A COMPARISON OF ALTERNATIVE METHODS TO THE SHEWHART-TYPE
CONTROL CHART

by
Deborah A. Hall
Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE
in
Industrial Engineering and Operations Research

APPROVED:

P

_ A Toel A. Nachlas, Chairman

\ _"' —C. ?’at}-i}&éelling — Marion R. Reynolds /

January, 1989
Blacksburg, Virginia




é‘ /‘,»’ /",q =

A COMPARISON OF ALTERNATIVE METHODS TO THE SHEWHART-TYPE

CONTROL CHART

by
Deborah A. Hall

Joel A. Nachlas, Chairman

Industrial Engineering and Operations Research

(ABSTRACT)

A control chart that simultaneously tracks the mean and variance of a
normally distributed variable with no compensation effect is defined in this
work. This joint control chart is compared to five other charts: an X chart,
an s? chart, a Reynolds and Ghosh chart, a Repko process capability plot, and
a t-statistic chart. The criterion for comparison is the probability of a Type
Il sampling error. Several out-of-control cases are examined. In the case of
Repko, an equation is defined to compute the Type Il error probability. The
results indicate that the Reynolds and Ghosh statistic is powerful for cases
when the variance shifts out of control. The X chart is powerful when the
mean shifts with moderate changes in the variance. The joint chart is

powerful for moderate changes in the mean and variance.
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Chapter One

INTRODUCTION

Over the past thirty years, the need for total quality control has
been discovered by industry. With-the entire organization of a company
exploring quality control, many tools have been developed. One successful
tool has been the control chart. A control chart is a statistical device
used for process control, specifically for a repetitive process. Use of a
control chart may be focused upon monitoring the status of one of several
parameters; an X chart is used to monitor the mean of a process; an s? or

R chart is used to control the variability of a process.

Variables control charts, assuming the variable is normally
distributed, portray the behavior of a production process in terms of three

quantities:
1) location of a variable
2) variability of a variable

3) time
Conventional charts, such as the X and R charts, separate the location and
variability statistics. When an X chart is used, an s® or R chart has to

be utilized first to verify that the variability of the process is in control



before the process location is examined. Often this is done by monitoring
two charts, an X chart and an R chart. First, a sample range statistic is
plotted on the R chart. If the range is in control, then the sample mean is
placed on the X chart and a decision is made about the state of the

process.

To avoid the process of plotting two statistics to examine only one
quality characteristic, single statistics for use on one chart are being
developed. Recent work by several authors has been focused upon
combining the location and variability quantities. Recent work by Repko
[Repko 1986] is based on the concept that the time variable is sometimes
less important. He attempts to combine location and variability measures.
This is especially appropriate when considering questions of process
capability. However, the approximate nature of Repko’s method limits its

applicability.

In contrast, Reynolds and Ghosh [Réynolds and Ghosh 1981] have
attempted to simultaneously represent all three quantities: location,
variability, and time. This is an attractive idea but their method allows
compensation effects between location and variability. Their method still
has appeal for process monitoring applications but is not particularly well

suited to the study of capability.

This thesis defines and compares two alternative control charts;
one simultaneously tracks the mean and variance of a normally distributed

variable while the other examines the mean without the need to examine

the variance first. After these control charts are defined, they are




compared to the X chart, the s° chart, the Reynolds and Ghosh sum
statistic, and Repko's process capability plot. In order make a comparison
to Repko’s plot, an appropriate Type Il error probability expression is
derived while recognizing the limitations of the assumptions of Repko’s

plot.

The first method examined is a joint control chart that contains
separate limits for location and variability. One axis contains the control
limits for the mean of a process variable and the other axis has limits for
the wvariance of the same variable. The mean and variance are not
numerically combined. Therefore, no compensation between the two

statistics occurs.

The second approach is a control chart based on the t-statistic.
The t-statistic is the distribution for the mean of a sample from a
normally distributed population for which the variance is unknown. One
problem encountered with some control chart statistics is the
approximations made about the standard deviation when the sample size is
less than thirty. The t-statistic may have some desirable statistical
properties that can be used to control the mean withéut examining the
variance first. Analyzing the utility of the t-statistic is the second

question that is addressed.

In order to develop these two methods, the combined statistics of
Repko and the statistics presented by Reynolds and Ghosh are examined.

The two methods are defined exactly along with any assumptions or

limitations. Also defined are the expressions for the Type I and Type II




sampling error probabilities for both the joint control chart and the t-
statistic. A Type | sampling error is the observation of a statistic
interpreted as signalling the process is out of control when the process is
in control. A Type Il sampling error is the observation of a statistic
interpreted as indicating the process is in control when the process is out
of control. The power of a test is the complement of the Type II error

probability.

