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ABSTRACT 
 
 
Crash prediction models are used to estimate the number of crashes using a set of 
explanatory variables.  The highway safety community has used modeling techniques to 
predict vehicle-to-vehicle crashes for decades.  Specifically, generalized linear models 
(GLMs) are commonly used because they can model non-linear count data such as motor 
vehicle crashes.  Regression models such as the Poisson, Zero-inflated Poisson (ZIP), and 
the Negative Binomial are commonly used to model crashes.  Until recently very little 
research has been conducted on crash prediction modeling for pedestrian-motor vehicle 
crashes.  This thesis considers several candidate crash prediction models using a variety 
of explanatory variables and regression functions.  The goal of this thesis is to develop a 
pedestrian crash prediction model to contribute to the field of pedestrian safety prediction 
research.  Additionally, the thesis contributes to the work done by the Federal Highway 
Administration to estimate pedestrian exposure in urban areas.  The results of the crash 
prediction analyses indicate the pedestrian-vehicle crash model is similar to models from 
previous work.  An analysis of two pedestrian volume estimation methods indicates that 
using a scaling technique will produce volume estimates highly correlated to observed 
volumes.  The ratio of crash and exposure estimates gives a crash rate estimation that is 
useful for traffic engineers and transportation policy makers to evaluate pedestrian safety 
at signalized intersections in an urban environment. 
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CHAPTER ONE: INTRODUCTION 
 
1.1 PROBLEM OVERVIEW 
Pedestrian exposure research has been conducted for decades, however there isn’t a 
consensus on how to ultimately define the metric and the best methods to implement the 
metric.  The Federal Highway Administration (FHWA) and the National Highway Traffic 
Safety Administration (NHTSA) have both indicated that establishing an acceptable 
pedestrian exposure measure is a high priority so that crash rates can be objectively 
compared (Molino et al, 2008). 
 
The highway safety community has used modeling techniques to predict vehicle-to-
vehicle crashes for decades.  Specifically, generalized linear models (GLMs) are 
commonly used because they can model non-linear count data such as motor vehicle 
crashes.  Until recently relatively little research has been conducted on crash prediction 
modeling for pedestrian-motor vehicle crashes.  The National Cooperative Highway 
Research Program (NCHRP) had initiated an effort to develop a section in the Highway 
Safety Manual (HSM) to address pedestrian safety prediction models however this effort 
is not completely developed and there is still a need for additional research (Harwood et 
al, 2008). 
 
The thesis presents two techniques to estimate pedestrian volumes at signalized 
intersections and other locales in an urban environment.  The research presented in the 
thesis investigates the pedestrian exposure (volumes) estimation techniques specifically 
at signalized intersection by comparing estimated pedestrian volumes with observed 
pedestrian volumes. The research presented in this thesis also investigates the 
development of pedestrian crash prediction models using generalized linear models 
(GLMs) in an urban environment as a contribution to the relatively-nascent field of 
pedestrian safety prediction.  A comparison between two sets of predicted pedestrian 
volumes in the final pedestrian crash prediction model is also made.   
 
1.2 RESEARCH OBJECTIVES 
There are two major objectives to this thesis.  The first objective is to estimate pedestrian 
volumes at urban signalized intersections using two different techniques and limited 
empirical data.  The second objective is to determine if a pedestrian crash prediction 
model can be developed from exposure data at urban signalized intersections using road 
width, and to evaluate the final model by comparing against statistical tests and results 
from previous research. 
 
1.3 THESIS CONTRIBUTION 
Although research has been done with crash prediction models at signalized intersections 
most of the work has focused on vehicle-to-vehicle crashes.  Limited information exists 
on pedestrian crash prediction models at signalized intersections.  The first goal of this 
thesis is to develop pedestrian exposure (volume) estimation methodologies that could be 
universally used and accepted.  The second goal is to investigate and present a pedestrian 



Chapter 1  Introduction 

 2

crash prediction model that will add to the growing field of pedestrian safety prediction 
research. 
 
 
1.4 THESIS ORGANIZATION 
The thesis is organized into five chapters.  Chapter 1 presents the problem overview and 
research objectives of the this thesis.  Chapter 2 provides a review of research related to 
pedestrian exposure, vehicle exposure, and pedestrian crash prediction models.  Chapter 3 
presents the two pedestrian exposure estimation techniques developed.  Chapter 4 
describes the data collection and analysis methodologies used in the creation of the 
pedestrian crash prediction model and the results of the crash model development 
process.  Chapter 4 also compares estimated pedestrian volumes that were created with 
the two methodologies described in Chapter 3.  Chapter 5 presents the study conclusions 
and recommendations for further research.  The SAS® statistical package will be used to 
develop the crash prediction models analyzed in this thesis.  A complete SAS output for 
the final pedestrian crash prediction model will presented in the attached Appendix. 
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CHAPTER TWO: LITERATURE REVIEW 

2.1 INTRODUCTION 
This section presents some background information on some of the available literature 
related to pedestrian crash statistics, crash prediction models, and various types of 
exposure measures for both vehicles and pedestrians.  The first section deals with 
pedestrian crash statistics on a national and local level.  The second section focuses on 
previously developed crash prediction models.  The third section deals with the FHWA’s 
official measure of vehicle exposure as well as some of the various alternative measures 
of vehicle exposure.  Finally, the fourth section deals with a sample of the leading 
measures of pedestrian exposure. 
 
2.2 PEDESTRIAN CRASH STATISTICS 
Pedestrian crash data are available from both a national and local level.  The National 
Highway Traffic Safety Administration (NHTSA) requires States to report all motor 
vehicle fatalities, including those involving pedestrians, so that they can be included in 
the Fatality Accident Reporting System (FARS).  Each fatal crash has more than 100 
elements related to the crash, vehicle, and people involved in each crash event (NHTSA 
2008).  For all crashes involving pedestrians (including non-fatal), the General 
Estimating System (GES) is the most thorough database in the United States. 
 
Locally, pedestrian crash data are available from the District of Columbia’s Department 
of Transportation (DDOT).  DDOT collects pedestrian-related crash data from police 
reports made by the Metropolitan Police Department (MPD).  Types of information 
available in the DDOT crash database include crash location, date, possible cause, type of 
vehicles involved, number of pedestrians involved, presence and type of traffic control 
device, and several other variables. 
 
2.2.1 National Statistics 
It is estimated that only about 10% of all intersections in the United States are signalized 
(FHWA 2007).  However, in 2006 over 46% of all intersection and intersection-related 
pedestrian fatalities occurred at signalized intersections (NHTSA 2006a).  This means 
that of the estimated 3 million intersections in the United States, only 300,000 signalized 
intersections accounted for almost half of all intersection pedestrian fatalities.  
Additionally, the 518 pedestrian fatalities at signalized intersections accounted for over 
10% of all pedestrian fatalities in 2006 (NHTSA 2006a). 
 
2.2.2 Washington DC Statistics 
Between 2000 and 2005, over 2,600 pedestrian-motor vehicle crashes occurred in 
Washington, DC (DC GIS Office 2007).  77 pedestrians involved in those crashes were 
fatally injured.  In 2006, 15 pedestrians were fatally injured in a motor-vehicle crash.  Of 
the 15 pedestrian fatalities, 5 were at or near a signalized intersection.  Over 62% (5 of 8) 
of intersection or intersection-related pedestrian fatalities occurred at a signalized 
intersection, of which there are approximately 1,600 signalized intersections in the 
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District of Columbia (NHTSA 2006b).  In addition, there were approximately 2,600 
pedestrian-motor vehicle crashes in the Washington DC between 2000 and 2005.  Many 
of these crashes occurred at or near an intersection, and many of those were signalized.  It 
is not unreasonable to expect a higher proportion of signalized intersection or 
intersection-related fatalities in an urban environment they tend to have a higher 
proportion of signalized intersections. 
 
2.3 CRASH PREDICTION MODELING 
Crash data are very important for conducting safety analyses because they show what has 
already happened.  Trends and patterns can be analyzed to improve potentially unsafe 
locations.  However historical crash data can be used to predict future crashes when used 
in crash prediction models.  Crash prediction models are important tools because they can 
be applied to, once validated, similar locations that have little or no crash data.  This 
section of the literature review presents a selection of some of the current models that are 
popular with researchers and practitioners.  
 
2.3.1 Poisson Model 
Previous crash predictive modeling work used multiple linear regression techniques 
based on assumptions that crash data were normally distributed and were 
homeoscedastic.  However researchers discovered that crash data were not typically 
linear and did not usually follow normal distributions (Maher, 1996). 
 
Miaou et al, (1992, 1993) found that the Poisson regression model was more effective at 
predicting truck crashes when compared to standard linear regression models.  Dionne et 
al. (1993) and Jovanis and Chang (1986) used a Poisson model to relate exposure 
variables to crashes. 
 
Calieno et al, (2006) compared the Poisson, Negative Binomial, and Negative 
Multinomial distributions in developing crash models for multilane highways in Italy.  
The researchers found that the Poisson was inappropriate to model crashes due to the 
over-dispersion of the data.  Maycock and Hall (1984) showed that a negative binomial 
structure was superior to a Poisson model due to the “excess zeros” that can characterize 
crash data. 
 
The Poisson distribution has been used for modeling count data however it is limited in 
its ability to predict outcomes based on over-dispersed data.  While the research in this 
thesis will investigate the Poisson distribution, it is anticipated that the final model will 
not use this distribution function. 
 
2.3.2 Negative Binomial (Poisson-gamma) Model 
Lord (2006) investigated a model that utilized the negative binomial (or Poisson-gamma) 
distribution.  Crash data tends to be characterized by having low sample mean values and 
small sample sizes.  The objectives of this study were: 1) determine if the “low mean 
problem” (LMP) affects the dispersion parameter of the model and 2) determine the 
effects of an unreliable dispersion parameter on highway safety analysis.  Several 
Poisson-gamma distributions were created using a variety of values for the sample size, 



Chapter 2  Literature Review 

 5

dispersion parameter, and the mean.  Three estimators commonly used by highway safety 
modelers were studied.  Lord (2006) concluded that crash data characterized by low 
sample mean and small sample size affects the estimation of the dispersion parameter.  
Additionally, the three estimators, (method of moments, weighted regression, and 
maximum likelihood method) were more affected in the extreme conditions.  As sample 
size decreases the mis-estimation of the dispersion parameter increases quite 
significantly.  The study also found that when the dispersion parameter is mis-estimated, 
highway safety analyses might be flawed if erroneous modeling outputs are used. 
 
2.3.3 Zero-Inflated Poisson (ZIP) Model 
The zero-inflated Poisson model (ZIP) assumes data come from two distinct sources or 
distributions (Lord, 2005).  Traffic data, specifically crash data, commonly has more 
zeros than would be expected in a normal Poisson distribution.  The ZIP model has been 
used to model crash data because crashes are fairly rare events and often times there are 
high numbers of locations or samples that have zero (0) crashes.  The model generates 
data using two processes.  The first process generates only zero counts and the second 
process generates counts from a Poisson model.  
 
Shankar et al. (2002) developed crash prediction models for pedestrians and motorized 
traffic.  Two models, the negative binomial and the ZIP, were considered.  Issues such as 
the presence of excess zeros and unobserved heterogeneity in pedestrian crash 
distributions were discussed.  Pedestrian crashes from Washington State between 1991 
and 1994 were sampled for consistently available data and included in the models.  The 
study compared the application of both the negative binomial and the ZIP models to the 
empirical pedestrian crash data and found that the ZIP model is the most suitable for 
analyzing the pedestrian crash contexts. 
 
2.3.4 Linear Regression Model 
Rakha et al. (2008) demonstrated that a least square Linear Regression Model (LRM) 
could be successfully validated to predict crashes on access roads by spacing and AADT.  
This study also looked at two General Linear Models (GLM), the Poisson and negative 
binomial models, to compare against the results of the LRM.  Using data from the 
Virginia Department of Transportation (VDOT), Rakha et al. (2008) found that the LRM 
approach was superior to both the Poisson and negative binomial models because it 
accounted for the high number of access road sections that had zero crashes. 
 
 
2.4 VEHICLE EXPOSURE 
The Federal Highway Administration (FHWA) is responsible for estimating the annual 
vehicle-miles traveled (VMT) in the United States.  This estimate is the result of 
multiplying the vehicular volume and the centerline miles for all public roads in the U.S.  
While the monitoring of vehicular traffic is important for distributing Federal-aid 
funding, it is also important to gauge the performance of the Nation’s highways.  Vehicle 
crash and fatality rates and vehicle delay are performance measures the FHWA can 
estimate using the annual VMT. 
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Currently there is no analogous estimate for pedestrian-miles traveled (PMT) in the 
United States.  Several research studies have been conducted over the years using 
different exposure methodologies to address this problem.  However to date, no single 
exposure method has been universally accepted by transportation professionals and until 
one is, it is difficult to quantitatively assess and analyze the crash exposure rate of 
pedestrians in the United States.  Crash data alone does not give the entire picture for 
pedestrian safety and therefore it is important to have accurate pedestrian exposure data. 
 
Collecting vehicular counts has become automated with traffic counters and tubes.  It is 
not as easy to collect pedestrian volumes.  Pedestrian counts, for the most part, still 
require humans to manually count pedestrians in the field or conduct post-hoc video 
analysis.  Both of these data collection methods are time consuming and expensive.  Due 
to the more complex nature of estimating pedestrian volumes and exposure rates the 
research presented in this thesis focuses on urban signalized intersections.  The feasibility 
of such an estimate should be tested at urban signalized intersections first.  Signalized 
intersections tend to have higher volumes of both vehicles and pedestrians compared to 
non-signalized intersections.  Additionally local transportation agencies maintain better 
asset management records for signalized intersections and therefore the estimation 
technique may be easier to test and improve when tested within a known population. 
 
2.4.1 Exposure Method: FHWA’s Vehicle-Miles Traveled 
Vehicular travel (exposure) is officially reported in the United States by the Federal 
Highway Administration (FHWA) (FHWA 2006).  FHWA estimates the vehicle-miles 
traveled, also known as VMT, in the United States each year on all public roads.  
FHWA’s Office of Highway Policy Information oversees the estimate of the VMT 
through the Highway Performance Monitoring System (FHWA 2005).  State 
Departments of Transportation are required to report the vehicle-miles traveled in their 
jurisdiction to FHWA so that it can be included in the Highway Performance Monitoring 
System (HPMS) (FHWA 2005). 
 
