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Abstract	
	

Major	depressive	disorder	is	a	common,	impairing	disease,	but	current	treatments	are	only	

moderately	effective.	Understanding	how	processes	such	as	reward	and	punishment	

learning	are	disrupted	in	depression	and	how	these	disruptions	are	remediated	through	

treatment	is	vital	to	improving	outcomes	for	people	with	this	disorder.	In	the	present	set	of	

studies,	computational	reinforcement	learning	models	and	neuroimaging	were	used	to	

understand	how	symptom	clusters	of	depression	(anhedonia	and	negative	affect)	were	

related	to	neural	and	behavioral	measures	of	learning	(Study	1,	in	Paper	1),	how	these	

alterations	changed	with	improvement	in	symptoms	after	cognitive	behavioral	therapy	

(Study	2,	in	Paper	1),	and	how	learning	parameters	could	be	directly	altered	in	a	learning	

retraining	paradigm	(Study	3,	in	Paper	2).	Results	showed	that	anhedonia	and	negative	

affect	were	uniquely	related	to	changes	in	learning	and	that	improvement	in	these	

symptoms	correlated	with	changes	in	learning	parameters;	these	parameters	could	also	be	

changed	through	targeted	queries	based	on	reinforcement	learning	theory.	These	findings	

add	important	information	to	how	learning	is	disrupted	in	depression	and	how	current	and	

novel	treatments	can	remediate	learning	and	improve	symptoms.		

	



	

General	Audience	Abstract	
	

Major	depression	is	very	common	and	current	treatments	are	sometimes	helpful	and	

sometimes	not.	In	order	to	create	more	effective	treatments,	we	need	to	better	understand	

what	exactly	goes	wrong	when	people	are	depressed.	The	present	set	of	studies	uses	

computational	modeling	and	imaging	of	brain	function	to	gain	a	clearer	understanding	of	

how	people	with	depression	learn	from	rewarding	and	punishing	events	differently,	how	

these	differences	in	learning	improve	with	symptom	improvement	after	receiving	

treatment	for	depression,	and	how	learning	differences	can	be	directly	targeted	by	teaching	

people	to	learn	differently.	I	found	that	a	reduced	ability	to	experience	pleasure,	or	

anhedonia,	in	depression	was	related	to	differences	learning	from	good	outcomes	while	

low	mood	was	related	to	perceiving	bad	outcomes	as	worse.	Both	of	these	differences	

improved	with	successful	treatment,	and	asking	people	questions	related	to	learning	also	

changed	the	way	people	learned	in	a	way	that	may	be	useful	for	improving	treatments.		
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Introduction	
	

Major	depressive	disorder	(MDD)	is	a	prevalent,	disabling	psychiatric	disorder	that	

currently	is	the	highest	cause	of	disability	worldwide	(World	Health	Organization,	2017).	

MDD	is	a	highly	heterogeneous	disease	(Rush,	2007)	characterized	by	a	constellation	of	

symptoms	related	to	low	mood	and	anhedonia.	Current	treatments	are	only	moderately	

effective,	with	response	rates	of	40-50%	in	clinical	trials	(Hollon,	Stewart,	&	Strunk,	2006)	

and	lower	effectiveness	in	the	community	(K.	A.	Collins,	Westra,	Dozois,	&	Burns,	2004).	

Recent	improvements	in	CBT	and	pharmacological	treatments	have	improved	

dissemination	or	reduced	side	effects,	but	have	not	led	to	greater	treatment	response	

(Johnsen	&	Friborg,	2015).	Differential	treatment	prediction	and	refinement	of	current	

treatments	are	hampered	by	the	trial-and-error	method	by	which	current	treatments	have	

been	discovered	and	refined.	To	better	connect	mechanisms	of	treatment	to	treatment	

approaches	and	to	improve	outcomes,	a	better	understanding	of	disrupted	processes	

underlying	aspects	of	MDD	and	their	relationship	to	treatment	is	needed.	In	the	current	

work,	learning	from	reward	and	punishment	is	examined	as	a	potential	process	that	is	

disrupted	in	depression	and	that	can	be	remediated	by	current	or	novel	treatments.	To	

understand	how	disruptions	in	specific	components	of	learning	are	related	to	symptom	

improvement,	computational	models	of	reinforcement	learning	are	used	to	understand	

precise	aspects	of	learning	that	are	related	to	different	symptom	clusters	in	depression,	

how	these	disrupted	learning	components	change	with	successful	treatment	with	CBT,	and	

how	these	components	could	be	changed		
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Disrupted	reward	and	punishment	processing	in	depression	

Potential	candidate	mechanisms	in	depression	include	disrupted	cognitive	and	

affective	processing,	both	of	which	are	affected	by	MDD.	On	‘cold’	(i.e.	lacking	in	affective	

content)	tasks	assessing	executive	function,	people	with	depression	show	impairments	in	

most	domains	(Snyder,	2013).	However,	some	of	these	impairments	in	executive	function	

are	a	similar	magnitude	in	comparison	with	non-executive	function	tasks	(e.g.	Stroop	

neutral	versus	interference	performance),	suggesting	that	some	of	these	impairments	can	

be	attributed	to	aspects	of	the	disorder	such	as	psychomotor	slowing	or	other	non-

executive	function	impairments	rather	than	pure	executive	function	deficits.	Tasks	with	

affective	content	are	more	clearly	related	to	impairments	in	task	performance	in	people	

with	MDD.	People	with	depression	show	reduced	responsiveness	to	rewarding	stimuli	

(Henriques	&	Davidson,	2000;	McFarland	&	Klein,	2009;	Sloan,	Strauss,	&	Wisner,	2001);	

Henriques	and	Davidson	found	that	participants	without	depression	changed	their	

behavior	on	rewarding	versus	non-rewarding	conditions	of	a	verbal	memory	task	to	earn	

more	reward	while	participants	with	depression	did	not,	and	McFarland	&	Klein	and	Sloan	

et	al.	found	less	emotional	reactivity	to	pleasant	stimuli	in	people	with	depression.	People	

with	MDD	also	show	over	responsiveness	to	punishment	such	that	their	performance	falls	

drastically	after	errors	(Elliott,	Sahakian,	Herrod,	Robbins,	&	Paykel,	1997),	a	behavior	

termed	catastrophic	response	to	failure.	These	behavioral	impairments	are	accompanied	

by	altered	neural	processing	in	striatum,	ventromedial	prefrontal	cortex,	insula,	and	lateral	

cortical	areas	(Diener	et	al.,	2012;	Siegle,	Thompson,	Carter,	Steinhauer,	&	Thase,	2007;	

Smoski	et	al.,	2009;	although	these	findings	are	not	consistent	across	studies,	Müller	et	al.,	

2016),	areas	involved	in	incorporating	affective	information	during	cognitive	processing.			
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These	altered	cognitive	and	affective	processes	in	depression	likely	lead	to	changes	

in	expectations	of,	and	experiences	of,	reward	and	punishment	in	daily	life.	In	turn,	these	

changes	in	expectations	and	experiences	of	affective	feedback	may	explain	the	negative	

mood	and	anhedonia	experienced	by	people	with	depression.	Similar	to	work	reviewed	

above	that	found	difficulties	in	modulating	behavior	under	rewarding	conditions,	studies	of	

reward	processing	and	anhedonia	in	depression	have	found	an	inability	to	change	

responses	based	on	feedback	to	maximize	reward	(Pizzagalli,	Jahn,	&	O’Shea,	2005).	

Although	studies	of	responses	after	negative	feedback	found	disrupted	performance	in	

depression,	learning	studies	with	punishment	have	often	found	facilitation	of	performance	

with	increasing	depressive	symptoms	(Beevers	et	al.,	2013;	Cavanagh,	Bismark,	Frank,	&	

Allen,	2011;	Maddox,	Gorlick,	Worthy,	&	Beevers,	2012).	This	discrepancy	suggests	that	

assessing	overall	performance	through	measures	such	as	total	number	of	correct	responses	

may	miss	distinctions	in	behavior	that	correspond	to	affected	domains	in	depression.	Even	

when	results	are	more	consistent,	changes	in	performance	in	people	with	MDD	could	be	

due	to	a	variety	of	factors	in	how	rewards	and	punishments	are	perceived	and	processed.	

This	ambiguity	necessitates	further	investigation	into	what	aspects	of	reward	and	

punishment	processing	are	disrupted	in	depression	and	how	these	disruptions	relate	to	

symptoms.			

	

Computational	models	of	learning	

Computational	models	of	learning	and	decision	making	can	provide	insight	into	

what	aspects	of	these	processes	are	disrupted	in	psychological	disorders,	an	approach	

falling	under	the	umbrella	of	computational	psychiatry	(Montague,	Dolan,	Friston,	&	Dayan,	
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2012).	In	particular,	computational	models	of	reinforcement	learning	can	take	advantage	of	

the	precision	afforded	by	algorithmic	formalization	of	learning	processes	along	with	

advances	in	modern	learning	theory	in	animal	research.	Reinforcement	learning	models	

have	been	used	to	study	a	wide	range	of	psychological	phenomena	and	disruptions	in	

psychiatric	disorders	(Chen,	Takahashi,	Nakagawa,	Inoue,	&	Kusumi,	2015;	Maia	&	Frank,	

2011).	The	central	idea	of	reinforcement	learning	is	that	values	associated	with	stimuli	(or	

actions)	are	dynamically	updated	based	on	the	discrepancy	between	observed	and	

predicted	outcomes.	In	this	way,	then,	learning	about	what	is	rewarding	and	punishing	only	

occurs	when	outcomes	deviate	from	what	was	expected.	Learning	therefore	scales	with	the	

extent	that	predictions	are	violated;	an	expected	positive	or	negative	outcome	causes	no	

learning.		

Reinforcement	learning	has	its	early	roots	in	psychological	research	by	Bush	and	

Mosteller	(1953),	later	updated	by	Rescorla	and	Wagner	(1972)	and	others,	as	well	as	

simultaneous	work	in	computer	science	by	Bellman	(1952)	and	others,	but	this	area	has	

been	rejuvenated	in	recent	years	by	discoveries	that	reinforcement	learning	not	only	

explains	behavior	in	learning	tasks	but	also	describes	neural	aspects	of	learning	well	

(Montague,	Dayan,	&	Sejnowski,	1996;	Schultz,	Dayan,	&	Montague,	1997),	suggesting	that	

this	framework	represents	both	outward	manifestations	of	behavior	and	the	neural	

calculations	that	give	rise	to	this	behavior.	Because	of	this	tight	connection	between	

behavioral	and	neural	levels,	reinforcement	learning	can	combine	behavioral	(Yechiam,	

Busemeyer,	&	Stout,	2004),	large-scale	neural	activity	as	measured	by	fMRI	(O’Doherty,	

Dayan,	Friston,	Critchley,	&	Dolan,	2003;	Pagnoni,	Zink,	Montague,	&	Berns,	2002),	

pharmacological	(Pessiglione,	Seymour,	Flandin,	Dolan,	&	Frith,	2006),	and	genetic	(Doll,	
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Hutchison,	&	Frank,	2011;	Frank,	Moustafa,	Haughey,	Curran,	&	Hutchison,	2007)	

approaches	to	understanding	how	people	learn	about	value.	Recent	work	has	used	

reinforcement	learning	as	a	framework	to	extend	to	other	psychological	phenomena,	such	

as	self-control	(Berkman,	Hutcherson,	Livingston,	Kahn,	&	Inzlicht,	2017)	and	emotional	

regulation	(Etkin,	Büchel,	&	Gross,	2015),	and	to	bring	in	complementary	processes,	such	

as	attention	(Niv	et	al.,	2015)	and	working	memory	(A.	G.	E.	Collins,	Brown,	Gold,	Waltz,	&	

Frank,	2014).	Reinforcement	learning’s	ability	to	account	for	behavior	through	the	impact	

of	positive	and	negative	outcomes	and	through	unifying	multiple	levels	of	analysis	makes	it	

a	particularly	useful	tool	for	understanding	how	processing	positive	and	negative	events	

differently	in	psychopathology	leads	to	differences	in	behavior.			

	

Computational	model-based	learning	investigations	in	depression	

To	study	reinforcement	learning	alterations	in	MDD,	specific	learning	model	

parameters	are	estimated	from	behavior	and	compared	between	groups	or	along	a	

symptom	dimension	(although	variability	in	which	learning	model	is	used	can	also	be	used	

as	the	dependent	variable,	e.g.	Rigoux	et	al.,	2013,	and	neural	measures	can	also	be	used	to	

estimate	models	alongside	behavioral	measures,	e.g.	Turner	et	al.,	2013).	These	behavioral	

parameter	differences	are	assumed	to	correspond	to	neural	differences	in	processing	

expected	value,	prediction	error,	or	the	value	of	outcomes,	among	other	measures,	as	

measured	by	functional	MRI	(O’Doherty,	Hampton,	&	Kim,	2007).	Early	computational	

work	in	reward	learning	disruptions	in	participants	with	a	range	of	anhedonia	or	

depressive	symptoms	distinguished	between	alterations	in	updating	expectations	of	value	

(indexed	by	a	learning	rate	parameter)	and	valuation	of	rewards	(indexed	by	outcome	



	 6	

sensitivity	or	inverse	temperature	parameters)	and	found	that	valuation	was	reduced	with	

increased	depression	severity	(Kunisato	et	al.,	2012)	or	anhedonia	(Huys,	Pizzagalli,	

Bogdan,	&	Dayan,	2013).	Other	contemporary	findings	in	MDD	found	reduced	prediction	

error	in	the	striatum	(Gradin	et	al.,	2011;	Kumar	et	al.,	2008),	which	is	also	suggestive	of	

reduced	valuation	during	learning.	However,	behavioral	differences	in	reinforcement	

learning	parameters	have	not	been	found	in	all	studies	(Gradin	et	al.,	2011;	Rothkirch,	

Tonn,	Kohler,	&	Sterzer,	2017)	and	neural	results	in	larger	clinical	samples	have	found	

intact	striatal	prediction	errors,	unaffected	by	depression	or	anhedonia	severity	

(Greenberg	et	al.,	2015;	Rothkirch	et	al.,	2017;	Rutledge	et	al.,	2017).	Some	of	these	studies	

have	found	altered	prediction	error	signals	in	areas	outside	the	striatum,	including	

orbitofrontal	cortex	(Rothkirch	et	al.,	2017)	and	anterior	cingulate	cortex	(Steele,	Meyer,	&	

Ebmeier,	2004),	and	studies	with	sufficient	power	to	detect	statistical	moderations	have	

found	that	anhedonia	in	depression	may	be	related	to	a	disconnect	in	the	relationship	

between	neural	representations	of	expected	reward	and	prediction	error	(Chase	et	al.,	

2013;	Greenberg	et	al.,	2015;	see	also	Sherdell,	Waugh,	&	Gotlib,	2012	for	a	similar	

behavioral	finding).	Therefore,	a	possible	explanation	for	altered	reward	learning	in	

depression	may	be	that	carrying	signals	of	experienced	reward	forward	to	future	

encounters	with	similar	rewards	(perhaps	due	to	increased	noise,	Robinson	&	Chase,	2017)	

is	disrupted	in	anhedonic	depression,	but	the	specific	disruptions	in	anhedonia	and	

depression	with	reward	learning	are	yet	unclear.		

The	above	work	has	primarily	focused	on	reward	processing,	reflecting	the	general	

focus	on	reward	learning	in	modern	reinforcement	learning	studies;	fewer	studies	have	

assessed	punishment	contexts	in	reinforcement	learning	in	depression.	Behavioral	studies	
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of	punishment	learning,	introduced	above,	have	sometimes	found	improved	performance	

in	depression,	reflected	in	parameter	differences	indicating	reduced	noise	or	greater	

exploitation	(Beevers	et	al.,	2013);	however,	other	reinforcement	learning	studies	have	

found	no	differences	during	punishment	learning	(Rothkirch	et	al.,	2017).		

In	addition	to	examining	both	reward	and	punishment,	focusing	on	specific	

symptom	clusters	of	depression	(e.g.	anhedonia	in	reward	learning	and	negative	affect	in	

punishment	learning)	may	better	correspond	to	learning	differences	than	the	presence	of	a	

depression	diagnosis.	Several	of	the	studies	reviewed	above	(Greenberg	et	al.,	2015;	Huys	

et	al.,	2013;	Rothkirch	et	al.,	2017)	found	effects	specific	to	anhedonia	symptoms,	rather	

than	overall	depression	diagnosis	or	severity,	in	reward	learning.	Related	studies	have	

found	similar	anhedonia-specific	reward	processing	problems	with	computational	studies	

of	learning	or	reward	processing	(Harlé,	Guo,	Zhang,	Paulus,	&	Yu,	2017;	Luking,	Pagliaccio,	

Luby,	&	Barch,	2015;	Young	et	al.,	2016),	some	of	which	have	also	found	learning-related	

problems	in	negative	contexts	that	correspond	better	to	negative	affect	symptom	severity	

(Luking	et	al.,	2015).	

	

Learning	processes	and	treatment	response	in	depression	

If	depression	is	mechanistically	related	to	problems	learning	from	and	processing	

rewards	and	punishments,	these	differences	should	predict	or	correlate	with	treatment	

success.	Cognitive-behavioral	therapy	(CBT),	in	particular,	may	relate	to	altered	learning	

processes	due	to	its	roots	in	learning	theory	and	its	focus	on	new	learning	(Disner,	Beevers,	

Haigh,	&	Beck,	2011;	Jacobson,	Martell,	&	Dimidjian,	2006).	Computational	work	in	

reinforcement	learning	has	not	yet	investigated	the	effects	of	treatment	in	depression,	but	
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related	work	suggests	potential	relationships.	Studies	of	changes	in	reward	processing	with	

CBT	have	found	changes	in	neural	processing	of	rewards	(Dichter	et	al.,	2009);	

improvement	in	positive	affect	after	treatment	with	selective	serotonin	reuptake	inhibitors	

also	correlates	with	ability	to	sustain	frontostriatal	reward	connectivity	(Heller	et	al.,	

2013).	However,	these	are	preliminary	studies	with	small	sample	sizes,	so	the	effects	of	

treatment	on	reward	function	are	not	yet	well	characterized.	Reward	processing	has	also	

been	found	to	predict	response	to	treatment,	although	the	direction	and	nature	of	effects	

differ	by	study.	Better	ability	to	sustain	neural	response	to	rewards	(Carl	et	al.,	2016)	and	

better	behavioral	reward	learning	(Vrieze	et	al.,	2013)	predict	better	response	to	

treatment,	while	reduced	neural	reactivity	to	rewards	(Burkhouse	et	al.,	2016),	lower	

reward	circuitry	connectivity	(Downar	et	al.,	2013),	and	disrupted	Pavlovian	withdrawal	

(Huys	et	al.,	2016)	have	been	found	to	predict	worse	outcomes.	Taken	together,	these	

studies	suggest	that	altered	reward	processing	may	predict	and	index	symptom	

improvement	with	treatment,	but	it	is	unclear	precisely	how	they	relate;	the	specificity	of	

computational	approaches	may	clarify	some	of	these	findings.		

The	relationship	of	punishment	learning	to	treatment	has	been	little	studied,	but	

studies	of	processing	of	other	negative	stimuli	implicated	in	depression	and	their	

relationship	to	treatment	outcomes	may	inform	treatment	studies	using	reinforcement	

learning	models.	However,	these	findings	are	also	somewhat	contradictory.	Several	studies	

examined	neural	reactivity	to	emotional	stimuli	(words	or	pictures)	prior	to	treatment	as	a	

potential	predictor	of	treatment	response.	Reduced	responsivity	to	negative	words	in	

cognitive	control	networks	predicts	better	response	to	antidepressants	(Miller	et	al.,	2013)	

and,	similarly,	increased	responsivity	in	similar	areas	predicts	worse	response	(Delaveau	et	
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al.,	2015)	to	antidepressants;	however,	other	studies	found	greater	responsivity	in	

cognitive	control	areas	(anterior	cingulate	cortex)	and	nearby	valence-related	areas	

(ventromedial	prefrontal	cortex)	to	predict	more	improvement	(Davidson,	Irwin,	Anderle,	

&	Kalin,	2003;	Ritchey,	Dolcos,	Eddington,	Strauman,	&	Cabeza,	2011).	Therefore,	this	lack	

of	clarity	in	predicting	or	correlating	with	treatment	is	not	specific	to	reward	learning	

studies;	studies	of	other	cognitive	processes	have	similarly	mixed	findings	and	point	to	the	

need	for	more	mechanistically	specified	studies	informed	by	computational	process	

models.		

	

Reinforcement	learning	and	learning	retraining	

In	addition	to	unraveling	how	computational	models	of	learning	can	inform	current	

treatment	approaches,	generative	models	such	as	reinforcement	learning	can	provide	

insights	into	how	mechanisms	of	disorders	can	be	directly	targeted.	Such	retraining	

approaches	are	similar	to	cognitive	training	approaches	in	areas	such	as	recovery	from	

stroke	and	in	schizophrenia	(Keshavan,	Vinogradov,	Rumsey,	Sherrill,	&	Wagner,	2014),	

which	remediate	certain	cognitive	functions	as	a	way	to	improve	symptoms.	Retraining	

approaches	also	share	features	with	strongly	behavioral	approaches	in	CBT	such	as	

exposure	for	anxiety	and	posttraumatic	stress	disorder	(Asnaani,	McLean,	&	Foa,	2016)	and	

applied	behavioral	analysis	for	autism	(Foxx,	2008),	which	seek	to	target	specific	aspects	of	

these	disorders	in	order	to	create	overall	improvement	in	the	disorder.		A	number	of	

retraining	interventions	have	been	piloted	in	depression,	with	the	most	commonly	studied	

retraining	paradigms	including	training	attention	away	from	negative	material	(Cooper	et	

al.,	2014),	increasing	the	concreteness	of	thinking	(Watkins,	Baeyens,	&	Read,	2009),	and	
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training	more	positive	predictions	of	outcomes	(Collier	&	Siegle,	2015).	However,	meta-

analyses	and	large-scale	RCTs	find	little	to	no	effect	of	these	paradigms	(Blackwell	et	al.,	

2015;	Cristea,	Kok,	&	Cuijpers,	2015;	Hallion	&	Ruscio,	2011)	on	depressive	symptoms,	

despite	the	success	of	retraining	paradigms	in	other	disorders	(Hallion	&	Ruscio,	2011;	

McGurk,	Twamley,	Sitzer,	McHugo,	&	Mueser,	2007).	However,	other	retraining	approaches	

show	some	effectiveness,	with	cognitive	retraining	focused	on	non-affective	processing	

showing	significant	effects	on	attentional	control,	working	memory,	overall	functioning,	

and	depressive	symptoms	(Motter	et	al.,	2016).	However,	this	sort	of	executive	function	

training	may	not	affect	problems	in	affective	processing	that	appear	to	be	more	prevalent	

and	problematic	in	depression.	Understanding	the	processes	being	targeted	by	retraining	

approaches	is	necessary	to	ensure	retraining	effectively	remediates	disrupted	processes	

and	leads	to	symptom	improvement.	

Retraining	approaches	to	changing	altered	learning	processes	in	disorders	like	MDD	

can	benefit	from	reinforcement	learning’s	ability	to	represent	processes	underlying	

learning;	as	a	result,	using	reinforcement	learning	to	develop	learning	retraining	

interventions	may	lead	to	more	robust	and	precise	changes	than	other	approaches.	This	

approach	requires	understanding	which	aspects	of	reinforcement	learning	are	disrupted	in	

depression.	With	this	knowledge,	disrupted	parameters	or	other	model	components	can	be	

targeted	by	learning-related	approaches	to	determine	which	approaches	best	change	

disrupted	learning,	with	the	intention	of	then	deploying	this	intervention	at	a	clinically	

meaningful	intensity.	Ensuring	learning	generalizes	outside	of	the	training	environment	is	

also	a	vital	component	of	retraining	approaches	(Keshavan	et	al.,	2014;	Swan,	Carper,	&	

Kendall,	2016),	and	so	retraining	approaches	using	reinforcement	learning	should	also	
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ensure	participants	are	able	to	generalize	the	intervention	to	apply	to	learning	situations	in	

real	life.			

