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I. SUMMARY 

A general solution has been obtained for the lateral vibrations of 

a simply supported beam with constant cross-section carrying a 

concentrated mass at the mid•point of span. The elementary beam theory 

including the rotatory inertia of the beam is utilized. The frequency 

equation involves the product of two terms, roots arising from one of 

these being associated with symmetric vibration modes and from the other, 

antisyumetric modes. The effe~t of the rotatory inertia of the beam on 

the roots of the frequency equations and on the normal mode Rhapes is 

investigated. The roots of ~he frequency equations are determined for 

the first ten modes for wide ranges of values of the significant 

parameters. These numerical results are depicted in tables and graphs. 

A study is made of the limiting values of the fre'-tuency roots for extreme 

values of the parameters. 
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II. NC11ENCLATlIB.E 

A : cross-sectional area of the b~am 

E : Yout13 1 S modulus of elasticity 

Ib = moment of inertia of the cross-section area of the beam with respect 

to its neutral ax!s 

1ui = tllOment of inertia of the mounted mass with respect to an axis 

parallel to the y-axis lying the neutral plane of the beam 

Ks a spring constant of the beam in resist&nce to the change of slope at 

the point considered. (Torque per unit radian). 

M = uending moment 

My = moment about y-axis 

R = ..1!!_ = mass ratio of tbe concentrated mass to the mass of the beam 111b 

Tn : time function or amplitude function for nth mode. 

V : shearing force 

W,, : X,,· ~ : deflection function for the~ - direction 

Xn = the nth normal function 

{iI; 
a :r: J!A--
a. : linear acceleration in i! - direction 

kn: 2/" 
1 = span length of the beam 

m : the concentrated mass mo?.mted on the beam 

mt> = f A .l : mass of the beam 
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Pn = the circular frequency of the nth mode 

- a; ;:: - ltif 

·fF-" s - -A 

t = time 

: radius of gy?:ation of t11e concentrated mass '"'1.th respect:: to 

a11 a..~is defined for Ira 

= radius of gyration of tlte beam cross-nection with respect to 

w = lateral deflection of the beam in~- direction, function of x and t 

x,y > r. = Cartea:i.un coordi:1.1.:itcs. xy-planc c:.oinc:!.des t-Jith the neutral 

~lfilte of the undeflected beam 

o(,, = parameter of the frequency equation Gharacterizing the effect of the 

rotatory inertia of the beam for nth 2~10dc. 

~y = angular acceleration about y-~is 

f., • root of the freq1.iency eq;,iation for the nth mode 

8 • angle of rotation or slo,c of the deflection cui:ve of the beam 

An• the root of the: au:.i::ililary equetic~ of differe..'1.tial equation for 

nth mode 

f = density of the beabl 
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III. IN'l'BOOUCTION 

The latE~ral vibration problem of £1, simply supported beam or shaft 

with constant cross-section cat'r';ing 2. concentrated mass at the mid-

poit!t ic of pract~.c.:!l :import.E.1',ce iu design conoidcrntions since such 

conf:!.guratio!!S frequentl~1 occHr in structures and WLChinea. 

This problem has been 2tlttl!cd in l-wo nuri.nHrs. '!'he first miy v2.s to 

treat th~ problem as for a single degree of freedom ~ystem by neglecting 

the ma:Js of the be3r.1Jl'l\j The second method ;;.ncJ.uded the mass of the 

be<D:l and treated the con£:'..guratfon <1,s a con::inuoHs elastic systemJ2] & (3) 

In both tre<lttlcnt& onl~r the case of syrrr.et-..·ical v:J.t>rations of the beam 

:ind mass were analyze<!. 

Restricting this s~1stem to vibrate: :!.n synrietric TIC>dcs simplified 

this problem and made tameceasary any consid~ration of the rotatory 

inertia ~f the mounted mass. But if this sy:ttem is excited by e. force 

applied anywhere on the system other ~han 3t a mid-span, or by a couple, 

2Iltisr.rmetric vibration modes will be produced. 