FHWA’s vehicle-miles traveled is calculated by taking the product of the annual average 
daily traffic (AADT) and the centerline length of the section associated with the AADT 
(FHWA 2005).  The centerline length of all public roads is reported to FHWA by 
Departments of Transportation annually.  The requirements for the reporting of AADT 
data vary by functional system.  FHWA requires States to report AADT for each section 
of Interstate, National Highway System (NHS), and other principal arterial.  However for 
lower classes of functional system, such as minor arterials, rural major collector, and 
urban collector systems, travel is estimated from roadway section samples through the 
HPMS.  The estimates are calculated from the samples using the centerline length for 
each section sampled, the AADT, and sample expansion factors from the HPMS.  Table 
2-1 summarizes the HPMS data by functional system. 
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Rural Functional Systems 

HPMS Data 
Interstate 

Other 
Principal 
Arterials 

Minor 
Arterial 

Major 
Collector 

Minor 
Collector Local 
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Interstate VMT 
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Non-Interstate PAS Lane Miles 
Non-Interstate PAS VMT 
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Universe 

 
 
 

 
 
 

 
 
 

 
 
 

 
FA Highway Lane Miles 1/ 
FA Highway VMT 1/ 
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Universe 
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Sample 2/ 
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NHS Lane Miles 
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Universe 

 
Universe 

 
Universe 

 
Universe 

 
Universe 

 
Miles 
Lane Miles 
VMT 

 
Universe 
Universe 
Universe 

 
Universe 
Universe 
Universe 

 
Universe 
Universe 
Sample 2/ 

 
Universe 
Universe 
Sample 2/ 

 
Universe 

Universe 3/ 
Summary 4/ 

 
Universe 

Universe 3/ 
Summary 4/ 

 
Total Public Road Miles 

 
Certified Mileage --------------------------------------------------------------------------------------------------------- 

Urban Functional Systems 
HPMS Data 

Interstate 
Other 

Freeways & 
Expressways 

Other 
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Arterial 

Minor 
Arterial 

Collector Local 

 
Interstate Lane Miles 
Interstate VMT 

 
Universe 
Universe 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
Non-Interstate PAS Lane Miles 
Non-Interstate PAS VMT 

 
 
 

 
Universe 
Universe 

 
Universe 
Universe 

 
 
 

 
 
 

 
 
 

 
FA Highway Lane Miles 1/ 
FA Highway VMT 1/ 
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Universe 
Sample 2/ 
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Sample 2/ 

 
 
 

 
NHS Lane Miles 

 
Universe 
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Lane Miles 
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Universe 

 
Universe 
Universe 
Sample 2/ 

 
Universe 
Universe 
Sample 2/ 

 
Universe 

Universe 3/ 
Summary 4/ 

 
Total Public Road Miles 

 
Certified Mileage --------------------------------------------------------------------------------------------------------- 

  
1/ Universe data are used to estimate lane-miles & VMT for the few miles of NHS that are on the minor collector & local functional

systems. 
2/ Expanded sample data are used. 
3/ Universe miles times 2 (lanes) are used.  States are not required to report number of through lanes on these systems, except for any 

NHS sections. 
4/ Summary data are used.  States are not required to report section level AADT on these systems, except for any NHS sections. 

Definitions:  
Universe: Data reported for all roadway links in the system. 
Sample: Data reported for a randomly selected sample of roadway links in the system. 
Summary: Data reported in aggregated form by functional system. 
PAS: Principal arterial system made up of interstate, other freeways & expressways, and other principal arterial systems. 
VMT: Vehicle miles of travel. 
FA:  Federal-aid. 
NHS: National highway system.  
Figure 2-1.  Sources of Selected HPMS Data by Functional System (FHWA 2005) 

  

2.4.2 Exposure Method: Alternative Measures 
Although the FHWA’s VMT is the standard exposure measure used in the United States, 
there are several other methods that have been used by researchers and practitioners to 
measure exposure to motor vehicle crashes.  Table 2-1 below provides a selection of 
alternative vehicle exposure measures commonly used (Carroll, 1973). 



Chapter 2  Literature Review 

 8

 
 

Table 2-1.  Selection of Vehicle Exposure Measures (Carroll, 1973) 
Category of 
Exposure Measure Explanation and Types of Metric 

Distance Average miles driven, per vehicle, per day 
Total distance of a vehicle in a year  

Population Number of registered vehicles 
Number of licensed drivers 
Fuel consumption, in gallons 
Total population or sections of the population (gender, age, 
race, ethnicity) 
Person-trips 

Vehicle Trips Average number of vehicle trips made by members of a 
population per day, week, or year 
Proportion of driving trips taken for a particular purpose 

Time Traveling Average time driven, per person, per day or year 
Total time traveled by a driver or passenger (vehicle hours, 
passenger hours) 

 
Using the National Household Travel Survey (NHTS) researchers investigated the motor 
vehicle crash injury rates by mode of travel (Beck, 2007).   Beck et al. analyzed travel 
exposure data, in person-trips, in addition to data from the NHTSA’s FARS and GES 
databases to calculate exposure-based fatal and nonfatal traffic injury rates in the U.S.  
The results of the study found that the overall fatal injury rate was 10.4 per 100 million 
person-trips and the nonfatal injury rate was 754.6 per 100 million person-trips.  As one 
of the first studies to quantify these two types of rates for all modes of travel, Beck et al. 
found that motorcyclist, pedestrians, and bicyclists had an increased injury risk.  
Additionally, this study showed that the elderly, males, and adolescents have a higher risk 
of traffic injury. 
 
Keall and Frith (1999) examined three main measures of exposure to risk and discussed 
the ways these measures could be used to improve highway safety.  The first estimate 
examined was traffic flow on road sections.  They used New Zealand’s National Traffic 
Database, which is a database of all road sections and their respective traffic counts, to 
assess the social cost of crashes by road type.  According to the results of the analysis, 
travel on country roads (compared to town and city roads) is about 50% more risky in 
terms of total societal cost.  The social costs, which are a weighted sum of crashes, 
(measured as cents per kilometer) include all costs that a community may face such as 
property damage, pain, and suffering (Keall and Frith 1999). 
 
The second exposure risk measure examined was the travel of people.  Roadside alcohol 
and household travel surveys were two methods used.  The roadside surveys are 
conducted by police to measure alcohol impaired driving.  The results, when compared to 
vehicle flow and time of night, seem to indicate that higher impaired drivers (over 120mg 
/ 100ml) tend to drive on lower volume roads after midnight.  Keall and Frith hypothesize 
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that the more impaired drivers may avoid higher volume roads to avoid being stopped by 
police.  Another tool used to examine travel of people was the New Zealand Travel 
Survey.  This survey measured people’s travel behavior through household-based 
interviews.  From this information, personal exposure to risk in terms of distance traveled 
or hours traveled can be estimated.  Since these surveys are taken periodically changes in 
risks for different gender and age groups can be observed. 
 
The third estimate described by Keall and Frith (1999) is based on the travel of vehicles.  
Odometer reading data from New Zealand’s National Motor Vehicle Registration System 
can be compared between inspections and vehicle-based distances can be estimated. 
 
2.5 PEDESTRIAN EXPOSURE 
Pedestrian crashes, vehicular crashes, and the number of vehicles traveling on public 
roads are all well documented in the United States.  Vehicular exposure has been well 
documented and is officially estimated each year by the FHWA.  Pedestrian and 
vehicular crash data are collected by local, State, and the Federal governments.  However 
what is not well documented is the exposure of pedestrians to motor vehicle crashes or 
the development of pedestrian crash prediction models.  There is no national database or 
data clearinghouse that has an accurate estimate of the exposure to crashes for pedestrians 
in the United States and very little research, as compared to vehicle-vehicle prediction 
models, has been done to date.   
 
Pedestrian exposure can be measured in several ways.  Although researchers and 
practitioners have tested several methods to measure the crash risk pedestrians expose 
themselves to, nothing to date has been officially adopted by FHWA or any other federal 
agency with national jurisdiction. 
 
In general, pedestrians choose the location where they will cross the road.  Urban road 
networks with high volumes, or at least constant volume of motor vehicles, however will 
typically force pedestrians to cross at intersections, especially those that are signalized. 
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Table 2-2.  Leading Pedestrian Exposure Measures 

Category of 
Exposure 
Measure 

Explanation and Types of Metric 

Hazardous 
Pedestrian 
Behavior 

Pedestrian Volume times Vehicular Volume 
Pedestrian Volume times Intersections Crossed 

Distance Average miles walked, per person, per day 
Total aggregate distance of pedestrian travel across an intersection  

Population Number of residents of a given area or in a demographic group 
Pedestrian Trips Average number of walking trips made by members of a population 

per day, week, or year 
Proportion of walking trips taken for a particular purpose 
Number of pedestrians observed in a given area over a fixed interval

Time Traveling Average time walked, per person, per day or year 
Total aggregate time traveled by all pedestrians or total time 
traveled by individual pedestrian 

 
Pedestrian volumes vary even at signalized intersections, depending on several key 
variables such as time-of-day, day-of-week, weather, land-use characteristics and 
employment (Green-Roesel 2007).  Some existing pedestrian exposure methods utilize 
volume data along with some other variable.  Table 2-2 shows a sample of some of the 
more common pedestrian exposure measures developed to-date (Center for Applied 
Research 2003). 
 
Many exposure methods exist but none are as analogous to the FHWA’s vehicular 
exposure measure (VMT) as is the proposed pedestrian exposure measure of pedestrian-
miles traveled (PMT).  A portion of the research for this thesis investigated this proposed 
measure.  The objective of that research was to consider the feasibility of the 
methodology and the ability to estimate pedestrian exposure to crash risk for an entire 
large city in the United States (Molino et al, 2008). 
 
2.6 SUMMARY OF LITERATURE REVIEW 
The literature review presented in this section provided some basic background 
information regarding pedestrian crash statistics, crash prediction models, and vehicle 
and pedestrian exposure measures. 
 
Pedestrian fatality data is available on a nationwide level through the NHTSA’s FARS 
database.  Information on the location of fatal crashes, such as signalized intersections, 
can be searched through FARS to identify the specific crashes related to this research.  
Locally, DDOT collects and monitors both fatal and nonfatal pedestrian crashes in the 
city.  Pedestrian crash data are available in a GIS layers by location. 
 
Crash prediction models examined in this literature review are examples that have been 
used recently to assess highway safety.  Depending on the model, some can be used at 
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specific locations, such as signalized intersections, and can be used for pedestrians-
vehicle or vehicle-vehicle crashes. 
 
A review of several prevailing exposure measures was presented.  Measures for both 
vehicles and pedestrians were examined, including the standard used by the FHWA for 
vehicle exposure. The literature review reveals a need to develop pedestrian exposure and 
crash prediction models. 
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3.1 ABSTRACT 
There is currently no commonly accepted or adopted measure of pedestrian and bicycle 
exposure to risk.  Consequently, a large portion of the field of pedestrian and bicycle 
safety is lacking an adequate means to evaluate the effectiveness of its efforts. The 
present paper presents a proposed metric for measuring pedestrian and bicycle exposure 
to risk: hundred million pedestrian or bicycle miles traveled on facility shared with motor 
vehicles.  A method for implementing the proposed exposure metric is described for 8 
shared facility types characteristic of the urban environment of Washington, DC.  These 
facilities include three types of intersections, mid-block road segments, driveways, alleys, 
parking lots, parking garages, school areas and areas with playing/dashing/working in the 
roadway.  The methodology is then used to calculate the annual pedestrian and bicycle 
exposure for the city for the calendar year 2007.  The results of these calculations 
revealed 0.82 hundred million pedestrian miles traveled for pedestrian exposure and 0.37 
hundred million bicyclist miles traveled for bicyclist exposure.  In this way both the 
feasibility and scalability of the proposed metric were successfully demonstrated for a 
relatively large urban environment.  Thus the proposed metric has the potential to 
eliminate one of the major obstacles in the pedestrian and bicycle safety field, the lack of 
adequate exposure data.  While further refinement and validation are still needed, the 
proposed metric provides a possible initial foundation to develop a national unit of risk 
exposure for pedestrians and bicyclists. 
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3.2 INTRODUCTION 
In order to know whether any safety countermeasure is effective in reducing pedestrian 
and bicycle crashes, it is essential to have information not only on the number of 
pedestrian and bicycle crashes, fatalities and injuries; but also on the relative exposure of 
the pedestrians and bicyclists at risk.  In roadway safety, risk is generally defined as the 
ratio of crashes to exposure.  Unfortunately there is no commonly accepted and adopted 
measure of pedestrian and bicycle exposure (1).  Consequently, a large portion of the 
field of pedestrian and bicycle safety is lacking an adequate means to evaluate the 
effectiveness of its efforts. 
 

3.2.1 Background 
Pedestrian fatalities resulting from traffic crashes in the United States have dropped over 
the past decade from 5,449 in 1996, to 4,784 in 2006 (2).  This decrease in fatalities could 
be a result of various factors but, without knowing the exposure of pedestrians and 
bicyclists, it is difficult to know what is driving this trend.  That is, the reduction in 
fatalities could be due to improved safety countermeasures, but it could also be the result 
of fewer people walking and bicycling. 
 
In the case of motor vehicle safety, the Federal Highway Administration (FHWA) and 
National Highway Traffic Safety Administration (NHTSA) are the primary agencies in 
the United States responsible for determining crash risk.  Crash data (numerator) are 
available through NHTSA’s Fatality Analysis Reporting System (FARS) (3) and General 
Estimates System (GES) (4), and exposure data (denominator), in terms of hundred 
million vehicle miles traveled (VMT), are available through FHWA’s Highway 
Performance Monitoring System (HPMS)(5).   
 
Currently pedestrians and bicyclists are not accounted for in the denominator of this ratio. 
However, to assess pedestrian and bicycle crash rates, it is essential to determine their 
exposure.  In 2000, NHTSA and FHWA conducted a series of Pedestrian and Bicycle 
Strategic Planning Workshops.  Out of a total of 57 pedestrian and 57 bicycle research 
needs, the lack of adequate pedestrian and bicyclist exposure data ranked in the top 
category among the four highest priority research needs for both pedestrian and bicyclist 
research (6).   
 
A variety of pedestrian/bicycle exposure measures have been suggested and tried in the 
past, but these measures are mutually inconsistent, and none of them has achieved 
widespread acceptance.  A partial list of some of these earlier metrics includes:  
 

• Population (7) 
• Number of roads crossed (8) 
• Time spent walking (7) 
• Pedestrian volume times vehicular volume (9) 
• Pedestrian volume crossing the street (10) 
• Bicycle trips (11) 
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• Bicycle miles traveled (12).  
 
The research described herein is directed at establishing a metric of exposure for use in 
determining the effectiveness of pedestrian/bicycle safety programs at all levels.  In this 
context, the present paper has two major goals: 1) to describe a methodology for realizing 
the new metric in practice, and 2) to employ this methodology to calculate the annual 
pedestrian and bicycle exposure for a relatively large urban environment in terms of the 
proposed metric. 
 

3.2.2 Proposed Exposure Metric 
The proposed pedestrian and bicycle exposure metric has much in common with its 
motor vehicle crash rate analog.  This measure is hundred million pedestrian or bicycle 
miles traveled on a facility shared with motor vehicles.  In its more precise form, this 
measure may be defined as hundred million pedestrian or bicycle miles traveled on a 
shared facility, including parking lots, driveways, alleys, and parking garages, as well as 
other facilities where pedestrians and bicyclists are allowed to share the same space with 
motor vehicles. The proposed exposure metric is closest to the pedestrian volume 
crossing the street measure that has previously been explored (10), since both concentrate 
on pedestrians walking only on the roadway, and not on sidewalks, trails and other 
sheltered places.  In addition to including a bicycle component, the proposed metric adds 
the concept of distance traveled to obtain a more accurate estimate of individual exposure 
to a potentially hazardous environment.   
 
While the amount of pedestrian and bicyclist travel, regardless of location, is important 
for understanding the level of outdoor activity or mobility of a population, the present 
research was focused on the amount of walking/bicycling engaged in while at risk of 
being involved in a motor vehicle crash.  The pedestrian crash rate is dependent on 
having a quantity of exposure in the denominator that corresponds with the numerator.  It 
would not be appropriate to include pedestrian and bicyclist travel on non-shared 
facilities, because there is a negligible risk of being involved in a motor vehicle crash for 
that type of travel.  Any walking or bicycling engaged in while on a non-shared facility 
would ultimately be accounted for by means of before and after crash and exposure 
studies, if a trail, sidewalk, or other sheltered facility were being installed. 
 
