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I. SUMMARY

A general solution has been obtained for the lateral vibrations of
a simply supported beam with constant crosse-section carrying a
concentrated mass at the mid-point of span. The elementary beam theory
including the rotatory inertia of the beam 1s utilized. The frequency
equation involves the product of two terms, roots arising from one of
these being associated with symmetric vibration modes and from the other,
antisymmetric modes. The effect of the rotatory inertcia of the beam on
the roots of the frequency equations and on the normal mode shapes is
investigated., The roots of ihe frequency equations are determined for
the first ten modes for wide ranges of values of the significant
parameters. These numerical results are depicted in tables and graphs.
A study is made of the limiting values of the frejuency roots for extreme

values of the parameters.



IT. NOMENCLATURE

cross-sectional area of the beanm

A

E = Young's modulus of elasticity

I), ® moment of inertia of the cross-section area of the beam with respect
to its neutral axis

I, ¥ moment of inertia of the mounted mass with respect to an axis

parallel to the y-axis lying the neutral plane of the beam
/
’ —_—
2R(#)*
Kg ® spring constant of the beam in resistance to the change of slope at
the point considered. (Torque per unit radiam).
M = bending moment
My = moment about y-axis

m

R = =~ = mass ratio of the concentrated mass to the mass of the beam

Tq ° time function or amplitude function for nth mode.
V = shearing force
Wa =X4 Th = deflection function for thez - direction

Xy © the nth normal function

[£L
a* Jf7A

a; = linear acceleration in Z - direction

kp_ = Zl@n

1 = span length of the beam
m = the concentrated mass mmmted on the beam

mp, = fAL = mass of the beam



Pn = the circular frequency of the nth mode

- [ 1 - - +
T = fjﬁl = radius of gyration of the concentrated mass with respect to
an axis defined for Im
-~ I - > . 3
s = jfL 2 radius of gyration of the bcam crose~section with respect to

an ax‘s defined for Ip

tine

t

v = lateral deflection of the beam in z-direction, function of x aad t
X,7,2 = Cartesian coordinates. xy-plane ccinecides with the neucral

piane of the undeflected beam

dn = parameter of the frequency equation charactaerizing the effect of the
rotatory inertia of the beam for nth mode.

dy = angular acceleration about y-axis

fn® root of the frequency equation for the ntb mode

@ = angle of rotation or slopec of the deflection curve of the beam

An® the root of the auxililary equeticr of differential equation for

nthk mode

f ¢ density of the beaw



III, INTRODUCTION

The lateral viltration preblem of & simply supported beam or shaft
with constant creoss-section carrying 2 concentrated mass at the mid-
point ig of practiczl jmportznce in design conuidexations since such
configurctions frequently occur in struétures and nachines.

Thie problem has been studied in two manners. The first tviay was to
treat thce problem as for a single degree of freedom system by neglecting
the mass of the beaxn.“"“j The second method included the mass ofl the
beam and treated the coufiguration @s a continuous elastic systemlzl&(3)
In both treatments only the case of symmetiical vibrations of the bean
and in2ss were analyzed.

Restricting this system to vibratc in symmetric nodes simplified
this protlem and made unneceasary any consideration of the rotatory
inertia of the mounted mass, But 1f this system is excited by e force
applied anywhere on the system other than at a mid-span, or by a couple,
antisymmetric vibratior modes will be produced.

In this thesis, this problem is solved by starting from the general
case, allowing the concentrated mass to rotate about an axis parallel to
the'y-axia, Figure (1), and to deflect in the z-direction. A general
solution including both the rotatory inertia of the beam and of the
concentrated mass is obtained by applying elementary beam theotﬂé] in
which the effect of transverse shear deformation is neglected. The
latter effect may be significant but was omitted both for simplicity

and because it was desired to isolate the effect of rotatory inertia.

* Numbers in the square parentheses refer to the references in
Bibliography



The solutions which apply when the rotatory inertia of the beam is
neglected are deduced from the general solutions. A simplified relation
is derived for the lowest antisymmetric mode frequency. The anti-
symmetric mode frequencies for two extreme cases of mounted mass are
discussed. Roots of the frequency equations are worked out and plotted
as curves for certain ranges of parameters involving the ratio of the

concentrated mass to the mass of the beam and certain moments of inextia.



IV, ANALYSIS OF FREE VIBRATIONS

The reference coordinates for this system are oriented as shown in
Figure (1). The xy-plane coincides with the neutral plane of the

undeflected beam. Consider the whole beam as two spans each of length f— .

