sorting is not a big deal. However, when you are
displaying a 1,000,000 by 1,000,000 world with 100,000 objects that must be sorted 60
times a second, you need a very fast algorithm.

The algorithm used in the end was a basic quick sort, calling the sort every render loop.
Due to the fact that the application randomly distributes the objects when the field is first
created, not doing any sorting as it goes, the first sort is usually the worst one, since after
this first sort the objects are in order and only small changes are made every time slice to
update the list before rendering.

The math involved with displaying the 2D objects and making them appear 3D is fairly
simple, but can be a pain to setup at first. The reader might be wondering why DirectX
2D graphics is being covered here when the actual Evacuation Simulation is based on
DirectX’s 3D API. It is essential to understand the math used here in order to correctly
know how to use the 3D functions properly. It should be noted that none of the math
discussed here uses quaternions. Though there are several advantages to using them, they
are not without disadvantages, and for this particular application, quaternions are not
really needed. If the reader is interested in learning about them please refer to [6] pages
317-318, 325, and [7] pages 100-103.

2.1.2.1.1 Coordinates
In the Graphics section of the first chapter, coordinates were mentioned as one of the
important topics that a graphics programmer must consider and keep track of. For any
object in 3D space there may be several different coordinates assigned to it. For instance,
there should be one set relative to the world as a whole, one set relative to the object’s
center of mass, and one set relative to the camera’s position and orientation. There could
be several more relative to different groupings of objects, etc… All a set of coordinates
tells us is an object’s position and orientation in space.

For this program the camera’s coordinate position was more important than the actual
orientation. The reason for this is that the objects being displayed are completely 2D, and
therefore the orientation is always with the image on the plane parallel to the user’s
screen with the front facing the screen. The world’s coordinates also were not of real
importance. This is because there is no interaction between the different objects.

2.1.2.1.2 Render Loop
Within a graphics program there is always a render loop. After finishing all the initial
required setup, the application enters the render loop. There are several required parts for
a render loop. First, any user input that exists must be taken in. Second, any changes to
the world as a result of the input, AI, or some other algorithm must be calculated. The
world’s data structures must be updated, and finally, the frame must be painted and
rendered on the screen.

http://www.go2pdf.com

21

This application accepted two input sources, keyboard and game pad. Depending on the
input, the camera’s position and orientation was changed.

After changing the camera’s position, all of the objects in the world needed to be resorted
based on its new position relative to the camera. In order for depth to be faked in a 2D
environment there are several tricks that can be done. The most popular is to inversely
vary the size proportional to the distance and render the objects in farthest to nearest
order. The distance is easily calculated by finding the magnitude of the vector formed
from the object’s position and the camera’s position:

222)()()(cameraZobjectZcameraYobjectYcameraXobjectXd −+−+−=

In order to make the actual rendering as fast as possible the object list must be resorted
and the size adjusted to match based on this distance to meet the above requirements. So
the objects farthest away from the camera are placed first in the render list and the
rendered size is scaled inversely.

2.1.2.1.3 Field of View FOV
The field of view is the last topic that must be addressed. A FOV is similar in concept to
looking out a window. The farther away the viewer is to the window, the smaller his/her
FOV is of the outside world. As the viewer gets closer, the FOV appears to expand and
allow the viewer to see a wider area of the world on the other side of the glass. Likewise,
the size of the window makes a big difference in the FOV.

The computer rendering’s FOV is the same. Instead of a window of glass you have the
screen of your computer. The area of objects that can be seen is dependent on the
calculated distance of the viewer from the screen and the actual screen’s size.

Why do we care? It is not efficient to simply attempt to draw every object every time
through the render loop and let the hardware decide what it can actually display. Doing
this usually means trying to render objects that cannot be seen on the screen and this
results in a lot of wasted function calls and time. So the last thing that must be calculated
in order to correctly render the objects on the screen for a given frame is which objects
can actually be seen.

As stated above, there are several factors that determine what the FOV for a rendering is.
The person’s and camera’s position in the world, the screen’s width, height, and position
and orientation relative to the camera’s, and the object’s position in the world.

http://www.go2pdf.com

22

Figure 7 Diagram of the Field of View

If one were to start drawing a line from the camera’s position through each of the corners
of the screen and then on to infinity he/she would get a pyramid shape which forms the
FOV. Each of the four side faces would form a triangle from the point to the screen.
And if one creates a field parallel to the screen including a given object in 3D space
he/she would get another pyramid whose four sides are proportional to the first pyramid’s
sides. Using this relation, it is easy to see if a particular object falls in the FOV of the
camera. The base of the larger pyramid will also be proportional to the base of the
smaller. Since the dimensions of the first rectangle are known, multiplying the top left
and bottom right corner’s x and y positions will give you the corresponding position of
the larger base’s corner. Once these two positions are known the object in question can
be checked to see if it falls in the rectangle defined by the two points. If it does then it is
in the FOV of the camera and should be drawn.

Screen or View pane

Point Of View or Camera

Object Plane

Objects in 3D space

Rendered Objects

http://www.go2pdf.com

23

2.1.2.1.4 Moving the Camera
There are two ways the camera moves. First, its position can be moved around the world,
and second, the camera’s orientation can be changed so that the view is changed.

When the camera is moved throughout the world the camera’s world position is what is
modified. It is translated along some vector which is created based on its current
orientation. There is a small amount of work that is needed in order to get the correct
vector and translate the camera based on it. The camera’s orientation vector’s direction is
from the camera’s position to the center of the FOV screen, and it has magnitude 1. If the
camera is moved forward or backward, then its world position is translated along a
positively or negatively scaled version of this vector respectively. Similarly, if moved
up, down, left, or right, its world position is translated along a scaled vector perpendicular
to the orientation vector.

The orientation vector is stored in Cartesian, but changes to the orientation are made in
spherical, thereby allowing rotation around any specific axis as being a simple matter of
adding or subtracting to the appropriate degree.

Overall, this program was very successful. It does quite well when it comes to displaying
a large number of objects correctly, even with all the overhead of the 3D calculations.
The performance was much better than the Win32 programs from the section before.
Unfortunately, with a more significant load than simply making and drawing a large
number of primitives, along with the extra network and AI calculations that the Escape
Simulation requires, even this would not be a feasible solution for drawing the bulk of the
graphics for this application. Also, texture and rotation support would have to be done by
hand because there is none for 2D.

2.1.2.2 Density program
There were two objectives when this test was written. The first was to actually code up
one of the macroscopic models that would be used in the finished Escape Simulation
Suite. It was important to get an idea of how much stress this would put on the
application. The second reason this application was coded was to figure out how to
create a way of rendering the density field that would be useful to the researchers.

http://www.go2pdf.com

24

Figure 8 Screen shot of the Density Win32 application. The top left window is the command
window; the bottom left is the density field being rendered. The different colors represent different
densities, ranging from low (purple), to high (red). The right window is the output window.

For the model used in this application please refer to [21] which was included with the
source files zip that accompanies this document. It took a little work to code up correctly.
Because the changes in any given block are coupled with those of all the others and
everything was obviously being calculated discreetly, it was impossible to get a perfect
answer. That being said, the solution that was reached is one that takes care of many of
the potential problems with discreet calculations of continuous systems, jumping
boundaries for instance, and one that, with a small enough step size, provides a close
enough approximation to the actual answer, at least for the purposes of this test
application.

The graphics proved to be an interesting problem to solve. In the beginning it was
decided to go with displaying the densities as a height map grid across the floor. The
heights were displayed as different colors with purple representing a density of 0, red
representing a density equal to whatever the maximum allowable density is set to, and all
the other colors being evenly distributed between.

For this application everything was done in 2D, but for the Escape Simulation Suite the
field not only has a color based on the density, but it also is given a height based on the
same.

http://www.go2pdf.com

25

All in all, this program was relatively good. The algorithm turned out to be not too
coastly, and the graphics worked out very well. However, one tricky part was putting
together the array of color values that was indexed based on the density in order to give
the proper color. This was a little complicated because the different values—purple-
>blue->green->yellow->red— at first do not seam to transition in an intuitive manner,
and also because not all the color bands are the same width. So there was a little work to
get everything uniform and even.

2.1.2.3 Flying Cube stress test
This was the first real test of Direct3D. All the tests up to this one were done using the
DirectX 2D API, DirectDraw. This application was intended to stress test the capabilities
of Direct3D under a very large load and various settings.

The application in a nutshell created x^3 cubes each with six large, different textures
mapped on each side with different lighting. All the cubes are arranged to form a larger
cube x-by-x-by-x large. The formation as a whole rotated each times step along two
axes. At the same time each cube is rotated along two different axes. The camera is
designed to be able to rotate along any axis, orbit the cube formation, and zoom in and
out. Finally, the frames-per-second and other statistics were also rendered each time
through the loop.

http://www.go2pdf.com

26

Figure 9 CubeTest application screen shot.

First off, it was pleasantly surprising how easy it was to set everything up. The hardware
acceleration also made a huge difference in the overall performance. It was possible to
take x up to 15 and still get around 60 fps. That means Direct3D was able to render
3,375 boxes = 20,250 textures = 40,500 primitives = 121,500 vertices 60 times a second.
Not too shabby

2.1.2.4 Network Chat Program
Along with testing the other aspects of DirectX, a few applications were created that
tested the client/server capabilities of DirectX’s networking API, DirectPlay. In
particular, a client/server chat application was coded. More will be covered about this
application in the next section, “Research work on networks.”

http://www.go2pdf.com

27

Figure 10 DirectPlay network application

In brief, the overall performance of DirectPlay was good. Little is still known about how
much the overhead will affect the overall throughput and reliability.

For a good explanation of the workings of DirectPlay please refer to [12].

2.1.2.5 DirectInput
The final aspect of DirectX that was tested was DirectInput. This is the API responsible
for allowing the user access to the different input devices. As stated in the last chapter, it
was important to be able to get input from the keyboard, mouse, and game pad. A
separate application to test these things was not created. Instead, DirectInput was used
throughout. In all the above DirectX programs, different combinations of input were
used to figure things out. In all cases, DirectInput turned out to be very easy to use. The
only concern that arose is how to integrate properly with Win32’s input accelerator.
Please refer to [5] chapter 9 for more information on how to setup and use DirectInput.

2.2 Research work on networks
From very early in this application’s design, the decision was made to network it. At a
minimum it was be desirable to separate the application into a client/server module with
the graphics and user interface being handled by the client, and the world calculations
being on the server. Depending on how complex the world calculations got it might be
nice to eventually cut the server up and distribute it across a cluster.

http://www.go2pdf.com

28

2.2.1 Personal Winsock Library

2.2.1.1 Written by hand TCP/UDP applications for network
applications class

When the decision was made to network this application, several important design issues
arose. First and foremost was how to do the networking. Should a network library be
developed from scratch, or should some other API be used? In an effort to answer this
problem and to understand networking in general, several test applications were written.
The applications ranged from simple chat programs and message boards, to a web server
with simple cgi support. In order for the reader to understand some of the logistics of
network communication, some of the basics will be covered here. The reader is also
encouraged to refer to [8]. Also, Microsoft’s MSDN is an excellent source of very in-
depth descriptions of the various functions needed to create a Winsock application [13].

TCP and UDP applications have certain aspects that are similar. Both require you to call
WSAStartup and WSAShutdown to start and stop the windows socket interface. In both
cases you must create and destroy a windows socket to get your work done. After this
point they are very different.

As stated in the first chapter, TCP is a reliable way to send data, meaning that when you
send a packet from one socket to another, if it is possible to make it, it is guarantied to get
there and in the correct order. Part of having this guarantee, however, means that a
connection must be established between the client and server before any data can be sent.
Once a connection is established data can be sent in either direction. After all data has
been sent, the connection is closed and the socket is destroyed.

In order for a connection to be made you need the server to be bound to an interface:

int bind(SOCKET s,const struct sockaddr* name,int namelen);

and put into listen mode:

int listen(SOCKET s, int backlog);

The client then can request a connection using:

int connect(SOCKET s, const struct sockaddr* name, int namelen);

Finally, the server accepts the connection using:

SOCKET accept(SOCKET s, struct sockaddr* addr, int* addrlen);

http://www.go2pdf.com

29

Both the connect() and accept() functions take in a pointer to a generic struct of type
sockaddr. This struct was designed so that different protocols can extend its data fields to
meet their specific needs. For a typical TCP/IP connection this struct would look like
this:

struct sockaddr_in {

short sin_family;

u_short sin_port;

struct in_addr sin_addr;

char sin_zero[8];

};

Once the connection is established the two can communicate back and forth using the
Winsock send()/sendto() and recv()/recvfrom() functions.

When the two applications are done the connection is broken down.

For a UDP based application, a connection is not required but can still be established.
The packets are simply sent to the target address port pair with no guarantee that they will
get there intact or in order, if they get there at all. If data and packet integrity is needed,
then the programmer must add his/her own code to ensure it.

Even after the brief top level description above, there are still many small details that a
Winsock developer needs to keep in mind, for instance: blocking verses nonblocking
calls.

At the end of the above mentioned test application, a fairly decent TCP/UDP library had
been developed. In order to add some contrast, another library was developed based on
DirectPlay. The next section is about this library. For the most part, though, this library
worked very well.

2.2.2 DirectPlay
There were several reasons DirectPlay was chosen to be the second network option.
First, many of the components that DirectX offers were already going to be used by the
application, so the idea of com objects was already familiar. Second, DirectX is a well
established API and has had significant work done to it to ensure compatibility and
reliability. There are many big-name applications that use DirectPlay for their network
interface. Finally DirectPlay is setup structurally in a way that would fit well with the
way we wanted to handle our network interface.

Like the Winsock section above there will be only a brief description of DirectPlay here.
For a better description of how to develop DirectPlay applications please refer to
Microsoft’s MSDN articles on the topic.

http://www.go2pdf.com

30

Creating a client/server connection in DirectPlay is very similar to doing it using
Windows sockets directly. First, the server must be created and placed in host mode; this
is equivalent to listen mode. Then, the client must be created and the target address
information must be filled out. Finally, the client must call connect to establish a
connection to the server.

In order to send a message using DirectPlay the client must use the send() function. The
server uses the sendto() function.

Receiving messages is handled differently by DirectPlay. Unlike Windows sockets you
do not call recv() or get, or any function for that matter. Rather, incoming messages are
handled similarly to the way a Win32 program handles them. There is a call back
function that the client and server are given when they are created that is called any time
a message is received. Inside that handler the user can put whatever code is needed to
handle the messages being received.

This method of handling messages was exactly what was desired for the Escape
Simulation Suite framework. The plan was to have one central place where all messages
would be handled, as opposed to having the handling spread throughout the entire
application. This would help in making the code much more manageable and modular.

In order to test the DirectPlay interface a simple chat application was written, which
worked very well for the most part. There was one negative aspect: when the client would
attempt to connect to a server that was not in existence there would be a significant
amount of lag while DirectPlay did some extra work to attempt to search for the missing
server.

2.3 Research work on application types

2.3.1 MFC
MFC, as stated above, is an API that was built on top of Win32. It allows for rapid
application development. Unfortunately this comes at the cost of efficiency. MFC
applications tend to have more overhead than a typical Win32 equivalent. They do allow
for much more complex menus, user interfaces, and dialogs, though.

The test MFC application was intended to just test what the logistics would be to get an
MFC application up and running with menus, etc… and also to get that application
working with DirectX.

2.3.2 Win32
Throughout this research many different Win32 applications have been written. This
section will cover some of the applications that were not already mentioned in previous
sections, It will also give a brief description of Win32 basics.

http://www.go2pdf.com

31

2.3.2.1 Win32 Basics
“All journeys start with a single step.” Or in this case, all Win32 programs start with
WinMain().

2.3.2.1.1 WinMain()?!
For the C purist it will feel a bit unsettling the first time one codes or looks at Win32
code. This is in part because one the of first things written or looked for is main(). Unlike
normal console applications, Win32 applications do not have main() as their entry point.
Instead, they have:

int WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow)

As far as we are concerned, the most important of the arguments in WinMain() is
hInstance. This is a handle to this instance of the application. A handle is just a unique
number that Windows will use to reference this instance in a lookup table somewhere.
Windows loves to use handles for everything, so get used to them.

The second argument is not important to us. Older versions of Windows used this
argument in handling multiple instances of an application.

The argument lpCmdLine is a pointer to the command line string that can be parsed to
find command line arguments.

Finally, the nCmdShow parameter tells us what the current visibility of the application is.
Since we will be changing this it really is not that important.

After WinMain, the programmer must define the characteristics of the main window.
This is done by creating and filling out a WNDCLASS structure:
typedef struct {

UINT style;

WNDPROC lpfnWndProc;

int cbClsExtra;

int cbWndExtra;

HINSTANCE hInstance;

HICON hIcon;

HCURSOR hCursor;

HBRUSH hbrBackground;

LPCTSTR lpszMenuName;

LPCTSTR lpszClassName;

} WNDCLASS, *PWNDCLASS;

Once that class is filled out then the class is registered with the operating system using:

http://www.go2pdf.com

32

ATOM RegisterClass(CONST WNDCLASS *lpWndClass);

and windows of this new type can be created with:
HWND CreateWindow(LPCTSTR lpClassName, LPCTSTR lpWindowName,
DWORD dwStyle, int x, int y, int nWidth, int nHeight,

HWND hWndParent, HMENU hMenu, HINSTANCE hInstance, LPVOID lpParam);

Notice this function returns another handle. This one is a handle to the window we just
created. The first was just to the instance of the application. Using this new handle we
can now tell our main window to display itself with:

ShowWindow(hwnd, nCmdShow);

UpdateWindow(hwnd);

Okay. We are almost done. We need only two more components and we will have all
the basic things needed for a minimal Win32 application. The first component we need is
the message handler. You might have noticed the WNDPROC lpfnWndProc field in the
WINCLASS structure. This field is a pointer to the callback function that this particular
window type will use whenever it receives a message. A callback function has a very
specific format that it must match. The prototype looks like this:
LRESULT CALLBACK WindowProc(HWND hwnd, UINT uMsg, WPARAM wParam,
LPARAM lParam);

The actual name, WindowProc, and the variable names can be changed to whatever you
want. One of the unusual things you might notice is the CALLBACK distinction that is
after the return type and before the function name. This is a special windows distinction,
and identifies the function as a callback function.

A callback function is a one that is called by the operating system when a message has
been received and needs to be handled. This is similar to the message handlers used by
DirectPlay’s receive. As mentioned in the last chapter, there are thousands of potential
messages that can be generated and sent from the operating system to your application.
For the most part you can be safe by passing these messages to the Windows default
handler and only handling the few that you actually care about.

The second thing still needed is the main message loop at the end of WinMain(). This
loop, with very little deviation, always looks like this:

while (GetMessage(&msg, (HWND) NULL, 0, 0) != 0 && GetMessage(&msg,
(HWND) NULL, 0, 0) != -1)

{

TranslateMessage(&msg);

DispatchMessage(&msg);

}

return msg.wParam;

http://www.go2pdf.com

33

There are three important functions here. The first is GetMessage(). The while loop will
continue to spin as long as this function does not return either 0 or -1. It will return 0 if
the application receives a WM_QUIT message. It will return -1 if a major error occurs.

The GetMessage() function takes in two arguments of interest. First is the msg argument.
This argument will contain the actual message that was received by the GetMessage call.
This variable will then be passed on to the other two functions for further processing.
The second argument is the handle to the particular window of interest. This means that
if your application has multiple windows, each window can receive messages targeted
specifically for that window. Also, if you have multiple windows it is a good idea to
make the application multithreaded and give each window its own thread.

The second function of interest is TranslateMessage(). This function translates virtual-
key messages into character messages. These messages are then posted onto the calling
threads message queue.

The last function is DispatchMessage(). This function actually tells the application to call
up the appropriate callback function and handle the message.

There you have it. Those are the basic components that must be included in all Win32
applications. Even your most basic and small Win32 application must have these
components. Even “Hello World”!

Luckily there are very nice benefits that are gained by making programs windowed that,
depending on the program, can balance out the overhead required. For example, “Hello
World” is not an application that would benefit from being made windowed. An
application that needs a menu and has many toggles and switches would greatly benefit
from being windowed. Menus and switches are clunky at best in a command line
application. In general, if an application is linear and requires little, if any, user
interaction then it is best created as a console application. On the other hand, if the
application is very nonlinear and requires lots of user interaction then you probably are
safe making it a windowed application.

The above discussion on Win32 applications has been very basic. Please refer to [4] for
an excellent guide to Win32. For the topics covered in the section please look
specifically in chapters 1-7 in section 1. Please also refer to [9]

2.3.2.1.2 Win32 and Consoles
At times it is nice to get the simple text input/output of a console application from within
a Win32 application. If it were not possible to do this then users would be stuck doing all
their own text management, which can be rather annoying to setup.

Here are some examples of times it might be nice to have a console window attached to a
Win32 application.

http://www.go2pdf.com

34

- Status/Error message output. Many times it is nice to have a separate status
window open that just reports on the general status of the application. This
window is purely output, stderr and possibly stdout would be redirected to this
window.

- Console IO for graphics rendering engine. Aside from basic keyboard input
for a graphics rendering window, which usually constitutes single key
commands, it may be nice to allow for much more powerful commands. In
order to do this it would be nice to spawn off a console to take in command
line style input. This is ideal when the programmer is developing the engine
and wants to be able to tweak values and things quickly. It only takes a very
short amount of time to get a console up and running. Later, the console can
be replaced with a dialog box or some other graphical user interface GUI.

- Windows handle needed but full window is not. Some API’s require a
windows handle to work properly. Often these API’s may be needed in an
application where a full blown windowed application is overkill and a console
is all that is needed. In this case it is possible to create a Win32 application to
get the windows handle from the WinMain() arguments and then attach a
console to get the work done.

Only one console can be attached to any window at any given point in time. You can
create multiple consoles and disconnect/connect them as needed.

In order to add a console to a Win32 application you must first create one using:
BOOL AllocConsole(void);

This function creates a new console and attaches it to the calling process. Again, as
stated above, there can only be one console attached to a given process. Child processes
inherit attached consoles from their parents. In order to detach a console so another can
be created you must call:
BOOL FreeConsole(void);

Provided that the console is still attached to some process, it is not destroyed by this call.
So for example, let’s say a simple chat program is being developed. The main console
may be reserved purely for status messages or connect/disconnect type of command line
input. When a connection is made to another chat program the application would spawn
off another thread to handle that connection. By default that thread would share the main
console with the parent process. In order to keep the main window reserved for status
messages and the such, a call to FreeConsole() would be made from within the new
thread to detach itself from the parent’s console. Then the thread would call
AllocConsole() to attach a new console solely for the child’s use, and in this particular
example this new console would handle all the “chatting” communication over this
connection.

Along with detaching a console from a processes/thread with FreeConsole() you can also
attach an existing console to a process using:
BOOL AttachConsole(DWORD Error! Hyperlink reference not valid.);

http://www.go2pdf.com

35

It is important to note the difference between AttachConsole() and AllocConsole(). The
first attaches an existing console to a process whereas the latter creates a new console and
then attaches it to the process.

Just creating and attaching a new console may not be enough to get things working.
There are two more important functions that are very useful. The first is
HANDLE GetStdHandle(DWORD Error! Hyperlink reference not valid.);

This function is used to get the handles to the current stdin, stdout, and stderr. The
DWORD value is what tells the function which of the three is desired. It can take one of
three values:
STD_INPUT_HANDLE - gets the handle to stdin
STD_OUTPUT_HANDLE - gets the handle to stdout
STD_ERROR_HANDLE - gets the handle to stderr
These handles can then be used by the main process just like any normal c-standard file.

The second useful function is:
BOOL SetStdHandle(DWORD Error! Hyperlink reference not valid., HANDLE
Error! Hyperlink reference not valid.);

There may be instances when you want to completely overwrite the default stdin, stdout,
and or stderr handles with an existing handle. For example you might have a global error
handle that all exceptions and errors write to. In this case you would pass this function
the handle to that file and pass in STD_ERROR_HANDLE as the nStdHandle value.

Several Win32 applications have been written that have used the above technique to add
a console to a windowed application. One example of this is the chat application written
to test DirectPlay. This is a great example of the third case given above when you might
want to use attached consoles. In this instance, DirectPlay needed a window handle to
work properly. So a Win32 application was created that never actually created a window.
Instead, a console was attached to the process and was used for all the IO. (It should be
noted this is not the only way this could have taken care of DirectPlay’s requirement for a
window handle. It is possible to create a normal console application and then get the
window handle that windows assigned to the console window.)

2.3.2.1.3 Win32 text interaction
While a console is often times a quick and efficient solution to an application’s user
interface needs, especially when text parsing is required, it can fall short to a windows
managed text interface. All you get with a console is the standard console functionality.
If you wanted any extra bells and whistles you are out of luck. One of the major benefits
of a windows managed text interface is that the sky’s the limit as far as the cool features
and things that can be added. The major down point is that it must be written all from
scratch, and depending on what exactly needs to be done, this may take a decent amount
of coding to get it right. It could take a couple hundred lines of code just to get the basic
functionality of a standard console working.

http://www.go2pdf.com

36

In order to create a windows managed interface you start by creating a normal window.
From here you need to add code to the message handler to catch key presses and mouse
clicks to the window. This is important because the message handler needs to be able to
act appropriately depending on the combination of presses and clicks it receives. For
instance, if we are going for basic console style interaction, then the user enters an alpha-
numeric value. This letter needs to be placed on the current command line string and the
current value of the sting needs to be updated on the screen. If the key press is “enter”
then the current command line string needs to be processed and cleared. The results need
to be added to the output portion of the windows managed console. Whenever the
window needs to repaint itself it is up to the programmer to tell the application which
characters are to be displayed, where they are to be displayed, and how they are to be
displayed. This is an overly simplified example. It should be apparent though from this
simple example that there is a lot more work that is involved in creating a windows
managed text interface, but again the rewards are that you can do some very cool and
useful things when you handle all the text input/output yourself.

For a good example of windows managed text see the “Simulator First Run” application
included in the appendix zip file.

Windows managed text interfaces are a very useful and powerful option when more than
the common console is desired. Unfortunately, there is a significant amount of extra
work that falls on the programmer’s shoulders if this route is taken.

Along with the extra effort involved in getting one of these interfaces up and running,
efficiency is another thing to consider. If you are writing a windows managed text
interface that functionally is more or less the same thing as a standard console, you are
adding a lot of unnecessary overhead to your application. You should probably just use a
standard console and save clock cycles for something more useful.

2.3.2.2 Win32 menu test
There are a lot of menu functionalities, such as dockable toolbars, which are becoming
standard in today’s applications. This is one of the areas where MFC excels above basic
Win32. In MFC it is easy to create menus and toolbars that intrinsically have these
“standard” capabilities. If a programmer wants these kinds of bells and whistles without
using MFC, he/she has to code it all up by hand. All this being said, we should not just
abandon Win32 for the extra features of MFC. Remember, even though the programmer
doesn’t have to code up the functionality, the computer still needs to execute some code
somewhere to get the job done. So an interface designer needs to decide if the extra
overhead is really needed. In the case of the Escape Simulation Suite these kinds of bells
and whistles are really not needed and add nothing to the application.

The other thing to be remembered is that the majority of the standard user interface
functionality is available in Win32. It was anticipated when the application was being
initially designed that all of the following would be needed: a menu structure, toolbars
(floating and/or static), dropdown menus on right mouse click, dialog boxes with tabs and

http://www.go2pdf.com

37

all the usual buttons, text fields, etc… Luckily, Win32 handles all these resources very
well.

2.3.2.2.1 Windows Resources
This section will briefly go over how each of these interfaces is coded up correctly. First,
here is a little general background. Windows treats all of the interfaces listed at the end
of the previous section as resources. In order to speed up the development and
manageability of the resources in a program, the Win32 developers created a two file
structure that defines all resources in an application and how they are to be
used/accessed/modified. The first is the resource.rc file. This file is written in a fairly
simple scripting language. Each of the different resource types has its own options and
syntax. Everything is contained in this file except the actual #define values that are used
to know when something is accessed, clicked, moved, etc. You have full control over the
resources in this file. That being said, most of us do not want to write this file from
scratch. Luckily Visual Studio has provided a nice GUI interface that allows you to
create the various resources graphically and then it generates/modifies the resource.rc file
accordingly. This is nice for two reasons, the first of which, as already mentioned, is that
you don’t have to create and modify this file by hand, although you still can if it is
needed. Secondly it allows you to design these resources and actually know exactly how
they are going to look as you build them.