FHWA successfully tested this proposed metric for methodological feasibility in the fall 
of 2006 in Washington, DC.  This early testing indicated the measure was a viable 
contender for a pedestrian and bicycle exposure metric.  However, these tests only 
employed one measurement site for each of seven unique types of pedestrian and bicycle 
facilities.  The present project measures multiple sites of each kind of facility, and 
combines the data from all sites into an overall estimate of pedestrian and bicycle 
exposure to the risk of a motor vehicle crash for the city of Washington, DC, for the 
calendar year 2007.  This estimate of annual exposure for a moderately large American 
city is regarded as the first step in demonstrating the scalability of the proposed metric for 
consideration at a national level. 
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3.2.3 Research Approach 
Measurements of pedestrian and bicycle volumes and travel distances were made in 
Washington, DC, during the summer and early fall of 2007, generally at a peak time of 
the year for tourist visits (13).  The data collection procedure was completely passive 
using personnel who observed pedestrian and bicyclist movements while standing on the 
sidewalk or while sitting in a parked vehicle. These observers counted the number of 
pedestrians and bicyclists who traveled in the street, or other motor-vehicle shared 
facility, during 15-minute intervals.  There was no interference with the flow of 
pedestrian, bicycle, or motorized traffic, and no personal contact or interviews were 
conducted with pedestrians, bicyclists, or drivers.  
 
The observers also estimated the length of crosswalks, roadways, driveways and parking 
lots, in most cases by means of known lane widths, car lengths and other indirect means.  
Sometimes more precise measurements were made with tape measures, distance wheels, 
or remote distance measuring equipment as a validation check for lane width estimates.  
For safety reasons, the observers always worked in pairs, and no direct observations were 
made between 10 PM and 6 AM.  All nighttime measurements were made using the 
District of Columbia Department of Transportation’s (DDOT) traffic cameras accessed 
via the Internet (14). 
 

3.2.4 Sampling Procedure 
Altogether, 122 locations were sampled throughout Washington, DC, resulting in a total 
of 364 unique continuous 15-minute counts.  Each of the 122 locations, with the 
exception of three, was observed at between one and four different times, usually during 
the same day.  Three locations were selected for observation between 18 and 38 times 
over several days of the week to investigate temporal variation.  The three locations 
selected for temporal variation were signalized intersections representing two different 
Land Use areas (residential and commercial) and three different Wards.  Observations of 
pedestrian/bicycle volumes and distances were sampled for the following 8 types of 
facilities: 
 

1. Signalized intersections (39 locations) 
2. Stop-controlled (all-way) intersections (27 locations) 
3. Partially stop-controlled intersections (18 locations) 
4. Mid-block locations with no crosswalks (10 locations) 
5. Blocks with a large number of driveways and/or alleys (8 locations) 
6. Parking lots and parking garages (10 locations) 
7. Locations with playing, darting, dashing, auto repair, etc. in the roadway (8 

locations) 
8. School crossing areas, sampled when school was in session (2 locations). 

 
A stratified random sampling procedure was devised so that an adequate spatial and 
temporal distribution of measurements was obtained.  The 6 sampling variables used in 
the procedure are listed below, along with the number of categories per variable, and the 
range and mean for the number of observation locations per category: 
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1. Hour of Day, 24 categories: Range = 1-27 locations, Mean = 12.33 
2. Time Period, 7 categories: Range = 13-20 locations, Mean = 16.72 
3. Day of Week, 7 categories: Range = 9-25 locations, Mean = 17 
4. Land Use Type, 7 categories (Low Density Residential; Medium Density 

Residential; High Density Residential; Public/Open Space; Federal/Local/Mixed 
Use/Public-Institutional; Industrial; Commercial): Range = 1-44 locations, Mean 
= 17.43 

5. Political District (DC Ward), 8 categories:  Range = 13-19 locations, Mean = 
15.25 

6. Zoning Type, 7 categories: Range = 1-44 locations, Mean = 17.43. 
 
As can be seen in the above list of sampling variables, Time Period, Day of Week, and 
Political District (apportioned for roughly equal population) all had relatively uniform 
sampling distributions.  Hour of Day had substantially fewer locations sampled at night, 
since there are fewer pedestrians present at night, and the security of the observers was an 
issue.  Land Use Type and Zoning Type also had substantially fewer locations in 
Industrial and Manufacturing Areas, since Washington, DC, is primarily not an industrial 
city. 
 

3.3 METHOD 

3.3.1 Materials and Equipment 
Observers traveled to designated measurement locations with the exception of the counts 
taken via traffic camera on the Internet.  Each observer used a clipboard to hold a site-
specific data collection form for each 15-minute count.  Three mechanical counters were 
attached to the top of the clipboard.  At most locations these were employed to count: #1 
pedestrians in the crosswalk (one foot in the crosswalk for at least half of the crossing 
distance), #2 pedestrians not in the crosswalk (jaywalkers) and #3 bicycles traversing the 
data collection zone.  An average diagonal crossing distance was applied to certain 
jaywalking counts.  The observers also used a stopwatch to record time. 
 
Several data sources were required to estimate the total population of each type of facility 
in the city.  DDOT provided a list of the locations of all signalized intersections in the 
city (15).   Satellite imaging software was used to measure and confirm the width of 
roads, and to provide estimated counts of all stop-controlled intersections, partially-
controlled intersections, parking lots, and driveways in the city.  Geographic Information 
System (GIS) software was used to estimate the total number of alleys, and the Yellow 
Pages telephone book was used to estimate the total number of parking garages.  A 
standard statistical software package was used to perform general linear statistical 
modeling on the signalized intersection data. 
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3.3.2 Data Collection Procedures 
Observers recorded the address, date, shift time, day of the week, weather, and observers’ 
names on a form, and drew a sketch of the data collection location.  Pedestrian and 
bicycle volumes were recorded on the mechanical counters.  Crossing distances for all 
roadways, intersection legs, driveways, etc. were also recorded.  Facility-specific data 
collection procedures were as follows:  
 

3.3.2.1 Signalized and Stop-Controlled (All-Way) Intersections 
One observer stood at one corner of the intersection, and the second observer stood at the 
diagonally opposite corner.  Both observers faced the center of the intersection and were 
responsible for both legs of the intersection (road and crosswalk) to their immediate left, 
creating two separate zones split diagonally down the middle of the intersection.  The 
range of observation extended to 50 ft (15.3 m) beyond the intersection box for each leg. 
 

3.3.2.2 Partially Stop-Controlled Intersections 
Data collection procedures for partially stop-controlled intersections (one-way and two-
way stops) were similar, with one exception.  Observers noted which roads were 
controlled by stop signs and which roads were uncontrolled.  Additionally, observers 
noted if there were differences in road size and vehicular use for the intersecting roads.  
Observers classified the roads as primary, secondary, or equal based on judgments of size 
and vehicular use. 
 

3.3.2.3 Mid-Block Locations with No Crosswalk 
At an approximate mid-block location, one observer stood on one side of the road and the 
other observer stood on the opposite side.  Both observers faced the center of the road 
and covered the area from their immediate left to the nearest intersection.  Pedestrians 
and bicyclists entering the roadway from the mid point location were counted by the 
observer whose side they entered, regardless of where they exited the roadway.  The 
observers counted all pedestrians crossing directly across the road at various angles, and 
all bicyclists riding in the road in the data collection zone.  Appropriate average diagonal 
crossing distance estimates were applied to the pedestrian crossing counts. 
 

3.3.2.4 Blocks with Driveways/Alleys 
The observer locations and coverage areas were similar to the Mid-Block locations 
described above.  Driveways widths were measured.  Alternatively, a representative 
sample was taken, if there were numerous driveways at a given location, and the average 
width was recorded. The observers counted all pedestrians crossing the driveway(s) along 
the road or along the sidewalk, all pedestrians crossing the road in the assigned zone, and 
all bicyclists riding in the road or on the sidewalk in the assigned zone. 
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3.3.2.5 Parking Lots / Parking Garages 
In parking lots and parking garages, one observer could only monitor 2-3 driving lanes at 
one time, thus the parking lots were split into two quadrants if there were between 3-6 
driving lanes.  When there were more than 6 driving lanes, the parking lot was split into 4 
quadrants.  The quadrant measurements were split into three zones.  The average walking 
distance for each zone was assigned to each pedestrian traversing that zone.  Parking lots 
and parking garages were generally the largest facility type observed, and presented the 
most measurement challenges. Therefore, bicycles were not counted at this facility type.   
 

3.3.2.6 Playing / Working In Roadway 
The observer locations and coverage areas were similar to the Driveways/Alleys 
locations described above.  As pedestrians/bicyclists entered a shared facility (street, 
driveway, alley, or other shared facility) their time of entry was recorded.  As the 
pedestrians/bicyclists completed their activity in the facility, the observers recorded the 
distance traveled, the number of pedestrians/bicyclists in the group, the type of activity, 
and their exit time.  At the end of the 15-minute data collection period, for each activity 
recorded, the observers calculated the total time by subtracting the entry times from the 
exit times. 
 

3.3.2.7 School Crossing Areas 
Data were collected at one elementary school and one high school during the standard 
school day between the hours of 8AM and 3PM.  In this case the observers were 
concerned only with the roads adjacent to the block on which the school was situated.   
The observers measured or estimated the width and length of all roads adjacent to the 
schools, as well as of any school entrance/exit driveways.  The mechanical counters were 
used in a manner appropriate for each particular intersection in the vicinity of the school. 
 

3.3.3 Data Analysis Procedures 
Data from the 15-minute counts were multiplied to estimate hourly counts.  Data were 
multiplied by two if there were two 15-minute counts and by 4 if there was one 15-
minute count.  When empirical data were not available, they were estimated using an 
expansion technique based on the temporal distribution of the entire data set for all 
locations observed (16).  In this process the data set was first collapsed across all 
measurement locations and facility types to develop hourly adjustment factors.  In the 
case of pedestrians, these hourly adjustment factors are shown in Figure 3-1, both for the 
present Washington, DC, data and for data derived from several American cities by 
Zegeer et al. (16).  The 21st hour of the DC adjustment factor curve was estimated due to 
a lack of data.  The 20th and 22nd hours were averaged, and the result was used to 
represent an average hourly total for the 21st hour of the day. 
 
A similar set of hourly adjustment factors was computed for the DC bicycle counts, only 
these data were more variable.  The Washington, DC, adjustment factors were then 
employed to estimate data for the missing hours at each location.  All of the hourly data 
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were subsequently summed over the 24-hour period to obtain an estimate of daily 
pedestrian and bicycle volume at each location.  Walking/riding distances were obtained 
from the empirical data collected at the location.  The average walking or riding distance 
was multiplied by each estimated hourly count, and then summed over 24 hours to obtain 
a daily distance estimate at each location.  However, for bicycle exposure, the bicycle 
volumes for intersections and mid-block locations were multiplied by an average city 
block length of 500 feet (153 m), since bicyclists primarily ride the entire length of the 
block. 
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Figure 3-1  Adjustment Factor (Percent) as a Function of Hour of Day. 

 
Within a given facility type, for example signalized intersections, the daily volume and 
distance estimates for each location were converted to logarithms and averaged over the 
number of facilities in the sample, in this case 39 locations.  A logarithmic transform was 
applied to account for the skewed nature of the underlying volume and distance 
measurement distributions, approaching more closely a Poisson than a Gaussian form. 
The resulting geometric mean daily volume and distance calculations were taken as the 
best parameter estimates to characterize the daily activity at a typical signalized 
intersection in the city.  To obtain the daily volume and distance for all signalized 
intersections, the geometric mean daily volume and distance estimates for a typical 
signalized intersection were multiplied by the total number of signalized intersections in 
the city.  A similar process was used for the other types of facilities, except methods 
varied for determining the total population of that facility type.  The annual volume and 
distance totals from all eight facility types were summed to obtain the estimated 
pedestrian and bicycle exposure for the city of Washington, DC, for the calendar year 
2007.  Facility-specific data analysis procedures were as follows: 
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3.3.3.1 Signalized Intersections 
Data were collected at 39 signalized intersections. According to the DDOT, as of 
February 2008, there were 1,581 signalized intersections in Washington, DC (15).   
 

3.3.3.2 Stop-Controlled (All-Way) Intersections 
Data were collected at 27 all-way stop-controlled intersections.  Satellite images were 
employed to determine the number of stop-controlled intersections.  First, satellite images 
were used to obtain the total number of intersections of all types in Washington, DC.  An 
estimate of the number of partially-controlled intersections was made (see section below).  
The number of signalized (1,581) and partially-controlled intersections (926) were 
subtracted from the total number of intersections, and the balance represented the number 
of stop-controlled intersections (3,654). 
 

3.3.3.3 Partially Stop-Controlled Intersections 
Data were collected at 18 partially stop-controlled intersections.  Satellite images were 
used to determine the number partially stop-controlled intersections that exist in 
Washington, DC.  Intersections with one road with no stop bars and one road with stop 
bars were counted as partially stop-controlled intersections.  By this method the total 
number of partially-controlled intersections was determined to be approximately 926. 
 

3.3.3.4 Mid-Block Locations with No Crosswalk 
Data were collected at 10 sites at mid-block locations with no marked crosswalks.  Mid-
block locations were segments of road uninterrupted by an intersection.  The number of 
mid-block locations in the city was estimated using satellite images.  It was assumed that 
each intersection had four legs (road sections), with the exception of the intersections on 
the border of the city.  The ratio of unique road sections to intersections in a standard grid 
system is 1.5-to-1.  The total number of intersections in the city was estimated using 
satellite images, and multiplied by 1.5 to obtain the total number of mid-block with no 
crosswalk locations (9,242). 
 

3.3.3.5 Blocks with Driveways/Alleys 
Data were collected at 8 sites that had at least one driveway or alley that intersected the 
sidewalk and the road.  Satellite images were used to estimate the total number of 
driveways (936) and alleys (960) in the city. 
 

3.3.3.6 Parking Lots / Parking Garages 
Data were collected at 8 sites that consisted of specialized parking facilities (lots and 
garages) where pedestrians and vehicles share the environment.  Many parking facilities 
are closed during the late night and early morning hours.  Consequently, for this facility 
type, the calculation of daily estimates was restricted to the hours between 6AM and 
9PM, for a total of 15 hours.  Satellite images and the Yellow Pages telephone book were 
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employed to obtain population estimates of the total number of parking lots (904) and 
parking garages (242), respectively. 
 

3.3.3.7 Playing / Working In Roadway 
Data were collected at 8 sites in typically residential areas. There are on average 13 
daylight hours in any given day of the year in Washington, DC (17), including 
approximately 30 minutes prior to sunrise and 30 minutes after sunset.  Thus data were 
collected between the hours of 6AM and 7PM, when pedestrians and bicyclists might be 
found playing, working, riding or spending extended periods of time in a shared 
environment with motor vehicles.  A 13-hour adjustment factor was developed and 
applied to the data from each location.  A DC Government Land Use Map was used to 
estimate the percentage of residential land use for each Ward.  Each Ward’s percentage 
of residential land use was multiplied by the number of mid-block sections (as previously 
described) to obtain the number of potential play / work in roadway locations.  Ward 
subtotals were summed to obtain the total number of potential locations (6,464). 
 

3.3.3.8 School Crossing Areas 
An inventory of all K-12 schools in the city was obtained from the DC Public School 
System and from observing satellite images.  Each school was classified as an 
elementary, middle, or high school.  A sample of schools was viewed via satellite images 
to determine their block structure, and categorized either as being in a half-block or 
whole-block environment.  Based on the sample percentages, approximately 243 schools 
occupy a half block, and 162 schools occupy a whole block.  Pedestrian and bicycle 
volumes and distances from the two schools were multiplied by the number of schools in 
each respective category (half block or whole block) to obtain the daily estimate for all 
schools in the city.  These daily estimates were multiplied by 180 days to account for the 
number of schools days in a calendar year.  No peak estimates were made since the 
typical school day was the same regardless of time of year. 
 

