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Analysis of a self-contained motion capture garment

for e-textiles

Robert Lewis

ABSTRACT

Wearable computers and e-textiles are becoming increasingly widespread in today’s society. Motion capture

is one of the many potential applications for on-body electronic systems. Previous work has been performed

at Virginia Tech’s E-textiles Laboratory to design a framework for a self-contained loose fit motion capture

system. This system gathers information from sensors distributed throughout the body on a “smart” garment.

This thesis presents the hardware and software components of the framework, along with improvements made

to it. This thesis also presents an analysis of both the on-body and off-body network communication to

determine how many sensors can be supported on the garment at a given time. Finally, this thesis presents a

method for determining the accuracy of the smart garment and shows how it compares against a commercially

available motion capture system.
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Chapter 1

Introduction

1.1 Motivation

Electronic textiles (e-textiles) and wearable computing devices are becoming increasingly widespread in

today’s world. Most everyday devices, from cellphones to portable music players, are wearable computers

that people depend on. With this technology becoming ubiquitous, research has goes into designing clothing

with wearable computers in them. Virginia Tech’s E-textiles Lab has previously designed a self-contained

smart garment system [1]. This system is a framework which has been designed to capture and transmit

inertial measurement data from segments of the body. This framework was built with customization in mind,

allowing sensors to be placed on the body where needed [2]. With this framework in place, testing can begin

to measure the accuracy of the self-contained garment.

Typical commercial systems use fasteners or elastic clothing to restrict movement of devices on the wearer,

while also needing external hardware to capture the motion. In contrast, the smart garment system takes a

different approach to capturing motion by being both self-contained and loose fitting. By being self-contained

the garment can be used outside of laboratory settings, allowing the wearer to go anywhere while processing

and storing data locally. By allowing the garment to be loose fitting, this technology can be miniaturized

and placed ubiquitously. These properties help open up new avenues for motion capture technology to be

applied.
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1.2 Contributions

This thesis presents the design and analysis of a self-contained motion capture system with emphasis on

a loose fit e-textiles garment. The loose fit and self-contained aspects of the garment afford for it to be

used in situations not designed for by current motion capture systems. The design presented in this thesis

makes improvements to the already created framework, allowing individual and overall body pose to be

easily tracked. A method was also designed to test the accuracy of the smart garment’s pose against that of

a commercially used optical motion capture system that has been industry-tested for reliability.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 outlines the background information needed to understand

the research conducted in this paper. Chapter 3 describes both the hardware and software aspects needed

to construct the self-contained garment. Chapter 4 describes the networking protocol used and how data

is transmitted. Chapter 5 describes the results and analysis of the self-contained garment’s performance

compared to an industry grade system. Finally, Chapter 6 summarizes the contributions of this thesis and

conclusions drawn from this research, and provides new approaches for attempting future work on this project.
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Chapter 2

Related Work

This chapter outlines key topics that relate to this thesis. Several key concepts were leveraged to develop the

smart garment system described in this thesis. This chapter gives an overview of motion capture systems

and how their development relates to this work. This chapter then talks about previous projects completed

in the E-textiles Research Laboratory and the evolution of the smart garment system.

2.1 Motion Capture Systems

Motion capture has been around since the early 1900s, starting with a technique called rotoscoping. Roto-

scoping is performed by first capturing a live action scene. That scene is then played back frame-by-frame

allowing the animator to retrace the scene onto paper to produce an animation. As time progressed, this

technology advanced and gave way to alternative ways for animators and others to capture and manipulate

human movement.

The motion capture technology used in this thesis leverages inertial measurement units (IMU). Typically

these sensors consist of accelerometers and gyroscopes to determine their position and orientation. These

sensors are then attached to segments of the body to track the segment’s movement and orientation.

Currently there are a number of techniques used to capture human motion, each with their own benefits.

Such techniques include computer vision algorithms, mechanical exoskeletons, and optics. These systems

may integrate IMUs into their design, or choose to rely entirely on external tracking methods [3]. By relying

on external methods to track human motion, these systems are generally more expensive and less portable.
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Relatively inexpensive and highly mobile solutions for inertial motion capture have been demonstrated in

applications ranging from gaming [4] to medical [5]. The XSens MVN Motion Capture suit is one successful

commercial option that uses IMUs and magnetometers to track motion, however this system costs around

$60,000 to purchase [6].

A common issue with IMUs is that they drift over time. This measurement drift is a result of integrating raw

acceleration or angular velocity to determine position and joint angles on the body. These integration errors

are small, but compound and accumulate over time. External methods can be used to correct for this drift,

such as using optical markers [7]. While this does correct measurement drift, it adds external components

and causes the system to become less portable. Our implementation approach is to bundle a slow, but highly

accurate, sensor with the IMU which can measure absolute orientation. This approach keeps all hardware

local to the body while also limiting possible drift due to accumulated error. A similar design which tracks

orientation angles instead of position estimates has been demonstrated to be successful [8].

There has been previous work done with inertial measurement systems to try and reduce the impact of

these issues, but usually does so at the expense of increased constraints in motion or narrowed scope. The

sportSemble system developed at MIT uses a hardware configuration similar to the one presented in this

thesis to track the movement of baseball players. However, this system focuses on the biomedical effects

of short, intense bursts of activity on specific segments of the body rather than full-body motion capture

over long periods of time [5]. Other experiments have focused exclusively on gait detection [9] or gesture

recognition [10].

The design presented in this thesis differs from similar self-contained motion capture suit implementations,

such as the Xsens MVN suit. Our design makes use of e-textiles to weave all communication wires directly

into the fabric of the garment, allowing the motion capture system to more closely resemble putting on and

wearing actual clothing. The garment presented in this thesis differs by being a loose fit item, removing the

need for sensors to be strapped to the body as required by other motion capture systems.

2.2 Previous E-textile Research at Virginia Tech

The Virginia Tech E-textile Laboratory has done research for a past number of years in developing a “smart”

motion capture garment. This garment has characteristics of being both loose-fitting and self-contained.

These characteristics afford the smart garment to be used in situations where conventional motion capture

would not be desirable. While the loose fit of the garment means some loss of precision in tracking position,
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this garment has a huge advantage of being worn like traditional clothing with no need for external data

capture. Potential applications for this garment include gait analysis and movement rehabilitation.

This research performed at Virginia Tech has led to a framework in how to design both the software and

hardware components. Earlier research performed by Quirk [11] has shown the feasibility of producing e-

textiles with conductive material capable of transmitting signals through clothing. Virginia Tech is capable

of producing these garments in-house with an automated loom.

The first version of the smart garment consisted of a pair of pants with embedded wires in them. These

pants were equipped with on-body accelerometers and gyroscopes to capture movement of the body. This

data was then compared with expected results from a simulated environment [1]. Later research focused

on activity recognition, using algorithms to classify the on-body accelerometer and gyroscope readings [12].

The processed data was then compared against a list of known activities to determine which was most likely

being performed. Most recently a framework for the smart garment has been developed. This framework

describes both the hardware and software components needed to gather information from the body [2]. This

framework has also upgraded the sensors used, using gyroscopes and digital compasses to detect the wearer’s

pose without drift.

During these iterations the garment was converted into a full body jumpsuit. Additional features were also

added to the garment. USB-like connectors allowed sensors to be dynamically placed on the garment. A

central processor, the Verdex 400xmbt motherboard from Gumstix, was also added which allowed for local

processing of data and off-body communication to a nearby PC via serial or Bluetooth connection. The work

performed in [13] established a two-tiered network for on-body communication. This network allowed Tier

1 sensors to collect and report their readings to a central Tier 2 processor, the Verdex 400xmbt, for data

processing.

The work in this thesis builds off of the framework created by Simmons [2]. The framework is to be applied

to a newly constructed garment, one that is more versatile and built for prototyping. This framework is also

sought to be extended upon, making improvements at the software level to more accurately track the pose of

the garment. Finally, the garment is to be compared against a commercially available motion capture system

to test its accuracy.
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Chapter 3

Overview of Hardware and Software

3.1 Hardware Overview

This thesis uses custom designed hardware on a garment for self-contained motion capture. The hardware

configuration used is a two-tier system that is interconnected using a wired network that is woven or sewn

directly into the fabric. Both tiers reside on the clothing and use the I2C protocol to communicate via the

on-body network. This framework was developed in a previous Virginia Tech E-textiles research project by

Chong [13]. For the application described in this thesis, our system makes use of many Tier 1 sensors and

only one Tier 2 processor. The hardware found at both the Tier 1 and Tier 2 levels is the same used in

Simmon’s thesis [2]. Figure 3.1 gives a visual representation of how the nodes are connected together to

form the two-tier system. The rectangular blocks represent particular PCB nodes in the system, while the

lines represent communication between those nodes. The Timer node is a special type of Tier 1 sensor that

has been added since Simmon’s thesis, and will be discussed in following section. All other items will be

discussed in the following paragraphs.

The Tier 1 sensors used in this thesis are relatively simplistic sensors whose task is to acquire and transmit

inertial data to the Tier 2 level. Table 3.1 lists the major components found on every Tier 1 node. These

components all operate at the same voltage, 3.3v, to keep the circuit design as simple as possible. Each

Tier 1 node is placed at a designated spot on the body and transmits its measured acceleration, rotation,

and orientation along all three axes at a system-specified frequency to its onboard microprocessor. The

microprocessor then packets this data and transmits it along the on-body network to the Tier 2 level.
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The Tier 2 processor serves as the central processing unit for our system. The processor found here is the

Verdex 400xmbt motherboard from Gumstix, the same processor successfully used in earlier versions of the

garment at the Virginia Tech E-textiles Lab. The Verdex 400xmbt runs a full Linux operating system and

can be interfaced by either Bluetooth or wired serial. Each packet of data transmitted by a Tier 1 sensor

is recorded at the Tier 2 level, that is then processed. This processed data can either be stored locally

or transmitted off the suit via wired serial or Bluetooth to a standard personal computer for further data

analysis. The Gumstix has an additional PCB attached to it, designed by a previous student in the Virginia

Tech E-textiles Lab, that converts I2C data into serial data. This additional PCB is connected to the on-body

network, allowing the Gumstix to listen to data being transmitted by the Tier 1 sensors.