The second file needed is the resource.h file. This file is also generated automatically by
the Visual Studio resource generator, and can be modified by hand. This file is included
in the project cpp files that actually use the resources and contain all the #defines that are
needed to access and respond to the resources. For example, if a menu tab called file is
created and one of the options under the file tab is exit, then a specific message would be
generated containing the ID value that was assigned the exit entry every time the entry is
slected. This ID value could be changed to be whatever the developer wanted. For
instance, in this example he/she might choose that the file->exit selection would have the
ID value of ID_MENU_FILE_EXIT. In the resource.h file this value would be #defined
as a unique numerical value.

For each of the sections below the creation and setup of resources by using the resource
editor will be covered. Other methods exist for creating windows resources. For
instance, the resource.rc file can be edited/written directly using a simple text editor. No
matter which of the resources it is you want to create, you will always at least have to
follow these steps.

- Under the View menu tab at the top select Resource View
- In the window that pops up find the specific project you want to add the

resource to and expand that portion of the tree.
- Right click on the .rc file name and select Add Resource
- Pick the resource you wish to add
- Build your resource in the GUI
- Add the needed hooks to your main code.

http://www.go2pdf.com

38

For the purpose of teaching how to create each of these, the following sections will step
the reader through the creating of a fictitious application call Resources In Use or RIU for
short.

Throughout this tutorial please refer to [17] for a more in-depth explanation of different
resources. Also please refer to [20] in general for more information about different
function calls, types, and definitions.

2.3.2.2.2 Menus
Menus are one of the easier resources to add to a project. First follow the steps above
and add a new menu to your project.

Figure 11 Adding a resource to a Win32 project

From here on out you can always come back and modify any of the resources you have
created by following the first two steps above, expanding the .rc branch and the particular
resource’s folder type, and selecting the resource’s name.

After you add the menu to the project you need to fill out the different menu options.
You will see in the GUI a mock version of the menu that you are creating. To add more
tabs to the main part of the menu just click on the last spot and type in the desired tab
name. To add options to each main tab just select the desired tab and type the new entry

http://www.go2pdf.com

39

name into the bottom slot. You can add popup menus to each entry by clicking on an
entry and then adding entries to the right of it.

Figure 12 Adding an entry to a Win32 menu resource.

As with all windows menus, you can add accelerators to the different menu options in
order to allow for quick keyboard access. Adding an ‘&’ immediately before a specific
letter when you are entering the name for the entry makes that letter the quick access
value for that entry. For example:

If the value “&File” were entered (minus the quotation marks) into an entry then it will
be displayed as File in the menu and the user only has to press ‘f’ in order to select this
option. Another example is this: perhaps under the File tab we already have Display
using the letter ‘d,’ and adding Done would cause problems. Instead, we can enter
“Do&ne”. Now this entry will show up as Done and the letter ‘n’ is the quick access
value.

http://www.go2pdf.com

40

Figure 13 Screen shot of the menu before the change from “&Done” to “Do&ne”.

http://www.go2pdf.com

41

Figure 14 Screen shot of after the change

Aside from the ‘&’ all the usual text escape values are valid here, like ‘\t’ for instance.
When we add the hooks to the code later we can add special key combinations such as
“Ctrl+D” for Display. If you are going to add a special key combination it is a good idea
to add that to the entry string so that the user would be able to easily see the option. For
example:
“&Display\tCtrl+D” would be displayed as “Display Ctrl+D”

If you now open up the resource.h file that has been added to the project directory and
take a look at its contents you will notice that there are several new entries.

Now add two more entries to the File menu tab: “&Quit” and “&Help”. At this point
your menu should look like this:

http://www.go2pdf.com

42

Figure 15 Screen shot of the finished menu.

Now we need to change the ID’s for these entries. First highlight the Display entry.
Open up the properties view, and in the view find the ID field and add the value of
ID_MM_DISPLAY. Do this for each of the other entries, giving them the values of
ID_MM_QUIT and ID_MM_HELP respectively.

Once the ID’s are set, we can modify the WinProc() callback function to handle these
event ID’s. Note: If you open the resource.h file you will see these ID’s #defined as
unique numerical values.

In the WinProc() callback function we need to add a new case to the main switch
statement. Whenever a button is pressed, a WM_COMMAND message is sent, so you
need to add a case to catch this message.

Inside the case you have to switch on the low word value in order to see which event ID
was passed. Make the case look like this:

case WM_COMMAND:
switch(LOWORD(wParam))
{
case ID_MM_DISPLAY:

{

http://www.go2pdf.com

43

return 0;
}

case ID_MM_ABOUT:
{

return 0;
}

case ID_MM_QUIT:
{

PostQuitMessage(0);
return 0;

}
}
break;

Notice we did not give the cases any functionality yet. That will be done later.

2.3.2.2.3 Toolbars
Next we are going to add a toolbar to the RIU application. Toolbars are slightly more
complicated then regular menus. As usual, start by going to the resource editor and
adding another resource, this time of type toolbar. This time, instead of seeing the menu-
creation GUI you will see the toolbar GUI. This GUI lets you create the actual toolbar
graphics. You add these in a similar way to adding entries to a menu. Click on the blank
square on the end and instead of typing the label, you draw the button.

For our example let’s add three buttons. You can copy the graphics in the picture below,
or create your own. We will tie the first button to the display message event. The second
button will quit the application, and the last one will print out the about dialog box.

http://www.go2pdf.com

44

Figure 16 Toolbar creation tool and finished toolbar bitmap.

Once the buttons are drawn, open up the properties window as described in the menu
section above. Look for the ID field and give each button a descriptive value. For the
sake of this test application please use the following:
Button ID Value
Display ID_TB_DISPLAY
Quit ID_TB_QUIT
About ID_TB_ABOUT

You might want to get more descriptive in a more complex example so as to avoid
accidentally using an identifier that is already in use.

Once you have your buttons drawn and they have all been assigned unique ID’s we are
ready to hit save and add the toolbar hooks to our application.

Start by going to WinMain() and below, where you created the main class and loaded the
menu into the class instance, add the following code:

TBBUTTON tbrButtons[3];

tbrButtons[0].iBitmap = 0;

http://www.go2pdf.com

45

tbrButtons[0].idCommand = ID_TB_DISPLAY;
tbrButtons[0].fsState = TBSTATE_ENABLED;
tbrButtons[0].fsStyle = TBSTYLE_BUTTON;
tbrButtons[0].dwData = 0L;
tbrButtons[0].iBitmap = 0;
tbrButtons[0].iString = 0;

tbrButtons[1].iBitmap = 1;
tbrButtons[1].idCommand = ID_TB_QUIT;
tbrButtons[1].fsState = TBSTATE_ENABLED;
tbrButtons[1].fsStyle = TBSTYLE_BUTTON;
tbrButtons[1].dwData = 0L;
tbrButtons[1].iString = 0;

tbrButtons[2].iBitmap = 2;
tbrButtons[2].idCommand = ID_TB_ABOUT;
tbrButtons[2].fsState = TBSTATE_ENABLED;
tbrButtons[2].fsStyle = TBSTYLE_BUTTON;
tbrButtons[2].dwData = 0L;
tbrButtons[2].iString = 0;

hWndToolbar = CreateToolbarEx(hwnd, WS_VISIBLE | WS_CHILD |
WS_BORDER | TBSTYLE_ALTDRAG,IDR_TOOLBAR, 3, hInstance,
IDR_TOOLBAR,tbrButtons, 3, 16, 16, 16, 16, sizeof(TBBUTTON));

These lines create a temporary array of TBBUTTONS structs. Each struct in the array
describes a different button. They should be entered in the order they appear in the
toolbar from left to right. Also notice the use of the ID_TB* #defines here. This is the
first place these values will be used. The other place is in the handler for each specific
button event. The CreateToolbarEx function will not be covered here. Suffice it to say
that it is responsible for actually creating the toolbar and returning a handle to the toolbar.
Error checking can be performed on the handle to ensure that the toolbar was created
correctly.

The last step is to add the handlers for each of the button events. This is not too difficult.
Whenever one of these buttons are pressed the assigned ID_TB_* value is sent as the low
word value in a WM_COMMAND message. So we just need to add three more entries
to our winProc WM_COMMAND switch statement. Here is what was added:

case ID_TB_DISPLAY:
case ID_MM_DISPLAY:

{
return 0;

}
case ID_TB_ABOUT:
case ID_MM_ABOUT:

{
return 0;

}
case ID_TB_QUIT:
case ID_MM_QUIT:

{
PostQuitMessage(0);
return 0;

}

http://www.go2pdf.com

46

The only case that really has anything filled in is the ID_TB_QUIT case. The ones that
are missing will be filled in later. We don’t know enough to call a dialog box or handle
the display message. Remember the only requirement in handling a message is that you
must return either 0 or the result from the default handler. So as far as the user will be
able to tell, the first two buttons will not do anything at this point in the example.

The last button handler uses the PostQuitMessage(0) function. All this function does is
puts a Quit message on the message queue that will tell the program to shutdown
gracefully. So at the moment, clicking on this button in the toolbar is identical to hitting
the close button on the top right corner of the window.

2.3.2.2.4 Dropdown menus
Popup menus are only slightly more complicated than toolbars. Lets start by adding
another resource in the usual manner by picking menu type again. Give it the ID value of
IDR_POPMENU. As far as the resource manager is concerned, there is no difference
between a popup menu and a normal menu.

Let’s label the first menu tab as Popup. After that, add three entries under that tab. Call
them Display, Quit, and About.

Figure 17 Completed popup menu and properties.

http://www.go2pdf.com

47

After the tab and entries are done we need to make a few changes to the properties of
each. In the Popup tab’s property window look for the popup option and set it to true.
Next, go to each of the entries and in its ID field give them a nice descriptive ID value.
For instance:

Entry ID Value
Display ID_POPUP_DISPLAY
Quit ID_ POPUP_QUIT
About ID_ POPUP_ABOUT

Okay, now the resource is ready to be hooked into the program. Unlike the other two
resource types all the extra code will be placed directly into the WinProc() callback
function. There will be no extra code added to WinMain().

When a window is first created there is a special WM_CREATE message that is sent to the
WinProc() function. Any special instantiation work should be placed in this case handler.
In our case we need to tell the window that the popup menu exists here. Add the
following code to the message handler:
case WM_CREATE:

// Save important values for future use
…
// Load and create up popup menu
hpopmenu = LoadMenu(hInstance,MAKEINTRESOURCE(IDR_POPUP_MENU));
hpopmenu = GetSubMenu(hpopmenu,0);
…

The first of these two lines loads the menu we created. Then the second allows us to grab
all the information under the first tab. You will notice the IDR_POPUP_MENU value is
used here with the MAKEINTRESOURCE() function to actually access the resource we
just created. Remember that after you create this resource you can change the default
identifier it assigned be going to the resource tree and selecting the menu name and then
finding the ID value in the properties window. In both cases a handle to the resource or
the desired portion of the resource is returned. We will use this handle to actually make
the menu popup.

We can tie the displaying of a popup menu to any event we want. Since a popup menu
typically “pops up” when the user right clicks the mouse, lets do the same. In order to do
this, we need to add a new case to our message handler to catch right mouse clicks. We
actually have several options here. Do we want to grab the right mouse down event, right
mouse up event, or the right mouse double click event? Usually you will want to grab the
up event, so here is how to do it:

case WM_RBUTTONUP:
{

POINT point;
point.x = LOWORD(lParam);
point.y = HIWORD(lParam);

http://www.go2pdf.com

48

ClientToScreen(hwnd,&point);

TrackPopupMenu(hpopmenu,TPM_RIGHTBUTTON,point.x,point.y,0,
hwnd,NULL);

return 0;
}

There are a couple of things happening here that should be explained. First, in thinking
about how popups usually behaves, when the button is clicked the popup window
appears, but not just anywhere, it will pop up where the mouse curser currently is. In
order to get this behavior we need to tell the popup menu where the mouse is.
Conveniently enough when the operating system sends a mouse click event it stores the
current curser’s x and y positions in the low and hi word respectively of the left
parameter value sent along with the message.

In the above code we store these values in a POINT structure. We do this so that we can
use the ClientToScreen() function that translates the client (x,y) positions to the actual
screen (x,y) positions. We need to do this because TrackPopupMenu() expects screen
coordinates.

The last part of this code that needs an explanation is the TPM_RIGTHBUTTON flag
that is passed into the TrackPopupMenu() function. This flag tells the popup menu that it
should accept both right and left mouse clicks.

Now we are ready to modify the WM_COMMAND message switch case statement to
take into account the new menu messages that will be sent when one of the selections are
clicked. Here we will just add fall through cases to the toolbar cases. That way we can
avoid adding as much extra code as possible. So, our switch statement now looks like
this:

case ID_POPUP_DISPLAY:
case ID_TB_DISPLAY:
case ID_MM_DISPLAY:
{

return 0;
}

case ID_POPUP_ABOUT:
case ID_TB_ABOUT:
case ID_MM_ABOUT:

{
return 0;

}
case ID_POPUP_QUIT:
case ID_TB_QUIT:
case ID_MM_QUIT:

{
PostQuitMessage(0);
return 0;

}

Now the RIU application as a working popup menu! On to dialog boxes.

http://www.go2pdf.com

49

2.3.2.2.5 Dialog boxes
These are perhaps the most complex of the resources that can be created. In our simple
example we will only scratch the surface of the possibilities available with dialog boxes.

We are going to create two boxes for our simple example. The first will just display
some information about this example. After that we will make a slightly more complex
box that we will attach to the ID_TBDISPLAY and ID_POPUP_DISPLAY messages.

To make our first box we go through the same routine as creating any other resource, but
when you chose to create a new dialog box you will be asked what type of box you would
like to make. You should have the following options:

IDD_DIALOGBAR
IDD_FORMVIEW
IDD_OLE_PROPPAGE_LARGE
IDD_OLE_PROPPAGE_SMALL
IDD_PROPPAGE_LARGE
IDD_PROPPAGE_MEDIUM
IDD_PROPPAGE_SMALL

The option we want is the IDD_PROPPAGE_SMALL dialog type. After selecting this
option and giving it the ID IDD_ABOUT_DIALOGBOX, you will see a nice blank
rectangle in the resource editor. We now need to add a few things to it.

Under the View tab at the top, select the Toolbox option, or you can click Ctrl+Alt+X.
As the name implies, the toolbox has a bunch of different tools that you can drag into
your blank dialog box to get it to do what you want. Since this is an about dialog box it
will need limited functionality. It will need to have a line or two about what the
application is, and it should have a button that the user can click to close the dialog.

To get the text into the dialog box look for the Static Text tool in your toolbox and drag it
onto the dialog box. Next, find a Button tool and do the same. Once you have a tool in
the dialog box you can move it and resize it as you like. After you have both tools where
you want them, change their properties so that they will do what we want:

First, select the Static Text tool, and in the property menu look for the caption option.
Enter some kind of descriptive string here, for instance:

“This application tests simple resource functionality”

You can also change the ID field to something unique. However, this is not as important
because unless you are planning on changing the text in this tool dynamically, there is no
need to access it.

http://www.go2pdf.com

50

Now let’s setup the button. Select it in the dialog box and edit its caption to something
descriptive—“OK” perhaps. Also, give it a good ID value like, ID_ABOUT_OK. This
is what the dialog looks like at the moment.

Figure 18 Completed "About" dialog box.

Finally, make sure both tools are set to visible, and the dialog boxes properties are set to:
Property Value
Style Popup
Set Foreground True
Visible True
Title Bar True
Caption Something informative. Ex. “About Resources in use Application”
Border Thin
ALL OTHERS False

You can play with all these options later. The three most important options are: Style,
Set Foreground, and Visible. If these are not set correctly then the dialog box will not
work correctly.

http://www.go2pdf.com

51

Now that the dialog box is created and has the correct properties, we need to create a
callback function for this dialog. Dialogs can be viewed as a special type of window and
like all other windows it receives messages from the operating system and other sources.

Like the regular Windows callback functions, this one follows a simila pattern. In fact,
the only difference is that this callback function should return a BOOL value instead a
HRESULT. The prototype looks like this:

BOOL CALLBACK AboutDialogBoxProc(HWND hDlg, UINT message, WPARAM
wParam, LPARAM lParam);

By now everything in this prototype should be pretty standard. The function behaves
exactly like the main WindProc() callback function. It receives a WM_INITDIALOG
message when the dialog pops up. And when the user interacts with the dialog it gets a
WM_COMMAND message with the actual event id being sent in the wParam argument’s
low word.

The actual definition looks like this:
{

switch(message)
{
case WM_INITDIALOG:

return TRUE;
case WM_COMMAND:

switch(LOWORD(wParam))
{
case IDC_ABOUT_OK:

EndDialog(hDlg,0);
return TRUE;

}
break;

}
return FALSE;

}

The EndDialog() function is similar to PostQuitMessage(). It sends an end message to
the dialog box telling it to close.

Luckily, in this case the dialog box is not doing anything that requires information from
the application and the application does not receive any output from this dialog. So the
callback function is very simple and the hooks into the WinProc() function are a single
line.

Now we just need to change the WinProc() function to make it actually call this dialog
box when any of the about buttons or menu options are clicked. To do this, simply make
the following change to the callbacks WM_COMMAND switch statement:

case ID_MM_ABOUT:
case ID_TB_ABOUT:
case ID_POPUP_ABOUT:

http://www.go2pdf.com

52

{
DialogBox(hInstance,MAKEINTRESOURCE(
IDD_ABOUT_DIALOGBOX),hwnd,AboutDialogBoxProc);
return 0;

}

The DialogBox() function looks up the resource identified by its second argument,
assigns the callback function passed to it in the fourth argument to the resource, and
attaches the dialog to the specified window and application instance. This is why the
dialog’s properties are very important. If we had not specified visible as true then after
the above function call we wouldn’t see anything. If we had not specified foreground
then the dialog would not have focus and we would not be able to give it input. Finally,
if we had not made it popup then it would not be visible or take in input. However, as it
is, when the user click/selects the about option from the toolbar or popup menu then the
dialog will be displayed and stay in the foreground until the user clicks on the OK button,
at which time the dialog will receive a close message and shut down, returning execution
to the WinProc() function. Running the application and clicking on any of the about
buttons or menu options results in the following:

Figure 19 Screen shot of RIS application using the "About" dialog box.

http://www.go2pdf.com

53

Now let us take a look at what it takes to do something a little more involved with
dialogs. Let’s make the display dialog interact with the WinProc() and the main
application. Also, let’s make the main application modify the dialog as well.

In tribute to the age old application “Hello World,” we will be making a dialog box that
allows the user to select whether or not the phrase “Hello World” is displayed on the
screen or not. Start by creating another dialog just like the first. Assign this one an ID of
IDD_DISPLAY_DIALOGBOX. Add to this box two buttons, labeling one “Cancel” and
the other “OK”. Give them the ids IDC_DISPLAY_CANCEL and IDC_DISPLAY_OK.

Now find the check box tool and add one of these to the dialog box. Give it a descriptive
caption such as “Display “Hello World””, and ID it as IDC_DISPLAY_CHECK.

Figure 20 Finished "Display" dialog box creation.

So far nothing much has been new. Before we create the callback function for this dialog
box we need to decide exactly how we will get data in and out of this dialog. Typically,
there are a couple ways to do this. The first and easiest is to give the dialog box access to
some variable that has scope outside the dialog box.

http://www.go2pdf.com

54

While many beginning programmers will argue that this option is not the correct one
because their programming teacher told them global variables are bad, this is not true.
When used properly, global variables are a very useful programming tool. In fact, most
large programs, e.g. games, have at least a few global variables in them, if not a large
number of them.

Another option is to have the main window send a special message to the dialog with the
needed information in it, and have the dialog send a special message back to the main
window with whatever output it generates.

Because this is meant to be a simple example, the easy way out will be taken and a global
variable will be used. So at the top of the .cpp file add the following booling variable:

bool display_hello_world;

Now that we know which variable to check and modify, we can go ahead and write the
dialog box’s callback function. To some degree it is the same as the first dialog box, but
we need to add more code to the initialization function, and also add code to make it
update display_hello_world based on the state of the checkbox when the OK button is
clicked and to discard any changes if the Cancel button is clicked.

So the WM_INITDIALOG case becomes:
case WM_INITDIALOG:
{

// Check the global flag. If true set the check box.
// Otherwise uncheck it.
if(display_hello_world)
{

CheckDlgButton(hDlg,IDC_DISPLAY_CHECK,BST_CHECKED);
}
else
{

CheckDlgButton(hDlg,IDC_DISPLAY_CHECK,BST_UNCHECKED);
}
return TRUE;

}
For the most part this should be self explanatory. The only new function introduced is
the CheckDlgButton() function. It takes in the handle to the desired dialog, the id value
of the checkbox to modify, and the desired setting to make it. This last argument can be
one of three values:
BST_CHECKED
BST_UNCHECKED
BST_INDETERMINATE

The first two are obvious but the third is only used if the check box was set to be a 3-state
check box. If it is, then the last value will set the checkbox to grayed.

To finish up the callback add the following code to the WM_COMMAND case:
case WM_COMMAND:
{

http://www.go2pdf.com

55

switch(LOWORD(wParam))
{
case IDC_DISPLAY_OK:

{
// Check the Check box.
// If it is checked then set the global display
// flag to true. Other wise to false

if(IsDlgButtonChecked(hDlg,IDC_DISPLAY_CHECK)
== BST_CHECKED)

{
display_hello_world = true;

}
else
{

display_hello_world = false;
}

}
case IDC_DISPLAY_CANCEL:

{
EndDialog(hDlg,0);
return TRUE;

}
}
break;

}
If the command is IDC_DISPLAY_OK then the IsDlgButtonChecked() function is
called. This function takes as its last argument the same three possible values as the last
argument of CheckDlgButton(). In our case we want to see if the button is checked. If
the function returns BST_CHECKED then it is. If it returns anything else then we
assume that it is not checked.

Now in an effort to shrink the amount of code we have to write we make the
IDC_DISPLAY_OK case fall through to the IDC_DISPLAY_CANCEL case since that
portion of code is common to both cases.

Now the dialog box is ready to be hooked into the main application. We will start by
modifying the main callback function WM_CREATE case to initialize the
display_hello_world variable by adding, anywhere in the case statement, the line:

display_hello_world = false;

Next, we need to add some code to get the dialog box to display when it is needed. To do
this we modify the WM_COMMAND case statement for the display case like this:

case ID_POPUP_DISPLAY:
case ID_TB_DISPLAY:
case ID_MM_DISPLAY:
{

DialogBox(hInstance,MAKEINTRESOURCE(IDD_DISPLAY_DIALOGBOX)
,hwnd,DisplayDialogBoxProc);

return 0;
}

http://www.go2pdf.com

56

Now our dialog box will display and modify the state of the display_hello_world variable
correctly. There are only two more things to add.

First, we need to add the code to the WM_PAINT case statement to actually display
“Hello World!” At the moment, all we are doing is getting a handle to the device context
using the BeginPaint() function and then immediately releasing it. Remember all this
does is validate the entire device context region. So, we now want to add the following
code between the BeginPaint() function call and the EndPaint() call:

if(display_hello_world)
{

RECT text_Rectangle;
char text[] = "Hello World!";

text_Rectangle.top = (cyClient >> 1) - 10;
text_Rectangle.left = (cxClient >> 1) –

((int)strlen(text) << 2);
text_Rectangle.bottom = (cyClient >> 1) + 10;
text_Rectangle.right = (cxClient >> 1) +

((int)strlen(text) << 2);

DrawText(
hdc, // handle to DC
"Hello World!", // text to draw
(int)strlen(text), // text length
&text_Rectangle, // formatting dimensions
DT_CENTER // text-drawing options
);

}

To begin, let me explain DrawText(). This function draws the specified text (second
parameter), of the specified width (third parameter), on the specified device context (first
parameter), within the given rectangle (fourth parameter), aligning that text based on the
given flags (last parameter).

In our case we want to print “Hello World!” centered in the defined rectangle. In order to
define a rectangle all we need are two points. Windows RECT structure wants us to
define the top left point and the bottom right point. We define the top left point as having
an x-value of half the width of the client rectangle minus the length of the string we are
printing multiplied by 4. The y-value is half the context height minus 10. The bottom
right point is similarly defined with plusses instead of minuses. This particular box
definition creates a box the correct size to display all the text and centers it in the middle
of the context screen.

For those not familiar with the << and >> notation, they represent left and right bitwise
shifting respectively, which is the same thing as multiplying or dividing by 2, raised to
the number of positions shifted. These operations are only valid for integers and are
much faster than doing actual multiplication and division.

http://www.go2pdf.com

57

Remember that windows will only send a WM_PAINT message when a portion of the
window has become invalid and only the portion of the device context that is invalid will
be redrawn. So, unless the display dialog box covers the middle of the window, when it
closes the middle of the window will not be redrawn. In short, changes to the
display_hello_world variable will not be seen.

The last thing we need to do is fix this problem. The easiest way to do this is to go back
and add a few lines to the case where we call the dialog box. These lines will get the
entire device context window and invalidate the whole thing. Here is the code:

case ID_POPUP_DISPLAY:
case ID_TB_DISPLAY:
case ID_MM_DISPLAY:
{

RECT client_Rectangle;
GetClientRect(hwnd,&client_Rectangle);

DialogBox(hInstance,MAKEINTRESOURCE(IDD_DISPLAY_DIALOGBOX),
hwnd,DisplayDialogBoxProc);

InvalidateRect(hwnd,&client_Rectangle,true);
return 0;

}
The GetClientRect() function gets the entire device context rectangle and returns the
rectangle in the &client_Rectangle variable. The InvalidateRect() function invalidates
the region of the device context defined by &client_Rectangle.

There you go! That is it. If you have been following along then you should now have an
application that has a menu, popup menu, toolbar, and two dialogs. The first simply
displays an about message and the second allows the user to turn the “Hello World”
message on and off. If you were not following along or just do not want to type
everything out then the fill .cpp code can be found in the appendices of this document.
And the source code, including the resource.h and .rc files, is available for download with
this paper. The results from creating the last dialog box should look something like this:

http://www.go2pdf.com

58

Figure 21 Screen shot of RIS application using th "Display" dialog box.

Again, this code is only a very simple example. There are hundreds more functions, tools,
option, etc, that are associated with resources and managing/using them. The above
information should be sufficient for someone to understand the Escape Simulation Client
code and what it is doing. If you want more information please refer to Programming
Windows: The definitive guide to the Win32 API by Charles Petzold, chapters 9-11.

2.3.2.3 Win32/directX hybrid
How to integrate the DirectX API’s with a Win32 application was one of the concerns
raised in developing this application. To that end several test applications have been
written that have incorporated some or all of the different DirectX API’s in Win32
applications. Most of these have already been discussed to some degree in previous
sections so, in order to avoid too much redundancy, only the integration method that was
finally decided upon for the Escape Simulation Suite will be covered here.

About 3-5 years ago the developers of DirectX came out with a standard development
interface to aid in the creation of Direct3D applications. It was designed as a base class
which developers could inherit from, overloading whichever methods they wanted to
extend beyond the basic default functionality .

http://www.go2pdf.com

59

This framework is used by the Escape Simulation. It will not be covered in this
document, but [5] is a good reference, particularly chapter 5 of [5].

2.3.3 Console
For most C or C++ programmers, console applications are their starting point and bread
and butter. It is assumed that any reader of this thesis has written many of these
applications. For this reason, the basics of console applications will not be covered here
at all. Rather this section will cover only one aspect of console applications, and that is
how to get the hInstance of a console application. The reason this is useful is that it
allows a programmer to use many of the DirectX components that normally would
require a Win32 application at the least.

2.3.3.1 Acquiring a console’s hwnd
In several DirectX components it is necessary for the component to be given the hwnd of
the window or the instance of the component it is being tied to. If one is using Win32,
acquiring this handle is a simple matter, but if the application is a pure console
application then the developer is given no easy way to do this. At one point a sound
module was developed to test out the possibility of adding sound to the Escape
Simulation. This may still happen in the future, but the addition of sound will have to
wait on more important features.

One of the results of creating this module, though, was to learn how to acquire the hwnd
of a console application.