3.3.4 Linear Modeling 
The above data analysis procedures were based upon aggregating and summing empirical 
data on pedestrian and bicycle exposure to generalize from isolated samples of a few 
locations at a few times during a certain day to an estimate of the exposure for all 
locations for a calendar year.  This empirical summation technique employed only one of 
the 6 sampling variables (Hour of Day) to refine the estimating procedure.  This 
technique also employed one extrapolation variable, the seasonal correction factor, which 
was not a part of the empirical data set collected by the observers, because the correction 
factor was estimated from the visitor’s bureau statistics. 
 
To investigate the possible effect of some of the other sampling variables on pedestrian 
and bicycle volumes and distances, general linear statistical modeling methods were 
employed on a subset of the intersection data.  The modeling followed a technique 
similar to the one used by Qin and Ivan (10).  All 6 of the sampling variables were 
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considered, along with one additional variable, Week Category (two categories: weekday, 
weekend).  Models were run for pedestrian data only, and separate models were run for 
each of the three different types of intersections. 
 

3.4 RESULTS 

3.4.1 Pedestrian Exposure 
For the city of Washington, DC, for the calendar year 2007, Table 3-1 shows the 
derivation of the annual pedestrian volumes and travel distances estimated for each type 
of facility shared with motor vehicles.  Column 1 gives the name of the facility type, with 
the sample size in parentheses.  Column 2 gives the approximate population of that 
facility type in the city.  The estimated mean daily pedestrian volumes and distances for a 
typical facility of the given type are shown in Columns 3 through 6.  The arithmetic 
means are given in bold numerals in Columns 3 and 4, with the upper and lower bounds 
for one standard error (alpha = 0.05) shown above and below the mean.  Since the 
distribution of pedestrian volumes and distances was not Gaussian, but closer to Poisson, 
a logarithmic transform was applied to the underlying daily mean values. This 
transformation made the distribution of daily means much closer to normal.  Thus the 
geometric means are given in bold numerals in Columns 5 and 6, with the upper and 
lower bounds equivalent to one standard error shown above and below the mean, as an 
indication of variability.   
 
As expected, the upper and lower variability bounds for the geometric mean were 
asymmetric. Likewise, the geometric mean was lower than the arithmetic mean, since the 
arithmetic mean tended to overestimate the central tendency of the data due to the 
positive skew of the underlying measurement distribution.  The geometric mean was also 
generally much closer to the median than the arithmetic mean.  Thus the geometric mean 
was used to characterize the daily pedestrian volumes and distances for each facility type.  
These geometric means (Columns 5 and  6) were aggregated and summed across 
locations, days and seasons as described in the Method Section to obtain the Annual 
Volume and Distance estimates shown in Columns 7 and 8.  The upper and lower 
variability estimates in Columns 7 and 8 were aggregated and summed in the same way 
as their corresponding means.  The relatively high variability observed in the data was the 
result of the small sample sizes employed in the present study, as is readily apparent in a 
comparison of the n in Column 1 with the corresponding population in Column 2.  As can 
be seen at the bottom of Column 8, the final result of the present research effort was an 
estimated annual mean pedestrian exposure of 0.82 hundred million pedestrian miles 
traveled (on a facility shared with motor vehicles) for the entire city of Washington, DC, 
for the calendar year 2007.   
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Table 3-1  Estimated Pedestrian Exposure for Washington, DC, 2007. 
Arithmetic Mean Geometric Mean 

Facility Type    
(n) 

Number 
of 

Facilities Volume Distance 
(feet) Volume Distance 

(feet) 

Annual 
Pedestrian 

Volume  
(millions) 

Annual Pedestrian 
Distance      

(millions of miles) 

6,799 371,522 3,005 160,726 1,717 17.4 
5,603 304,512 2,403 127,552 1,373 13.8 

Signalized 
Intersection 
(39) 

1,581 
4,407 237,502 1,921 101,226 1,098 10.96 
844 33,313 537 20,695 709.6 5.2 
722 28,128 431 16,627 569.1 4.2 

Stop-Controlled  
(All-Way) 
Intersection 
(27) 

3,654 
600 22,943 346 13,358 456.4 3.34 

1,158 47,649 634 25,017 212.1 1.6 
916 37,102 471 18,518 157.6 1.2 

Partially-
Controlled 
Intersection 
(18) 

926 
673 26,555 350 13,707 117.1 0.87 

1,935 68,184 916 41,153 3,058 26.0 
1,274 49,762 641 28,410 2,142 18.0 

Mid-block 
Location with 
No Crosswalk 
(10) 

9,242 
612 31,340 449 19,613 1,500 12.41 
213 2,129 52 516 35.4 0.0670 
126 1,257 26 257 17.6 0.0334 Driveway/Alley 

(8) 1,896 
38 384 13 128 8.79 0.0167 

9,194 499,077 8,388 430,019 3,475 33.7 
7,960 419,373 6,836 340,176 2,832 26.7 

Parking Lot / 
Parking Garage 
(10) 

1,146 
6,725 339,669 5,572 269,104 2,308 21.11 
661 99,060 501 57,912 1,170 25.6 
517 68,747 337 38,720 787 17.1 Play/Work in 

Roadway (8) 6,464 
373 38,435 227 25,889 530 11.46 

4,192 176,248 4,192 176,248 305.6 2.43 
3,038 118,228 2,810 103,012 204.9 1.42 

School 
Crossing Area 
(2) 

405 
1,884 60,208 1,884 60,208 137.3 0.83 

     Total 8,084 82.4 
 
Initially, this estimate of annual pedestrian exposure may seem somewhat higher than 
expected.  For example, the 2006 estimate for annual motor vehicle traffic exposure in 
Washington, DC, was only 36.2 hundred million vehicle miles traveled (VMT) for all 
roadway functional classes, a factor of only about 44 times greater.  However, in a large 
city, although pedestrians do not travel as far as motor vehicles, in certain areas of the 
city, the density of pedestrians far outweighs the density of motor vehicles.  Examination 
of Table 1 also reveals that four of the facility types contributed most to the overall 
pedestrian exposure (between 14 and 27 million miles traveled each).  These were 
Parking Lots and Parking Garages, Mid-Block Locations, Play/Work in Roadway, and 
Signalized Intersections.  The Driveway/Alley facility type contributed the least to 
overall pedestrian exposure in the city. 
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Qin and Ivan (10) collected daily pedestrian volumes at selected sites in rural Connecticut 
using a similar procedure, which also counted only pedestrian road crossings.  Although 
their data were from rural regions, 10 out of the 32 sites sampled were classified as 
Downtown Areas, and 18 out of the 32 sites represented signalized intersections.  Their 
weekday daily pedestrian volumes for a single site ranged from a minimum of 19 to a 
maximum of 2,788.  In the present effort, the geometric mean daily pedestrian volumes 
for a typical site of a particular facility type ranged from 26 to 2,403.  This 
correspondence may be regarded as a partial validation of the proposed methodology. 
 

3.4.2 Bicycle Exposure 
For the city of Washington, DC, for the calendar year 2007, Table 3-2 shows the 
derivation of the annual bicycle volumes and travel distances estimated for each type of 
facility shared with motor vehicles.  Table 2 was constructed in the same manner as Table 
1, with one exception.  In the aggregation and summation process, no seasonal correction 
factor was used in the bicycle exposure estimates, because seasonal pattern data for 
bicycles in Washington, DC, were not presently available to justify and develop such a 
correction.  It is likely that fewer bicycle trips are made during days with cold or 
inclement weather, and therefore the bicycle exposure estimates presented are probably 
somewhat overestimated. 
 
As can be seen at the bottom of Column 8, in the case of bicycles, the final result was an 
estimated annual mean bicycle exposure of 0.37 hundred million bicycle miles traveled 
(on a facility shared with motor vehicles) for the entire city of Washington, DC, for the 
calendar year 2007.  This is a little less than half of the annual pedestrian exposure.  The 
grand total does not include the totals for Mid-Block Locations, because they were 
accounted for in the three types of intersection locations.  However, the Mid-Block totals 
are given in the Table as an example of empirically-based estimates for that type of 
facility.  As was the case for pedestrian exposure, the relatively high variability observed 
in the data was the result of the small sample sizes employed in the present study.  The 
biggest contributor to annual bicycle exposure was the category of Signalized 
Intersection (17.5 million miles traveled).  In certain ways, this major contribution is an 
artifact of the estimation procedure, which concentrated on bicycle counts from 
intersections, since more sites of this type were sampled for observations.  In fact, most 
of the actual exposure occurred at Mid-Block Locations (37.3 million miles traveled), but 
this estimate was excluded from the total, as explained above.  If Mid-block Locations 
had served as the basis for the calculations, instead of intersections, the estimated annual 
bicycle exposure would have been 0.40 hundred million miles traveled, less than a 10 
percent discrepancy. 
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Table 3-2  Estimated Bicycle Exposure for Washington, DC, 2007. 

Arithmetic Mean Geometric Mean 
Facility Type    

(n) 

Number 
of 

Facilities Volume Distance 
(feet) Volume Distance 

(feet) 

Annual 
Bicycle 
Volume  

(millions) 

Annual Bicycle 
Distance      

(millions of miles) 

478 238,863 363 181,280 209 19.8 
424 211,771 319 159,694 184 17.5 

Signalized 
Intersection 
(39) 

1,581 
369 184,680 281 140,678 162 15.38 
253 126,528 116 58,168 155 14.7 
182 90,976 99 49,337 132 12.5 

Stop-Controlled  
(All-Way) 
Intersection 
(27) 

3,654 
111 55,425 84 41,847 112 10.57 
273 136,362 186 93,082 62.9 6.0 
222 111,220 151 75,679 51.2 4.8 

Partially-
Controlled 
Intersection 
(18) 

926 
172 86,079 123 61,530 41.6 3.94 
279 99,869 210 76,734 708 49.0 
220 79,752 161 58,453 544 37.3 

Mid-block 
Location with 
No Crosswalk 
(10) 

9,242 
161 59,634 124 44,527 417 28.45 
73 727 66 664 45.97 0.0871 
62 616 53 528 36.6 0.0692 Driveway/Alley 

(8) 1,896 
51 506 42 420 29.1 0.0550 

145 7,242 109 5,431 256 2.4 
110 5,501 85 4,231 200 1.9 Play/Work in 

Roadway (8) 6,464 
75 3,760 66 3,296 156 1.47 

748 123,028 748 123,028 54.5 1.70 
392 64,764 164 28,279 11.96 0.39 

School 
Crossing Area 
(2) 

405 
36 6,500 36 6,500 2.6 0.09 

     Total 615 37.2 
 

3.4.3 Linear Modeling 
In order to investigate the possible effect of some of the sampling variables, general 
linear statistical modeling was employed on the pedestrian data for signalized 
intersections.  The modeling followed a technique similar to the one used by Qin and 
Ivan (10).  The 15-minute pedestrian counts (mean = 95.63, median = 16.00) served as 
the dependent variable.  Independent variables were:  (1) Land Use Group (LUG: 
commercial, residential, park open space [POS], federal, etc.); (2) Hour of Day (HOUR) 
or Time Period (PER (seven time-of-day categories:  morning, mid-morning, noon, 
afternoon, early evening, late evening and overnight)), and (3) Day of the Week (DOW) 
or “week category” (WKCAT: weekday and weekend).  The collected data contained 112 
complete observations for all variables. 
 
Forward selection and backward elimination techniques, using all independent variables 
and all possible two-way interaction terms, were used to determine the final model.  The 
pedestrian counts were not normally distributed, but instead followed a Poisson 
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distribution. Thus, linear modeling techniques requiring normality assumptions could not 
be used.  The use of generalized linear models to analyze non-linear count data has been 
well-documented and noted in other similar pedestrian studies (10).  In the present study 
a Poisson regression was used with a log linear model.  Significant terms (p<0.0001) in 
the model were:  PER, LUG, DOW and the two-way interaction of PER with LUG.  
Table 3-3 shows the main effect parameter estimates for 15-minute pedestrian counts at 
signalized intersections. 
 

Table 3-3  Main Effect Parameter Estimates for 15-Minute Pedestrian Counts 
Variable Category  Estimate Standard 

Error 
Intercept n/a 2.883 0.178 

Morning 1.905 0.196 
Mid-Morning 0.892 0.239 
Noon 0.819 0.19 
Afternoon 3.046 0.262 
Early Evening 1.085 0.218 
Late Evening 3.678 0.234 

PER 

Overnight 0 0 
Residential 0 0 
Commercial 2.506 0.181 
Federal -0.391 0.391 

LUG 

POS 1.387 0.308 
Monday -3.789 0.097 
Tuesday -1.193 0.096 
Wednesday 0 0 
Thursday -1.16 0.043 
Friday -1.497 0.043 
Saturday -3.102 0.194 

DOW 

Sunday -2.507 0.067 
 
To arrive at yearly counts, the above parameter estimates were substituted into the 
appropriate model equation (10).  For a given PER, the 15-minute predicted count was 
multiplied by the number of 15-minute intervals in that PER.  Next, this estimate was 
multiplied by the number of facility type examples in a given LUG.  Similarly, 
predictions for the remaining PER in a given DOW were computed.  This method was 
repeated for all other DOW and LUG categories.  Those computations were then summed 
to attain an estimated pedestrian count for one week at all signalized intersections.  From 
this weekly estimate, the yearly estimate was calculated by applying the seasonal 
correction factor adjusted for weekly periods.  The total number of miles traveled was 
estimated by multiplying the total number of pedestrians by the mean width of all the 
sampled signalized intersections (mean = 51.3 ft, sd = 11.5 ft, median = 50 ft; 15.6, 3.51 
and 15.3 m, respectively).  This distance was then converted to miles.  The result was an 
estimated pedestrian exposure for signalized intersections of 0.355 hundred million miles 
(hmm) of roadway traveled (sd = 0.0055 hmm).  This mean was about 2.6 times greater 
than the estimate derived from the scaling method.  Such a discrepancy is not completely 
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unexpected, given the small samples sizes and early stages of model development 
represented in the present study. 
 

3.5 DISCUSSION 
The present paper presents a new metric for measuring pedestrian and bicycle exposure 
to risk. The proposed metric is the distance traveled by pedestrians or bicyclists on a 
shared facility, in hundred million miles walked or biked.  The paper had two major 
goals: 1) to describe the methodology for realizing this new metric in practice, and 2) to 
employ this methodology to calculate the annual pedestrian and bicycle exposure for a 
relatively large urban environment in terms of the proposed metric. Both of these goals 
were accomplished.  First, the method for implementing the proposed exposure metric 
was described in considerable detail for the 8 pedestrian/vehicle and bicycle/vehicle 
shared facility types characteristic of the urban environment of Washington, DC.  Other 
cities may have different characteristic shared facility types which have not yet been 
explored.  Second, the methodology was used to calculate the annual pedestrian and 
bicycle exposure for Washington, DC, for the calendar year 2007.  The result was 0.82 
hundred million miles traveled for pedestrian exposure, and 0.37 hundred million miles 
traveled for bicyclist exposure.  To achieve this result a scaling technique was employed 
to generalize from mean daily pedestrian and bicycle volumes at a single example of a 
given facility to annual exposures for an entire city.  This feature allows the methodology 
to be used for daily and even hourly (as well as monthly and seasonal) exposure 
calculations for the purpose of effectively comparing before and after crash data in the 
evaluation of specific pedestrian and bicycle safety countermeasures.  This feature also 
allows the methodology to be used for comparisons across different locations in a given 
city or area, to track changes in the spatial patterns of pedestrian and bicycle activity.  In 
addition, a linear regression model was tried as a possible approach to enhance the 
efficiency of estimating exposure.  
 