	

Present	studies	and	hypotheses	

The	present	work	intended	to	investigate	how	computational	models	of	

reinforcement	learning	can	inform	knowledge	of	the	mechanisms	of	depression	and	its	

treatment.	Study	1	(Paper	1)	aimed	to	illustrate	altered	learning	from	rewards	and	

punishments	on	behavioral	and	neural	levels	in	a	large,	well-characterized	sample	of	adults	

with	and	without	depression.	Study	2	(Paper	1)	then	examined	how	these	alterations	

correlated	with	and	predicted	response	to	cognitive	behavioral	therapy	for	depression.	

Study	3	(Paper	2)	used	a	reinforcement	learning	framework	to	see	if	behavioral	

parameters	of	a	reinforcement	learning	model	could	be	altered	in	a	retraining	approach	

through	targeted	queries	about	participants’	learning.			

Study	1	used	a	reward	and	loss	learning	task	intended	to	measure	reinforcement	

learning	(after	Pessiglione,	Seymour,	Flandin,	Dolan,	&	Frith,	2006)	in	participants	with	and	

without	depression	and	used	behavioral	and	neural	approaches	to	characterize	altered	

learning	with	different	symptom	clusters	of	anhedonia	and	negative	affect.	We	

hypothesized	that	1)	depression,	particularly	symptoms	of	anhedonia	and	negative	affect,	

would	correspond	to	altered	behavioral	patterns	as	indexed	by	reinforcement	learning	

parameters	and	2)	that	these	altered	behavioral	patterns	would	be	accompanied	by	related	

neural	alterations	in	processing	value	and	value	update	signals	from	the	reinforcement	

learning	model.		
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Study	2	examined	learning	on	the	same	reward	and	loss	learning	task	after	a	subset	

of	participants	with	depression	from	Study	1	completed	a	standard,	manualized	course	of	

cognitive	behavioral	therapy	in	order	to	measure	predictors	and	correlates	of	treatment	

response.	We	hypothesized	that	the	learning	alterations	found	at	baseline	in	Study	1	would	

predict	and	correlate	with	symptom	improvement	after	CBT.		

Study	3	used	a	similar	reward	learning	task	with	the	addition	of	queries	on	specific	

learning	components	to	test	if	querying	participants	would	lead	to	changes	in	learning.	

Participants	in	this	study	were	recruited	from	a	large	online	study	with	a	range	of	

depressive	symptoms	to	determine	effects	of	these	queries	in	general	and	to	ensure	similar	

effects	were	found	in	participants	high	in	depressive	symptoms.	We	hypothesized	that	

querying	about	task	components	related	to	aspects	of	learning	would	change	these	facets	of	

behavior	while	leaving	other	learning	processes	intact.	Specifically,	we	hypothesized	that	

querying	about	prediction	error	or	components	of	prediction	error	would	increase	learning	

rate	and	that	querying	about	the	probability	or	value	of	outcomes	would	increase	outcome	

sensitivity	while	querying	about	the	differences	in	value	between	options	would	decrease	

outcome	sensitivity.	
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Abstract	

Major	depressive	disorder	(MDD)	is	prevalent	and	impairing,	but	a	limited	

neuromechanistic	understanding	of	the	disorder	hinders	therapeutic	progress.	In	

participants	with	and	without	depression,	we	demonstrate	that	a	computational	psychiatry	

approach	may	provide	an	increased	mechanistic	understanding	of	MDD	and	identify	novel	

intervention	targets.	We	first	show	that	the	cardinal	symptoms	of	anhedonia	and	negative	

affect	uniquely	relate	to	distinct	features	of	reward	and	loss	learning,	respectively.	In	

depression,	greater	anhedonia,	and	not	negative	affect,	was	related	to	computational	

model-derived	learning	parameters	and	neural	learning	signals	in	the	ventral	striatum;	

these	patterns	were	observed	only	during	reward	learning.	Only	during	loss	learning,	

increased	negative	affect,	and	not	anhedonia,	was	related	to	learning	parameters	and	

disrupted	subgenual	anterior	cingulate	cortex	encoding	of	learning	signals.	Second,	the	

translational	potential	of	these	learning	substrates	was	assessed	in	a	subset	of	participants	

who	received	cognitive-behavioral	therapy	(CBT).	Symptom	improvement	following	CBT	

was	related	to	normalization	of	learning	parameters.	These	results	suggest	the	utility	of	

neurocomputational	psychiatry	for	revealing	covert	mechanistic	features	and	new	

therapeutic	targets	of	depression.		
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Introduction	

Major	depressive	disorder	(MDD)	is	a	prevalent,	disabling	disease	affecting	approximately	

7%	of	people	in	the	US	each	year	(Kessler	et	al.,	2005)	and	is	the	highest	cause	of	disability	

in	the	world	(World	Health	Organization,	2017).	Barriers	to	characterizing	and	treating	

MDD	include	challenges	in	connecting	symptom	heterogeneity	to	distinct	neural	and	

behavioral	substrates	(Stephan	et	al.,	2015).	Through	algorithms	linking	behavioral	and	

neural	levels	of	dysfunctional	processes,	neurocomputational	approaches	to	psychiatry	

have	the	potential	to	illuminate	novel	mechanisms,	connect	these	mechanisms	to	

symptoms	and	subtypes	within	disorders,	and	test	and	refine	treatments	(Montague	et	al.,	

2012;	Wang	&	Krystal,	2014;	Wiecki	et	al.,	2015).	For	depression,	recent	advances	in	

understanding	the	basic	neurocomputational	substrates	of	reinforcement	learning	(Eshel	&	

Roiser,	2010;	Schultz	et	al.,	1997;	Sutton	&	Barto,	1998)	provide	a	framework	for	linking	

the	central	impairments	of	anhedonia	and	negative	affect	(Clark	&	Watson,	1991)	with	

mechanistically-defined	learning	parameters	to	both	characterize	depression	and	test	the	

translational	potential	of	computational	psychiatry	for	depression.	To	that	end,	we	sought	

to	delineate	the	relationships	among	mechanistic	components	of	learning	and	canonical	

depression	symptoms,	and	to	test	the	translational	potential	of	these	relationships	through	

the	responsiveness	of	learning	components	to	cognitive-behavioral	therapy,	an	efficacious,	

learning-based	psychotherapy	for	depression.		

Computational	formalizations	of	reinforcement	learning	characterize	a	process	whereby	

expectations	about	outcomes	are	updated	based	on	prediction	errors	(i.e.,	differences	

between	expected	and	actual	outcomes)	which	provide	a	causal	connection	between	neural	
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and	behavioral		substrates	of	value-based	learning	(Pessiglione	et	al.,	2006;	Schultz	et	al.,	

1997;	Steinberg	et	al.,	2013).	In	this	framework,	disrupted	learning	in	depression	can	be	

separated	into	computationally-derived,	behaviorally-	and	neurobiologically-	distinct,	

components	(e.g.,	outcome	valuation	vs.	updating	and	their	respective	neural	substrates;	

Chen	et	al.,	2015;	Huys	et	al.,	2013;	Robinson	&	Chase,	2017).	For	example,	disrupted	value-

based	learning	may	result	from	impaired	updating	of	expected	outcomes	(quantified	in	RL	

models	as	learning	rates),	an	inability	to	distinguish	among	levels	of	outcomes	(quantified	

in	RL	models	as	outcome	sensitivities),	or	shifts	in	how	outcomes	are	valued	(quantified	in	

RL	models	as	outcome	shifts);	such	components	are	differentiable	and	quantified	as	

learning	parameters	which	can	then	be	related	to	symptoms	at	the	individual	level.	In	a	

parallel	literature,	relationships	between	depression	and	abnormal	responses	to	rewards	

and	losses	have	been	consistently	reported	(Eshel	&	Roiser,	2010)	and	appear	to	differ	by	

valence	such	that	individuals	with	depression	show	neural	and	behavioral	overreactions	to	

failure	(Chiu	&	Deldin,	2007;	Elliott	et	al.,	1997)	coupled	with	diminished	modulation	of	

behavior	in	response	to	reward	(Pizzagalli	et	al.,	2008;	Robinson	&	Cools,	2012)	but	intact	

representation	of	reward	independent	of	learning	(Rutledge	et	al.,	2017).	Accumulating	

evidence	suggests	that	symptoms	of	anhedonia	and	negative	affect	better	correspond	to	

these	valence-specific	neurobehavioral	disruptions	in	reward	and	loss	learning	than	do	

overall	depression	severity	or	the	presence	of	a	depression	diagnosis	(Disner	et	al.,	2011;	

Harlé	et	al.,	2017;	Luking	et	al.,	2015;	Rothkirch	et	al.,	2017;	Young	et	al.,	2016).	Together	

these	data	argue	for	a	context-dependent	role	of	learning	disruptions	in	depression.	

However,	reports	of	overall	learning	differences	in	depression	do	not	distinguish	which	

aspect	of	learning	is	disrupted;	hypotheses	which	can	be	quantitatively	disambiguated	via	
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computational	models	of	learning.	In	turn,	a	computationally	specific	description	of	

disrupted	learning	in	depression	would	allow	precise	mapping	across	levels	(similar	to	

Anticevic	et	al.,	2015)	and	enable	more	targeted	treatments.	

To	date,	some	computational	approaches	applied	to	learning	in	depression	have	

incorporated	differences	in	learning	from	rewards	versus	punishments	(Beevers	et	al.,	

2013;	Cavanagh	et	al.,	2011;	Kunisato	et	al.,	2012;	Maddox	et	al.,	2012;	Robinson	&	Cools,	

2012;	Rothkirch	et	al.,	2017),	while	other	studies	suggest	that	anhedonia	symptoms	better	

relate	to	neural	and	behavioral	learning	differences	than	depression	as	a	whole	(Chase	et	

al.,	2010;	Gradin	et	al.,	2011;	Greenberg	et	al.,	2015;	Huys	et	al.,	2013;	Kumar	et	al.,	2008;	

Pizzagalli	et	al.,	2008).	These	studies	provide	a	foundation	for	the	present	study	that	

encompasses	valence-specific	effects	of	reward	and	loss	learning,	symptom-specific	effects	

of	anhedonia	and	negative	affect,	and	individual	estimates	of	behavior	and	neural	activity,	

to	fully	explain	how	disrupted	learning	processes	in	MDD.		

Beyond	the	ability	to	precisely	define	value-related	learning	disruptions	and	their	

connections	to	symptoms	of	depression,	reinforcement	learning	models	have	the	

translational	potential	to	assess	mechanisms	of	change	with	treatment	and	thus	identify	

potential	new	targets	of	therapy.	As	potential	endophenotypes	of	depression	(Pizzagalli,	

2014),	reward	and	loss	learning	alterations	connect	to	neurobiological	and	behavioral	

targets	of	interventions	and	may	index	changes	in	treatment	targets	with	greater	precision.	

Cognitive-behavioral	therapy,	which	targets	altered	valuation	and	updating	(Beck,	2005)	

and	is	based	on	related	learning	theories	that	gave	rise	to	computational	formulations	of	

reinforcement	learning	(Lewinsohn,	1974;	Rescorla	&	Wagner,	1972),	offers	a	particularly	
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clear	connection	between	changes	in	learning	and	improvements	in	symptoms	(see	also	

Burkhouse	et	al.,	2016;	Dichter	et	al.,	2009;	Heller	et	al.,	2013;	McCabe	et	al.,	2010;	

Pizzagalli,	2014;	Vrieze	et	al.,	2013	for	initial	studies	examining	responsivity	to	rewards	

and	losses	and	treatment	effects).		

In	the	current	study,	we	examined	clinically	depressed	and	non-depressed	participants	

with	a	range	of	symptoms,	and	also	a	subset	of	depressed	participants	who	were	tested	

before	and	after	treatment	with	CBT,	on	a	reward	and	loss	learning	task	while	undergoing	

functional	magnetic	resonance	imaging	(fMRI)	scanning.	We	hypothesized	that	distinct	

learning	patterns	in	reward	and	loss	contexts,	captured	by	computational	model-derived	

parameters	measuring	aspects	of	updating	and	valuation	and	their	corresponding	neural	

signals,	would	be	related	to	symptoms	of	anhedonia	and	negative	affect,	respectively,	on	

behavioral	and	neural	levels.	Additionally,	we	hypothesized	that	these	learning	alternations	

in	reward	and	loss	domains	would	predict	and	correlate	with	improvement	in	related	

symptoms	following	cognitive-behavioral	therapy.	

Results		

Participant	characteristics	and	model-free	learning	at	baseline	

One	hundred	and	one	participants	(69	participants	with	depression	and	32	without)	were	

included	in	baseline	analyses;	clinical	and	demographic	data	are	reported	in	Table	1.1.	

Depressed	participants	comprised	63	with	current	MDD,	3	with	current	dysthymia,	and	3	

with	both	MDD	and	dysthymia.	As	expected,	participants	with	depression	had	higher	

symptom	scores	on	the	Beck	Depression	Inventory	(BDI)	as	well	as	Mood	and	Anxiety	
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Symptom	Questionnaire	(MASQ)	scales	of	anhedonia,	negative	affect,	and	anxious	arousal;	

the	groups	did	not	differ	on	estimated	IQ,	age,	or	gender.		

Participants	completed	a	probabilistic	learning	task	with	alternating	blocks	of	trials	with	

rewarding	and	losing	outcomes,	respectively,	while	undergoing	fMRI	scanning	(Figure	

1.1a);	behavior	was	analyzed	separately	for	reward	and	loss	trials	to	allow	separate	

examination	of	reward	and	loss	learning.	Participants	showed	intact	learning	on	the	task;	

participants	with	depression	had	somewhat	reduced	reward	learning	(average	[SE]	

performance	on	reward	trials:	controls	74.5%	(2.0%)	and	MDD	69.0%	(1.6%),	t100	=	1.98,	p	

=	.05;	Figure	1.1b)	but	showed	similar	loss	learning	(average	[SE]	performance	on	loss	

trials:	controls	70.8%	(1.9%)	and	MDD	68.9%	(1.4%),	t100	=	0.80,	p	>	.1).		

Reinforcement	learning	model	fits	participants’	behavior	well		

To	ensure	the	reinforcement	learning	model	described	participants’	behavior	accurately,	

the	proposed	model	was	compared	against	possible	alternative	models	and	assessed	for	its	

suitability	in	measuring	distinct	aspects	of	behavior.	Participants’	behavioral	choices	on	the	

probabilistic	learning	task	were	fit	to	a	computational	reinforcement	learning	model	that	

differentiated	components	of	learning	potentially	disrupted	in	depression	(i.e.,	updating	

and	valuation).	A	model	with	a	learning	rate	parameter,	indexing	speed	of	updating	based	

on	prediction	error,	and	two	valuation-related	parameters	of	outcome	shift	(linearly	

shifting	all	outcome	values,	resulting	in	an	overall	positive	or	negative	valuation	bias)	and	

outcome	sensitivity	(multiplicatively	scaling	more	extreme	outcome	values,	resulting	in	

differential	scaling	of	values)	fit	participants’	behavior	better	than	plausible	alternative	

models		(Daw,	2011;	Huys	et	al.,	2013;	Figure	2a).	Reflecting	the	separation	of	reward	and	
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loss	learning	in	the	task,	a	model	with	unique	parameters	in	reward	and	loss	conditions	

improved	model	fit	over	combining	some	or	all	parameters	across	conditions	(Figure	1.2c).	

Model	validation	methods	including	parameter	recovery	(Figure	1.2b)	and	inspection	of	

posterior	probability	distributions	(Figure	1.3)	indicated	that	model	parameters	were	

recoverable	and	uniquely	identifiable.		

To	examine	the	relationships	between	learning	parameters	and	model-agnostic	measures	

of	behavior,	individual	estimates	for	values	of	each	learning	parameter,	separated	by	

reward	and	loss	learning	conditions,	were	extracted	and	compared	to	summary	behavioral	

measures.	Plotting	of	individuals’	parameter	values	against	the	total	proportions	of	correct	

choices	and	switches	confirmed	expected	relationships	between	these	model-based	and	

model-agnostic	measures	(Figure	1.4).	Learning	rate	was	moderately	related	to	

performance,	with	low	learning	rates,	reflecting	a		slower	acquisition	of	contingencies,	

related	to	lower	proportion	of	correct	choices	(gain:	r2	=	.097;	loss:	r2	=	.079)	and	more	

switches	(gain:	r2	=	.122;	loss:	r2	=	.056).	Outcome	sensitivity,	which	indexes	the	scaling	

between	large	and	small	outcomes,	was	related	to	the	ability	to	pick	the	stimulus	more	

likely	to	lead	to	a	better	outcome	(i.e.	proportion	correct	choices;	gain:	r2	=	.613;	loss:	r2	=	

.690)	and	to	a	reduced	tendency	to	switch	options	(gain:	r2	=	.591;	loss:	r2	=	.404),	as	would	

be	expected	with	increased	ability	to	differentiate	among	outcomes.	Meanwhile,	outcome	

shift,	which	indexes	an	overall	shift	in	outcome	values,	was	less	related	to	the	proportion	of	

correct	choices		(gain:	r2	=	.0001;	loss:	r2	=	.117)	but	was	related	to	a	reduced	tendency	to	

switch	with	higher	valuation	of	outcomes	(gain:	r2	=	.169;	loss:	r2	=	.560),	reflecting	its	

effect	on	the	tendency	to	switch	away	from	all	choices	when	the	associated	outcomes	are	

perceived	as	more	negative	and	to	stay	with	all	choices	when	outcomes	are	viewed	as	
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positive.	We	note	each	parameter’s	unique	relationship	with	traditional	summary	

statistics;	these	relationships	illustrate	how	differences	in	learning	strategies,	indexed	by	

combinations	of	increases	and	decreases	in	model-derived	parameter	values,	may	be	

obscured	when	viewing	summary	statistics	only.	

Anhedonia	symptoms	are	related	to	parameters	of	reward	learning	in	depression	

Having	established	the	appropriateness	of	the	model	for	describing	participants’	behavior	

based	on	model	fit	and	comparisons	to	model-agnostic	summaries	of	behavior,	we	then	

tested	the	relationships	among	the	model-derived	learning	parameters	(i.e.,	learning	rate,	

outcome	sensitivity,	and	outcome	shift)	and	symptom	clusters	of	anhedonia,	negative	

affect,	and	overall	depression	during	reward	and	loss	learning,	respectively.	During	reward	

learning,	in	participants	with	depression,	greater	anhedonia	was	related	to	reduced	

learning	rate	(mean	transformed/untransformed	effect	of	anhedonia	=	-0.136/-0.739;	95%	

credible	interval	of	-0.214	to	-0.023/-1.39	to	-0.109)	and	greater	outcome	sensitivity	(mean	

effect	of	anhedonia	=	0.181;	95%	credible	interval	of	0.016	to	0.377;	Figure	1.5a);	these	

effects	were	unique	to	anhedonia	and	absent	with	negative	affect	or	overall	depression	

severity.	These	results	indicate	that,	with	increasing	anhedonia,	people	with	depression	are	

slower	to	update	expectations	of	reward	based	on	prediction	errors,	but	accentuate	the	

rewarding	effect	of	large	rewards.		

Neurally,	previous	work	with	anhedonia	in	depression	has	suggested	a	relationship	

between	lower	learning	rate	and	reduced	correlation	between	signaling	of	prediction	error	

(when	receiving	information	about	outcomes)	and	expected	value	(when	shown	options	to	

select;	Greenberg	et	al.,	2015);	we	found	similarly	intact	signaling	of	both	prediction	error	
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and	expected	value	in	participants	with	depression	(all	ps	<.05,	corrected;	Figure	1.6	and	

Tables	1.2	and	1.3;	see	Tables	1.4	and	1.5	for	prediction	error	and	expected	value	signaling	

in	controls),	but	a	disrupted	correlation	between	the	two	signals	with	increasing	anhedonia	

(t97	=	-2.10,	p	<	.05;	Figure	1.5b).		

Negative	affect	symptoms	are	related	to	parameters	of	loss	learning	

During	loss	learning,	a	distinctly	different	pattern	of	relationships	emerged	such	that	

severity	of	negative	affect	was	related	to	more	negative	outcome	shift,	indicating	more	

negative	valuation	of	all	outcomes	(mean	effect	of	negative	affect	=	-0.107;	95%	credible	

interval	of	-0.205	to	-0.013;	Figure	1.5c).	This	relationship	was	specific	to	negative	affect	

and	not	observed	with	anhedonia	or	overall	depression	severity.		

Neurally,	prediction	error	activity	in	a	subgenual	anterior	cingulate	cortex	region	of	

interest	showed	a	negative	relationship	with	negative	affect	(r	=	-.277,	p	=	.005;	Figure	

1.5d).	As	prefrontal	cortical	signals	are	linked	more	to	value	representation	than	prediction	

error	itself	(Gläscher	et	al.,	2009;	Niv,	2009),	the	value-related	components	of	prediction	

error	(i.e.,	‘expected’	value	and	‘actual’	value	received)	were	investigated	to	determine	if	

either	explained	the	relationship	between	reduced	prediction	error	signaling	in	subgenual	

anterior	cingulate	and	negative	affect.	This	analysis	revealed	greater	negative	affect	was	

related	to	more	negative	signaling	(less	modulation)	of	‘actual’	outcome	value	in	

ventromedial	prefrontal	cortex	and	precuneus	(p	<	.05	corrected;	Figure	1.7a	and	Table	

1.6),	with	no	significant	relationship	with	‘expected	value’	either	at	time	of	cue	onset	or	

outcome.	This	result	suggests	that	participants	greater	in	negative	affect	differ	in	neural	

processing	of	actual	outcome	values,	with	subsequent	effects	on	prediction	error,	rather	
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than	in	processing	expected	value.	Further	inspection	of	the	neural	activity	modulated	by	

outcome	value	in	participants	with	high	negative	affect	(based	on	a	median	split)	revealed	

significant	neural	processing	of	outcome	value,	with	activation	negatively	related	to	the	

level	of	outcome	value	in	dorsomedial	prefrontal	cortex	and	insula,	but	no	positive	

relationship	between	outcome	value	and	vmPFC	signal	(p	<	.05	corrected;	Figure	1.7b	and	

Tables	1.7	and	1.8),	indicating	these	participants	engaged	a	different,	more	negatively-

valenced	network	of	brain	areas	rather	than	the	positively-valenced	regions	of	vmPFC	and	

striatum	engaged	by	low	negative	affect	participants.			

Reinforcement	learning	parameters	show	selective	remediation	with	symptom	changes	after	

treatment	and	predict	changes	in	anhedonia	

The	specificity	of	reward	and	loss	learning	differences	to	specific	symptom	clusters	

suggested	the	translational	potential	of	neurocomputational	approaches	beyond	

descriptive	explanation	for	depression.	In	this	case,	indices	of	altered	learning	should	be	

sensitive	to	treatment.	To	test	this	possibility,	we	investigated	whether	changes	in	

measures	of	reinforcement	learning	were	related	to	symptom	changes	with	cognitive-

behavioral	therapy	and	if	pre-treatment	measures	predicted	symptom	changes	after	CBT.	

As	CBT	targets	reduced	engagement	in	positive	activities	and	biased	interpretations	of	

negative	outcomes	through	changes	in	cognition	and	behavior,	this	treatment	approach	is	

well	positioned	to	investigate	changes	in	learning	positive	and	negative	information.	

Participants	completed	a	standard,	manualized	(Munoz	&	Miranda,	1996)	course	of	weekly	

CBT.	After	treatment,	participants	showed	large	average	decreases	in	all	symptom	

measures	(overall	depression	severity:	average	decrease	of	57%,	t27	=	8.74,	p<.001;	
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anhedonia:	average	decrease	of	24%,	t27	=	8.49,	p<.001;	negative	affect:	average	decrease	

of	29%;	t27	=	7.31,	p<.001),	indicating	that	as	expected,	CBT	was	effective.	Consistent	with	

the	literature	(Dobson	et	al.,	2008),	participants	also	showed	considerable	variation	in	

treatment	response;	this	heterogeneity	enabled	an	investigation	of	individual	differences	in	

the	degree	of	symptom	change	(Figure	1.8a).		