~
—
Nin
g
ﬁ 4
Nin

/"/_'9. /)

The following beam sign convention is adopted in the analysis. The
positive values of bending moment M, shear force V, deflection w and

rotation 6 of the beam are shown in Figure (2).

w Z, X
)M, +3{'{-"d¥, *.‘if./.?d,x (
ax, ’ | ‘

}ZJ" V,rg,-’;‘dx;

2 v

<

z;

F/.'g. (2)



The differential equation for the lateral vibration cf this system

including the rotatory inertii of the beam and neglecting the effect of
(47,

shear deformation is as follows :

2 *w 3w 2 *w _ 2
@ oxx ¥ otz " S oxozr T 9 os X=7z Q)
2 _ .Z‘-Ib

vhere @ =Ja : 2)

and &= % is the radius of gyration of the beam cross section with

respect to its neutral axis. The use of the symbols w and x without
subscripts denotes that the relations in which they appear apply to
both x; - and Xy = coordinate systems.

The boundary conditions at both emnds of the beam are that the

deflections and moments vanish.

1.€0 w] -0 3)
X =~0

w1 2%] = o @)
ox* X=0

The conditions of continuity, considering the whole beam as two
spans each of length 22- s are that the deflections are equal and slopes

are equal in magnitudes and opposite in sign at the mid=-point.

i.e. w =w,] (5)
l]xlzzg x2=2g
QWL oWz
oM = - 6
X=z X=F



- 10 -

By taking the free body of the concentrated mass at the mid-point
as shown in Figure (3), the equation of motion for the z-direction is

found to be:

ZF:! Sma,

3w, aw:| | 9w, 23w,
i.e, [EI’ 2K, 3 + Elb axz] e—[ YL +be N, atz-'-fl’b X, 3&])(..!1
N . = -2

2

Frg.(3)

But by the continuity of slopes at this point, equation (6), one has

oW | om ) _
[ax, * axz] ¢ °
X=z

'This relation reduees the previous equation to

3 . 2
4w, w; - XA
[Elb %7 TEL ax’]x - azsz-—f )
-2



Simiiarly, the equation for rotatory motion of the concentrated mass

about an axis parallel to y-axis lying the neutral plane of the beam is:

Z M)’: Im"(y

3w

At X\ ] 2 3)
W=z

dwi_ . o'W 2
i, [EI" ax: Ehoxzr| T M
X

=

where m is the concentrated mass and r is its radius of gvration with

respect to the y-axis defined above.

Assuming a senaration of variables of the form

Wn - Xn (x)'b'rn(t):

one obtains

XU+ ke s® %o+ KoXa = O (9
Ta+ Taba =0 1.0)
2 an

-
—
-

2
where kn = .

are

The roots of the auxiliary equation of squation (9)

_+ [+ [ kds* Kas™
An_—/—LA"S—"‘f"—Z.

Let o= | [ _kes* _ ks (12)
%,




: 254 Kas? -
then (/\//_Kzs__ —~+ | + —2——— = Y ;(T ]
Hence A=Y auktn and T :‘::"

Considering this £, as a oarameter, one obtains the general solution of

equations (9) and (10) to be:

n . K
Xn= Cncosh Ankn X + D sinh €nkn X 4 Facos ;t‘;;x + Hpsin ;;:‘I. (i3)
T;‘ = AnCOS Rf. + Bn sin p,,t (14)
where Ap, Ba, Cn, Do, ¥a aud H, are arbiicrary constants.

By the boundary conditions of equations (3) and (4), it is necessary

that Ch= Fn = G. 'The general solution (13) is thus reduced to

Xn=D, sinh dnknZ + Hpsin £ x

which represents the ferm of the following two characteristic functions

for span 1 and 2, respeciively.