By using the estimated pedestrian and bicycle exposure as denominators, and pedestrian 
and bicycle crashes as numerators, the respective crash risks can be calculated.  The 
estimated crash risk for pedestrians in Washington, DC, for 2007 was 617 (crashes) / 0.82 
(hundred million miles traveled), or 752 crashes per hundred million miles traveled (13).  
The estimated crash risk for bicyclists in Washington, DC, for 2007 was 289 (crashes) / 
0.37 (hundred million miles traveled), or 781 crashes per hundred million miles traveled 
(13).  When first comparing the crashes by themselves, it would appear that pedestrians 
are at a higher risk of being in a motor-vehicle related crash compared to bicyclists.  
However, when exposure is taken into consideration, the crash risks are actually similar. 
 
Thus the proposed metric has the potential to eliminate one of the major obstacles in the 
pedestrian and bicycle safety field, the lack of adequate exposure data (1).  In its general 
form the proposed metric can handle both pedestrians/bicyclists crossing the roadway as 
well as traveling on and along the roadway.  The metric captures the concept of sharing 
the roadway (or other facility) with motorized traffic.  The distance component makes it 
sensitive to the amount of individual exposure to a potentially hazardous environment on 
a single crossing or travel segment.  The metric can also be easily converted to hundred 
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million skater miles or scooter (or other mode) miles traveled (on a shared facility) for 
special applications.  In its most general form, the proposed metric becomes hundred 
million non-motor vehicle miles of shared transportation facility traveled.  Thus parking 
lots, parking garages, driveways and alleys can also be accommodated and aggregated, 
along with intersections and mid-block locations.   Special variations of the methodology 
have been elaborated to handle the additional contribution of school areas and playing, 
working, darting, and dashing behaviors in the roadway. Thus the proposed metric shows 
promise of being able to serve as the basis for a universal measure of pedestrian and 
bicycle exposure. 
 
These promising features of the proposed exposure metric do not imply that no more 
work need be done.  As mentioned before, the small temporal and spatial sample sizes 
employed in the present study resulted in relatively large variability.  More research is 
needed to estimate and test appropriate sampling variables and sample sizes.  However, it 
is envisioned that yearly counts would not be required at all locations.  Similar to the 
counting procedure used to estimate VMT, the pedestrian and bicyclist counts would take 
place on a rotating basis so that many locations would be covered, but over a 3-year or 5-
year cycle.  The length of this cycle would depend upon the rapidity of anticipated 
changes in exposure estimates over time.  Improved sampling procedures need to be 
developed to enhance usefulness to both the empirical aggregation approach and to the 
linear regression modeling approach.  Moreover, for this metric to be effective on a 
national scale, tests need to be conducted in different cities of differing sizes and 
geographical locations, as well as in small towns and rural areas.  New variations of the 
measurement methodology may need to be developed to accommodate these different 
environments.  In all of these efforts, scalability needs to be maintained so that the metric 
can serve the practicing engineer determining the effectiveness of a given single 
pedestrian/bicycle safety countermeasure at a given location in a given city or town, as 
well as planners and policy makers concerned with city-wide, regional or national trends.  
In addition, increased involvement from the local area and community needs to be 
enlisted to evaluate the potential for propagating the metric on a self-sustaining basis.  At 
the same time, the technical details of creating and fielding a national database for 
pedestrian and bicycle exposure need to be elaborated, and funding and maintenance 
issues need to be explored.  If these steps are taken, the potential return on investment 
could be significant.  The widespread implementation of such a metric for pedestrian and 
bicycle exposure could have far-reaching implications for reducing pedestrian and 
bicycle fatalities and injuries, since it could form the basis for selecting optimal 
engineering safety countermeasures on a broad scale, and allocating limited fiscal 
resources in a cost-effective manner. 
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CHAPTER FOUR: PEDESTRIAN CRASH PREDICTION MODELS 
Jason F. Kennedy, Hesham A. Rakha, and Patches Johnson Inge 
 

ABSTRACT 
 
Crash prediction models have been used by the highway safety community to predict 
vehicle-to-vehicle crashes over the past several decades using Generalized Linear Models 
(GLMs) because they can model non-linear discrete data such as motor vehicle crashes.  
Poisson, Zero-inflated Poisson (ZIP), and the Negative Binomial models are commonly 
used to model crashes.  However, until recently, very little research has been conducted 
on crash prediction modeling for pedestrian-motor vehicle crashes.  This paper considers 
several candidate crash prediction models using thirteen explanatory variables and three 
regression functions.  Data from Washington, DC are used in the development of a 
pedestrian crash prediction model for signalized intersections.  The results of the crash 
prediction analyses indicate the pedestrian-vehicle crash model is similar to models 
developed in earlier research efforts.  Furthermore, two pedestrian volume estimation 
methods were compared demonstrating that a scaling technique produces volume 
estimates highly correlated with observed pedestrian volumes.  The ratio of crashes and 
exposure estimates gives a crash rate estimation that is useful for traffic engineers and 
transportation policy makers to evaluate pedestrian safety at signalized intersections in an 
urban environment. 
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4.1 INTRODUCTION 
In order to evaluate the safety impacts associated with various traffic operational projects 
it is essential that a normalized crash rate be computed. The computation of a crash rate 
requires estimating some normalized measure of pedestrian-vehicle exposure. It is 
common to use pedestrian-miles traveled as a measure of exposure, however this assumes 
that the crashes are linearly proportional to the pedestrian volume, which in most cases is 
not true. 
 
The research presented in this paper develops a pedestrian-vehicle crash prediction model 
that accounts for the pedestrian-vehicle exposure.  The database used to develop the 
model is initially described in terms of the data elements and how the data were collected 
and obtained.  Subsequently, the crash prediction model development is discussed 
followed by a description of the crash prediction results.  Additionally, the observed 
pedestrian volumes are compared to the two pedestrian volume-estimating method 
estimates described in Molino et al (2008).  The results from this task (predicted 
pedestrian volumes) are used in the crash prediction model to obtain predicted crashes 
and then compared to the predicted crashes obtained with the observed pedestrian 
volumes. Finally, the study conclusions are presented. 
 
4.2 SIGNALIZED INTERSECTION DATABASE 
Before the analysis could begin, the data had to be collected, reduced, and organized.  A 
database of 200 signalized intersections from Washington, DC was developed.  The 
methodology of how and where the data were collected and obtained is described below. 
 
4.2.1 Exposure Data 
The exposure data used in the model development were pedestrian and vehicle volumes 
and crosswalk length (pedestrian travel distance) at each intersection.  Pedestrian and 
vehicle volumes were obtained from the District of Columbia’s Department of 
Transportation (DDOT).  Crosswalk length (feet) for each leg was estimated using 
Google Earth™ satellite imagery. 
 
DDOT conducts pedestrian counts and vehicle-turning movement counts at 
approximately 100 intersections each year (Schneider et al, 2005).  DDOT has over 29 
years of counts for signalized and stop-controlled intersections throughout the city of 
Washington, DC.  The 200 signalized intersections that were used in the research were 
chosen from between 2003 and 2006, to coincide with the pedestrian crash data 
(described in a subsequent section) that was provided by DDOT.  A larger database 
would have been preferred to further reduce variability however, 200 locations were 
deemed acceptable given the limited availability of location-specific pedestrian crash 
data.  While previous research has used larger datasets the availability of pedestrian crash 
data limited the temporal range that could be considered and thus the database size. 
 
The two requirements each location had to meet for consideration was that it was a 
signalized intersection and the traffic and pedestrian volume data collection took place 
between 2003 and 2006.  The candidate intersections were then chosen based on the 
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available data provided by DDOT.  Each year’s DDOT’s intersection count inventory 
contained varying numbers of signalized intersections.  While an attempt was made to 
include an equal number of signalized intersections in the database per year (50) it was 
not possible. All of the signalized intersection counts were included from years that had 
less than 50 available candidates (years 2004 – 2006).  For 2003, the intersections that 
were included in the database were chosen at random because there were more than 50 
possible candidates.  In the event any intersection was included twice in the original 
selection process, the count from the later date was retained and the count with the earlier 
date was replaced with a new, unique intersection so as to have 200 unique intersections 
represented in the database.  Table 4-1 shows the number of intersections by year. 
 

Table 4-1.  Number of signalized intersections by year 
Year # of Intersections 
2003 72 
2004 37 
2005 44 
2006 47 

Total 200 
 
Pedestrian and vehicle counts were made by DDOT data collectors in teams of two or 
three, depending on the volume intensity of the intersection being observed.  The counts 
were taken in 15-minute intervals continuously over the course of a 10-hour day with an 
hour break for lunch.  Pedestrian counts were made for each crosswalk at every leg of the 
intersection regardless of direction of travel.  Vehicle counts were made for each leg of 
the intersection by turning movement.  Counts were taken with mechanical clicker 
boards.  Following each 15-minute data collection interval, the pedestrian and vehicle 
counts were recorded on a paper data collection form (see Figure 4-1). 
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Figure 4-1.  DDOT intersection count data collection form. 
 
DDOT did not collect crosswalk length data.  The crosswalk lengths were estimated 
using the Google Earth™ ruler tool.  Distances were measured in the middle of the 
crosswalk from curb to curb in feet.  Figure 4-2 shows a typical crosswalk length 
measurement using Google Earth™.  This figure is unaltered and used for illustrative 
purposes. 
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Figure 4-2.  Google Earth ruler tool used to estimate intersection crosswalk lengths.  

(This figure is unaltered and for illustrative purposes only.) 
 
The pedestrian and vehicle counts and crosswalk lengths for each leg were entered into 
an Excel® spreadsheet for all 200 signalized intersections included in the crash prediction 
model database. 
 
4.2.2 Crash Data 
The Metropolitan Police Department (MPD) is the lead agency responsible for 
investigating and documenting motor vehicle crashes, including those involving 
pedestrians, in the city of Washington, DC.  The MPD typically documents motor vehicle 
crashes using an Accident Report (PD-10).  DDOT receives these PD-10s and maintains 
the information as part of their highway and traffic safety statistics databases. 
 
The crash data used in the analysis were obtained from a pedestrian-motor vehicle crash 
database created and maintained by DDOT.  Figure 4-3 shows the frequency distribution 
of the crash data used in the analysis. 
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Pedestrian Crash Frequency Distribution at 200 Signalized Intersections in 
Washington, DC between 2003 and 2006
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Figure 4-3.  Frequency distribution of pedestrian crashes at signalized intersections. 
 
The total number of pedestrian-motor vehicle crashes between 2003 and 2006 (4-year 
counts), for each of the 200 signalized intersections were used as the response or 
dependent variable.  Table 4-2 gives the descriptive summary statistics for the pedestrian 
crash data.  The frequency distribution (Figure 4-3) and descriptive statistics (Table 4-2) 
provide strong evidence that the crash data do not follow a normal (Gaussian) 
distribution. 
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Table 4-2.  Descriptive statistics of signalized intersection pedestrian crash data 
Descriptive Statistics 

Mean 1.59
Standard Error 0.15
Median 1.00
Mode 0 
Standard Deviation 2.16
Sample Variance 4.66
Kurtosis 4.29
Skewness 2.04
Range 10 
Minimum 0 
Maximum 10 
Sum 318 
Count 200 
Confidence Level (95.0%) 0.30

 
4.2.3 Intersection Characteristics Data 
Supplemental data were collected on the characteristics of the 200 signalized 
intersections.  The supplemental data included intersection geometry, vehicular traffic 
directional flow (one-way or two-way), and number of legs.  All three of these data types 
were obtained through the use of Google Earth™ satellite imagery and maps and then 
categorized into two levels.  Table 4-3 shows the data type, level, and number of 
intersections per level. 
 

Table 4-3.  Number of intersections by data type and level 
Data Type Level # of Intersections 

90 degree 108 Geometry Not 90 degree 92 
Two-Way (all legs) 111 Vehicle Traffic Flow 
One-Way (at least one leg) 89 
3 or 4 legs 177 Legs 5 or 6 legs 23 

 
4.3 MODEL DEVELOPMENT 
This section describes the initial model that was used as the basis of the analysis as well 
as the other models investigated during the analysis.  The models investigated included 
various combinations of explanatory variables and regression functions to produce the 
best possible fit to the data. 
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4.3.1 Initial (Hypothesized) Model 
Since traffic crashes are compared to some type of exposure measure to establish crash 
rates, the following equation was used to derive the initial model (hypothesis) used in the 
analyses (Equation 1).  The hypothesized explanatory (exposure) variables are listed in 
the denominator. 
 
 

c
t

b
v
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p

p

LVV

C
CR =                                                                                                         (1) 

 
Where:    

CR = Crash Rate 
Cp  = Pedestrian Crashes 
Vp  = Pedestrian Volume 
Vv = Vehicle Volume 
Lt    = Total distance of intersection crosswalks for all legs 
a,b,c = exposure coefficients 

 
The SAS® 9.2 statistical package was used to conduct the regression analysis.  
Generalized Linear Models (GLMs) were developed using the GENMOD program within 
SAS®.  Equation 1 was reformulated into a linear form to be suitable for the statistical 
programming syntax.  Equation 2 is the initial model used in SAS®. 
 
ln ln ln ln lnp v tC a V b V c L C R= + + +                                                                 (2) 
 
The full model including other parameters can be cast as Equation 3. 
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Where Bi are coefficients of the various explanatory coefficients xi and E is the error 
term.  It should be noted the Vp

a Vv
b Lt

c accounts for the exposure while the Bixi are the 
various factors accounted for in the model. 
 
4.3.2 Regression Models 
This section provides a brief review of the mathematical formulas that are behind the 
regression models explored during the model development. 
 
4.3.2.1 Poisson Model 
The Poisson regression model, as the literature has noted, possesses statistical properties 
desirable for predicting traffic crashes.  Crash data are count data which, by nature, are 
non-negative, discrete, and have a variance that increases with the mean of the 
distribution (SAS, 2008).  The Poisson model uses a Poisson distribution function, which 
is defined in Equation 4 as: 
 
                                                                                                                                      (4) 
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where the parameter λ¸ is the mean value of the random variable Y, E(Y ) = λ.  This 
random variable takes on values as integers from zero to infinity.  Larger values of the 
mean parameter will produce greater random variable values. The Poisson distribution 
assumes that the mean equals the variance. 
 
4.3.2.2 Zero-Inflated Poisson (ZIP) Model 
The zero-inflated Poisson regression was developed to model count data with excess 
zeros.  The zero-inflated Poisson (ZIP) regression mixes two statistical processes by 
using a Logit model to determine if a count is from an “always-zero group” or a “not-
always-zero group” and a Poisson model to model the outcomes in the “not-always zero 
group” (SAS, 2008).  The probability density function of the ZIP model is shown in 
Equation 5. 
 
 
                                                                                                                                      (5) 
 
 
Pi is used to represent the additional probability of intersection i to have no crashes while 
1 - Pi is the probability that intersection follows the Poisson distribution (Qin et al, 2004). 
The probability that intersection i will have no crashes is represented by e-µi. 
 