Correlates	of	reward	learning	changes.	In	depressed	participants	who	underwent	CBT,	

reward	learning	rate,	which	had	been	negatively	correlated	with	anhedonia	at	baseline,	

significantly	increased	with	improvement	in	anhedonia	during	treatment	(mean	

transformed/untransformed	change	with	percent	change	in	anhedonia:	0.255/1.16;	95%	

credible	interval	of	0.138	to	0.344/0.577	to	1.79).	Meanwhile,	reward	outcome	sensitivity,	

which	had	been	positively	correlated	with	anhedonia	at	baseline,	significantly	decreased	

with	anhedonia	improvement	(mean	change	with	percent	change	in	anhedonia:	-0.512;	

95%	credible	interval	of	-0.771	to	-0.281;	Figure	1.8b).	Similar	effects	were	also	seen	with	

changes	in	overall	depression	as	well	as	negative	affect;	note	that	within-participant	

correlations	in	decreases	in	symptom	clusters	during	treatment	were	high	(correlation	

between	percent	change	in	anhedonia	and	negative	affect:	r	=	.651,	p	<	.	001,	and	between	

anhedonia	and	overall	depression	severity:	r	=	.634,	p	<	.001).		

Neurally,	treatment	was	related	to	a	significant	change	in	the	correlation	between	ventral	

striatum	signaling	to	prediction	error	and	expected	value	in	participants	with	high	

anhedonia	pre-treatment	(Fisher’s	r	to	z	=	1.65,	p	<	.05	one-tailed;	Figure	1.9a).	Examining	

pre-treatment	neural	signaling	in	this	same	ventral	striatum	ROI	to	expected	value	and	

prediction	error	showed	that	both	neural	signals	correlated	with	improvement	in	
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anhedonia	symptoms,	such	that	more	negative	expected	value	(r	=	-.358,	p	<	.05)	and	more	

positive	prediction	error	(r	=	.348,	p	<	.05)	were	related	to	greater	improvement	in	

anhedonia	(Figures	1.9c	and	1.9d).		

Correlates	of	loss	learning	changes.	In	loss,	the	behavioral	measure	of	outcome	shift,	which	

had	been	negatively	related	with	negative	affect	at	baseline,	showed	significant	increases	

with	improvement	in	negative	affect	(mean	change	with	percent	change	in	negative	affect:	

0.393;	95%	credible	interval	of	0.244	to	0.564),	while	outcome	sensitivity	showed	

significant	decreases	(mean	change	with	percent	change	in	negative	affect:	-1.17;	95%	

credible	interval	of	-1.73	to	-0.652;	Figure	1.8c;	note	this	parameter	had	a	trend-level	

positive	relationship	with	negative	affect	at	baseline).	However,	pre-treatment	prediction	

error	signaling	in	subgenual	anterior	cingulate	cortex	during	loss	learning	did	not	predict	

change	in	negative	affect	(Figure	1.9b),	nor	did	this	neural	signal	significantly	change	pre-	

to	post-treatment	(all	ps	>	.05).		

Lack	of	practice	effects	in	control	participants.	To	ensure	changes	with	treatment	were	not	

related	to	practice	effects,	we	estimated	changes	in	control	participants’	behavior	at	both	

time	points.	Control	participants	did	not	show	changes	in	any	behavioral	parameter	

between	time	points	(all	95%	credible	intervals	encompassing	0;	Figure	1.10),	indicating	a	

lack	of	systematic	practice	effects	in	the	absence	of	clinical	changes.		

Discussion		

A	large	body	of	literature	has	suggested	relationships	among	learning	about	rewards	and	

losses	and	symptom	dimensions	of	anhedonia	and	negative	affect,	but	the	precise	

neurobehavioral	relationships	among	these	components	have	been	unclear	and	difficult	to	
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relate	to	translational	targets.	In	the	current	study,	we	used	a	computational	model	of	

reinforcement	learning	to	distinguish	among	learning	processes	and	showed,	across	neural	

and	behavioral	levels,	the	specific	relationships	of	i)	anhedonia	to	reduced	updating	of	

rewards	and	ii)	negative	affect	to	more	negative	valuation	of	losses.	Following	treatment	

with	cognitive	behavioral	therapy,	symptom	change	was	related	to	normalization	of	these	

learning	differences;	additionally,	neural	measures	of	reward	learning	predicted	change	in	

anhedonia	with	treatment.		

These	results	illustrate	how	a	neurocomputational	approach	to	psychiatric	disorders	can	

provide	precision	and	specificity	in	elucidating	disease	mechanisms,	indexing	treatment	

response,	and	suggesting	novel	therapeutic	targets.	Differences	in	valuation	provide	one	

possible	explanation	for	learning	differences	in	depression,	with	depression	related	to	a	

tendency	to	perceive	all	outcomes	more	negatively	than	they	actually	are	(Elliott	et	al.,	

1997).	We	find	support	for	this	explanation,	but	only	during	loss	learning	and	specifically	

related	to	symptoms	of	negative	affect;	participants	higher	in	negative	affect	showed	more	

negative	valuation	of	outcomes	behaviorally,	a	reduced	prediction	error	signal	in	subgenual	

anterior	cingulate,	and	a	shift	in	processing	the	values	of	outcomes	from	positive	value-

related	brain	areas,	including	ventromedial	prefrontal	cortex	and	precuneus,	to	brain	

regions	involved	in	negatively-valenced	processing,	including	insula	and	dorsomedial	

prefrontal	cortex.	After	CBT,	improvements	in	negative	affect	correlated	with	increased	

loss	valuation,	suggesting	that	reductions	in	negative	affect	are	associated	with	viewing	

negative	outcomes	more	positively.	Of	interest,	the	network	of	brain	areas	modulated	by	

negative	affect	during	processing	of	outcome	values	found	here	(subgenual	ACC,	insula,	and	

dorsomedial	prefrontal	cortex)	shows	extensive	overlap	with	areas	previously	identified	



	 27	

with	negative	self-focus,	rumination,	and	cognitive	disruptions	in	depression,	primary	

targets	of	CBT	(Disner	et	al.,	2011;	Mayberg,	2003;	McTeague	et	al.,	2017;	Sheline	et	al.,	

2010).	The	possible	connection	between	these	cognitive	aspects	of	depression	and	overly	

negative	valuation	during	loss	learning	deserves	further	study.	In	contrast,	during	reward	

learning,	behavioral	valuation	of	outcomes	was	intact	and	neural	signals	of	expected	value	

and	prediction	error	were	unaffected.	This	specificity	to	losses	is	in	line	with	maladaptive	

responses	to	negative,	and	not	positive,	feedback	previously	observed	in	depression	(Chiu	

&	Deldin,	2007;	Elliott	et	al.,	1997).	Our	results	extend	this	previous	work	to	show	that	this	

exaggerated	response	to	punishment	in	depression	is	not	due	to	direct	differences	in	over-

adjustment	after	negative	feedback	per	se,	as	would	be	shown	by	alterations	in	learning	

rate,	but	rather	due	to	valuing	all	negative	feedback	more	strongly.	In	turn,	this	enhanced	

valuation	of	negative	information	would	lead	to	exaggerated	behavioral	adjustments	to	

avoid	these	negative	outcomes.		

Meanwhile,	under-adjustment	following	outcomes,	another	possible	explanation	for	

altered	learning	in	depression,	was	supported	during	reward	learning	and	was	shown	to	be	

specific	to	anhedonic	symptoms.	The	relationship	between	anhedonia	and	reward	learning	

has	been	intensely	studied	in	recent	years,	with	equivocal	findings	regarding	the	extent	of	

behavioral	and	neural	alterations	during	reward	learning	in	depression	(Chase	et	al.,	2010;	

Chen	et	al.,	2015;	Gradin	et	al.,	2011;	Rothkirch	et	al.,	2017).	As	suggested	by	recent	large	

studies	in	depression	(Greenberg	et	al.,	2015;	Rutledge	et	al.,	2017),	the	effect	of	anhedonia	

on	reward	processing	may	be	more	complex	than	a	simple	deficit	in	value	representation.	

In	the	present	comparably	large	sample	of	participants	with	depression,	we	also	found	no	

support	for	reduced	valuation	of	rewards	either	behaviorally	or	neurally,	but	rather	a	
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moderation	of	expected	value	–	prediction	error	correlations	by	anhedonia	accompanied	

by	a	behavioral	reduction	in	learning	rate.	Interestingly,	this	reduced	learning	rate	was	

only	present	within	participants	with	depression,	suggesting	that	reward	learning	deficits	

are	specific	to	clinically	impairing	levels	of	anhedonia.	In	depressed	participants,	then,	our	

behavioral	and	neural	findings	show	that	the	effect	of	anhedonia	is	not	a	straightforward	

dysfunction	in	representing	the	actual	or	expected	values	of	behaviors,	but	rather	in	

adaptively	updating	these	values	to	adjust	behavior	to	maximize	reward.	This	inability	to	

effectively	use	reward-related	information	likely	underlies	reported	difficulties	in	seeking	

pleasurable	activities	as	well	as	modulating	activities	to	boost	internal	mood	states,	e.g.	

Taquet	et	al.,	2016.	

Symptom	change	with	CBT	correlated	with	successful	remediation	of	alterations	in	both	

reward	and	loss	learning.	Specifically,	greater	improvement	in	anhedonia	was	accompanied	

by	increased	learning	rate,	reduced	outcome	sensitivity,	and	a	normalized	relationship	

between	neural	signals	of	expected	value	and	prediction	error,	all	during	reward	learning;	

greater	improvement	in	negative	affect	was	accompanied	by	more	positive	outcome	shift	

and	decreased	scaling	of	outcomes,	during	loss	learning.	The	two	primary	components	of	

cognitive	behavioral	therapy	involve	challenging	and	reappraising	negative	evaluations	

and	engaging	in	and	reflecting	on	pleasurable	activities	(Beck,	2008;	Munoz	&	Miranda,	

1996).	These	treatment	targets	have	clear	connections	to	the	learning	changes	seen	here	

with	CBT:	more	positive	valuation	of	negative	outcomes	matches	well	with	a	greater	ability	

to	reappraise	negative	thoughts,	and	greater	modulation	of	behavior	to	achieve	rewards	

with	an	emphasis	on	reflecting	on	rewarding	experiences.	An	improved	mechanistic	

understanding	has	the	potential	to	enable	tailored	novel	treatment	approaches	based	on	
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individualized	patterns	of	learning	alterations	(e.g.,	focusing	on	updating	reward	

expectations	in	patients	high	in	anhedonia	versus	more	positive	valuation	of	negative	

outcomes	in	patients	high	in	negative	affect),	targeting	learning	disruptions	more	directly	

through	retraining	paradigms	(Keshavan	et	al.,	2014),	and	in	refining	techniques	in	CBT	

and	other	treatments	to	more	precisely	change	learning.	Our	findings	also	add	to	a	growing	

body	of	literature	on	the	ability	of	neural	mechanisms	of	reward	learning	to	predict	

response	to	CBT	in	depression	(Burkhouse	et	al.,	2016;	Carl	et	al.,	2016),	indicating	that	a	

certain	pattern	of	reward	learning	pre-treatment,	characterized	by	strong	neural	responses	

to	expected	value	and	prediction	error,	may	enable	anhedonic	patients	to	receive	the	most	

benefit	from	therapy.	Although	inferring	a	causal	relationship	between	CBT	strategies	and	

the	learning	changes	seen	here	requires	further	investigation,	these	results	are	an	

encouraging	step	toward	establishing	a	computationally-informed	mechanism	of	this	

learning-based	treatment	(Paulus	et	al.,	2016).		

In	addition	to	enabling	new	treatment	approaches	and	targets,	the	present	results	provide	

support	for	possible	etiologies	of	depression.	The	experience	of	stress,	a	major	risk	factor	

for	depression,	selectively	impairs	reward	learning	(Berghorst	et	al.,	2013;	Bogdan	&	

Pizzagalli,	2006;	Hanson	et	al.,	2015),	disrupts	the	relationship	between	anticipatory	and	

consummatory	reward	responses	in	ventral	striatum	(Kumar	et	al.,	2014),	and	disrupts	

dopaminergic	pathways	in	ventral	striatum	(Francis	&	Lobo,	2016),	suggesting	that	

response	to	stress	may	underlie	anhedonia	and	altered	reward	learning	in	depression	

(Pizzagalli,	2014).	Meanwhile,	serotonin	function	modulates	learning	from	losses	(Cools	et	

al.,	2008;	Faulkner	&	Deakin,	2014),	particularly	in	dorsomedial	prefrontal	cortex	

(Robinson	et	al.,	2013),	an	effect	that	is	exaggerated	in	depression	but	eliminated	with	
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successful	SSRI	treatment	(Herzallah	et	al.,	2013),	indicating	that	altered	serotonergic	

function	may	relate	to	altered	processing	of	outcomes	with	negative	affect.		

In	depression,	the	relationship	between	anhedonia	and	altered	reward	processing	on	one	

hand,	and	between	symptoms	relating	to	negative	mood	and	differences	in	processing	

losses	on	the	other,	have	long	been	hypothesized	but	difficult	to	dissociate.	By	

computationally	assessing	reinforcement	learning	in	both	reward	and	loss	contexts	in	a	

large,	well-characterized	sample	using	both	neural	and	state-of-the-art	behavioral	analyses,	

the	current	findings	show	that	these	relationships	are	indeed	present	and	both	context-	

and	symptom-	specific.	Remediation	of	these	differences	along	with	symptom	change	after	

treatment	provides	further	support	that	these	learning	differences	index	state-dependent	

characteristics	of	the	disorder.	These	results	provide	a	computationally	formalized	

framework	to	understand	altered	processing	of	positive	and	negative	information	in	

depression	and	suggest	novel	pathways	for	understanding	and	treating	this	common	and	

debilitating	disorder.	

Methods	

Study	design	&	participants	

The	current	study	used	a	neurocomputational	psychiatry	approach	to:	(i)	characterize	

neural	and	behavioral	differences	in	reward	and	loss	learning	across	depression	symptom	

clusters	in	participants	with	and	without	depression,	(ii)	test	whether	learning	differences	

changed	with	changes	in	symptoms	after	treatment,	and	(iii)	test	if	aspects	of	learning	prior	

to	treatment	predicted	changes	in	symptoms	after	treatment.	To	achieve	these	goals,	we	fit	

behavioral	and	neural	data	to	formal	reinforcement	learning	models	and	tested	for	(i)	
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differences	in	aspects	of	reinforcement	learning	across	symptom	clusters,	(ii)	changes	in	

aspects	of	reinforcement	learning	correlated	with	changes	in	symptoms	with	treatment,	

and	(iii)	correspondence	between	pre-treatment	aspects	of	reinforcement	learning	and	

changes	in	symptoms	with	treatment.	The	sample	size	was	selected	based	on	(and	

generally	exceeded)	previous	work	with	similar	paradigms	and	populations	(Chiu	et	al.,	

2008;	Fu	et	al.,	2004;	Greenberg	et	al.,	2015;	King-Casas	et	al.,	2008;	McGrath	et	al.,	2013).		

Participants	were	recruited	via	community	advertisements	from	the	southwest	Virginia	

and	Houston,	Texas	areas.	Participants	were	initially	screened	via	phone	to	determine	

eligibility	and,	if	eligible,	completed	study	procedures	in	person.	Study	procedures	were	

approved	by	the	Institutional	Review	Boards	of	Baylor	College	of	Medicine	and	Virginia	

Tech	and	all	participants	provided	informed	consent.	Participants	were	required	to	have	a	

primary	DSM-IV	diagnosis	of	Major	Depressive	Disorder	or	Dysthymia	(diagnosed	using	

the	Structured	Clinical	Interview	for	DSM-IV,	SCID;	First	et	al.,	1996),	for	participants	with	

depression,	or	for	control	participants,	no	history	of	depression	or	other	psychiatric	

disorders.	Inclusion	criteria	for	all	participants	included:	age	18	to	64,	English	speaking,	

normal	or	corrected	to	normal	vision,	verbal	IQ	greater	than	80,	no	contraindications	to	

MRI	scanning,	no	loss	of	consciousness	greater	than	30	minutes,	no	hormonal	disorders,	no	

behaviors	meeting	criteria	for	substance	abuse	or	dependence	(excluding	nicotine	

dependence)	in	the	past	30	days,	and	no	current	or	past	psychotic	or	bipolar	disorders.	

Clinical	and	demographic	data	for	participants	are	reported	in	Table	1.1.	To	be	included	in	

the	present	analyses,	participants	were	required	to	demonstrate	engagement	on	the	

behavioral	task	and	successfully	complete	fMRI	scanning	(see	Procedures	below	for	further	

description	of	exclusion	criteria).	Sixty-nine	participants	with	depression	and	32	controls	
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were	included	in	baseline	(i.e.,	pre-treatment)	analyses	(total	N	=	101).	Excluded	

participants	did	not	differ	from	those	included	at	baseline	by	age;	gender;	depression	

diagnosis;	severity	of	depression,	anhedonia,	or	negative	affect;	education	or	income	level;	

ethnicity;	marital	status;	or	use	of	psychotropic	medications;	but	had	lower	estimated	IQ.		

Self-report	measures	

In	addition	to	the	SCID,	participants	also	completed	self-report	measures	including	the	

Beck	Depression	Inventory-II	(BDI;	Steer	et	al.,	1999)	to	assess	overall	depression	severity,	

the	Mood	and	Anxiety	Symptom	Questionnaire	(MASQ;	Watson	et	al.,	1995)	to	assess	

severity	of	symptom	clusters	of	anhedonia	(anhedonic	depression	subscale)	and	negative	

affect	(general	distress	subscale),	the	Wechsler	Test	of	Adult	Reading	(WTAR;	Wechsler,	

2001)	to	estimate	verbal	IQ,	and	a	demographics	questionnaire.	Participants	with	a	SCID	

diagnosis	of	depression	were	required	to	have	a	BDI	score	greater	than	12	on	the	day	of	the	

baseline	scan,	while	controls	were	required	to	have	a	BDI	score	less	than	13	(Dozois	et	al.,	

1998).	Consistent	with	previous	reports	(Buckby	et	al.,	2007;	Watson	et	al.,	1995),	

symptom	severity	measures	were	modestly	related	within	participants	with	depression	(R2	

values	of	.13	to	.32)	and	more	strongly	related	across	all	participants	(R2	values	of	.65	to	

.81),	indicating	that	these	measures	mapped	onto	distinct	constructs,	particularly	in	

participants	with	clinically	elevated	symptoms.		

Reinforcement	learning	task	

Participants	completed	a	probabilistic	reward	and	loss	learning	task	(Figure	1.1a;	similar	to	

Pessiglione	et	al.,	2006)	while	undergoing	functional	MRI	scanning.	The	task	was	presented	



	 33	

in	pseudo-randomized	blocks	of	trials	consisting	of	all	reward	outcomes	or	all	loss	

outcomes.	On	each	trial,	participants	were	presented	with	two	abstract	stimuli.	After	

choosing	a	stimulus,	the	chosen	option	was	highlighted	for	a	brief	period	and	then	an	

outcome	(monetary	reward	or	loss)	was	shown.	For	reward	blocks,	worse	outcomes	

ranged	from	+$0.20	to	+$0.30	and	better	outcomes	ranged	from	+$0.70	to	+0.80;	for	loss	

blocks,	the	worse	outcomes	were	-$0.70	to	-$0.80	and	the	better	outcomes	were	-$0.20	to	-

$0.30.	Participants	were	only	instructed	that	‘one	picture	is	always	better	than	the	other’;	

unknown	to	them,	the	structure	of	the	task	was	that	one	stimulus	had	a	75%	chance	of	

leading	to	the	better	outcome	and	a	25%	chance	of	leading	to	the	worse	outcome,	with	

opposite	probabilities	for	the	other	stimulus.	An	adaptive	design	titrated	task	difficulty,	

such	that	a	block	ended	when	7	of	the	last	10	choices	were	the	correct	stimulus	(with	

correct	defined	as	the	stimulus	more	likely	to	lead	to	the	better	outcome);	additionally,	the	

first	block	within	each	condition	was	required	to	be	at	least	15	trials	long.	The	same	stimuli	

were	used	for	all	trials	within	each	block,	and	new	stimuli,	requiring	new	learning,	were	

used	for	each	new	block.	The	task	ended	when	participants	completed	at	least	50	trials	

total	and	at	least	25	correct	trials	(average	[SE]	number	of	trials	for	depressed	and	control	

groups	were	reward:	depressed	53.1	(0.68)	and	control	50.9	(0.44),	t100	=	2.12,	p	<	.05;	

loss:	depressed	52.6	(0.66)	and	control	52.2	(1.10),	t100	=	0.35,	p	>	.1;	average	[SE]	number	

of	blocks	for	depressed	and	control	groups	were	reward:	depressed	3.84	(0.14)	and	control	

4.28	(0.21),	t100	=	-1.80,	p	=	.08;	loss:	depressed	3.94	(0.13)	and	control	4.16	(0.19),	t100	=	-

0.93,	p	>	.1).	Participants	completed	a	practice	round	prior	to	entering	the	scanner.	

Participants	were	given	an	initial	endowment	of	$10.	To	ensure	participants	were	

attending	to	the	task	and	had	suitable	behavior	for	model	fitting,	participants	who	switched	
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options	in	either	reward	or	loss	blocks	less	than	5%	of	the	time	were	excluded	from	

analyses	(similar	to	Klein-Flügge	et	al.,	2015;	Sokol-Hessner	et	al.,	2009).		

Neuroimaging	data	collection	and	preprocessing	

Participants	were	scanned	on	a	3T	Siemens	Tim	Trio	MR	scanner.	Echoplanar	images	were	

collected	in	34	4-mm	slices	at	a	30°	hyperangulation	from	the	anterior-posterior	

commisure	(AC-PC)	line	(TR	=	2000	ms,	TE	=	30	ms,	flip	angle	=	90°,	matrix	=	64	x	64,	voxel	

size	=	3.4	x	3.4	x	4.0	mm3).	A	high	resolution	(1	mm3)	anatomical	Magnetization	Prepared	

Rapid	Gradient	Echo	(MPRAGE)	T1	image	(TR	=	1200	ms,	TE	=	2.66	ms,	flip	angle	=	12°)	

was	collected	to	aid	in	registration.		

Preprocessing	and	all	further	imaging	analyses	were	conducted	using	SPM8	for	fMRI	

(Wellcome	Trust	Centre	for	Neuroimaging,	

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/)	and	consisted	of	slice	timing	

correction,	realignment	to	the	first	functional	image,	coregistration	to	the	participant’s	

high-resolution	structural	image,	normalization	to	the	MNI	template,	and	smoothing	to	

ensure	Gaussianity	(6mm	FWHM).	Participants	with	motion	greater	than	3	mm	or	0.05	

radians	in	any	direction	or	who	had	incomplete	scanning	data	were	excluded.	

Cognitive-behavioral	therapy	

After	completing	baseline	study	procedures,	participants	with	depression	were	offered	12	

weeks	of	cognitive-behavioral	therapy.	The	naturalistic	design	of	our	study	meant	that	

participants	with	depression	were	free	to	enroll	in	the	treatment	phase	of	the	study	or	to	

decline	treatment.	Patients	receiving	treatment	were	treated	by	doctoral-level	clinical	
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psychologists	using	the	manual	by	Munoz	&	Miranda	(Munoz	&	Miranda,	1996).	After	

completing	therapy,	participants	completed	all	study	procedures	again;	control	

participants	also	participated	in	follow-up	analyses	at	similar	time	points	to	patients	in	

treatment	(mean	[SE]	number	of	days	between	first	and	second	time	point:	patients	115	

[2.8],	controls	111	[2.3],	t57	=	0.930,	p	>	.1).	Thirty-seven	treatment	completers	had	clinical	

data	at	both	time	points	and	were	used	for	analyses	of	baseline	learning	measures	

predicting	symptoms	at	follow-up;	nine	of	these	completers	lacked	post-treatment	task	

data,	resulting	in	28	treatment	completers	(and	20	controls)	with	suitable	data	for	analyses	

of	pre-	to	post-treatment	behavioral	and	neural	changes	(see	Figure	1.11	for	a	TREND	

diagram	of	participant	flow	through	treatment).	Similar	to	baseline	analyses,	treatment	

completers	did	not	differ	from	patients	who	did	not	complete	treatment	or	who	were	

excluded	from	analyses	on	any	clinical	or	demographic	measures	except	estimated	IQ.		

Data	analyses	

Model-free	analysis	of	behavior	at	baseline	

Model-free	analyses	assessed	the	proportion	of	correct	choices	and	proportion	of	switches	

per	condition	and	participant	and	compared	between	groups	using	t-tests	and	by	symptom	

severity	using	correlations.		