The method of comparison is to fix the Type | error probability at
a specific value and to examine differences between the charts in the
probability of a Type II error. The Type | error is preset since there
must be some standard of equality. The Type II error probability is
computed for different values of the mean and variance corresponding to
several out of control cases. For each case, the Type Il error probabilities
for the X chart, the S? chart, the Reynolds and Ghosh sum statistic,
Repko’s process capability plot, the joint chart and the t-chart are

compared.

A computer program is constructed to perform the numerical
computations to compare the different control charts. The output of the
program is the probability of a Type Il sampling error for each method.
The input is the sample size, the Type I sampling error probability, the
true value of the mean expressed in terms of the target mean, and the true
value of the variance in terms of the target variance. If the appropriate
cumulative density function is not in a closed form, either a series

expansion or an approximating expression is used. The results are




presented in tabular form, and when feasible, in a graphical manner.

The comparison of Type II error probabilities shows that the
Reynolds and Ghosh sum statistic, the X chart, and the joint chart are the
most powerful tools to use to detect shifts in the mean or variance. The
Reynolds and Ghosh statistic is powerful in detecting changes in the
variance. As is expected, the X chart detects shifts in the mean quite
rapidly. The joint chart is powerful for moderate changes in the mean and

variance.




Chapter Two

LITERATURE REVIEW

2.1 INTRODUCTION

The control chart is a statistical tool that is widely used in quality
control. It was first proposed by Walter Shewhart [Shewhart 1939]. As is
now well known, a control chart is a graphical representation of the status
of a variable such as a quality characteristic. The theoretical basis for a
control chart is the differentiation between types of wvariability in a
process. Variability exists in two forms: inherent and assignable.
Inherent variation is a regular property of a statistical distribution and
cannot be removed. Assignable variability is caused by a physical
influence acting on the process. The purpose of a control chart is to
distinguish between these variations and identify when assignable causes

are affecting a production process.

A control chart is maintained by taking samples from a process and
plotting on the chart in time order some statistic computed from the
samples. Control limits on the chart represent the limits within which the
plotted points would fall with high probability if the process is operating

in control. In control means that the only source of variation is inherent




variability. A point outside the limits indicates that something (i.e. an

assignable cause of variation) has happened to change the process.

All basic control charts examine one population statistic. Either
location or variability are paired with a time dimension. The status, in
control or out of control, is plotted over time. The authors who have
studied a variation of the three quantities- location, variability, and time-

include Repko, Reynolds and Ghosh.

2.2 REPKO

Repko [1986] develops a combined statistic for use in what he calls a
process capability plot. A process capability plot graphically shows the
capability of a process. It can be used as a control chart. Samples are
taken from a normally distributed process. The sample mean and standard
deviation of the quality characteristic are calculated, plotted, and compared
to a prediction circle. Repko intends this circle to represent the boundary

of in control behavior of a process.

The prediction circle is an (1-a)% boundary for a x? statistic. The
definition of the Y statistic begins with the relationship between normal
standardized variables and X° variables. The sum of the squares of normal
standardized variables is distributed according to the X [Duncan 1986]: Z,*

+ Z,° ~ XA

The sample means are normally distributed. If the sample
size is assumed to be large, the sample standard deviation is assumed to be

normally distributed as well. Therefore, Zfz + 232 ~ x* [Repko 19861,



2,2
R = o’0,(l—cx,2
n

Figure 2.1 Repko’s Process Capability Plot




where,
x-M
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Mp= grand mean, the mean of the sample means
Sp = pooled sample standard deviations
n = sample size, assumed large

Therefore,
_ 2 2
X - Mp S - Sp
Sp/n Sp/ {2n
Y ~x
Y will take on values of the x? distribution with 2 degrees of freedom. Mp

and Sp can be replaced with target values of the mean and variance, 4, and

o, to obtain the equation:
_ 2
y - [x - uo] s - 0
ao/ﬁ Uo/m

By manipulating the equation for Y, the equation of an ellipse can be

formed.
- 2 2
[X - ﬂo] S-0o| _ 2
0'0/“—1-1 0'0/“—2_;




[f-wl | [s-of
o5 X°/n o5 X</2n

The intercept of one axis, a, is 9{.% J—)?, while the intercept of the other, b,
O 2

is E x%. If this equation were graphed, the resulting area bounded by
the ellipse would be the area in which (1 —a)% of the plotted points from
the process should be located if the process is in control. However, an
ellipse is not as easy to draw with precision as a circle is. A circle is a
special case of an ellipse where a = b. Therefore, the axis for the

standard deviation can be scaled by a factor of «E This will result in a

circle that graphically shows the location of an in control process.