To do this the following code should be used:

GetConsoleTitle(oldWindowTitle,1028);// Grab the current console title
memset(newWindowTitle,'\0',1028); // Clear out newWindowTitle buffer
strcpy(newWindowTitle,"Please Wait: Getting Sound Window Handle....");

// Set value for newWindowTitle
// buffer

SetConsoleTitle(newWindowTitle); // Set the console title to
// newWindowTitle

Sleep(40); // Sleep for 40 msec to make sure
// the title change takes effect

hwndFound = FindWindow(NULL,newWindowTitle); // Find the desired hwnd

SetConsoleTitle(oldWindowTitle); // Restore the console's original
// title

The comments here do a pretty good job of describing what is going on. The important
thing is that the value of newWindowTitle must be unique, otherwise FindWindow() is
not guaranteed to find the right window.

http://www.go2pdf.com

60

2.3.4 DLLs
The last area of research was on the creation and use of dynamically linked libraries
(DLLs). These are used in the Escape Simulation Suite to give users a way to extend the
default functionality to meet their specific needs.

DLLs are, as the name implies, libraries that can be added to an application at runtime
instead of at the initial compilation. There are many benefits to using DLLs, as well as
many down points. The assumption has been made that the reader has access to and is
familiar with Visual Studio.net 2003 or can look up the way to tell their favorite compiler
how to compile a project as a DLL.

In order to illustrate the DLL basics, a simple DLL application will be created here. The
main application will consist of a base class that the DLL will extend. It will also consist
of main(), that will simply load up the DLL, run the class exporter function to get an
instance of the extended class, run a few methods directly from the class, and call the
second exported function to destroy the class instance.

Although this topic will be covered in more depth than other topics thus far in this paper,
the reader is still encouraged to refer to [18] and [19].

The model is very similar to the one used in the Escape Simulation.

Start by creating a blank solution. Call it whatever you would like (“bob” or “blah” are
the author’s personal favorites). Next, add two projects to this solution. The first is a
normal blank console application. The second should be the same, except that in the
application settings window, where you check blank project, you need to also check the
DLL box. This tells Visual Studio that this project should be compiled and linked as a
DLL.

Start by creating the base class that we will extend. Do this by adding a .h file to the first
project. Again, call it whatever you want. This file will be referred to hereafter as
base_class.h. In this file enter the following:

#ifndef BASE_CLASS_H
#define BASE_CLASS_H

class base_class
{
public:

virtual void set_base_string(char *str) = 0;
virtual int get_base_sting_length() = 0;
virtual void print_base_string() = 0;

virtual void set_derived_string(char *str) = 0;
virtual int get_derived_sting_length() = 0;
virtual void print_derived_string() = 0;

protected:
char base_class_string[1028];

http://www.go2pdf.com

61

};

#endif

Notice that this is a purely virtual class. Therefore you cannot actually create an instance
of it. It must be inherited. In fact, this class is completely virtual so there is no .cpp file
for it nor and inlined definitions for the methods in this class.

This file needs to be included in both projects. It is the link between them. So, you can
put it in a common folder and modify your project’s include path, if you know how, or
you can just copy this file into both project directories and include it in both projects.

Next, we need to create the derived class. Create a new .h file in the DLL project. You
would normaly call it whatever you want, but for the purposes of this sample, please call
these files derived_class.h and the corresponding .cpp, to be created in a second,
derived_class.cpp. In the .h add the following:

#ifndef DERIVED_CLASS_H
#define DERIVED_CLASS_H

#include "base_class.h"

class derived_class : public base_class
{
public:

derived_class();
~derived_class();
virtual void set_base_string(char *str);
virtual int get_base_sting_length();
virtual void print_base_string();

virtual void set_derived_string(char *str);
virtual int get_derived_sting_length();
virtual void print_derived_string();

private:
char derived_class_string[1028];

};

#endif

Finally add the following to the derived_class.cpp:

#include <iostream>

using namespace std;

#include "derived_class.h"
#include <string.h>

derived_class::derived_class()
{

http://www.go2pdf.com

62

cout << "Derived Class Constructor" << endl;
}
derived_class::~derived_class()
{

cout << "Derived Class Destructor" << endl;
}

void derived_class::set_base_string(char *str)
{

strcpy(this->base_class_string,str);
}

int derived_class::get_base_sting_length()
{

return (int)strlen(this->base_class_string);
}

void derived_class::print_base_string()
{

cout << this->base_class_string;
}

void derived_class::set_derived_string(char *str)
{

strcpy(this->derived_class_string,str);
}

int derived_class::get_derived_sting_length()
{

return (int)strlen(this->derived_class_string);
}

void derived_class::print_derived_string()
{

cout << this->derived_class_string;
}

Hopefully nothing in the above code is that unusual. Now we need to add the code to
actually export this class. To do this, create two more files in the DLL project called
dll_exporter.h & .cpp.

In the .h put the following:

#ifndef DLL_EXPORTER
#define DLL_EXPORTER

#include "base_class.h"

#define EXPORT __declspec(dllexport)

EXPORT base_class * Create(void);
EXPORT void Destroy(base_class *ptrBC);

http://www.go2pdf.com

63

#endif

Here is the first unusual thing we have seen. Windows has created this special identifier
__declspec(dllexport) that tells the compiler that the given function with the identifier is
to be added to the export table. In order to make your code more readable you can go
ahead and make a #define as above.

Next lets add the following to the .cpp:

#include "dll_exporter.h"
#include "derived_class.h"

EXPORT base_class * Create(void)
{

derived_class *ptrDC;
ptrDC = new derived_class();
return (base_class *)ptrDC;

}

EXPORT void Destroy(base_class *ptrBC)
{

derived_class *ptrDC = (derived_class *)ptrBC;
delete ptrDC;

}

Here we are doing a little polymorphism so that the caller of these functions do not need
to include derived_class.h only base_class.h.

We are almost finished with the DLL project. There are two ways to export DLL
symbols. In this example, the long way is shown. Even though it is longer, it actually
gives you a lot more power.

We need to create a .def file for the DLL project and tell the project to use it. To do this
just add a new file to the project. Normally this file could be called whatever you like, but
for our purposes, call this file dll_example.def. In the file add these lines:

LIBRARY dll_example

EXPORTS
Create @1
Destroy @2

The words LIBRARY and EXPORT are special. The first tells the compiler what to call
the library. Make this value the same as the project name. The second tells the compiler
you are listing the function names to be exported. In our case these are Create and
Destroy. The @1 and @2 values after the function names are called ordinal numbers.
These are used because it is faster for the application that loads your DLL up to look up
functions by ordinal. One of the benefits of using a .def file is you can pick these values;
otherwise they are generated for you and can change from compile to compile so you can

http://www.go2pdf.com

64

not hard code them in your calling application. In our case we will be looking them up
by name so it really does not matter for us.

In order to tell the project to use the .def fil,e open up the project’s properties. Under the
linker branch on the left, select input. Now look for the field on the right labeled Module
Definition File. Type the name of the .def file into this line, in this case dll_example.def.

Okay, the DLL project is done. It should be able to compile now without any problems.
If not, please go back over this section and make sure all steps were followed.
Now all we have to do is write the main application and use the DLL. Start by adding a
.cpp file to the main application project. Include the base_class.h file which should
already be a part of this project.

To make things that follow easier, we are going to create two type definitions. These are
going to be type definitions for two function pointer types. Please add these two lines to
the .cpp:

typedef base_class *(*CREATE)(void);
typedef void (*DESTROY)(base_class *);

Next we need two function pointers of these types:

CREATE create_class;
DESTROY destroy_class;

These are the two functions we will need in order to load the DLL and access the two
exported functions. To load the DLL we call:

HMODULE LoadLibrary(LPCTSTR lpLibFileName);

This function takes a normal null terminated c-string containing the DLL name, including
path if needed, and returns a handle to the module. If the DLL could not be found it will
return NULL. The second function is:

FARPROC GetProcAddress(HMODULE hModule, LPCTSTR lpProcName);

This function takes in the handle to the DLL which was returned by LoadLibrary() and a
c-string containing the name of the exported function you want. This name is the same
one used in the .def file.

Okay, we now have everything ready and just need to add the code for main():

int main()
{

HMODULE dll_handle; // Holds the handle to the dll when it is
opened

base_class *ptrBC; // Will point to the class when it is
created

http://www.go2pdf.com

65

// Now we need to load the dll.
dll_handle = LoadLibrary("../dll_example/debug/dll_example.dll");
if(dll_handle)
{

create_class = (CREATE)GetProcAddress(dll_handle,"Create");
destroy_class = (DESTROY)GetProcAddress(dll_handle,"Destroy");
if(create_class && destroy_class)

{
// Create an instance of the derived class
ptrBC = (*create_class)();

// Give the two strings approprate values
ptrBC->set_derived_string("This is the Derived

Class’ String");
ptrBC->set_base_string("This is the Base Class’

String");

// Ok output everything
ptrBC->print_base_string();
cout << "\nThe base string has "

<< ptrBC->get_base_sting_length()
<< " characters."
<< endl;

ptrBC->print_derived_string();
cout << "\nThe derived string has "

<< ptrBC->get_derived_sting_length()
<< " characters."
<< endl;

// Destroy the instance of the derived class
(*destroy_class)(ptrBC);

}
}
return 0;

}

Please note that as long as we plan out the base class correctly, we are able to manipulate
the derived class’s data through accessors and mutators. Also, the derived class has no
problems accessing data passed to it by the main application.

Well, there you have it. That is one way to make and use a DLL. If you followed all the
above directions then the output you should get from the executable is:

Derived Class Constructor
This is the Base Class’, String
The base string has 31 characters.
This is the Derived Class’ String
The derived string has 34 characters.
Derived Class Destructor

http://www.go2pdf.com

66

2.4 Final decisions
After all the research and test applications were written, the following decisions were
made about the different components for the Escape Simulation Suite:

2.4.1 Client
The client application was chosen to be Win32 based for the main graphical user
interface. This option was chosen because of the ease with which very good and
intuitive user interfaces can be created with Win32. Also, the amount of overhead
involved with using Win32 is relatively low when compared with other solutions.

The rendering engine chosen was pure Direct3D. The only other viable option for this
choice was OpenGL, but it was desirable to keep as many components in the same API as
possible, and since the input and network were also going to be DirectX, this choice was
pretty straightforward.

For the input, as the above paragraph hints, DirectInput was decided upon for the 3D
world interface. Otherwise standard Win32 input handling is used for the GUI input, and
DirectInput for the input to the 3D world.

DirectPlay was chosen for the network module. This was the hardest of the components
to decide upon. Creating a Windows socket library from scratch was tempting because
much of the extra overhead that comes with using another API would be avoided, but at
the same time, because of how standard DirectPlay is, and the fact that the architecture
already conformed so well with the desired messaging architecture, DirectPlay was the
end winner. (For the time being that is.)

2.4.2 Server
The server is a standard console application. It could have been made Win32, but for its
purposes that would have been overkill, not to mention keeping it as a console
application makes it that much easier to move it to a Linux/Unix platform later.

Since the IO is minimal, it will all be kept just the standard console IO.

Again, like the client, the network interface is handled by DirectPlay.

http://www.go2pdf.com

67

CHAPTER 3: Issues
After the final decisions were made at the end of chapter 2, the next question was: what
issues are created by these choices and how are these to be resolved? This chapter will
attempt to address many of these issues and describe their resolution.

3.1 State machine
The first major issue that had to be resolved was the overall state machine. This was
made more complex than usual because of the hybrid nature of the application make up.
The state machine had to be able to manipulate and call all the internal components of the
application. It needed to be able to be easily maintainable, and finally, it needed to be
efficient.

Because of our use of DirectX and Win32 there are certain tasks that need to be done in a
timely manner. It is not acceptable for the state machine to take complete control of what
is done and when. It needs to allow for these rendering and input tasks to have time to do
whatever they need to do.

After all the above requirements, the following state machine design was chosen. Each
state will have a state handler method that is a private method to the main application
class. Within a given handler the state will have its own states. At a minimum the state
must have a beginning and ending state that takes care of initialization and cleanup. No
state is allowed to block for any reason. For example, if a state must wait on some kind
of outside event, acknowledgment from first the client/server, and then the handler must
return execution to the rest of the client/server.

The current state, next state, and so on are kept track of by a global state stack. If one
state needs to transition to another state to get something done then it pushes the new
state handler’s identifier onto the stack. When a state completes its work it pops its
identifier off the top of the stack. The idle state is always the bottom state on the stack
and is never removed.

The overall application uses a modified version of the DirectX application SDK that was
introduced in the second chapter. Remember that in this architecture, after the
application has been setup, it enters the run() function that will loop until it is told to quit
the application. Then it gets a chance to clean up any memory, save data, etc. The
current state machine handler is called each time through the run() loop after all messages
from the network and Win32 were handled and the current frame has been rendered.
Because no handler is allowed to block, this solution allows for the critical graphics and
IO functions to be called in a timely manner and avoids the potential of deadlock.

This solution also is very easy to maintain. If a new state is needed, then the developer
writes a handler method to do whatever the state requires, adds a new identifier to the
handler ID table, and finally adds the handler’s function call to the state case switch
statement in the application’s run() method. Because the handler is a private method in

http://www.go2pdf.com

68

the main application class it has the rights to use, look at, and modify everything in the
application.

This solution to the state machine meets all the requirements for this particular
application.

3.2 Inter-module communication
Inter-module communication, unfortunately, is an issue that needs to be addressed. In an
ideal application all modules would be completely independent, and for the most part the
different modules in this application have been designed to be as independent as possible.
There are three points where there is a significant amount of inter-module
communication. The Win32 WinProc() and other dialog callback functions, the network
receive callback function, and the state machine. To some degree it may have been
possible to completely get rid of the dependencies here, but this would have meant
adding a lot of extra accessors and mutators and, in general, extra overhead.

There are several obvious concerns with having this type of communication. Since the
network callback function is multithreaded, data security must be guaranteed. This is
done through standard Windows semaphores. Obviously it was desirable to avoid any
deadly embraces. These can be avoided with good programming. The last problem is
how to actually make the data accessible to these components.

A commonly used solution for this last problem is the use of a singleton class, which only
allows for a single instance of this class to exist and allows for global access to the class.
So in order to give the callback functions access to the main application class then we
make the main application class as a singleton and then we can access it directly. As long
as these functions are declared as friends ,they will have access to all public and protected
data in the singleton class.

Both the client and server applications have their main classes declared as singleton.
Within the callback functions semaphores are used to avoid data corruption problems
and, using careful programming, deadlock can be avoided.

3.3 Win32 vs. DirectX
There are several issues that are raised when combining DirectX with Win32. When it is
run in windowed mode DirectX will, by default, take over then entire client window.
This means any menus, toolbars, etc, will be completely covered. Also, any GDI
graphics drawn to the client area will be covered. Input can also be a problem. If both
DirectX and Win32 are gathering input from the same source then some unexpected
situations can arise.

To solve the rendering problem you need to modify the rectangle that you pass to the 3D
engine. You are required to calculate the amount to reduce it by so that all the Win32
resources can be viewed. At worst, this will require some trial and error to get the values
right.

http://www.go2pdf.com

69

The input problem can be solved by allowing DirectX to normally have all the input from
the game pad at all times, to have keyboard input unless a menu or dialog is selected, and
to have mouse input as long as the mouse is in the render window or, like the keyboard,
there is no menu or dialog open. This works because Win32 never gets input from the
game pad. In this application, the mouse input is never directly used by Win32. This
means we never look at mouse clicks or position messages, we only look for messages
from menu selections or button clicks. Menus, tool bar buttons, and dialog buttons can
only be selected or clicked if the mouse is not within the rendering window or if a dialog
is open. This logic also works for the keyboard because the keys that are used by both
the rendering engine and the Win32 interface are only used in the interface when a menu
or dialog is open.

3.4 Console vs. DirectX
This section was already partially covered above. The main issue with using DirectX
with console applications is that many of the DirectX components require a handle to an
application window or instance. WinMain() has the instance value as its first argument,
but a normal console application’s main() functions does not. In order to take care of this
problem we need to either start a Win32 application and immediately attach a console,
redirecting all output to the console, or we need to be able to get the instance and window
handles from the operating system.

The second of these two options is the more desirable, mainly because it avoids as much
excess windows code as possible.

Getting the window handle of a console was covered in more depth above, but in a
nutshell, getting the instance handle boils down to these three function-calls:

GetConsoleTitle()
SetConsoleTitle()
FindWindow()

The actual code for using these calls was covered in 2.3.3.1 please refer to this section for
the example.

3.5 Client Server
The main issues with the server are network communication with the client, and making
the world engine capable of using DLL pluggins.

With the server it is important that we guarantee the packets being transmitted. If any
packets are lost it could mean very bad things for the application. Also, it is important to
get a very high throughput on the number of packets we are able to send. Obviously we
cannot have both, so we will try and find a happy medium.

As far as reliability is concerned we will be using TCP in order to guarantee that
everything makes it to the destination safe and sound. As far as throughput we first try to
make the packets as small as possible. Second, we try to reduce the number of packets
that need to be sent by grouping them together when possible.

http://www.go2pdf.com

70

Solving the DLL issue was a major thing. This application would not be nearly as useful
if the researchers were not able to modify whatever they needed to get their work done.
That being said, it is not an easy thing to get the pluggins to work correctly. Because we
wanted to allow the researcher to create objects that know about and have the ability to
see and work with all other objects, we needed to make each of the objects capable of
accessing all the known object data. In order to do this, almost all the .h and .cpp files
must be linked into each pluggin. This requirement is a very annoying one that is
difficult, if not impossible, to get around. Furthermore,there is also the issue of actually
making the application code general enough to allow for taking in multiple DLLs of
many different types and requirements. For the most part, this problem has been resolved
with careful programming, virtual classes, and polymorphism.

3.6 In general
As noted above, one of the general issues that has had to be resolved is how to make the
program as general and flexible as possible, while still abstracting as many of the little
nitty-gritty details from the developer. As a result, they do not have to be experts in
graphics programming, DLLs, and the general internals of the Escape Simulation Suite to
be able to write working pluggins. That being the case, we are restricted from using
DLLs for object pluggins except to add server-side functionality.

Because of this restriction, special care has had to be made to make the client very
graphically verbose and flexible. The simulation file has had to be designed to be able to
be very descriptive so that the client can know exactly what to expect and how to
respond.

http://www.go2pdf.com

71

CHAPTER 4: Escape Simulator

4.1 Application Classes
The client and server are designed in a similar hierarchical structure. The main tier is the
class ESCAPE_SIMULATION_CLIENT or ESCAPE_SIMULATION_SERVER
respectively. The client class inherits from the graphics and network engines. It is
created and called by the Win32 code. Server side, the class is called by main() and it
inherits from the network engine and the world engine. Both engines have access to and
can use the math engine.

In the next sections each of the components that make up the Escape Simulator will be
covered. Though there is text, code, diagrams, and screen shots included here, the code
in its entirety is included in the appendices along with complete UML diagrams. Also
included with this document is a zipped version of the Visual Studio.net 2003 solution.

4.1.1 Setting up your computer
Before you jump into the source code , you need to do a few things to get your computer
ready to compile and/or run the code. First and foremost, the assumption was made that
most of the readers will be running windows XP. If that is not the case, you may or may
not be able to get this working on your computer. You will need to install the latest
version of the DirectX SDK on your computer. This can be downloaded from the
Microsoft’s homepage. If all you want to do is run the executables on your computer,
then you only need to download and install the runtime libraries. If you want to compile
the code or write your own pluggins then you will need the entire 250+MByte SDK.

If you are going to create your own project from scratch there are many library files that
you will have to link into your project. You need to add the following libraries to your
projects:

For the client:
comctl32.lib ws2_32.lib d3dx9dt.lib d3d9.lib d3dxof.lib dinput.lib dinput8.lib dplayx.lib
winmm.lib dxguid.lib odbc32.lib odbccp32.lib

For the server:
dplayx.lib dxguid.lib comctl32.lib winmm.lib odbc32.lib odbccp32.lib

If you just want to follow along in the solution that is provided, you do not need to worry
about these libraries. They are already set to be linked properly.

In its current state the Escape Simulation spans over 77+ files and over 16,000 lines of
code. It would be impossible to cover every line. If nothing more was written, cutting
and pasting the code into this thesis would make it over 300 pages long. Also, every
block of code will not be covered. The code will be covered on a component-by-
component basis showing its structure, and pointing out its critical or complicated
elements. It is up to the reader to look through the files that are being covered and grab

http://www.go2pdf.com

72

the usual components of code, i.e. include blocks, #defines, forward declarations, etc. All
this code should be self-explanatory. If you are not familiar with any of the above terms,
please familiarize yourself with a reference on C & C++ programming, preferably one
that covers object oriented programming style and techniques. It is recommended that
the reader first look through [3].

Finally, because of the shear volume of information to be covered, this chapter will be
fairly fast paced.

4.1.2 Escape Simulation Client Class
This is one of the largest of the classes that are used by the Escape Simulation Client.
This class inherits from the graphics and network classes. It contains the state machine
and all high level application code, such as application initialization, setup, run, and
shutdown. Each of these function and code segments will be covered in the sections that
follow. This section will only cover this class. Discussion on the graphics and network
will be addressed in later sections.

4.1.2.1 Escape Simulation Client Class header
The first line of importance is the class prototype:

class ESCAPE_SIMULATION_CLIENT : public
Singleton<ESCAPE_SIMULATION_CLIENT>, public D3D_GRAPHICS, public EVC

As stated in the Inter-module communication section of Chapter 3, one of the issues is
being able to communicate information throughout the application. For example, the
network message handler needs to be able to make changes to the graphics data based on
the messages it is receiving. It is also important that we only have one instance of this
ESCAPE_SIMULATION_CLIENT.

In order to take care of both of these problems we also have this class inherit from the
Singleton template class:

// Macros
#define SINGLETON(sing_name) sing_name::GetSingleton()

namespace Es
{

// SingletonException class
class SingletonException : public Exception
{
public:

// Constructors/Desturctor
SingletonException(std::string msg) : Exception(msg) { }
virtual ~SingletonException() { }

};
}

// Singleton class
template <typename T>
class Singleton

http://www.go2pdf.com

73

{
public:

// Destructor
virtual ~Singleton()
{

if(!IsInitialized()) throw
Es::SingletonException("Encoutered an uninitialized
Singleton instance upong destruction.");
Singleton<T>::s_ptSingleton = NULL;

}

// Reporters
static bool IsInitialized()
{

return NULL!=Singleton<T>::s_ptSingleton;
}

static T& GetSingleton()
{

if(!IsInitialized()) throw
Es::NullReferenceException("Singleton referenced without
being initialized.");
return *Singleton<T>::s_ptSingleton;

}

protected:
// Constructor
Singleton()
{

if(IsInitialized()) throw Es::SingletonException("Singleton
instance already exists.");
// Determine the derived object's starting memory location
int offset = (int)(T*)1 - (int)(Singleton<T>*)(T*)1;
Singleton<T>::s_ptSingleton = (T*)((int)this + offset);

}

private:
// Variables
static T* s_ptSingleton; // Points to the only instance

//of this class
};

// Static members
template <typename T> T* Singleton<T>::s_ptSingleton = NULL;

When looking at this class you notice the static s_ptSingleton member. This variable
ensures that there can only be one instance of this class at any given time. In the
constructor it checks to see if this pointer already has a value. If it does then it throws an
exception that should be caught by the code that tried to create the new instance of the
ESCAPE_SIMULATION_CLIENT class.

http://www.go2pdf.com

74

The next thing that to note is that this class inherits from the D3D_GRAPHICS and EVC
classes. D3D_GRAPHICS is the Direct3D engine. EVC stands for the Evacuation
Client network module. The network engine is actually made up of two modules: client
and server. Each has its own message handler and sets up the network properly
according to their respective roles. The server counterpart to the EVC is called the EVS.

The next chunk of code that should be looked at is the public functions:

ESCAPE_SIMULATION_CLIENT(HINSTANCE _hInstance);
virtual ~ESCAPE_SIMULATION_CLIENT();

virtual INT Run();

HRESULT MainInit();
HRESULT MainCreate();
HRESULT MainRun();
HRESULT MainStop();
HRESULT MainSaveData();
HRESULT MainDestroy();

There is nothing special being done with the constructor and destructor. However, the
other functions are what are used to get the application up and running. MainInit() is
responsible for initializing anything that needs to be initialized. MainCreate() creates
instances of all variables that require special creation. MainRun() is a wrapper that calls
the Run() method. More about run() will be covered below. MainStop() is called if the
application is halted for any reason. MainSaveData() is responsible for saving important
data that is not saved within a simulation file by the state machine. Finally,
MainDestroy() is responsible for destroying all resources and general cleanup of data
before the destructor is called. Note: Several of these functions will probably be
removed or combined when the beta version of this code is ready.

The Run() method is unique in that it is an overloaded function. It replaces the base
Run() method found in the CD3DApplication which was mentioned in the second
chapter. More will be mentioned about this class and particular function later. Right
now is it enough to say that this class is responsible for the low level Direct3D render
engine details. All of the critical methods from this class are declared virtual so they can
be overloaded to fit the particular applications specifications. In our case we are
overloading the Run() method to add the state machine to it. Run() is called every render
loop and does the following tasks: checks for windows messages and, if there are any,
handles them; advances the graphics as needed based on user input; renders the graphics;
and finally, enters the correct state machine state.

Next in the class prototype is a group of variables for setting up and maintaining the
Win32 windows, as well as some semaphores for avoiding data corruption. These last
variables will briefly be covered in the network message handler.

After the above variable declarations, we have the beginning of the state machine code.
The state machine has been set up so that each state has a handler and variables that are

http://www.go2pdf.com

75

unique to it. The handlers are called in the Run() method. Here are the prototypes for
these handlers and the variables associated with each:

// STATE MACHINE VARIABLES AND METHODS
Stack *states;

HRESULT STATE_SetupSimulation();
bool simulationWiped;
bool serverWorldLoaded;
bool fieldDllLoaded;

HRESULT STATE_MicroToMacro();
HRESULT STATE_MacroToMicro();
HRESULT STATE_NetworkConnect();
bool id_recieved;

HRESULT STATE_LoadResorce();
HRESULT STATE_ClearSimulation();
HRESULT STATE_LoadSimulation();
HRESULT STATE_SaveSimulation();
bool FILE_LIST_RECEIVED; // Notifies when the file list is

// received
void *fileList; // Will contain the file list.
std::string simFileName;
std::string mapFileName;
unsigned int simFileID; // Current simulation file ID
void *object_creation_buffer;
unsigned int object_creation_bytes;
unsigned int object_creation_typeID;

// This state handles file requests from the server
HRESULT STATE_ReceiveFileFromServer();
char DesiredFile[2048]; // File to get from the server
char DestinationFile[2048]; // Destination location and

// filename for the requested file
bool FILE_RECEIVED; // Tells the state machine when the

// file has been recieved and is
// ready to be handled

void *received_data_msg; // The msg received from the server
// is stored here. REMEMBER TO
// CAST this to the proper struct.