. . K
X‘“= Dmsmh "(n knly + Hlﬂ Sin ;(:“xl

Xzn= D 5irh nknXs + Hzn Sin 3 X,
(15)

Using these functions in conjunction with the continuity equations

(5) and (6), and letting

(16)
ol —p,
m m

v~ m, _R Qan



one obtcins the following relations
r"\-l

, . T ﬂn
(Din=D:n) Sinh dnfn + (Hin- Hin) Singy, =0 (18)

B,
°(n(Dm'* Dzn) C°Sh°("ﬂn *’;:'.‘ Hm"' Hzn) cos a—f =0
19

By the equations of motions (7) and (8), the following relations

may be obtained:

3 B
e (Pin+Din) CoShelnpn = 5 ( Hin+ Han ) COS 5

= = 2RBn (Pin 5inh cdnfn + Din5in ,,% ) (20)

oln (D =Dan) Sinhdapn = 75 (Hin- Han) sin £

— 8R(Z—,’)zﬂn3 (o(n Dincosh dn B + ?’n. H,ncos o(i:) (21)

From the above four equations, the frequency equation is obtained

and has the following form:

R Bn (tntanh onp, - o-('.; tan;%) - (;é‘; + o(:)]

( pn | 2 h
4R (%) B (ntan Z = = tanh ol Ba) - ( o—"—: +n ) Fan ,% tanh a(,.p,]zo (22)

It is8 possible to separate this equation into two parts, each of

vhich may be equated to zero. The first part is

RB(dntanh dofn= g tun 2 ) - (L +otl) =0
\ (23)



if the second part is divided by tanh ohg, - tan 15"; , one obtains

4R(25)2/3”3(a(” coth dn pn - -5(!; cot a—:f ) - (;'-‘- +,,(ﬂ‘) — 0

@24
The characteristic functions X and X nay be expressed as:
Xin="D (s:’nho(np xZ, + Hin sin_e"’x
n n n <1 Din An o)
. H n
Xo= Dan (5inhdnpn X, + DM 5 z,)
o (25)
From oquations (1#) to {21), ouz cbizins the following ratios
. pn B 2,3 B’l
Hin _ R, Sing, Sinhdn By = GR(F) By CoshdnPn Cos o,
D
n o(,.(,,(:fa( )5m-— Cos; +4R( ) p,, = cas* "" = R sin? 2 &
(26)
Dan __ Hin _ oln  cos ot
—=1- 8R(£) ﬁ,, + ot h olnpn — A 1]
Din Din 1+ady Sinholn Bn
@7

Equation (26) may be simplified by use of the frequency equation (23);

the result is:

Hin —_ 2 cosha(.#..
Din " cos ::
(23)
Han

The same result for may be obtained in a similar manner.

an

$
it.e
* Hin ___ 2 coshdnpn

Dz2n " cos .f..”



Substituting the ratic of equation (28) into eguation (27), one obtains

Dzn

pim !

Substituting these ratios in equation (25), onz fiads

— dn@.. 2 Caﬁh"(n L] 2ﬁ V4
X,n Dln (Slnh 2 dﬂ os ‘:’-'!F Si nldnh l) O s X, s"z’

n

ngPn hdl' " 0 " Q
Xon=Din (sinh 2Bz, — g 222058 sin B0 2,) 0 x,%3
Co os & (29)

Thus the characteristic functions resulting f£rom the use of frequency
equation (23) are symmetric with respect to the plane x = —§ ; this
equation will therefore be termed the frequency equation for symmetric
modes.

If instead, ocne uses frequency equation (24) to reduce equation

(26) , one obtains the ratiocs

Hin = Hzn - — SinhdaBn
Din Din Sia ;:
Lan

Din :

From these ratios, one finds the characteristic functions to be

24 sinh an—. ; 28 e
Xin= D (sinh S50 2, = 2055 sin k) osx<z
%n
24, 5({n hdlu Pn 2Bn [
n— "Din (5"“1 '119'1 L2~ 5"."—?@_,‘ s¢ ‘1 2, Zz) O0< X $3
’ (30)

4 .
These eigen-functions all have a nodal point at x 2z and are symmetric

with respect to this pcint; these modes, which are 2esociated vith



frequency equation (24), will henceforth be referred to as antisymmetric
modes .

The determination of the roots of the frequency equations will be
discussed in details in the next chapter. However, it should be noted
at i:his point that the voots of equations (23) and (24) when arranged in
ascending oxrder arise alternately from equation (23) and (24) with the
lowest, or fundamental root being derived from equation (23). Thus, the
' symmetric modes will be associated with n 3 1,3,5,... and the
antisymmetric modes with n 2 2,4,6, cons

Finally, the solution for the deflection is found to be:

o0
' ' on Bn 2 coshdaB, 26n
W, = Ancos it + B,Sinpat )( sinh 222r o 4 Sin X
f /Za:‘( a n t)( Z X ~%n ‘?”7’5 2dn 0)

oo .
. . 2dnp. sinhdapn _. 2(a
+ ) (Ancos nit + Businpit)(sinh 2901, — 20l 510 20 5 )
e 0 (31)

where A, and B, are arbitrary constants to be determined from the
initial conditions. The expression for W. will be similar to that
obtained for W, except for the sign of the even terms which will be
negative. |