Repko’s statistic is a compact manner for studying the behavior of
the mean and variance. However, the assumption of a large sample size
limits the robustness of this test. s is not normally distributed with mean
o and variance oz/m when n is less than thirty. Repko’s fundamental
idea of a chart where the location and variability quantities are

represented leads to the proposed joint control chart.

2.3 REYNOLDS AND GHOSH

Reynolds and Ghosh [1981] address several issues in designing
control charts to detect changes in the mean and variance of a variable.
The area discussed of use to this thesis is procedures to simultaneously
control the mean and variance. This discussion yields a sum statistic to be

used in quality control. The sum statistic is defined as follows:
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U4V ~x%, if u =p,and o = o,

The sum U + V is the sum statistic, which is distributed as a X if u =

io and ¢ = 0o. The sum is distributed as a non-central X if 4 # uo or o

# 000

Reynolds and Ghosh provide some numerical comparisons using a

computer algorithm to compute the non-central X probabilities:

Muyoy) = PU+V > in,l-—al iy Oy)
{2 — e | (n—1)s? 2
= P nyl—o y O
([ Uo/ﬁ]z + o_g > X o1 ' My l)
X — Uo (m—Ds® _ 2 o5
= P( ~ > nyd—ax T 2 ’ o
[0'1/‘“-1 }2 + = X ny = 72 -2))
2
2 o4
= P Xz(n,c) > X njl~a _20 | Ky ol)
o,

My— Mo
Cc = n[————al }2

The power of the test is computed based on different values of the mean

and variance of a variable.

the separate X and s’ charts [Reynolds and Ghosh 1981].

Results are obtained for the sum statistic and

It can be seen
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from Table 2.1 that the Reynolds and Ghosh sum statistic performs better
than the separate statistics when the variance shifts. However, if only

the mean has deviated, the separate charts perform better.

2.4 RAO

Rao develops a control chart to be used under variable time sampling
conditions. This chart simultaneously monitors the process mean and
process variance. After defining this chart, which is an extension of
Repko’s chart, Rao compares it to other charts. Due to the approximate
nature of the statistic, Rao uses simulation to examine the properties of

the control chart. His results indicate that the Repko chart is comparable

to the Reynolds and Ghosh chart.




13

Table 2.1 Power of the Sum Statistic Vs. Separate Charts

o/0p= 1 o/0g= 2 c/o,=3

X&s? sum | X &s® sum | X & s sum

0 .0010 | .0010 | .3457 | .4004 | .7700 | .8093

1 .1070 0473 | .4723 | .5398 | .8071 8431

2 .8394 | .6520 | .7719 | .8119 | .8882 | .9133




Chapter Three

THE CONTROL CHARTS

3.1 INTRODUCTION

Control charts portray the behavior of a process in terms of the
location of a variable, the variability of a variable, and time. Since the
mean and variance, or standard deviation, of a normally distributed
variable are the bases for the combined control charts examined here, the

associated distributions should be reviewed.

The process variable being controlled is X. X is assumed to be
normally distributed with mean u, standard deviation o, sample mean X, and
sample standard deviation s. X is distributed normally with mean u and
variance o?/n, where 4 is the mean of the universe being sampled, o? is

the variance of the universe, and n is the sample size [Duncan 1986].

2
(71—7—212-8— is distributed as a x? with n — 1 degrees of freedom
o
[Duncan 19861]. The expected value of s? is o? and s? has a variance
equal to : 2_ i o and a standard deviation n'_z——-laz' The only assumption

is that the universe of individual values is normal.

Although the standard deviation is the square root of the variance,

14
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the mean of the distribution of sample standard deviations from a normal
population is not, in samples less than thirty, the square root of the mean
of the distribution of sample variances. Correspondingly, if n is small,
the standard deviation of the distribution of sample standard deviations
does not equal the square root of the standard deviation of sample
variances [Duncan 1986]. The mean value of the distribution'of sample

standard deviations from a normal universe is [Duncan 1986]:
[n — 2].

2 2 ¥

"1 3

5 !

The coefficient of o is called cs. The standard deviation of the

o

distribution of sample standard deviations from a normal universe is

approximately c/«] 2(n—1). The exact formula is [Duncan 1986]:
O'Jl — (04)2

3.2 THE JOINT CONTROL CHART

A joint control chart combines the statistical limits and properties
from an X chart and an s? chart. Since the sample mean X and the sample
variance s° are statistically independent [Cowden 1957], no compensation
effect occurs between the two estimates. Compensation could occur in a
test statistic that adds two statistics. If one term is higher than its target
value and the other is lower than its target value, the combined statistic

would appear to be in control.
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Control limits for an X chart are u, + kog [(Duncan 1986]. u, is
the target value for the mean, oy is the standard deviation of the mean,
and k is determined so that:

probability (u, — kog < X< Uy + kog) =1 — a.