In this thesis, this problem is solved by starting from the general 

case, allowing the concentrated maas to rotate about an axis parallel to 

the y-axis, Figure (1), mid to deflect in the z-direction. A general 

solution including both the rotatory inertia of the beam and of the 

concentrated masa is obtained by applying elementary beam theorf41 in 

which the effect of transverse shear deformation is neglected. The 

latter effect may be significant but w3s omitted both for simplicity 

and ber.auae it was desired to isolate the effect of rotatory inertia. 

* Numbers in the square parentheses ref er to the ref erencea in 
Bibliography 
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the solutions which apply when the rotatory inertia of the beam is 

neglected are deduced from the general solutions. A simplified relation 

is derived for the lowest antisymmetric mode frequency. The anti-

&yametric mode frequencies for two extreme cases of mounted mass are 

discussed. Roots of the frequency equations are worked out and plotted 

as curves for certain ranges of parameter• involving the ratio of the 

concentrated mass to the m&H of the beam and certain moments of inertia. 
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IV. ANALYSIS OF FREE VIBRATIOOS 

The reference coordinates for this system are oriented u shown in 

Figure (1). The xy-plane coincidea with the neutral plane of the 

undeflected beam. Consider the whole bean as two spans each of length f . 

x, 

Y, 

1· ~/ 

The following beam sign convention is adopted in the analysis. The 

poaitive values of bending moment M, shear force V, deflection wand 

rotation 8 of the beam are shown in Figure (2). 

F/3. < 2) 
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The differential equation for the lateral vibration of this system 

including the rotatory inerti~ of the beam and neglecting the effect of 

shear deformation is as follows(4J: 

where z. Eio a=-·-fA 

ands=~ is the radius of gyration of the beam cross section with 

respect to its neutral axis. The use of the symbols w and x without 

subscripts denotes that the relations in which they appear apply to 

both x1 • and ~ • coordinate systems. 

The boundary conditions at both ends of the beam are that the 

deflections and moments vanish. 

i.e. w) : 0 
x -o 

Tl'I ~2wJ - " -;:. -- - v 
ax~ x==o 

(1) 

(2) 

(3) 

(4) 

The conditions of continuity, considering the whole beam as two 

spans each of length i , are that the deflections are equal and slopes 

arc equal in magnitudes and opposite in sign at the mid-point. 

i.e. (5) 

(6) 
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By taking the free body of the concentrated mass at the mid-point 

as shown in Figure (3), the equation of motion for the z-direction is 

found to be: 

~I 

I 

But by the continuity of slopes at this point, equation (6),. one has 

Thia relation reduces the previous equation to 

(7) 
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Similarly, the equation for rotatory motion of the concentrated mass 

about an axis parallel to y-axis lying the neutral plane of the beam is: 

(8) 

where m is the concentrated mass and r is its radius of gyration with 

respect to the y-axi& defined above. 

Assuming a se,arati.on of variables of the form 

W,, : X 11 (x) • T " (t) • 

one obtains 
I If 4 z 

x'~ 
4 

x"' + k,. s + k,, Xn = 0 

l 
T,, + T"' !" - 0 -

2 .. p,, 
where k,, - a. • 

The roots of the auxiliary equation of equatfon (9) ~.re 

Let 

)\ = + 
" 

~.=)/ 

~; k~S..t ---
2. 

(9) 

(10) 

(11) 

(12) 
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;jj then k .. "s.a + + K:si , , - ,{,-

A z o(,, 

llence .A" = + c(,, k,, an4 +· .J:i." 
- " o{,. . 

Considering this ~" as a ~arameter, one obtains the general solution of 

equations (9) and (10) to be: 

where A", B" , C n , D,. , i!" aud 11 ., are arb5. 1:rary cons tan ts • 

By the boundary conditions of equations (3) and (4), it is necessary 

that C " : F" : 0. 'the general solution (13) is thus reduced to 

which represents the fc-·.r.m of the follow.tT'..g two characteristic functions 

for span 1 and 2, respectively. 