Figure 3.1: Representation of the two-tier system used in this thesis

Component Amount Axis Communication Part Number
Microprocessor 1 – – PIC18F6722
Accelerometer 1 3 I2C ADXL345

Gyroscope 2 2 Analog LPR530AL
Digital Compass 1 3 I2C HMC6343

Table 3.1: Major components found on a Tier 1 node

3.2 Hardware Modifications

3.2.1 Sensors

There have been two sensor hardware modifications applied to Simmon’s thesis. The first involves the

gyroscopes as it was found that the ones previously used had a flaw in the circuit design. The circuit contained
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high-pass filters on the analog data lines, causing incorrect data to be reported when the gyroscope moved

at a slow rate. The manufacture’s website has since acknowledged this flaw and all gyroscopes used in this

thesis have been corrected [14].

The second modification comes from the addition of an extra Tier 1 sensor. This sensor does not utilize any

of the inertial sensors found on its PCB, as it is used solely for its microprocessor and I2C communication

ability. This additional sensor has been included as a result of a software design change. The sensor is used

as a global synchronization timer, controlling the frequency at which data is sent across the on-body network.

3.2.2 Garment

The garment used in the application for this thesis is not the same one used in previously e-textiles research

projects. This new garment has been designed from the ground up by a fellow researcher, Kara Baumann,

who works in the E-textiles Research Laboratory. This garment has several advantages over the previous

one allowing a wider variety of sized people to fit comfortably in, a more appropriate fitting to the user, and

rapid prototyping capability due to the garment allowing dynamic placement of sensors. Once completed,

the garment will be a two piece that connects together at the waist to form an identical on-body network

found on the previously used garment.

Figure 3.2 shows the completed top half of the garment. At the time of performing the experiments in this

thesis, this was the only completed portion of the garment. Grommets are laced throughout the garment

allowing sensor fabric, the green fabric shown in the figure, to be dynamically placed. The sensor fabric has

wires and sensor connectors sewn into them allowing Tier 1 sensors to be added or removed when needed.

The garment also contains elastic straps in various places, allowing the wearer to be properly fitted.
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Figure 3.2: The upper body e-textiles garment used in this thesis
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3.3 Compass Calibration

The HMC6343 digital compass used in this thesis relies on internal magneto-resistive magnetometers and

MEMS accelerometers to detect heading, pitch, and roll [15]. The magnetometers are susceptible to changes

in the magnetic field and must be calibrated in order to ensure proper readings. There are two types of

magnetic error that lead to improper readings, hard-iron and variation, both of which can be corrected for

by the microprocessor present in the digital compass. The National Geophysical Data Center, NGDC, was

used to find information pertaining to Blacksburg Virginia, such as the earth’s total field and variation angle

[16]. This information will aid in correcting these two types of errors.

Hard-iron, or deviation, errors form an arc graphically when measuring the reported heading versus the

expected heading while sweeping through 360 degrees parallel to the earth’s surface, or z-axis. This error

theoretically appears as a symmetric sine wave with no error at 0 and 180 degrees. It is also possible for

the error to appear as a non-symmetric wave, or one that only has negative or positive heading error [17].

Hard-iron error is a result of ferrous material present in a fixed position relative to the digital compass,

measuring in a non-clean magnetic field environment, such as inside a building, or from having performed

the hard-iron calibration in a non-clean magnetic field environment. A magnetically clean environment is

described as being an area with no nearby objects which could perturb the earth’s magnetic field [18]. In

order to correct for this problem the compass must be relocated outdoors where the magnetic field is the

same strength as the earth’s. The strength of the earth’s magnetic field changes based on location, so the

reported value supplied by the NGDC was used for reference in finding a suitable area to calibrate. The

HMC6343 datasheet details the steps that need to be taken in order to perform the hard-iron calibration

routine. This routine consists of rotating the compass about the y-axis followed by the z-axis over the course

of about a minute. Doing so allows the compass to sample the surrounding magnetic field and update the

magnetometer offset values stored in its EEPROM.

Variation, or declination, is the difference between true north and magnetic north. Since the angle between

these two versions of north varies based on location the degree difference found on the NGDC site must be

programmed into the EEPROM of the device, where negative offsets shift the heading westward and positive

offsets shift the heading eastward. When the digital compass samples data it will apply the variation angle

to its measured heading in order to produce an accurate result [19].
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3.4 Software Overview

3.4.1 Tier 1

There are a total of ten Tier 1 nodes on the garment. Nine of the nodes collect inertial data while the tenth

node is used as a system synchronization timer. The synchronization node sends a message at a specified

frequency along the on-body network to notify the Tier 1 sensors when to begin collecting and transmitting

data. The synchronization sensor is important because of drift that exists in hardware timers. With this

setup all sensors will drift together by the same amount, the drift of the synchronization node.

Each Tier 1 microprocessor is programmable using the raised header found on its PCB. A PICkit programmer

can be attached to the header, allowing software to be downloaded to its microprocessor using the MPLAB

software suite. This ability not only allows the sensors to be reprogrammed for various applications, but also

makes debugging easier.

When the suit is first powered on, the data-collecting sensors initialize their on-board accelerometer and

digital compass, followed by setting themselves to slave I2C mode. In this mode the sensors will wait until

a message is seen along the network from the synchronization timer. Once seen, the data-collecting sensors

will read up-to-date data from their accelerometer, gyroscopes, and digital compass. They will then switch

over to master I2C mode, transmit their data across the network, and finally switch back to slave I2C mode.

This process will occur across all nine data-collecting sensors with bit collision detection enabled, to ensure

that each sensor is successfully able to send.

The packets sent by a Tier 1 sensor alternate between full packets and half packets. A full packet, or update,

is described as a sensor sending its identification, acceleration, gyroscope, and compass information across the

on-body network. The half packet differs from the full packet by excluding the sensor’s compass information.

The reason two packet types exist is because the digital compass operates at a maximum frequency of 10Hz.

By reducing the packet size on non- compass updates, a higher throughput can be achieved along the on-body

network. The packet structure sent by a Tier 1 sensor is described in greater detail in the following section.

3.4.2 Tier 2

Data transmitted by the Tier 1 sensor is then received by the Tier 2 node. This node monitors all traffic along

the network and is where the major processing for this system is performed. The two main applications used
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for data-collection and processing are called tty relay, and motion capture. The first application, tty relay,

is a simplistic one that streams the unmodified packets received from the Tier 1 sensors to either a file or

across Bluetooth to a personal computer. This is valuable for seeing the type of information being captured

at each point on the body and debugging for errors. The second application, motion capture, acts as it did

in Simmon’s thesis, with a small but important modification. The heading, pitch, and roll read from a Tier

1 sensor’s compass is immediately converted into a quaternion before any data is combined, and any further

processing is performed strictly in quaternion space. Once the compass data has been converted into its

quaternion equivalent the gyroscope data is then appended, resulting in a final quaternion that represents

the current orientation of that sensor. The resulting data is then either saved to a file or transmitted to a

personal computer via Bluetooth.

There are two reasons for representing the data as a quaternion instead of Euler angles. The first advantage

is that Euler angles describe three separate rotations, thus suffering from gimbal lock, while quaternions

describe rotation using a single axis and angle. The second advantage is that it is easier to filter the data as

a quaternion because the data does not consist of independent variables. An easy example to help illustrate

the filtering problem would be to imagine a starting compass position, in degrees, at 0 heading, 89 pitch, and

0 roll. The compass then moves to the position, also in degrees, 180 heading, 89 pitch, and 180 roll. In Euler

space it appears that heading and roll have changed drastically and pitch has remained the same, while the

quaternion equivalent would have detected a two degree rotation mapping the first compass position into the

second.

3.5 Software Modifications

3.5.1 Packet Structure

The packet structure at the Tier 1 level has been slightly modified from that in Simmon’s thesis. The addition

of a global synchronization timer means the last byte, packet count, can be removed, resulting in the revised

packet structure shown in Figure 3.3. The revised packet contains 17 bytes on a full update and 11 bytes on

a half update.

The Tier 2 processor now keeps an internal packet count record that increments when the synchronization

timer transmits on the network. This is done not only to increase throughput along the on-body network,

but also to verify Tier 1 sensor integrity. The Tier 2 processor is able to see how many Tier 1 sensors have
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sent data between synchronization pulses and determine if there is a problem collecting data at any limb.

Figure 3.3 is broken up into four groups, by color. Most of the data consists of two-byte pairs, labeled either

LOW or UPP for the lower and upper byte, respectively. The first group is self-explanatory and simply

contains the sensor’s identification value. The second group of data, the gyroscope, needs four bytes to store

each of its three axes; this is because each axis consists of 10 bits of data. In order to accommodate this

length the lower 8 bits from each axis are placed into Gx, Gy, and Gz, while the remaining 2 bits from each

axis are combined and right-aligned to make up the fourth byte, G. This method only wastes 2 bits at the

upper end of the G byte. The third group is for the acceleration and contains two-byte pairs for each of the

three axes with the upper byte coming first followed by its respective lower byte. Lastly the fourth group

is for the compass data. This group only exists on full updates and contains the 2 byte pairs for heading,

pitch, and roll.

Figure 3.3: Packet Structure sent by Tier 1 sensor
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Chapter 4

Networking

4.1 Networking Overview

The networking aspect of this system is the backbone of the garment. The network’s capabilities and

limitations define how the garment may be used. This chapter defines those limitations and illustrates how

many sensors the suit can support when running given a specific frequency.

4.2 On-body Communication

On-body communication is defined as the communication of the Tier 1 sensors to the Tier 2 node. This

communication, as discussed previously, uses the I2C protocol operating in fast mode at 400KHz. The

Philips Semiconductors’ specification datasheet lists the ideal minimum timing values required to guarantee

correct operation of the protocol [20]. Table 4.1 shows a subset of these timing values applicable to the

application presented in this thesis. Three terms, tbyte buf , tsu;addr, and tdata;stop not found in the I2C

specification datasheet have been added to this table to make generalizing a set of equations easier. These

specified timing values define the maximum throughput which can be obtained by the Tier 1 sensors.

In addition, an oscilloscope was attached to the on-body network to measure the actual timing values of the

Tier 1 sensors shown in the last column of Table 4.1. These timing values are dictated both by the hardware

and the design decisions made in software. Figure 4.1 shows a capture of two Tier 1 sensors sending their

packets across the on-body network along with the global synchronization pulse. Figure 4.2 is a zoomed in
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Figure 4.1: Tier 1 sensor packets being transmitted on-body via I2C

Figure 4.2: Closeup of Tier 1 sensor packets

version of Figure 4.1, giving a better look at each bit being sent across the network. The figures has been

labeled to outline the location of each delay from Table 4.1, and also illustrates how the Tier 1 sensors wait

for a synchronization pulse in order to begin sending data.