Reinforcement	learning	model	specification	and	estimation	

Model-based	analyses	were	conducted	using	reinforcement	learning	models	(Rescorla	&	

Wagner,	1972;	Sutton	&	Barto,	1998).	The	primary	reinforcement	learning	model	included	

three	free	parameters	per	condition,	and	was	tested	against	alternative	models	with	
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different	effects	on	values	and	choices	as	well	as	against	models	combining	some	or	all	

parameters	across	reward	and	loss	conditions	(see	Model	validation	for	more	information).	

The	primary	model	included	the	parameters	of	learning	rate	α,	which	indexed	the	speed	of	

updating	based	on	prediction	error,	outcome	sensitivity	ρ,	which	multiplicatively	scaled	

more	extreme	outcome	values,	resulting	in	differential	scaling	of	values,	and	outcome	shift	

τ,	which	linearly	shifted	all	outcome	values,	resulting	in	an	overall	positive	or	negative	

valuation	bias.	Outcome	shift	was	added	to	all	outcome	values	R,	while	outcome	sensitivity	

was	multiplied	on	the	outcome	if	it	was	the	outcome	farther	from	0	(+/-$0.70	to	$0.80)	to	

create	a	modified	outcome	value	R’:		

	

To	update	the	expected	value	Q	for	the	next	trial,	the	expected	value	for	the	current	trial	

was	subtracted	from	this	modified	outcome	value	to	create	the	prediction	error,	which	was	

scaled	by	the	learning	rate	and	added	to	the	expected	value	for	the	current	trial:		

	

Expected	values	were	initialized	at	0	at	the	beginning	of	each	block	and	were	updated	

separately	for	each	stimulus.	Expected	values	were	transformed	into	choice	probabilities	P	

using	a	softmax	function	(here,	the	probability	of	choice	A	relative	to	choice	B	is	shown):		
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Inverse	temperature	β	was	set	at	a	value	estimated	without	outcome	sensitivity	due	to	

collinearity	(β	≈	5);	because	of	this	collinearity,	in	models	with	outcome	sensitivity,	inverse	

temperature	was	fixed	at	this	value	rather	than	estimated	as	a	free	parameter.	In	models	

without	outcome	sensitivity,	inverse	temperature	was	estimated	as	a	free	parameter.		

Participants’	choices	were	fit	to	models	using	hierarchical	Bayesian	estimation,	which	

estimated	the	distribution	of	each	free	parameter	over	the	group	of	participants	and	for	

each	participant	individually	(Daw,	2011;	Wiecki	et	al.,	2015).	By	allowing	group	and	

individual	level	distributions	over	parameters	and	allowing	each	level	to	inform	estimates	

at	other	levels,	hierarchical	Bayesian	estimation	more	accurately	recovers	true	parameters,	

especially	parameters	that	are	somewhat	correlated	as	is	often	the	case	in	reinforcement	

learning	models	(Ahn	et	al.,	2011;	Gershman,	2016;	Huys	et	al.,	2013).	Posterior	

distributions	were	estimated	using	Hamiltonian	Monte	Carlo	as	implemented	in	Stan	via	its	

RStan	interface	(Carpenter	et	al.,	2016,	version	2.11).	Group	level	parameters	were	

specified	as	normally	distributed,	with	a	lower	bound	of	0	on	outcome	sensitivity	(or	

inverse	temperature,	in	models	with	this	parameter)	to	constrain	the	parameter	to	be	

positive.	Parameters	were	given	a	non-centered	parameterization	to	aid	in	estimation	by	

specifying	mean,	scale,	and	error	distributions	for	each	parameter	(Betancourt	&	Girolami,	

2015).	Similar	to	(Gillan	et	al.,	2015;	Otto	et	al.,	2013),	mean	distributions,	estimated	at	the	

group	level,	were	specified	as	normally	distributed	with	priors	of	mean	=	0	and	standard	

deviation	=	10,	for	parameters	that	were	not	logit	transformed,	or	with	standard	deviation	

=	2.5	for	parameters	that	were	logit	transformed.	Scale	distributions,	estimated	at	the	

group	level,	were	given	a	half-Cauchy	prior	(Gelman	et	al.,	2014;	bounded	to	be	greater	

than	0)	with	values	of	0	and	2.5	(0	and	2	for	parameters	that	were	logit	transformed).	Error	
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distributions,	which	were	estimated	for	each	subject,	were	given	a	normal	prior	with	mean	

=	0	and	standard	deviation	=	1.	Similarly,	effects	of	covariates,	and	for	treatment	analyses,	

effects	of	time	and	the	interaction	of	covariate	and	time,	were	given	a	normal	prior	with	

mean	=	0	and	standard	deviation	=	1.	For	learning	rate,	these	parameter	values	were	then	

run	through	a	logistic	transformation	to	bound	values	between	0	and	1.	Therefore,	each	

subject’s	parameter	(for	example,	learning	rate)	consisted	of	a	group	estimated	mean	value	

plus	the	combined	value	of	the	group	estimated	scale	value	multiplied	by	the	individually	

estimated	error	value.	The	effects	of	covariates	and	of	time	were	assumed	to	adjust	the	

mean	of	each	parameter	(due	to	homogeneity	of	variance),	and	so	acted	on	the	mean	value	

of	the	parameter	per	subject.	Models	were	estimated	separately	for	reward	and	loss	

conditions.	Four	chains	were	run	for	each	condition,	with	4000	samples	per	chain	(2000	

after	discarding	warm-up	samples).	Chains	were	visually	inspected	for	convergence	and	

showed	good	mixing,	with	all	values	of	the	potential	scale	reduction	factor	(Gelman	&	

Rubin,	1992)	less	than	1.1.		

Model	validation	

To	test	if	the	primary	RL	model	explained	participants’	behavior	well,	alternate	plausible	

models	that	tested	a	basic	RL	model,	a	model	adding	only	outcome	sensitivity	and	not	

outcome	shift	(per	Huys	et	al.,	2013),	or	a	model	adding	perseverative	effects	on	choices	

independent	of	value	(per	Daw,	2011)	were	tested	and	compared	against	the	primary	

model.	These	alternative	models	consisted	of	(1)	a	basic	reinforcement	learning	model	

without	outcome	shift	or	outcome	sensitivity,	and	with	inverse	temperature	as	a	free	

parameter	(model	α	+	β;	2	free	parameters	per	reward	and	loss	condition);	(2)	a	model	
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with	outcome	sensitivity	and	learning	rate	and	no	outcome	shift	(model	α	+	ρ;	2	free	

parameters	per	condition);	(3)	a	model	accounting	for	value-independent	choice	effects	

that	included	learning	rate,	inverse	temperature,	and	a	perseveration	term	ω:	

	

where	choicet-1	is	1	if	the	stimulus	(A	in	this	example)	was	chosen	on	the	previous	trial	and	

0	if	it	was	not	(model	α	+	β	+	ω;	3	free	parameters	per	condition).		

We	also	assumed	a	priori	that	learning	patterns	differed	between	reward	and	loss	

conditions.	To	test	whether	participants’	behavior	was	better	accounted	by	combining	

parameters	across	reward	and	loss	conditions,	models	with	(1)	all	parameters	combined	

across	reward	and	loss	(total	number	of	parameters	=	3),	(2)	each	parameter	split	between	

conditions	in	turn	(e.g.,	learning	rate	split	between	conditions	while	outcome	sensitivity	

and	outcome	shift	were	combined,	repeated	in	turn	for	outcome	sensitivity	and	outcome	

shift;	total	number	of	parameters	per	model	=	4),	and	(3)	all	parameters	split	between	

conditions	(total	number	of	parameters	=	6).	The	integrated	BIC	(iBIC)	was	computed	from	

the	likelihood	over	the	posterior	distribution,	penalizing	for	the	number	of	parameters	

(Guitart-Masip	et	al.,	2012).	To	check	if	the	best	fitting	model	was	the	same	across	groups,	

iBIC	was	calculated	across	all	participants	as	well	as	within	control	and	depressed	groups	

separately.		

To	ensure	model	parameters	accurately	reflected	participants’	behavior	and	were	

independently	estimable,	several	model	validation	steps	were	conducted.	First,	individually	

estimated	parameters	were	compared	against	model-free	summary	statistics	of	
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performance	and	switching	to	determine	how	parameters	related	to	model-free	behavior.	

Second,	simulated	data	for	100	subjects	was	created	with	three	different	levels	of	the	mean	

value	of	each	parameter	(.25,	.50,	and	.75	for	reward	and	loss	learning	rate;	.50,	1.0,	and	1.5	

for	reward	and	loss	outcome	sensitivity;	-.50,	-.25,	and	0	for	reward	outcome	shift;	and	0,	

.50,	and	1.0	for	loss	outcome	shift);	values	were	chosen	based	on	the	range	of	parameters	

in	real	participants’	behavior.	Model	parameters	were	estimated	for	this	simulated	data	

and	recovered	parameter	values	were	plotted	against	simulated	parameter	values	to	verify	

parameters	could	be	separably	estimated	at	different	values.	Lastly,	to	ensure	parameters	

were	separably	identifiable,	the	samples	from	the	posterior	distributions	for	each	

parameter	were	plotted	against	the	other	parameters	in	each	condition	to	allow	visual	

inspection	of	any	correlations	or	trade-offs	in	the	value	of	each	parameter	across	its	

posterior	distribution.		

Assessment	of	model	based	behavioral	differences	at	baseline	

Estimation	of	parameters	using	both	group	and	individual	level	information	introduces	

dependencies	among	the	individual	level	estimates,	such	that	using	participants’	

parameters	on	an	individual	basis	to	compare	against	outside	measures	(e.g.,	symptom	

severity,	diagnosis)	can	be	biased	(Efron	&	Morris,	1977;	Gelman	et	al.,	2014).	Therefore,	to	

examine	relationships	between	parameters	and	variables	of	interest,	the	effects	were	

estimated	within	the	model	by	introducing	another	parameter	to	index	the	effect	of	the	

variable	of	interest.	To	do	so,	covariates	were	z-scored	or,	in	the	case	of	binary	variables	

such	as	diagnosis,	dummy	coded,	and	entered	into	a	regression	to	predict	the	mean	of	a	
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parameter.	For	example,	the	following	analysis	determines	the	effect	of	anhedonia	on	

learning	rate:		

αtotal	=	αintercept	+	anhedonia*αanhedonia	

In	this	manner,	αanhedonia	represents	the	effect	of	(standardized)	anhedonia	severity	on	

learning	rate.	To	determine	significance,	the	95%	credible	intervals	of	these	parameters	

were	required	to	not	include	0	(i.e.,	to	be	entirely	above	or	below	0).	To	account	for	

potential	nonlinearities	in	the	relationship	between	symptoms	and	behavior	across	clinical	

and	non-clinical	levels	of	depression,	models	were	also	run	within	the	depressed	

participants	only	as	well	as	across	all	participants.	Note	that	as	a	scaling	parameter,	

learning	rate	lies	only	in	the	range	of	0	to	1,	but	to	aid	in	estimation,	this	parameter	was	

estimated	as	a	continuous	variable	and	then	logistically	transformed	to	be	bounded	

between	0	and	1.	Therefore,	the	effects	of	symptoms	on	learning	rate	were	reported	both	

for	untransformed	(continuous)	and	transformed	(range	of	0	to	1)	values	for	ease	of	

interpretation	(figures	show	transformed	distributions	for	ease	of	interpretation).	Analyses	

were	also	run	with	estimated	IQ	and	presence	of	psychotropic	medication	as	additional	

covariates,	but	inclusion	of	these	covariates	did	not	meaningfully	change	any	results.		

Baseline	imaging	analyses	

First	level	imaging	analyses	used	parametric	regressors	of	prediction	error	δ	or	outcome	

value	Rt	at	the	time	of	outcome	and	expected	value	Qt	of	the	chosen	option	at	the	time	of	

onset.	Prediction	error	and	expected	value	were	calculated	based	on	participants’	

individually	estimated	parameters	from	the	reinforcement	learning	model	and	were	z-



	 42	

transformed	prior	to	entering	in	the	imaging	model	(Lebreton	&	Palminteri,	2016).	

Regressors	were	separated	by	condition	(reward	or	loss)	and	all	regressors	were	modeled	

as	stick	functions.	Additional	regressors	of	no	interest	were	included	for	button	presses,	

block	number,	and	six	motion	parameters.	Data	were	high	pass	filtered	with	a	cutoff	of	128	

seconds.		

Primary	group	level	analyses	focused	on	ventral	striatum	and	ventromedial	prefrontal	

cortex,	brain	areas	known	to	be	central	to	reinforcement	learning	(O’Doherty	et	al.,	2007;	

Rangel	et	al.,	2008).	Regions	of	interest	were	defined	from	a	recent	meta-analysis	of	

prediction	error	and	expected	value	BOLD	response	in	reinforcement	learning	tasks	(Chase	

et	al.,	2015);	specifically,	a	6	mm	sphere	was	drawn	around	the	peak	coordinate	from	right	

and	left	striatum	from	prediction	error-related	activation	and	subgenual	anterior	cingulate	

cortex	from	expected	value-related	activation.	The	first	eigenvariate	of	the	beta	values	in	

each	ROI	from	prediction	error,	outcome	value,	and	expected	value	activations	was	

extracted	for	each	participant	and	regressed	against	measures	of	interest.	Additional	whole	

brain	analyses	were	run	to	examine	contributions	of	expected	value	and	outcome	value	

signals	at	the	outcome	time	point.		

To	relate	neural	activation	to	symptom	measures,	BOLD	activity	(ROI	values	and	whole-

brain	activation)	were	correlated	with	symptom	measures.	The	relationship	between	

expected	value	and	prediction	error	related	activity	and	symptom	measures	was	further	

tested	by	testing	the	interaction	of	prediction	error	neural	signal	and	symptom	measures	

on	expected	value	neural	signal	in	striatal	ROIs	(as	in	Greenberg	et	al.,	2015).	Analyses	
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were	also	run	with	estimated	IQ	and	presence	of	psychotropic	medication	as	additional	

covariates;	inclusion	of	these	covariates	did	not	meaningfully	change	any	results.		

Treatment-related	behavioral	analyses	

To	investigate	the	relationship	between	changes	in	reinforcement	learning	parameter	

values	and	changes	in	symptoms	with	the	depressed	participants,	changes	in	symptoms	

were	defined	as	the	percent	change	from	pre-	to	post-treatment,	such	that	higher	values	

indicated	more	improvement.	Similar	to	baseline	analyses,	the	mean	of	each	parameter	was	

estimated	as	a	regression	of	the	intercept	of	the	parameter,	the	within-subject	effect	of	time	

(dummy	coded	for	0	=	first	session	and	1	=	second	session	to	represent	the	change	in	the	

mean	value	from	pre-	to	post-treatment	independent	of	changes	in	symptoms),	the	effect	of	

changes	in	symptoms,	and	the	interaction	of	time	and	changes	of	symptoms	(Gelman	&	Hill,	

2006):	

αtotal	=	αintercept	+	time*αtime	+	Δanhedonia*αanhedonia	+	time*Δanhedonia*αinteraction	

In	this	analysis,	the	αinteraction	parameter	assesses	the	change	in	learning	rate	from	the	first	

to	second	session	that	correlates	with	percent	change	in	anhedonia.	Analyses	were	also	run	

with	estimated	IQ	and	presence	of	psychotropic	medication	as	additional	time-independent	

covariates;	inclusion	of	these	covariates	did	not	meaningfully	change	any	results.		

To	assess	practice	effects	on	the	task,	a	similar	analysis	was	carried	out	in	control	

participants,	but	omitting	the	effects	of	changes	with	symptoms.	Therefore,	this	analysis	

examined	overall	changes	in	parameters	from	the	first	to	second	visit	in	participants	whose	

behavior	was	not	affected	by	treatment	or	natural	fluctuations	in	symptoms.		
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Treatment	imaging	analyses	

To	assess	changes	with	treatment	that	correlate	with	percent	change	in	symptoms,	changes	

in	neural	activity	within	ROIs	of	striatum	and	subgenual	anterior	cingulate	cortex	were	

correlated	with	percent	change	in	symptoms.	Additionally,	to	test	neural	predictors	of	

treatment,	pre-treatment	activity	within	ROIs	was	correlated	with	percent	change	in	

symptoms.		

Statistical	analysis	

Linear	regressions	were	run	on	behavioral	data	(within	model	estimation,	see	above	for	

details)	and	first	and	second	level	imaging	data.	For	Bayesian	analyses,	95%	credible	

intervals	were	used	to	determine	significance,	and	for	frequentist	analyses,	alpha	<	.05.	

Whole	brain	imaging	analyses	used	an	initial	cluster	defining	threshold	of	p<.001	and	a	

cluster-level	FDR	significance	of	p<.05	(Woo	et	al.,	2014).		
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Figure	1.1.	Task	schematic	and	overall	learning	curves.	A)	Schematic	description	of	

reinforcement	learning	task.	Participants	choose	between	two	stimuli,	view	the	monetary	

outcome	of	the	choice,	and	learn	over	time	which	is	the	‘better’	option.	The	task	involved	

blocks	consisting	of	trials	with	all	reward	(top)	and	all	loss	(bottom)	outcomes.	B)	Reward	

and	loss	learning	performance.	Performance	was	quantified	as	proportion	of	choices	that	

were	the	‘better’	option.	Over	time,	participants	show	learning	(running	average	over	three	

trials;	averaged	over	all	blocks	in	condition;	mean	±	SE).	Top	panel	(navy)	comprises	

reward	learning	blocks	while	bottom	panel	(maroon)	comprises	loss	learning	blocks.	

Behavior	is	separated	by	diagnostic	group,	with	control	participants’	behavior	marked	by	a	

solid	line	and	the	behavior	of	participants	with	depression	marked	by	a	dotted	line	in	each	

condition.		
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Figure	1.2.	Model	fit	and	parameter	recovery.	A)	The	model	with	learning	rate	α,	

outcome	sensitivity	ρ,	and	outcome	shift	τ	fits	better	across	all	participants	(large	left	

panel),	control	participants	(top	right	panel),	and	participants	with	depression	(bottom	

right	panel)	across	reward	(x	axis)	and	loss	(y	axis)	conditions,	relative	to	plausible	

alternative	models	of:	learning	rate	α	and	inverse	temperature	β;	learning	rate	α,	inverse	

temperature	β,	and	value-independent	perseveration	ω;	and	learning	rate	α	and	outcome	

sensitivity	ρ.	Values	shown	are	integrated	BIC	(iBIC)	values	(Guitart-Masip	et	al.,	2012).	B)	

Parameter	values	can	be	independently	recovered	from	simulated	data;	100	participants	

with	mean	parameter	values	at	three	different	levels,	determined	based	on	the	range	of	

real	participants’	values,	were	simulated	and	recovered.	Top	panel	shows	reward	
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parameters	and	bottom	panel	shows	loss	parameters,	with	simulated	values	indicated	by	

gray	dots	connected	by	dotted	gray	lines,	and	recovered	values	indicated	by	navy	(reward)	

or	maroon	(loss)	symbols.	Squares	indicate	recovered	learning	rate	values,	circles	indicate	

recovered	outcome	sensitivity	values,	and	crosses	indicate	recovered	outcome	shift	values.	

C)	Separating	all	parameters	by	condition	(reward	and	loss)	fits	better	across	all	

participants,	within	control	participants	only,	and	within	participants	with	depression	only,	

relative	to	models	combining	one	or	all	parameters	across	conditions.	Values	shown	are	

integrated	BIC	(iBIC)	values.		
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Figure	1.3.	Posterior	distributions	of	parameters.	Top	panels	(navy)	indicate	

relationships	among	posterior	distributions	of	reward	parameters	and	bottom	panels	

(maroon)	of	loss	parameters.	Each	dot	represents	a	sample	from	the	posterior	distribution	

of	all	participants	included	in	baseline	analyses	during	MCMC	sampling	(after	discarding	

warm-up	samples).			
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Figure	1.4.	Relationship	of	model	parameters	with	model-free	summaries	of	

behavior.	Parameters	of	learning	rate	(left	column),	outcome	sensitivity	(middle	column),	

and	outcome	shift	(right	column)	show	differentiable	relationships	with	overall	proportion	

of	correct	choices	(top	row)	and	overall	proportion	of	switches	(bottom	row).	Navy	circles	

denote	values	from	the	reward	learning	condition	and	maroon	circles	denote	values	from	

the	loss	learning	condition.	Independent	of	condition,	learning	rate	influences	trial-by-trial	

changes	in	behavior	but	shows	small	relationships	with	model-free	summaries.	Higher	

outcome	sensitivity	leads	to	better	discrimination	of	outcome	values	and	better	

performance	and	fewer	switches,	while	higher	outcome	shift	does	not	lead	to	large	changes	

in	performance	but	reduces	the	tendency	to	switch.		
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Figure	1.5.	Relationship	of	behavioral	and	neural	indicators	of	reinforcement	

learning	and	symptoms	of	depression.	A)	Behaviorally,	in	reward	learning	in	
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participants	with	depression,	greater	anhedonia	is	related	to	lower	learning	rate	and	

higher	outcome	sensitivity.	Violin	plots	indicate	posterior	distribution	of	relationship	

between	behavioral	learning	parameter	and	symptom	measure;	navy	violin	plots	with	

asterisks	indicate	significant	relationships	(95%	credible	interval	does	not	include	0).	B)	

Neurally,	anhedonia	moderates	the	relationship	between	striatal	signaling	to	prediction	

error	and	expected	value.	Green	dots	indicate	controls,	blue	dots	indicate	low	anhedonic	

participants	with	depression	(based	on	median	split),	and	purple	dots	indicate	highly	

anhedonic	participants	with	depression	for	the	right	striatum	region	of	interest	activation	

to	prediction	error	(x	axis)	and	expected	value	(y	axis).	Respectively	colored	lines	indicate	

regression	lines	for	each	group	showing	moderation	of	the	prediction	error	–	expected	

value	relationship	by	anhedonia.	C)	Behaviorally,	in	loss	learning	across	all	participants,	

greater	negative	affect	is	related	to	more	negative	outcome	shift.	Violin	plots	indicate	

posterior	distribution	of	relationship	between	behavioral	learning	parameter	and	symptom	

measure;	maroon	violin	plots	with	asterisks	indicate	significant	relationships	(95%	

credible	interval	does	not	include	0).	D)	Neurally,	negative	affect	is	negatively	related	to	

subgenual	anterior	cingulate	cortex	(sgACC)	signaling	of	prediction	error	at	the	time	of	

outcome	receipt.	Maroon	dots	indicate	individual	participants’	negative	affect	severity	

versus	sgACC	region	of	interest	activation	to	prediction	error;	regression	line	(gray)	

indicates	overall	negative	relationship.	
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Figure	1.6.	Lack	of	differences	in	expected	value	and	prediction	error	reward	signals	

in	depression.	Left	column	is	modulation	of	brain	activity	by	the	parametric	modulator	of	

expected	value	at	time	of	stimulus	onset	and	right	column	is	modulation	of	brain	activity	by	

the	parametric	modulator	of	prediction	error	at	the	time	of	outcome;	top	row	is	control	

participants	and	bottom	row	is	participants	with	depression.	Values	are	shown	p<.05	

whole	brain	FDR	corrected	(p<.001	cluster	forming	threshold).		
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Figure	1.7.	Differences	in	processing	of	loss	outcomes	by	negative	affect.	A)	Significant	

whole-brain	corrected	differences	by	negative	affect	in	modulation	of	brain	activity	with	

level	of	outcome	(FDR	p<.05,	cluster	forming	threshold	of	p<.001).	Group-level	covariate	of	

negative	affect	on	a	parametric	modulator	of	outcome	value	at	the	time	of	outcome	receipt.	

B)	Processing	of	outcome	value	separated	into	low	(top)	and	high	(bottom)	negative	affect	

participants.	Note	that	both	groups	show	robust	responses	that	are	modulated	by	outcome	

value	(activation	is	significant	p<.05	corrected	&	displayed	at	p<.005	uncorrected),	but,	

reflecting	the	differences	in	signal	by	level	of	negative	affect	shown	in	A),	these	responses	

show	a	different	spatial	pattern	and	direction	of	activation	in	low	and	high	negative	affect	

participants.			