(15) 

Using these functions in conjunction with the continuity equations 

(5) and (6), and letting 

(16) 

n1 m --=-=R .f A.l m11 (17) 
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one o:>tr.ins the fol'!.owlne rt?lcitions 

(P,,.- P..rn)S1',,li 11{,.p,. + ( H,,.- H.in) sin::. =o (18) 

(19) 

By the equations of motions (7) and (8), the following relations 

may be obtained: 

_ 1 3 ) h I (J,. 
0\11 (Pm+ P.zn cos tJinP,. - o(,f ( Hin TH,.") COS~ 

= - 2 R ~" ( p,,, :>inh cl .. (1 .. .+ D," sin t',. ) 

a r).z 3 _1 I (J,. = vR ( 7 {J,, (O\n .D,,, cosh ti(,, A. + - H co.s - ) 
x. "'" '" °'" 

(20) 

(21) 

From the abov.:• four equations, the frequency equation is obtained 

and has the followl.ng fonu: 

It is possible to separate this equation into two parts, each of 

which may be equated to zero. The first part is 

(23) 
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If the second part is divided by tanh o!n~n· tan~ , one obtains 

(24) 

The charactarict1.c functiono X and X r.iay be expressed as: 

(25) 

From ~qu!l.tions (18) t~ {21), Oti.2 obt~ins tl::.e folbuing r11tios 

(26) 

(27) 

Equation (26) may be simplified by use of the fre~uc..~cy eqc~tion (23); 

the result is: 

The alllfte result for H.i" 
C> ... n 

:t .e. 

(28) 

may be obtained in a similar manner. 
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Substit\lting the r&tio of eqvati.on (28) into e~·.iation (27) , one obtains 

Substituting these ratios in equation (25), one finds 

X = n ( . h 2o(11(J,, __ 1 z. co-5nol."f" 5 . 2~" x) 
in v,,, Sm A .X' (;{11 fJ rnL~ ' 

4:- cos~ ""n ct,. 

( . h 2o1,.(J,, z. co-:Sh rl.,.p,, , 2(3,. v ) Xu,= D,,. .Sin -e X.z -P(" sin - -"-.z Cos ~.. ~oln 

"'" 

i 0:::: x, ~ 2 

(29) 

Thus the characteristic functions resulting from the use of frequency 

equation (23) are synmetr!c with respect to the plane x = 1 ; this 

equation will therefore be termed the frequency equation for symmetric 

modes. 

If instead. one uses frequency equation (24) to reduce equation 

(26) 1 one obtains the ratios 

H:u1 =--=-
P.ut 

p,.,, = - I 
p,,. . 

From these ratios, one finds the characteristic functions to be 

(30) 

.R. Thene eigen-functions nll have a nodal point at x =2 and arc symnetric 

w:tth respect to th:i.s pc1.nt; thes~ modes, w1:.:!ch .::.re ·'.lssociated lYith 
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frequency equation (24) , will henceforth be referred to a.a antisynnetric 

modes. 

The determination of the roots of the frequency equations will be 

discussed in details in the next chapter. However, it should be noted 

at this point that the ~ts of equations (23) and (24) when arranged in 

ascending order ariae alternately from equation (23) and (24) with the 

lowest, or fundamental root being derived from e411uation (23). Thu•, the 

aymaetric modes will be aseociated with n a 1,3,S, ••• and the 

antiayamaetric modes with n = 2,4 16, •••• 

Finally, the aolution for the deflection is found to be: 

~ zdnfltt :Jlrth ~ .. p.. • ;(3,. ) + L (A 11cosp,,t+ 8,.~.·..,r,,t)(sir1h-i- x, - s· ,, .. -:>m Lt:(,, ;X., 
2,.4,6 '" ~ (31) 

where A ,. and B 11 are arbitrary constants to be determined fl'Oll the 

initial conditions. The expression for Wz will be similar to that 

obtained for W, except for the sigu· of the even tem.e which will be 

negative. 

By aubatitutiag the kn value defined by equation (16) into equation 

(12) , the parameter "'" becomes 

(32) 

If one neglects the effect of the rotatory inertia of the beam by 

setting a = 0, one finda, froa equation (32) , that o(" : 1. 
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rcspect:'..ve!.y) ou~ obta:i.ns the follo\7ing soluti.om; which apply when the 

rotator;-' L.·:?rt.i3. of the be~m 5.s neglected (Bernoulli-Euler theor.• (SJ). 