Figure 3.1 shows a typical X chart. The Type Il error probability

expression is:

Bz(uy,0,) = probability( no signal occurs| 4 = Uy, 0 = O,)

= Pr(uo — kog < X< to + kog | 4 = U0 = 0y)

ko — ko
= Pr{u, ——‘]%— Uy < X—uy1 < Uo + ﬁo — Uy | w,oy)
kao ko'o
Mo — — U — Mo+ — M
=Pr(0 {n ‘<x—,u,< > dn ll;t.ta)
o,/An o,/An o/yn bt

=Pr(ﬂ0_u!_k@<z<u0_ul+k

o o o/ { o) U

o,
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a,y
=z
UCLi
1 — o,
LCL)-(
ay
Time

Figure 3.1 X CHART
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Control limits for an s® chart are set so that:

2 —
probability (5-(—‘112—1)
o

> Upper Control Limit) = o«

where the upper control limit is the x° value for n—1 degrees of freedom
and a tail area of a,. A lower limit is sometimes used. However most
concerns are with the variance being too large and the lower limit is often

taken to be 0. A s® chart is shown in Figure 3.2. The Type Il error

probability expression is:

B(u,0,) = probability( no signal occurs| 4 = u,, o = )
2
., S (n—l ~
= Pr( —:_’>‘__—) < x-n—l,l—al M = Uy, O = 0'1)
Co
- s%(n—1) 2 ol
=Pr(_—'§_—<xn—-l,l—a '_2'/‘=oun°' = o0,)
o, o,
2 o3
= Pr( xz <X n—1,l—a O’—g' M= U, O = 61) [2]

1
To construct the joint control chart, the X-chart and the s®-chart

are combined as illustrated in Figure 3.3.



l1—a,
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LCLg UCLg

Figure 3.3 JOINT CHART




The alphas defined for the single charts are the Type | error
probabilities. Knowing that X and s® are statistically independent the
expression for the Type | error probability for the joint control chart is:

a = 1 — probability (observe a point within the limits)

a=1—00 — o)1 — a,)

(3]

a = (a; + a, — a,a,)
o, is arbitrarily chosen to equal a,. No factors indicate to do
otherwise.

The Type Il error probability is defined as a function of the
parameters being tested, in this case, the mean and variance. Let B(u,0,)

represent the Type Il error. The power of a test, M(u,o,), is the

complement of B(u,,o,) .
I {u,,0o,) = probability (a signal occurs, given 4 = U, T = o)
= 1 — (probability no signal occcurs)

1 — (probability X does not signal)probability s* does

not signal)

Using Equations [1] and [2], the expression is obtained for the power of the

joint control chart.

= Mo — Hy _ %0 Mo — My %9
T (u),0,) [Pr ( o7 kcrl < Z < o/ + kcr,)] *

2

{ Pr [ X*nc1 < Cary, ,._,)g% ) [4]
1
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The joint control chart combines the location and variability dimensions.
The time dimension can be portrayed by either numbering the points in
time order or drawing a line from point to point in time order. The
advantages of combining the location and variability dimensions with no

compensation effect are several.

The primary advantage of the joint chart is the visual relationship
between the sample mean and sample variance. This information is lost
when separate X and s’ charts are used. Since X and s? are statistically
independent, any correlation between the two is a result of the process.
This knowledge can help the manufacturer in understanding and controlling
his process. For example, an in-control process would be expected to yield
random points within the limits. As an example, consider Figure 3.4. If
sampling resulted in a chart like the one in Figure 3.4, a reasonable

inference would be that the process is causing a correlation between the

sample mean and variance.




ooooo

oooooo

LCLg UCLg

Figure 3.4 JOINT CHART

Correlation Between the Sample Mean and Variance
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LCLg UCLg

Figure 3.5 JOINT CHART
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The second advantage of the joint control chart is the definition of
the Type | sampling error probability. When separate charts are used to
control the mean and variance, an alpha is specified for the variability
chart and an alpha is specified for the location chart. Hence the

probability of a Type [ error in controlling the mean is a function of the

probability of a Type | error in the variability chart and the probability
of a Type I error in the location chart. For example, if both alphas for
the separate charts were set to .05, the combined alpha would be 1 - (1-
.05)% = .0975. However, if a user specified an alpha of .05 for the joint
control chart, the control limits may be set so that .05 rather than .0975

would be the final alpha.