	



	 68	

	

O
ut

co
m

e 
S

hi
ft 

~ 
%

 
S

ym
pt

om
 C

ha
ng

e 

–0.5 

0 

1.5 

Le
ar

ni
ng

 R
at

e 
~ 

%
 

S
ym

pt
om

 C
ha

ng
e 1 

–1 

0 

D
ep

re
ss

io
n 

50 

0 

20 

Pre-treatment  Post-treatment 
Timepoint 

A
nh

ed
on

ia
 100 

40 

70 

Pre-treatment  Post-treatment 
Timepoint 

N
eg

at
iv

e 
A

ffe
ct

 60 

20 

40 

Pre-treatment  Post-treatment 
Timepoint 

Reward Learning 

Loss Learning 

Symptom Change with Treatment 

Le
ar

ni
ng

 R
at

e 
~ 

%
 

S
ym

pt
om

 C
ha

ng
e 1 

–1 

0 

* * *

O
ut

co
m

e 
S

en
si

tiv
ity

 ~
 

%
 S

ym
pt

om
 C

ha
ng

e 

2 

–2 

0 
* *

O
ut

co
m

e 
S

en
si

tiv
ity

 ~
 

%
 S

ym
pt

om
 C

ha
ng

e 

4 

–4 

0 *

O
ut

co
m

e 
S

hi
ft 

~ 
%

 
S

ym
pt

om
 C

ha
ng

e 1 

–1 

0 

*

A	

B	

C	

	

Figure	1.8.	Changes	in	depression	symptoms	and	behavioral	reinforcement	learning	

parameters	with	treatment.	A)	Changes	in	symptoms	from	pre-to	post-treatment	for	

individual	patients	(gray	lines)	and	on	average	(gold	line).	Overall	depression	symptoms,	

anhedonia,	and	negative	affect	all	decreased	on	average	from	pre-	to	post-treatment	with	

cognitive	behavioral	therapy	(CBT),	but	with	large	heterogeneity	in	treatment	response	

across	participants.	B)	Relationship	between	changes	in	reinforcement	learning	



	 69	

parameters	for	reward	learning	and	percent	decrease	in	symptom	severity	with	treatment.	

Increases	in	learning	rate	and	decreases	in	outcome	sensitivity	correlated	with	

improvements	in	symptoms,	particularly	anhedonia,	during	reward	learning.	Violin	plots	

indicate	posterior	distribution	of	relationship	between	changes	in	behavioral	learning	

parameter	and	percent	change	in	symptom	measure;	navy	violin	plots	with	asterisks	

indicate	significant	relationships	(95%	credible	interval	does	not	include	0).	C)	

Relationship	between	changes	in	reinforcement	learning	parameters	for	loss	learning	and	

percent	decrease	in	symptom	severity	with	treatment.	Increases	in	outcome	shift	and	

decreases	in	outcome	sensitivity	correlated	with	improvements	in	negative	affect	during	

loss	learning.	Violin	plots	indicate	posterior	distribution	of	relationship	between	changes	in	

behavioral	learning	parameter	and	percent	change	in	symptom	measure;	maroon	violin	

plots	with	asterisks	indicate	significant	relationships	(95%	credible	interval	does	not	

include	0).		
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Figure	1.9.	Neural	predictors	of	symptom	improvement	and	changes	with	treatment.	

A)	Moderation	of	striatal	expected	value-prediction	error	relationship	by	pre-treatment	

anhedonia	is	significantly	reduced	post-treatment.	Filled	green	dots	indicate	pre-treatment	

values	for	controls,	green	open	circles	indicate	post-treatment	values	for	controls,	filled	

purple	dots	indicate	pre-treatment	values	for	highly	anhedonic	participants	with	

depression,	and	open	purple	circles	indicate	post-treatment	values	for	participants	with	

high	anhedonia	pre-treatment.	Values	are	right	striatum	region	of	interest	activation	to	

prediction	error	(x	axis)	and	expected	value	(y	axis).	Solid	lines	represent	regression	lines	
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pre-treatment	and	dotted	lines	represent	regression	lines	post-treatment,	with	a	significant	

change	in	slope	for	the	high	anhedonia	group	and	no	change	for	controls.	B)	Pre-treatment	

sgACC	signal	does	not	correlate	with	changes	in	negative	affect.	Gold	dots	indicate	patients’	

percent	change	in	negative	affect	versus	pre-treatment	sgACC	region	of	interest	activation	

to	prediction	error.	Line	is	regression	line	showing	lack	of	relationship.	C)	Pre-treatment	

striatal	expected	value	signal	correlates	negatively	with	changes	in	anhedonia.	Gold	dots	

indicate	patients’	percent	change	in	anhedonia	versus	pre-treatment	right	striatum	region	

of	interest	activation	to	expected	value.	Line	is	regression	line	showing	significant	negative	

relationship.	D)	Pre-treatment	striatal	prediction	error	signal	correlates	positively	with	

changes	in	anhedonia.	Gold	dots	indicate	patients’	percent	change	in	anhedonia	versus	pre-

treatment	right	striatum	region	of	interest	activation	to	prediction	error.	Line	is	regression	

line	showing	significant	positive	relationship.		
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Figure	1.10.	Stability	of	parameter	estimates	over	time	for	control	participants.	Left	

panel	is	reward	parameters	and	right	panel	is	loss	parameters;	violin	plots	indicate	

posterior	densities	of	the	within-subject	change	in	each	parameter	from	the	first	timepoint	

to	the	second,	with	a	value	of	0	representing	no	change	in	learning	parameters.	
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Figure	1.11.	TREND	diagram	of	flow	of	participants	with	depression	through	study,	

including	optional	CBT	portion.	Bolded	boxes	on	left	side	of	diagram	indicate	final	

numbers	for	baseline	analyses	(top),	analyses	of	correlations	with	treatment	(middle),	and	

predictors	of	treatment	outcome	(bottom).	
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Tables	

Table	1.1:	Baseline	clinical	and	demographic	data	

	 Controls	 Depression	 Group	Comparison	

Age		 32.38	(1.90)	 35.42	(1.38)	 t100	=	-1.36,	p	>	.1	

Gender	(#	[%])	 20	(62.5)	 49	(71.0)	 χ21	=	0.392,	p	>	.1	

Estimated	IQ	 107.3	(2.30)	 107.6	(1.30)	 t100	=	-0.098,	p	>	.1	

Depression	severitya		 2.0	(0.465)	 31.16	(0.963)	 t100	=	-20.2,	p	<	.001	

Anhedoniab		 44.75	(1.72)	 83.83	(1.16)	 t100	=	-19.1,	p	<	.001	

Negative	affectc	 23.06	(1.05)	 45.99	(1.09)	 t100	=	-13.2,	p	<	.001	

All	values	are	mean	(SE)	unless	otherwise	noted.	

aBeck	Depression	Inventory	total;	b	MASQ	anhedonic	depression	subscale;	cMASQ	general	

distress	subscale	
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Table	1.2.	Reward	prediction	error,	MDD	group	(n	=	69)	

Cluster	

Number	 Region	

Peak	MNI	

Coordinate	

Peak	T	

Value	

Cluster	

Size	

1	 Right	ventral	striatum	 14	 6	 -12	 6.04	 2001	

		 Ventromedial	prefrontal	cortex	 -12	 38	 -10	 4.74	 		

2	 Left	ventral	striatum	 -16	 6	 -12	 5.53	 812	

3	 Left	precuneus	 -4	 -50	 32	 5.3	 848	

4	 Left	superior	parietal	lobule	 -32	 -78	 46	 4.43	 323	

5	 Left	cerebellum	 -14	 -82	 -24	 3.94	 213	
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Table	1.3:	Reward	expected	value,	MDD	group	(n	=	69)	

Cluster	

Number	 Region	

Peak	MNI	

Coordinate	

Peak	T	

Value	

Cluster	

Size	

1	 Right	fusiform	gyrus	 32	 -48	 -18	 -7.34	 20497	

		 Left	inferior	parietal	lobule	 -34	 -62	 44	 -7	 		

		 Right	occipital	lobe	 36	 -78	 26	 -6.87	 		

2	 Right	middle	frontal	gyrus	 48	 48	 18	 -6.56	 7339	

		 Right	middle	cingulate	gyrus	 6	 28	 36	 -6.5	 		

3	 Right	calcarine	sulcus	 26	 -38	 18	 6.33	 608	

4	 Left	calcarine	sulcus	 -26	 -42	 10	 6.2	 621	

5	 Right	striatum	 16	 4	 -4	 -6.17	 3403	

		 Left	thalamus	 -6	 -10	 -4	 -5.45	 		

6	 Left	middle	frontal	gyrus	 -52	 24	 34	 -5.74	 1335	

7	 Left	insula	 -30	 20	 4	 -5.59	 304	

8	 Right	superior	temporal	gyrus	 58	 -32	 14	 5.34	 1990	

9	 Left	medial	frontal	gyrus	 -8	 60	 16	 5.17	 1235	

10	 Left	superior	temporal	gyrus	 -54	 -32	 14	 4.8	 683	

11	 Right	postcentral	gyrus	 16	 -46	 68	 4.6	 514	

12	 Right	subgenual	cingulate	 6	 24	 -4	 4.58	 239	

13	 Left	postcentral	gyrus	 -18	 -48	 68	 4.38	 160	
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Table	1.4.	Reward	prediction	error,	nondepressed	controls	(n	=	32)	

Cluster	

Number	 Region	

Peak	MNI	

Coordinate	

Peak	T	

Value	

Cluster	

Size	

1	 Left	striatum	 -24	 0	 -4	 7.65	 21994	

		 Right	caudate	 20	 4	 16	 6.57	 		

2	 Right	cerebellum	 20	 -80	 -28	 7.31	 8522	

		 Left	middle	temporal	gyrus	 -60	 -44	 -10	 6.94	 		

		 Left	cerebellum	 -36	 -72	 -46	 6.57	 		

3	 Left	angular	gyrus	 -50	 -68	 26	 5.68	 5614	

		 Posterior	cingulate	gyrus	 -2	 -36	 38	 5.2	 		

4	 Right	middle	frontal	gyrus	 28	 38	 46	 5.19	 893	

5	 Right	middle	temporal	gyrus	 58	 -38	 -12	 4.26	 213	
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Table	1.5.	Reward	expected	value,	nondepressed	controls	(n	=	32)	

Cluster	

Number	 Region	

Peak	MNI	

Coordinate	

Peak	T	

Value	

Cluster	

Size	

1	 Right	inferior	parietal	lobule	 42	 -62	 42	 -7.44	 2077	

2	 Right	middle	frontal	gyrus	 46	 10	 34	 -6.94	 4764	

		 Right	middle	cingulate	gyrus	 8	 18	 44	 -6.58	 		

3	 Midbrain	 -8	 -14	 -12	 -6.9	 424	

4	 Left	inferior	frontal	gyrus	 -42	 46	 12	 -6.29	 745	

5	 Right	precentral	gyrus	 20	 -20	 78	 6.21	 4684	

6	 Right	insula	 32	 22	 -8	 -5.98	 437	

7	 Right	thalamus	 16	 -32	 20	 5.94	 265	

8	 Left	inferior	parietal	lobule	 -36	 -60	 42	 -5.62	 1321	

9	 Left	cerebellum	 -38	 -62	 -50	 -5.55	 1909	

10	 Left	thalamus	 -18	 -36	 14	 5.39	 284	

11	 Right	superior	temporal	gyrus	 54	 -10	 -2	 5.25	 517	

12	 Right	fusiform	gyrus	 32	 -60	 -10	 -4.93	 1154	

13	 Left	inferior	frontal	gyrus	 -46	 2	 30	 -4.84	 183	

14	 Subgenual	anterior	cingulate	
cortex	

6	 28	 -4	 4.78	 170	

15	 Left	insula	 -32	 18	 -8	 -4.55	 284	

16	 Ventromedial	prefrontal	cortex	 0	 48	 -20	 4.46	 582	

17	 Right	striatum	 16	 4	 -2	 -4.4	 151	

18	 Left	precuneus	 -8	 -54	 26	 4.19	 269	
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Table	1.6:	Loss	outcome	value	correlated	with	negative	affect	(MASQ	Mixed	Distress	

subscale;	n	=	101)	

Cluster	

Number	 Region	

Peak	MNI	

Coordinate	

Peak	T	

Value	

Cluster	

Size	

1	 Left	precuneus	 -6	 -64	 44	 -4.46	 277	

2	 Subgenual	anterior	cingulate	 4	 32	 -2	 -4.39	 976	

	

	

Table	1.7:	Loss	outcome	value,	low	negative	affect	participants	(n	=	52)	

Cluster	

Number	 Region	

Peak	MNI	

Coordinate	

Peak	T	

Value	

Cluster	

Size	

1	 Left	middle	frontal	gyrus	 -20	 32	 44	 6.5	 848	

2	 Right	superior	frontal	gyrus	 8	 8	 60	 -5.87	 869	

3	 Ventromedial	prefrontal	cortex	 4	 54	 -10	 4.86	 1287	

4	 Right	supplementary	motor	area	 4	 -26	 58	 4.63	 1357	

5	 Right	ventral	striatum	 12	 4	 -14	 4.61	 190	

6	 Left	precuneus	 -12	 -46	 40	 4.44	 578	

7	 Right	cerebellum	 52	 -72	 -42	 4.39	 200	
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Table	1.8:	Loss	outcome	value,	high	negative	affect	participants	(n	=	49)	

Cluster	

Number	 Region	

Peak	MNI	

Coordinate	

Peak	T	

Value	

Cluster	

Size	

1	 Right	supplementary	motor	area	 12	 6	 68	 -6.09	 2417	

2	 Right	insula	 42	 16	 -6	 -5.23	 430	

3	 Right	precentral	gyrus	 24	 -10	 36	 5	 618	

4	 Right	inferior	parietal	lobe	 40	 -40	 26	 4.68	 269	

5	 Left	insula	 -40	 24	 0	 -4.49	 283	

6	 Left	postcentral	gyrus	 -34	 -28	 32	 4.27	 381	
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Abstract	
Disruptions	in	learning	and	valuation	are	central	features	of	many	forms	of	

psychopathology	and	may	be	responsive	to	existing	treatments.	However,	these	

disruptions	may	be	more	directly	targeted	through	retraining	techniques.	In	the	current	

study,	a	novel	approach	to	learning	retraining	was	tested	in	a	large	online	sample	in	

participants	with	a	range	of	depressive	symptoms.	Participants	were	asked	targeted	

questions	based	on	reinforcement	learning	theory	and	parameters	of	a	reinforcement	

learning	model	were	compared	between	conditions	with	different	queries	versus	a	no-

query	control	condition.	Different	queries	significantly	changed	different	parameters	in	

different	directions,	an	effect	that	was	not	moderated	by	depression	severity.	These	

findings	point	toward	the	potential	to	use	this	approach	to	change	disrupted	learning	

parameters	in	disorders	like	depression.		
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Introduction	

Disruptions	in	learning	and	valuation	are	central	features	of	many	forms	of	

psychopathology,	including	reduced	processing	of	positive	information	in	anhedonia	and	

altered	learning	about	negative	events	in	anxiety	and	heightened	negative	affect	(Bouton,	

Mineka,	&	Barlow,	2001;	Eshel	&	Roiser,	2010).	Recent	work	in	computational	modeling	of	

disrupted	learning	processes	suggests	that	alterations	in	algorithmically	defined	learning	

parameters	can	predict	and	correlate	with	symptom	improvement	from	existing	

treatments	(Huys	et	al.,	2016;	Vrieze	et	al.,	2013).	Directly	targeting	disrupted	learning	

processes	has	the	potential	to	more	precisely	and	effectively	treat	psychopathology;	

however,	approaches	that	lead	to	robust,	generalizable	changes	in	learning	are	lacking.	In	

the	current	study,	we	set	out	to	develop	a	learning	retraining	paradigm	to	test	the	

feasibility	of	altering	learning	in	a	systematic,	enduring	fashion.		

Experimental	work	aimed	at	understanding	which	aspects	of	learning	and	decision	

making	are	disrupted	in	psychiatric	disorders	has	taken	advantage	of	the	precision	

afforded	by	computational	models,	particularly	reinforcement	learning,	that	describe	these	

processes.	Reinforcement	learning	is	a	mathematically	formalized,	neurobiologically	

grounded	framework	to	describe	value-related	learning	processes	(Montague,	Dayan,	&	

Sejnowski,	1996;	Schultz,	Dayan,	&	Montague,	1997;	Sutton	&	Barto,	1998)	and	provides	a	

method	to	specify	and	understand	learning	across	levels	of	analysis	(Niv	&	Langdon,	2016).	

Reinforcement	learning	models	formalize	learning	as	the	process	of	updating	values	

associated	stimuli	based	on	the	discrepancy	between	the	experienced	and	expected	

outcomes	(known	as	prediction	error).	Free	parameters	in	this	model,	which	can	be	
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estimated	based	on	learning	behavior	or	used	in	simulations	to	understand	varied	

influences	on	learning,	index	how	much	prediction	error	is	used	to	update	values	on	each	

trial	(learning	rate)	and	how	much	the	values	or	probabilities	of	different	outcomes	are	

dissociated	(outcome	sensitivity	or	inverse	temperature),	among	others	(Daw,	2011).	

If	reinforcement	learning	models	can	represent	learning	and	decision	making	

dysfunctions	that	characterize	psychiatric	disorders,	understanding	how	to	change	aspects	

of	reinforcement	learning	would	lead	to	new	insights	in	treating	these	disorders;	however,	

how	to	create	persistent	changes	in	learning	behavior	is	unclear.	Previous	work	has	shown	

that	people	can	change	learning	behavior	within	a	task	under	certain	conditions.	Instructed	

knowledge	about	tasks,	such	as	giving	information	about	the	probabilities	of	outcomes	

during	learning,	changes	participants’	behavior	such	that	they	incorporate	this	explicit	

knowledge	instead	of	relying	solely	on	experienced	prediction	errors	for	learning	(Atlas,	

Doll,	Li,	Daw,	&	Phelps,	2016;	Li,	Delgado,	&	Phelps,	2011).	Meanwhile,	implicitly	altering	

aspects	of	the	task	environment,	such	as	modulating	the	volatility	of	outcomes	(Behrens,	

Woolrich,	Walton,	&	Rushworth,	2007;	Pulcu	&	Browning,	2017),	or	re-presenting	past	

choices	(Bornstein,	Khaw,	Shohamy,	&	Daw,	2017),	changes	behavior	in	accordance	with	

these	environmental	manipulations.	These	findings	provide	support	that	learning	can	be	

systematically	changed;	however,	changes	in	learning	from	these	explicit	or	implicit	

changes	is	unlikely	to	persist	in	the	absence	of	instructions	(in	the	case	of	explicit	changes)	

or	environmental	alterations	(for	implicit	changes).		

A	middle	ground	of	learning	training	would	provide	people	with	guidance	about	

changing	learning,	similar	to	instructed	learning,	while	allowing	them	to	formulate	

independent	adjustments	to	meet	their	goals,	similar	to	responding	to	changing	
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environments.	Existing	approaches	to	behavior	change	in	psychopathology,	such	as	

cognitive	behavioral	therapy,	effect	change	through	raising	awareness	of	relevant	aspects	

of	behavior	through	targeted	questions	while	allowing	patients	to	generate	and	practice	

new	behaviors	to	use	in	a	variety	of	situations	(Beck,	2011).	In	these	approaches,	

interventions	that	are	explicit	to	the	learner	and	can	be	used	in	other	situations	are	an	

important	component	of	generalization	and	eventual	treatment	success	(Swan,	Carper,	&	

Kendall,	2016).	Therefore,	we	set	out	to	test	whether	a	similar	approach	would	be	effective	

in	changing	reinforcement	learning.		

In	the	current	study,	we	aimed	to	establish	whether	altering	reinforcement	learning	

through	explicit	reminders	is	a	feasible	approach	to	targeting	changes	in	learning.	We	

tested	a	suite	of	specific	approaches	to	determine	which	were	powerful	enough	to	change	

learning	in	a	single	session,	with	the	eventual	goal	of	extending	this	paradigm	to	target	

psychopathology-related	learning	dysfunctions	over	multiple	sessions.	We	hypothesized	

that	querying	about	task	components	related	to	aspects	of	learning	would	change	these	

facets	of	behavior	while	leaving	other	learning	processes	intact.	Specifically,	we	

hypothesized	that	querying	about	prediction	error	or	components	of	prediction	error	

would	increase	learning	rate	and	that	querying	about	the	probability	or	value	of	outcomes	

would	increase	outcome	sensitivity	while	querying	about	the	differences	in	value	between	

options	would	decrease	outcome	sensitivity.	

	

Results	

Participants	completed	fifty	trials	of	a	common	task	used	to	measure	reinforcement	

learning	(Pessiglione,	Seymour,	Flandin,	Dolan,	&	Frith,	2006).	To	create	an	explicit	
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learning	manipulation,	participants	were	queried	every	three	trials	about	a	reinforcement	

learning-related	aspect	of	the	task	(Figure	2.1a).	Participants	were	assigned	to	one	

treatment	upon	starting	the	task	and	each	treatment	consisted	of	one	type	of	query	only.	

Queries	were	designed	to	test	effects	on	components	of	reinforcement	learning,	including	

value	estimation,	probability	estimation,	updating	values	of	chosen	and	unchosen	options,	

comparison	of	values,	and	prediction	error	(see	Table	2.1	for	the	full	list	of	treatments).	

Some	queries	were	positively	valenced	(asking	about	better	outcomes,	high	value	options,	

etc.),	while	others	were	negatively	valenced	(queried	worse	outcomes,	low	value	options,	

etc.).	Participants	responded	to	queries	by	moving	a	slider	bar	to	their	answer,	but	did	not	

receive	any	feedback	on	their	answers	to	queries.	Participants	assigned	to	the	active	

control	treatment	were	asked	to	move	the	slider	bar	to	a	certain	point	rather	than	answer	a	

learning-related	query.		

Participants	were	recruited	through	Amazon’s	Mechanical	Turk	platform.	After	

basic	data	cleaning	and	manipulation	checks	(excluding	participants	with	poor	

performance	or	incomplete	learning	data,	see	Methods	for	further	details),	1,299	

participants	(approximately	100	per	query;	200	in	the	active	control	condition)	were	

included	in	analyses.	Simulation-based	power	analyses	based	on	parameters	previously	

estimated	from	Study	1	indicated	the	study	was	sufficiently	powered	to	detect	a	small	to	

medium	effect	size	of	changes	in	learning	parameters	with	queries.	Participants	reported	a	

range	of	depression,	anxiety,	and	stress	symptoms,	including	a	high	proportion	of	

participants	reporting	clinically	elevated	symptoms	(22-32%	of	sample,	consistent	with	

previous	reports	in	online	crowdsourced	populations	[Arditte,	Demet,	Shaw,	&	Timpano,	

2016;	Chandler	&	Shapiro,	2016];	see	Table	2.2	for	additional	demographic	information).		
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We	first	assessed	the	acceptability	and	feasibility	of	our	retraining	task	with	

participants.	Overall,	participants	rated	the	task	as	engaging	(mean	=	6.5/10,	mode	=	10),	

interesting	(mean	=	6.3,	mode	=	10)	and	not	difficult	(mean	=	3.0,	mode	=	0).	Participants	

also	rated	their	positive	and	negative	affect	before	and	after	completing	the	test,	and	

participants	who	rated	the	task	as	more	engaging	and	interesting	also	reported	increases	in	

positive	affect	(rs	=	.40	and	.44,	ps	<	.001)	and	decreases	in	negative	affect	(rs	=	-.15	and	-

13,	ps	<	.001),	while	those	who	rated	the	task	as	not	difficult	reported	a	decrease	in	

negative	affect	(r	=	.08,	p	<	.01;	Figure	2.1b).	Ratings	of	engagement,	interest,	and	difficulty	

did	not	differ	by	treatment	(ANOVA	of	effect	of	treatment	on	ratings:	all	Fs	<	1.7,	ps	>	.05).	

Participants	displayed	intact	learning	across	all	treatments	(Figure	2.2),	showing	initial	

performance	near	chance,	gradual	improvement	over	time,	and	a	plateau	in	performance	

near	the	matching	ratio	of	75%	(Herrnstein,	1974)	for	most	treatments.	Accuracy	on	

responses	to	queries	was	also	high	(Figure	2.2).	To	assess	whether	participants	were	

focusing	on	answering	queries	accurately	at	the	expense	of	performing	the	learning	task	

well,	we	examined	the	relationship	between	choice	accuracy	on	the	learning	task	and	query	

accuracy.	Overall,	participants	who	performed	better	at	the	learning	task	had	more	

accurate	responses	to	queries	(r	=	.138,	p	<	.001;	Figure	2.5a),	suggesting	that	accurate	

performance	on	the	learning	task	and	attending	to	queries	were	not	at	odds.		Together,	

these	data	confirm	that	participants	found	the	task	acceptable	and	displayed	both	good	

performance	on	the	learning	task	and	accurate	responses	to	queries,	supporting	the	use	of	

the	task	in	retraining	approaches.		