Tha frequency equati en, for G!'lmletric raoc..as :i.s 

2 R (ff {J,.3 ( cofh ~ .. - cot tJJ - I = o 

The normal mode equations for the symnetric case are 

X /), ( , .2 /JJ11 co:; Ji fJ,. , 2 fl" ) ,,, = '" 51'1 T x, - ?111--;;-X, 
Cos 1311 ~ 

X ( , 211., cosh{3., , 2(3,, ...,, ) zn = !>,,, s.n ----;i-.X.z - -::s,,., ---;;--~.z 
G- cos {31'1 .x. 

and for the anti.s)1l!!lletric case are . 

The deflection curve function is 

-~ t ( 2 p,, Gi:'~h (.I,. . :> , .z/J,. _.,, ) W,= L._,(Ancosr,,t+ 6,,!iinp,,) s1'nhy~1- C.Os(3n ,,., £......_' 
1,3, 5 

00 

+ [ ( Ancos p,.t -+ 8n s.'n r .. t) (s,·,, 2f'" z, 
Z,4,6 

(33) 

(34) 

(35) 

(36) 

(37) 
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. 
The e:itpression for W w:!.11 he s:tmilar to tllat for W except. for the sign 

in front of the even terms "hich will be negative. 

Equations (33) mcl (35) agree with the reaulta that have been 

derived in the book by Von Karman & Biot ( 21 a.nd in the paper by Professor 

Hoppmann L 3 J. 

The first six normal mode curves are plotted ae shown by Figure (4) 
I for R • 1 and .2R(fY° = It : 500, based on e~u&tions (33) and (35) for odd 

modes and equations (34) and (36) for even modes. 

From equation (32) • we see tha~ tlte influene,c of the rotatory 

inertia of the beam is dependent on the :fi. ratit', the "slenderness 

ratio" of the beam, and {!J11 1 the roots of the frequency equation. P'or 

low frequencies and small : ratios. this ufect may be negligible. For 

higher f~equencies, the effect will be greater. The fifth and sixth 

normal 190de curves for J = 0 and -ff- • o.os are plotted as ehown in 

Figure (5) for & = 1 &nd K = 500. It can be aeen from t:heae curves by 

the change of the poaition of the nodal points that the effect of the 

rotatory inertia of the baa ia greater for the antisymmetric modee than 

for the syiomet.rie r.iodee. 
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V. DISCUSSION OF FR~QUENCY EQ!JATIO?!S 

A discussion of the frequency equation associated with the aynmetric 

mode vibrations has been given in the book by von Karman and Biot (2J • 

Here, particular attention will be paid to the frequency equation for 

antisynmetric modes. The rotatory inertia of the beam will be neglected 

in the following discussion. 

1. Approximate Fo:cmula for Lowest Antis}'ll1Detric Mode Frequency 

The frequency equation for mtj_syn?etric !!lodes, equation (34) , 

ma~, be written e.s 

(38) 

where 

In ordeT to o~t•in f!S~ , the frequency ~umba~ associated witb the 

lowest antisymmetric mode, it will be convenient to replace the 

transcendental functions occurrh1g in equ~tion (38) by their power series 

expansions, which are 

2 tSz. ~ .2 .z. 
---- - --- (9,. <.,,. 
'?3555 , 

3 5 I 811. (9~ 2 P~ =----------8,, 

Substitutina these 3crics into equation (38), one finds 

(39) 
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To obtain an explicit expression for , it is necessary to invert this 

series. To accomplish this, assume that 

4 :I. K ~ t3:1. =bf<.+CK .+ct -+---

and substitute this axpreasion into equatiou (39). Equating tile 

coefficients of the $ante powers of K, the aonetants b,c and d are found 

to be 

b=i z 

C = - ..:! (___:!:.__ //\ = - _I 
2 945 / 70 

Consequently ,a4 ~ I .. t3 ~ 
t-.z = -z I< - 70 K"" + K 2Jlt:10 - - - - • 

(40) 

If the maas of the beam m,. is small in ~arison to the mounted 

mass m, then K ia small and the value of ~ 4 is given with sufficient 

accuracy by the first te:tm of the series of aquatien (40); i.e., 

By equations (2), (11) .and (16) which are· 

aad a = k,,L , respectively, one has ,.,,, z 

or /'.. =- /icE.L. 
2. • J,,,f. 

since f<i = _I fA£ f,1. 
Z I,,, . 

a.z = E1o 
. YA " 

(41) 

(4-2) 
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this result could also be obt~ined by con~ideriug a $ingle degree of 

freedom system a~ sbown in !igure (6). 