HRESULT STATE_Exiting();
HRESULT STATE_Idle();

Each state has a unique identifier that is used in Run() to know which state to go into.
These identifiers are defined in ESCAPE_SIMULATION_CLIENT_STATE_DEFS.h.
Along with the identifiers, each state also has a set of internal states that are uniquely
defined in this same file. Please refer back to this portion when reading the section about
the handlers:

enum APPLICATION_STATES
{

http://www.go2pdf.com

76

STATE_UNSIGNED, // State Machine has
not been initilized yet

STATE_SETUPSIMULAITON, // Read simulation file and
setup application accordingly

STATE_CLEARSIMULATION, // Clear simulation contents,
start from scratch

STATE_LOADSIMULATION, // Read simulation file and
setup application accordingly

STATE_SAVESIMULATION, // Write simulation file
based on the current settings

STATE_MICROTOMACRO, // Switching between
microscopic to macroscopic models

STATE_MACROTOMICRO, // Switching between
macroscopic to microscopic models

STATE_NETWORKCONNECTION, // Establish Network
Connection

STATE_LOADRESORCE, // Load new resorce
STATE_CREATETEMPLATE, // Creates an object type on

the server
STATE_CREATEOBJECT, // Creates an object on

the server
STATE_RECEIVEFILEFROMSERVER, // Receive a file from the server

and save it accordingly
STATE_EXITING, // Preform whatever is

needed to exit the application cleanly
STATE_IDLE // Idol State

};

enum SETUPSIMULATION_STATES
{

STATE_SETUPSIMULATION_ENTER, //
Beginning state

STATE_SETUPSIMULATION_WAITFORSERVERWIPE, // Wait for
server response

STATE_SETUPSIMULATION_OPENSIMFILE, // Open the
Simulation file

STATE_SETUPSIMULATION_END //
Setup any final stuff needed
};

enum CLEARSIMULATION_STATES
{

CLEARSIMULATION_STATES_ENTER, //
Beginning state

CLEARSIMULATION_STATES_CLEARSIMPARAMETERS, // Clear
general simulation information

CLEARSIMULATION_STATES_CLEARPUGLINS, // Clear
the simulation plugins (dlls)

CLEARSIMULATION_STATES_CLEARTEMPLATES, // Clear
the object resources (meshes, textures)

CLEARSIMULATION_STATES_CLEARMAP, // Clear
the map information (world data)

CLEARSIMULATION_STATES_CLEAROBJECTS, // Clear
the objects in the simulation

CLEARSIMULATION_STATES_END //
Setup any final stuff needed
};

http://www.go2pdf.com

77

enum LOADSIMULATION_STATES
{

STATE_LOADSIMULATION_ENTER, //
Beginning state

STATE_LOADSIMULATION_OPENSIMFILE, // Open the
Simulation file

STATE_LOADSIMULATION_LOADSIMPARAMETERS, // Load the
setup information form the Simulation file

STATE_LOADSIMULATION_LOADPLUGINS, // Load the
simulation plugins (dlls)

STATE_LOADSIMULATION_LOADTEMPLATES, // Load the
object resources (meshes, textures)

STATE_LOADSIMULATION_LOADMAP, // Load the
map information (world data)

STATE_LOADSIMULATION_WAITFORWORLDLOAD, // Waiting
for server reply

STATE_LOADSIMULATION_LOADSTATICOBJECTS, // Load the
static objects based off the simulation file data

STATE_LOADSIMULATION_LOADDYNAMICOBJECTS, // Load all
dynamic objects based off the simulation file data

STATE_LOADSIMULATION_END //
Setup any final stuff needed
};

enum SAVESIMULATION_STATES
{

STATE_SAVESIMULATION_ENTER, //
Beginning state

STATE_SAVESIMULATION_CREATESIMFILE, // Open the
Simulation file

STATE_SAVESIMULATION_SAVESIMPARAMETERS, // Write
the setup information form the Simulation file

STATE_SAVESIMULATION_SAVEPLUGINS, // Write
the simulation plugins (dlls)

STATE_SAVESIMULATION_SAVETEMPLATES, // Write
the object resources (meshes, tetures)

STATE_SAVESIMULATION_SAVEMAP, // Write
the map information (world data)

STATE_SAVESIMULATION_SAVESTATICOBJECTS, // Write
the static objects based off the current simulation data

STATE_SAVESIMULATION_SAVEDYNAMICOBJECTS, // Write all
dynamic objects based off the current simulation data

STATE_SAVESIMULATION_END //
Setup any final stuff needed
};

enum MICROTOMACRO_STATES
{

STATE_MICROTOMACRO_ENTER, //
Beginning state In this state send the stop simulation command

STATE_MICROTOMACRO_WAITFORSERVERCONFERMATION, // Before changes
can be made to the dynamic data simulation must have been stoped both
server and client side

STATE_MICROTOMACRO_CHANGEDATA, //
Changes the data from micro to macro

http://www.go2pdf.com

78

STATE_MICROTOMACRO_WAITFORCHANGECONFERMATION, // Waiting for
server confirmation that change has been made

STATE_MICROTOMACRO_RESTARTSIMULATION, // If the
simulation was halted then restart simulation

STATE_MICROTOMACRO_END //
Final State
};

enum MACROTOMICRO_STATES
{

STATE_MACROTOMICRO_ENTER, //
Beginning state In this state send the stop simulation command

STATE_MACROTOMICRO_WAITFORSERVERCONFERMATION, // Before changes
can be made to the dynamic data simulation must have been stoped both
server and client side

STATE_MACROTOMICRO_CHANGEDATA, //
Changes the data from macro to micro

STATE_MACROTOMICRO_WAITFORCHANGECONFERMATION, // Waiting for
server confirmation that change has been made

STATE_MACROTOMICRO_RESTARTSIMULATION, // If the
simulation was halted then restart simulation

STATE_MACROTOMICRO_END //
Final State
};

enum NETWORKCONNECTION_STATES
{

STATE_NETWORKCONNECTION_ENTER, //
Beginning state

STATE_NETWORKCONNECTION_WAITINGFORID, // Waiting
for the server to id

STATE_NETWORKCONNECTION_END //
Final State
};

enum LOADRESORCE_STATES
{

STATE_LOADRESORCE_ENTER, //
Beginning state

STATE_LOADRESORCE_END //
Final State
};

enum RECEIVEFILEFROMSERVER_STATES
{

STATE_RECEIVEFILEFROMSERVER_ENTER, //
Beginning state

STATE_RECEIVEFILEFROMSERVER_WAITFORFILE, // Wait for the
client to recieve the file from the server

STATE_RECEIVEFILEFROMSERVER_END //
Final State
};

The actual state that the state machine is in is kept track of by the state’s variable. This
variable is of type Stack class. The class supports the usual functionality that you would

http://www.go2pdf.com

79

expect from a stack, such as pushing, popping, peaking, etc. The Stack class is defined in
the stack.h and .cpp files. The prototype looks like this:

class Stack
{
public:

Stack(unsigned long val = 0);
~Stack();

void clear();
unsigned long peak();
void push(unsigned long val);
unsigned long pop();

private:
unsigned long *stack;
unsigned long current_size;
unsigned long current_position;
unsigned long starting_val;

};

If there is any question about what these methods do, please look at the documentation
included in the stack files. This stack is designed to be generic in that it could be used for
more than the state machine.

The current state of the state machine is always the top state. If another state needs to be
run then that state’s identifier is pushed onto the stack. Once a state successfully finishes,
it pops itself off the top of the stack. The idle state is always the bottom of the stack and
never is popped from the stack. The stack class ensures this last functionality. It sets the
initial value that is passed to it at instantiation to be its bottom-most value, and if the last
value is ever popped off by accident then it restores this value to the stack.

More will be said about the state machine later.

The final variables in this class are used to gather network information for debugging
purposes and will eventually be removed.

The last method in the class is:

HRESULT MakeWindow();

This method creates the actual Win32 windows for the application. This code was pulled
out of its standard place in WinMain() to allow for a more modular division of the code.

4.1.2.2 Escape Simulation Client Class .cpp
For the most part this section will show the different definitions of the methods talked
about in the last section. Anything that requires more information will also be covered
here.

http://www.go2pdf.com

80

ESCAPE_SIMULATION_CLIENT::ESCAPE_SIMULATION_CLIENT(HINSTANCE
_hInstance) : Singleton<ESCAPE_SIMULATION_CLIENT>(),
D3D_GRAPHICS(_hInstance)
{

// Set all structures/classes/variables to their default values
this->hInstance = _hInstance;
memset(szAppName,'\0',256);
memset(szTextOutName,'\0',256);
x = y = CW_USEDEFAULT;
wheight = wwidth = 800;
memset(this->global_status_message,'\0',1024);

this->network_rate = 0.0f;
this->packet_count = 0.0f;
this->startTime = 0;
this->dt = 0;
this->dynamic_switch_done = false;
this->simulating = false;
this->id_recieved = false;
this->hDynamic_data_mutex = CreateMutex(NULL,false,NULL);
this->states = new Stack(STATE_IDLE);
this->states->push(STATE_LOADSIMULATION);
this->states->push(STATE_SETUPSIMULAITON);
this->states->push(STATE_UNSIGNED);
this->fileList = NULL;

// Will contain the file list.
this->received_data_msg = NULL;

// The msg received from the server is stored here.
REMEMBER TO CAST this to the proper struct.
}

Nothing too special here. Notice the instantiation and priming of the state machine.

this->states = new Stack(STATE_IDLE);
this->states->push(STATE_LOADSIMULATION);
this->states->push(STATE_SETUPSIMULAITON);
this->states->push(STATE_UNSIGNED);

This ensures that after the application has finished initializing, the state machine will start
in its setup state and then will setup and load the previous simulation if it exists.

ESCAPE_SIMULATION_CLIENT::~ESCAPE_SIMULATION_CLIENT()
{

CloseHandle(hDynamic_data_mutex);
// Final cleanup of all remaining objects

}

We need to close down all semaphores here.

HRESULT ESCAPE_SIMULATION_CLIENT::MainInit()
{

// Load all param files. Setup all structures/classes/variables
accordingly

strcpy(szAppName,"Escape Simulation Client");
strcpy(szTextOutName,"Text Out Window");

http://www.go2pdf.com

81

simFileName = "default.sim";
mapFileName = "world.vmap";
this->simFileID = 0;
hr = this->MakeWindow();
InitCommonControls();
return hr;

}

Here we are initializing the Win32 stuff, calling MakeWindow() to actually make the
windows and initializing common controls for the Win32 resources.

HRESULT ESCAPE_SIMULATION_CLIENT::MainCreate()
{

hr = this->Create(hInstance);
return hr;

}

The call to Create here calls the CD3DApplication’s Create method to have it create and
initialize the 3D engine.

HRESULT ESCAPE_SIMULATION_CLIENT::MainRun()
{

// All initilization is finished and the application is ready.
// Start the application in full swing
hr = this->Run();
return hr;

}

At the moment just call the Run() function.

HRESULT ESCAPE_SIMULATION_CLIENT::MainStop()
{

// Stop the application in preporation for closing everything up
return S_OK;

}

HRESULT ESCAPE_SIMULATION_CLIENT::MainSaveData()
{

// Save all important data and settings
return S_OK;

}

HRESULT ESCAPE_SIMULATION_CLIENT::MainDestroy()
{

// This might be needed. We will see.
return S_OK;

}

The last three functions are blank at the moment. They are mainly here for potential
future expansion.

HRESULT ESCAPE_SIMULATION_CLIENT::MakeWindow()
{

http://www.go2pdf.com

82

wndclass.style = CS_HREDRAW | CS_VREDRAW;
wndclass.lpfnWndProc =

(WNDPROC)ESCAPE_SIMULATION_CLIET_WndProc;
wndclass.cbClsExtra = 0;
wndclass.cbWndExtra = 0;
wndclass.hInstance = hInstance;
wndclass.hIcon = LoadIcon(hInstance,

MAKEINTRESOURCE(IDI_ICON));
wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);
wndclass.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
wndclass.lpszMenuName = NULL;
wndclass.lpszClassName = szAppName;

if(!RegisterClass(&wndclass))
{

MessageBox(NULL,TEXT("ERROR: Could not register class."),
szAppName, MB_ICONERROR);

return 0;
}

hmenu = LoadMenu(hInstance,MAKEINTRESOURCE(IDR_MENU));

m_hWndParent = CreateWindow(szAppName, TEXT("Escape Simulation
Client"),

WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, CW_USEDEFAULT,
600, 600,
NULL, hmenu, hInstance, NULL);

//Graphics Window Creation & Registration
wndclassTextOut.style = CS_HREDRAW | CS_VREDRAW;
wndclassTextOut.lpfnWndProc =

(WNDPROC)ESCAPE_SIMULATION_CLIENT_TextOutProc;
wndclassTextOut.cbClsExtra = 0;
wndclassTextOut.cbWndExtra = 0;
wndclassTextOut.hInstance = hInstance;
wndclassTextOut.hIcon = LoadIcon(NULL,

IDI_APPLICATION);
wndclassTextOut.hCursor = LoadCursor(NULL, IDC_ARROW);
wndclassTextOut.hbrBackground = (HBRUSH)

GetStockObject(GRAY_BRUSH);
wndclassTextOut.lpszMenuName = NULL;
wndclassTextOut.lpszClassName = szTextOutName;

if(!RegisterClass (&wndclassTextOut))
{

char errorMsg[256];
memset(errorMsg,'\0',256);
strcpy(errorMsg,"Error creating class: #");
itoa((int)GetLastError(),&errorMsg[strlen(errorMsg)],10);
MessageBox(NULL, TEXT (errorMsg),szTextOutName,

MB_ICONERROR);
return 0;

}

// Generate Text Out Window

http://www.go2pdf.com

83

hwndTextOut = CreateWindow(szTextOutName, TEXT ("TextOutput
Window"),

WS_CHILD | WS_VISIBLE,
CW_USEDEFAULT, CW_USEDEFAULT,
100, CW_USEDEFAULT,
NULL, NULL, hInstance, NULL);

TBBUTTON tbrButtons[6];

tbrButtons[0].iBitmap = 0;
tbrButtons[0].idCommand = ID_TBPLAY;
tbrButtons[0].fsState = TBSTATE_ENABLED;
tbrButtons[0].fsStyle = TBSTYLE_BUTTON;
tbrButtons[0].dwData = 0L;
tbrButtons[0].iBitmap = 0;
tbrButtons[0].iString = 0;

tbrButtons[1].iBitmap = 1;
tbrButtons[1].idCommand = ID_TBPAUSE;
tbrButtons[1].fsState = TBSTATE_ENABLED;
tbrButtons[1].fsStyle = TBSTYLE_BUTTON;
tbrButtons[1].dwData = 0L;
tbrButtons[1].iString = 0;

tbrButtons[2].iBitmap = 2;
tbrButtons[2].idCommand = ID_TBSTOP;
tbrButtons[2].fsState = TBSTATE_ENABLED;
tbrButtons[2].fsStyle = TBSTYLE_SEP;
tbrButtons[2].dwData = 0L;
tbrButtons[2].iString = 0;

tbrButtons[3].iBitmap = 3;
tbrButtons[3].idCommand = ID_TBRW;
tbrButtons[3].fsState = TBSTATE_ENABLED;
tbrButtons[3].fsStyle = TBSTYLE_BUTTON;
tbrButtons[3].dwData = 0L;
tbrButtons[3].iString = 0;

tbrButtons[4].iBitmap = 4;
tbrButtons[4].idCommand = ID_TBFF;
tbrButtons[4].fsState = TBSTATE_ENABLED;
tbrButtons[4].fsStyle = TBSTYLE_BUTTON;
tbrButtons[4].dwData = 0L;
tbrButtons[4].iString = 0;

tbrButtons[5].iBitmap = 5;
tbrButtons[5].idCommand = ID_TBQUIT;
tbrButtons[5].fsState = TBSTATE_ENABLED;
tbrButtons[5].fsStyle = TBSTYLE_BUTTON;
tbrButtons[5].dwData = 0L;
tbrButtons[5].iString = 0;

hWndToolbar = CreateToolbarEx(m_hWndParent, WS_VISIBLE | WS_CHILD
| WS_BORDER | TBSTYLE_ALTDRAG,

IDR_SIMTB, 6, hInstance,
IDR_SIMTB,tbrButtons, 6,

http://www.go2pdf.com

84

16, 16, 16, 16,
sizeof(TBBUTTON));
/**
**

CHILD WINDOW TEST

***/

RECT tempRect;
GetClientRect(m_hWndParent, &tempRect);
this->m_hWndParent = m_hWndParent;

wndclass.style = CS_HREDRAW | CS_VREDRAW;
wndclass.lpfnWndProc = (WNDPROC)D3DWndProc;
wndclass.cbClsExtra = 0;
wndclass.cbWndExtra = 0;
wndclass.hInstance = hInstance;
wndclass.hIcon = LoadIcon(hInstance,

MAKEINTRESOURCE(IDI_ICON));
wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);
wndclass.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
wndclass.lpszMenuName = NULL;
wndclass.lpszClassName = TEXT("D3DWINDOW");

RegisterClass(&wndclass);
m_hWnd = CreateWindow(TEXT("D3DWINDOW"),TEXT(""),

WS_CHILD | WS_VISIBLE |
WS_BORDER | WS_CLIPSIBLINGS,

0,16,tempRect.right,tempRect.bottom - 28,
m_hWndParent,(HMENU)

0,hInstance, NULL);

ShowWindow(m_hWnd,SW_SHOW);
UpdateWindow(m_hWnd);

/**
**

END CHILD WINDOW TEST

***/

ShowWindow(m_hWndParent,SW_SHOW);
UpdateWindow(m_hWndParent);

ShowWindow(hwndTextOut,SW_SHOW);
UpdateWindow(hwndTextOut);

//while(GetMessage(&msg,NULL,0,0))
//{
// TranslateMessage(&msg);
// DispatchMessage(&msg);
//}

//return (int)msg.wParam;
return S_OK;

}

http://www.go2pdf.com

85

Despite it’s size, this function should not be too difficult to understand. If you followed
the explanation of resources in Chapter 2, you will notice that this function is actually
creating several windows and resources that will be used in the rest of the application.
This is all basic Win32 stuff and should not come as a surprise. There is one very
important thing happening here aside from the creation of these windows/resources:
When the main window is created:

m_hWndParent = CreateWindow(szAppName, TEXT("Escape Si…

its handle is assigned to m_hWndParent. This variable is part of the 3D engine and the
engine checks this handle to see if the 3D engine already has a window to render to. If
this handle is NULL, it creates the missing window. In this application we take care of
this creation ourselves.

Finally, the last method definition in the file is the Run() method. This is one of the most
important functions for this application. It is responsible for running the Win32 message
handler, the graphics, and the state machine. Here is the code:

INT ESCAPE_SIMULATION_CLIENT::Run()
{

// Load keyboard accelerators
HACCEL hAccel = LoadAccelerators(NULL,

MAKEINTRESOURCE(IDR_MAIN_ACCEL));

// Now we're ready to recieve and process Windows messages.
bool bGotMsg;
MSG msg;
msg.message = WM_NULL;
PeekMessage(&msg, NULL, 0U, 0U, PM_NOREMOVE);

while(WM_QUIT != msg.message)
{

// Use PeekMessage() if the app is active, so we can use idle
// time to
// render the scene. Else, use GetMessage() to avoid eating CPU
// time.

if(m_bActive)
bGotMsg = (PeekMessage(&msg, NULL, 0U, 0U, PM_REMOVE) != 0);

else
bGotMsg = (GetMessage(&msg, NULL, 0U, 0U) != 0);

if(bGotMsg)
{

// Translate and dispatch the message
if(hAccel == NULL || m_hWnd == NULL ||

0 == TranslateAccelerator(m_hWnd, hAccel, &msg))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}
}
else

http://www.go2pdf.com

86

{
if(m_bDeviceLost)
{

// Yield some CPU time to other processes
Sleep(100); // 100 milliseconds

}
// Render a frame during idle time (no messages are
// waiting)
if(m_bActive)
{

if(FAILED(Render3DEnvironment()))
SendMessage(m_hWnd, WM_CLOSE, 0, 0);

}
}

// State Machine Code starts here.
WaitForSingleObject(hDynamic_data_mutex,INFINITE);
switch(states->peak())
{
case STATE_UNSIGNED: // State Machine

has not been initilized yet
this->states->pop();
break;

case STATE_SETUPSIMULAITON: // Initialize a
simulation environment

STATE_SetupSimulation();
break;

case STATE_CLEARSIMULATION: // Clear
simulation data (start from scratch)

STATE_ClearSimulation();
break;

case STATE_LOADSIMULATION: // Read
simulation file and setup application accordingly

STATE_LoadSimulation();
break;

case STATE_SAVESIMULATION: // Save
simulation data into a sim file

STATE_SaveSimulation();
break;

case STATE_MICROTOMACRO: // Switching
between microscopic to macroscopic models

STATE_MicroToMacro();
break;

case STATE_MACROTOMICRO: // Switching
between macroscopic to microscopic models

STATE_MacroToMicro();
break;

case STATE_NETWORKCONNECTION: // Establish Network
Connection

STATE_NetworkConnect();
break;

case STATE_LOADRESORCE: // Load new
resorce

STATE_LoadResorce();
break;

case STATE_RECEIVEFILEFROMSERVER:
STATE_ReceiveFileFromServer();
break;

http://www.go2pdf.com

87

case STATE_EXITING:
STATE_Exiting();
break;

case STATE_IDLE: // Idle State
default: // General

state
STATE_Idle();
break;

}
ReleaseMutex(hDynamic_data_mutex);

}
if(hAccel != NULL)

DestroyAcceleratorTable(hAccel);

return (INT)msg.wParam;
}

Here, after some preliminary initialization, the method enters a loop until it is told to exit.
Inside the loop it first checks for new messages. If there is one it will make sure the
window and accelerators exist and are valid. If not, it fixes to problem then runs the 3D
graphics engine and passes the message to the Win32 message handler.

Finally, it will wait and acquire the semaphore so the state machine can modify the data if
needed. Once the semaphore is acquired it will peak at the state stack and switch on the
top value on the stack, entering the state handler assigned to the given ID value.

When the while loop is told to end by receiving a WM_QUIT message it will clean up
the accelerator table and return.

4.1.2.3 Escape Simulation Client States .cpp
This file contains all of the definitions of the state handlers found in the
ESCAPE_SIMULATION_CLIENT class. All of the handlers essentially follow the
same format and progression. In order to explain how the handlers work, one will be
covered here. Other handlers will be covered in different sections where appropriate.

HRESULT ESCAPE_SIMULATION_CLIENT::STATE_ReceiveFileFromServer()
{

HRESULT hr = S_OK;
static LONG state = STATE_RECEIVEFILEFROMSERVER_ENTER;
FILE_REQUEST load_file_request;
fstream outfile;
FILEIO *file_data;

switch (state)
{
case STATE_RECEIVEFILEFROMSERVER_ENTER:

this->FILE_RECEIVED = FALSE;
SAFE_DELETE_ARRAY(this->received_data_msg);
load_file_request.type = WORLD_DATA_REQUEST;

memset(load_file_request.buffer,'\0',sizeof(load_file_request.buf
fer));

http://www.go2pdf.com

88

strcpy(load_file_request.buffer,this->DesiredFile);
if(S_OK != sendmsg((void *

)&load_file_request,sizeof(FILE_REQUEST)))
{

hr = S_FALSE;
break;

}
state = STATE_RECEIVEFILEFROMSERVER_WAITFORFILE;
return hr;

case STATE_RECEIVEFILEFROMSERVER_WAITFORFILE:
if(FILE_RECEIVED) // Wait for the client to receive the

file from the server
{

state = STATE_RECEIVEFILEFROMSERVER_END;
}
return hr;

case STATE_RECEIVEFILEFROMSERVER_END:
// Ok the file is here time to save it.
file_data = (FILEIO *)this->received_data_msg;
outfile.clear();
outfile.open(this->DestinationFile,ios_base::binary |

ios_base::out | ios_base::trunc);
if(outfile.is_open())
{

outfile.write(&(file_data->data),file_data->length);
outfile.close();

}
sprintf(global_status_message,"SUCCESS: %s

loaded",file_data->filename);

SendMessage(Status_bar,WM_SETTEXT,NULL,(LPARAM)global_status_mess
age);

// MAKE SURE TO CLEAN UP THE BUFFERED DATA SENT OVER FROM
THE SERVER

SAFE_DELETE_ARRAY(this->received_data_msg);
break;

default:
// Spit our error message and return
this->states->pop();
state = STATE_RECEIVEFILEFROMSERVER_ENTER;
return hr;

}
this->states->pop();
state = STATE_RECEIVEFILEFROMSERVER_ENTER;
return hr;

}

This state handler manages requesting and receiving files from the server. The beginning
of any handler should set up whatever variables it will need. It is important to remember
that if this function does not run to completion in one entrance, any data that is needed
internally from state to state must be either declared static or saved outside the method.
Good examples of these two options are the following two variables:

static LONG state = STATE_RECEIVEFILEFROMSERVER_ENTER;
bool FILE_RECEIVED;

http://www.go2pdf.com

89

The “state” variable holds the handlers current internal state. This variable is defined as a
static variable at the beginning of the function and initialized to
STATE_RECEIVEFILEFROMSERVER_ENTER. The second variable,
“FILE_RECIEVED”, is a flag for one of the internal states to check and determine when
the client received the file from the server. In the beginning state of the handler
STATE_RECEIVEFILEFROMSERVER_ENTER, this variable is set to FALSE. Once
the handler arrives in the STATE_RECEIVEFILEFROMSERVER_WAITFORFILE
state it will stay there until the FILE_RECIEVED flag is true. This flag is set to true in
the network message handler when it receives a WORLD_DATA_REPLY message.
Once the STATE_RECEIVEFILEFROMSERVER_WAITFORFILE sees that the flag is
set to true, it transitions to the next state that handles the actual saving of the data that
was transmitted from the server. Once the file is saved it pops the stack and resets the
internal state to STATE_RECEIVEFILEFROMSERVER_ENTER. As a result, the next
time this handler is called it will start back at the beginning.

4.1.3 Graphics Engine – D3D_GRAPHICS Class
The 3D graphics engine for this application was built using Direct3D. The main class for
the graphics engine is the D3D_GRAPHICS class. This class inherits from the
CD3DApplication class. This base class was developed by the Direct3D developers as a
low level framework that helps speed up the development of Direct3D applications. It
does this by handling some of the more tedious details of creating and maintaining a
Direct3D application.

The overall structure of this base class is simple. It was already discussed in Chapter 2.
Essentially, there are several virtual functions that this API uses that can be overridden to
tailor it to the specific needs of the application being developed. We have already seen
two of these functions being called and one of the two being overridden namely Create()
and Run().

This framework only provides the base needs for a Direct3D application. It is still up to
the developer to handle all the work of setting up and managing data, cameras, lights,
textures, meshes, vertices, etc, and rendering everything.

For information on how to do all of the above, please refer to the first eight chapters of
[7], as well as [11], [14], [15], and [16]. After covering those chapters you should be able
to handle all the Direct3D material in this application.

In order to render the world correctly, the graphics data in this application is organized in
a hierarchical structure, the largest tier being the entire world. The D3D_GRAPHICS
class acts as this container. The world has all the graphics properties you would expect a
world to have. It has floors with other rendered objects, such as people. It has lighting,
referring to the Direct3D lighting. It has the cameras and views, and it also contains all
the extra information and settings needed to render the world correctly.

http://www.go2pdf.com

90

4.1.3.1 D3D_GRAPHICS .h:

class D3D_GRAPHICS : public CD3DApplication
{
public:

D3D_GRAPHICS(HINSTANCE _hInstance);
virtual ~D3D_GRAPHICS();

LPDIRECT3DDEVICE9 GetD3DDevice() const;
FLOOR* GetFloor(unsigned int floorID) const;
unsigned long getGraphicsMode();

CD3DFont *m_pFont;
// FONT

This font is used by D3D to print out text to the render window. Unfortunately, this text
is very costly to display, so it is only turned on during debug mode.

// DEBUGGING
float fov;
float aspect;
float zn;
float zf;

These variables are all for debugging. They will eventually be removed in the final
version of the code.

// Projection Matricies durring rendering to orent objects
correctly

D3DXMATRIX matRotY,matRotX,matRotZ,matTrans,matScale,trans;
D3DXMATRIX m_matProj;

// Projection Matrix
D3DXMATRIX m_matView;

// View Matrix
D3DXMATRIX m_matWorld;

// View Matrix
All the above matrices are used by the camera and for high tier rendering. Each of the
individual objects, for instance, has its own D3DXMATRIX structures that it maintains.

double cameraX;
double cameraY;
double cameraZ;
double cameraR;
double cameraPHI;
double cameraTHETA;
double cameraLookX;
double cameraLookY;
double cameraLookZ;

double cameraX3P;
double cameraY3P;
double cameraZ3P;
double cameraR3P;
double cameraPHI3P;
double cameraTHETA3P;
double cameraLookX3P;

http://www.go2pdf.com

91

double cameraLookY3P;
double cameraLookZ3P;

All the above doubles are used by the application to change between first and third
person views, and to move the camera in the desired view. The camera class has recently
been revamped and all these values will be removed.

// IF MULTIPLE VIEWPORTS WILL BE USED THEN THEY WILL GO HERE
D3DVIEWPORT9 MainViewport;
// Different Viewports

This particular application will only have a single view port. In the future, that can be
changed if more are needed.

// CLASS POINTERS
TEXTURES *textures; // Textures being used be

// various different objects
FLOORS *floors; // Floor Structures
LIGHT *light; // Lights...
CAMERA *camera; // Camera...ACTION!!!
D3D_GRAPHICS_INPUT *input; // Input Decives

Here are the classes that make up a given world.

protected:
// WINDOWS VARIABLES
HINSTANCE hInstance;
HWND m_hWndParent;
unsigned long graphics_mode;
int currentLevel;

These are used by several Direct3D calls, so we need to keep track of this information.