There is a difference between ideal and actual timing because the minimum ideal time does not factor in

delays from the software running on top of actual hardware. Table 4.2 shows three different types of delays

which cause the actual data transmission to be much slower. These delays depend on both how the software

is written and the speed in which the processor operates at. In this thesis the PIC processor is set to operate

at 32MHz.

Looking closer at Table 4.2 the delays shown represent the time it takes to enter the interrupt handler, send
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Description Symbol Min Ideal Time Actual Time
Between STOP and START condition tbuf 1.3µs 19.40µs
Low period of the SCL clock tlow 1.3µs 1.26µs
High period of the SCL clock thigh 0.6µs 1.20µs
Set-up time for STOP condition tsu;stop 0.6µs 1.50µs
Between bytes of data tbyte buf 0.0µs 19.70µs
Set-up time from START condition to beginning of address tsu;addr 0.0µs 19.80µs
Last data byte to start of STOP condition tdata;stop 0.0µs 18.91µs

Table 4.1: Minimum ideal and actual measured times for Tier 1 I2C communication

one byte of data by populating the SSPBUF register, and returning from the end of the interrupt handler.

The first two delays together help dictate how much time tbyte buf takes. It is not until the SSPBUF register

is filled that a byte of data can be transmitted across the I2C bus. Reducing either of these delays would

improve the maximum throughput of data on the bus. The third delay, exiting from the interrupt handler,

does not affect any of the timing values in Table 4.1, so attempting to reduce this delay would not make any

improvement to data throughput. This only happens to be the case because it takes the I2C bus longer to

transmit a byte of data, 22.14µs, than it does to exit the interrupt handler. A way to shorten the actual

timing needed to send data across the I2C bus would be to loop in the interrupt handler until all bytes from

a packet are sent. Doing so would keep the software from having to delay 11.63µs each byte just to enter the

interrupt handler.

Description Delay
Entering interrupt handler 11.63µs
From start of interrupt handler to sending byte of data 3.88µs
Returning from interrupt handler 12.00µs

Table 4.2: Delays associated with the I2C software running on the 32MHz PIC processor

Once the ideal and actual timing values have been found, general equations can be derived to express how

many sensors the on-body network can support for a given frequency. Equation 4.1a calculates the amount

of time to send one byte of data along the network, represented by tbyte. This equation is then fed into

equation 4.1b which calculates the amount of time it takes for any Tier 1 sensor to send a single packet of

data. The variable bytesper packet represents the number of bytes being sent by a packet of data. The third

equation, 4.1c, expresses the number of sensors which can be supported once tpacket and the frequency of the

Tier 1 sensors are known.
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tbyte = 9 ∗ (thigh + tlow) (4.1a)

tpacket = ((tbyte + tbyte buf ) ∗ bytesper packet) + tbyte + tdata;stop + tsu;stop + tsu;addr + tbuf (4.1b)

numsensors = 1/(Frequency ∗ tpacket) (4.1c)

4.2.1 Current Setup

The number of bytes in a packet for the system described in this thesis alternates between 17 for full-updates

and 11 for half-updates. With this piece of information known it is possible to sweep through various

frequencies and give the accompanying amount of sensors supported. Only the full-updates are considered,

since this represents the worst case scenario. Figure 4.3 compares the ideal I2C timing values to that of the

actual values using equation 4.1c. Additionally, tests were performed by running the on-body network at

specified frequencies to see how many sensors could be supported by the on-body network, represented by

black squares in the figure. The tested and actual values will differ slightly since it is impossible to equip a

fraction of a sensor to the network.

Figure 4.3: Frequency vs. sensors supported with 17-byte packets
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4.2.2 Reducing Packet Size

It is possible to reduce the current packet size from 17 bytes down to 15 bytes, though not with the current

hardware setup. Since the Tier 2 node converts data received from a Tier 1 sensor without needing any

additional knowledge, it is possible to shift the computation done onto the Tier 1 sensors themselves. This

would allow each Tier 1 sensor to calculate the quaternion for their respective limb before ever transmitting

data on the on-body network. The packet would then be made up of one ID byte, eight quaternion bytes,

and six accelerometer bytes. In order for this to be possible the current PIC processors found on a Tier 1

sensor would need to be upgraded enough to perform complex mathematic calculations quickly. Figure 4.4

shows the number of sensors gained based on frequency by reducing the packet size by two bytes. Only at

lower frequencies does this difference in packet size make an impact. Minimal gain is seen once the Tier 1

sensors begin sampling at an adequate rate.

Figure 4.4: Frequency vs. sensors gained by reducing packet size 2 bytes
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4.3 Off-body Communication

Off-body communication is defined as the communication of the Tier 2 node to a personal computer. Given

the current hardware there are two possible ways to transfer the desired data, either through a wired or

Bluetooth serial connection. Because both types of connections use serial to communicate, the software

change to swap between the two becomes a simple matter of knowing which output stream to feed data into.

To help minimize the amount of data being sent per packet all bytes are concatenated together and have

a dummy byte appended at the beginning and end so that the receiving application is able to decipher the

individual packets. Each packet contains one byte identification, eight bytes for the quaternion, and two

dummy bytes. The configuration is a 1-8-1 framing with no flow control.

maxsensors = pcbaud/(bytessent ∗ (bitsstart + bitsdata + bitsstop) ∗ frequency) (4.2)

Equation 4.2 is the generalized equation to find out how many Tier 1 sensors can be supported when streaming

data to a personal computer in real time. The 1-8-1 framing corresponds to bitsstart, bitsdata, and bitstop

respectively. pcbaud is the baud rate in which the serial connection is transmitting at, bytessent is the number

of bytes in a packet being sent by the Tier 2 node, and frequency is the rate the Tier 1 sensors are operating

at.

4.3.1 Wired vs Bluetooth

The wired serial connection has a maximum baud rating of 230k, while Bluetooth has a maximum baud

rating of 921k. Figure 4.5 gives a graphical representation of the two connections and the maximum number

of sensors which can be supported for a specific frequency. Three tests were performed at the same frequency

as those for the on-body communication. An application was run on the Tier 2 node to transmit simulated

Tier 1 sensor information via the wired connection in order to establish how many sensors could actually be

supported. These tests were not performed via Bluetooth because while the device is rated as being able to

transmit at up to 921k, the Bluetooth receiver used in this thesis could not establish a connection at this

baud rate.
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Figure 4.5: Frequency vs. sensors supported when streaming data in real time off-body

4.4 Potential Bottleneck

It is interesting to point out that the bottleneck in the current system resides with the on-body commu-

nication, even though I2C is operating faster than the wired serial. The reason for this is simply due to

the amount of bytes, 17, that are being transferred per packet on-body, whereas only 11 bytes are being

transferred off-body. If the bottleneck were a problem for the system described in this thesis the six bytes of

data for the accelerometer could be removed, reducing the on-body packet size to 11 bytes.
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Chapter 5

Results

This chapter summarizes the experiments performed to validate the accuracy of the self-contained garment.

First, the set of tests used to determine the accuracy of the garment are explained in detail. Next, instructions

explaining how the self-contained garment was tested and compared against a commercially available motion

capture system are explained. The results of the overall comparison between the two systems are then

explained. An analysis of why the two systems do not perfectly align is then explained while outlining the

sources of error present. Finally, behavior of the self-contained garment is discussed with supporting data.

5.1 Motivation and Methodology

In order to test the accuracy of the self-contained garment it had to be compared directly with a system

that was assumed to be accurate. A passive optical motion capture system, the 6 Pro-Reflex Optoelectronic

System by Qualisys, was chosen to compare against ours, since this system is commercially used and has

been industry-tested for reliability [21]. This passive optical system is controlled through the Qualisys Track

Manager software application, which records the optical marker movement and gives results with one to two

millimeters of error [22]. To make the direct comparison six markers were attached to the self-contained

garment at the shoulders, elbows, wrists, and the lower front chest, locations which are depicted in Figure

5.1. Tests would then be performed by capturing data from both systems at the same time. The passive

optical capturing system was used to test not only the garment’s ability to produce accurate results while

stationary but also to test its ability to perform while in motion.
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Figure 5.1: Placement of optical markers on body

A set of actions for users to perform also needed to be constructed. Specific actions were chosen to coincide

with simple everyday tasks people might perform. These actions were kept concise and limited in number

to make each test meaningful while encouraging redundancy to ensure consistency. Additional constraints

existed due to the optical system being present. At the time of testing the optical system was limited in

number of cameras and easily lost sight of the user outside of a certain area, forcing tests to be performed

while stationary and facing only a percentage of the available room. As a result of these needs and limitations,

eight tests were formed to test the upper body in a variety of poses. The eight tests have been summarized

in Table 5.1 and are described in detail below.

The first test had the test subject stand up straight with their left arm in front of them and their right arm

to their side, as illustrated in Figure 5.2. The second test swapped the actions of the left and right arms.

These two tests placed the arms about 90 degrees apart from each other in order to sample the error seen

when sensors were placed in a preferred position, horizontally, and in a non-preferred position, vertically.

The third and fourth tests start in the same position as the first two, except the user is instructed to bend the

extended limb toward the torso. The test begins with the horizontal limb stretched with an angle around 180

degrees apart at the elbow; the user is then told to slowly bend their elbow until it reaches a 90 degree angle.

The sweeping action’s purpose is to test how accurately the limb’s movement is recorded in comparison to

the optical system. The user will perform these two actions again at the conclusion of the series of tests,

labeled test seven and eight. This is done merely for checking consistency with the same subject.
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Figure 5.2: Left arm out including where the optical markers would be located on the garment

Test five has the user assume the T-position in which both arms are positioned ideally horizontal and parallel

with the torso, illustrated in Figure 5.3. This test helps add to collected data for limbs that are placed at

various horizontal positions.

Figure 5.3: T-position including where the optical markers would be located on the garment

Test six has the subject sit properly in a wooden chair with their arms on the arm rest. It is important to

note that the chair is wooden because it will not affect the digital compass readings negatively. This test

differs from all of the others because of the arm rest being used. The arm rest causes the upper limbs to be

positioned mostly vertically while the lower limbs are positions mostly horizontally, thus testing the limbs at
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different angles at the same time in a semi-controlled way.