By subatituting the kn value defined by equation (16) into equation

(12) , the parameter o, becomes

f[ 4(%- )“@,u I ztz%‘
(32)

If one neglects the effect of the rotatory inertia of the beam by

setting 8 5 0, one f£inds, from equation (32), that o«n = 1,



Substiiuting this vaius Jnfce eauctions (23), (27), (29), (30) and (1)
respectively, ore obtains the folloving solutions which apply when the
rotatory i.ortia of the beam is neglected (Bernoulli-Euler theery (5)).

The frequency equaticn; for symmetric medes is

RPBn(tans - fﬂnhﬂn) -2=0

33)
and for ~ntisymmetric modes is
2R(F)*8>(cothPa~cotp)—-| =0
(34)
The normzl mode equations for the symmetxic case are
_ . 260 coshp, . 28 ¢
Xin = "'(Sm z i~ Cos Bn >in e"j") o< X, < 7
—_— . ” coshﬁn ’ 2§n
X pn(sin 2oz, — S n2ox) o xef
35)
and for the antisymmetric case are.
_ N 250 _- 51"7/13;1 . 25,1 o< X <£
Xm = Dm (5"1‘1 2 X, 5’."/9" 3/n 7 -'(1) < F3
. 2 5 ’ Aﬂ" ’ ” < s—g-
Xz,‘ = "Dm(smh-eﬁnl}— 5/1:1,6', Sn ‘f /Zz) 0 X3
(36)

The deflection curve function is

= 3 ) | 2Pn _coshpPn _. 26
W—l;(Ancosr.,tJr Basinpt) (sinh 5+ %, oo 72 <)

oo
' L 2on 51‘ b(gh N 28,
+ZZ4:,,(A"C°SP"“ Basinfut) (5in 57 2, ~ 22 o ¥ Zx)

&)



The expression for W will he similar to that for W  except for the sign
in front of the even terms vhich will be negative.
Equations (33) and (35) agree with the results :haﬁ have been

derived in the book by Von Kaxman & Biot (2] and in the paper by Professor

Hoppmannu].

The first six normal mode curves are plotted as shown by Figure (4)
/
2R(F)*
modes and equations (34) and (36) for even modes.

for R®* 1 and - 2 K = 500, hfased"on equations (33) and (35) for odd

From equation (32), we see that the influence of the rotatory
inertia of the beam i¢ dependent on the —;- ratico, the "slenderncss
ratio" of the beam, and 3, , tﬁe rvoote of the frequency equation. For
low frequencies and small — ratios, this effect may be negligible. For
higher frequencies, the effect will be greater. The fifth and sixth
normal mode curves for Ts‘ = 0 and 7 = 0,05 are plotted as shown in
Pigure (5) for R = 1 and K ® 500, It can be seen from these curves by
the change of the position of the nodal pointe that the effect of the
rotatory inertia of the beam is greater for the antisymmetric modes than

for the symmef.ric modes,
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V. DISCUSSION OF FREQUENCY ERUATICNS

A discussion of the frequency equation associated with the symnetric
mode vibrations has been given in the book by von Karman and Biot [2] .
Here, particular attention will be paid to the frequency equation for
antisymmetric modes, The rotatory inertia of the beam will be neglected
in the following discussion.

1. Approximate Formula for Lowest Antisymmetric Mode Frequency

The frequency equation for antjsymmetric modes, equation (34),

may be written as

K = B2 (cothpa-cotpa) (38)

2
wherxe K = d =M £

2R(F)* 2mr*

In order to obtain B, , the frequency aumbar associated with the
lowest antisymmatric mede, it will be convenient to replace the
transcendentsal functions occurring in equation (33) by theix power series

expansions, which are

3 & 7 9
/ B 8. 26, Ba 2 5z ‘et
) = — —_—— - + -
coth (3, 8 + 3 as + o4 s 4725 23555 ,6‘ <
/ 8 (323 B 2 625 3 ﬂ;’ _ 26;9

B, 3 a5 945 4725 23555
Substituting thesc acries into equation (38), one £finds

_g3 2 <46
A= (3A* 335 T 53555 )

(39)