// FILEIO
HRESULT ReadWorld(std::string fileName);
HRESULT ReadTemplateMesh(std::string meshName, std::string

fileName);
HRESULT ReadTemplateSprite(std::string spriteName, std::string

fileName);
HRESULT RoomSetup();

These calls make up the particular file IO that is needed by the 3D engine to fill in its
data structures with the world data. When the state machine reads a simulation file it will
call these functions as needed. More will be said below about the Templates.

// MAIN FRAIMWORK
HRESULT OneTimeSceneInit();
HRESULT InitDeviceObjects();
HRESULT RestoreDeviceObjects();
HRESULT Render();
HRESULT FrameMove();
HRESULT FrameMove_Keyboard();
HRESULT FrameMove_Mouse();
HRESULT FrameMove_Gpad();
HRESULT InvalidateDeviceObjects();
HRESULT DeleteDeviceObjects();

http://www.go2pdf.com

92

HRESULT FinalCleanup();

Here are the main calls for this engine. Notice that most of the CD3DApplication virtual
functions are overloaded here. Most of these methods are very easy to understand, but
they will still be covered below.

HRESULT ConfirmDevice (D3DCAPS9 *pCaps, DWORD dwBehavior,
D3DFORMAT adapterFormat, D3DFORMAT backBufferFormat);

LRESULT MsgProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM
lParam);

The first method here is a helper function. The second is the WinProc function that is
used by the Win32 portion of the code.

private:
// VMap - IMap (static world data) HELPERS
int ConvertVMapToIMap(std::string vMapName);
HRESULT ReadVMapFloor(std::ifstream& vMapFile, std::ofstream&

iMapFile);
int GenerateWorld(std::string iMapName);
HRESULT ReadIMapFloor(std::ifstream& iMapFile);

// Object - IMap (dynamic world data) HELPERS
int ConvertXToIMap(std::string xFileName);
int GenerateTemplateMesh(std::string meshName,

std::string iMapName, std::string fileExtension);

These last functions are all helper functions that aid in basic data file translation.

};

4.1.3.2 D3D_GRAPHICS .cpp
D3D_GRAPHICS::D3D_GRAPHICS(HINSTANCE _hInstance)
{

m_strWindowTitle = _T("D3D_GRAPHICS TEST");
m_d3dEnumeration.AppUsesDepthBuffer = TRUE;
m_dwCreationWidth = 1024; // Width used to create window
m_dwCreationHeight = 800;
//memset(m_bKey,0,256);
this->hInstance = _hInstance;
this->graphics_mode = 0;
this->currentLevel = 0;

// These might need to be moved to the onetimesceneinit method
m_pFont = new CD3DFont(_T("Arial"),12,D3DFONT_BOLD);

}

This is the D3D_GRAPHICS class’ constructer. At this time we are taking care of only
the minimum things needed. The rest of the initialization and setup will be taken care of
below.

D3D_GRAPHICS::~D3D_GRAPHICS()

http://www.go2pdf.com

93

{
// All deleting and cleanup of objects is being done in other methods.
}

This method is very empty because everything is already being taken care of in other
places.

LPDIRECT3DDEVICE9 D3D_GRAPHICS::GetD3DDevice() const
{

return m_pd3dDevice;
}

unsigned long D3D_GRAPHICS::getGraphicsMode()
{

return this->graphics_mode;
}

FLOOR* D3D_GRAPHICS::GetFloor(unsigned int floorID) const
{

for(FLOOR* it = floors->bottom; it; it=it->up) if(floorID==it-
>id) return it;

return NULL;
}

Simple accessors for various internal data.

HRESULT D3D_GRAPHICS::OneTimeSceneInit()
{

return S_OK;
}

At the moment, this method is not being used. It is left here for future use.

HRESULT D3D_GRAPHICS::InitDeviceObjects()
{

m_pFont->InitDeviceObjects(m_pd3dDevice);
textures = new TEXTURES();
camera = new CAMERA();
light = new LIGHT();
floors = new FLOORS(textures);
input = new D3D_GRAPHICS_INPUT(this->hInstance, this-

>m_hWndParent);

return S_OK;
}

This is where all the different devices are created and initialized.

HRESULT D3D_GRAPHICS::RestoreDeviceObjects()
{

m_pFont->RestoreDeviceObjects();
SINGLETON(ESCAPE_SIMULATION_CLIENT).GetD3DDevice()-

>SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);

// RESTOR ALL FLOORS

http://www.go2pdf.com

94

floors->RestoreDeviceObjects();
// Restore all mesh object templates
MeshTemplate::RestoreAllDeviceObjects();

// Set The projection Matrix
aspect = m_d3dsdBackBuffer.Width /

(float)m_d3dsdBackBuffer.Height;
fov = D3DX_PI/8.0f;
zn = 1.0f;
zf = -4.0f;
D3DXMatrixPerspectiveFovLH(&m_matProj, fov, aspect, zn, zf);
SINGLETON(ESCAPE_SIMULATION_CLIENT).GetD3DDevice()->SetTransform(

D3DTS_PROJECTION, &m_matProj);

// Set up the view matrix.
camera->SetTarget(0,0,0);
camera->SetPosition(0,50,-50);

// Set up all special Matricies that will remain static durring
all moves

light->setPosition(0.0,100.0,0.0);
light->setDirection(0.0,0.0,0.0);
light->setAttenuation(0.0f,0.01f,0.0f);
light->setDiffuse(3.0,3.0,3.0,1.0);
light->setSpecular(1.0,1.0,1.0,1.0);
light->setRange(200.0);
light->setType(D3DLIGHT_POINT);
light->setLight(1);

return S_OK;
}

There are many ways that a device can get lost. One example is when the user minimizes
the render window and then restores it. Before they can be rendered again all the devices
need to be restored. This method restores the data related to this level of the rendering
tier. Similar methods exist in each of the lower tiers.

HRESULT D3D_GRAPHICS::FrameMove()
{

input->GETINPUT();

if(input->info.KEYBOARD_VALID)
FrameMove_Keyboard();

if(input->info.MOUSE_VALID)
FrameMove_Mouse();

if(input->info.GAME_PAD_VALID)
FrameMove_Gpad();

// MOVE LIGHT
D3DXMatrixTranslation(&matTrans,-3.0f,100.0f,0.0f);

http://www.go2pdf.com

95

D3DXMatrixRotationY(&matRotY,(float)(m_fTime * 2.0));
trans = matTrans * matRotY;
light->setPosition(trans._41,trans._42,trans._43);

return S_OK;
}

This method is called every time through the render loop. Its job is to first gather
information from the input devices, and then make any changes to the data to be rendered
based on the input or some other algorithm. For example, the GETINPUT call above
updates the input data structures with the latest input data. FrameMove_Keyboard()
makes changes to the camera and other things like the GRAPHICS_MODE flag based on
the input from the keyboard. The // MOVE LIGHT block of code, however, does not
care about any kind of input. Instead, it will rotate the global point light source that is
hovering above the world based on the elapsed time.

HRESULT D3D_GRAPHICS::Render()
{

char outtext[1024]; // Used for outputting text to
screen

HRESULT result; // Was used for debugging

SINGLETON(ESCAPE_SIMULATION_CLIENT).GetD3DDevice()-
>Clear(0L,NULL,D3DCLEAR_TARGET |
D3DCLEAR_ZBUFFER,D3DCOLOR_XRGB(100,100,100),1.0f,0L);

if(SUCCEEDED((result =
SINGLETON(ESCAPE_SIMULATION_CLIENT).GetD3DDevice()->BeginScene())))

{

// DRAW ALL FLOORS

WaitForSingleObject(SINGLETON(ESCAPE_SIMULATION_CLIENT).hDynamic_
data_mutex,INFINITE);

if(this->graphics_mode & SINGLE_FLOOR_MODE)
{

floors->renderFloor(this->currentLevel);
}
else
{

floors->renderFloors();
}

ReleaseMutex(SINGLETON(ESCAPE_SIMULATION_CLIENT).hDynamic_data_mu
tex);

if(0) // RENDERING THE TEXT IS VERY COSTLY
{

// RENDER STATISTICS TEXT
m_pFont->DrawText(2, 20,

D3DCOLOR_ARGB(255,255,255,0),m_strFrameStats);
m_pFont->DrawText(2, 40,

D3DCOLOR_ARGB(255,255,255,0),m_strDeviceStats);

memset(outtext,'\0',1024);

http://www.go2pdf.com

96

sprintf(outtext,"S1 = %x::%x S2 = %x::%x",input-
>info.gpadState.lX,input->info.gpadState.lY,input-
>info.gpadState.lRz,input->info.gpadState.rglSlider[0]);

m_pFont->DrawText(2, 60,
D3DCOLOR_ARGB(255,255,255,0),outtext);

memset(outtext,'\0',1024);
sprintf(outtext,"m_fFPS = %f",this->m_fFPS);
m_pFont->DrawText(2, 80,

D3DCOLOR_ARGB(255,255,255,0),outtext);

memset(outtext,'\0',1024);
sprintf(outtext,"B 1-4 = %x::%x::%x::%x B 5-8 =

%x::%x::%x::%x B 9-12 = %x::%x::%x::%x",input-
>info.gpadState.rgbButtons[0],input-
>info.gpadState.rgbButtons[1],input-
>info.gpadState.rgbButtons[2],input->info.gpadState.rgbButtons[3],

input-
>info.gpadState.rgbButtons[4],input-
>info.gpadState.rgbButtons[5],input-
>info.gpadState.rgbButtons[6],input->info.gpadState.rgbButtons[7],

input-
>info.gpadState.rgbButtons[8],input-
>info.gpadState.rgbButtons[9],input-
>info.gpadState.rgbButtons[10],input->info.gpadState.rgbButtons[11]);

m_pFont->DrawText(2, 120,
D3DCOLOR_ARGB(255,255,255,0),outtext);

memset(outtext,'\0',1024);
sprintf(outtext,"Network Rate = %f

pps",SINGLETON(ESCAPE_SIMULATION_CLIENT).network_rate);
m_pFont->DrawText(2, 160,

D3DCOLOR_ARGB(255,255,255,0),outtext);
}
SINGLETON(ESCAPE_SIMULATION_CLIENT).GetD3DDevice()-

>EndScene();
}
return S_OK;

}

Okay, this is one of the most important methods in this engine. Between Render() and
FrameMove() all the rendering work is done each time through the render loop. All the
above code should be fairly familiar if you have gone through the references given at the
beginning of this section. The only thing that should be explained is this segment of
code:
WaitForSingleObject(SINGLETON(ESCAPE_SIMULATION_CLIENT).hDynamic_data_m
utex,INFINITE);

if(this->graphics_mode & SINGLE_FLOOR_MODE)
{

floors->renderFloor(this->currentLevel);
}
else
{

floors->renderFloors();

http://www.go2pdf.com

97

}

ReleaseMutex(SINGLETON(ESCAPE_SIMULATION_CLIENT).hDynamic_data_mu
tex);

The WaitForSingleObject and ReleaseMutex are used to ensure that the data being
rendered is not tampered with while it is being rendered. Finally, you see that depending
on whether the graphics_mode variable had the SINGLE_FLOOR_MODE flag set or not,
either the current floor only will be rendered or all the floors will be rendered. All the
possible flags for the graphics mode and the other #defines and macros used by the
graphics engine are defined in the D3D_GRAPHICS_DEFS.h file and are as follows:

#define SINGLE_FLOOR_MODE 0x1
#define MICRO_DISPLAY_MODE_AVAILABLE 0x2
#define MICRO_DISPLAY_MODE_SET 0x4
#define FIRST_PERSON_MODE 0x8

#define MAX_WALL_HEIGHT 2
#define MAX_R 1000
#define MIN_R 20
#define MAX_NUM_FLOORS 256
#define MAX_NUM_OBJECTS 256
#define MAX_NUM_OBJTEMPLATES 32
#define DEFAULT_FLOOR_TEXTURE_ID 0
#define DEFAULT_WALL_TEXTURE_ID 1
#define DEFAULT_WALL_HEIGHT 2
#define FLOOR_SPACING 10
#define OBJECT_COLOR 0x0000FF00 // Used in
D3D_GRAPHICS_FILEIO.cpp for the dynamic object vertex color
#define VERTEX_TYPE FVFCN // Used in
D3D_GRAPHICS_FILEIO.cpp for the dynamic object vertex creation

const DWORD FVF = (D3DFVF_XYZ | D3DFVF_TEX1);
const DWORD FVFC = (D3DFVF_XYZ | D3DFVF_DIFFUSE);
const DWORD FVFCN = (D3DFVF_XYZ | D3DFVF_DIFFUSE | D3DFVF_NORMAL);

// A structure for our custom vertex type
struct VERTEXCN
{

float x, y, z; // The transformed position for the vertex
float nx,ny,nz;

DWORD color; // The vertex color
};

// A structure for our custom vertex type
struct VERTEXC
{

float x, y, z; // The transformed position for the vertex
DWORD color; // The vertex color

};

// A structure for our custom vertex type
struct VERTEX
{

http://www.go2pdf.com

98

float x, y, z; // The transformed position for the vertex
float tu, tv; // Texture placement

};

struct FPOINT
{

float x;
float y;

};

The last thing to notice about the Render() method is that the text printing is being
skipped with if(0). This is because normally this text is rarely needed and it is very costly
to print. If all or a portion of the text is needed to be rendered for debugging purposes,
that portion can be moved outside the if(0) statement. If(0) is not the most elegant way to
do this, but since it is all debug code, it will eventually be removed from the application.

HRESULT D3D_GRAPHICS::InvalidateDeviceObjects()
{

m_pFont->InvalidateDeviceObjects();
floors->InvalidateDeviceObjects();
// Invalidate all mesh object templates
MeshTemplate::InvalidateAllDeviceObjects();

return S_OK;
}

This method is called every time the devices need to be invalidated. This occurs
whenever they are lost and RestoreDeviceObjects() needs to be called. As with
RestoreDeviceObject(), FrameMove(), and render() every tier of the graphics engine has
its own InvalidateDeviceObjects() method that takes care of invalidating the devices on
that level.

HRESULT D3D_GRAPHICS::DeleteDeviceObjects()
{

m_pFont->DeleteDeviceObjects();
SAFE_DELETE(textures);
SAFE_DELETE(camera);
SAFE_DELETE(light);
SAFE_DELETE(floors);
SAFE_DELETE(input);
return S_OK;

}

This is where all the devices are deleted. Whenever possible, the SAFE_DELETE() and
SAFE_RELEASE() macros are used to handle the deleting and releasing of resources.
These macros first check to make sure the object being deleted or released is not NULL,
and then it deletes/releases the object and sets it to NULL. Using the macros just makes
sure that these steps are always taken.

HRESULT D3D_GRAPHICS::FinalCleanup()
{

SAFE_DELETE(m_pFont);

http://www.go2pdf.com

99

return S_OK;
}

For this particular application the only thing that needs to be handled in this method is the
deletion of the font being used.

LRESULT D3D_GRAPHICS::MsgProc(HWND hWnd, UINT uMsg, WPARAM wParam,
LPARAM lParam)

{
return CD3DApplication::MsgProc(hWnd, uMsg, wParam, lParam);

}

Some of what is going on in this method needs to be explained. The main WinProc() was
created and assigned to the main window back in the ESCAPE_SIMULATION_CLIENT
MakeWindow() method. The WinProc() callback function is found in the
main_callback.h file and will be covered later. Normally in a WinProc() callback
function, if a message is not handled it is passed along to the default Win32 message
handler. In this application however, all messages, whether or not they are proceeded by
the main WinProc() function, are passed along to this handler. Here they are given a
chance to be handled and then are passed on to the CD3DApplication’s MsgProc().
MsgProc() is given a final chance to handle the message before it is passed on to the
default window handler. The reason for all this is that the CD3DApplication has several
messages that it looks for in order to know how to handle the low level graphics details.
For example, when the window is resized, the client window is changed. The low level
graphics needs to know about this in order to modify the rectangle being rendered to so
that it fits in the new client window space.

4.1.3.3 Graphics Templates
Before the next graphical tiers are covered, the topics of object templates should be
covered. In order to pull out the messy details of graphic rendering from the DLL
pluggins so the developers could focus on the algorithms, the concept of templates
needed to be created. There are three types of graphics templates: mesh, point sprite, and
field. Each type has all the methods and data needed to render any type of object that
falls under that category. For example, a researcher may define a simulated camera to be
rendered as a point sprite. Likewise, the same researcher might define a simulated light
to also be a point sprite. Both objects have several characteristics that they share such as
(x,y,z) floor values that define the exact position of the sprite in the world. However, they
both have different textures maps, and only the light will use the ambience value. The
point sprite has members for all the possible combinations of sprite usage. In both cases,
camera and light, the object would create a point sprite template, but when each creates
the template it would specify which fields are of interest for that particular object.

Templates are used by all objects, dynamic and static. Whereas in the case of static
objects there is no need to update the state of the object by the server, in the case of
dynamic objects the server will need to update different fields for different objects. For
example, the camera object might be able to move, in which case it would receive an
update from the server whenever its position values are changed. Similarly, the light’s

http://www.go2pdf.com

100

ambience value might be updatable to allow the light to turn on and off or blink. So,
when a template is defined it is told which values are updatable and which are not.

Templates are defined in the simulation file. When the application loads up a simulation
it will read the simulation file and create whatever types are defined there. Later in the
file the application will be told to create actually rendered objects based off the given
templates.

Here is an example of a template:
// MeshTemplate class
class MeshTemplate : public Template
{

Notice here that the mesh template inherits from the template class. The template class
contains generic methods and members that are common to all templates, for example,
name, ID, and DLL file on the server that defines the object’s behavior. Every template
that is created must have these values defined in order to function properly. This base
class also has virtual methods that are overloaded by the specific template class to fit the
individual needs of the class. Finally, this base class has several static members and
functions that are used to ensure that there are no duplications of object templates and for
easy management of all the templates. Please refer to this base class in the appendices or
the source code that accompanied this thesis for more details. There is nothing too
complicated happening in the class and it should be easy to understand.

public:
// Constructors/Destructors
MeshTemplate(std::string objTypeName,

std::string dataFileName="",
std::string DLLFileName="");

~MeshTemplate();

// Reporters
OBJECT_TYPE GetType() const;
bool Render(const D3DXMATRIX& matrix) const;

// Mutators
bool InvalidateDeviceObjects();
bool RestoreDeviceObjects();
bool SetTexture(unsigned int textureID);
bool SetVertexBuffer(void* vBuffer, unsigned int numVertexes,

DWORD vertexType);
bool SetIndexBuffer(WORD* iBuffer, unsigned int numIndexes);

Notice the usage of InvalidateDeviceObjects() and RestoreDeviceObject(). All the data
for a specific object, except for it’s unique attributes such as position, ambience,
orientation, etc, are kept here in the templates. All the Direct3D devices that need to be
invalidated or restored are contained here. This simplifies restoring and invalidating
significantly. This way when the application needs to restore devices it just restores the
templates instead of every object in the simulation. Simulation files will be covered later.

private:

http://www.go2pdf.com

101

// variables
DWORD m_wVertexType; // Vertex format type
unsigned int m_uiNumPrims; // Number of primitives
void* m_pvVB; // Vertex buffer (void* bcs it could

// be 3 different vertex data types)
WORD* m_pwIB; // Index buffer
unsigned int m_uiNumVertexes; // Vertex buffer size
unsigned int m_uiNumIndexes; // Index buffer sizes

LPDIRECT3DVERTEXBUFFER9 m_dxVB; // DirectX vertex Buffers
LPDIRECT3DINDEXBUFFER9 m_dxIB; // DirectX index Buffers
LPDIRECT3DTEXTURE9 m_pkTexture; // Texture

};

The last data included in this particular template is the Direct3D device data. It should all
be fairly straightforward.

4.1.3.4 FLOORS class
The next tier in the rendered data is the FLOORS class. The FLOORS class holds and
manages all the floors in the application. It stores and manages this data as a doubly
linked list of floors. A linked list was chosen because of the speed advantages that come
with adding, deleting, and manipulating linked lists over some other data structures.
When the world is rendered it always wants to step through each floor quickly, and linked
lists are very fast for stepping through sequentially.

Here is the actual FLOORS class prototype:
class FLOORS
{
public:

FLOORS(TEXTURES *_textures);
~FLOORS();

int addFloor(const char *_name,double _lengthX,
double _lengthY,int level,int _texture_id);

HRESULT addWalls(unsigned int id, VERTEX *vertex_list,
unsigned int num_vertices, WORD *vertex_index,
unsigned int num_indecies,
unsigned int _num_primatives, int texture_id);

HRESULT addWalls(VERTEX *vertex_list, unsigned int num_vertices,
WORD *vertex_index, unsigned int num_indecies,
unsigned int _num_primatives, int texture_id);

HRESULT setFloor(unsigned int id);
HRESULT InvalidateDeviceObjects();
HRESULT RestoreDeviceObjects();
HRESULT renderFloor(int floor_id = 0);
HRESULT renderFloors(unsigned int start = -1,

unsigned int finish = -1);
HRESULT getDemensions(unsigned int id, double *x,double *y);

unsigned int numFloors;
TEXTURES *textures;
FLOOR *bottom;

http://www.go2pdf.com

102

FLOOR *top;
FLOOR *it;

};

In this class we see many of the usual methods that we have already seen before. All the
methods should be fairly self explanatory. It should be noted that walls are considered to
be a single static object that each floor contains. This significantly speeds up rendering
when you have a floor with a large number of walls. The walls are considered to be an
attribute of a floor similar to the actual ground.

There is only one FLOORS class for any world. This could later be expanded to multiple
instances for multiple buildings. Each FLOORS class holds all the floors of a given
building. As stated above, they are organized as a linked list of FLOOR classes:

class FLOOR
{
public:

FLOOR(TEXTURES *_textures, float _lengthX, float _lengthY,int
_level);

~FLOOR();
char name[256];
unsigned int id;
double lengthX;
double lengthZ;
int level;
TEXTURES *textures; // This is used to

// access any of the
// needed textures

LPDIRECT3DVERTEXBUFFER9 m_pVB; // Vertex Buffers
LPDIRECT3DINDEXBUFFER9 m_pIB; // Index Buffers
LPDIRECT3DTEXTURE9 texture; // Floor Texture
WALLS *walls;
Objects dynamicObjects, staticObjects;
density_field *field;
FLOOR *up;
FLOOR *down;

};

Notice that there is no render() method or any of the other common methods that we have
seen for most of the other classes up to this point. This is because the FLOORS class
only holds the information for the given floor. The FLOORS class is responsible for
rendering each floor it contains. This is not necessarily the best way to do this, but it
works well enough. Also, you should notice that because the walls are part of the floor,
they are separated from the staticObjects. All floors have walls as a single rendered
object. There may be lots of other static objects like chairs, tables, etc, or none at all, but
there will always be walls.

The next tier is the object tier.

http://www.go2pdf.com

103

4.1.3.5 Objects Class
Every floor has an instance of the Objects class in it. The Objects class, similar to the
FLOORS class contains a linked list of object classes. Notice that in the floor there are
actually two Objects pointers. The first points to the objects that change over the
duration of the simulation, and the second to the objects that will remain the same. The
reason for this division is to speed things up. The dynamic array will be constantly
changing in size and contents. For example, if an object moves from floor one to floor
two, it removes itself from the first floor’s dynamic array and appends itself to the
second.

Here is the Objects class:

// Objects class
class Objects
{
public:

// Constructors/Destructor
Objects();
~Objects();

// Operators
Objects& operator += (unsigned int incValue);
Objects& operator -= (unsigned int decValue);
Objects& operator ++ (int dummy);
Objects& operator -- (int dummy);
Objects& operator ++ ();
Objects& operator -- ();

// Reporters
bool IsEmpty() const;
Object* GetFist() const;
Object* GetLast() const;
Object* GetCurrent() const;

// Mutators
void Clear();
bool GoToFirst();
bool GoToLast();
bool IncCurrent(unsigned int incValue=1);
bool DecCurrent(unsigned int decValue=1);

bool Append(Object* obj);
bool Prepend(Object* obj);
bool Insert(Object* obj);
bool Remove();
bool Remove(unsigned int objectID);

private:
// Mutators
void DeepCopy(const Objects& objects);

// Variables
Object* m_pkFirst;
Object* m_pkCurrent;

http://www.go2pdf.com

104

Object* m_pkLast;
};

Nothing in this class should be too difficult to understand. All the methods here are
intended to help manage the linked list of objects that this Objects class maintains. If any
of these are not clear please refer to the Object.cpp file for a explanation of the method’s
definition.

The really interesting things occur in the Object class itself. Here is the prototype:

// Object class
class Object
{
public:

// Constructors/Destructor
Object(unsigned int objTemplateID, bool dynamic,

Object* prev=NULL, Object* next=NULL);
Object(std::string objectName,

bool dynamic, Object* prev=NULL, Object* next=NULL);
Object(const Object& object);
~Object();

Here are your basic constructors and destructors. Notice the objTemplateID and dynamic
flags that are passed in. This is the ID to the defined template type that this object falls
under. Remember that the template knows how to render the object properly.

// Operators
Object& operator = (const Object& object);
bool operator == (const Object& object) const;
bool operator == (unsigned int objID) const;
bool operator == (std::string objName) const;
bool operator != (const Object& object) const;
bool operator != (unsigned int objID) const;
bool operator != (std::string objName) const;

Basic operator overloading.

// Reporters
std::string GetTypeName() const;
OBJECT_TYPE GetObjectType() const;
unsigned int GetID() const;
bool IsDynamic() const;
unsigned int GetFloorID() const;
float GetPosX() const;
float GetPosY() const;
float GetPosZ() const;
D3DXMATRIX GetTransMatrix() const;
unsigned int GetTemplateID() const;
std::string GetFields() const;
Object* GetNext() const;
Object* GetPrev() const;
bool Render() const;

Basic reporters.

http://www.go2pdf.com

105

// Mutators
void SetNext(Object* nextObj);
void SetPrev(Object* prevObj);
void Detach();
bool Update(float x, float y, float z, unsigned int floorID,

std::string fields);
bool ReadRawData(void* rawData);
bool Update(float x, float y, float z, unsigned int floorID,

void* fields=NULL);

Of these mutators the Update() and ReadRawData() methods deserve a little extra
attention. The first four arguments for the Update() method are fairly obvious, but the
last one is not. This argument contains the string that defines which of the possible fields
for the given template will be updated by the server when it sends an update. This field is
sent to the object by the server when the DLL is loaded. Part of the DLL’s initialization
is to determine which fields it will need to send updates about to the client.

The other mutator is the ReadRawData() method. This method is called by the network
message handler when it receives an update for this specific object. Based on the fields
string that is stored by the object it will interpret the raw data passed to it accordingly.

// Statics
static unsigned int GetNumObjects();
static unsigned int GetNumStaticObjects();
static unsigned int GetNumDynamicObjects();
static Object** GetObjects();
static Object* GetObject(unsigned int objID);
static void ClearAllObjects();

These statics are for managing the objects in existence.

// Variables
unsigned int RAW_DATA_REQ;

This variable contains the number of bytes required to store all the data from the data that
is to be updated by the server. This is used to speed up the actual update process as will
be seen when the network message handler is covered later.

protected:
// Reporters
unsigned int GetNextObjectID() const;

// Variables
unsigned int m_uiID;
bool m_bDynamic;
float m_fPosX, m_fPosY, m_fPosZ;
unsigned int m_uiFloorID;
D3DXMATRIX m_kTransformMatrix;

unsigned int m_uiTemplateID;

Object* m_pkNext;
Object* m_pkPrev;

http://www.go2pdf.com

106

All of the above should be self-explanatory. The D3DXMATRIX holds the transform
matrix for this particular object. This is all the Direct3D information that an object needs
to keep track of. All the rest of the information needed to render is saved in the template
associated with m_uiTemplateID.

static unsigned int sm_uiNumStaticObjects;
static unsigned int sm_uiNumDynamicObjects;
static Object* sm_pkObjects[MAX_NUM_OBJECTS];

};

The last statics exist to help speed up the update process. It is very important for us to be
able to find any object in existence as fast as possible no matter the floor when it comes
time to update them. The reason for this is that there could be 1000 dynamic objects in
existence, and there are no guarantees what floor they will be on. Because the objects in
a given floor are stored in unsorted linked lists to make rendering faster, there is no way
to find the object except by a brute force search for the object. Therefore, we must keep
another data structure which is sorted and is fast to access. In this case, one of the fastest
such data structures is an array. The reason linked lists were used instead of arrays for
the object data on each floor is because arrays are not as fast as linked lists when it comes
to modifying them, especially when it comes to adding and removing entries from the
middle of an array.