3.3 THE T-STATISTIC CONTROL CHART

In order to understand the usefulness of the t-statistic in a control
chart, the related hypothesis should be discussed. It is assumed that the
sample comes from a normal universe with mean 4 and standard deviation
unkonwn. The t-statistic tests the null hypothesis:

Ho: 1 = W

Hy: u =

The test statistic is:

Therefore, the t-statistic supports inferences concerning the mean without
knowledge of the standard deviation. The mean is tested using the sample

variance.
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The t-chart should not arbitrarily be used in any situation. The
t-chart can be used at the start of a production process while the variance
is unknown. While the data for an estimation of the variance is being
collected, the mean can be controlled using the t-statistic. This is better
than performing no control procedures at all. Since the t-statistic has the
sample variance in the denominator, it seems that the test will not signal
when the variance increases. Therefore the t-chart would appear not to be
powerful in any other situation. This statement is verified by comparisons

to other charts.

As shown in Figure 3.6, the control chart is set up like any other,
with,

UCL, = ty_asnr

LCL, = t,,2
The expression for the Type | error probability is:

o = 1 — probability (point is within the limits)

o = 1 — probability (to,, < t < ti_a/2) [5]

The expression for the power is:

HO(u, o,) = 1 — probability (no signal occurs| 4 = u;, o = o)

=1 —Prty,, <t < ti—as2| My o)

X — Uo _
=1 — Pr (ty,2 < —S—/T_\'-l-g < t1—a/2| iy, T4)
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Figure 3.6 T - CHART
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My X — lo My
=1 — Pr(ty,,, — < — <t o
T (te)2 0’1/“171 pSS Gx/ﬁ Ul/ﬁ l—a/2
M
01/«[_
4y X — My Ko
=1 — Pr(t,,, — — ti—a
1 r( /2 Ul/ﬁg U;/ﬁ Ul/ﬁg 1 /2
M
ol/«r
My Ko i
=1 — t — t
1 Pr (to,2 o /Nn + Ux/ﬁ 0'1/‘1_ P < tian
.. + Ko
o/4n 01/4_
§7
=1 — Pr(ty,; — /4_0 <t L tg — /4_ 2 (6]

Due to the nature of the t-distribution, the power of the test will vary
from sample to sample. This is because the power expression contains a
random variable, s. In practical use, the power of the test is computed
based on an estimate of the standard deviation, s. For the computations

performed here, the estimate, s, is replaced with o,.

3.4 TYPE II ERROR PROBABILITY EXPRESSIONS

Power expressions for the joint control chart and the t-statistic
chart have been obtained [Equations 4 and 6]. From [4] fhe Type Il error
probability for the joint chart is:

Biluwoy) = [Pr (2 Hm — k3 < Z < B Bm 4 kg0

‘(n—l)
of

2
Pr 2 < (Ca,, ,,_,) 2o s =y o =] (7]

From [6] the probability of a Type II error for the t-statistic chart is:

Bty o) = [Pr (ty,2 — /4— St <t ap— l:;l/—ﬁo W, oyl (8]
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From equations [1] and [2], the Type Il error probability expressions for

the X chart and the s° chart are:

B=(uy,0,) = [Pr X does not signall u = u,]

- [Pr(‘ﬁ—ﬁ_‘ﬂ — kP <z < ‘ﬁ—ﬁlﬂ+ kg2l iy o] (9]

o./4n o/n
B u,,0,) = [probability s? does not signal]
s
s%n—1) » o3
= [Pr (0 < 0oy, w2 [10]
o, o,

3.5 REPKO’S PLOT

In order to compare Repko’s chart to the other control charts using
Type Il error probabilities, the error introduced by the small sample size
assumption has to be recognized. Repko’s control limit is defined by an

alpha and the sample size:

PSP + [E2P 5 s = )
Uo/ﬁ ao/&; 24l—a

For a small sample size, this probability expression is not accurate. To

rectify the error, [11] is redefined.

U2 — i_Uo 4
[ao/«l—r_\

Vr2 —_ §—0y
' [ao/m
2

vz — (n—-l)s
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U2 + V% -~ X2v.