Test # Description
1 Left arm in front
2 Right arm in front
3 Left arm in front, bend 90◦

4 Right arm in front, bend 90◦

5 T-position
6 Sitting in chair
7 Left arm in front, bend 90◦

8 Right arm in front, bend 90◦

Table 5.1: Summary of the eight tests each user is instructed to perform

5.2 Comparing Motion Capture System Data

The two motion capture systems used record data in different ways. The garment uses a single Tier 1 sensor

to produce a quaternion of the orientation of the body segment it is attached to, while the passive optical

system uses two markers at the ends of a segment to track the absolute x, y, and z position of that segment.

These two types of data are incompatible since a quaternion only describes rotation, not position. The goal

here is to convert the quaternions acquired by the Tier 1 sensors and use that information to obtain the

absolute x, y, and z positions of where our garment believes the optical balls would be located, allowing a

direct comparison between both systems.

The two systems used have their own coordinate system. The optical motion capture system is able to define

its own coordinate system, while the Tier 1 sensors use true north as the location of one of its axes, positive

x in this thesis. In order to map one coordinate system into the other, a quaternion which represents the

necessary rotation had to be created. This quaternion was made by placing a digital compass and two optical

markers, one on either side, parallel with a ruler. The optical markers were spaced 51.45 cm apart from each

other. Both systems recorded data while stationary. The quaternion given by the digital compass needed to

be converted into vector form to compare against the optical system. This vector is created by multiplying

the given quaternion by the digital compass’ starting vector. For this thesis the digital compass’ starting

vector is in the positive x direction, [1 0 0], because it is the point where heading, pitch, and roll are all

equal to zero degrees. The cross and dot products between these two vectors were then taken to form the

quaternion that maps the two coordinate systems correctly, as shown in Figure 5.4. Because of the one to

two millimeter error present in the passive optical system, assuming no error from the digital compass, a

worst-case error of about half a degree is present in any comparison between the two systems.
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Figure 5.4: Finding the quaternion which maps the garment vector to the optical vector

5.2.1 Initial Body Structure Analysis

In order to compare the data between the two motion capture systems, several constants had to be defined.

These constants were recorded using the first frame of data from both systems at the beginning of each test.

Lengths of each limb segment were found by getting the difference between the optical markers at either end

of each segment. The distance from the torso marker to each of the shoulders was also gathered to form a

“triangle” representing the user’s rigid torso area. Figure 5.5 illustrates the six lengths that are recorded at

the start of every test.

Vectors going from the torso to the left and right shoulders were created to keep track of the shoulder locations

on the optical system, denoted as torsolopt and torsoropt respectively. The cross product of these two vectors

produces a vector pointing in the direction the torso is facing, also known as the “forward vector” and shown

in Equation 5.1. Additionally a vector going from the torso to the midpoint between the shoulders is also

created, called the “up vector” and shown in Equation 5.2. The creation of these four vectors are illustrated

in Figure 5.6. The two two vectors, up and forward, describe the orientation of the optical motion capture

system’s rigid torso. Likewise, the Tier 1 sensor attached to the garment’s torso can also be described with an

up and forward vector. The up and forward vectors for the Tier 1 sensor are [1 0 0] and [0 0 1], respectively

in their default orientation, where heading, pitch, and roll are equal to zero.
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Figure 5.5: Location of the six segments whose length are initially taken

A quaternion that maps the torso of the optical motion capture system to the garment is called the offset

quaternion. This quaternion is needed because the assumption made in this thesis is that both systems’

torsos begin in the same orientation at the start of every test. The offset quaternion describes the initial

difference between the two torsos. Equations 5.3a-d use the optical system’s forward and up vectors to find

a quaternion which describes its torso. The difference between the optical system’s torso quaternion and

garment’s torso quaternion yields the desired offset quaternion. In the equation (scalar, vector) is used to

denote a quaternion.

Finally the torso-to-shoulder vectors on the optical system need to be rotated. The offset quaternion is first

applied to these vectors to map them into the orientation of the garment’s torso. These vectors are then

multiplied by the conjugate of the Tier 1 torso’s quaternion from the garment. This second rotation maps

the torso-to-shoulder vectors into the Tier 1’s default orientation. Equations 5.4 and 5.5 show how these

rotations are applied.

The newly found segment lengths, offset quaternion, and rotated torso-to-shoulder vectors are then used to

construct the body model of the self-contained garment. Listing 5.1 gives the pseudo-code representation of

how to determine these variables. The listing uses variables independant of those defined and used in the

above mentioned equations.

26



Figure 5.6: Finding the torso’s orientation given three marker positions

ˆforwardopt = ˆtorsolopt × ˆtorsoropt (5.1)

ˆupopt =
(lsmarkeropt + rsmarkeropt)/2− torsomarkeropt
||(lsmarkeropt + rsmarkeropt)/2− torsomarkeropt||

(5.2)

quatup = (arccos([1 0 0] · ˆupopt), [1 0 0]× ˆupopt) (5.3a)

ˆout = quatup ∗ [0 0 1] ∗ quatup−1 (5.3b)

quatout = (arccos( ˆout · ˆforwardopt), ˆout× ˆforwardopt) (5.3c)

offsetquat = (quatup ∗ quatout) ∗ torsoquat−1gar (5.3d)
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ˆtorsolgar = torsoquat−1gar ∗ (offsetquat ∗ ˆtorsolopt ∗ offsetquat−1) ∗ torsoquatgar (5.4)

ˆtorsorgar = torsoquat−1gar ∗ (offsetquat ∗ ˆtorsoropt ∗ offsetquat−1) ∗ torsoquatgar (5.5)

5.2.2 Data Mapping and Comparison

Having recorded the user’s body structure using the first frame of data for a given test, the remaining frames

are mapped out into a body model for comparison using the following steps. The offset quaternion previously

found is applied to the garment’s torso to correct for any differences in orientation that were seen at the

start of the test, denoted torsofixedquatgar. The garment’s correct torso quaternion is then applied to the

left and right torso-to-shoulder vectors found in the initial structure analysis. The resulting left and right

torso-to-shoulder vectors are denoted torsolfixedgar and torsorfixedgar respectively and describe where the

shoulders are located on the garment. Equations 5.6a-c show how to find these three variables. Finally, the

Tier 1 sensors located on the upper and lower arms have their quaternions converted into vector form using

the compass’ starting vector mentioned previously. Equation 5.7 gives the general formula used to convert a

Tier 1 quaternion into a vector. Once all of the sensors have been converted into unit vector form they are

then multiplied by their respective segment length to be correctly sized.

The final step is to piece the vectors together and extract the absolute x, y, and z positions. In order to do

this a single location on the optical motion capture system has to be assumed to be in the same location as

the garment. For the comparisons made it is assumed that the lower torsos of both systems are located in

the same place. The following steps focus on the left side of the body, but the same steps are performed to

the right side. The left torso-to-shoulder’s starting position is that of the lower torso, and the ending point is

the garment’s left shoulder location. The upper left arm’s vector is then attached at the shoulder and ends

at the elbow. Finally the lower arm is attached at the elbow and continues to the wrist. Absolute x, y, and z

positions are known and comparisons between our garment and the optical system’s markers can be directly

made.

Listing 5.2 gives the pseudo-code representation of how to determine the garment’s marker locations. The

listing uses variables independant of those defined and used in the above mentioned equations. The steps

taken in both this and the previous section together describe how to correctly compare the two garment’s

absolute x, y, and z position.

28



torsofixedquatgar = offsetquat ∗ torsoquatgar (5.6a)

ˆtorsolfixedgar = torsoquatfixedgar ∗ ˆtorsolgar ∗ torsoquatfixed−1gar (5.6b)

ˆtorsorfixedgar = torsoquatfixedgar ∗ ˆtorsorgar ∗ torsoquatfixed−1gar (5.6c)

ˆoutvec = quatgar ∗ [1 0 0] ∗ quat−1gar (5.7)

Listing 5.1: Initial Body Structure function

function initialBodyStructure ()

for each segment

get segment length

end

// tlso means torso left shoulder optical (system)

tlso = torso -to-left -shoulder unit vector

trso = torso -to-right -shoulder unit vector

ms = calculate midpoint marker between tlso and trso

// For the optical system

forward_vector = tlso cross product trso

up_vector = torso to ms unit vector

// Calculate offset quaternion

calculate quaternion A which maps [1 0 0] into up_vector

rotate A by [0 0 1] and get resulting_vector

calculate quaterion B which maps forward_vector into resulting_vector

offset_quaterion = A * B * conj(garment_torso_quaternion)

// tlsg means torso left shoulder garment

// Calculate corrected torso -to -shoulder vectors for garment

tlsg = (tlso * offset_quaterion) * garment_torso_quaterion

trsg = (trso * offset_quaterion) * garment_torso_quaterion

return forward_vector , up_vector , offset_quaternion , tlsg , trsg

end
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Listing 5.2: Data Mapping and Comparison function

function dataMappingAndComparison ()

// Correct garment ’s torso

corrected_garment_torso = offset_quaternion * garment_torso_quaternion

// Rotate garment ’s torso -to-shoulder vectors

rotated_tlsg = tlsg * corrected_garment_torso

rotated_trsg = trsg * corrected_garment_torso

// Convert garment quaterions into vectors

for each Tier 1 limb sensor

multiply Tier 1 sensor quaternion by [1 0 0]

store resulting vector

end

// Begin constructing garment body model

previous_loc = optical_torso_marker

// Each iteration determines a marker location on the left side of the garment

for vector = [rotated_tlsg , upper_left , lower_left]

previous_loc = previous_loc + (vector * segment_length)

save previous_loc

end

previous_loc = optical_torso_marker

// Each iteration determines a marker location on the right side of the garment

for vector = [rotated_trsg , upper_right , lower_right]

previous_loc = previous_loc + (vector * segment_length)

save previous_loc

end

// End constructing garment body model

return garment marker locations

end

5.3 Test Subject Results

Five test subjects, denoted SubjectA through SubjectE, were used to compare the data between our self-

contained garment, with calibrated digital compasses, and the passive optical motion capture system. Each

subject completed the eight specified tests described in Section 5.1 with each test lasting exactly twenty

seconds. Twenty seconds was found to work well as it gave the subjects adequate time to perform all

instructed tests. The pose and various angles of the body from both motion capture systems, shown in

the following subsections, were then analyzed to show how accurate our self-contained garment performed

compared to that of the optical motion capture system.

The raw data collected from these tests have been grouped together and are located in Appendix A. This data

reflects the average error found, along with one standard deviation that our self-contained garment differed

from the optical motion capture system. No filtering or error correction techniques have been applied to the

data.
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5.3.1 Overall Error Analysis

Figures 5.7 and 5.8 show the overall average and maximum errors seen between the two motion capture

systems across all tests and subjects. These figures show absolute marker position error and body segment

angle error. Tests that experienced error with optical marker movement were not included in these figures,

as those tests were comparing against bad ground truth data. Section 5.3.2 explains this type of error in

more detail.