However, for this array we do not need to worry about this problem. After the simulation
file is loaded and has created all objects, no more objects are ever created or destroyed
until the simulation is closed.

More on updating will be covered later.

The last thing that needs to be covered about objects is that the Object class is actually
only a base class that is inherited by one of three specific object types: mesh, point sprite,
and field. This is not the same thing as the templates. Please refer to the UML diagrams
included in the appendices.

When an object is created, it is actually one of these three classes that is created. Thanks
to polymorphism and inheritance everything works well. These classes are not as
complex as the Object class, so only MeshObject class will be covered here:

// MeshObject class
class MeshObject : public Object
{
public:

// Constructos/Destructors
MeshObject(unsigned int objTemplateID, bool dynamic);
MeshObject(std::string objectName, bool dynamic);
MeshObject(const MeshObject& meshObj);
~MeshObject();

http://www.go2pdf.com

107

Typical constructors and destructors, and in the .cpp file these call the Object class’
counterparts.

// Operators
MeshObject& operator = (const MeshObject& meshObj);

// Reporters
D3DXMATRIX GetTransMatrix() const;

// Mutators
void SetTransMatrix(const D3DXMATRIX& matrix);

Basic mutators and accessors, nothing comlex.

// Inherited
OBJECT_TYPE GetObjectType() const;
bool ReadRawData(void* rawData);
bool Render() const;
bool Update(float x, float y, float z, unsigned int floorID,

void* fields=NULL);

Overloaded functions to meet the MeshObject class’ specifications.

private:
// Variables
D3DXMATRIX m_kTransformMatrix;

The only difference between different objects of the same mesh template is the transform
matrix.

4.1.3.6 Camera Class
Every world needs at least one camera. There are a lot of details that need to be taken
care of to get a camera to work properly. To simplify things the CAMERA class was
created. The prototype is as follows:

class CAMERA
{
public:

CAMERA();
~CAMERA();

void SetPosition(const double x,const double y,const double z);
void SetTarget(const double x,const double y,const double z);
void GetPosition(double &x,double &y,double &z) const;
void GetTarget(double &x,double &y,double &z) const;
void RotateCamera(double h, double v);
void RotateTarget(double h, double v);
void MoveForward(double amount);
void MoveBackward(double amount);
void MoveLeft(double amount);
void MoveRight(double amount);
void MoveUp(double amount);
void MoveDown(double amount);
void SetView();

http://www.go2pdf.com

108

private:
double cameraX;
double cameraY;
double cameraZ;
double targetX;
double targetY;
double targetZ;

D3DXMATRIX m_matView;
// View Matrix

};

In brief, here are each of the methods in the class and what they do:
- SetPosition(): Sets the position of the camera.
- SetTarget(): Sets the camera’s target position.
- GetPosition(): Gets the current position of the camera in xyz.
- GetTarget(): Gets the current target of the camera in xyz.
- RotateCamera(): Rotates the camera around the target in spherical

coordinates. The h value is for theta and v is for phi. The camera’s
magnitude from the target is kept constant during the rotation.

- RotateTarget(): The same as RotateCamera(), but in this case it is the target
that is rotated around the camera.

- MoveForward…MoveDown(): As the names imply, they move the camera
and target along the appropriate vectors. For example, if you use
MoveForward() then it will move both the camera’s and target’s positions in
the direction of the vector formed by the camera and the target. This vector
points to the target. The magnitude of the change is given by the amount
value which is passed in.

- SetView(): Sets the current camera and view being used by the graphics engine
to this class’ information.

At the end of each of the definitions for these methods the m_matView is reset to reflect
the most current changes:

D3DXMatrixLookAtLH(&m_matView,
&D3DXVECTOR3((float)this->cameraX,

(float)this->cameraY,
(float)this->cameraZ), // from

&D3DXVECTOR3((float)this->targetX,
(float)this->targetY,
(float)this->targetZ), // at

&D3DXVECTOR3(0.0f, 1.0f, 0.0f)); // up

Other than this, everything in the definitions are normal trigonometric calculations
which, thanks to the math library which will be covered later, are made very easy.

http://www.go2pdf.com

109

4.1.3.7 Light Class
There are a lot of different options when it comes to Direct3D light sources. Like the
camera class, the LIGHT class hides a lot of the details involved in maintaining these
light sources. Because of the shading being used, there must be at least one light source
included in every world. If there is not one, then all un-textured objects, such as the
density fields, will be rendered as being black.

The prototype for this class looks like this:

class LIGHT
{
public:

LIGHT(DWORD _light_index = 0);
~LIGHT();

HRESULT setPosition(double x, double y, double z);
HRESULT setDiffuse(double r, double g, double b, double a);
HRESULT setAmbient(double r, double g, double b, double a);
HRESULT setSpecular(double r, double g, double b, double a);
HRESULT setDirection(double x, double y, double z);
HRESULT setPhiTheta(double phi, double theta);
HRESULT setFalloff(double falloff);
HRESULT setRange(double r);
HRESULT setType(D3DLIGHTTYPE type);
HRESULT setAttenuation(float att, DWORD num = 1);
HRESULT setAttenuation(float att0, float att1, float att2);
HRESULT setLight(WORD options = 0);
HRESULT setDeviceStates(WORD options = 0);

private:
D3DLIGHT9 light;
// LIGHT
double lightX;
double lightY;
double lightZ;
DWORD light_index;

};

From the names of these methods and their parameters, it should be fairly obvious what
they each do. Using this class you can change any of the default settings that are used.

The definitions for each of these methods are very straightforward. The only two that
need some explanation are setLight() and setDeviceStates():

HRESULT LIGHT::setLight(WORD options)
{

SINGLETON(ESCAPE_SIMULATION_CLIENT).GetD3DDevice()->SetLight(
this->light_index, &light);

if(options)
this->setDeviceStates();

return S_OK;

http://www.go2pdf.com

110

}

HRESULT LIGHT::setDeviceStates(WORD options)
{

if(options)
this->setLight();

SINGLETON(ESCAPE_SIMULATION_CLIENT).GetD3DDevice()-
>SetRenderState(D3DRS_COLORVERTEX, TRUE);

SINGLETON(ESCAPE_SIMULATION_CLIENT).GetD3DDevice()-
>SetRenderState(D3DRS_ZENABLE, TRUE);

SINGLETON(ESCAPE_SIMULATION_CLIENT).GetD3DDevice()-
>SetRenderState(D3DRS_LIGHTING, TRUE);

SINGLETON(ESCAPE_SIMULATION_CLIENT).GetD3DDevice()->LightEnable(
this->light_index, true);

return S_OK;
}

Notice the use of SINGLETON(ESCAPE_SIMULATION_CLIENT) within both of
these methods. This accesses the single ESCAPE_SIMULATION_CLIENT instance in
the application. This is required here because access to the D3DDevice is needed to
make the needed calls.

The SetLight() method in the LIGHT class tells the render engine to use this light when
doing shading calculations. SetDeviceStates() sets the appropriate flags and settings so
that the light will render things correctly. All of these settings can be looked up in [11].

4.2 Menus & UI

4.2.1 Win32 GUI
Back in the MakeWindow() method found in the ESCAPE_SIMULATION_CLIENT
class the Win32 windows were setup. Along with creating the windows, the menus for
this application were also setup. In Chapter 2, Win32 resources were covered. Referring
to that portion of the thesis should aid in the understanding of the menus, toolbars, and
dialogs. The main code for handling menu and toolbar selection is found in the
WndProc() callback function in the main_callback.h and .cpp files. All the callback
functions for the dialog boxes are contained in the files: dialogboxes.h and .cpp. There
were only two things that had to be done out of the ordinary to get everything to work.
First, within the callback functions the
SINGLETON(ESCAPE_SIMULATION_CLIENT) notation needed to be used, and
second, in order to allow the callback function to actually access the data refered to by
the SINGLETON(ESCAPE_SIMULATION_CLIENT) tags, all the callback functions
needed to be declared as friends in the ESCAPE_SIMULATION_CLIENT class
prototype:

friend LRESULT CALLBACK D3DWndProc(HWND hwnd, UINT message, WPARAM
wParam, LPARAM lParam);

friend LRESULT CALLBACK ESCAPE_SIMULATION_CLIET_WndProc(HWND hwnd, UINT
message, WPARAM wParam, LPARAM lParam);

http://www.go2pdf.com

111

friend LRESULT CALLBACK ESCAPE_SIMULATION_CLIENT_TextOutProc(HWND hwnd,
UINT message, WPARAM wParam, LPARAM lParam);

friend BOOL CALLBACK AboutDialogBoxProc(HWND hDlg, UINT message, WPARAM
wParam, LPARAM lParam);

friend BOOL CALLBACK ConnectDialogBoxProc(HWND hDlg, UINT message,
WPARAM wParam, LPARAM lParam);

friend BOOL CALLBACK LoadDialogBoxProc(HWND hDlg, UINT message, WPARAM
wParam, LPARAM lParam);

friend HRESULT WINAPI DirectPlayMessageHandler(PVOID pvUserContext,
DWORD dwMessageId, PVOID pMsgBuffer);

There are several changes that will be made to the user interface in the near future. At
the moment it is still in a very basic format.

4.2.2 DirectInput
Along with the Win32 material there is DirectX input to deal with. As explained in
Chapter 2, DirectInput is DirectX’s interface for input. Because the input coming in from
DirectInput is only used by the graphics engine, the DirectInput interface is solely
contained in the D3D_GRAPHICS engine. Remember from in the D3D_GRAPHICS
class prototype the following:

D3D_GRAPHICS_INPUT *input; // Input Deceives

Remember, this is the class that was created to handle all the DirectInput stuff. The .cpp
stuff is all fairly standard, but if you have not familiarized yourself with DirectInput it
will be fairly overwhelming. Please refer to [5] on DirectInput for more information.

The D3D_GRAPHICS_IO.cpp file will not be covered. Here is the prototype for
D3D_GRAPHICS_INPUT which is found in the D3D_GRAPHICS_INPUT.h:

class D3D_GRAPHICS_INPUT
{

friend BOOL CALLBACK DInput_Enum_Joysticks(LPCDIDEVICEINSTANCE
lpddi,LPVOID guid_ptr);
public:

D3D_GRAPHICS_INPUT(HINSTANCE _hInstance,HWND _hwnd);
~D3D_GRAPHICS_INPUT();
HRESULT GETINPUT();
HRESULT ENABLE(INPUT_ID_TYPE inputTypeID = INPUT_ID_TYPE_ALL);
HRESULT DISABLE(INPUT_ID_TYPE inputTypeID = INPUT_ID_TYPE_ALL);

// This is a public interface for the information gathered from
the input devices.

INPUT_INFO info;
private:

// STATE VARIABLES

http://www.go2pdf.com

112

bool INPUT_SETUP;
bool KEYBOARD_VALID;
bool MOUSE_VALID;
bool GAME_PAD_VALID;

// GENERAL DIRECTX8 OBJECTS
HWND hwnd;
HINSTANCE hInstance; // WINDOW HANDLE
LPDIRECTINPUT8 lpdi; // DIRECT INPUT8

OBJECT
LPDIRECTINPUTDEVICE8 lpdikey; // KEYBOARD INTERFACE
LPDIRECTINPUTDEVICE8 lpdimouse; // MOUSE INTERFACE
LPDIRECTINPUTDEVICE8 lpdigpad; // GAME PAD INTERFACE

// DATA VARIABLES
GUID joystickGUID; // GUID FOR GAME PAD
static char joyname[260]; // NAME FOR GAME PAD

HRESULT GETKEYBOARD();
HRESULT GETMOUSE();
HRESULT GETGAMEPAD();

};

If familiar with the reference given above, most of this should be very straightforward.
The only nonstandard thing found here is the INPUT_INFO info structure member. This
Structure looks like this:

typedef struct INPUT_INFO_TAG
{

bool KEYBOARD_VALID;
bool MOUSE_VALID;
bool GAME_PAD_VALID;

These bools indicate whether or not the device exists. For example, if the user forgot to
plug in their gamepad before running the application then the GAME_PAD_VALID bool
will be false.

// MOUSE INFO
DIMOUSESTATE mouseState; // MOUSE STATE
BUTTON_CLICK_STATE mouse_lb;
BUTTON_CLICK_STATE mouse_mb;
BUTTON_CLICK_STATE mouse_rb;

This section is for the mouse state information.

// GAMEPAD INFO
DIJOYSTATE gpadState; // GAME PAD STATE
float s1x;
float s1y;
float s2x;
float s2y;
BUTTON_CLICK_STATE gpadButtons[32];

http://www.go2pdf.com

113

The game pad information is a little less obvious than the mouse state information. Most
game pads have two sticks. The x and y values for the first stick are s1.x and s1.y, and
for the second stick are s2.x and s2.y. DirectInput can recognize up to 32 buttons. There
is no set way for them to be ordered, but for the most part, the first four buttons are the
ones immediately under the user’s right hand.

// KEYBOARD INFO
UCHAR keyBuffer[256]; // BUFFER FOR KEYBOARD DATA

} INPUT_INFO, *PTR_INPUT_INFO;

DirectInput normally only grabs the first 256 keys. You can check to see if a given key
has been processed by using the KEYPRESSED macro defined at the top of this file, and
by passing this array and the DirectInput #define for the given key to the macro. For
example, to check the ‘k’ key you would use KEYPRESSED(info.keyBuffer,DIK_K).

The info structure is updated with all the latest input state’s information by calling:

input->GETINPUT();

In the Escape Simulation client, this method is called at the beginning of the
FrameMove() method in the D3D_GRAPHICS class. After the info structure is updated,
there are three methods that are called that will go through the updated information and
modify the cameras, lights, world, etc, accordingly. These methods are:

HRESULT FrameMove_Keyboard();
HRESULT FrameMove_Mouse();
HRESULT FrameMove_Gpad();

They are all defined in the D3D_GRAPHICS_IO_PROCESS.cpp file, and are all fairly
similar. The main difference is that each accesses the info data structure only for its
particular data. That being the case, only a portion of one of the methods will be covered
here:

HRESULT D3D_GRAPHICS::FrameMove_Keyboard()
{

static z_down = false;
static x_down = false;
float div_amount = 521.0f;
div_amount = 512.0f * this->m_fFPS;

Basic variable initialization. The z_down and x_down variables are of particular interest.
These are used to ensure that only one key press is a recognized press. This is needed
because humans are relatively slow compared to computers. Even the most quickly
tapped key seems to the computer to be down for several cycles. In that amount of time
the computer could have updated the input information structure several times. Without a
flag to let this method know that we are still on the same key press, it would think it is
new input. This behavior is not necessarily always a bad thing. In the if statements

http://www.go2pdf.com

114

immediately below we do not care whether we keep running the code every time we enter
this method. In fact, that is what we want.

if(KEYPRESSED(input->info.keyBuffer,DIK_P))//ROTATE CCW
{

camera->RotateCamera(.01, 0);
}
if(KEYPRESSED(input->info.keyBuffer,DIK_O))//ROTATE CW
{

camera->RotateCamera(-.01, 0);
}
if(KEYPRESSED(input->info.keyBuffer,DIK_I))//TILT DOWN
{

camera->RotateCamera(0,.01);
}
if(KEYPRESSED(input->info.keyBuffer,DIK_J))//TILT UP
{

camera->RotateCamera(0,-.01);
}
if(KEYPRESSED(input->info.keyBuffer,DIK_W))//MOVE CAMERA FORWARD
{

camera->MoveForward(.1);
}
if(KEYPRESSED(input->info.keyBuffer,DIK_S))//MOVE CAMERA BACKWARD
{

camera->MoveBackward(.1);
}
if(KEYPRESSED(input->info.keyBuffer,DIK_A))
{

camera->MoveLeft(.1);
}
if(KEYPRESSED(input->info.keyBuffer,DIK_D))
{

camera->MoveRight(.1);
}

The above if statements are responsible for moving the camera around based on the
keyboard input

if(KEYPRESSED(input->info.keyBuffer,DIK_Z))// SWITCH TO SINGLE
// FLOOR VIEW

{
if(!z_down)
{

z_down = true;
this->graphics_mode = this->graphics_mode ^

SINGLE_FLOOR_MODE;
MODE_UPDATE mode_change_msg;
mode_change_msg.type = SIMULATION_MODE_UPDATE;
mode_change_msg.mode = graphics_mode;
SINGLETON(ESCAPE_SIMULATION_CLIENT).sendmsg(

(void *)&mode_change_msg,sizeof(MODE_UPDATE));
}

}
else if(KEYPRESSED(input->info.keyBuffer,DIK_X))// TOGGEL BACK

http://www.go2pdf.com

115

// AND FORTH FROM
// MICRO AND
// MACRO

{
if(!x_down)
{

x_down = true;
if(this->graphics_mode &MICRO_DISPLAY_MODE_AVAILABLE)
this->graphics_mode = this->graphics_mode ^

MICRO_DISPLAY_MODE_SET;
MODE_UPDATE mode_change_msg;
mode_change_msg.type = SIMULATION_MODE_UPDATE;
mode_change_msg.mode = graphics_mode;
SINGLETON(ESCAPE_SIMULATION_CLIENT).sendmsg(

(void *)&mode_change_msg,sizeof(MODE_UPDATE));
}

}
else
{

z_down = false;
x_down = false;

}
return S_OK;

}

The last two if statements in the method are important. First, they show how to handle
receiving one key press even when the user holds a key down. This is done by using the
x_down and z_down statics. Second, they are both an example of client/server
communication.

4.3 Network Engine
The end of the last section showed how the DirectInput keyboard input handler is able to
toggle the graphics mode between micro and macro display modes, and single- and multi
-level display mode. In both cases, the client needs to inform the server of the desired
change. Neither of these changes requires the state machine to be put into a specific state
to handle the communication. The reason for this is that even if there are several packets
of the wrong mode that are sent, there will not be any problem with the rendering. These
changes in mode only really help to reduce the number of packets being sent over the
network.

The network engine uses DirectPlay to handle all the communication between the client
and the server. The section in Chapter 2 on DirectPlay covered what it takes to both host
and connect a client and server, and how the message handler works. Please refer to
[12]for a more in-depth explanation of any method or function that is covered. The
following section describes how messages are put together, sent, received, and broken
down. All the major message types will eventually be covered here. To begin, the two
messages above will be used as an example.

These two messages really are the same thing. In both cases the graphics mode flags
have been changed and the server side mode flags need to be updated accordingly. The

http://www.go2pdf.com

116

duplication of the message code needs to be pulled out to reduce the code. In both cases
the message code is:

MODE_UPDATE mode_change_msg;
mode_change_msg.type = SIMULATION_MODE_UPDATE;
mode_change_msg.mode = graphics_mode;
SINGLETON(ESCAPE_SIMULATION_CLIENT).sendmsg(

(void *)&mode_change_msg,sizeof(MODE_UPDATE));

The message being created in this case is a MODE_UPDATE message. This message
was created simply to make building this message by the client, and later, extraction of
the needed sent information by the server, easier.

MODE_UPDATE as well as all other message typedefs are defined in the
message_prototypes.h file. In this file MODE_UPDATE is defined as:

typedef struct MODE_UPDATE_TAG
{

BYTE type;
unsigned long mode;

} MODE_UPDATE, *PTR_MODE_UPDATE;

This file is common to both the client and server components. Thus the message handler
receiving a given message can cast the raw data it received after identifying the correct
message by its unique type value.

In this example, the type value being used is the SIMULATION_MODE_UPDATE
which is placed in the type field of the message. The type field is of type byte. This
allows 256 possible unique message types. If in the future this number is too small, it is
an easy change to increase this value to an unsigned int or greater. All the type values are
#defined at the top of the message_prototypes.h file. For example:

#define ID_REQUEST 0
#define ID_REPLY 10
#define WORLD_LIST_REQUEST 20
#define WORLD_LIST_REPLY 30
#define WORLD_DATA_REQUEST 40
#define WORLD_DATA_REPLY 50
#define RUN_SIMULATION 60
#define STOP_SIMULATION 70
#define SIMULATION_WIPE 75
#define SIMULATION_WIPE_CONFIRM 76
#define LOAD_WORLD_FILE 77
#define LOAD_WORLD_FILE_CONFIRM 78
#define SIMULATION_MODE_UPDATE 80
#define DENSITY_FIELD_DLL_LOAD 81
#define DENSITY_FIELD_DLL_LOADED 82
#define DYNAMIC_DATA_DLL_LOAD 83
#define STATIC_DATA_OBJECT_CREATION 84
#define DYNAMIC_DATA_OBJECT_CREATION 85
#define DYNAMIC_DATA_REQUEST 86
#define DYNAMIC_DATA_UPDATE 90

http://www.go2pdf.com

117

#define FIELD_DATA_UPDATE 91
#define MICRO_TO_MACRO 100
#define MACRO_TO_MICRO 110
#define DYNAMIC_SWITCH_SUCCESS 120
#define CLOSE_CONNECTION 200
#define CLOSE_CONNECTION_CONFIRM 201
#define CLOSE_SESSION 210
#define CLOSE_SESSION_CONFIRM 211
#define QUIT 254
#define QUIT_CONFIRM 255

For this message the other field in the structure is an unsigned long labeled mode. This is
where the graphics mode unsigned long is placed. The server will grab this value and
update its own mode accordingly.

Finally, the message that was generated needs to be sent. To do this the handler in the
graphics module must have access to the network module to use the sendmsg() method.
This is done by using the SINGLTON(ESCAPE_SIMULATION_CLIENT) tag.

The sendmsg() prototype defined in evacuation_client.h is:

HRESULT sendmsg(void *msg, DWORD length);

The method itself is very simple. When sending something off you take the date being
sent, cast it to a void *, and include the total data width in bytes as the second parameter.

Before continuing, the internal behavior of this method needs to be addressed.
Depending on whether the call is blocking or not, whether it is guaranteed or not, and
how the data is treaded can make a big difference in how this method should be used.

The definition of this method in evacuation_client.cpp is:
HRESULT EVC::sendmsg(void *msg, DWORD length)
{

if(connected)
{

dpnBuffer.pBufferData = (BYTE *)msg;
dpnBuffer.dwBufferSize = length;
return g_pDPClient->Send(&dpnBuffer,1,0,NULL,NULL,

DPNSEND_GUARANTEED |
DPNSEND_SYNC |
DPNSEND_NOLOOPBACK);

}
return S_OK;

}

(Note: this is for the client. The server is almost identical in definition. Only the call to
send() is changed to sendto() which includes a reference to the particular target client.

Of the possible flags that can be passed to this method the ones currently being sent tell
send to transmit without blocking, to guarantee reception, and to make a personal copy of

http://www.go2pdf.com

118

the buffer being sent to ensure that the data is not prematurely freed. This last setting is
part of the default behavior and adds only a little overhead.

Because the sendmsg() method makes a copy of the data to be sent, it is safe to pass it
local and temporary variables.

DirectPlay will wrap the message in its own header because it has several internal
message types that it sends in order to manage connections. It is possible for the
developer to monitor these messages and add his/her own code. In our case we only care
about a DPN_MSGID_RECEIVE message. This type of message is received whenever
DirectPlay receives a message from the client or server respectively. The DirectPlay
message structure associated with this type of message looks like this:

typedef struct {
DWORD dwSize;
DPNID dpnidSender;
PVOID pvPlayerContext;
PBYTE pReceiveData;
DWORD dwReceiveDataSize;
DPNHANDLE hBufferHandle;

} DPNMSG_RECEIVE, *PDPNMSG_RECEIVE;

The only two fields needed from this structure are pReceiveData and
dwReceiveDataSize. The first is a pointer to the raw data that was sent and the second is
the size in bytes.

For both the server and client message handlers, whenever the handler receives a
DPN_MSGID_RECEIVE message it will cast the pReceiveData pointer as a (BYTE *)
and then will use the first byte of raw data to switch on. This works because the first byte
of all the different message structures is the message type identifier.

Returning to our example, when the handler receives the message and switches on the
type value it will be caught by the SIMULATION_MODE_UPDATE case. From there
the pReceiveData pointer will be cast into a MODE_UPDATE structure pointer and the
data retrieved and server mode updated. Here is the code:

case SIMULATION_MODE_UPDATE:
{

MODE_UPDATE *msg = (MODE_UPDATE *)pMsg->pReceiveData;
SINGLETON(ESCAPE_SIMULATION_SERVER).world_mode = msg->mode;
break;

}

Notice that the server also uses the SINGLETON class template, but this time the class is
of type ESCAPE_SIMULATION_SERVER.

The rest of the DirectPlay details in both the client and server network components are
fairly straightforward.

http://www.go2pdf.com

119

The rest of the message handler will be covered in a moment, but first here are the rest of
the message prototypes found in the message_prototypes.h file:

typedef struct GENERAL_TAG
{

BYTE type;
} GENERAL,*PTR_GENERAL;

typedef struct GENERAL_W_SMALL_BUFFER_TAG
{

BYTE type;
char buffer[256];

} GENERAL_W_SMALL_BUFFER,*PTR_GENERAL_W_SMALL_BUFFER;

typedef struct GENERAL_W_BUFFER_TAG
{

BYTE type;
char buffer[1024];

} GENERAL_W_BUFFER,*PTR_GENERAL_W_BUFFER;

typedef struct GENERAL_W_LARGE_BUFFER_TAG
{

BYTE type;
char buffer[2048];

} GENERAL_W_LARGE_BUFFER,*PTR_GENERAL_W_LARGE_BUFFER;

These first typedefs define the four most basic message types. Many of the message
types that follow are just one of these four with a different name, for example, the INIT
message typedef immediately below:

typedef GENERAL_W_BUFFER INIT;

typedef struct BOOKKEEPING_TAG
{

BYTE type;
LONG length;
char errormessage;

} BOOKKEEPING,*PTR_BOOKKEEPING;

typedef GENERAL_W_LARGE_BUFFER FILE_REQUEST;

typedef GENERAL_W_LARGE_BUFFER FILE_LIST;

typedef struct FILEIO_TAG
{

BYTE type;
BYTE kind;
char path[1024];
char filename[1024];
LONG length;
char data;

} FILEIO,*PTR_FILEIO;

typedef struct STATE_TAG
{

http://www.go2pdf.com

120

BYTE type;
BYTE state;

} STATE,*PTR_STATE;

typedef struct MODE_UPDATE_TAG
{

BYTE type;
unsigned long mode;

} MODE_UPDATE, *PTR_MODE_UPDATE;

typedef GENERAL_W_BUFFER_TAG WORLD_LOAD;

typedef struct FIELD_DLL_LOAD_TAG
{

BYTE type;
char filename[1028];
unsigned int bytes;
char buffer;

} FIELD_DLL_LOAD, *PTR_FIELD_DLL_LOAD;

typedef GENERAL_W_BUFFER_TAG DYNAMIC_DLL_LOAD;

typedef struct STATIC_OBJECT_CREATION_TAG
{

BYTE type;
unsigned int typeID;
unsigned int bytes;
char buffer;

} STATIC_OBJECT_CREATION,*PTR_STATIC_OBJECT_CREATION;

typedef struct DYNAMIC_OBJECT_CREATION_TAG
{

BYTE type;
unsigned int typeID;
unsigned int bytes;
char buffer;

} DYNAMIC_OBJECT_CREATION,*PTR_DYNAMIC_OBJECT_CREATION;

typedef struct DYNAMIC_TAG
{

BYTE type;
BYTE kind;
int num_objects;
LONG length;
char data;

} DYNAMIC,*PTR_DYNAMIC;

typedef struct FIELD_UPDATE_TAG
{

BYTE type;
char data;

} FIELD_UPDATE, *PTR_FIELD_UPDATE;

Creating a new type is as simple as adding another typedef and corresponding #define to
this file.

http://www.go2pdf.com

121

The message handlers for the client and server are very different as far as the messages
they handle. It is important to remember that all the inbound messages are handled here,
but only some of the outbound ones originate here. Also, the actions of these handlers
affect the state machine behavior.