Examination	of	learning	curves	also	showed	differences	in	learning	patterns	by	

treatment;	to	quantify	these	learning	differences,	we	assessed	the	effect	of	queries	on	
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reinforcement	learning	parameters.	We	estimated	learning	parameters	of	learning	rate	

(measuring	the	speed	of	value	updating	based	on	prediction	error)	and	outcome	sensitivity	

(measuring	the	relative	valuation	of	high	versus	low	outcomes),	based	on	a	RL	model	

previously	validated	in	this	learning	task	and	sensitive	to	depression-related	alterations	in	

reward	learning	(see	Paper	1).	Parameters	were	estimated	using	hierarchical	Bayesian	

estimation	within	a	model	contrasting	parameters	for	each	treatment	group	against	the	

active	control	group,	covarying	for	depression	symptoms.	Posterior	probability	

distributions	of	the	effects	of	each	treatment	on	parameters	are	plotted	in	Figure	2.3,	with	

significant	effects	plotted	with	opaque	colors.	The	treatment	with	queries	assessing	value	

estimation	of	the	most	recently	chosen	option	resulted	in	a	higher	learning	rate	

(transformed	mean	effect	on	learning	rate	=	1.05,	95%	credible	interval	[CI]	.182	to	1.95),	

while	queries	assessing	the	value	of	the	unchosen	option	resulted	in	a	lower	learning	rate	

(transformed	mean	effect	=	-1.01,	95%	CI	-2.00	to	-0.021).	For	outcome	sensitivity,	queries	

asking	about	the	probability	of	both	high	(mean	effect	=	0.225,	95%	CI	0.071	to	0.419)	and	

low	outcomes	(mean	effect	=	0.174,	95%	CI	0.015	to	0.415),	the	least	ever	received	for	an	

option	(mean	effect	=	0.214,	95%	CI	0.066	to	0.412),	and	the	value	of	the	high	value	option	

(mean	effect	=	0.165,	95%	CI	0.054	to	0.283)	all	increased	outcome	sensitivity.	Next,	to	

determine	the	effects	of	the	overall	valence	of	the	query,	queries	were	grouped	by	valence	

and	the	effects	of	all	positively	and	all	negatively	valenced	queries	were	compared	to	the	

active	control	(Figure	2.4).	Both	groups	of	valenced	queries	increased	outcome	sensitivity	

(positively	valenced	queries:	mean	effect	=	0.123,	95%	CI	0.041	to	0.205;	negatively	

valenced	queries:	mean	effect	=	0.114,	95%	CI	0.019	to	0.209),	while	negatively	valenced	

queries	selectively	reduced	learning	rate	(positively	valenced	queries:	mean	effect	=	-0.102,	
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95%	CI	-0.839	to	0.629;	negatively	valenced	queries:	mean	effect	=	-0.861,	95%	CI	-1.60	to	-

0.117).		

To	determine	if	depressive	symptoms	affected	the	efficacy	of	the	learning	

manipulation,	we	then	examined	the	effect	of	depression	as	a	covariate.	Depression	was	not	

related	to	treatment	effects	on	parameters	for	any	treatment	(all	95%	credible	intervals	

encompassing	0),	suggesting	that	the	treatment	effects	were	consistent	across	levels	of	

depression.	This	effect	was	similar	when	the	depression	covariate	was	binarized	to	

categorize	reported	severity	as	above	versus	below	the	clinical	cutoff	(Lovibond	&	

Lovibond,	1995).	We	additionally	tested	the	effects	of	depression	on	query	accuracy;	

depression	was	related	to	slightly	worse	query	accuracy	overall	(F1,1232	=	5.50,	p	<	.05)	and	

showed	a	trending	interaction	with	treatment	type	(F11,1232	=	1.67,	p	<	.1;	Figure	2.5b).	

Participants	reporting	higher	depression	symptoms	were	more	accurate	when	queried	

about	the	chance	of	getting	the	larger	outcome	(t1232	=	2.01,	p	=	.04)	but	less	accurate	when	

queried	about	the	value	of	the	last	unchosen	option	(t1232	=	-2.09,	p	=	.04).	For	choice	

accuracy	on	the	learning	task,	there	was	a	main	effect	of	depression	(F1,1232	=	7.414,	p	<	.01;	

Figure	2.5c),	but	no	interaction	with	treatment	type	(F11,1232	=0.414,	p	>	.1),	indicating	that	

participants	with	higher	depression	were	less	accurate	on	the	learning	task	regardless	of	

the	queries	asked.		

To	test	the	effects	of	query	dosage	on	changes	in	learning,	we	enrolled	an	additional	

set	of	participants	who	completed	the	same	learning	task	with	queries,	but	with	queries	

either	every	trial	or	every	three	trials	throughout	the	task.	There	was	no	main	effect	of	

query	frequency	on	choice	accuracy	on	the	learning	task	(Figures	2.6a	and	2.6b;	F1,520	=	

2.62,	p	>	.1),	but	there	was	an	interaction	of	query	frequency	and	treatment	on	choice	
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accuracy	(F11,520	=	2.04,	p	<	.05),	due	to	slightly	worsened	accuracy	when	queried	every	

versus	every	third	trial	about	the	chance	of	getting	the	high	value	outcome	(t520	=	-1.78,	p	<	

.1),	and	improved	accuracy	when	queried	about	the	value	of	the	most	recently	chosen	

option	(t520	=	2.46,	p	<	.05).	There	was	both	a	main	effect	(F1,520	=	6.61,	p	<	.05)	of	query	

frequency	and	interaction	with	treatment	(F11,520	=	2.11,	p	<	.05)	on	proportion	switching	

(Figures	2.6a	&	2.6b),	with	more	switching	overall	and	particularly	when	queried	every	

versus	every	third	trial	on	the	chance	of	getting	the	low	value	outcome	(t520	=	3.03,	p	<	

.005)	and	on	the	value	of	the	last	unchosen	option	(t520	=	2.38,	p	<	.01).	Querying	every	trial	

versus	every	three	trials	was	related	to	an	increased	outcome	sensitivity	for	the	treatment	

querying	the	value	of	the	last	chosen	outcome	(Figure	2.6c;	mean	interaction	effect	=	0.373,	

95%	CI	-0.742	to	-0.027),	but	otherwise	did	not	lead	to	significant	changes	in	

reinforcement	learning	parameters.	Therefore,	the	overall	effect	of	querying	more	

frequently	was	to	increase	switching,	particularly	for	treatments	querying	about	low	value	

or	unchosen	options;	conversely,	query	frequency	had	a	specific	effect	within	the	treatment	

querying	about	the	value	of	the	most	recently	chosen	option	such	that	greater	query	

frequency	increased	choice	accuracy	and	outcome	sensitivity	on	the	learning	task.		

Discussion	

	 Understanding	how	and	under	what	circumstances	reinforcement	learning	

parameters	can	be	changed	is	vital	to	better	comprehension	of	learning-related	changes	

and	deployment	of	learning	retraining	approaches	to	treat	disorders	characterized	by	

learning	dysfunctions.	In	the	present	study,	we	found	that	querying	participants	about	

reinforcement	learning-related	task	components,	in	the	absence	of	feedback	on	these	

queries,	robustly	altered	learning	in	directions	that	were	specific	to	the	type	and	valence	of	
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query.	These	effects	on	learning	parameters	were	unaffected	by	level	of	depression,	

suggesting	generalizability	to	samples	with	psychopathology,	and	participants’	behavior	

and	reports	showed	the	task	to	be	feasible	and	tolerable.		

	 Queries	had	specific,	separable	effects	on	reinforcement	learning	parameters.	

Learning	rate	increased	relative	to	the	control	group	in	the	treatment	querying	participants	

about	the	expected	value	of	their	most	recent	choice,	while	this	parameter	was	lower	when	

participants	were	queried	about	the	value	of	the	option	they	had	not	chosen.	Surprisingly,	

queries	more	directly	assessing	prediction	error	or	recent	chosen	outcomes	did	not	affect	

learning	rate.	This	pattern	of	results	suggests	that	some	components	of	prediction	error,	

such	as	past	expected	value,	may	be	incorporated	more	into	learning	when	participants	are	

queried	about	these	components,	whereas	others,	such	as	outcome	value,	may	be	less	

affected	by	reminding	via	queries.	Supporting	this,	querying	participants	about	the	average	

value	of	the	option	just	chosen	did	not	increase	learning	rate,	suggesting	this	information	

may	already	be	used	during	learning;	however,	querying	about	the	average	value	of	the	

option	not	chosen	did	decrease	learning	rate,	suggesting	that	recalling	the	values	of	other	

options	did	disrupt	updating	of	the	chosen	option.	Similarly,	when	collapsing	across	

queries	by	valence,	negatively	valenced	queries	related	to	low	value	options,	probability	of	

receiving	low	values,	the	value	of	unchosen	options,	and	similar	queries	decreased	learning	

rate,	lending	support	to	the	finding	that	asking	about	negative	outcomes	or	unchosen	

options	disrupts	value	updating.			

For	outcome	sensitivity,	querying	about	the	probability	of	outcomes	increased	this	

parameter;	in	addition,	asking	about	the	value	of	the	high	value	option	as	well	as	the	least	

ever	received	when	choosing	an	option	increased	outcome	sensitivity,	while	no	queries	
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decreased	outcome	sensitivity.	Another	treatment	querying	about	the	most	recently	chosen	

option’s	value	also	showed	increased	outcome	sensitivity	when	queried	every	trial	versus	

every	three	trials.	Additionally,	when	collapsing	across	queries	by	valence,	both	positively	

and	negatively	valenced	queries	increased	outcome	sensitivity	relative	to	the	active	control	

condition.		Queries	focused	on	probability	or	extremes	of	value	may	increase	outcome	

sensitivity	more	than	other	queries,	but	this	pattern	of	results	also	suggests	that	most	

learning-related	queries	increase	outcome	sensitivity	to	some	degree.	The	effect	of	queries	

about	comparing	values,	which	we	hypothesized	would	decrease	outcome	sensitivity,	did	

not	reach	significance,	but	was	the	only	query	to	qualitatively	decrease	this	parameter.	

Therefore,	focusing	on	single	options,	regardless	of	the	specific	query,	may	increase	

outcome	sensitivity	while	focusing	on	comparing	options	may	have	an	opposite	effect.		

Our	sample	included	a	wide	range	of	depression	severity,	allowing	us	to	examine	

whether	self-reported	depression	symptoms	influenced	the	effect	of	learning	queries.	We	

did	not	find	an	overall	effect	of	depression	or	an	interaction	with	the	effect	of	any	

treatment,	suggesting	that	this	approach	to	changing	learning	is	equally	effective	in	

depression-related	psychopathology.	In	line	with	previous	findings	(Blanco,	Otto,	Maddox,	

Beevers,	&	Love,	2013;	Pizzagalli,	Iosifescu,	Hallett,	Ratner,	&	Fava,	2008;	but	see	Gradin	et	

al.,	2011;	Rothkirch,	Tonn,	Kohler,	&	Sterzer,	2017),	we	did	find	significant	relationships	

between	depression	severity	and	both	performance	on	the	learning	task	and	choice	

accuracy.	However,	the	effect	sizes	for	these	relationships	were	small,	suggesting	that	even	

participants	high	in	depression	could	complete	all	components	of	the	task	effectively.	

Providing	further	support	for	the	feasibility	of	this	task,	our	task	was	well-tolerated	by	

participants	as	well	as	effective	in	changing	learning.	Participants	rated	the	task	as	
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engaging,	interesting,	and	not	difficult,	and	the	vast	majority	of	participants	passed	our	

quality	checks,	performed	accurately	on	the	learning	task,	and	answered	queries	

accurately.	These	results	are	encouraging	for	future	applications	of	learning	retraining-

related	tasks	in	treatment	settings	(Paulus,	Huys,	&	Maia,	2016).	Future	work	will	need	to	

build	on	the	present	findings	to	explore	the	feasibility	and	efficacy	of	longer	sessions	or	

those	done	on	a	repeat	basis.			

In	addition	to	providing	support	for	using	learning	queries	to	alter	behavior,	these	

findings	also	shed	light	on	basic	mechanisms	of	reinforcement	learning.	Participants’	

choices,	driven	by	the	expected	value	of	these	choices,	changed	in	response	to	targeted	

queries,	without	any	feedback-driven	learning	from	the	queries	themselves.	These	shifts	in	

value	and	learning	suggest	that	retrieved	value	during	decisions	incorporates	past	

experiences	in	a	malleable	way	and	adds	to	the	growing	literature	on	the	interaction	

between	reinforcement	learning	and	memory	representations	(Gershman	&	Daw,	2017;	

Shohamy	&	Daw,	2015).	However,	these	shifts	did	not	always	occur	in	predictable	ways.	

For	example,	querying	about	prediction	error,	which	most	directly	relates	to	the	learning	

rate	parameter,	did	not	change	learning	rate.	This	facet	of	our	results	suggest	that	altering	

learning	is	a	more	complex	process	than	previously	thought	and	that	therapeutic	

approaches	to	targeting	learning	(e.g.	Craske,	Treanor,	Conway,	Zbozinek,	&	Vervliet,	2014)	

should	thoroughly	investigate	how	to	bring	about	intended	changes	in	learning.		

In	summary,	we	found	that	explicit	learning-related	queries	are	effective	in	

changing	learning	parameters	in	specific	ways,	effects	that	are	present	across	a	range	of	

depressive	symptomatology	and	are	highly	acceptable	to	participants.	These	findings	lay	
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the	groundwork	for	future	studies	exploring	the	effects	of	repeated	applications	of	learning	

retraining	paradigms	on	real-world	behavior	and	affect.		

	

Methods	

Participants	

	 Participants	were	recruited	via	Amazon’s	Mechanical	Turk	platform.	Per	current	

Mechanical	Turk	requirements,	participants	were	required	to	have	an	IP	address	based	in	

the	United	States.	To	be	eligible,	participants	affirmed	that	they	had	fluent	English	and	

were	at	least	18	years	old.	Participants	provided	informed	consent	and	all	procedures	were	

approved	by	the	Institutional	Review	Board	at	Virginia	Tech.	Participants	were	

compensated	with	a	base	payment	of	$0.25	plus	a	performance	bonus	of	the	sum	of	three	

randomly	selected	outcomes	from	the	learning	task.	Participants	were	paid	the	

performance	bonus	if	their	performance	passed	certain	eligibility	screens	(see	below	for	

details);	the	bonus	averaged	$1.55	(range	$0.48	to	$2.48).			

	 Participants	were	recruited	until	at	least	100	usable	participants	had	completed	

each	treatment	(200	for	the	active	control	group).	A	priori	power	analyses	were	conducted	

by	simulating	effects	of	varying	sizes	(.2	to	.8)	and	various	numbers	of	participants	on	

changes	in	parameters;	parameter	values	for	the	control	group	were	based	on	a	previous	

study	with	a	similar	learning	task	and	were	set	at	(transformed)	learning	rate	=	-0.898	and	

outcome	sensitivity	=	1.162.	Based	on	this	simulation,	100	participants	per	treatment	

group	was	sufficient	to	detect	effects	sizes	.4	(small/medium)	and	above.		

	

Task	
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	 The	task	was	composed	of	two	parts:	participants	completed	fifty	trials	of	a	

probabilistic	two-choice	learning	task	commonly	used	to	assess	reinforcement	learning	

(Pessiglione	et	al.,	2006),	interspersed	every	three	trials	(or	every	trial	when	assessing	the	

effects	of	query	frequency)	with	a	query.	The	task	and	a	brief	description	are	shown	in	

Figure	2.1.	Upon	enrollment,	participants	were	randomly	assigned	to	a	treatment;	each	

treatment’s	queries	were	unique	and	each	treatment	contained	only	one	type	of	query	(see	

Table	2.1	for	a	full	list	of	treatments	and	their	associated	queries).	This	method	of	

assignment	meant	that	each	participant	was	asked	only	one	type	of	query	repeatedly	

throughout	the	task.		

	 On	the	learning	portion	of	the	task,	participants	were	presented	with	two	stimuli	(a	

clover	and	a	club)	and	instructed	to	choose	one	stimulus	with	their	computer	mouse	or	

keyboard.	After	the	selection,	the	chosen	stimulus	changed	color	and	the	outcome	

associated	with	that	stimulus	was	shown.	Higher	outcomes	ranged	from	$0.65	to	$0.85	

(chosen	each	trial	from	a	uniform	distribution	in	this	range)	and	lower	outcomes	ranged	

from	$0.15	to	$0.35	(similarly	chosen	from	a	uniform	distribution).	One	stimulus	(the	

‘better	option’)	was	associated	with	a	higher	probability	(75%)	of	the	higher	outcome	and	a	

lower	probability	(25%)	of	the	lower	outcome,	while	the	other	stimulus	(the	‘worse	

option’)	had	reversed	probabilities.	Correct	choices	on	the	learning	task	were	defined	as	

choosing	the	better	option,	regardless	of	whether	the	resulting	outcome	was	high	or	low.		

	 After	every	third	trial,	participants	were	given	a	query	after	viewing	the	outcome	of	

their	choice.	The	query	text	was	displayed	at	the	top	of	the	screen,	the	two	stimuli	in	the	

middle,	and	a	slider	bar	and	a	‘submit’	button	at	the	bottom.	The	response	for	the	slider	bar	

was	randomly	initialized	at	a	different	location	on	the	slider	bar	for	each	query	
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presentation.	The	participant	was	instructed	to	move	the	bar	to	the	desired	response	and	

to	click	the	‘submit’	button.	Anchor	values	for	the	slider	bar	were	displayed	on	each	end	

and	were	based	on	the	specific	query	(e.g.	when	queried	about	the	value	of	the	last	chosen	

option	the	range	was	specified	as	between	0	and	100	cents,	while	when	queried	about	the	

difference	in	value	between	the	two	options	the	range	was	-100	to	+100	cents).	For	queries	

where	the	stimulus	queried	based	on	participants’	behavior	(e.g.	the	last	chosen	option),	

participants	were	asked	to	estimate	the	value	of	the	symbol	for	that	stimulus	rather	than	

being	asked	to	estimate	the	last	chosen	option	directly.	This	method	of	querying	removed	

confounds	related	to	remembering	specific	stimuli	and	to	participants’	knowledge	of	the	

specific	query	condition.	For	the	active	control	group,	participants	were	queried	at	an	equal	

frequency	but	were	simply	asked	to	move	the	slider	bar	to	a	certain	point	as	indicated	by	

an	arrow	and	were	not	queried	about	any	task-related	components.		

	 	

Measures	

	 Participants	in	the	main	analyses	completed	the	Positive	and	Negative	Affect	

Schedule	(PANAS;	Watson,	Clark,	&	Tellegen,	1988)	before	and	after	the	task.	Changes	in	

these	scales	were	defined	as	post-task	minus	pre-task,	all	divided	by	pre-task	scores.	

Participants	also	completed	the	short	(21	question)	version	of	the	Depression	Anxiety	and	

Stress	Scale	(DASS;	Antony,	Bieling,	Cox,	Enns,	&	Swinson,	1998;	Lovibond	&	Lovibond,	

1995),	which	includes	subscales	for	depression,	anxiety,	and	stress.	Scores	on	each	

subscale	were	doubled	to	be	consistent	with	the	long	(42	question)	version	of	the	DASS	and	

clinical	cutoffs	were	applied	per	the	DASS	manual.	Participants	also	reported	their	level	of	

engagement,	interest,	and	difficulty	with	the	task	as	well	as	basic	demographic	information.	
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Participants	in	the	group	recruited	to	test	query	frequency	did	not	complete	the	DASS	and	

pre-task	PANAS.		

	

Data	cleaning	and	preprocessing	

	 Participants	were	paid	a	participation	bonus	if	they	moved	the	slider	during	the	task	

and	chose	the	correct	option	at	least	30%	of	the	time.	Sixty	enrolled	participants	were	

excluded	at	this	stage	of	processing	for	not	meeting	these	performance	criteria.	An	

additional	43	participants	completed	the	task	but	did	not	complete	post-task	

questionnaires	or	demographic	information	and	so	were	not	paid	the	participation	bonus.	

These	participants	were	included	in	analyses	except	for	those	requiring	demographic	or	

questionnaire	information.	Of	these	43	participants,	37	of	these	participants	also	did	not	

provide	ratings	of	engagement,	interest,	and	difficulty.	To	ensure	participants	were	

attempting	to	learn	the	task	sufficiently,	additional	data	retention	criteria	included:	

completion	of	at	least	30	(of	a	total	of	50)	learning	trials,	minimum	accuracy	of	35%	on	the	

learning	task,	and	switching	between	options	at	least	three	times.	Eighty-seven	

participants	were	excluded	at	this	stage.	These	data	cleaning	steps	resulted	in	1,299	

participants’	data	retained	for	analyses	(90%	of	originally	collected	sample).		

	 To	quantify	accuracy	on	queries,	the	correct	answer	to	the	queries	was	defined	as	

what	the	participant	had	experienced	up	until	that	trial.	Therefore,	if	the	query	asked	to	

rate	the	chance	that	the	better	option	stimulus	would	lead	to	the	high	value	outcome,	the	

correct	answer	was	defined	as	the	proportion	of	times	this	had	occurred	during	the	

learning	task	to	that	point,	rather	than	the	predefined	probability	of	75%.	If	the	correct	

answer	could	not	be	calculated	for	a	specific	query	instance	(e.g.	that	particular	stimulus	
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had	not	been	selected	yet),	that	query	instance	was	excluded	for	that	participant	(1	

participant	could	not	have	query	accuracy	calculated	for	this	reason	and	was	excluded	from	

analyses	of	query	accuracy).	The	deviation	from	this	correct	answer	was	calculated	per	

query	(plotted	in	Figure	2.2).	The	absolute	value	of	the	distance	from	the	correct	answer	

was	summed	over	all	16	instances	of	the	query	and	used	as	the	quantitative	measure	of	

query	accuracy	for	analyses.	Since	a	larger	value	for	this	measure	indicates	worse	accuracy,	

correlations	and	t-tests	are	reported	with	signs	reversed	to	aid	in	interpretation	(e.g.	a	

reported	positive	correlation	between	choice	accuracy	and	query	accuracy	indicates	that	

participants	with	higher	choice	accuracy	had	a	lower	summed	absolute	distance	from	the	

correct	answer	for	queries,	and	therefore	higher	query	accuracy).		

	

Analyses	of	summary	statistics	

	 Analyses	used	Pearson	correlations	to	assess	relationships	between	continuous	

variables	(choice	accuracy,	query	accuracy,	depression,	change	in	affect,	and	subjective	

ratings).	When	assessing	the	effect	of	treatment,	ANOVAs	were	run	with	treatment	as	a	

factor	and	the	active	control	group	as	the	reference	group.	If	the	ANOVA	showed	a	

significant	relationship,	a	regression	was	run	with	each	treatment	group	as	a	separate	

variable	to	assess	the	effects	of	individual	treatments.	Significant	results	were	defined	as	

alpha	<	.05.		

	

Analyses	of	reinforcement	learning	parameters	

	 Parameters	were	estimated	using	hierarchical	Bayesian	estimation	as	implemented	

in	Stan	(Carpenter	et	al.,	2016).	Learning	rate	and	outcome	sensitivity	were	specified	as	
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normally	distributed	at	the	group	level	with	a	non-centered	parameterization	to	aid	in	

estimation.	Learning	rate	was	transformed	with	a	logistic	transformation	after	specification	

to	constrain	values	between	0	and	1.	The	prior	distribution	for	the	mean	of	the	group	level	

parameter	was	set	at	N(0,2.5)	for	learning	rate	and	N(0,10)	for	outcome	sensitivity	and	the	

prior	for	the	variance	was	set	at	Cauchy(0,2)	and	Cauchy(0,2.5),	respectively.	The	

individual	variance,	effect	of	each	treatment,	effect	of	covariates	(i.e.	depressive	severity),	

and	interaction	of	covariates	and	treatment	effects	were	all	specified	with	a	prior	of	N(0,1).	