To obtain an explicit expression fox s it is necessary to invert this

seriea, To accomplish this, assume that

B = b +CR e aK 4 o

and substitute this expression into equation (39). Equating the

coefficients of the same powers of K, the consgtants b,c and d are found

to be
b=2
- -2 (5 )=+
d=°§ gj:- - 53555 %" =E§%§
Consequently g% — 2 k- shrt+ :23/’%,(’_-_- . » (49)

If the mass of the beam m, A is small in comparison to the mounted
mass m, then K is small and the value of g° 4s given with sufficient

accuracy by the first term of the series of equatien (40); i.e.,

4 3 ‘
P = 5K - “1)
By equations (2), (11) and (16) which are  2? = ;J“’ , /(,,*:{l

and g, = kz'“e » respectively, one has

h=a(2b) = [EL 4 [3k

2 ( L ) PA Y] 2

= [12EL

or > Tt g 42)

since K= -ZL % 2t



is result could also ba obtained by consldering & singie degree of

freedom syvstem as shown in Migure (6).

—————

¢
rL-»-r-—F ’
| i—— -
Ar~Z___ 6\ T 14 e
L -
4 -
r 1
Fig. (&)

A torque Fd is applied cn the mounted mass and then reléasad. The

differential equatior of motion is

vhere I, is the mement inertia of the mounted mass with respect to an
axis parallel tc v~axis intersecting with the elastic line of the beam and
K i8 the spring constant of the beam'in resistance to t:hg change of the
glope at the point where the mass is attached. If a unit torque is

applied, i.,e. Fd = 1, then the tlope at the mid~point 18

£
0= ZE1,
. £l
Therefore K= L27_-b

Heace, one has b= /% — | /;5}21_,
m . ,



By contrast, the single degree of freedom approximation for the

fundamental (symmetric) frequemcy (2] is

f’ = (48 ELs
) ”723

2, Antisymmetric Mode Frequencies for Two Extreme Cases of the
Mounted Mass
There are two interesting csses associated with limitifxg
values of the constant K. The case K = 0 may arise physically either by
m,— 0 oxr by m —oc , The first possibility corresponds to the single
degree of freedom system discussed in _the. last article. The second
poasibi}ity will be investigated as Case A below., The other limiting
value, K 5> , may be achieved by either m — o0 or m — 0. The first
of these poasibilities is of no physical interest and the second will be

discuesed below as Case B,

Case A: m —~o0 Physically, this Ms that ﬁhe mounted mags is
extremely large in comparigon to the mass of the beam, so that the mid-
point of the beam is essentially fixed. Since K = 0, equation (38)

becomes

Cofhﬂ., = cot g, (for: B,%0)

which may also be writtem as

tanh P ‘= tan B
(43)

This is the frequency equation for a beam simply supported at one end

and built in at other end [5] . The xoots of this equation are given



with eatisfactory accurzey by ‘the exnression

3 .
6"=(’2’!"Z)Tr forn-’-4,6.8,...

The root g, is degenerate and approaches zero as X — 0.
While this velue agrees with the limiting v2lue of B, given by
equation (40), it should be noted thet theee results are obtained by a

physicelly different method of spproaching K = 0,

Case B: m —9Q This mcans that there is no m2s8s 1 on the beame
Thea X — o~ . 1If B, is not very large, one £20ds ; .fxom eqﬁati.on {38),

‘ COtﬂ,,:'—go

. p _ .
Therefore Pn=7T ' svhere n = 2,4.,6, ...
These are the roote of the frequency equation for the antisymmetric

modes of a simply supported beam (6] .

3. Numerical Results

The frequency roots of the first ten modes sre worked out for
practical rcference, Eaaed on equations (33) and (38). The effect of the
rotatory inertia of the beam is neglected. The mass ratios of R used are
é » 1, 2,3, 4 and 5. '!he:x values used are 1, 3, 10, 50, 150, 500,
1500 and 5000. These xoots are tabulated in Tables (1) and (2) and also
are plotted as curves shoﬁn in Figure (7) and (3)., The variation of B8,
with the parameters R and X may be depicted more compactly by
introduction of the funetions

Ny = pa=(n-1)T R 21, 3,5 o



for symmetric modes, and

Mo=f- (L -)m  nz2,4,6, ..

for antisymmetric medes, The N, and N, values are plotted as
Figure (9) and (10), vespectively.