4.3.1 Evacuation Client Message Handler
Starting from the switch statement, the client’s network message handler is as follows:

switch((BYTE)(*pMsg->pReceiveData))
{

case ID_REPLY: // ID was received from server
{

WaitForSingleObject(SINGLETON(ESCAPE_SIMULATION_CLIENT).
hDynamic_data_mutex,INFINITE);

INIT *msg = (INIT *)pMsg->pReceiveData;
this_ptr->server_version = msg->buffer;
SINGLETON(ESCAPE_SIMULATION_CLIENT).id_recieved = true;
ReleaseMutex(SINGLETON(ESCAPE_SIMULATION_CLIENT).

hDynamic_data_mutex);
break;

}
case WORLD_LIST_REPLY: // World list was received from server
{

WaitForSingleObject(SINGLETON(ESCAPE_SIMULATION_CLIENT).
hDynamic_data_mutex,INFINITE);

FILE_LIST *world_list_reply = (FILE_LIST *)
pMsg->pReceiveData;

int length = (int)strlen(world_list_reply->buffer);
SINGLETON(ESCAPE_SIMULATION_CLIENT).fileList =

(void *)new char[(size_t)length + 1];
memcpy(SINGLETON(ESCAPE_SIMULATION_CLIENT).

fileList,world_list_reply->buffer,length);
((char*)(SINGLETON(ESCAPE_SIMULATION_CLIENT).

fileList))[length] = '\0';
SINGLETON(ESCAPE_SIMULATION_CLIENT).

FILE_LIST_RECEIVED = true;
ReleaseMutex(SINGLETON(ESCAPE_SIMULATION_CLIENT).

hDynamic_data_mutex);
break;

}
case WORLD_DATA_REPLY: // World file data received from server
{

WaitForSingleObject(SINGLETON(ESCAPE_SIMULATION_CLIENT).
hDynamic_data_mutex,INFINITE);

SINGLETON(ESCAPE_SIMULATION_CLIENT).received_data_msg =
(void *)new char[pMsg->dwReceiveDataSize];

memcpy(SINGLETON(ESCAPE_SIMULATION_CLIENT).
received_data_msg,pMsg->pReceiveData,
pMsg->dwReceiveDataSize);

SINGLETON(ESCAPE_SIMULATION_CLIENT).FILE_RECEIVED = true;
ReleaseMutex(SINGLETON(ESCAPE_SIMULATION_CLIENT).

hDynamic_data_mutex);
return hr;

}
case SIMULATION_WIPE_CONFIRM: // Old simulation wipe successful

http://www.go2pdf.com

122

{
WaitForSingleObject(SINGLETON(ESCAPE_SIMULATION_CLIENT).

hDynamic_data_mutex,INFINITE);
SINGLETON(ESCAPE_SIMULATION_CLIENT).simulationWiped = true;
ReleaseMutex(SINGLETON(ESCAPE_SIMULATION_CLIENT).

hDynamic_data_mutex);
return hr;

}
case DENSITY_FIELD_DLL_LOADED: // DField DLL loaded successfully
{

WaitForSingleObject(SINGLETON(ESCAPE_SIMULATION_CLIENT).
hDynamic_data_mutex,INFINITE);

SINGLETON(ESCAPE_SIMULATION_CLIENT).fieldDllLoaded = true;
ReleaseMutex(SINGLETON(ESCAPE_SIMULATION_CLIENT).

hDynamic_data_mutex);
return hr;

}
case LOAD_WORLD_FILE_CONFIRM: // World file loaded successfully
{

WaitForSingleObject(SINGLETON(ESCAPE_SIMULATION_CLIENT).
hDynamic_data_mutex,INFINITE);

SINGLETON(ESCAPE_SIMULATION_CLIENT).
serverWorldLoaded = true;

ReleaseMutex(SINGLETON(ESCAPE_SIMULATION_CLIENT).
hDynamic_data_mutex);

return hr;
}
case DYNAMIC_DATA_UPDATE: // Dynamic data update from the server
{

WaitForSingleObject(SINGLETON(ESCAPE_SIMULATION_CLIENT).
hDynamic_data_mutex,INFINITE);

DYNAMIC *tempDptr = (DYNAMIC *)pMsg->pReceiveData;
char *tempPtr = &(tempDptr->data);
int totalRead = 0;
while(totalRead < tempDptr->num_objects)
{

if(Object::GetObject(*((int *)tempPtr)))
Object::GetObject(*((int *)tempPtr))
->ReadRawData((void *)tempPtr);

tempPtr += Object::GetObject(*((int *)tempPtr))
->RAW_DATA_REQ;

totalRead++;
}
ReleaseMutex(SINGLETON(ESCAPE_SIMULATION_CLIENT).

hDynamic_data_mutex);
return hr;

}
case FIELD_DATA_UPDATE: // Field data update from the server
{

WaitForSingleObject(SINGLETON(ESCAPE_SIMULATION_CLIENT).
hDynamic_data_mutex,INFINITE);

FIELD_UPDATE *tempFptr = (FIELD_UPDATE *)pMsg
->pReceiveData;

SINGLETON(ESCAPE_SIMULATION_CLIENT).floors
->setFloor(*((unsigned int *)(&tempFptr
->data)));

SINGLETON(ESCAPE_SIMULATION_CLIENT).floors->it->field

http://www.go2pdf.com

123

->ReadRawData((void *)&tempFptr->data);
ReleaseMutex(SINGLETON(ESCAPE_SIMULATION_CLIENT).

hDynamic_data_mutex);
return hr;

}
case DYNAMIC_SWITCH_SUCCESS: // OLD MESSAGE
{

WaitForSingleObject(SINGLETON(ESCAPE_SIMULATION_CLIENT).
hDynamic_data_mutex,INFINITE);

SINGLETON(ESCAPE_SIMULATION_CLIENT).
dynamic_switch_done = true;

ReleaseMutex(SINGLETON(ESCAPE_SIMULATION_CLIENT).
hDynamic_data_mutex);

return hr;
}
case STOP_SIMULATION: // Stop the smulation
{

WaitForSingleObject(SINGLETON(ESCAPE_SIMULATION_CLIENT).
hDynamic_data_mutex,INFINITE);

SINGLETON(ESCAPE_SIMULATION_CLIENT).simulating = false;
ReleaseMutex(SINGLETON(ESCAPE_SIMULATION_CLIENT).

hDynamic_data_mutex);
return hr;

}
default:
{

break;
}

}

There are two messages above that should be covered in a little more depth: the
DYNAMIC_DATA_UPDATE and the FIELD_DATA_UPDATE. The first is sent
whenever there has been a time step on the server side, and a portion of the dynamic data
has been changed. (More will be said later about time steps.) This message contains the
information needed to update the client’s graphics to match the world’s data. The second
is a similar idea. Until now nothing has been said about fields, so here is a brief
explanation: One way to represent the placement of objects in the world is by creating a
density field. Depending on how small you want to make the steps for the two axes you
average all the objects in a given cell on the grid and give it a value equal to the density.
The Escape Simulator creates a density field for every floor that is created. The
simulation file is given an opportunity to change the algorithm used in modifying these
fields as well as the dimensions.

Depending on whether the current view is macro or micro, either the field will be visible
or the individual objects will. Each is updated slightly differently in the client, and
therefore there are two update messages that have been created.

Common to both is the acquiring of the semaphore. This ensures that the data can be
changed without causing problems elsewhere. At the end of the case handler the
semaphore is released to allow the state machine and the rendering engine to continue.
In order to update the dynamic data properly both the client and the server need to have
the same numbering for each of the objects in existence. This ensures a proper update

http://www.go2pdf.com

124

because as a simulation is loaded each object is created on both sides at the same time
and in the same order. Obviously it is desirable to make the update as fast and small as
possible. The question is how?

It might be nice to have some kind of preset order where both the client and the server
have all the objects in the same order. This would allow the packet containing the update
to not need any object identification data. This would also mean that you always have to
update all the objects, regardless of whether or not they were actually changed.

We also have to consider the fact that the objects are stored as linked lists and are
constantly changing, so we cannot use a preset order to get rid of transmitting the object
identifiers. That being the case, it would still be nice to improve the means of looking up
the different identifiers in order for that part to be as fast as possible.

As far as access speeds for data structures, nothing is as fast as an array. Due to the fact
that none of the objects are destroyed after being created, and that both the server and the
client create the objects in the same order, we can create an array of object pointers that
we fill as we create the objects. This array has no other purpose than to speed up the
updating process by giving the client a fast way to find the objects by ID, the ID being
the index into the array that points to the correct object.

Finally, in order to reduce the number of bytes being transferred, and the speed with
which they are encoded, when the server loads up a DLL pluggin for an object template
type, it asks the DLL which fields will be updated. This information is then saved in the
client templates. The data has a predefined order in which it must be updated. This order
will be discussed more in the section on DLLs below. Since the client and server know
what data is being updated and the order in which the data will be stored, there is no need
for extra information to be transmitted.

Part of the Object base class client side is a method ReadRawData() that takes in a void *
to the raw update data sent from the server. This pointer is cast properly and the data is
withdrawn by the object based on the flags that were given it at creation.

Server side, each pluggin is required to have a function Dump() which is the counterpart
to the client’s ReadRawData().

After all the discussion above, it is time to dissect the DYNAMIC_DATA_UPDATE
state:

case DYNAMIC_DATA_UPDATE: // Dynamic data update from the server
{

WaitForSingleObject(SINGLETON(ESCAPE_SIMULATION_CLIENT).
hDynamic_data_mutex,INFINITE);

This is where the state grabs the semaphore.

DYNAMIC *tempDptr = (DYNAMIC *)pMsg->pReceiveData;
char *tempPtr = &(tempDptr->data);

http://www.go2pdf.com

125

int totalRead = 0;

The first of these lines is the cast of the raw data received by DirectPlay into the proper
message type. The next pointer will be used to increment through the actual object
update data. Finally, totalRead is used to ensure that the number of objects read matches
the total number of objects being updated in this message.

while(totalRead < tempDptr->num_objects)
{

Loop until we get all the objects.

if(Object::GetObject(*((int *)tempPtr)))
Object::GetObject(*((int *)tempPtr))
->ReadRawData((void *)tempPtr);

If there is an object in the object array at the index stored in the first four bytes of
tempPtr, then have that object read in the data intended for it.

tempPtr += Object::GetObject(*((int *)tempPtr))
->RAW_DATA_REQ;

totalRead++;

To understand the first if these two lines one must remember that part of every object
template created is a RAW_DATA_REQ member that holds the byte requirement for the
object. Once the object at the given index has extracted its update data, tempPtr needs to
be advanced to the beginning of the next object’s data. After the pointer is adjusted, we
add one to the totalRead count.

}
ReleaseMutex(SINGLETON(ESCAPE_SIMULATION_CLIENT).

hDynamic_data_mutex);

Finish up by releasing the semaphore.

return hr;
}

Here is the FIELD_DATA_UPDATE case handler. Note that there are few major
differences with DYNAMIC_DATA_UPDATE. The only significant one is that there is
only one thing being updated here, and this is because there is only one field per floor.

case FIELD_DATA_UPDATE: // Field data update from the server
{

WaitForSingleObject(SINGLETON(ESCAPE_SIMULATION_CLIENT).
hDynamic_data_mutex,INFINITE);

FIELD_UPDATE *tempFptr = (FIELD_UPDATE *)pMsg
->pReceiveData;

Gets the semaphore and casts to the FIELD_UPDATE message type.

SINGLETON(ESCAPE_SIMULATION_CLIENT).floors
->setFloor(*((unsigned int *)(&tempFptr

http://www.go2pdf.com

126

->data)));

Gets the floor’s linked list’s iterator pointing to the correct floor.

SINGLETON(ESCAPE_SIMULATION_CLIENT).floors->it->field
->ReadRawData((void *)&tempFptr->data);

ReleaseMutex(SINGLETON(ESCAPE_SIMULATION_CLIENT).
hDynamic_data_mutex);

Updates the field data and releases the semaphore.

return hr;
}

4.3.2 Evacuation Server Message Handler
After everything that has been covered on the client’s Message Handler, there is not
much that differs on the server side. Though the messages are different, the format and
structure are identical. Some of the server side messages will be covered later in the
section that is directly related to them, such as the DENSITY_FIELD_DLL_LOAD
message. Here is the message switch statement code:

switch((BYTE)(*pMsg->pReceiveData))
{

case ID_REQUEST: // ID
{

INIT id_responce;
id_responce.type = ID_REPLY;
strcpy(id_responce.buffer,"ESS 1.0");
this_ptr->sendmsg((void*)&id_responce,sizeof(id_responce));
break;

}
case WORLD_LIST_REQUEST: // World List request
{

HANDLE dirHandle;
WIN32_FIND_DATA file_info;
string fileList;
FILE_LIST fileListMsg;
dirHandle = FindFirstFile("../media/vmaps/*",&file_info);
parser = file_info.cFileName;
fileList = "";
if(parser.find(VMAP_END) != parser.npos)
{

fileList += file_info.cFileName;
}
while(FindNextFile(dirHandle,&file_info))
{

parser = file_info.cFileName;
if(parser.find(VMAP_END) != parser.npos)
{

fileList += " ";
fileList += file_info.cFileName;

}
}
FindClose(dirHandle);

http://www.go2pdf.com

127

fileListMsg.type = 3;
memset(fileListMsg.buffer,'\0',sizeof(fileListMsg.buffer));
strcpy(fileListMsg.buffer,fileList.c_str());
this_ptr->sendmsg((void*)&fileListMsg,sizeof(fileListMsg));
break;

}
case WORLD_DATA_REQUEST:
{

// SETUP THE NESSESARY VARIABLES
LONG length,bufferlength;
FILEIO *world_data_reply;
FILE_REQUEST *world_data_request =

(FILE_REQUEST *)pMsg->pReceiveData;
fstream infile;

// OPEN THE REQUESTED FILE
parser = VMAP_LOCATION;
parser = parser + world_data_request->buffer;
infile.clear();
infile.open(parser.c_str(),ios_base::binary |

ios_base::in);
if(infile.is_open())
{

// GET THE FILE LENGTH
infile.seekg(0,ios_base::end);
length = infile.tellg();
infile.seekg(0,ios_base::beg);
bufferlength = length + sizeof(FILEIO) - 1;
// WRITE DATA INTO THE RESPONCE STRUCT
char *buffer = new char[bufferlength];
memset(buffer,'\0',bufferlength);
world_data_reply = (FILEIO *)buffer;
world_data_reply->type = WORLD_DATA_REPLY;
world_data_reply->length = length;
strcpy(world_data_reply->filename,

world_data_request->buffer);
strcpy(world_data_reply->path,VMAP_LOCATION);
world_data_reply->kind = VMAP;
infile.read(&(world_data_reply->data),length);
infile.close();
// SEND IT AWAY :)
this_ptr->sendmsg((void*)world_data_reply,

bufferlength);
// CLEANUP TIME
delete [] buffer;
world_data_reply = NULL;

}
break;

}
case SIMULATION_WIPE:
{

GENERAL wipe_confirmation;
wipe_confirmation.type = SIMULATION_WIPE_CONFIRM;
if(SINGLETON(ESCAPE_SIMULATION_SERVER).floors)
{

delete SINGLETON(ESCAPE_SIMULATION_SERVER).floors;
SINGLETON(ESCAPE_SIMULATION_SERVER).floors =

http://www.go2pdf.com

128

new Floors();
}
if(SINGLETON(ESCAPE_SIMULATION_SERVER).field_dll)
{

delete SINGLETON(ESCAPE_SIMULATION_SERVER).field_dll;
SINGLETON(ESCAPE_SIMULATION_SERVER).field_dll =

new Dlls();
}
if(SINGLETON(ESCAPE_SIMULATION_SERVER).dlls)
{

delete SINGLETON(ESCAPE_SIMULATION_SERVER).dlls;
SINGLETON(ESCAPE_SIMULATION_SERVER).dlls =

new Dlls();
}
this_ptr->sendmsg((void*)&wipe_confirmation,

sizeof(GENERAL));
}
break;

}
case SIMULATION_MODE_UPDATE:
{

MODE_UPDATE *msg = (MODE_UPDATE *)pMsg->pReceiveData;
SINGLETON(ESCAPE_SIMULATION_SERVER).world_mode = msg->mode;
break;

}
case LOAD_WORLD_FILE:
{

GENERAL world_load_confirm_msg;
world_load_confirm_msg.type = LOAD_WORLD_FILE_CONFIRM;
WORLD_LOAD *msg = (WORLD_LOAD *)pMsg->pReceiveData;
SINGLETON(ESCAPE_SIMULATION_SERVER).

ReadVMapFile(msg->buffer);
SINGLETON(ESCAPE_SIMULATION_SERVER).

sendmsg((void*)&world_load_confirm_msg,
sizeof(GENERAL));

break;
}
case DENSITY_FIELD_DLL_LOAD:
{

void *buffer;
FIELD_DLL_LOAD *msg = (FIELD_DLL_LOAD *)pMsg->pReceiveData;
if(SINGLETON(ESCAPE_SIMULATION_SERVER).field_dll)
{

SINGLETON(ESCAPE_SIMULATION_SERVER).
floors->DestroyFields();

delete SINGLETON(ESCAPE_SIMULATION_SERVER).field_dll;
SINGLETON(ESCAPE_SIMULATION_SERVER).field_dll =

new Dlls();
}
SINGLETON(ESCAPE_SIMULATION_SERVER).

field_dll->ImportDLL((char *)msg-
>filename);

buffer = (void *)new char[msg->bytes];
memcpy(buffer,&msg->buffer,msg->bytes);
SINGLETON(ESCAPE_SIMULATION_SERVER).

floors->AddFields(buffer);
GENERAL density_field_msg;

http://www.go2pdf.com

129

density_field_msg.type = DENSITY_FIELD_DLL_LOADED;
SINGLETON(ESCAPE_SIMULATION_SERVER).

sendmsg((void*)&density_field_msg,
sizeof(GENERAL));

delete [] buffer;
break;
}

case DYNAMIC_DATA_DLL_LOAD:
{

DYNAMIC_DLL_LOAD *msg = (DYNAMIC_DLL_LOAD *)
pMsg->pReceiveData;

SINGLETON(ESCAPE_SIMULATION_SERVER).
dlls->ImportDLL((char *)msg->buffer);

break;
}
case DYNAMIC_DATA_OBJECT_CREATION:
{

DYNAMIC_OBJECT_CREATION *msg =
(DYNAMIC_OBJECT_CREATION *)pMsg
->pReceiveData;

SINGLETON(ESCAPE_SIMULATION_SERVER).floors
->addObject(msg->typeID,(void *)&msg
->buffer);

break;
}
case RUN_SIMULATION:
{

SINGLETON(ESCAPE_SIMULATION_SERVER).simulate = TRUE;
break;

}
case STOP_SIMULATION:
{

GENERAL stop_sim;
SINGLETON(ESCAPE_SIMULATION_SERVER).simulate = FALSE;
stop_sim.type = STOP_SIMULATION;
SINGLETON(ESCAPE_SIMULATION_SERVER).

sendmsg((void*)&stop_sim,
sizeof(GENERAL));

break;
}
case CLOSE_CONNECTION:
{

GENERAL close_confirm_msg;
close_confirm_msg.type = CLOSE_CONNECTION_CONFIRM;
SINGLETON(ESCAPE_SIMULATION_SERVER).

sendmsg((void*)&close_confirm_msg,
sizeof(GENERAL));

break;
}
case CLOSE_SESSION:
{

GENERAL close_confirm_msg;
close_confirm_msg.type = CLOSE_SESSION_CONFIRM;
SINGLETON(ESCAPE_SIMULATION_SERVER).

sendmsg((void*)&close_confirm_msg,
sizeof(GENERAL));

break;

http://www.go2pdf.com

130

}
case QUIT:
{

GENERAL quit_confirm_msg;
quit_confirm_msg.type = QUIT_CONFIRM;
SINGLETON(ESCAPE_SIMULATION_SERVER).

sendmsg((void*)&quit_confirm_msg,
sizeof(GENERAL));

SINGLETON(ESCAPE_SIMULATION_SERVER).quitFlag = true;
break;

}
default:
{

break;
}

}

4.4 Simulation File
The actual simulation file format is actually a new addition to the Escape Simulator. It is
not fully tested nor integrated at the moment. However, it has more or less been defined
and is being used by the simulator. This section will cover the current format for the file
and how it is integrating and will integrate with the Escape Simulation Suite.

4.4.1 Simulation File Format
This file is intended to be the main file that will define a given simulation. Within this
file such things as object templates, DLL pluggins, world maps, settings, and the position
and types of objects in a simulation are identified and defined.

The file itself is divided into three parts. The first is for general simulation parameters,
the second for templates definitions and other world-specific things, and the last is for the
actual object creation and placement. One thing to note is that this file is a fixed format
binary file. This saves space and makes it simpler to read and write out. Also, there are
more files than this one that make up a simulation. The other files will be covered at the
end of this section.

4.4.1.1 General Simulation Parameters
- SHORT simID: This short is the simulation ID value. This is a very important

number. It uniquely identifies and ties this file to the actual recorded
simulations. A portion of this number changes anytime the simulation data is
modified. In order to playback a recorded simulation the correct simulation
file must be loaded up. Several runs of the same simulation file can be
recorded and played back later. This allows the developer to play with
different simulation parameters, such as step size, to get less or more detail
from a given simulation trial. Things that would cause the simulation ID
number to change are: changes to object templates, the addition of new
objects, or other such changes to the world. These types of changes makes it
impossible for the previously saved recordings to be played back under the

http://www.go2pdf.com

131

new settings. If the old recordings are desired then the old simulation file
must be loaded.

- SHORT graphicsmode: This is the actual value of the graphics mode flags as
of the end of the last session. Changes to this flag do not result in a change to
the simID number.

- SERVER IP,PORT,SESSION#: These are the values to the last server that this
simulation was run on.. When this file is first created these can be given a
value. Otherwise, localhost and port 54321 will be assumed. If the server that
this address-port-pair points to is not available when the simulation is started
up, then the user will be given the option to specify a different address and
port. The session ID is used to allow the client and server to be temporarily
disconnected and then reconnected later. An example of when this might be
useful is if a researcher were to set up a large simulation with a big world with
many objects, and a very fine time step. Such a simulation may take the
server awhile to simulate a decent time span. In this case, the researcher
would setup the simulation, start the server simulating, and then disconnect.
Later, perhaps in a few hours or days, he/she would reconnect to the server
and check on the progress. The session ID would allow the client to reconnect
to the last session it left running on the server. In this case, the server would
not reload any of the objects or data. Instead, it would inform the client of the
information needed to setup properly. Once the client was setup then the
server would start sending updates on the data again. This functionality has
not yet been implemented, but is intended to be in the near future.

- WORD’s number of types, static objects, dynamic objects, and pluggins: Here
we tell the simulation file reader how many of the following things to expect.
This ensures that it reads the rest of the file correctly.

4.4.1.2 Template and World Definitions
- BYTE PLUGIN, “filename”: All the pluggins that the simulation needs in

order to load up properly are given here. The first byte is a pluggin ID that the
simulator will keep track of. For each pluggin there will also be a null
terminated character array which tells the server where to go to load up the
DLL. These DLLs, are not the same as the ones that are used by the object
templates. These are to enhance the simulator’s abilities. For example, a new
math library could be written with special functions that the object pluggins
will need to use. This is where that type of pluggin will be placed.

- BYTE type,”typename”,”filename”,”DLL”,ULONG fields: The first number
identifies which of the three template types this definition will fall under.
Next is a null terminated character string that is used by the user in making
modifications to objects. For example, after setting up the simulation, the user
might decide to change which DLL is being used by a given object template.
The internal identification numbers for the created templates would have little
or no meaning for the user, so this identification is given to the user and will
help him/her find the templates he/she needs. The filename null terminated
string identifies either the .imap file needed by the mesh template type, the
.bmp file needed by the point sprite template type, or the .fdat file needed by a

http://www.go2pdf.com

132

field template format. These files tell the template how to render properly.
Finally, the DLL null terminated string identifies the pluggin that will be used
server side by this particular template. This pluggin will define the algorithm
that will be used every time-step to update an object’s data; it will also define
how an object is to be updated. When the simulation file reads in this field it
requests that the server load up the specified DLL. When the simulation file
is created, it will query the DLL for the field’s flags value. This field tells the
client what fields will be updated on update messages to objects of that
template. Note: Like the pluggins above, there can be multiple sets of these
fields—one set per defined template.

- “map name”: This is the actual floor plan that the client will display and the
server will use in its calculations. The map name field is a null terminated
string. It actually identifies two files at once. The first is the “map
name”.imap file. This file contains the world map data in a format that has
been optimized for the graphics engine. For example, there is only one wall
object in this file. Since walls are static in this world they have been grouped
together into one indexed vertex list. This significantly speeds up the load-up
time of the world and the overall rendering. Such an optimization does not
work for the server side because, in order to do collision detection and other
such calculations, the server must know about each wall individually.
Therefore, the server uses a “map name”.vmap file. This file has all the
information that the server needs to be able to do all the simulation
calculations about the world.

- Double posX, posY, posZ, targetX, targetY, targetZ: This is used to save the
last camera position and target values. Changes to these values do not result
in a change of the simID value.

4.4.1.3 Object Creation and Placement
In this section, the actual objects in the world are defined. Usually, the static objects will
be defined first and the dynamic ones second. Each object will have the following fields:

- WORD typeID: The first field tells which template the object will be an
instance of. Note that this ID is assigned to the templates as they are created.
Any program that generates this file needs to take this into account and keep
track of these IDs, and when it writes out this part, it needs to put the
corresponding value here.

- FLOAT posX,posY,posZ: This is the x,y,z position of the object in 3D space.
- WORD floorID: This assigns the particular object to a specific floor.
- STARTING VALUES fields: Depending on what fields are specified in the

template fields field, this section will vary in size. Basically, all the fields
flags set in the field need to be given starting values, whether the object is
static or not.

4.4.2 Current and Future Integration
As stated above, at the moment the Simulation file format is defined and should not
change drastically in the future. As far as implementation and integration go, the

http://www.go2pdf.com

133

simulation file is read by the state machine’s load simulation state. This state handler has
been written and the majority of its functionality is there and working. There are some
fields, like the client/server session field, that are not being used. This is because the
actual code that manages saving and restoring a session has not been implemented. At
the moment, the complete implementation and integration of the Simulation file with the
Escape Simulator is about 50-60% complete.

This is one area that is on top of the list of things to get done, and should be finished in
the next month or two.

4.4.3 Secondary File formats
There are four other file formats that have been defined and are used by the simulation
file. The simulation file itself has a .sim file extension. The other four files have .imap,
.vmap, .bmp, and .fdat extensions.

4.4.3.1 .imap File
Like the .sim file, the .imap file is a fixed format binary file. It is used by both client side
world definitions and object mesh definitions. At the beginning of the file there is an
identifier that tells whether the file contains a world or an object mesh. When the format
is a world, there can be multiple floors that can be defined. When the format is for an
object mesh, there is only one floor defined. Here are the fields, listed in order starting
with the world format first and followed by the object format.
Floor Mesh:

- Version number: This number tells the .imap file reader the version the file
was written in. This is to ensure that the files are read correctly.

- Number of Floors: The number of floors that will be defined below. Each of
the fields that follow will be repeated for each floor.

- Name: Human readable null terminated string that is used whenever the
human wants to reference this floor.

- Size: The width and length of the floor, in that order.
- Level: The level the floor is on. This allows for multiple floors on the same

level.
- Number of Vertices: The number of vertices that will immediately follow this

value.
- <vertex-1x> <vertex-1y> <vertex-1z> <vertex-1textcoorx> <vertex-

1textcoory>: Each of the floor vertices will have this format.
- Number of Indices: The number of indices that will immediately follow this

value.
- <indext1-1> <indext1-2> <indext1-3>: Each triplet defines a different

triangle face on the overall mesh.
Object Mesh:

- Version number: This number serves the same purpose as the corresponding
field in the floor mesh.

- Vertex type: This is an important number because there are many possible
types of Direct3D vertices formats that can be put together to fit the
programmer’s needs. This number is created by ORing the desired vertex

http://www.go2pdf.com

134

field flags together to tell Direct3D and the .imap reader which fields to
expect.

- Number of Vertices: The number of vertices to expect immediately following
this value.

- FORMAT BASED ON VERTEX TYPE FLAGS: This is similar to the
formatting above, but which fields and the order of the fields will be based on
which flags are set in the Vertex type field.