We	note	that	priors	in	this	type	of	Bayesian	analyses	are	not	intended	to	strongly	effect	the	

posterior	estimates	but	rather	to	regularize	estimates	to	be	in	an	interpretable	range	for	

the	variables	being	estimated	(Gelman	et	al.,	2014).	As	learning	plateaued	partway	through	

the	learning	task,	the	first	25	trials	were	used	for	parameter	estimates	only.	A	changepoint	

analysis	(Killick	&	Eckley,	2013)	found	one	changepoint	after	trial	22,	confirming	

differences	in	learning	trajectories	in	the	two	halves	of	the	task.	Four	MCMC	chains	were	

run	for	4000	samples	each	for	each	analysis.	The	first	2000	samples	of	each	chain	were	

discarded	as	warm-up,	resulting	in	8000	samples	for	analysis.	All	chains	were	inspected	for	

convergence	and	showed	good	mixing,	with	all	values	of	the	potential	scale	reduction	factor	

below	1.1	(Gelman	&	Rubin,	1992).		

The	primary	analysis	included	variables	for	each	treatment	(coded	1	for	

participants	in	that	treatment	and	0	otherwise,	with	the	active	control	as	the	reference	

group)	and	the	interaction	of	treatment	with	depression	severity.	Depression	severity	was	

z-scored	prior	to	entering	in	the	model.	Significance	was	defined	as	the	95%	credible	

interval	of	the	posterior	probability	distribution	of	an	effect	falling	completely	outside	0	

(e.g.	entirely	above	or	below	0).	
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Tables	

Table	2.1:	Treatment	conditions.	The	query	column	shows	the	text	presented	to	participants	

about	the	stimulus	indicated	in	the	stimulus	queried	column.	Color	indicates	the	color	for	that	

condition	in	figures.		

Treatment	 Query	 Stimulus	queried	 Color	 Valence	 N	

Control	 Move	the	slider	to	the	arrow.	 --	 Gray	 --	 199	

Chance	of	high	
outcome	

What	is	the	chance	of	getting	
more	than	50¢	if	you	choose...	 Chosen	on	last	trial	 Light	

red	 Positive	 100	

Chance	of	low	
outcome	

What	is	the	chance	of	getting	
less	than	50¢	if	you	choose...	 Chosen	on	last	trial	 Dark	

red	 Negative	 98	

Most	received	 What	is	the	most	you	have	
received	for...	 Chosen	on	last	trial	 Light	

orange	 Positive	 97	

Least	received	 What	is	the	least	you	have	
received	for...	 Chosen	on	last	trial	 Dark	

orange	 Negative	 102	

Last	chosen	 On	average,	how	much	do	you	
get	when	you	choose...	 Chosen	on	last	trial	 Light	

green	 Positive	 100	

Last	unchosen	 On	average,	how	much	do	you	
get	when	you	choose...	 Not	chosen	on	last	trial	 Dark	

green	 Negative	 106	

High	value	 On	average,	how	much	do	you	
get	when	you	choose...	

Stimulus	with	higher	
probability	of	high	outcome	

Light	
blue	 Positive	 99	

Low	value	 On	average,	how	much	do	you	
get	when	you	choose...	

Stimulus	with	higher	
probability	of	low	outcome	

Dark	
blue	 Negative	 90	

Value	
comparison	

On	average,	how	do	the	two	
options	compare?	 Both	 Light	

purple	 --	 102	

Value	
estimation	

What	is	the	average	amount	
you	expected	to	get	when	you	
picked...	

Chosen	on	last	trial	 Medium	
purple	 --	 103	

Prediction	
error	
(negative)	

How	much	more	or	less	did	
you	expect	to	get	when	you	
picked...	

Chosen	on	last	trial	 Dark	
purple	 --	 103	
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Table	2.2:	Participant	demographics.		

Measure	 Mean	[SD]	
Percent	above	

clinical	cutoff	

Gender	(#	[%]	female)	 558	[44.4%]	 --	

Age	 34.92	[13.85]	 --	

Education	(#	[%]	college	degree)	 638	[50.8%]	 --	

Depression	 7.90	[9.33]	 31.9%	

Anxiety	 5.28	[7.21]	 24.6%	

Stress	 9.07	[8.56]	 22.1%	

Positive	Affect	(before)	 31.31	[8.82]	 --	

Positive	Affect	(after)	 29.35	[10.35]	 --	

Negative	Affect	(before)	 13.24	[5.18]	 --	

Negative	Affect	(after)	 13.22	[5.10]	 --	

	

Depression,	Anxiety,	&	Stress:	subscales	of	Depression,	Anxiety,	and	Stress	Scale	

Positive	and	Negative	Affect:	from	pre-task	(before)	and	post-task	(after)	administration	of	

Positive	and	Negative	Affect	Schedule	

note:	43	participants	did	not	provide	demographic	data	
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Figure	2.1:	Schematic	of	learning	task	and	query	and	related	participant	ratings.	A)	

Participants	completed	50	trials	of	a	probabilistic	two	choice	learning	task	where	one	

outcome	was	associated	with	a	higher	probability	(75%)	of	a	larger	reward	(greater	than	

50	cents)	and	the	other	outcome	was	associated	with	a	higher	probability	of	a	smaller	

reward	(less	than	50	cents).	Every	three	trials,	participants	were	queried	on	a	specific	

aspect	of	the	learning	task	and	answered	the	query	using	a	slider	bar.	Each	participant	was	

assigned	to	one	treatment	and	each	treatment	used	only	one	query	throughout	the	task.	

Note	that	participants	were	not	given	feedback	on	their	answers	to	queries.	The	query	for	
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the	control	treatment	asked	participants	to	move	the	slider	bar	to	a	certain	point	without	

asking	about	any	learning	components.	B)	Participants	rated	their	engagement	(first	

column),	interest	(second	column),	and	difficulty	(third	column)	in	the	task.	Overall,	ratings	

were	high	on	engagement	and	interest	and	low	on	difficulty	(top	row;	histograms	of	

ratings),	indicating	the	task	was	acceptable	to	participants.	Engagement	and	interest	

ratings	were	positively	correlated	with	positive	affect	(middle	row)	and	engagement	and	

interest	ratings	were	negatively	correlated	and	difficulty	ratings	positively	correlated	with	

changes	in	negative	affect	(bottom	row),	confirming	the	validity	of	the	ratings.	For	plots	on	

bottom	two	rows,	dots	indicate	individual	values	and	gray	lines	indicate	lines	of	best	fit.	
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Figure	2.2:	Learning	curves	and	query	accuracy	over	time	by	treatment.	Solid	lines	

(top)	indicate	percent	correct	choices	on	the	learning	task,	while	dotted	lines	(bottom)	

indicate	distance	from	the	correct	value	on	queries	(i.e.,	correct	=	0);	positive	values	on	

query	accuracy	indicate	answers	greater	than	the	correct	value	while	negative	values	

indicate	answers	less	than	the	correct	value.	Colored	lines	indicate	treatments	and	the	gray	

line	indicates	the	control	condition;	values	are	group	means	and	shading	indicates	one	

standard	deviation.	Across	treatments,	participants	increased	in	accuracy	from	chance	

(50%	correct)	on	the	first	trial,	showing	learning.	A	changepoint	analysis	confirmed	that	
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learning	asymptoted	about	halfway	through	the	learning	task	(changepoint	=	trial	22),	so	

trials	in	the	first	half	of	the	learning	task	only	were	used	to	estimate	learning	parameters.	

Answers	to	queries	were	generally	accurate	but	showed	greater	distance	from	0	for	queries	

requiring	maintaining	values	in	memory	(most/least	received	treatments)	or	comparing	

values	(value	comparison	&	prediction	error	treatments).	
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Figure	2.3:	Parameter	changes	by	treatment.	Colored	areas	indicate	posterior	

probability	distributions	of	the	effect	of	each	treatment	versus	the	control	condition	on	

each	parameter.	Solidly	filled	distributions	have	at	least	95%	of	the	distribution	above	or	

below	0,	indicating	a	significant	effect	of	that	specific	treatment	on	the	parameter.	Queries	

about	the	value	of	the	unchosen	option	decreased	learning	rate,	while	querying	estimates	

of	expected	value	increased	learning	rate;	queries	about	the	option	more	likely	to	lead	to	

the	high	value	outcome,	about	the	least	ever	received	for	an	option,	or	about	the	probability	

of	receiving	either	a	high	or	low	outcome	all	increased	outcome	sensitivity.		
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Figure	2.4.	Parameter	changes	and	changes	in	affect	by	treatment	valence.	A)	Effects	

of	treatment	valence	on	learning	parameters.	Both	positively	and	negatively	valenced	

treatments	increased	outcome	sensitivity,	while	negatively	valenced	treatments	also	

decreased	learning	rate.	B)	Effects	of	treatment	valence	on	changes	in	affect.	Participants	

with	depression	levels	above	the	clinical	cutoff	showed	an	improvement	in	positive	affect	

after	completing	a	positively	valenced	treatment,	relative	to	participants	with	low	levels	of	

depression,	while	all	participants	showed	a	greater	increase	in	negative	affect	in	negatively	

valenced	treatments	relative	to	the	control	condition.		
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Figure	2.5:	Relationship	among	query	accuracy,	choice	accuracy	on	learning	task,	

and	depression.	A)	Relationship	between	query	accuracy	and	choice	accuracy.	Dots	are	

individual	participants’	mean	values,	colored	lines	are	lines	of	best	fit	for	individual	

treatments,	and	thick	black	line	is	line	of	best	fit	across	all	treatments.	Higher	values	on	

query	accuracy	indicate	a	greater	distance	from	the	correct	value	(i.e.,	worse	accuracy),	

while	higher	values	on	choice	accuracy	indicate	better	learning.	Across	all	treatments,	

greater	choice	accuracy	is	related	to	better	query	accuracy	(smaller	distance	from	correct	

value);	this	relationship	is	present	in	most	individual	treatments	as	well.	B)	Relationship	

between	depression	severity	and	choice	accuracy.	Participants	with	higher	levels	of	

depression	had	worse	performance	on	the	learning	task,	although	the	size	of	the	effect	was	

small	(R2	=	.006).	C)	Relationship	between	depression	severity	and	query	accuracy.	Across	

treatments,	depression	severity	was	not	related	to	query	accuracy,	but	in	individual	

treatments,	higher	depression	was	related	to	greater	accuracy	(smaller	distance	from	

correct)	for	the	treatment	querying	the	probability	of	the	high	value	option	and	worse	

accuracy	(larger	distance	from	correct)	when	querying	the	value	of	the	option	not	chosen	

most	recently.
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Figure	2.6:	Effect	of	query	frequency	on	learning.	An	additional	~20	participants	per	

group	completed	the	learning	task	with	queries	either	every	three	trials	(as	in	previous	

versions)	or	every	trial.	A)	Effects	of	query	frequency	on	choice	accuracy	on	the	learning	

task.	Querying	every	trial	resulted	in	worse	accuracy	when	querying	the	probability	of	

receiving	a	high	outcome,	a	trend	towards	worse	accuracy	when	querying	the	value	of	the	

option	not	chosen	most	recently,	and	better	accuracy	when	querying	the	value	of	the	most	

recently	chosen	option.	B)	Effects	of	query	frequency	on	proportion	of	trials	where	

participants	switched	choices.	Querying	every	trial	resulted	in	greater	switches	when	

querying	the	probability	of	receiving	a	low	outcome	and	when	querying	about	the	value	of	

the	option	not	chosen	most	recently.	C)	Effect	of	query	frequency	on	choice	accuracy	and	
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proportion	switches	collapsed	across	all	treatments.	Across	all	treatments,	querying	every	

trial	significantly	increased	the	proportion	of	switch	trials.	D)	Effects	of	querying	every	trial	

versus	every	three	trials,	for	each	treatment	compared	to	the	control	condition.	Query	

frequency	had	little	effect	on	learning	rate	but	increased	outcome	sensitivity	when	

querying	about	the	last	chosen	option.		
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Discussion	

Summary	of	studies	

This	set	of	studies	aimed	to	add	to	the	understanding	of	how	computational	models	

of	reinforcement	learning	can	inform	knowledge	of	the	mechanisms	of	depression	and	its	

treatment.	In	Study	1	(Paper	1),	alterations	in	specific	components	of	reward	and	loss	

learning	according	to	a	reinforcement	learning	model	corresponded	with	symptoms	of	

anhedonia	and	negative	affect	in	depression	on	behavioral	and	neural	levels.	In	Study	2,	

(Paper	1)	these	altered	behavioral	components	changed	along	with	improvements	in	

symptoms	after	cognitive	behavioral	therapy,	while	pre-treatment	neural	indicators	of	

reward	learning	predicted	response	to	treatment.	In	Study	3	(Paper	2),	targeted	queries	

were	successful	in	changing	learning	parameters	in	participants	with	a	range	of	depressive	

symptoms,	although	some	queries	had	effects	that	differed	from	what	would	be	inferred	

from	reinforcement	learning	theory.		

In	Study	1,	behavioral	reinforcement	learning	parameters	and	neural	correlates	of	

reinforcement	learning	during	reward	and	loss	learning	differed	by	levels	of	anhedonia	and	

negative	affect	symptoms.	In	reward	learning,	people	with	depression	showed	increased	

outcome	sensitivity	and	reduced	learning	rate	with	increased	anhedonia	as	well	as	

disrupted	relationships	between	neural	measures	of	expected	value	and	prediction	error	in	

the	ventral	striatum.	These	relationships	between	anhedonia	and	learning	measures	were	

only	present	in	participants	with	a	diagnosis	of	depression,	suggesting	that	anhedonia	in	

clinically	depressed	participants	affects	learning	differently	than	participants	with	
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anhedonia	in	the	absence	of	mood-related	psychopathology.	In	loss	learning,	greater	levels	

of	negative	affect	in	all	participants	was	related	to	a	more	negative	valuation	of	losses	as	

indexed	by	a	more	negative	outcome	shift	parameter	behaviorally	and	reduced	subgenual	

anterior	cingulate	cortex	and	precuneus	signaling	to	levels	of	outcome	value	neurally.	

Together,	these	findings	show	that	depression	affects	learning	from	both	rewards	and	

losses,	but	that	these	effects	differ	by	valence	and	symptom	cluster.		

In	Study	2,	participants	previously	diagnosed	with	depression	completed	the	

learning	task	again	after	completing	a	course	of	cognitive	behavioral	therapy	to	examine	

correlates	and	predictors	of	symptom	change	with	treatment.	The	amount	of	improvement	

in	anhedonia	correlated	with	increased	learning	rate	and	decreased	outcome	sensitivity,	

while	the	amount	of	improvement	in	negative	affect	correlated	with	less	negative	outcome	

shift	and	reduced	outcome	sensitivity.	When	assessing	these	changes	in	light	of	the	

baseline	differences	found	in	Study	1,	these	findings	indicate	that	symptom	change	with	

CBT	led	to	remediation	of	altered	learning	patters	found	pre-treatment.	People	high	in	

anhedonia	also	showed	normalization	of	altered	neural	relationships	between	striatal	

signals	of	prediction	error	and	expected	value.	Behavioral	learning	measures	and	striatal	

prediction	error-expected	value	relationships	did	not	show	significant	changes	in	control	

participants	who	did	not	undergo	CBT,	suggesting	that	these	measures	are	stable	over	time	

when	assessed	independent	of	symptom	change.	Striatal	signals	of	prediction	error	and	

expected	value	also	predicted	improvement	in	anhedonia,	with	greater	prediction	error	

signal	and	lesser	expected	value	signal	pre-treatment	related	to	greater	improvement	in	

anhedonia	with	treatment.	The	combined	results	from	Study	2	suggest	that	effective	CBT	is	

related	to	changes	in	disrupted	learning	parameters	in	both	reward	and	loss	learning	and	
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that	neural	measures	of	reward	learning	may	predict	improvement	in	reward-related	

symptoms	of	anhedonia.		

In	Study	3,	participants	with	a	range	of	depressive	symptoms	completed	the	

learning	task	with	interspersed	queries	targeted	at	different	aspects	of	learning.	Queries	

asking	about	the	expected	value	of	the	most	recent	choice	increased	learning	rate	while	

queries	about	the	value	of	the	unchosen	option	decreased	learning	rate.	Negatively	

valenced	queries,	when	assessed	as	a	group,	also	decreased	learning	rate.	In	terms	of	

outcome	sensitivity,	queries	about	the	probability	of	outcomes,	the	value	of	high	value	

options,	and	the	least	ever	received	when	choosing	an	option.	Both	positively	and	

negatively	valenced	queries	when	assessed	as	groups	increased	outcome	sensitivity	as	

well.	Depression	severity	was	not	related	to	changes	in	learning	parameters	and	

participants’	ratings	and	performance	indicated	the	task	was	well	tolerated.		

	

		General	discussion	

Together,	these	studies	add	important	information	to	understanding,	at	a	

mechanistic	level,	alterations	of	reward	and	punishment	learning	in	depression	and	how	to	

treat	these	alterations.	First	of	all,	the	specificity	of	findings	from	Studies	1	and	2	to	

symptom	clusters,	rather	than	an	overall	diagnosis	of	depression,	provide	insight	into	the	

underlying	structure	of	depression.	Depression	has	long	been	recognized	as	a	

heterogeneous	category	encompassing	subtypes	or	dimensions	of	disease	(e.g.	Abramson,	

Metalsky,	&	Alloy,	1989;	Fava	et	al.,	1997).	The	current	results	suggest	that,	in	the	realm	of	

learning	dysfunctions	and	their	treatment	with	CBT,	continuous	measures	of	negative	

affect	and	anhedonia,	core	symptoms	of	depression,	map	on	to	unique	learning	differences	
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in	depression.	These	results	are	consonant	with	other	recent	findings	showing	specificity	of	

neural	and	behavioral	responses	to	reward	and	punishment	with	these	symptom	measures	

(Harlé	et	al.,	2017;	Luking	et	al.,	2015;	Young	et	al.,	2016).	This	body	of	work,	in	addition	to	

other	studies	suggesting	problems	with	depression	questionnaire	sum	scores	as	research	

constructs	(Fried	&	Nesse,	2015),	means	that	a	focus	on	well-validated	measures	of	

symptom	clusters,	rather	than	on	overall	MDD	diagnosis	or	depression	severity,	may	be	a	

more	productive	avenue	for	future	research.		

These	studies	also	point	to	the	utility	of	reinforcement	learning	models	in	

understanding	how	learning	differences	characterize	depression	and	treatment	

mechanisms.	In	these	studies,	reinforcement	learning	models	precisely	illustrated	

alterations	and	remediations	in	learning.	In	turn,	this	precision	allowed	for	mappings	

between	behavioral	and	neural	measures	and	showed	which	parts	of	learning	were	

disrupted	(and	subsequently	remediated)	and	which	were	intact.	For	example,	Study	1	

found	specific	aspects	of	reward	learning	that	were	related	to	anhedonia,	with	the	corollary	

finding	that	other	aspects	are	unaffected	by	anhedonia.	Therefore,	rather	than	merely	

showing	that	anhedonia	was	related	to	altered	reward	learning,	the	modeling	results	

showed	that	some	aspects	of	learning	were	intact	(e.g.	representation	of	outcomes	and	

expected	values)	and	which	were	disrupted	(updating	expectations	of	reward	based	on	

prediction	error).	In	turn,	Studies	2	and	3	showed	that	CBT	selectively	remediated	these	

disruptions,	suggesting	that	CBT	effectively	targets	the	precise	learning	difficulties	people	

high	in	anhedonia	experience,	and	that	similar	changes	in	learning	could	be	effected	

through	certain	kinds	of	queries	(e.g.	increasing	learning	rate	by	asking	about	the	expected	

value	of	recent	choices).	This	exact	connection	between	alterations	and	treatment	was	
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greatly	facilitated	by	computational	models	that	contain	certain	parameters	or	parts	of	the	

model	for	each	possible	process	affected.		

Lastly,	these	studies	show	the	potential	of	using	computational	models	to	

understand	psychological	treatments.	Study	2	found	that	traditional	CBT	treatment	which	

addresses	maladaptive	learning	patterns	appears	to	do	so	in	a	way	that	remediates	pre-

treatment	learning	differences,	while	Study	3	found	that	these	learning	patterns	can	be	

systematically	altered	in	a	retraining	paradigm	that	targets	aspects	of	reinforcement	

learning.	Current	psychological	treatments	for	disorders	like	depression	are	moderately	

effective	but	their	mechanisms	of	action	are	incompletely	understood	(Emmelkamp	et	al.,	

2014;	Kazdin,	2009).	Computational	models,	through	their	ability	to	provide	specific,	

formalized	findings	and	to	connect	levels	of	analysis,	can	add	to	the	understanding	of	how	

current	treatments	work	and	assist	in	developing	new,	model-informed	treatments.	

Further	work	using	computational	models	to	connect	basic	research	on	learning	and	

affective	processing	to	clinical	applications	will	lead	to	refinements	of	existing	treatments	

and	development	of	novel	treatments	to	ameliorate	disorders	like	depression.	

	

Limitations	and	future	directions	

The	present	set	of	studies	assessed	how	depression	and	treatment	are	related	to	a	

certain	computational	model	of	learning,	namely	model-free	reinforcement	learning.	

Model-free	reinforcement	learning	is	a	powerful	approach	to	understand	how	humans	

learn	from	positive	and	negative	feedback,	but	does	not	encompass	all	aspects	of	learning.	

This	type	of	model	may	neglect	other	processes	involved	in	dysfunction	and	treatment	

besides	learning,	such	as	memory	processes	(A.	G.	E.	Collins	et	al.,	2014;	Shohamy	&	Daw,	
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2015)	and	attention	(Niv	et	al.,	2015).	In	addition,	other,	more	complex	forms	of	learning	

may	play	a	role	in	depression,	which	the	present	tasks	and	model	would	have	difficulty	

capturing.	Other	work	suggests	problems	with	biased	prior	expectations	(Huys,	Daw,	&	

Dayan,	2015),	biased	pruning	of	decision	trees	(Huys	et	al.,	2012),	or	overgeneralized	

learning	of	negative	states	or	schemas	(Disner	et	al.,	2011;	Gershman,	Norman,	&	Niv,	

2015)	in	depression;	these	lines	of	work	could	be	incorporated	into	the	altered	model	free	

learning	found	here	to	extend	and	clarify	the	present	findings	in	light	of	these	other	forms	

of	learning.		

The	current	work	found	that	symptom	improvement	in	CBT	was	related	to	changes	

in	learning	parameters	immediately	post-treatment.	This	work	suggests	that	CBT	is	

causally	related	to	learning	changes,	a	result	supported	by	results	from	Study	3	that	

learning	parameters	could	be	manipulated	based	on	targeted	queries	similar	to	those	

employed	in	CBT	techniques.	However,	the	number	of	participants	not	receiving	CBT	was	

too	small	at	follow	up	to	permit	a	comparison	of	the	group	receiving	CBT	to	a	non-

treatment	condition.	In	addition,	other	effective	treatments,	including	antidepressants	such	

as	selective	serotonin	reuptake	inhibitors	and	other	psychological	approaches	such	as	

interpersonal	therapy,	which	is	efficacious	but	is	hypothesized	to	work	through	different	

mechanisms	(Markowitz	&	Weissman,	2004),	were	not	investigated.	Similarly,	both	Studies	

2	and	3	only	investigated	changes	immediately	post-intervention	and	did	not	assess	long	

term	changes	in	learning	or	symptoms	of	depression.	As	a	result,	whether	the	learning	

changes	seen	immediately	post-treatment	persist	and	continue	to	be	related	to	depressive	

symptoms	is	unclear.	Therefore,	longer-term	studies	involving	waitlist	or	other	treatment	

groups	are	needed	to	determine	whether	learning	changes	are	specific	to	learning-based	
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treatments	like	CBT	or	learning	retraining	or	if	learning	changes	are	common	to	

improvements	in	symptoms	regardless	of	treatment.	Further	work	could	also	investigate	

the	relationship	between	learning	changes	and	development	of	depressive	symptoms	as	

well	as	study	the	evolution	of	symptoms	and	learning	differences	with	more	frequent	

measurements.	Study	3	found	that	it	was	feasible	to	administer	learning-related	

measurements	and	interventions	outside	of	laboratory	settings,	and	future	studies	could	

incorporate	these	online	approaches	during	longer-term	treatments	to	have	finer-grained	

temporal	sampling	of	changes	during	treatment.	