P( [’_‘—“ °]2 + {s_% 2 > Xoi—a)

go/Nn ao/m
= PU? + |22 > x%a)
I:O'Ql/"j_z_l; o
=P(E222 > (x%,ma — UDYH

0'0/“‘_2_;

=P{s > (X22,1—a - U2)l/zco/m + Uo}

=P{s® > (21— — U3 %0,/d2n  + o}

—1s? - 2 .
—PE=2% > 1=l — U9 eI + ool
0 0

=PV > n—1 (- — U420 + 1P)

- 2o - — U2 %3 -~ -
=P{U? 4+ V2 > n—1 [(x"—‘gﬁ——)‘“ + 1P + Uy (121

The Type I error probability, a’, can be calculated for Repko’s plot using
[12. This can be compared to the alpha intended by Repko in [11].
However, equation [12] can not be algebraically solved for one answer.
Contours are developed depending on values of U2 If u = Lo, U? will be
between 0 and 10.89 with probability .9995. Two valueé of U? are used:
the expected value of U? 1, and the value of U? that yields the minimum
value of a’. To find the value of U? that minimizes alpha, the maximum

value of the probability limit term, T, in [12] is found.

X22,1—a - U2
T (n—1) [(———

MR+ U




31

2

oo — U? Y a0 — U% /.
T = (n—1) (22 § ook P 1) 4w
Py PA ]
iT
sU
AT _ o vgson 4 oy Xama = Ym0
e (n—1)-1"2n -+ :(..){ o ] (-1/2n) +1 =0
%o 0 — U%_ /.
(n—1)-1/2n1 —+ (’iﬁ‘T—)—‘/‘] +1 =0
2, . — U _ .
(n—1)-1/2n[1 + A2i=x T Z /7 o
2n
.
1+ Xzz,x—: - U2|—1/2 — _2n
' 2n ] n—1
[Xz%l—a — U{I-l/'z — 2n_ _
2n 4 n—1
X21-a — U? _[ 2n—n+1 ]_2
2n n—1
Vkhar = Xouoa — {_?#11_] 2(2n) 1131

U%ax is the vaiue that gives the lower bound of a’. Type II error
probabilities for the intended alpha, o , are computed for two contours of
the actual alpha. Therefore two values of alpha are computed based on
the expected value of U® and the value of U? that results in the minimum
contour value of alpha. a'! is the alpha corresponding to U2 =1. aMis

the lower bound on alpha. To compute the probability of not signalling, a

non-central Y distribution is used.

ﬁ(un01,U2) = P(Uz + V?z < T/ 1 = pt,o = o)

X — Yo (n—1)s?
- 2 T o m—5 /o= fhyy & =
P({ in + 2 < T/ u Ly © o)
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X — Uo (n—1)s° ~ O3 :
= P —_— ) < T _ni / = ’ o =0
({ Ul/ﬁ + = p: M yo5 1
a. n O’g
Bluyo,UT) = P X < T 3 I = Uy, 0 = 0y)
1
where,
c — n[ﬂ-:;I U0]2
24 — - '[J2 2l g
T = (n—1) [(X—i-;—————)"‘ + 1P + U?
n
Ui =1 s Uzna.r = X22,1-q, - [%] 2(2“) [14]

Expressions for the probability of a Type Il error have been defined
for all six control charts. The charts now are compared based on several

values of out of control cases.




Chapter Four

COMPARISON OF CONTROL CHARTS

4.1 AVERAGE RUN LENGTH

The basis of comparison for control charts is the Average Run
Length (ARL). The ARL is the average length of a run of in-control points

[Duncan 1986].

1

ARL = 1 - probability(no signal)

Note that the ARL can be defined for an in-control case or an out-of-
control situation. The probability of no signal when the process is in
control is 1 — «. The probability of no signal when the process is out of
control is A{u,o;). Therefore to compare charts, the Type Il error
probabilities B(u,,0,) are used. These equatiors already have been defined

in Chapter Three.

4.2 TYPE 1 ERROR PROBAERILITY VS. TYPE II ERROR PROBABILITY

When developing the probability expression for Repko’s plot,

equation [12] was defined for the minimum value of a’. This was done

33
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because of the relationship between the probability of a Type [ error and
the probability of a Type Il error. If a minimum o is defined, the
corresponding B expression will be a maximum. This relationship can be
understood graphically. The smaller the «, the larger the circle that is
the limit for Repko’s chart. The larger the circle, the higher the
probability of being within the circle and not signalling when the process is
out of control. Therefore, the minimum o yields the upper bound on the

Type Il error probability for Repko’s plot.