Figure 5.7 shows how far off the garment is from the optical system at the six marker locations on the body.

Error builds as the body model of the garment is constructed, so error in the markers will typically be greatest

at the wrists. This figure shows that while the maximum average error seen across all eight tests is 135.1

mm at the wrist, the average mean at the same marker location is less than half. In addition to this, the

error at the shoulders is relatively small because of the type of movements the user is instructed to perform

in the eight tests. An assumption made when constructing the garment’s body is that the torso is a rigid

body and does not change in shape. If the user were instead instructed to, for example, dribble a basketball,

the shape of the torso region would change and incur a much larger position error at the shoulder locations.

This figure also shows that the garment at each marker location has on average about 20 mm of error from

that of the optical system. This puts the wrists at having about 60 mm of error when constructing the body

model. The smart garment is going to be less accurate than the optical motion capture system. This is a

trade-off that is made as a result of being a loose-fitting and self-contained system. The target audiences for

this garment are those who do not need millimeter accuracy tracking but do need a system that can track

motion in areas that conventional technology would not be feasible, e.g., monitoring daily movement in a

home setting. The following sections go into detail and explain what approaches have been taken to minimize

the error between the two systems.

Figure 5.8 shows the resulting angle errors for each segment of the garment compared to the optical motion

capture system. These values show the range of error in which the Tier 1 sensors for a particular segment

are, on average, misaligned with their optical system counterpart. Segment angle errors do not build up

since they are not combined to form a body model. Since these errors do not build up, they are useful as

supplement information to describe why the garment’s overall pose does not match that of the optical system.

Note that the error in torso means the angle in which the two motion capture systems differ by from the

lower torso marker to the midpoint between the shoulders.

Segment angle errors combined with body segment lengths build the smart garment’s body model, giving the
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position errors seen in Figure 5.7. The marker positions for the upper body are repeatedly close to 20 mm

off because the segments of the upper body are all about the same length. These errors would be different

for the lower body due to it having different segment lengths in comparison. The garment had also been

designed to fit subjects in the height range of 5’8” to 6’0” which constrains the range of upper body limb

segment lengths. For subjects outside this height range, the average marker position error would be different.

Figure 5.7: Mean and maximum average error and STD for marker positions across all test subjects and all
tests
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Figure 5.8: Mean and maximum average error and STD angles for segment angles across all test subjects
and all tests. The torso error represents the angle which the systems differ by at the midpoint between the
shoulders.

5.3.2 Sources of Error

There are two sources of error, hard-iron and loose fit of the garment, that contribute to the pose being off

between the two systems. In addition, trouble recording accurate placement of the optical markers caused

error in ground truth data. Steps have been taken to minimize and eliminate these types of error.

As mentioned at the beginning of this chapter, testing using the optical motion capture system proved to

be rather difficult due to there being a limited number of available cameras to capture markers on the body.

This forced the tests to be conducted while having the user face a specific direction in the room. Even with

this constraint some tests had to be performed several times due to the optical system either having lost sight

of a marker or having created extra markers due to reflection. Because the extra markers were being caused

by reflections from the garment, they tended to act and move in a similar fashion that the actual markers

did, proving difficult to sometimes eliminate. When processing the optical motion capture data using the

Qualisys tracking manager application, jumps in marker locations were seen when only a few cameras had

sight of a marker at a specific interval in time. Despite this, error caused by these jumps was minimal, with

the largest occurring in SubjectE in Test #8, shown in Figure 5.9.
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Figure 5.9 shows that SubjectE’s garment shoulder locations differ by a large amount from that of the optical

system. This error causes the elbow and wrist markers to also experience a large amount of error in their

position. By looking at the optical system’s raw torso x, y, and z position, shown in Figure 5.11, it is clear

that a distinct jump in position occurred about one second into the test. This jump was caused by infrared

reflections on the body causing the torso to appear in an incorrect location. This error caused the two motion

capture systems to align incorrectly, as the offset quaternion used to align the two systems is calculated from

the first frame of test data. By instead using the last frame to calculate the offset quaternion, a more accurate

pose is created. Figure 5.10 shows the revised graph and how SubjectE’s markers now match those of the

other subjects.

The first source of error in the garment comes from its loose fit. Buckling in the clothing is possible due to

the garment being made of thicker material, causing it to act more like a jacket than a t-shirt. When creating

the sets of tests for each user to perform it was noticed that moving the upper arm inwards towards the

torso region caused the cloth around the torso to be pushed, moving both the Tier 1 torso sensor and optical

marker. This was taken into consideration when creating tests and as a result none of the tests performed

in this thesis have a user press a segment of their body against another segment. These errors are a natural

byproduct of the garment being a loose fitting item, and while the errors cannot be eliminated they can be

minimized with the types of movements the user is asked to perform. Though in the general case there is no

control over this type of error present in the garment.

The second source of error comes from hard-iron effects inside a building. All user tests performed had to be

conducted in a specific room in order to test against the optical motion capture system. Section 5.3.3 shows

several tests having been performed, highlighting the amount of heading error seen at each location. It is

difficult to eliminate this error since the sensors are designed to operate correctly in a magnetically clean

location; however, steps to reduce the error seen can and have been taken by calibrating each sensor prior to

performing any comparison tests. Figure 5.12 shows one test which compares the elbow angle between both

systems as the user bends it. Evidence of hard-iron error is present by comparing angles between the two

systems. The garment’s elbow angle is smaller than that of the optical systems’ elbow at the beginning of

the test by about 10◦, but is greater at the end by about 8◦. If no hard-iron error was present in the room,

the error between the two systems would be relatively constant throughout the entire test. This conclusion

is backed up by the fact that the range of error between the two systems seen through the full span of the

test falls within the acceptable range found in Section 5.3.3.

A second way to tell that hard-iron error is present in the room is to look at the segment angle errors of

each subject and test. Segments that are stationary exhibit a small standard deviation, while segments in
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motion exhibit a much larger standard deviation. Figure 5.14 shows Test #4 which has the subject bend

their right arm. The standard deviation is much larger in the right segments of the body than it is in the

left segments of the body. In addition, the lower right segment has the highest average standard deviation

because the subject was moving their lower right arm the most when bending. It is important to clarify that

the larger standard deviation in error is seen when a sensor is in motion because the heading of that sensor

is changing, and not simply due to the sensor exhibiting motion. Section 5.3.3 showed that error in heading

changes based on the direction the sensor is facing in the room. To further illustrate this point, Figure 5.13

shows the difference in left wrist marker positions, over time, during a left arm bend. The left arm bend

occurring is the same one shown in Figure 5.12. Distance error between markers remains relatively constant

when no motion is occurring, and builds up when in motion.

Figure 5.9: Average position error in Test #8, right arm bend, for all five subjects
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Figure 5.10: Average position error in Test #8, right arm bend, using subjectE’s improved torso location

Figure 5.11: Absolute position of the torso over time for SubjectE in Test #8, right arm bend
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Figure 5.12: Left elbow bend highlighting hard-iron error

Figure 5.13: Difference in marker position between systems at the left wrist during a left arm bend
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Figure 5.14: Average segment angle error in Test #4, right arm bend, for all five subjects. STD is larger in
the right arm due to hard-iron error. The torso error represents the angle which the systems differ by at the
midpoint between the shoulders.
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5.3.3 Hard-iron Error

Before the performance of any test each digital compass was calibrated outdoors, as discussed in Section 3.3.

To visualize the error in the magnetic field two sensors were placed on top of each other and attached to

the center of a yard stick, as shown in Figure 5.15. These sensors had the same orientation with a gap in

between to ensure one sensor would not adversely affect the other. The yard stick was rotated about the

center, since magnetic field varies spatially. To make sure even measurements were taken this rotation was

performed on top of a large protractor sketching.

Figure 5.15: Attachment of sensors to a ruler for hard-iron error visualization

Results found that tests were consistent in the same location using the same sensor; however, different sensors

gave different error graphs for the same location. Digital compasses other than the ones used in this thesis,

such as those found in mobile phones, could not be used to tell where true north actually was since the areas

tested in were not magnetically clean locations. As a result, graphs showing error in heading were created

by finding a measured point where both digital compasses gave the same output for heading. This measured

point is assumed to be correct and a “correct heading” is paired with each measured point by taking the

difference of the corrected base heading and the measured rotation along the protractor. This results in the
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digital compasses reporting the error seen at each measured heading. It is possible to do this because ideally

hard-iron errors appear as a sine wave crossing the x-axis at 0◦ and 180◦, so both sensors should cross the

x-axis at the same location [17].

Figure 5.16 shows the error seen when rotating two digital compasses outdoors where it is magnetically clean.

The y-axis shows the difference in heading of the digital compasses versus the ideal measurements. The x-

axis shows the location from which the measurement was taken at on the protractor and does not reflect

the degrees from true north. Table 5.2 shows the range of error for both sensors. This test shows that the

digital compasses are only off by a few degrees, in their worst case, from true north. Also the calculated RMS

error values for these compasses fall within the expected 3◦ RMS heading error mentioned in the sensor’s

datasheet [15].

Figure 5.17 shows the same test performed inside of a building, referred to as Building A, with a similar

magnetic field strength to that of the optical motion capture laboratory. The magnetic field’s strength was

measured using a mobile phone application capable of reading its internal magnetometer sensor. Table 5.2

shows a drastic change in range of error, showing that material inside the building had affected the readings.

To show that the error in the magnetic field can shift quickly a second test was performed within one foot

of the previous test. Figure 5.18 shows the error from the second test, showing a range of error larger than

that of the previous test for both sensors.

A fourth test was then performed in the same location where the motion capture suits would be compared.

Figure 5.19 shows a 7.5◦ range of error in the first sensor and 23◦ range of error, the largest of the four tests,

in the second sensor.

These four tests were done to demonstrate that large errors can occur in the digital compass sensors when

used in locations that are not magnetically clean. This makes it difficult to predict exactly what error an

individual compass will encounter. Prior to comparing the two motion capture systems, the digital compasses

used in these experiments were taken outside and retested to make sure they had not become magnetized.