	

Conclusion	

In	summary,	the	present	work	shows	the	utility	of	using	reinforcement	learning	to	

understand	and	treat	psychopathologies	such	as	depression.	Symptom	clusters	of	

depression,	anhedonia	and	negative	affect,	were	related	to	specific	learning	disruptions	on	

behavioral	and	neural	levels.	Symptom	reduction	after	treatment	with	cognitive	behavioral	

therapy	was	related	to	remediation	in	learning	parameters	and	these	learning	parameters	

could	be	directly	modified	via	queries	in	a	learning	retraining	paradigm.	These	findings	add	

important	information	to	our	understanding	of	depression	and	lay	the	groundwork	for	

more	effective	treatments	of	this	and	related	disorders.		
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Tables	

Table	2.1:	Treatment	conditions.	The	query	column	shows	the	text	presented	to	participants	about	the	stimulus	indicated	in	

the	stimulus	queried	column.	Color	indicates	the	color	for	that	condition	in	figures.		

Treatment	 Query	 Stimulus	queried	 Color	 Valence	 N	

Control	 Move	the	slider	to	the	arrow.	 --	 Gray	 --	 199	

Chance	of	high	
outcome	

What	is	the	chance	of	getting	more	than	
50¢	if	you	choose...	 Chosen	on	last	trial	 Light	red	 Positive	 100	

Chance	of	low	
outcome	

What	is	the	chance	of	getting	less	than	50¢	
if	you	choose...	 Chosen	on	last	trial	 Dark	red	 Negative	 98	

Most	received	 What	is	the	most	you	have	received	for...	 Chosen	on	last	trial	 Light	orange	 Positive	 97	

Least	received	 What	is	the	least	you	have	received	for...	 Chosen	on	last	trial	 Dark	orange	 Negative	 102	

Last	chosen	 On	average,	how	much	do	you	get	when	
you	choose...	 Chosen	on	last	trial	 Light	green	 Positive	 100	

Last	unchosen	 On	average,	how	much	do	you	get	when	
you	choose...	 Not	chosen	on	last	trial	 Dark	green	 Negative	 106	

High	value	 On	average,	how	much	do	you	get	when	
you	choose...	

Stimulus	with	higher	
probability	of	high	outcome	 Light	blue	 Positive	 99	

Low	value	 On	average,	how	much	do	you	get	when	
you	choose...	

Stimulus	with	higher	
probability	of	low	outcome	 Dark	blue	 Negative	 90	

Value	
comparison	

On	average,	how	do	the	two	options	
compare?	 Both	 Light	purple	 --	 102	

Value	estimation	 What	is	the	average	amount	you	expected	
to	get	when	you	picked...	 Chosen	on	last	trial	 Medium	purple	 --	 103	

Prediction	error	
(negative)	

How	much	more	or	less	did	you	expect	to	
get	when	you	picked...	 Chosen	on	last	trial	 Dark	purple	 --	 103	
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Table	2.2:	Participant	demographics.		

Measure	 Mean	[SD]	
Percent	above	

clinical	cutoff	

Gender	(#	[%]	female)	 558	[44.4%]	 --	

Age	 34.92	[13.85]	 --	

Education	(#	[%]	college	degree)	 638	[50.8%]	 --	

Depression	 7.90	[9.33]	 31.9%	

Anxiety	 5.28	[7.21]	 24.6%	

Stress	 9.07	[8.56]	 22.1%	

Positive	Affect	(before)	 31.31	[8.82]	 --	

Positive	Affect	(after)	 29.35	[10.35]	 --	

Negative	Affect	(before)	 13.24	[5.18]	 --	

Negative	Affect	(after)	 13.22	[5.10]	 --	

	

Depression,	Anxiety,	&	Stress:	subscales	of	Depression,	Anxiety,	and	Stress	Scale	

Positive	and	Negative	Affect:	from	pre-task	(before)	and	post-task	(after)	administration	of	

Positive	and	Negative	Affect	Schedule	

note:	43	participants	did	not	provide	demographic	data	
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Figure	2.1:	Schematic	of	learning	task	and	query	and	related	participant	ratings.	A)	

Participants	completed	50	trials	of	a	probabilistic	two	choice	learning	task	where	one	

outcome	was	associated	with	a	higher	probability	(75%)	of	a	larger	reward	(greater	than	

50	cents)	and	the	other	outcome	was	associated	with	a	higher	probability	of	a	smaller	

reward	(less	than	50	cents).	Every	three	trials,	participants	were	queried	on	a	specific	

aspect	of	the	learning	task	and	answered	the	query	using	a	slider	bar.	Each	participant	was	

assigned	to	one	treatment	and	each	treatment	used	only	one	query	throughout	the	task.	

Note	that	participants	were	not	given	feedback	on	their	answers	to	queries.	The	query	for	
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the	control	treatment	asked	participants	to	move	the	slider	bar	to	a	certain	point	without	

asking	about	any	learning	components.	B)	Participants	rated	their	engagement	(first	

column),	interest	(second	column),	and	difficulty	(third	column)	in	the	task.	Overall,	ratings	

were	high	on	engagement	and	interest	and	low	on	difficulty	(top	row;	histograms	of	

ratings),	indicating	the	task	was	acceptable	to	participants.	Engagement	and	interest	

ratings	were	positively	correlated	with	positive	affect	(middle	row)	and	engagement	and	

interest	ratings	were	negatively	correlated	and	difficulty	ratings	positively	correlated	with	

changes	in	negative	affect	(bottom	row),	confirming	the	validity	of	the	ratings.	For	plots	on	

bottom	two	rows,	dots	indicate	individual	values	and	gray	lines	indicate	lines	of	best	fit.	
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Figure	2.2:	Learning	curves	and	query	accuracy	over	time	by	treatment.	Solid	lines	

(top)	indicate	percent	correct	choices	on	the	learning	task,	while	dotted	lines	(bottom)	

indicate	distance	from	the	correct	value	on	queries	(i.e.,	correct	=	0);	positive	values	on	

query	accuracy	indicate	answers	greater	than	the	correct	value	while	negative	values	

indicate	answers	less	than	the	correct	value.	Colored	lines	indicate	treatments	and	the	gray	

line	indicates	the	control	condition;	values	are	group	means	and	shading	indicates	one	

standard	deviation.	Across	treatments,	participants	increased	in	accuracy	from	chance	

(50%	correct)	on	the	first	trial,	showing	learning.	A	changepoint	analysis	confirmed	that	
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learning	asymptoted	about	halfway	through	the	learning	task	(changepoint	=	trial	22),	so	

trials	in	the	first	half	of	the	learning	task	only	were	used	to	estimate	learning	parameters.	

Answers	to	queries	were	generally	accurate	but	showed	greater	distance	from	0	for	queries	

requiring	maintaining	values	in	memory	(most/least	received	treatments)	or	comparing	

values	(value	comparison	&	prediction	error	treatments).	
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Figure	2.3:	Parameter	changes	by	treatment.	Colored	areas	indicate	posterior	

probability	distributions	of	the	effect	of	each	treatment	versus	the	control	condition	on	

each	parameter.	Solidly	filled	distributions	have	at	least	95%	of	the	distribution	above	or	

below	0,	indicating	a	significant	effect	of	that	specific	treatment	on	the	parameter.	Queries	

about	the	value	of	the	unchosen	option	decreased	learning	rate,	while	querying	estimates	

of	expected	value	increased	learning	rate;	queries	about	the	option	more	likely	to	lead	to	

the	high	value	outcome,	about	the	least	ever	received	for	an	option,	or	about	the	probability	

of	receiving	either	a	high	or	low	outcome	all	increased	outcome	sensitivity.		
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Figure	2.4.	Parameter	changes	and	changes	in	affect	by	treatment	valence.	A)	Effects	

of	treatment	valence	on	learning	parameters.	Both	positively	and	negatively	valenced	

treatments	increased	outcome	sensitivity,	while	negatively	valenced	treatments	also	

decreased	learning	rate.	B)	Effects	of	treatment	valence	on	changes	in	affect.	Participants	

with	depression	levels	above	the	clinical	cutoff	showed	an	improvement	in	positive	affect	

after	completing	a	positively	valenced	treatment,	relative	to	participants	with	low	levels	of	

depression,	while	all	participants	showed	a	greater	increase	in	negative	affect	in	negatively	

valenced	treatments	relative	to	the	control	condition.		
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Figure	2.5:	Relationship	among	query	accuracy,	choice	accuracy	on	learning	task,	

and	depression.	A)	Relationship	between	query	accuracy	and	choice	accuracy.	Dots	are	

individual	participants’	mean	values,	colored	lines	are	lines	of	best	fit	for	individual	

treatments,	and	thick	black	line	is	line	of	best	fit	across	all	treatments.	Higher	values	on	

query	accuracy	indicate	a	greater	distance	from	the	correct	value	(i.e.,	worse	accuracy),	

while	higher	values	on	choice	accuracy	indicate	better	learning.	Across	all	treatments,	

greater	choice	accuracy	is	related	to	better	query	accuracy	(smaller	distance	from	correct	

value);	this	relationship	is	present	in	most	individual	treatments	as	well.	B)	Relationship	

between	depression	severity	and	choice	accuracy.	Participants	with	higher	levels	of	

depression	had	worse	performance	on	the	learning	task,	although	the	size	of	the	effect	was	

small	(R2	=	.006).	C)	Relationship	between	depression	severity	and	query	accuracy.	Across	

treatments,	depression	severity	was	not	related	to	query	accuracy,	but	in	individual	

treatments,	higher	depression	was	related	to	greater	accuracy	(smaller	distance	from	

correct)	for	the	treatment	querying	the	probability	of	the	high	value	option	and	worse	

accuracy	(larger	distance	from	correct)	when	querying	the	value	of	the	option	not	chosen	

most	recently.
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Figure	2.6:	Effect	of	query	frequency	on	learning.	An	additional	~20	participants	per	

group	completed	the	learning	task	with	queries	either	every	three	trials	(as	in	previous	

versions)	or	every	trial.	A)	Effects	of	query	frequency	on	choice	accuracy	on	the	learning	

task.	Querying	every	trial	resulted	in	worse	accuracy	when	querying	the	probability	of	

receiving	a	high	outcome,	a	trend	towards	worse	accuracy	when	querying	the	value	of	the	

option	not	chosen	most	recently,	and	better	accuracy	when	querying	the	value	of	the	most	

recently	chosen	option.	B)	Effects	of	query	frequency	on	proportion	of	trials	where	

participants	switched	choices.	Querying	every	trial	resulted	in	greater	switches	when	

querying	the	probability	of	receiving	a	low	outcome	and	when	querying	about	the	value	of	

the	option	not	chosen	most	recently.	C)	Effect	of	query	frequency	on	choice	accuracy	and	
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proportion	switches	collapsed	across	all	treatments.	Across	all	treatments,	querying	every	

trial	significantly	increased	the	proportion	of	switch	trials.	D)	Effects	of	querying	every	trial	

versus	every	three	trials,	for	each	treatment	compared	to	the	control	condition.	Query	

frequency	had	little	effect	on	learning	rate	but	increased	outcome	sensitivity	when	

querying	about	the	last	chosen	option.		
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Discussion	

Summary	of	studies	

This	set	of	studies	aimed	to	add	to	the	understanding	of	how	computational	models	

of	reinforcement	learning	can	inform	knowledge	of	the	mechanisms	of	depression	and	its	

treatment.	In	Study	1	(Paper	1),	alterations	in	specific	components	of	reward	and	loss	

learning	according	to	a	reinforcement	learning	model	corresponded	with	symptoms	of	

anhedonia	and	negative	affect	in	depression	on	behavioral	and	neural	levels.	In	Study	2,	

(Paper	1)	these	altered	behavioral	components	changed	along	with	improvements	in	

symptoms	after	cognitive	behavioral	therapy,	while	pre-treatment	neural	indicators	of	

reward	learning	predicted	response	to	treatment.	In	Study	3	(Paper	2),	targeted	queries	

were	successful	in	changing	learning	parameters	in	participants	with	a	range	of	depressive	

symptoms,	although	some	queries	had	effects	that	differed	from	what	would	be	inferred	

from	reinforcement	learning	theory.		

In	Study	1,	behavioral	reinforcement	learning	parameters	and	neural	correlates	of	

reinforcement	learning	during	reward	and	loss	learning	differed	by	levels	of	anhedonia	and	

negative	affect	symptoms.	In	reward	learning,	people	with	depression	showed	increased	

outcome	sensitivity	and	reduced	learning	rate	with	increased	anhedonia	as	well	as	

disrupted	relationships	between	neural	measures	of	expected	value	and	prediction	error	in	

the	ventral	striatum.	These	relationships	between	anhedonia	and	learning	measures	were	

only	present	in	participants	with	a	diagnosis	of	depression,	suggesting	that	anhedonia	in	

clinically	depressed	participants	affects	learning	differently	than	participants	with	



	 117	

anhedonia	in	the	absence	of	mood-related	psychopathology.	In	loss	learning,	greater	levels	

of	negative	affect	in	all	participants	was	related	to	a	more	negative	valuation	of	losses	as	

indexed	by	a	more	negative	outcome	shift	parameter	behaviorally	and	reduced	subgenual	

anterior	cingulate	cortex	and	precuneus	signaling	to	levels	of	outcome	value	neurally.	

Together,	these	findings	show	that	depression	affects	learning	from	both	rewards	and	

losses,	but	that	these	effects	differ	by	valence	and	symptom	cluster.		

In	Study	2,	participants	previously	diagnosed	with	depression	completed	the	

learning	task	again	after	completing	a	course	of	cognitive	behavioral	therapy	to	examine	

correlates	and	predictors	of	symptom	change	with	treatment.	The	amount	of	improvement	

in	anhedonia	correlated	with	increased	learning	rate	and	decreased	outcome	sensitivity,	

while	the	amount	of	improvement	in	negative	affect	correlated	with	less	negative	outcome	

shift	and	reduced	outcome	sensitivity.	When	assessing	these	changes	in	light	of	the	

baseline	differences	found	in	Study	1,	these	findings	indicate	that	symptom	change	with	

CBT	led	to	remediation	of	altered	learning	patters	found	pre-treatment.	People	high	in	

anhedonia	also	showed	normalization	of	altered	neural	relationships	between	striatal	

signals	of	prediction	error	and	expected	value.	Behavioral	learning	measures	and	striatal	

prediction	error-expected	value	relationships	did	not	show	significant	changes	in	control	

participants	who	did	not	undergo	CBT,	suggesting	that	these	measures	are	stable	over	time	

when	assessed	independent	of	symptom	change.	Striatal	signals	of	prediction	error	and	

expected	value	also	predicted	improvement	in	anhedonia,	with	greater	prediction	error	

signal	and	lesser	expected	value	signal	pre-treatment	related	to	greater	improvement	in	

anhedonia	with	treatment.	The	combined	results	from	Study	2	suggest	that	effective	CBT	is	

related	to	changes	in	disrupted	learning	parameters	in	both	reward	and	loss	learning	and	
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that	neural	measures	of	reward	learning	may	predict	improvement	in	reward-related	

symptoms	of	anhedonia.		

In	Study	3,	participants	with	a	range	of	depressive	symptoms	completed	the	

learning	task	with	interspersed	queries	targeted	at	different	aspects	of	learning.	Queries	

asking	about	the	expected	value	of	the	most	recent	choice	increased	learning	rate	while	

queries	about	the	value	of	the	unchosen	option	decreased	learning	rate.	Negatively	

valenced	queries,	when	assessed	as	a	group,	also	decreased	learning	rate.	In	terms	of	

outcome	sensitivity,	queries	about	the	probability	of	outcomes,	the	value	of	high	value	

options,	and	the	least	ever	received	when	choosing	an	option.	Both	positively	and	

negatively	valenced	queries	when	assessed	as	groups	increased	outcome	sensitivity	as	

well.	Depression	severity	was	not	related	to	changes	in	learning	parameters	and	

participants’	ratings	and	performance	indicated	the	task	was	well	tolerated.		

	

		General	discussion	

Together,	these	studies	add	important	information	to	understanding,	at	a	

mechanistic	level,	alterations	of	reward	and	punishment	learning	in	depression	and	how	to	

treat	these	alterations.	First	of	all,	the	specificity	of	findings	from	Studies	1	and	2	to	

symptom	clusters,	rather	than	an	overall	diagnosis	of	depression,	provide	insight	into	the	

underlying	structure	of	depression.	Depression	has	long	been	recognized	as	a	

heterogeneous	category	encompassing	subtypes	or	dimensions	of	disease	(e.g.	Abramson,	

Metalsky,	&	Alloy,	1989;	Fava	et	al.,	1997).	The	current	results	suggest	that,	in	the	realm	of	

learning	dysfunctions	and	their	treatment	with	CBT,	continuous	measures	of	negative	

affect	and	anhedonia,	core	symptoms	of	depression,	map	on	to	unique	learning	differences	
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in	depression.	These	results	are	consonant	with	other	recent	findings	showing	specificity	of	

neural	and	behavioral	responses	to	reward	and	punishment	with	these	symptom	measures	

(Harlé	et	al.,	2017;	Luking	et	al.,	2015;	Young	et	al.,	2016).	This	body	of	work,	in	addition	to	

other	studies	suggesting	problems	with	depression	questionnaire	sum	scores	as	research	

constructs	(Fried	&	Nesse,	2015),	means	that	a	focus	on	well-validated	measures	of	

symptom	clusters,	rather	than	on	overall	MDD	diagnosis	or	depression	severity,	may	be	a	

more	productive	avenue	for	future	research.		

These	studies	also	point	to	the	utility	of	reinforcement	learning	models	in	

understanding	how	learning	differences	characterize	depression	and	treatment	

mechanisms.	In	these	studies,	reinforcement	learning	models	precisely	illustrated	

alterations	and	remediations	in	learning.	In	turn,	this	precision	allowed	for	mappings	

between	behavioral	and	neural	measures	and	showed	which	parts	of	learning	were	

disrupted	(and	subsequently	remediated)	and	which	were	intact.	For	example,	Study	1	

found	specific	aspects	of	reward	learning	that	were	related	to	anhedonia,	with	the	corollary	

finding	that	other	aspects	are	unaffected	by	anhedonia.	Therefore,	rather	than	merely	

showing	that	anhedonia	was	related	to	altered	reward	learning,	the	modeling	results	

showed	that	some	aspects	of	learning	were	intact	(e.g.	representation	of	outcomes	and	

expected	values)	and	which	were	disrupted	(updating	expectations	of	reward	based	on	

prediction	error).	In	turn,	Studies	2	and	3	showed	that	CBT	selectively	remediated	these	

disruptions,	suggesting	that	CBT	effectively	targets	the	precise	learning	difficulties	people	

high	in	anhedonia	experience,	and	that	similar	changes	in	learning	could	be	effected	

through	certain	kinds	of	queries	(e.g.	increasing	learning	rate	by	asking	about	the	expected	

value	of	recent	choices).	This	exact	connection	between	alterations	and	treatment	was	
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greatly	facilitated	by	computational	models	that	contain	certain	parameters	or	parts	of	the	

model	for	each	possible	process	affected.		

Lastly,	these	studies	show	the	potential	of	using	computational	models	to	

understand	psychological	treatments.	Study	2	found	that	traditional	CBT	treatment	which	

addresses	maladaptive	learning	patterns	appears	to	do	so	in	a	way	that	remediates	pre-

treatment	learning	differences,	while	Study	3	found	that	these	learning	patterns	can	be	

systematically	altered	in	a	retraining	paradigm	that	targets	aspects	of	reinforcement	

learning.	Current	psychological	treatments	for	disorders	like	depression	are	moderately	

effective	but	their	mechanisms	of	action	are	incompletely	understood	(Emmelkamp	et	al.,	

2014;	Kazdin,	2009).	Computational	models,	through	their	ability	to	provide	specific,	

formalized	findings	and	to	connect	levels	of	analysis,	can	add	to	the	understanding	of	how	

current	treatments	work	and	assist	in	developing	new,	model-informed	treatments.	

Further	work	using	computational	models	to	connect	basic	research	on	learning	and	

affective	processing	to	clinical	applications	will	lead	to	refinements	of	existing	treatments	

and	development	of	novel	treatments	to	ameliorate	disorders	like	depression.	

	

Limitations	and	future	directions	

The	present	set	of	studies	assessed	how	depression	and	treatment	are	related	to	a	

certain	computational	model	of	learning,	namely	model-free	reinforcement	learning.	

Model-free	reinforcement	learning	is	a	powerful	approach	to	understand	how	humans	

learn	from	positive	and	negative	feedback,	but	does	not	encompass	all	aspects	of	learning.	

This	type	of	model	may	neglect	other	processes	involved	in	dysfunction	and	treatment	

besides	learning,	such	as	memory	processes	(A.	G.	E.	Collins	et	al.,	2014;	Shohamy	&	Daw,	
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2015)	and	attention	(Niv	et	al.,	2015).	In	addition,	other,	more	complex	forms	of	learning	

may	play	a	role	in	depression,	which	the	present	tasks	and	model	would	have	difficulty	

capturing.	Other	work	suggests	problems	with	biased	prior	expectations	(Huys,	Daw,	&	

Dayan,	2015),	biased	pruning	of	decision	trees	(Huys	et	al.,	2012),	or	overgeneralized	

learning	of	negative	states	or	schemas	(Disner	et	al.,	2011;	Gershman,	Norman,	&	Niv,	

2015)	in	depression;	these	lines	of	work	could	be	incorporated	into	the	altered	model	free	

learning	found	here	to	extend	and	clarify	the	present	findings	in	light	of	these	other	forms	

of	learning.		

The	current	work	found	that	symptom	improvement	in	CBT	was	related	to	changes	

in	learning	parameters	immediately	post-treatment.	This	work	suggests	that	CBT	is	

causally	related	to	learning	changes,	a	result	supported	by	results	from	Study	3	that	

learning	parameters	could	be	manipulated	based	on	targeted	queries	similar	to	those	

employed	in	CBT	techniques.	However,	the	number	of	participants	not	receiving	CBT	was	

too	small	at	follow	up	to	permit	a	comparison	of	the	group	receiving	CBT	to	a	non-

treatment	condition.	In	addition,	other	effective	treatments,	including	antidepressants	such	

as	selective	serotonin	reuptake	inhibitors	and	other	psychological	approaches	such	as	

interpersonal	therapy,	which	is	efficacious	but	is	hypothesized	to	work	through	different	

mechanisms	(Markowitz	&	Weissman,	2004),	were	not	investigated.	Similarly,	both	Studies	

2	and	3	only	investigated	changes	immediately	post-intervention	and	did	not	assess	long	

term	changes	in	learning	or	symptoms	of	depression.	As	a	result,	whether	the	learning	

changes	seen	immediately	post-treatment	persist	and	continue	to	be	related	to	depressive	

symptoms	is	unclear.	Therefore,	longer-term	studies	involving	waitlist	or	other	treatment	

groups	are	needed	to	determine	whether	learning	changes	are	specific	to	learning-based	
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treatments	like	CBT	or	learning	retraining	or	if	learning	changes	are	common	to	

improvements	in	symptoms	regardless	of	treatment.	Further	work	could	also	investigate	

the	relationship	between	learning	changes	and	development	of	depressive	symptoms	as	

well	as	study	the	evolution	of	symptoms	and	learning	differences	with	more	frequent	

measurements.	Study	3	found	that	it	was	feasible	to	administer	learning-related	

measurements	and	interventions	outside	of	laboratory	settings,	and	future	studies	could	

incorporate	these	online	approaches	during	longer-term	treatments	to	have	finer-grained	

temporal	sampling	of	changes	during	treatment.	

	

Conclusion	

In	summary,	the	present	work	shows	the	utility	of	using	reinforcement	learning	to	

understand	and	treat	psychopathologies	such	as	depression.	Symptom	clusters	of	

depression,	anhedonia	and	negative	affect,	were	related	to	specific	learning	disruptions	on	

behavioral	and	neural	levels.	Symptom	reduction	after	treatment	with	cognitive	behavioral	

therapy	was	related	to	remediation	in	learning	parameters	and	these	learning	parameters	

could	be	directly	modified	via	queries	in	a	learning	retraining	paradigm.	These	findings	add	

important	information	to	our	understanding	of	depression	and	lay	the	groundwork	for	

more	effective	treatments	of	this	and	related	disorders.		
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