For any sampling with a fixed sample size, the Type | sampling error
probability and the Type Il sampling error probability have the inverse
relationship already described. However, with a fixed Type 1 error
probability, a target Type II error probability can be obtained by changing
the sample size. An increase in the sample size will decrease the Type Il

error probability and vice versa.
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larger a smaller o
smaller 8 larger 3

Figure 4.1 Relationship Between o and 8




4.3 COMPUTER PROGRAM

A computer program was developed to perform the computations to
maeke the comparison between the six control charts. Based on inputs of
the sample size, alpha, and the population mean and variance, the program
computes Type Il errors probabilities for:

1) the joint control chart

2) the t-statistic chart

3) the X chart

4) the s? chart

5) the sum statistic chart

6) Repko’s plot

All the error probabilities have been expressed as a function of u,
and o,. The probability expressions are rewritten as a function of

absolute measures of 4, and o,: A and v, where

o,

ol
Boluno) = [Pr(— M0 — k/{¥ < Z < —Ma + kM| u,0{15]

ﬁsz(ﬂbo'l) = [Pr[x¥* < (X21_c(,, a1 1y, 04 ] [16]

Biuwo) = [Pr(—Mm — k¥ < Z < —Mn + k/{Y) * ‘
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Pr I < (Ci—ay, st/ 1y 04 (17

By, o) = [Pr (ty,, — Mn <t <ty — Ml uy, oyl (18]

Brottnoy) = P(Xner < OCnyu—aV/Y |ty )

¢ = ma? (19]
Brep(ino,UD) = P( Xy < T/Y | 4y 09)

c = n)\2

S | C
T = (n—1) [(F2E ) 1P 4 U

UZ =1, Uhae = Xapa — [%}_11—] %2n) [20]

Type II error probabilities are computed for A ranging from 0 to 2
and Y ranging from 1 to 3. These values were chosen because they
provide sufficient data about the behavior of the control charts. Initially,
a higher range of out-of-control cases was examined; howéver, the increase
in data did not yield additional information. To compute the Type Il error
probabilities, several probability distributions are needed within the
program. They are :

1) the normal distribution

2) the X distribution

3) the non-central X* distribution
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4) the t-distribution

Series expansions are used for the t-distribution and the X?
distribution. An approximation for the normal is used. The error for the
approximation is less than 7.5 X 107% A truncated infinite series is the
approximation for the non-central x°> [Abramowitz and Stegun 1972]. Refer
to Appendices A and B for a listing of the program and a complete

explanation of the approximations and expansions used.




Chapter Five

RESULTS AND CONCLUSION

5.1 INTRODUCTION

In order to compare control charts, a standard of equality must be
established and a criterion for comparison defined. The standard of
equality selected is the probability of a Type | sampling error and the
sample size. The criterion for comparison is the probability of a Type II
sampling error. A Type Il sampling error is the observation of a statistic
interpreted as indicating the process is in control when the process is out
of control. Therefore, the probability of a Type Il error is a function of
the out-of-control parameters: the population mean u, and the population

standard deviation o,.

Six control charts are compared:
1) the X chart

2) the s® chart

3) the joint chart

4) the t chart

5) the Reynolds and Ghosh chart

6) the Repko plot
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Several values of the Type 1 error probability and the sample size are

used in the comparison of the charts.

5.2 RESULTS

The comparisons of the Type Il error probabilities are as a function
of A\ and Y. N\ is the number of standard deviations that the population
mean exceeds the target mean. 7 is the ratio of the population variance to
the target variance. The control charts are compared for A ranging from 0
to 2 in increments of 0.5 and 7Y ranging from 1 to 3 in increments of 0.25.
Two initial conditions are used:

1) o =.01,n=5

2) a = .05 n=35
The results for the first case are numerically presented in Tables 5.1
through 5.5 and graphically shown in Figures 5.1 through 5.5. Tables 5.6
through 5.10 and Figures 5.5 through 5.10 contain the information for the
second case. The results from the first case are discussed. Any changes
caused by the increase of o to .05 are noted when appropriate.

In the case that the mean does not shift, the Re&nolds and Ghosh
statistic is the most powerful method. This result corresponds to the

results obtained in 1981 by Reynolds and Ghosh [Reynolds 1981].
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TABLE 5.1 PROBABILITY OF A TYPE II SAMPLING ERROR
A=0
Gamma
Chart| 1.00*] 1.26 1 1.50 ] 1.75] 2.00 | 2.25 | 2.50 {1 2.75 | 3.00
X .9900| .9787] .9645| .9484 | .9313} .9139| .8965| .8794| .8628
s? 9900 .9688| .9351 | .8921 | .8437| .7933| .7431| .6946| .6485
Joint! .9900] .9696| .9363| .8927| .8423| .7888| .7348] .6822| .6320
T .9900( .9900{ .9900| .9900| .9900| .9900{ .9900| .9900{ .9900
R&G | .9900| .9661| .9264] .8748| .8167| .7565| .6971] .640S| .5876
Repko| .9928 | .9737 |.9397 | .8938 | .8403 | .7835 | .7264 6711 | .6187
o = ool, n = 5

*This is the in control case.