4.3.2.3 Negative Binomial Model 
Data modeled with a Poisson distribution can sometimes be over dispersed (variance 
exceeds the mean).  When data are over dispersed, a Negative Binomial (NB) model may 
be more appropriate.  The Negative Binomial probability function, as shown in Equation 
6 takes the form: 
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   for y = 0, 1, 2,…                                        (6) 

 
where:  µ   = expected number of crashes 

 k   = dispersion parameter 
 y   = actual or observed number of crashes at an intersection during a period of    
         time 

 
As k approaches zero, the negative binomial regression yields the Poisson regression. 
 
 
4.3.3 Explanatory Variables 
Prior to developing the crash models, the variables were analyzed for possible 
collinearity.  The results indicate only a small handful of possible combinations (in bold) 
of two variables that produced correlation coefficients above .50 at a significance level of 
.05.  Table 4-4 shows the correlation matrix.  The explanatory variables that were used to  
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Table 4-4.  Correlation matrix of raw explanatory variables 

 
predict the dependent variable (four-year pedestrian crashes) in the models are described below in Table 4-5.  The table describes the 
variables, the reasoning why they were chosen, and the model hypothesis.  The explanatory variables related to pedestrian volumes 
and vehicular volumes are totals for the four-year period between 2003 and 2006.  The totals were derived by multiplying the 200 
individual daily pedestrian and vehicular volumes by 365 to get annual totals and then by 4 to get four-year totals.  It was assumed that 

  
  Vp Vv Lt Tf G Lg Rv Rrv Lv Rlv Minv Majv MiMaRv 

Correlation Coef. 1.0000             Vp 
p-value ---             
Correlation Coef. 0.1736 1.0000            Vv p-value 0.0140 ---            
Correlation Coef. 0.2052 0.5612 1.0000           Lt p-value 0.0036 <.0001 ---           
Correlation Coef. 0.0011 0.1833 0.1959 1.0000          Tf p-value 0.9874 0.0094 0.0054 ---          
Correlation Coef. 0.0009 0.1226 0.3658 0.1401 1.0000         G 
p-value 0.9896 0.0837 <.0001 0.0479 ---         
Correlation Coef. 0.0308 0.0710 0.2362 0.2449 0.2962 1.0000        Lg 
p-value 0.6649 0.3176 0.0008 0.0005 <.0001 ---        
Correlation Coef. 0.1737 0.4928 0.3966 0.1100 0.1787 0.2255 1.0000       Rv p-value 0.0139 <.0001 <.0001 0.1209 0.0113 0.0013 ---       
Correlation Coef. 0.0825 0.0716 0.0680 0.0026 0.2331 0.2590 0.7039 1.0000      Rrv p-value 0.2456 0.3137 0.3390 0.9712 0.0009 0.0002 <.0001 ---      
Correlation Coef. 0.0893 0.4765 0.3956 0.1839 0.1608 0.1682 0.6558 0.3173 1.0000     Lv p-value 0.2086 <.0001 <.0001 0.0091 0.0230 0.0173 <.0001 <.0001 ---     
Correlation Coef. 0.0609 0.0048 0.1620 0.1778 0.1969 0.1550 0.3963 0.4781 0.7550 1.0000    Rlv p-value 0.3916 0.9458 0.0219 0.0118 0.0052 0.0284 <.0001 <.0001 <.0001 ---    
Correlation Coef. 0.1171 0.5890 0.3377 0.1221 0.1051 0.1183 0.3221 0.0086 0.2596 0.0129 1.0000   Minv p-value 0.0986 <.0001 <.0001 0.0851 0.1387 0.0954 <.0001 0.9033 0.0002 0.8562 ---   
Correlation Coef. 0.0770 0.9306 0.4225 0.1660 0.1040 0.0248 0.3326 0.1988 0.3670 0.1043 0.3738 1.0000  Majv p-value 0.2783 <.0001 <.0001 0.0188 0.1427 0.7271 <.0001 0.0048 <.0001 0.1415 <.0001 ---  
Correlation Coef. 0.0814 0.0678 0.0248 0.0761 0.1756 0.1228 0.0561 0.0868 0.0151 0.0500 0.6311 0.2971 1.0000 MiMaRv 
p-value 0.2519 0.3400 0.7275 0.2843 0.0129 0.0832 0.4300 0.2216 0.8321 0.4824 <.0001 <.0001 --- 
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the individual counts were “average” daily pedestrian and vehicular volume therefore no adjustments (i.e. seasonal variation) were 
made to the estimate.  Tables 4-6 and 4-7 provide some basic descriptive statistics for each of the explanatory variables initially 
considered.  The statistics in Table 4-6 and Table 4-7 are based off of the raw data and natural logarithm of the raw data, respectively. 
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Table 4-5.  Description of explanatory variables 
Variable Description Reason for Consideration Model Hypothesis 

lnVp 

Natural logarithm of the total volume of 
pedestrians crossing the road at each 
intersection for 4 years. 

Pedestrian volumes are a primary exposure measure when 
considering crashes with vehicles. (Qin and Ivan, 2001; Lyon 
and Persaud, 2002) 

An increase in volume will result in some 
increase in crashes. 

lnVv 

Natural logarithm of the total volume of 
vehicles entering an intersection for 4 years 

Vehicular volumes are a primary exposure measure when 
considering crashes with pedestrians. (Qin et al, 2004; Zegeer et 
al, 2005) 

An increase in volume will result in some 
increase in crashes. 

lnLt 

Natural logarithm of the total length of all the 
crosswalks at the intersection. 

Distance exposed is typically used in vehicle exposure measures 
therefore pedestrian distance is a reasonable analogy. (Molino et 
al, 2008; Harwood et al, 2008) 

Larger distances will result in some 
increase in crashes. 

Tf 

The vehicular traffic flow on the intersection 
approaches.  This is a categorical variable that 
has two levels; 1.All 2-way traffic, 2. Not all 2-
way 

The vehicular traffic flow may have an influence on the 
pedestrian crashes and the volumes.  Pedestrians may or may 
not prefer to cross at intersections with one-way traffic when 
compared to two-way traffic. (Lea and Associates, 1978) 

One-way traffic flow will have fewer 
crashes than with two-way traffic. 

G 

Geometric shape of the intersection.  This is a 
categorical variable that has two levels; 1. 90-
degree 2. Not 90-degree 

The line of sight for both pedestrians and vehicles approaching 
an intersection could be affected by the intersection geometry, 
and have an impact on exposure and crashes. (Carter et al, 
2006) 

Non-90 degree intersections will have a 
higher number of crashes. 

Lg 
Number of intersection legs.  This is a 
categorical variable that has two levels; 1. 3 or 
4 legs, 2. 5+ legs 

The number of legs in which vehicles and pedestrians can 
interact may have an impact on crashes. (Harwood et al, 2008) 

Intersections with more legs will have a 
higher number of crashes. 

lnRv 
Natural logarithm of the total volume of right 
turning vehicles at the intersection for 4 years. 

As the number of right turning vehicles 
increases, crashes will increase. 

lnRrv 
Natural logarithm of the percentage of the total 
vehicle volume turning right at the intersection. 

Pedestrians who cross on green are potentially at risk from 
right-turning vehicles.  The total number of right-turning 
vehicles or the proportion of all vehicles that are right-turning 
were considered. (Leden, 2002) 

As the percentage of right turning vehicles 
increases, crashes will increase. 

lnLv 

Natural logarithm of the total volume of all left 
turning vehicles at the intersection for 4 years. 

As the number of left turning vehicles 
increases, crashes will increase. 

lnRlv 

Natural logarithm of the percentage of the total 
vehicle volume turning left at the intersection. 

Pedestrians who cross on green are potentially at risk from left-
turning vehicles.  Vehicles turning left during an unprotected 
move may not be aware of pedestrians crossing because they are 
watching on-coming vehicle traffic.  The total number of left-
turning vehicles or the proportion of all vehicles that are left-
turning were considered. (Lord, 1996; Lyon and Persaud, 2002) 

As the percentage of left turning vehicles 
increases, crashes will increase. 

lnMinv 
Natural logarithm of total vehicle volume on 
minor road entering the intersection for 4 years.

As volume on the minor road increases, 
crashes will increase. 

lnMajv 
Natural logarithm of total vehicle volume on 
major road entering the intersection for 4 years. 

As volume on the major road increases, 
crashes will increase. 

lnMiMaRv Ratio of minor road vehicle volume to major 
road vehicle volume entering the intersection. 

Intersections with roads that have substantially different vehicle 
volumes may have different crash patterns than those that are 
homogenous.  The minor and major road vehicle volumes are 
considered as well as the ratio of minor to major volumes.  
(Harwood et al, 2008) 

As the ratio increases, crashes will 
increase. 
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Table 4-6.  Descriptive statistics of explanatory variables using the raw data 

Variable Mean 
Standard 

Error Median 
Standard 
Deviation 

Sample 
Variance Kurtosis Skewness Minimum Maximum 

Confidence Level 
(95.0%) 

Vp 2960070 434297.52 1176030 6141894 3.772E+13 39.07 5.56 16060 56665520 981512 
Vv 40569115 1578900.16 38381940 22329020 4.986E+14 2.80 1.29 7859180 136076380 3568314 
Lt 211.230 4.14 202 58.509 3.423E+03 -0.50 0.33 78 370 9.350 
Tf 1.445 0.04 1 0.498 2.482E-01 -1.97 0.22 1 2 0.080 
G 1.460 0.04 1 0.500 2.496E-01 -1.99 0.16 1 2 0.080 
Lg 1.115 0.02 1 0.320 1.023E-01 3.95 2.43 1 2 0.051 
Rv 4274413 304464.03 2823640 4305772 1.854E+13 9.74 2.58 52560 28488980 688089 
Rrv 0.109 0.01 0 0.090 8.183E-03 4.03 1.85 0 1 0.014 
Lv 3671564 280313.51 2534560 3964232 1.572E+13 10.65 2.79 77380 27287400 633509 
Rlv 0.091 0.01 0 0.074 5.456E-03 3.69 1.78 0 0 0.012 

Minv 5706169 357561.03 4428180 5056677 2.557E+13 4.37 1.76 33580 30502320 808088 
Majv 17799305 751449.44 16492160 10627100 1.129E+14 3.57 1.40 3120020 71532700 1698276 

MiMaRv 0.368 0.02 0 0.267 7.136E-02 -0.47 0.65 0 1 0.043 
 

Table 4-7.  Descriptive statistics of explanatory variables using the natural logarithm of the raw data 

Variable Mean 
Standard 

Error Median 
Standard 
Deviation 

Sample 
Variance Kurtosis Skewness Minimum Maximum 

Confidence Level 
(95.0%) 

lnVp 13.89235 0.1045893 14 1.479115 2.1877824 0.27575 -0.23348 10 18 0.2363717 
lnVv 17.36864 0.0400213 17 0.565987 0.320341 -0.3293 -0.29239 16 19 0.0904481 
lnLt 5.313451 0.020233 5 0.286138 0.081875 -0.2292 -0.30357 4 6 0.0457266 
lnRv 14.8302 0.0709382 15 1.003218 1.006447 0.66831 -0.48697 11 17 0.1603204 
lnRrv -2.53845 0.0612179 -3 0.865752 0.7495261 2.69274 -0.80551 -7 -1 0.1383524 
lnLv 14.62743 0.0756196 15 1.069423 1.1436648 0.36587 -0.50008 11 17 0.1709003 
lnRlv -2.74122 0.0665194 -3 0.940727 0.8849673 2.81273 -1.18318 -6 -1 0.1503339 

lnMinv 15.07165 0.0853419 15 1.206916 1.4566472 2.4912 -1.35952 10 17 0.1928726 
lnMajv 16.51742 0.0437703 17 0.619005 0.3831674 -0.343 -0.31292 15 18 0.0989208 

lnMiMaRv -1.44577 0.0863958 -1 1.221821 1.492846 3.34989 -1.68064 -7 0 0.1952545 
 
4.3.4 Candidate Models 
Several models were tested using combinations of 13 variables and three regression model types.  A backward stepwise selection 
process was used to refine the models.  All of the variables of interest were included initially in the model.  Variables that were not 
significant at the .05 level were then removed one at a time.  Two final models were obtained for each regression model type.  The 
final candidate models are presented in Table 4-8. 
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Table 4-8.  Results of candidate models 

Regression coefficient   
 

  

Model 
Number 

Regression 
Model 
Type  Intercept a b c d e 

Predictor 
of Excess 

Zeros 

Over 
dispersion
parameter

K 
(standard 

error) R2
LR 

R2
K 

(based on over 
dispersion) 

Scaled 
Deviance / 

DF 

Scaled 
Pearson X2 / 

DF 
Variable ---- lnVp lnVv Tf Lg lnLt 

Coefficient -17.4 .34 .93 .43 -.42 -.55 
Standard Error  .04 .15 .13 .19 .29 

1 Poisson 

p-value < .0001 < .0001 < .0001 .0008 .03 .06 

N/A Scaled at 1 .18 N/A 1.84 1.96 

Variable ---- lnVp lnVv Tf   
Coefficient -17.8 .30 .79 .30   

Standard Error 2.04 .04 .12 .12   2 Poisson 

p-value < .0001 < .0001 < .0001 .009   

N/A Scaled at 1 .17 N/A 1.85 2.03 

Variable ---- lnVp lnMajv Tf Lg  lnMajv 
Coefficient -11.7 .34 .47 .44 -.50  -.93 

Standard Error 2.24 .04 .13 .14 .19  .37 3 ZIP 

p-value < .0001 < .0001 .0002 .001 .01  .03 

Scaled at 1 .13 N/A N/A 1.37 

Variable ---- lnVp Tf    lnRv 
Coefficient -3.86 .31 .36    -.61 

Standard Error .66 .04 .13    .19 
4 ZIP 

p-value < .0001 < .0001 .004    < .0001 

Scaled at 1 .10 N/A N/A 1.32 

Variable ---- lnVp lnLv Tf   
Coefficient -8.84 .36 .27 .39   

Standard Error 1.58 .06 .09 .18   5 Negative 
Binomial 

p-value < .0001 < .0001 .004 .03   

N/A .72 
(.16) .07 .39 1.04 .96 

Variable ---- lnVp lnVv    
Coefficient -20.01 .33 .90    

Standard Error 3.00 .06 .17    6 Negative 
Binomial 

p-value < .0001 < .0001 < .0001    

N/A .59 
(.14) .09 .50 1.04 1.11 

Note: Variables in italics were not significant at the .05-level. 
Note: R2

LR = 1 – Log LikelihoodFullModel / Log LikelhoodNullModel; R2
K = 1 - K / Kmax 

Note: 1-standard error in parentheses 
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4.3.6 Final Pedestrian Crash Prediction Model 
Table 4-9 shows the final pedestrian-vehicle crash prediction model at signalized 
intersections in Washington, DC.  Pedestrian volume and vehicle volume were the only 
two independent variables that made the final model.  Both variables were statistically 
significant at the 0.05 confidence level.  This model was chosen based on an evaluation 
of the coefficients, goodness-of-fit measures, and how these compared to previous 
research.  As indicated by the positive coefficients, the model indicates that pedestrian 
crashes increase with increasing pedestrian volume and total vehicle volume.  One 
standard error values are provided in parentheses.  Four goodness-of-fit measures are 
presented for the negative binomial model results.  Since there is no universal definition 
of R-squared in nonlinear models, having more than one measure of a pseudo R-square 
allows for flexibility for evaluating the results (Cameron et al, 2007). 
 