- Number of Indices: The number of indices that will immediately follow this
value.

- <indext1-1> <indext1-2> <index1-3>: Same format and interpretation as the
world format.

4.4.3.2 .vmap File
This file format is text based, though it will probably be moved to a binary format when
ESPaint is finished. It defines the world information required by the server to run
properly. The format is fixed in the sense that the tags and values given must be included
and given in the order in which they appear. The tags are very self explanatory so the
format will be shown here without explanation.

VMap File Format - Floor data:
.
.
.
OBJECT

HEADER
TYPE <type>
NAME <name>
WIDTH <width>
HEIGHT <height>
NUMWALLS <number walls>
ENDHEADER

WALL
START <x> <y>
FINISH <x> <y>
ENDWALL

.

.

.

WALL
START <x> <y>
FINISH <x> <y>
ENDWALL

ENDOBJECT
.
.
.

http://www.go2pdf.com

135

4.4.3.3 .bmp File
This is nothing more than a normal windows bitmap file. Point sprites only require a
position and a single bitmap to render correctly. Please refer to [14] for an explanation of
how to implement sprites.

4.4.3.4 .fdat File
This file holds the raw data needed to initialize a density field. Not all simulations will
have moving dynamic objects, but every simulation will have at least one density field
per floor. The format for this file is fixed binary, and is as follows:

- ULONG row: Number of rows
- ULONG col: Number of columns
- ULONG data…: Based on the dimensions given in the first two fields, there

will be row*col fields here. Each will be an unsigned long in size and will
represent one entry in the density field.

4.4.4 ESPaint
Creating the simulation files and secondary files from scratch is a tedious task, especially
now that two of the three file formats are fixed binary. What is really needed by the
researchers is a nice GUI based program that will allow them to draw the world in a
manner similar to Microsoft Paint. Along with drawing the world, this application would
allow them to define object templates and graphically add objects of the defined
templates to the world. Finally, the program would generate the .sim and world .imap
and .vmap files. (The object .imap files will also be generated, but by pluggins that will
interprate .x and other well know mesh file formats which can be generated by many free
3D drawing programs.)

This application is currently being development, and for the best information on its
details, the reader should refer to documentation that is being created specifically for it.
The information that follows is only high level.

This application will act as a permanent pluggin to the Escape Simulation Suite. It will
be invoked whenever the user selects a new simulation from the main file menu.

When invoked, ESPaint will start by gathering information on: what DLLs are already
installed in the server pluggin directory, what .vmap/.imap pairs are available (this is if
the user would like to start with and modify a floor plan that is already created), and what
object mesh .imap, point sprite .bmp, and field .fdat files exist and are available to be
used. All this information will serve to flesh out selection menus. There will also be an
option to allow the user to import and install new media and pluggins.

After the user has setup the simulation to their liking, it will generate the .sim and other
files needed to run the simulation.

Finally, after a simulation has been created it can later be edited by ESPaint. Note:
editing a simulation with ESPaint will change the simID number and will make this new
.sim file invalid with any currently saved simulation runs.

http://www.go2pdf.com

136

All in all this will be a VERY useful tool for the researcher.

4.5 World Engine
In its structure and design, the world engine is very similar to the client’s graphics
engine. Both have a hierarchical structure that starts with the
WORLD/D3D_GRAPHICS class and then moves down to the FLOORS class -> FLOOR
class -> Objects class -> Object class. Both the Floors and Objects classes are linked lists
of Floor and Object classes respectively. If you look at the UML diagrams for both the
WORLD and D3D_GRAPHICS classes they will look almost identical. The main
differences are as follows:

- No Direct3D: This is an obvious one, but the implication might not be
immediately apparent. First off, this means that there are no object templates,
no template types, and no mesh/point sprite/field object classes. There is just
one Object class that is identical to the D3D_GRAPHIC version, except that
all the Direct3D code is removed. Instead of having render() and
ReadRawData() methods, this class has step() and dump() methods.

- Object DLL hook code: Instead of the graphics engine’s templates, the world
engine relies on pluggin DLLs to give the developer the ability to change the
runtime behavior of the objects and fields in the engine. In fact, without any
object pluggins the world engine cannot run. There is no hard coded object or
field behavior. The world was designed to allow the researcher to be able to
manipulate almost everything through the use of pluggins.

The details for the DLL pluggins will not be given here, but will be saved for the Object
Pluggins section below. The topic is large enough to merit a section of its own.

The structure for this engine is in place and working. There may still be some minor
changes in order to fix unexpected problems that may arise from the further development
of the different pluggins.

4.6 Math Engine
The math engine is one of the most important components of the world engine. The basic
engine is available to both the client and the server. The static portion of the engine
provides solutions to such common fields of mathematics as geometry, trigonometry, and
basic linear algebra. It was designed with speed and efficiency in mind. Some examples
of its use include the input handlers for the graphics engine use, the library to calculate
the change to the camera based on the users input, and the collision detection algorithm
used by the object pluggins in the world engine. For a more in-depth description of the
basic math engine and its API please see the documentation specific to this component

Along with the basic math engine that will be included with every compilation of the
Escape Simulation Suite, it will be possible to extend the math engine with extra
pluggins. These pluggins will be loaded in with the server when a simulation file is read
in and requests the DLL. This aspect will allow future researchers to be able to add
commonly used algorithms and functions to the default list of available calls.

http://www.go2pdf.com

137

The exact protocol for extending the math library with DLLs is a topic that is currently
under development and should be decided upon within the next two to three months.

4.7 Object Pluggins
One of the most powerful aspects of the Escape Simulation Suite is the fact that all the
world objects and fields can be completely redefined to suit a researcher’s needs. In
order to be able to get this kind of functionality the server uses dynamically linked
libraries.

DLL generation was already covered to a decent degree in Chapter 2. Please refer to that
section if something does not seem clear in the text that follows. In this section, the
actual DLL pluggin hooks and code used by the world engine for the Escape Simulator
will be covered. The goal is to help the researchers easily write their own pluggins by
providing a simple example skeleton that they can follow and add their own code to..

4.7.1 Setting up the pluggin project
As stated many times in this thesis, the assumption has been made that the reader is using
Visual Studio.net 2003 to build and compile their code. If some other IDE and/or
compiler is used then the responsibility of setting up the project correctly, compiling, and
linking falls on their shoulders.

Start by following the direction in the DLLs section of Chapter 2 on creating a Windows
console DLL project. After the project is created, the following libraries must be linked
in:

dplayx.lib dxguid.lib comctl32.lib winmm.lib odbc32.lib odbccp32.lib

Also, the latest version of ess.lib needs to be added to the linker input. In the future, this
file will be changed to a DLL to reduce the size of the pluggins and the amount of
repeated code that is dynamically linked in.

The latest version of the ess.lib file is required so that the pluggins will be compatible
with the most current version of the Escape Simulator.

Depending on whether you have the entire Escape Simulation source tree or just the
Escape Simulation Pluggin SDK, you need to make sure that the path to the Escape
Simulation Server .h files is in your include path. It should be either ./ess/include for the
entire application source and ./espSDK/include for the pluggins SDK. Finally, in your
main pluggin file please add #include “ess.h”. Doing all this will ensure that the correct
.h files are included to allow your pluggin to function properly.

4.7.2 Coding the Pluggin
Add to the blank project two files. The first will be your DLL’s .h file and the second
will be the corresponding .cpp. For the sake of this tutorial please call these files
test_person.h & .cpp.

http://www.go2pdf.com

138

Add to the .h the following code:

#ifndef TEST_PERSON_H
#define TEST_PERSON_H

#include "ess.h"

class Person : public Object
{
public:

Person(void *buffer);
~Person();

virtual void step();
virtual void dump(void *data);
virtual unsigned long optionalDataFieldFlags();
virtual void SetESSptr(void *ptr);

void move(float _x,float _z,float _level,float _rad);

ESCAPE_SIMULATION_SERVER *pESS;
};

#endif

Nothing here should be unexpected. The only thing unusual is the
ESCAPE_SIMULATION_SERVER *pESS member. In order for the objects you
develop to see and communicate with all other objects, they at least need to have access
to the object linked lists in the world. Please note, however, that in this example we are
using Object as the base class. If the developer wanted to write a DLL for a density field
instead, almost everything would be the same as it is found in this example. The only
differences are that the class would have to inherit from the Density_field class first, and
that the requirements for the dump() function are relaxed a bit. The developer only has to
give the out_data_requirement member a value. The optional_field_flags is not needed.
For an example of this type of pluggin please refer to default_density_field.h and .cpp.
These make up the default density field pluggin that is part of the Escape Simulation
Server Application, and are included in the main application solution as well as the
Escape Simulation Pluggin SDK samples.

Now add this code to the .cpp:

#include "test_person.h"

struct in_data // This struct is used to case the input buffer
to the proper data type;
{

unsigned int typeID;
unsigned int id;
float x;
float z;
float level;
float rad;

};

http://www.go2pdf.com

139

struct out_data
{

unsigned int id;
float x;
float z;
float level;
float rad;

};

Person::Person(void *buffer) // uint _type,uint objectID,float
_x,float _z,float _level,float _rad
{

in_data *pd = (in_data *)buffer;
id = pd->id;
out_data_requirement = sizeof(out_data);
optional_field_flags = OFF_ID | OFF_X | OFF_Z |

OFF_LEVEL | OFF_RAD;
x = pd->x; // X location.
Z = pd->z; // Z location.
level = pd->level; // Which level is the Person on
faceX = -1; // The X value for the vector for the

// forward position
faceZ = -1; // The Y value for the vector for the

// forward position
rad = pd->rad; // This angle is how far from the z-axsis

// the forward face of the Person is.
// This is used by the graphics engine
// for quicker rendering

vX = -1; // The X velocity component
vX = -1; // The Y velocity component
aX = -1; // The X acceleration component
aZ = -1; // The Y acceleration component
typeID = pd->typeID; // Type of Person. This will allow the

// rendering engine to know how to render
// this Person

next = NULL; // Next Person
prev = NULL; // Previous Person

}

Person::~Person()
{
}

void Person::move(float _x,float _z,float _level,float _rad)
{

x = _x;
z = _z;
level = _level;
rad = _rad;

}

void Person::step()
{

// Here is where all the AI calls are to be made

}

http://www.go2pdf.com

140

void Person::dump(void *data)
{

out_data *od = (out_data *)data;
od->id = id;
od->x = (float)x;
od->z = (float)z;
od->level = (float)level;
od->rad = (float)rad;

}

void Person::SetESSptr(void *ptr)
{

pESS = (ESCAPE_SIMULATION_SERVER *)ptr;
}

Two of the above method definitions are of major significance. The first is the step()
method. This method is the workhorse of the algorithm. You can create whatever helper
functions for this function that you need, but this is the method that will be called every
time step, without fail. This is where you would put any kind of AI or other algorithm to
model this object’s behavior.

The second method is the dump() method. This is where the data that can change for this
object is packaged up and sent to the server. The casting done in this method definition
to the out_data structure type that is defined at the top of the file just serves to make life
easier. When you write your own pluggin, you would modify the out_data structure to
include the fields you want to send to the client. In order to get dump() to work correctly,
there are three things that must be done besides writing the method definition. First, the
out_data_requirement member of the Object base class must be given a value equal to the
sizeof(out_data). It is recommended that the user leave this line alone in the constructor
and only change the structure. Second, the option_field_flags member of the Object base
class must be given the correct flags. A full list of the possible flags can be found in
world_defs.h. In this case, we are sending the ID of the object, x, z, level, and rad values.
These flags should all be ORed together and the result given to this member. When the
simulation is created, your pluggin will be asked for this value in order to fill out the
fields field in the simulation file for the object template your DLL is assigned to. Third,
the order of the variables in the out_data structure is important. There is a set order that
the data must be in. The variables must be in the same order as the corresponding flags
in the world_defs.h file. For instance, the #define OFF_X has the value of 0x2 and
comes before, and the #OFF_RAD has the value of 0x20 and comes after, so when the
data is outputted, the x value must come before the rad value, whether the structure is
used or not.

There are only three more files needed to get the pluggin ready. Create another .h and
.cpp pair. These will always be the same for every pluggin you write, with the exception
that the .cpp will need to include whatever the pluggin .h is (in this case it is
test_person.h,), and the name of the object class will need to be changed in the .cpp. For
this example please call these files dllLoader.h and c.cpp.

http://www.go2pdf.com

141

Again do not change these functions in the .h in any way. Doing so will make your
pluggin useless.

Please add the following to dllLoader.h:

#ifndef DLLLOADER_H
#define DLLLOADER_H

#define EXPORT __declspec(dllexport)

typedef void *(*VoidPtrVoidPtr)(void *buffer);
typedef void (*VoidVoidPtr)(void *ptr);

EXPORT void *Create(void *buffer);
EXPORT void Destroy(void *ptr);

#endif

and this to dllLoader.cpp:

#include "dllLoader.h"
#include "test_person.h"

void *Create(void *buffer)
{

Person *person = new Person(buffer);
return (void *)person;

}

void Destroy(void *ptr)
{

Person *person = (Person *)ptr;
delete person;

}

Notice that our test_person.h file is included at the top of this file and the use of the
Person class. When you write your own pluggins you will change these to be your own.

The last thing needed is to create a .def file for the DLLs. How to correctly do this and
add it to your project has already been covered in Chapter 2. Please refer to that section
for specifics. For this example, please call the file dllLoader.def and give it the following
lines:

LIBRARY test_person

EXPORTS
Create @1
Destroy @2

http://www.go2pdf.com

142

There you have it. Compile this and add it to the simulation file and your pluggin should
work. In order to make it do something specific, you will have to add some code to the
step() function.

4.7.3 Object Pluggin Hooks
Now here is a quick look at the server side code that makes all the pluggins work.

The following Dlls class has the responsibility for keeping track of all the DLLs loaded
for a given world. The prototype is found in the dll.h file, and the definition in the .cpp
of the same name. Here is the prototype:

#define MAX_NUM_DLLS 256

class Dlls
{
public:

Dlls();
~Dlls();

int ImportDLL(char *dllName);
void ReleaseDLL(unsigned int index);

void *CreateObject(unsigned int index,void *buffer);
void DestroyObject(unsigned int index,void *ptr);

int NumLoadedDlls();

protected:
private:

HMODULE dlls[MAX_NUM_DLLS];
VoidPtrVoidPtr createPtrs[MAX_NUM_DLLS];
VoidVoidPtr destroyPtrs[MAX_NUM_DLLS];
int loadedDlls;

};

Note that there can only be 256 DLLs per Dlls class. This is because there are currently
only 256 templates allowed to be defined within the client. This is fairly straightforward.
Notice that each Dlls class is assigned an index. When it is created, this index is
associated with a given template. When that template is used to create an object its ID is
used to index the appropriate CreateObject() method. Later, when the same object is
being destroyed, the corresponding DestroyObject() method is used to destroy the object.

Here is the code for the .cpp:

Dlls::Dlls()
{

int i;
loadedDlls = 0;
for(i = 0;i < MAX_NUM_DLLS; i++)
{

this->dlls[i] = NULL;

http://www.go2pdf.com

143

this->createPtrs[i] = NULL;
this->destroyPtrs[i] = NULL;

}
}

Dlls::~Dlls()
{

int i;
for(i = 0;i < MAX_NUM_DLLS; i++)
{

Dlls::ReleaseDLL(i);
this->createPtrs[i] = NULL;
this->destroyPtrs[i] = NULL;

}
}

int Dlls::ImportDLL(char *dllName)
{

if(loadedDlls == MAX_NUM_DLLS)
{

// No more dlls can be loaded
return -1;

}
dlls[loadedDlls] = LoadLibrary(dllName);
if(dlls[loadedDlls])
{

createPtrs[loadedDlls] =
(VoidPtrVoidPtr)GetProcAddress(dlls[loadedDlls],"Create");

destroyPtrs[loadedDlls] =
(VoidVoidPtr)GetProcAddress(dlls[loadedDlls],"Destroy");

if(!createPtrs[loadedDlls] || !destroyPtrs[loadedDlls])
{

// Invalid Library
FreeLibrary(dlls[loadedDlls]);
return -1;

}
loadedDlls++;

}
else
{

// Bad dll name
return -1;

}
// Dll loaded correctly
return (loadedDlls - 1);

}

void Dlls::ReleaseDLL(unsigned int index)
{

if(dlls[index])
{

FreeLibrary(dlls[index]);
dlls[index] = NULL;

}
loadedDlls--;

}

http://www.go2pdf.com

144

void *Dlls::CreateObject(unsigned int index,void *buffer)
{

if(createPtrs[index])
return (*createPtrs[index])(buffer); // Call the correct

creation function
return NULL;

}

void Dlls::DestroyObject(unsigned int index,void *ptr)
{

if(destroyPtrs[index])
(*destroyPtrs[index])(ptr); // Call the correct destroy

function
}

int Dlls::NumLoadedDlls()
{

return loadedDlls;
}

If any of this code looks strange please refer to the Chapter 2 section on DLLs.

The CreateObject() returns a pointer to the class in your pluggin that inherited from the
base class. The “Object” part of the name is somewhat misleading. Remember that the
prototypes for Create and Destroy in dllLoader.h return and take void * instead of Object
*. This means that any base class can be used here as long as dllLoader cast it properly,
the pluggin class inherits from it, and the method that calls Dll::CreateObject() and
Dll::DestroyObject() casts the pointers to the correct values. In the future, the name of
these two methods may be changed to reflect this point. From the pluggin developer’s
standpoint, as long as he/she has the latest .lib file and .h files they will not notice any
difference.

http://www.go2pdf.com

145

CHAPTER 5: Conclusion
After all is said and done the real question is, “Did it work?”

5.1 Achievement of Goals
The goal of this thesis was to create a tool to allow researchers who are developing
dynamic evacuation systems to test and run experiments on their hypotheses and ideas.
This goal was met.

The Escape Simulation Suite is in its Alpha stage, meaning that it is ready for researchers
to start writing pluggins and testing it.

To reiterate, the main goal of the Escape Simulation Suite is not to solve the evacuation
problem, but rather to provide a tool that researchers can use to test their theories quickly.
This tool must be both flexible and easy to use. That being the case…is it?

The use of pluggins has allowed the application to be very adaptable. Adding a new
object to a simulation is simply matter of adding a new pluggins with desired behavior
defined in it. Changing the behavior of an existing object just requires changing the
objects pluggin and recompiling. The pluggins themselves have been designed to be easy
to write. By using the pluggin SDK a researcher follows three steps:

1. Add algorithm to the step method
2. Add the correct flags to the optional fields flag variable
3. Compile

Along with the pluggin capability which achieves the flexibility goal, there are many
other goals that this application has met. They are as follows:

• The application is made up of a client and server that allow for a clean division of
labor between two computers.

• The client has a powerful, fast, and extendable graphic engine.
• The client has a clean overall design that will allow for easy modifications and

improvements in the future as well as good performance at runtime.
• The server manages the world information in an extendable data structure that

will allow for easy improvement in the future, as well as quick execution and
management at runtime.

• Both the client and server communicate through a reliable and quick interface to
help improve throughput and bandwidth.

• The application as a whole is Alpha ready as of the submission of this thesis.

5.2 Application’s overall performance
At the time of this writing, the application is in its alpha version. The following is the
current state of the different components:

http://www.go2pdf.com

146

- Graphics Engine: The 3D engine is working well. It can display meshes and
other graphics well, and it can load up files and keep track of the world from a
graphical point of view. The 3rd person view is working fine and the 1st person
view is in the works.
- Network Engine: The network engine can make a connection and send data
properly. That being said, DirectPlay was not necessarily the correct choice as far
as API’s. In the future, it would be interesting to swap this component with one
using Windows sockets.
- Menus & UI: There are several changes that will be made to the user interface in
the near future. At the moment it is still in a very basic format.
- IO: All the basic IO features are functioning correctly.
- Simulation File: The simulation file has been defined and is being integrated
with the application.
- World Engine: The structure for this engine is in place and working. There may
still be some minor changes made to allow for internal helper functions that the
researcher will be able to use to get commonly executed tasks done. Eventually,
there will be further pluggin support for more than just the objects and fields.
- Math Engine: This engine is in a stable and functional state offering most of the
basic geometric and trigonometric functions, as well as some basic linear
algebraic functions for working with matrices and vectors. In the future a
calculus and differential equations portion along with DLL pluggin support will
be added.
- Pluggins: The DLL hooks have been added to the application and pluggins can
be written and used for the objects and fields.

Here are a few screen shots of the running application:

http://www.go2pdf.com

147

Figure 22 This is a screenshot of the Escape Simulation client and server running. In this case, a
three story building (only two floors visible) was loaded up and a single agent object was added to the
middle. The current rendering is set to microscopic.

http://www.go2pdf.com

148

Figure 23 This is the Escape simulator running the same setup as in the last screen shot, but this
time it generated random density fields for each of the floors. Also, the rendering is set to
macroscopic

There is still a lot to be done. Even when it is to a first run production level it will have
possible areas for improvement.

For the near future, the most important improvements, in no particular order, are:

- Simulation Recording & Playback: This is a key feature that must be in the
final version.

- Simulation file generator: In order to generate the simulation files, some kind
of GUI wizard would be VERY helpful.

- World Generator: It would be very nice to have an application that allowed
researchers to easily generate worlds in a nice graphical environment.

- Wider Range of Pluggin Support: Adding support for math engine, world, and
general application pluggins.

5.3 Where to go from here?
There will be, of course, researchers that will be developing pluggins with their own
objects and specifications from here on out. It is the hope of the author that in the future
there will be other graduate students that will have the desire to expand and improve the

http://www.go2pdf.com

149

main application. Again, as stated above, there is much room for improvement.
However, for the most part, it looks like the simulator will be a success and a useful tool
for future researchers.

http://www.go2pdf.com

150

CHAPTER 6: APPENDIX

6.1 UML and Secondary Components/ APIs Documents
The actual structural UML documents were created with Microsoft Visio and are rather
large. These documents are included in the thesis_UML.zip file that was submitted along
with this thesis. Also, there are several APIs and/or components that have been
developed by the undergraduate researchers mentioned in the Acknowledgements
section. There have been separate documents created describing the specifics of these
APIs or components.

These secondary documents, the UML documents for the Escape Simulation Suite, the
thesis, and all the code are included on the Escape Simulation Suite homepage.
http://www.ee.vt.edu/~pushkin/evacuation/

The files found in the thesis_UML.zip file are:
- Escape Simulation Client.vsd: UML document of the Escape Simulation

Client. This document only contains a structural diagram of the application.
- Escape Simulation Server.vsd: UML document of the Escape Simulation

Server. Like the Client’s document, this only contains a structural
diagramming for the application.

The secondary documents found on the Escape Simulation Suite website are:
- Math Engine API.doc: Document explaining the Math library’s API,

including examples. This document was written and maintained by Greg
Dean.

- Simulation and Data file IO API.doc: Document explaining the file parsers
and file formats for all the Simulation and Secondary files used by the Escape
Simulator. This document was written and maintained by Ryan Wilson.

- ESPaint.doc: Document describing how to use ESPaint. This document was
written and maintained by ESPaint’s author Greg Dean.

6.2 Sample Code
Due to the size of the Escape Simulation Suite, and the number of sample applications
that make up the research of this thesis, the actual source code cannot be included in this
document. Instead, all the source code for each application mentioned in the preceding
chapters, including the full source code for the Escape Simulation Suite, is included in the
zip file: thesis_full_source_code.zip. Each application is stored in its own individual
directory and includes the solution and project files needed to compile and run the
applications.

One important note: In order to run any of the applications that use DirectX, you will
need to have the latest version of the DirectX runtime libraries installed on your
computer. And, in order to build any of the same projects you will need the entire
DirectX SDK installed.

The included applications in the zip file are as follows:

http://www.ee.vt.edu/~pushkin/evacuation/
http://www.go2pdf.com

151

- Project Ant: Basic Win32 project that contains three actual applications.
These were intended to test the basic Win32 GDI drawing.

- Pinball: This application is similar to the Poles and zeros application in the
math that is being done. However, in this example each particle is repulsed by
all other particles.

- Poles and Zeros: This was the next evolution after Pinball. The particles
themselves have no effect on each other, but the user can place poles and
zeros which either attract or repel the particles.

- Fish Pond with Threads: This is the Win32 based fish pond simulator
mentioned above. Along with being written using Win32 GDI calls, it is also
an example of a multithreaded application.

- Children Timers, Buttons, and Things: Though this application is not
mentioned above, it is a fun little application that creates a large 2D bank of
buttons and uses message calls to update the buttons’ statuses. This
application was a test of Win32 parent-child window communication. The
end result is that the buttons toggle themselves in a way that makes them
appear to be counting in binary.

- Space Flight: This application was written completely with 2D DirectDraw
calls. This was the first attempt made at DirectX programming, and for the
most part, it worked out well, especially for only about four days of
programming.

- Simulator First Run: This application was written using a combination of
Win32 and DirectDraw. It was the first hybrid application written. It also
uses an algorithm similar to those that will be used by researchers in the actual
Escape Simulator for macroscopic modeling. A detailed explanation of this
algorithm is given in the “Initial Modeling and Controlling of Evacuation
Grid.doc” file included in this project directory.

- TCP Chat: This is a simple chat application that was written using the TCP/IP
library developed in the early stages of this project.

- DirectPlay Chat: This was written to be identical to TCP chat, except that it
uses DirectPlay to get the job done.

- Resources In Use: This is the sample tutorial on Win32 resources that was
used in the above chapters.

- Escape Simulation Pluggins SDK: This is the first generation of the SDK that
will be given to the researchers for developing their own pluggins for the
Escape Simulator.

- Escape Simulator: This is the full application’s current state as of April 1,
2005. The application’s state is just barely pre-alpha. It is within about a
week or two of being ready for researchers to actually start coding and testing
pluggins. That being said, this version of the source code has already become
outdated, and will continue to at a rapid pace over the rest of the semester.
This is due to the constant work being done to improve the core application
and its peripherals. For the latest version of the source code please see the
Escape Simulation website included in this document. It is available in a
single zip download and also as a CVS repository.

http://www.go2pdf.com

152

CHAPTER 7: References
[1] S. Gwynne, E. R. Galea, M. Owen, P. J. Lawrence, L. Filippidis “A review of the

methodologies used in the computer simulation of evacuation from the built
environment,” Building and Environment (34), pp. 741-749, 1999

[2] Brian W. Kernighan and Dennis M. Ritchie “The C Programming Language,” 2nd

edition, Prentice-Hall,1988
[3] Deitel and Deitel “How to Program C++,” 3rd edition, Prentice-Hall, 2001
[4] Charles Petzold “Programming Windows: The definitive guide to the Win32 API”

5th edition, Microsoft Press, 1999
[5] André LaMothe “Tricks of the Windows Game Programming Gurus,” 2nd edition,

Sams Publishing, 2002
[6] André LaMothe “Tricks of the 3D Game Programming Gurus: Advanced 3D

Graphics and Rasterization,” Sams Publishing, 2003
[7] Wolfgang F. Engel “Beginning Direct3D Game Programming,” 2nd edition,

Premier Press, 2003
[8] Douglas E. Comer and David L. Stevens “Internetworking with TCP/IP: Client-

Server Programming and Applications Windows Sockets Version,” 3rd vol.,
Prentice-Hall, 1997

[9] Microsoft “MSDN,” Windows API, Microsoft, 2003
[10] Microsoft “MSDN,” DirectX, Microsoft, 2003
[11] Microsoft “MSDN,” Direct3D, Microsoft, 2003
[12] Microsoft “MSDN,” DirectPlay, Microsoft, 2003
[13] Microsoft “MSDN,” Windows Sockets, Microsoft, 2003
[14] Microsoft “MSDN,” Point Sprits, Microsoft, 2003
[15] Microsoft “MSDN,” Vertex Buffers, Microsoft, 2003
[16] Microsoft “MSDN,” Index Buffers, Microsoft, 2003
[17] Microsoft “MSDN,” Resources, Microsoft, 2003
[18] Microsoft “MSDN,” dllexport, dlimport, Microsoft, 2003
[19] Microsoft “MSDN,” Dll Export and Import Functions, Microsoft, 2003
[20] Microsoft “MSDN,” Microsoft, 2003
[21] Thomas Y. Merrell, Sadeq J. Al-Nasur, and Nirvana Mehan “Initial Modeling and

Controlling of Evacuation Grid”, 2004

http://www.go2pdf.com