Test # Location Compass A Error Range Compass B Error Range
deg deg

1 Outside 2.5 4.8
2 Building A #1 4.5 14.0
3 Building A #2 19.0 15.0
4 Optical Motion Capture Lab 23.0 7.5

Table 5.2: Maximum range of error between two compasses in various locations
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Figure 5.16: Hard-iron error of two compasses outdoors

Figure 5.17: Hard-iron error of two compasses inside a building
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Figure 5.18: Hard-iron error of two compasses inside a building at a different location

Figure 5.19: Hard-iron error of two compasses in subject testing room
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5.3.4 Segment and Joint Angle Error

The segment and joint angle errors provide supplemental material to explain why error in the pose exists.

Figures detailing average error for each test for both segment and joint angles were not provided, as neither

exhibited any noticeable patterns between subjects or between tests. Instead, the average angle errors

for every test have been taken to show the overall error seen during the study. These figures keep from

grouping the five test subjects together in order to show that each subject performs similarly. Figure 5.20

shows the overall average angle error for each segment of the upper body. The torso error represents the

angle that the upper part of the garment’s torso, where the shoulders are, differs from the optical system.

Each segment’s angle error is relatively consistent between subjects as is its respective standard deviation.

Furthermore, it is possible to reconstruct the marker error between systems by only knowing the angle error

of the body segments and their respective segment lengths. Note that the hard-iron error observed in the

testing laboratory, shown in Figure 5.19, has a range of 23◦ at a certain point in the room. The error seen

in the segments are close to half this range. This amount of error is acceptable since the range of hard-iron

error could be stronger at different points in the room, and because it is unreasonable to assume perfect

sensor alignment on the garment at all time.

Similarly, Figure 5.21 shows the overall average joint angle error for each subject for all tests. The figure

has six groups along the x-axis, three for each side of the body, which are needed to fully describe the four

joints, two elbows and two shoulders, on the user’s upper body. Because the elbow is a hinged joint which

is flexible in only one direction a single angle is capable of describing its full movement. Equation 5.8 shows

how to calculate the angle, in degrees, that the garment and optical systems differ by. In this equation upper

and lower represent the arm segments of the body. This angle is created by using the marker positions from

both motion capture systems to generate vectors for the upper and lower arm segments. The dot product of

the upper arm vector and lower arm vector for each system is then taken, and the difference between both

systems generates the error for this joint.

θdiff = | arccos( ˆuppergar · ˆlowergar)− arccos( ˆupperopt · ˆloweropt)| ∗
180

π
(5.8)

The second joint, the shoulder, is unlike the elbow in that it is a ball-and-socket joint which allows for motion

about a number of axes. For the experiments performed in this thesis, rolling about a limb is ignored since

the loose fitting of the garment is, for the most part, unable to detect this type of movement. By ignoring

detection of rolling of the shoulder from the equation, each shoulder is capable of being described using two

43



angles. The first angle is created by getting the component vector of the upper arm’s vector parallel to

the torso for both systems, as shown in Equations 5.9a-b. The dot product is then taken between these two

component vectors to find the error along that plane, as shown in Equation 5.9e. The second angle performs a

similar computation, but instead finds the component vector perpendicular to the torso, shown in Equations

5.9c-d with Equation 5.9f calculating the error perpendicular to the torso. These two angles describe the

shoulder joint’s error. In the below equations ˆupper represents the upper arm’s vector for the correct side

of the body, ˆfwd represents the vector perpendicular to the torso, and ˆside represents the vector parallel to

the torso for the correct side of the body. In the figures below, shoulder‖ reflects the angle parallel to the

torso while shoulder⊥ reflects the angle perpendicular.

ˆshldr‖gar = ˆuppergar − (arccos( ˆuppergar · ˆfwdgar) ∗ ˆfwdgar) (5.9a)

ˆshldr‖opt = ˆupperopt − (arccos( ˆupperopt · ˆfwdopt) ∗ ˆfwdopt) (5.9b)

ˆshldr⊥gar = ˆuppergar − (arccos( ˆuppergar · ˆsidegar) ∗ ˆsidegar) (5.9c)

ˆshldr⊥opt = ˆupperopt − (arccos( ˆupperopt · ˆsideopt) ∗ ˆsideopt) (5.9d)

θ‖ = arccos( ˆshldr‖gar · ˆshldr‖opt) ∗
180

π
(5.9e)

θ⊥ = arccos( ˆshldr⊥gar · ˆshldr⊥opt) ∗
180

π
(5.9f)

The joint angle errors shown in Figure 5.21 show that a majority of the time the error is less than 10◦.

Furthermore, the average joint angle errors at the elbows have a smaller error than the segments which make

up the joint due to hard-iron error affecting the sensors. This means that while the arms may not be aligned

between systems, the error in those segments tend to be in the same direction causing the joints between

systems to look similar.
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Figure 5.20: Average segment angle error for each test subjects across all tests. The torso error represents
the angle which the systems differ by at the midpoint between the shoulders.

Figure 5.21: Average joint angle error for each test subjects across all tests
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5.3.5 Analyzing Marker Position

Tables representing the marker position errors for all eight tests, across all five test subjects, are located in

Appendix A. When the data in these tables are grouped together by test number they demonstrate behavior

that can be easily observed in graph form. The figures in this section keep from grouping the five test subjects

together in order to show that each subject performs similarly.

Error accumulates from torso to wrist as the body model is constructed. Each Tier 1 sensor on the garment

gives its own orientation of that body segment, and is unaffected by neighboring sensors. When the body

model of the garment is constructed, the lower torso is set to the same location as the optical system’s lower

torso. From there lengths of the body segments and Tier 1 sensor vectors are combined to identify where the

other markers on the garment are. Listing 5.2 shows pseudo-code used to construct the garment markers.

This error accumulates because the starting location of a segment is dependent on the ending location of its

parent’s segment. Figure 5.23 represents the summation of marker location error across all tests, for each

test subject. The x-axis is grouped by marker location, going from shoulder to wrist. The upward curve in

error as the body model is constructed is easily seen by viewing the graph from left to right.

A second behavior of this system is that body segments in motion exhibit a larger average error and standard

deviation compare to those stationary. Section 5.3.2 has described this behavior in detail, showing how hard-

iron error affects the digital compass as heading in the sensor changes.

A third behavior of this system is that the left and right sides of the body behave in an equal manner. This

means error that affects the left side of the body also affects the right side of the body. Figure 5.23 is useful

again to show this behavior. The eight tests performed, which are summarized in this figure, have the left

and right sides of the body perform the same types of movements an equal number of times.

In addition to these behaviors shown across test data, outliers in particular body segments have also been

observed. These anomalies occur due to sensor misalignment on the garment. An example of this is shown

in Figure 5.22. SubjectA’s right elbow and right wrist have a larger position error in them compared to the

other four subjects performing the same test. By looking at the angle errors in the tables in Appendix A it is

clear that this error is a result of the sensors having been misaligned on the garment. The right upper limb

had an angle error of 19.6◦, while the right lower limb had an angle error of 17.9◦. Figure 5.24 shows the

angle error of the upper and lower right limbs over time, to show that the error is constant and not caused

by outlying data points.
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Figure 5.22: Average position error in Test #1, left arm out, for all five subjects

Figure 5.23: Average position error across all tests for each subject. Order of the x-axis has changed to
highlight symmetry between the body

47



Figure 5.24: SubjectA’s right side upper and lower limb error in Test #1, left arm out
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

The work performed in this thesis has characterized the sources of error that impact the smart garment’s

accuracy when compared to a commercial optical motion capture system. Doing so has defined the pros and

cons associated with using a loose-fitting and self-contained garment to capture human motion. This work

has also improved the framework previously designed at Virginia Tech’s E-textiles Laboratory by correcting

errors found in the design and using quaternions to easily track individual and overall pose of the body.

On average, the garment has been shown to have an error of 20 mm at the joint locations of the body when

compared to the optical system. It is expected that the smart garment will be less precise in position tracking

when compared to an optical system; however, the smart garment has other advantages which make up for

it being slightly less accurate. Unlike the optical system, the smart garment is capable of directly measuring

inertial movement of the body and is precise to 4 mg of acceleration [2]. The smart garment also provides

a high mobility solution to capturing motion due to it being fully self-contained. Furthermore, the smart

garment also appeals to those applications where a tight-fitting garment is not feasible, e.g., attaching a

tight-fitting garment to patients in movement rehabilitation.

While the experiments conducted in this thesis were for the upper body only, the same techniques can be

applied to the entire body. The sum of these experiments has shown that the smart garment is a viable

alternative to current commercial motion capture systems for certain applications. The properties of the

smart garment also help open up new paths for motion capture technology to be applied.
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6.2 Future Work

One issue with the current design is the digital compasses being used. These sensors are designed to be

used in devices that are operated outdoors, such as binoculars and laser range finders [15]. Section 3.3

shows how hard-iron error affects the current compass’ readings. While it’s not conclusive if a new set of

compasses would fix or minimize this problem, it is something that should be looked into. The Xsens MVN

Motion Capture suit is one successful commercial option also based on inertial measurements. This suit uses

a different Honeywell compass, part of the HMC105X series, in its design [23]. The HMC105X series are

specifically designed for applications such as Compassing and Magnetometry [24].

The data processed in this thesis has been raw data collected from the gyroscope and digital compass sensors.