Table 4-9.  Final pedestrian crash prediction model 

  Regression coefficient  
 

  
  

Intercept lnVp lnVv 

Over 
dispersion 
parameter   Number 

of 
Sites a b c K R2

LR R2
K 

Scaled 
Deviance 

/ DF 

Scaled 
Pearson 
X2 / DF 

200 -20.00 
(3.00) 

.33 
(.06) 

0.90 
(.17) 

0.59 
(.14) 0.09 0.50 1.04 1.11 

         Note: 1-standard error in parentheses 
 
The goodness-of-fit measures, R2

LR and R2
K had values of .09 and .50, respectively.  The 

formulas for R2
LR and R2

K are indicated in Equations 6 and 7, respectively (Harwood, 
Zegeer, Lyon, et al, 2008; Vogt and Bared, 1998).  These values indicate that the model 
explains more variance in the pedestrian-vehicle crash frequency than an intercept-only 
model.  Additionally, the scaled deviance and scaled Pearson chi-square goodness-of-fit 
measures were 1.04 and 1.11, respectively.  Values near 1 indicate the model is a good fit 
to the data. 
 
R2

LR
   = 1 – Log LikelihoodFullModel / Log LikelihoodNullModel                                     (6) 

 
 
R2

K = 1 – K / KMAX                                                                                                    (7) 
 
 
where: K        = over dispersion parameter estimated in the negative binomial model 

KMAX  = over dispersion parameter estimated in the negative binomial model with  
  only a constant term and an over dispersion parameter 

 
The hypothesized model included a distance variable, Lt for the crosswalk length.  This 
variable was not statistically significant at the 0.05 confidence level in any of the 
variations of the models.  The reason for this lack of significance could be due to the fact 
that vehicle volumes and roadway width tend to be correlated.  A wider road is more 
likely to have higher vehicular volumes.  The correlation coefficient (r) between vehicle 
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volume and crosswalk length (~ roadway width) was 0.56 (p<.0001).  While not a 
substantially high linear relationship, it is moderately high and does provide some 
explanation for the results.  Vehicle volume, which did make it into the final model, 
could be accounting for crosswalk width indirectly.  It is also completely feasible that 
distance (length of crosswalk) is not a significant factor in pedestrian-motor vehicle 
crashes.  Duration in the road (time-based exposure) may be more significant, however 
that was not explored in this paper. 
 
The model coefficients demonstrate that the average crash rate (exponent of the intercept) 
is approximately 2.06 crashes/109 pedestrian-vehicles. The coefficients also demonstrate 
that vehicle crashes are more sensitive to increases in the vehicle volume in comparison 
to pedestrian volume (0.90 vs. 0.33). 
 

Negative Bionomial Regression Model
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Figure 4-4.  Comparison of observed and predicted crashes using final crash 

prediction model. 
 
Figure 4-4 shows a comparison of the observed crashes and the predicted crashes from 
the final pedestrian crash prediction model in Table 4-9.  The pattern of the graphed data 
highlights the fact that the observed data are discrete values and the predicted data are 
continues values.  The trendline and associated linear equation reveals a reasonable level 
of correlation (Pearson correlation coefficient of .20).  The 45-degree line shows how the 
relationship of the data compares against a perfect linear relationship.  The level of 
correlation is comparable to previous research (Rakha et al, 2008) and is acceptable for 
the purposes of this paper.  
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4.4 COMPARISON OF PEDESTRIAN VOLUMES 
Daily pedestrian volumes for each of the signalized intersections were estimated using 
two exposure techniques employed by Molino et al (2008).  The first technique utilized a 
scaling function that is based on an hourly distribution for a 24-hour day.  The technique 
was first developed by Zegeer et al (2005) and slightly modified by Molino et al (2008).  
Zegeer et al (2005) used a single 1-hour count (100%) at each location to estimate daily 
pedestrian volumes where as Molino et al used two 15-minute counts from consecutive 
hours.  Additionally, Zegeer et al (2005) used 12-hour counts at a few locations to derive 
the distribution, whereas Molino et al (2008) collapsed all locations to create a generic 
24-hour distribution that was assumed for an entire city regardless of the specific 
location.  The hourly adjustment factors developed by Molino et al (2008) are shown in 
Table 4-10.  The estimation of pedestrian exposure was for the entire city and not specific 
locations and one main goal of that research was to produce safety measures using 
limited empirical data. 
 
Each location had 100% counts from 7AM to 6PM (except for 1PM – 2PM), however 
only two (2) 15-minute counts in consecutive hours were needed for this particular 
estimation technique.  The two consecutive hours were chosen for each of the 200 
intersections so that all hours were accounted for as equally as possible.  The 15-minute 
counts were multiplied by four (4) to estimate hourly counts and then those two hourly 
estimates were each divided by their respective hourly adjustment factor.  These two 
numbers could each be considered potential daily total estimates however depending on 
which two hours were assigned for that intersection, the counts could vary significantly 
due to the adjustment factor. 
 
Therefore to address the possibility of drastically different results (depending on which 
adjustment factor was used) the two estimated totals were averaged.  This averaged 
number was then used as the basis for the daily estimate by multiplying each of the 24 
hourly adjustment factors by this estimated daily total.  The 24 hourly estimates were 
then summed to compute a daily pedestrian volume at each intersection.  Since the 
intersection count data were taken at various times of the year no seasonal adjustment 
was made to any of the daily totals. 
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Table 4-10. Adjustment factors by time of day (Molino et al, 2008) 

Hour of Day Adjustment % 
0:00 1.7 
1:00 1.3 
2:00 0.5 
3:00 0.1 
4:00 0.1 
5:00 0.2 
6:00 0.9 
7:00 5.0 
8:00 7.9 
9:00 5.9 

10:00 5.7 
11:00 4.9 
12:00 5.7 
13:00 7.1 
14:00 7.4 
15:00 6.5 
16:00 12.3 
17:00 10.1 
18:00 3.7 
19:00 6.7 
20:00 1.3 
21:00 0.1 
22:00 1.8 
23:00 3.0 

 
The second pedestrian volume estimating technique utilized general linear statistical 
modeling (Molino et al, 2008).  The independent variables were:  (1) Land Use Group 
(LUG: commercial, residential, park open space (POS), federal, etc.); (2) Hour of Day 
(HOUR) or Time Period (PER (seven time-of-day categories:  morning, mid-morning, 
noon, afternoon, early evening, late evening and overnight)), and (3) Day of the Week 
(DOW) or “week category” (WKCAT: weekday and weekend).  Molino et al (2008) used 
a Poisson regression with a log linear model.  Significant terms (p<0.0001) in the model 
were:  PER, LUG, DOW and the two-way interaction of PER with LUG.  The main 
effect parameter estimates for 15-minute pedestrian counts at signalized intersections are 
listed in Table 4-11 (Molino et al, 2008). 
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Table 4-11.  Main effect parameter estimates for 15-minute pedestrian counts 

(Molino et al, 2008) 

Variable Category  Estimate Standard 
Error 

Intercept n/a 2.883 0.178 
Morning 1.905 0.196 

Mid-Morning 0.892 0.239 
Noon 0.819 0.19 

Afternoon 3.046 0.262 
Early Evening 1.085 0.218 
Late Evening 3.678 0.234 

Time Period 
(PER) 

Overnight 0 0 
Residential 0 0 
Commercial 2.506 0.181 

Federal -0.391 0.391 

Land Use 
Group 
(LUG) 

POS 1.387 0.308 
Monday -3.789 0.097 
Tuesday -1.193 0.096 

Wednesday 0 0 
Thursday -1.16 0.043 

Friday -1.497 0.043 
Saturday -3.102 0.194 

Day of Week 
(DOW) 

Sunday -2.507 0.067 
 
The hourly counts for each of the intersections were grouped into time categories as 
described in Molino et al, 2008.  Land use and day of the week categories were assigned 
to each location as appropriate.  The pedestrian volumes estimates for time category by 
land use type and day of week were derived from the coefficients (parameter estimates).  
The time category estimates were summed to compute the daily estimate for each day of 
the week and land use combination (7 x 4 = 28).  The 28 daily estimates were assigned to 
the 200 signalized intersections with the same land use and day of the week category.  
The predicted volumes were compared to the observed volumes at the 200 signalized 
intersections in the database developed for this paper.  Figure 4-5 shows the correlation 
between the observed and predicted pedestrian volumes using the generalized linear 
model method.  It should be noted that the predicted data appear to be plotted in 
categories, or bins.  This is a result of the finite number of outputs (predicted volumes) 
that can occur with the categorical variables used in the GLM modeling procedure.  
Figure 4-6 shows the correlation between the observed and predicted pedestrian volumes 
using the scaling technique. 
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Observed Pedestrian Volume vs Predicted Pedestrian Volume, 
Generalized Linear Model (GLM) Method

y = 0.5562x + 12397
R2 = 0.0238
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Figure 4-5.  Comparison of observed pedestrian volume versus predicted for 200 

signalized intersections using the GLM method 
 
A trendline was created and a linear equation with an R-square value was used to assess 
the strength of the relationship between the two variables.  The R2 value of 0.0238 
indicates there is practically no relationship between the predicted and observed 
pedestrian volumes. 
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Observed Pedestrian Volume vs Predicted Pedestrian Volume
Scaling Technique

y = 1.3979x - 164.49
R2 = 0.9226
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Figure 4-6.  Comparison of observed pedestrian volume versus predicted for 200 
signalized intersections using the scaling technique 

 
A trendline was created and a linear equation with an R-square value was used to assess 
the strength of the relationship between the two variables.  The R2 value of 0.9226 
indicates that approximately 92% of the variance in the response variable (predicted 
pedestrian volumes) is accounted for by the explanatory variable (observed pedestrian 
volume).  This is evidence that a very strong, positive relationship exists between the 
predicted and observed pedestrian volumes when the scaling technique was used. 
 
4.5 COMPARISON OF PREDICTED CRASHES 
The final crash prediction model was run twice using the two sets of predicted pedestrian 
volumes instead of the observed pedestrian volumes.  Figure 4-7 compares the observed 
crashes and the predicted crashes using the predicted pedestrian volumes obtained with 
the GLM estimating method.  The trendline and associated linear equation indicate the 
correlation of the observed and predicted crashes.  The correlation coefficient (R2 =.1096) 
indicates that there is a weaker relationship between the observed and predicted crashes 
when the observed pedestrian volumes were used in the crash prediction model. 
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GLM Method Predicted Pedestrian Volumes
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Figure 4-7.  Crash comparison using predicted pedestrian volumes by the GLM 

method 
 
Figure 4-8 compares the observed crashes and the predicted crashes using the predicted 
pedestrian volumes obtained with the scaling estimating method.  The trendline and 
associated linear equation indicate the correlation of the observed and predicted crashes.  
The correlation coefficient (R2 =.187) indicates that there is a stronger relationship 
between the observed and predicted crashes when the pedestrian volumes obtained with 
the scaling method were used in the crash prediction model. 

Scaling Method Predicted Pedestrian Volumes 

y = 0.248x + 1.2272
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Figure 4-8.  Crash comparison using predicted pedestrian volumes by the aggregate 
method 
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4.7 DISCUSSION OF FINDINGS AND CONCLUSIONS 
The results of the crash prediction analyses indicate that the pedestrian-vehicle crash 
prediction model is similar in structure and performance to models developed in earlier 
research efforts (Lyon and Persaud, 2002; Zegeer, et al., 2005, Harwood, et al, 2008).  
Pedestrian volume and vehicular volume, which have been previously identified as strong 
predictor variables, were highly significant in the model developed.  One specific 
difference that should be noted is that all of the variables in the final model presented in 
this paper were significant at the 0.05 confidence level.  The final models from previous 
work by Lyon and Persaud (2002) included variables that met less strict confidence level 
of 0.10.  The models from Zegeer et al (2005) included variables that had significance 
levels that ranged between < 0.0001 and 0.984.  Another difference that should be noted 
is that the sample size for the dataset used in this paper was smaller than the ones used in 
Lyon and Persaud (2002) and Zegeer et al (2005).  The database of signalized 
intersections described in this paper had 200 locations, whereas the two studies cited had 
over 350 and 2,000 sites, respectively.  Additionally, the Lyon and Persaud (2002) 
differentiated between 3-leg and 4-leg intersections.  This paper included intersections 
with 3 to 6 legs and used that characteristic as a possible explanatory variable.  The 
results obtained in this paper are as strong, if not stronger, than those cited studies with 
much larger sample sizes. 
 
The results from the pedestrian volume estimation analysis show that when using the data 
used in the crash prediction model, scaling technique provided stronger results when 
compared to the GLM method.  The scaling technique produced predicted pedestrian 
volumes that were highly correlated to the observed pedestrian volumes.  The GLM 
method appeared to have very little correlation.  As noted in the paper by Molino et al 
(2008) the linear model developed to predict pedestrian volumes was based off of a fairly 
small sample size, which would explain the weak relationship of predicted to observed 
volumes.  The scaling technique seems to have done a good job in predicting pedestrian 
volumes even with a small sample size (2 counts per intersection).  This was the first 
successful attempt to validate the methodologies used in Molino et al (2008).  
Additionally, when the predicted pedestrian volumes obtained from the scaling technique 
were used in conjunction with the final pedestrian crash prediction model, the results 
were stronger than when the predicted volumes were obtained from the GLM method. 
 
The pedestrian volume estimates from Molino et al (2008) are only one half of the total 
exposure denominator used in the model developed in this paper, however they fill a void 
that was desperately needed for crash model development.  The pedestrian crash model 
developed in this paper requires accurate exposure data for both vehicles and pedestrians.  
While vehicle volume data are fairly easy to obtain, extensive pedestrian volume data are 
not.  The technique originally proposed by Zegeer et al (2005), modified and improved in 
Molino et al (2008), and validated in this paper offers traffic engineers a fairly reliable 
way to estimate pedestrian volumes at signalized intersections with relatively minimal 
empirical data.  Had DDOT only collected data for two hours at each of 200 locations 
(equal distribution of hour of day represented) the results would have similar to the 100% 
observed.  The cost savings for data collection would have been substantial without any 
loss in model accuracy. 
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By having a reliable pedestrian exposure measure to feed into the crash prediction model, 
traffic engineers can utilize the model to assess the safety of signalized intersections 
throughout an urban environment with more confidence.  Although the exposure 
coefficients developed from the research described in this paper indicate that vehicle 
volumes are more influential in predicting pedestrian crashes the pedestrian volume 
variable was still highly significant.  The pedestrian exposure coefficient seems to 
indicate that since there is not a linear relationship (i.e. = 1, or near 1) the focus for safety 
may need to lie on the vehicles side.  If it is indeed true that vehicular volumes have such 
a stronger influence in pedestrian crash prediction then it may be useful to focus more on 
safety countermeasures related to the vehicle than the pedestrian.  Safety 
countermeasures can be evaluated more accurately with the addition of pedestrian 
volumes to the exposure denominator because there is now a known coefficient. 
 
The pedestrian crash prediction model using the scaling technique for pedestrian volume 
estimation offered the best results of all the combinations considered in this research.  
While more additional validation and calibration needs to be investigated, the initial 
analyses and results described seem promising for advancing the prediction and 
evaluation of pedestrian exposure to crash risk. 
 
4.8 RECOMMENDATIONS FOR FURTHER RESEARCH 
Although there were 200 signalized intersections in the database used to develop the 
pedestrian crash prediction models, only 4 years worth of crash and exposure (pedestrian 
and vehicular volumes) data were available.  Crash and exposure data over a longer time 
period of time would provide a more robust database to develop better models.  It is also 
recommended that the database include more signalized intersections because previous 
research used larger data sets (Lyon and Persaud, 2002; Zegeer et al, 2005). 
 