---- -------------- -·· --- ... --·------- .. -· ·--· ---····--· -----_ _..,__ _____ --·· 
' 

---l ----' J 
A torque Fd is applied en the mounted mass and then releaa~d. The 

differential equation of l!'!Otion is 

where I .m is the moment inertia of the mounted mass with respect to an 

axis parallel tc y-axis intersecting with the elastic line of the beam and 

K is the spring constant of the beam in resistance to the change of the 

slope at the point where the mass is att&ehed. If a unit torque iu 

applied, i.e. Fd = 1, then the &lope. at the mid•point is 

Therefore . 
He11ce. one has 

// _ 12Eib 
1\5 - l. . 

fz. , /J(; j 12 E Ip 
) T,,, I"' I. 
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By contrast, the aingle degree of freedom approximation for the 

fundamental (synwetric) frequency ( 2 J ia 

" = j +8. e-.r" r. ,,,, i 3 

2. .Antisymmetric Mode Frequencies for two Extreme Cues of the 

Mowtted Mass 

There are two interesting cs.sas associated with limiting 

values of tbe ~onatant K. ?he case K = 0 may arise physieally either by 

m b - 0 or by m - ao • The first possibility corresponds to the single 

degree of freedom system diacuHed in the last article. The second 

poaaibility will be investigated as case A below. The other limiting 

value. K : 00 , may be achieved by either •ti- oo or a - O. The first 

of tbeae poasibilities is of no phyaical interest and the second will be 

diecuBSed below aa Cue B. 

Case A: m - "° Physically, this means that the mounted mus is 

extremely large in comparison to the maaa of the beam> so that the micl-

point of the beam is esaentially fixed. Since It : O, equation (38) 

b~s 

( for · /3n ~ o ) 

which may also be written as 

(43) 

This ia the frequency equation for a beam aimply aupported at one end 

and built in at other end ( 5 J • The roots of this equation are given 
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with eatiefactory accur~cy by th~ elt?resslon 

,, 3 p =(- - -)'Tl" 
II 2 4- 'I for n : 4. 6, a •••• 

'Die root Pi is degenerate and approaches zero as K - 0. 

While this value agrees with the limiting value of Pa given by 

equation (40), it ehould be noted that theee result• are obtained by a 

physically diffeTent method of approaching K • o. 

Case B : u - O This 1l\<?c3118 that there is iiO m:tso f,1 on the beam. 

Then !{ - 00 • If (3,, is not. very large; one finds; .frOtR equation (38) 1 

Therefore 

cot~,. = - oo 

,, 
~ =--rr ". z ~ere n • 2,4,6, ••• 

These are the root• of the frequency equation for the antieynmetric 

modes of a e:f.!lp ly supported beam ( 6 ) • 

3. ?rumerical R.esutts 

'the frequency roots of the f1l."st ten mdea a.re worked out for 

practical reference, based on equations (33) and (38). '?he effect of the 

rotatory inertia of the beam is neglected. The me.as ratio• of a used are 

1 1 11 21 31 4 and s. '?he g values uaed are 1, 31 10, so, 150, 5001 1i . .· 
1500 and 5000. Th.ese root& are tab1.alated in 'fable• (1) and (2) ancl also 

are plotted u curves •hmm in Figure (7) end (8). '!he variation of 6,. 

with the paremeters 1l and ~may be depicted more compactly by 

introduction of the functtona 

lls = p~-( tJ- i) 1't n • 11 3 1 5, ••• 
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for aymnetric mode&, and 

n : 2, 4., 6) ••• 

for antis~tric I:10des. '£he Us and NA values a.re plotted ao 

Figure (9) ~d (10). respectively. 

The roots. ~" for the 1st. 2nd, 5th, 6th. 9th an.cl 10th modes have 

been obtained liaaed on equations (23) and (24), which include the effect 

of the rotat;ory i11ertia of the be'1II\. The latter effect was introduced 

by asaumina ; : 0.05, which is considered to be the uppe'X' limit of this 

ratio for p-ra.ctic~l cases. These result~ are tabulated in Tables (3) 

and (4) and shown in Figure (7) and (6) by dotted lines. The roots fol: 

the lat and 2nd a.odes arc q~ite closa to that for the case 1 = o. 
Renee, these lines ~oincide. with the lines for -J = O to the scale used 

for tbes~ figuru. lt my be seen from these figures that, for a given 

i ratio• the effect of rotatory inertia on the frequency increases with 

the mode number, the magnitude of the increase depending on the f r.t.tio. 