The Euler angles read by the digital compass relies on built in accelerometers, causing the output to give

spikes of error while in motion. A better approach is to use the raw magnetometer readings from the digital

compass which are unaffected by acceleration. These magnetometer values are then combined with readings

from a dedicated accelerometer and gyroscope to produce a more accurate quaternion for the given Tier 1

sensor. A Kalman filter is traditionally used to combine these types of data together while minimizing noise

seen from any one sensor [25].
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Appendix A

Result Tables

Test # L Shoulder L Elbow L Wrist R Shoulder R Elbow R Wrist
mm mm mm mm mm mm

1 9.4 ± 4.6 22.1 ± 3.1 29.5 ± 7.0 6.2 ± 3.7 70.2 ± 3.2 131.1 ± 3.5
2 9.3 ± 5.0 28.4 ± 5.5 50.7 ± 3.9 8.9 ± 4.7 23.4 ± 8.4 35.7 ± 7.2
3 15.7 ± 8.2 38.5 ± 6.6 55.1 ± 29.0 13.4 ± 5.4 29.5 ± 5.3 42.1 ± 4.6
4 16.2 ± 5.4 20.8 ± 5.7 24.6 ± 7.6 21.7 ± 7.4 33.9 ± 13.1 52.9 ± 13.3
5 18.0 ± 7.6 55.3 ± 6.3 46.5 ± 6.5 14.2 ± 6.6 45.1 ± 5.5 57.5 ± 7.2
6 5.6 ± 2.5 53.6 ± 1.5 22.8 ± 2.4 3.8 ± 2.2 85.2 ± 1.9 87.8 ± 2.6
7 14.4 ± 7.0 35.1 ± 8.1 57.7 ± 24.9 16.0 ± 5.9 34.2 ± 5.9 64.6 ± 5.9
8 17.0 ± 5.3 17.7 ± 3.7 38.2 ± 2.8 19.5 ± 6.5 38.5 ± 9.0 32.7 ± 12.3

Table A.1: Mean and STD error of distance for each marker between suits for SubjectA

Test # L Shoulder L Elbow L Wrist R Shoulder R Elbow R Wrist
mm mm mm mm mm mm

1 12.2 ± 6.0 24.4 ± 6.6 16.4 ± 6.4 10.9 ± 6.1 28.1 ± 3.2 68.6 ± 2.1
2 16.7 ± 5.4 59.5 ± 7.0 77.6 ± 8.2 20.2 ± 7.1 13.8 ± 6.6 46.4 ± 10.5
3 27.3 ± 13.1 72.4 ± 12.4 68.5 ± 26.3 29.6 ± 12.6 21.0 ± 7.3 20.5 ± 7.4
4 11.2 ± 4.0 22.0 ± 4.7 23.8 ± 5.8 12.7 ± 4.1 51.6 ± 17.0 57.6 ± 15.7
5 9.0 ± 6.7 53.2 ± 5.1 44.3 ± 10.2 6.8 ± 5.7 29.2 ± 5.9 38.7 ± 5.5
6 5.0 ± 5.0 46.0 ± 3.3 99.8 ± 4.9 6.1 ± 4.7 85.0 ± 2.4 116.2 ± 2.6
7 17.1 ± 5.6 61.6 ± 22.4 98.4 ± 44.4 14.9 ± 7.1 33.2 ± 6.0 45.2 ± 6.2
8 25.7 ± 12.0 35.8 ± 11.8 52.9 ± 16.6 26.0 ± 13.0 84.5 ± 6.5 67.9 ± 9.1

Table A.2: Mean and STD error of distance for each marker between suits for SubjectB
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Test # L Shoulder L Elbow L Wrist R Shoulder R Elbow R Wrist
mm mm mm mm mm mm

1 8.7 ± 5.4 20.8 ± 2.6 44.6 ± 6.3 4.9 ± 3.4 30.2 ± 2.7 55.1 ± 2.9
2 6.9 ± 4.0 48.3 ± 17.5 84.1 ± 16.8 12.8 ± 5.1 11.8 ± 5.9 55.1 ± 8.2
3 21.3 ± 6.6 36.0 ± 14.9 70.2 ± 19.6 26.9 ± 10.5 41.4 ± 9.9 61.3 ± 9.5
4 8.5 ± 3.7 30.1 ± 4.2 63.8 ± 4.3 9.0 ± 5.0 54.6 ± 9.3 39.6 ± 14.2
5 19.1 ± 10.1 42.9 ± 7.2 23.3 ± 8.8 18.4 ± 10.1 79.6 ± 5.7 73.7 ± 6.8
6 5.9 ± 3.3 37.4 ± 2.4 19.7 ± 3.9 5.1 ± 2.9 78.7 ± 2.9 86.8 ± 3.7
7 11.6 ± 5.1 38.9 ± 19.9 85.5 ± 17.9 10.4 ± 5.1 30.7 ± 2.7 47.7 ± 2.4
8 9.3 ± 3.5 33.2 ± 3.8 65.4 ± 4.0 12.3 ± 3.7 55.4 ± 4.7 33.5 ± 8.0

Table A.3: Mean and STD error of distance for each marker between suits for SubjectC

Test # L Shoulder L Elbow L Wrist R Shoulder R Elbow R Wrist
mm mm mm mm mm mm

1 28.4 ± 5.9 44.0 ± 4.3 50.0 ± 5.8 28.8 ± 5.2 38.5 ± 2.3 81.8 ± 2.5
2 12.1 ± 6.2 53.1 ± 8.6 55.6 ± 8.7 8.9 ± 4.2 39.8 ± 4.0 47.8 ± 6.3
3 8.7 ± 4.2 41.6 ± 11.5 85.4 ± 16.3 9.2 ± 5.1 23.7 ± 5.0 78.1 ± 4.9
4 8.7 ± 4.5 36.7 ± 8.8 48.3 ± 9.2 13.5 ± 5.4 57.3 ± 6.3 104.1 ± 34.9
5 24.5 ± 10.6 34.8 ± 12.0 48.1 ± 12.8 19.6 ± 9.9 68.2 ± 12.1 66.0 ± 15.0
6 3.9 ± 3.2 40.2 ± 1.6 60.8 ± 2.9 4.3 ± 3.1 79.5 ± 2.8 85.6 ± 3.4
7 14.1 ± 6.6 67.9 ± 22.1 135.1 ± 43.4 17.8 ± 10.9 35.1 ± 8.4 69.5 ± 9.0
8 18.1 ± 7.6 15.7 ± 4.3 18.8 ± 4.6 36.2 ± 6.4 69.1 ± 4.8 107.3 ± 36.8

Table A.4: Mean and STD error of distance for each marker between suits for SubjectD

Test # L Shoulder L Elbow L Wrist R Shoulder R Elbow R Wrist
mm mm mm mm mm mm

1 15.7 ± 9.5 32.6 ± 6.0 41.9 ± 7.3 11.8 ± 7.0 40.7 ± 4.0 74.5 ± 4.3
2 21.3 ± 6.7 37.8 ± 9.5 46.6 ± 10.4 12.5 ± 4.0 33.9 ± 11.3 82.2 ± 10.3
3 30.8 ± 13.8 71.9 ± 32.4 99.5 ± 50.2 12.1 ± 3.1 49.7 ± 4.9 60.6 ± 6.5
4 28.9 ± 22.7 38.6 ± 16.5 59.4 ± 10.5 24.5 ± 16.1 47.6 ± 20.2 70.8 ± 23.9
5 24.0 ± 9.3 39.9 ± 10.7 34.5 ± 7.6 14.2 ± 6.1 32.5 ± 7.1 80.8 ± 9.0
6 12.9 ± 4.3 44.4 ± 3.8 22.7 ± 5.6 14.0 ± 2.8 60.9 ± 3.7 70.7 ± 4.7
7 19.3 ± 10.0 56.8 ± 22.7 95.5 ± 42.6 7.9 ± 4.3 36.6 ± 4.4 48.9 ± 4.5
8 66.0 ± 11.6 82.6 ± 9.8 99.9 ± 8.4 54.7 ± 12.6 108.4 ± 13.9 113.0 ± 18.6

Table A.5: Mean and STD error of distance for each marker between suits for SubjectE
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Test # L Upper L Lower R Upper R Lower Torso
deg deg deg deg deg

1 5.5 ± 0.7 11.2 ± 1.0 19.6 ± 0.4 17.9 ± 0.3 1.3 ± 0.7
2 7.9 ± 0.4 8.7 ± 0.4 6.6 ± 2.9 16.0 ± 0.8 1.7 ± 0.9
3 6.6 ± 2.5 11.5 ± 3.8 12.1 ± 0.3 4.8 ± 0.3 2.9 ± 1.3
4 4.5 ± 0.4 5.7 ± 0.3 8.1 ± 3.0 14.9 ± 3.1 3.0 ± 1.0
5 14.4 ± 1.3 3.7 ± 1.1 12.7 ± 1.2 8.2 ± 1.3 2.4 ± 1.0
6 16.6 ± 0.1 15.2 ± 0.3 28.2 ± 0.5 7.4 ± 0.4 1.1 ± 0.5
7 6.1 ± 1.1 11.8 ± 3.6 14.1 ± 0.6 10.3 ± 0.4 2.6 ± 1.1
8 3.0 ± 0.3 8.8 ± 0.4 10.4 ± 2.5 14.8 ± 1.6 3.1 ± 1.1

Table A.6: Mean and STD angle error at each segment of the body for SubjectA

Test # L Upper L Lower R Upper R Lower Torso
deg deg deg deg deg

1 5.0 ± 0.7 9.6 ± 0.8 7.4 ± 0.4 13.2 ± 0.6 1.9 ± 0.9
2 10.4 ± 0.7 6.0 ± 0.6 5.3 ± 2.3 12.4 ± 0.8 3.2 ± 1.0
3 23.5 ± 6.2 13.5 ± 2.8 4.7 ± 1.2 1.8 ± 0.6 2.6 ± 1.0
4 4.2 ± 0.5 6.3 ± 0.6 13.9 ± 1.4 7.9 ± 4.2 1.7 ± 0.6
5 14.8 ± 1.2 15.8 ± 1.0 10.2 ± 1.5 7.8 ± 0.9 1.1 ± 0.9
6 13.2 ± 0.1 19.6 ± 1.1 32.0 ± 0.1 11.3 ± 0.4 0.9 ± 0.9
7 13.3 ± 3.5 16.9 ± 2.3 6.4 ± 0.5 3.9 ± 0.5 3.1 ± 1.2
8 3.2 ± 0.4 10.7 ± 1.4 26.2 ± 1.3 11.3 ± 5.6 3.9 ± 2.0

Table A.7: Mean and STD angle error at each segment of the body for SubjectB

Test # L Upper L Lower R Upper R Lower Torso
deg deg deg deg deg

1 6.8 ± 0.4 13.2 ± 0.8 8.7 ± 0.3 7.4 ± 0.3 1.4 ± 0.8
2 11.3 ± 5.6 11.4 ± 0.3 6.3 ± 1.7 15.3 ± 1.0 1.5 ± 0.6
3 4.3 ± 1.2 12.6 ± 3.8 9.4 ± 0.8 6.9 ± 0.4 3.0 ± 0.9
4 8.2 ± 0.6 11.2 ± 0.4 21.0 ± 3.1 18.5 ± 7.6 1.5 ± 0.8
5 9.5 ± 0.9 10.5 ± 0.9 24.9 ± 0.9 7.0 ± 0.6 2.6 ± 1.4
6 12.8 ± 0.2 17.3 ± 0.3 28.0 ± 0.9 11.3 ± 0.3 1.0 ± 0.5
7 8.0 ± 3.1 18.3 ± 3.1 9.3 ± 0.5 5.4 ± 0.4 1.3 ± 0.7
8 6.0 ± 0.6 10.4 ± 0.3 20.9 ± 3.2 23.8 ± 2.7 1.8 ± 0.6