The research described in this paper focused on signalized intersections.  It is 
recommended that data from non-signalized (stop-controlled, uncontrolled) intersections 
be used to test the breadth of the predictive capabilities of the signalized intersection 
pedestrian crash prediction model.  Additionally it is recommended that the model be 
calibrated and validated against a completely different set of signalized intersections from 
Washington, DC as well as different urban areas to test the predictive capabilities even 
further. 
 
Additional work needs to be conducted to refine the pedestrian volume estimation 
techniques described in Molino et al (2008) so that the exposure estimates can be more 
reliable when compared to crash estimates.  Additionally, a sensitivity analysis should be 
conducted to determine the minimum number of signalized intersections that empirical 
data are needed to develop a reliable hourly distribution of adjustment factors.  The GLM 
method still could also be a useful tool once it becomes more robust and is refined to the 
point it can predict more accurately than the more simplified scaling technique. 
 
 



Chapter 5   Conclusions and Recommendations 

 55

CHAPTER FIVE: SUMMARY OF FINDINGS, CONCLUSIONS AND 
RECOMMENDATIONS 
 
This chapter summarizes the results, presents conclusions, and makes recommendations 
for future research. 
 
5.1 SUMMARY OF FINDINGS AND CONCLUSIONS 
This thesis first described a data collection and pedestrian volume estimation 
methodology for urban signalized intersections.  Estimates for one calendar year for an 
entire city were made using two techniques and were compared.  The estimates of 
1,373,000,000 pedestrians (obtained with the scaling technique) and 3,569,800,000 
pedestrians (obtained with the general linear modeling technique) were not compared for 
accuracy since actual counts were unavailable.  Although aggregated results were not 
compared, single site estimates were compared to previous research.  Previous research 
indicated similar results for daily counts at a single site and therefore this could provide 
partial validation of the estimation methodologies. 
 
Pedestrian-motor vehicle crash prediction models were developed using a variety of 
explanatory variables and regression models.  The results of the crash prediction analyses 
indicate that the final pedestrian-vehicle crash prediction model chosen is similar in 
structure and performance to models developed in earlier research efforts (Lyon and 
Persaud, 2002; Zegeer, et al., 2005, Harwood, et al, 2008).  Pedestrian volume and 
vehicular volume, which have been previously identified as strong predictor variables, 
were highly significant in the model developed.  All of the variables in the final model 
presented in this thesis were significant at the 0.05 confidence level.  The final models 
from previous work by Lyon and Persaud (2002) included variables that met less strict 
confidence level of 0.10.  The models from Zegeer et al (2005) included variables that 
ranged between < 0.0001 and 0.984.  Additionally, the sample size for the dataset used in 
this thesis was smaller than the ones used in Lyon and Persaud (2002) and Zegeer et al 
(2005).  The database of signalized intersections described in this thesis had 200 
locations, whereas the two studies cited had over 350 and 2,000 sites, respectively.  
Additionally, the Lyon and Persaud (2002) differentiated between 3-leg and 4-leg 
intersections.  This thesis included intersections with 3 to 6 legs and used this 
characteristic as a possible explanatory variable.  The results obtained in this thesis are as 
strong, if not stronger, than those cited studies with much larger sample sizes. 
 
Following the crash modeling analyses, an analysis was done to assess the accuracy of 
the pedestrian volume estimates using the two techniques described in Chapter 3.  The 
analyses showed that when using the data used in the crash prediction model, the scaling 
technique provided stronger results when compared to the GLM method.  The scaling 
technique produced predicted pedestrian volumes that were highly correlated to the 
observed pedestrian volumes.  The GLM method appeared to have very little correlation.  
As noted in Chapter 3 the linear model developed to predict pedestrian volumes was 
based off of a fairly small sample size, which would explain the weak relationship of 
predicted to observed volumes.  The scaling technique seems to have done a good job in 
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predicting pedestrian volumes even with a small sample size (2 counts per intersection).  
This was the first successful attempt to validate the results from the pedestrian volume 
estimation methodologies   Additionally, when the predicted pedestrian volumes obtained 
from the scaling technique were used in conjunction with the final pedestrian crash 
prediction model, the results were stronger than when the predicted volumes were 
obtained from the GLM method. 
 
Pedestrian volumes are only one half of the total exposure denominator used in the model 
developed in this thesis; however they fill a void that was desperately needed for crash 
model development.  The pedestrian crash model developed in this thesis requires 
accurate exposure data for both vehicles and pedestrians.  While vehicle volume data are 
fairly easy to obtain, extensive pedestrian volume data are not.  The technique originally 
proposed by Zegeer et al (2005), modified and improved in Chapter 3, and validated in 
this thesis offers traffic engineers a fairly reliable way to estimate pedestrian volumes at 
signalized intersections with relatively minimal empirical data.  Had DDOT only 
collected data for two hours at each of 200 locations (equal distribution of hour of day 
represented) the results would have similar to the 100% observed.  The cost savings for 
data collection would have been substantial without any loss in model accuracy. 
 
By having a reliable pedestrian exposure measure to feed into the crash prediction model, 
traffic engineers can utilize the model to assess the safety of signalized intersections 
throughout an urban environment with more confidence.  Although the exposure 
coefficients developed from the research described in this thesis indicate that vehicle 
volumes are more influential in predicting pedestrian crashes the pedestrian volume 
variable was still highly significant.  The pedestrian exposure coefficient seems to 
indicate that since there is not a linear relationship (i.e. = 1, or near 1) the focus for safety 
may need to lie on the vehicles side.  If it is indeed true that vehicular volumes have such 
a stronger influence in pedestrian crash prediction then it may be useful to focus more on 
safety countermeasures related to the vehicle than the pedestrian.  Safety 
countermeasures can be evaluated more accurately with the addition of pedestrian 
volumes to the exposure denominator because there is now a known coefficient. 
 
The pedestrian crash prediction model using the scaling technique for pedestrian volume 
estimation offered the best results of all the combinations considered in this research.  
While more additional validation and calibration needs to be investigated, the initial 
analyses and results described seem promising for advancing the prediction and 
evaluation of pedestrian exposure to risk. 
 
5.2 RECOMMENDATIONS FOR FUTURE RESEARCH 
Additional work needs to be conducted to refine the pedestrian volume estimation 
techniques described in Chapter 3 so that the exposure estimates can be more reliable 
when compared to crash estimates.  A sensitivity analysis should be conducted to 
determine the minimum number of signalized intersections that empirical data are needed 
to develop a reliable hourly distribution of adjustment factors.  More data are needed to 
develop the GLM technique to bring it closer to the scaling techniques predictive 
capabilities. 
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Crash and exposure data over a longer time period of time would provide a more robust 
database to develop better models.  Although there were 200 signalized intersections in 
the database used to develop the pedestrian crash prediction models, only 4 years worth 
of crash and exposure (pedestrian and vehicular volumes) data were available.  It is also 
recommended that the database include more signalized intersections because previous 
research used larger data sets (Lyon and Persaud, 2002; Zegeer et al, 2005). 
 
The pedestrian volume estimation techniques were used at other types of intersections 
(Molino et al, 2008).  However the crash prediction modeling research described in this 
thesis focused on signalized intersections.  It is recommended that data from non-
signalized (stop-controlled, uncontrolled) intersections be used to test the breadth of the 
predictive capabilities of the signalized intersection pedestrian crash prediction model.  
Additionally it is recommended that the model be calibrated and validated against a 
completely different set of signalized intersections from Washington, DC as well as 
different urban areas to test the predictive capabilities even further. 
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APPENDIX:  FINAL PEDESTRIAN CRASH PREDICTION MODEL OUTPUT 
 
Generalized Linear Regression Model Analysis 
 
Source:  SAS® Software 
 
 
 
                                 The SAS System                              539 
                                                  17:21 Sunday, November 2, 2008 
 
                             The CONTENTS Procedure 
 
Data Set Name        THESIS.SIGNALIZED                 Observations          200 
Member Type          DATA                              Variables             21 
Engine               V9                                Indexes               0 
Created              Sunday, November 02,              Observation Length    168 
                     2008 05:23:04 PM 
Last Modified        Sunday, November 02,              Deleted Observations  0 
                     2008 05:23:04 PM 
Protection                                             Compressed            NO 
Data Set Type                                          Sorted                NO 
Label 
Data Representation  WINDOWS_32 
Encoding             wlatin1  Western (Windows) 
 
 
                       Engine/Host Dependent Information 
 
Data Set Page Size          16384 
Number of Data Set Pages    3 
First Data Page             1 
Max Obs per Page            97 
Obs in First Data Page      77 
Number of Data Set Repairs  0 
Filename                    E:\School\THESIS\Working 
                            Copy\Signalized_All\Analysis\signalized.sas7bdat 
Release Created             9.0201M0 
Host Created                W32_VSHOME 
 
 
                  Alphabetic List of Variables and Attributes 
 
            #    Variable            Type    Len    Label 
 
            2    Crashes             Num       8    Crashes 
            3    Crashes4            Num       8    Crashes4 
           20    Pred4YearPed        Num       8    Pred4YearPed 
           21    Pred4YearPed2       Num       8    Pred4YearPed2 
           19    Tot4Min_MajRatio    Num       8    Tot4Min_MajRatio 
           12    Tot4YearLeftVeh     Num       8    Tot4YearLeftVeh 
           18    Tot4YearMaj         Num       8    Tot4YearMaj 
           17    Tot4YearMin         Num       8    Tot4YearMin 
           16    Tot4YearPed         Num       8    Tot4YearPed 
           13    Tot4YearRightVeh    Num       8    Tot4YearRightVeh 
           11    Tot4YearVeh         Num       8    Tot4YearVeh 
            8    geo_binary          Num       8    geo_binary 
            4    geo_code            Num       8    geo_code 
            5    legs                Num       8    legs 
            9    legs_binary         Num       8    legs_binary 
            1    loc_id              Num       8    loc_id 
           14    percVehLeft         Num       8    percVehLeft 
           15    percVehRight        Num       8    percVehRight 
            7    totrdwidth          Num       8    totrdwidth 
           10    traf_binary         Num       8    traf_binary 
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            6    traf_code           Num       8    traf_code 
 
                                 The SAS System                              541 
                                                  17:21 Sunday, November 2, 2008 
 
                             The CONTENTS Procedure 
 
Data Set Name        WORK.LOGS                         Observations          200 
Member Type          DATA                              Variables             33 
Engine               V9                                Indexes               0 
Created              Sunday, November 02,              Observation Length    264 
                     2008 06:25:38 PM 
Last Modified        Sunday, November 02,              Deleted Observations  0 
                     2008 06:25:38 PM 
Protection                                             Compressed            NO 
Data Set Type                                          Sorted                NO 
Label 
Data Representation  WINDOWS_32 
Encoding             wlatin1  Western (Windows) 
 
 
                       Engine/Host Dependent Information 
 
Data Set Page Size          16384 
Number of Data Set Pages    4 
First Data Page             1 
Max Obs per Page            61 
Obs in First Data Page      44 
Number of Data Set Repairs  0 
Filename                    C:\Users\Jason\AppData\Local\Temp\SAS 
                            Temporary Files\_TD1868\logs.sas7bdat 
Release Created             9.0201M0 
Host Created                W32_VSHOME 
 
 
                  Alphabetic List of Variables and Attributes 
 
           #    Variable              Type    Len    Label 
 
           2    Crashes               Num       8    Crashes 
           3    Crashes4              Num       8    Crashes4 
          20    Pred4YearPed          Num       8    Pred4YearPed 
          21    Pred4YearPed2         Num       8    Pred4YearPed2 
          19    Tot4Min_MajRatio      Num       8    Tot4Min_MajRatio 
          12    Tot4YearLeftVeh       Num       8    Tot4YearLeftVeh 
          18    Tot4YearMaj           Num       8    Tot4YearMaj 
          17    Tot4YearMin           Num       8    Tot4YearMin 
          16    Tot4YearPed           Num       8    Tot4YearPed 
          13    Tot4YearRightVeh      Num       8    Tot4YearRightVeh 
          11    Tot4YearVeh           Num       8    Tot4YearVeh 
           8    geo_binary            Num       8    geo_binary 
           4    geo_code              Num       8    geo_code 
           5    legs                  Num       8    legs 
           9    legs_binary           Num       8    legs_binary 
          30    lnPred4YearPed        Num       8 
          33    lnPred4YearPed2       Num       8 
          29    lnTot4Min_MajRatio    Num       8 
          32    lnTot4YearMaj         Num       8 
          31    lnTot4YearMin         Num       8 
          27    lnpercVehLeft         Num       8 
          28    lnpercVehRight        Num       8 
          26    lnrdwid               Num       8 
          22    lntot4yearleftveh     Num       8 
          23    lntot4yearped         Num       8 
          24    lntot4yearrightveh    Num       8 
          25    lntot4yearveh         Num       8 
           1    loc_id                Num       8    loc_id 
          14    percVehLeft           Num       8    percVehLeft 
          15    percVehRight          Num       8    percVehRight 
           7    totrdwidth            Num       8    totrdwidth 
          10    traf_binary           Num       8    traf_binary 
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           6    traf_code             Num       8    traf_code 
 
                                 The SAS System                              543 
                                                  17:21 Sunday, November 2, 2008 
 
                              The GENMOD Procedure 
 
                               Model Information 
 
      Data Set                      WORK.LOGS 
      Distribution          Negative Binomial 
      Link Function                       Log 
      Dependent Variable             Crashes4    Crashes4 
 
 
                    Number of Observations Read         202 
                    Number of Observations Used         200 
                    Missing Values                        2 
 
 
                            Class Level Information 
 
                      Class            Levels    Values 
 
                      geo_binary            2    1 2 
                      legs_binary           2    1 2 
                      traf_binary           2    1 2 
                      traf_code             4    1 2 3 4 
 
 
                     Criteria For Assessing Goodness Of Fit 
 
        Criterion                     DF           Value        Value/DF 
 
        Deviance                     197        205.1526          1.0414 
        Scaled Deviance              197        205.1526          1.0414 
        Pearson Chi-Square           197        218.2180          1.1077 
        Scaled Pearson X2            197        218.2180          1.1077 
        Log Likelihood                          -74.7598 
        Full Log Likelihood                    -314.3795 
        AIC (smaller is better)                 636.7590 
        AICC (smaller is better)                636.9641 
        BIC (smaller is better)                 649.9523 
 
                                 The SAS System                              544 
                                                  17:21 Sunday, November 2, 2008 
 
                              The GENMOD Procedure 
 
  Algorithm converged. 
 
 
              Analysis Of Maximum Likelihood Parameter Estimates 
 
                                  Standard   Wald 95% Confidence         Wald 
  Parameter       DF   Estimate      Error          Limits         Chi-Square 
 
  Intercept        1   -20.0056     2.9932   -25.8722   -14.1389        44.67 
  lntot4yearped    1     0.3274     0.0605     0.2089     0.4459        29.33 
  lntot4yearveh    1     0.9025     0.1667     0.5757     1.2292        29.30 
  Dispersion       1     0.5895     0.1403     0.3145     0.8645 
 
                              Analysis Of Maximum 
                              Likelihood Parameter 
                                   Estimates 
 
                           Parameter       Pr > ChiSq 
 
                           Intercept           <.0001 
                           lntot4yearped       <.0001 
                           lntot4yearveh       <.0001 



  Vita 

 65

                           Dispersion 
 
NOTE: The negative binomial dispersion parameter was estimated by maximum 
      likelihood. 
 
 
                       LR Statistics For Type 3 Analysis 
 
                                              Chi- 
                Source               DF     Square    Pr > ChiSq 
 
                lntot4yearped         1      29.13        <.0001 
                lntot4yearveh         1      29.68        <.0001 
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