| The xoots, g, fox ahé ist, 2nd, Sth, 6th, 9th and 10th modes have
been obtained based on equations (23) and (24), which include the effect
of the rotatory inertia of the beam. The latter =ffect was introduced
by eassuming 75 = 0.05, which 1s considered to be the upper limit of this
ratio for practical cases, These results are tabulated in Tables (3)
and (4) and shown in Figure (7) aud (8) by dotted lines, The roots for
the lst and 2nd modes arc quite close to that for the case - = 0.
Hence, these lines coincide with the lines for 7; = 0 to the scale used
for these figures, It may be seen from. these figures that, for a given
ei ratio, the effect of rotatory inertia on the frequency increases with
the mode number, the magnitude of the inerease depending on the % retio,



TABLE (1) ROOTS (f,) OF FREQUENCY EQUATION FOR SWMMETRIC MODES (5=0)

B 0 1 1 2 3 4 5 oo
n 4
1,571 1.419 | 1.191 1.048 0.963 0.904 0.860 0.785
4,712 4,363 | 4,120 4.037 4.003 3.981 3.975 3.927
7.8564 7.406 | 7.207 7.134 7.113 7.103 7.0%96 7.069
10.9%6 10,470 | 10.297 | 10.256 16.242 10,234 10.229 10.210
16,137 13.575 | 13.421 | 13.387 13.576 13.370 13.367 13.352
TASLE (2) ROOTS (B.) OF FREQUENCY EQUATION FOR ANTISYMMETRIC MODES (3=0)
en 0 10 50 150 500 {‘klsoo 5000 | oo
n
2 0 1.104 | 1.44C | 1,921 | 2.624 | 2.940 3.06¢ 3.121{ 3.136 77
4 3.927 3.935 | 3,952 | 4.011 | 4,341 | 4.947 5,739  6,106| 6.213] 27
6 7.069 7.070| 7.073 | 7.033 | 7.142{ 7.303 7.87] 8.747| 9.256| 3™
8 | 10,210 | 10.210| 10.211 | 10,215 | 10.234 | 10.283 | 10.47§ 11.094| 11.936) & ™
10 | 13.352 | 13.352| 13.352 | 13.354 | 13.362 | 13,384 | 13.46p 13.738| 14.666| 5 7

(e



TABLE (3) FREQUENCY ROOTS FOR SYMMETRIC MODES (5-’ 0.05)

Pn 0 1 i 2 3 4 5 oo
n A
1 1.561 1.413 | 1,189 | 1,047 0.962 { 0.904 9.860 0.785
5 64965 6.705 | 6.555 | €.515 6.498 | 6.490 64486 64465
9 11.539 | 10.567 | 10,503 | 10.488 | 10.482 | 10.478 | 10.477 10.468
TABLE (4) FREQUENCY KOOTS FOR ANTISYMMETRIC HODES ( 7=0.05 )
eNK ¥ 1 3 10 50 150 500 | 1500 5000 | oo !
" 1
2 0 | 1.104 | 1.445| 1.917] 2.597 | 2.388 | 3,013 3.050| 3.064] 3.069
6 | 6.465| 6,467 | 5.470| 6.432] 6.547 | 6.723 | 7.24% 7.753| 8.023] 8.040
10 | 10.465 | 10,470 | 10.470{ 10.472| 10.484 | 10.515 | 10.633 10.950 | 11.326{ 1i.511

3¢
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VI. CONCLUSIONS

A general solution has been obtained for the lateral free vibrations
of a simply supported beam with constant cross-section carrying a
concentrated mass at the mid-point of the spau. The effect of the
rotatory inertias of the beam and the mounted mass has been included.,

The frequency equation of the solution consists of two separable parts,
one of which leads to the symmetric normal modes, the other leads to the
antisymmetric normal modes. The frequencies associated with these two
sets of modes when arranged in ascending order occur alternately with

the lowest frequency being the fundamental of the (symmetric mode)
frequency. In general, the solution will consist of contributions from
both symmetric and antisymmetric modes, but for certain initial conditions
only one of these types of modes may enter the solution.

The effect of the rotatory inertia of the beam on the roots of the
frequency equations and on the normal wnode shapes was found tc be
dependent on the "slenderness ratio" of the beam and mode number,
increasing in importance as these factors increase. This influence on
the normal mode curves is greater for antisymmetric modes than for
syrmetric modes. The roots of the frequency 2quations were determined
for the first ten modes for wide ranges of values of the parameters

R and X,
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