Table A.8: Mean and STD angle error at each segment of the body for SubjectC
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Test # L Upper L Lower R Upper R Lower Torso
deg deg deg deg deg

1 8.9 ± 0.5 12.1 ± 1.0 9.3 ± 0.4 15.0 ± 0.3 4.3 ± 0.8
2 9.7 ± 0.4 0.8 ± 0.3 12.4 ± 1.1 11.9 ± 1.1 1.8 ± 1.0
3 10.7 ± 1.1 18.4 ± 3.5 8.6 ± 0.3 17.1 ± 0.3 1.2 ± 0.8
4 8.3 ± 0.6 3.4 ± 0.4 14.8 ± 2.2 14.9 ± 7.9 1.8 ± 0.7
5 5.4 ± 1.7 7.0 ± 1.1 20.0 ± 2.1 2.6 ± 1.5 3.3 ± 1.4
6 12.9 ± 0.1 27.4 ± 0.3 25.4 ± 0.4 8.3 ± 0.5 0.8 ± 0.5
7 16.5 ± 5.1 23.8 ± 3.6 9.3 ± 1.3 11.1 ± 0.7 2.3 ± 1.2
8 5.3 ± 0.4 1.2 ± 0.3 14.5 ± 2.2 17.3 ± 6.5 3.1 ± 0.7

Table A.9: Mean and STD angle error at each segment of the body for SubjectD

Test # L Upper L Lower R Upper R Lower Torso
deg deg deg deg deg

1 8.7 ± 0.7 13.8 ± 1.1 13.0 ± 0.4 10.6 ± 0.4 2.3 ± 1.3
2 4.5 ± 0.9 3.2 ± 0.9 9.9 ± 2.3 23.0 ± 1.9 3.7 ± 1.4
3 5.3 ± 1.7 11.6 ± 2.8 12.1 ± 0.6 3.3 ± 0.7 3.0 ± 1.5
4 4.7 ± 0.3 8.2 ± 0.3 19.9 ± 3.3 14.8 ± 6.2 5.2 ± 4.7
5 5.9 ± 1.2 7.2 ± 1.0 9.0 ± 1.2 14.4 ± 1.0 3.0 ± 1.2
6 11.5 ± 0.1 17.9 ± 0.9 19.7 ± 0.4 10.3 ± 0.3 2.0 ± 1.2
7 6.4 ± 1.4 16.0 ± 3.8 11.7 ± 1.0 4.0 ± 0.8 2.2 ± 1.4
8 8.1 ± 0.5 6.0 ± 0.7 20.1 ± 3.1 8.4 ± 4.3 10.1 ± 2.6

Table A.10: Mean and STD angle error at each segment of the body for SubjectE
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Test # L Shoulder 1 L Shoulder 2 L Elbow R Shoulder 1 R Shoulder 2 R Elbow 2
deg deg deg deg deg deg

1 4.1 ± 0.9 0.9 ± 0.6 1.1 ± 0.8 16.8 ± 1.0 11.7 ± 1.0 1.6 ± 0.7
2 1.5 ± 0.7 6.7 ± 1.1 7.2 ± 0.6 6.8 ± 2.8 4.8 ± 2.3 21.0 ± 3.1
3 6.5 ± 2.0 2.0 ± 1.3 11.1 ± 5.4 5.9 ± 1.0 8.2 ± 1.4 4.1 ± 0.8
4 2.3 ± 2.1 3.3 ± 1.5 5.3 ± 0.5 7.3 ± 4.1 3.1 ± 2.3 17.2 ± 4.1
5 4.9 ± 2.1 11.1 ± 1.5 3.4 ± 0.9 1.9 ± 1.5 12.9 ± 1.4 6.5 ± 2.3
6 15.5 ± 0.4 6.7 ± 0.5 0.6 ± 0.5 26.0 ± 0.5 9.6 ± 1.2 4.8 ± 1.1
7 5.0 ± 1.6 2.0 ± 1.4 9.5 ± 3.3 8.9 ± 1.2 9.6 ± 1.6 3.2 ± 1.3
8 1.0 ± 0.7 1.7 ± 1.0 1.9 ± 0.5 11.6 ± 2.8 3.6 ± 2.0 21.4 ± 4.0

Table A.11: Mean and STD angle error at each joint of the body for SubjectA

Test # L Shoulder 1 L Shoulder 2 L Elbow R Shoulder 1 R Shoulder 2 R Elbow 2
deg deg deg deg deg deg

1 5.2 ± 1.1 3.1 ± 0.7 13.2 ± 1.1 2.0 ± 1.0 6.6 ± 1.2 3.3 ± 1.0
2 5.1 ± 0.9 12.2 ± 1.0 3.9 ± 0.7 3.0 ± 2.2 3.6 ± 2.4 7.4 ± 2.6
3 21.8 ± 6.4 4.0 ± 2.6 10.7 ± 8.3 1.1 ± 0.8 3.4 ± 1.4 5.4 ± 1.5
4 5.3 ± 0.8 1.0 ± 0.6 5.3 ± 0.5 2.5 ± 2.1 7.5 ± 3.7 8.0 ± 5.7
5 14.2 ± 1.3 9.0 ± 1.2 20.4 ± 1.8 10.5 ± 1.8 7.7 ± 0.9 2.4 ± 1.1
6 7.8 ± 1.0 10.0 ± 0.6 8.7 ± 0.7 25.6 ± 1.1 18.0 ± 0.7 12.3 ± 0.7
7 8.7 ± 2.4 2.8 ± 2.1 17.2 ± 6.4 8.5 ± 1.5 0.9 ± 0.5 1.9 ± 0.8
8 6.2 ± 2.2 0.5 ± 0.4 5.9 ± 1.5 16.0 ± 1.7 17.3 ± 4.1 16.3 ± 4.3

Table A.12: Mean and STD angle error at each joint of the body for SubjectB

Test # L Shoulder 1 L Shoulder 2 L Elbow R Shoulder 1 R Shoulder 2 R Elbow 2
deg deg deg deg deg deg

1 2.7 ± 0.9 4.5 ± 0.8 10.0 ± 0.9 7.4 ± 0.9 3.3 ± 0.9 0.5 ± 0.5
2 7.6 ± 1.0 10.6 ± 1.7 4.6 ± 5.2 2.5 ± 1.8 5.9 ± 2.2 14.6 ± 2.8
3 2.5 ± 1.5 6.2 ± 2.4 6.5 ± 3.5 4.7 ± 1.3 4.6 ± 0.6 2.9 ± 1.1
4 3.6 ± 0.7 6.7 ± 0.9 4.6 ± 0.5 8.3 ± 3.2 7.1 ± 2.9 14.7 ± 4.4
5 7.2 ± 2.1 1.0 ± 0.7 18.1 ± 0.5 2.4 ± 1.7 25.3 ± 1.4 11.0 ± 1.5
6 12.6 ± 0.7 4.2 ± 0.9 0.3 ± 0.3 27.1 ± 0.9 5.8 ± 1.6 2.7 ± 1.5
7 4.9 ± 3.6 6.4 ± 2.2 4.6 ± 2.7 9.0 ± 0.9 0.9 ± 0.7 4.1 ± 0.9
8 6.0 ± 0.8 4.6 ± 0.8 2.8 ± 0.7 12.8 ± 4.0 2.9 ± 2.1 22.8 ± 5.5

Table A.13: Mean and STD angle error at each joint of the body for SubjectC
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Test # L Shoulder 1 L Shoulder 2 L Elbow R Shoulder 1 R Shoulder 2 R Elbow 2
deg deg deg deg deg deg

1 12.2 ± 1.2 6.4 ± 1.0 6.8 ± 0.6 4.8 ± 1.1 5.4 ± 0.7 0.6 ± 0.5
2 3.3 ± 0.8 10.5 ± 1.1 3.4 ± 0.5 8.6 ± 2.3 7.1 ± 1.9 11.4 ± 2.6
3 4.4 ± 1.9 7.9 ± 1.8 11.1 ± 5.0 4.2 ± 1.0 7.7 ± 1.0 0.8 ± 0.6
4 3.8 ± 0.6 9.7 ± 0.8 4.8 ± 0.6 12.3 ± 2.5 8.3 ± 2.8 4.8 ± 2.9
5 4.7 ± 2.7 4.9 ± 1.7 7.7 ± 2.3 4.4 ± 3.0 19.8 ± 2.6 12.7 ± 2.9
6 13.0 ± 0.6 5.3 ± 0.6 3.0 ± 0.5 25.1 ± 0.7 1.4 ± 1.1 6.9 ± 1.1
7 12.2 ± 5.2 13.5 ± 5.0 19.5 ± 8.1 7.3 ± 1.3 1.4 ± 0.8 1.4 ± 1.0
8 1.0 ± 0.6 7.5 ± 0.9 4.1 ± 0.4 17.4 ± 2.2 7.8 ± 2.3 16.7 ± 2.8

Table A.14: Mean and STD angle error at each joint of the body for SubjectD

Test # L Shoulder 1 L Shoulder 2 L Elbow R Shoulder 1 R Shoulder 2 R Elbow 2
deg deg deg deg deg deg

1 7.4 ± 1.6 4.2 ± 1.0 0.6 ± 0.5 8.5 ± 1.6 8.7 ± 1.0 1.6 ± 1.1
2 1.6 ± 1.0 7.2 ± 2.0 2.4 ± 1.0 3.0 ± 2.0 8.0 ± 3.7 23.3 ± 3.9
3 4.4 ± 2.1 2.9 ± 2.1 5.6 ± 4.3 5.7 ± 1.0 8.4 ± 3.0 4.2 ± 0.9
4 4.3 ± 2.0 4.5 ± 4.5 1.0 ± 0.9 11.6 ± 5.3 12.1 ± 3.1 15.0 ± 7.4
5 4.2 ± 1.6 1.8 ± 1.0 6.6 ± 1.4 5.7 ± 2.2 7.1 ± 2.6 2.7 ± 1.9
6 10.6 ± 0.9 3.0 ± 1.6 0.3 ± 0.3 15.3 ± 0.8 13.0 ± 2.1 4.2 ± 0.8
7 4.4 ± 2.2 4.3 ± 2.3 12.8 ± 6.8 2.8 ± 1.1 11.0 ± 1.4 6.2 ± 1.1
8 14.4 ± 1.7 3.8 ± 2.0 2.8 ± 0.9 22.3 ± 3.9 21.4 ± 3.0 19.0 ± 4.7

Table A.15: Mean and STD angle error at each joint of the body for SubjectE
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