TABL6 (1) ROOTS (~,. ) OF FREQUENCY EQUATION FOR SYMt-2TRIC MODES ( ~ = o) 

-
~ 0 1 1 2 3 4 5 

4 00 

-
1 1.571 l.419 1.191 l..048 0.963 0.904 0.860 0.785 

3 4.712 4.363 4.120 I '"-037 4.003 3.981 3.975 J.927 

5 7.854 ;1 .406 1.201 7.134 ·1.113 7.103 7.096 7.069 

7 10.996 10.470 10.297 10.256 10.242 10.234 10.229 10.210 

9 llhl37 13.575 13.421 13.387 13.376 13.370 13.367 13.352 

TABLE (2) ROOl'S (~ .. ) OJ! FREQUENCY F.QUAfiON FOR ANTISY!tiETRIC MODES ( i~o) 

~ 0 l 1 3 10 50 I 150 500 1500 5000 o<> I -
2 0 1.104 l.44G 1.921 2.624 2.940 3.0oit 3.121 3.136 "TT 

4 3.927 3.935 3.952 4.011 4 .. 341 t 4 .. 947 S.73' 6.106 6.213 2 1t 

6 7 .OC:9 7.070 7.073 7.0:33 7 .142 ! 7.303 7 .87 t 8.747 9.256 3 1't 

8 10.210 10.210 10.211 10.215 10.234 10.263 10.47l 11.094 11.936 4 1t 

10 13.352 13.352 13.352 13.354 13.362 13.384 13.46) 13.738 14.666 5 IT 

• 



TABLE (3J FREQUENCY ROOTS FOR. SYMMETRIC MODES ( -j= \>. 0 5) 

~ 0 1 l 2 3 4 5 00 

4 - . 
l 1.561 1.413 1.189 1.047 0.962 0.904 0.860 0.785 

5 6.965 6.705 6.555 6.515 6.498 l 6.490 
6.436 6.465 

9 11.539 10.567 10.503 10.488 10.482 10.470 10.477 10.468 
-

TABLE (4) FREQIJENi:y ROOTS FOR ANTI8nlHETRIC YAODES ( i==-O.O!i ) 

~--- --
~ 

l 
iJ l 3 10 50 150 500 1500 5000 pO ! 

I 
I - ·-

2 J 1.104 1.445 1.917 2.597 2.388 3.01: 3.050 3.064 3.069 

6 6.465 6.467 6.470 6.432 6.547 6.723 7.24. 7.753 8.023 a.ot.o 
lG 10.469 10.470 10.470 10.472 10.4B4 10.515 10.63: 10.950 ll.32S 11.511 
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VI. CONCLUSIONS 

A general solution has been obtained for the lateral free vibrations 

of a simply supported beam with constant cross-section carrying a 

concentrated maso at the mid-point of the spau. The effect of the 

rotatory inertias of the beam and the mounted mass has been included. 

T'ne frequency equation of the solution consists of two separable parts, 

one of which leads to the symmetric normal modes, the other leads to the 

antisymmetric normal modes. The frequencies associatad with these two 

sets of modes when arranged in ascending order occur alternately with 

the lowest frequency being the fundamental of the (synmetric mode) 

frequency. In general, the solution will consist of contributions from 

both syrmnetric and antisynmetric modes, but for certain initial conditions 

only one of these types of modes may enter the solution. 

The effect of the rotatory J.nertia of the beam on the roots of the 

f requcncy equations and on the normal t'lOde shapes was found to be 

dependent on the "slenderness ratio" of the beam and mode number, 

increasing in importance as these factors increase. This influence on 

~he normal mode curves is greater for a..1tis}'llllletric modes than for 

~ycnnetric modes. The roots of the frequency ~quations were determined 

for the first ten modes for wide ranges of values of the parameters 

R and K. 

• 
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