The probability of no signal is 1 — a.
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TABLE 5.2 PROBABILITY OF A TYPE Il SAMPLING ERROR
A= 0.5
Gamma
Chart| 1.00 | 1.25| 1.50 | 1.75 | 2.00 | 2.25 | 2.50 { 2.75 | 3.00
X 9273 .8816| .8368| .7951 | .7571 | .7229| .6920 | .6642| .6390
s? .9900 | .9688( .9351 | .8921{ .8437| .7933| .7431| .6946 | .6485
Joint| .9488| .9002| .8411} .7768| .7117| .6487| .5897| .5354| .4862
T .9851| .9851| .9851{ .9851| .9851| .9851| .9851| .9851) .9851
R&G | .9686| .9172| .8482| .7721| .6960| .6244| .5590| .5005| .4486
Repko| .9759 | .9320 | .8700 |.7989 | .7260 | .6558 |.5907 {.5317 |.4788
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TABLE 5.3 PROBABILITY OF A TYPE II SAMPLING ERROR
AN=1.0
Gamma
Chart| 1.00 | 1.25| 1.50 | 1.75 | 2.00 | 2.25 | 2.50 | 2.75 { 3.00
X 6325 .5266 | .4470| .3862| .3391 | .3018 .2718] .2473 | .2268
s? .9900 | .9688| .9351| .8921| .8437| .7933| .7431| .6946 | .6485
Joint| .7009| .5945| .4978| .4184| .3530| .2995]| .2555| .2193| .1894
T .9603| .9603| .9603| .9603| .9603| .9603| .9603|{ .9603| .9603
R&G | .8339] .6970| .5696| .4630| .3774| .3099| .2566 .2145| .1809
Repko| .8599 |.7310 | .6057 {.4976 |.4091 | .3382 |.2816 | .2364 |.2001
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TABLE 5.4

PROBABILITY OF A TYPE II SAMPLING ERROR

AN=1.5
Gamma

Chart| 1.00 ] 1.25] 150 1.75 | 2.00 | 2.25 | 2,50 | 2.75 | 3.00
X 2181 | .1467 1 .1054 | .0797| .0626 | .0508 | .0422 | .0359| .0309
s? 9900 .9688] .9351| .8921} .8437| .7933{ .7431| .6946 | .6485
Joint| .2885] .1943| .1368] .0999| .0750{ .0576| .0452] .0360}| .0291
T .8596] .8596] .8596] .8596| .8596] .8596| .8596| .8596| .8596
R&G | .48811 .3178} .2103] .1433| .1006} .0728| .0540} .0411} .0318

Repko| .5311 {.3534 |.2373 |.1632 |.1154 | .0839 | .0625 .0476 | .0370
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TABLE 5.5 PROBABILITY OF A TYPE Il SAMPLING ERROR
A= 2.0
Gamma
Chart{ 1.00 | 1.25 | 1.50 | 1.75 | 2.00 | 2.25 | 2.50 | 2.75 | 3.00
X .0289| .0151| .0089 | .0058 | .0040 | .0029 | .0022| .0018 | .0014
s? 9900 | .9688 | .9351| .8921| .8437| .7933| .7431| .6946 | .6485
Joint| .0471| .0241| .0138| .0086{ .0056| .0039{ .0028{ .0020} .0015
T .5489| .5489| .5489| .5489| .5489| .5489| .5489| .5489| .5489
R&G | .1418] .0655| .0332| .0182} .0107| .0067| .0044| .0030| .0021
Repko| .1671 |.0787 |.0403 {.0223 |.0131 |.0082 | .0054 | .0037 | .0026
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TABLE 5.6 PROBABILITY OF A TYPE I SAMPLING ERROR

*This is the in control case.

AN=20
Gamma
Chart{ 1.00%| 1.25 | 1.50] 1.75 | 2.00 | 2.25 | 2.50 | 2.75 | 3.00
X .9500| .9204 | .8904 | .8615| .8341 | .8086| .7847| .7626] .7420
s? 9500 .89221 .8239| .7533| .6854} .6226] .5656| .5145] .4690
Joint| .9500| .8936| .8242| .7505| .6781} .6103| .5486] .4931| .4438
T .9500| .9500| .9500{ .9500{ .9500| .9500{ .9500| .9500} .9500
R&G | .9500] .8850| .80611 .7242] .6459| .5743} .5104| .4542| .4051
Repko| .9732 |.9283 | .8663 |.7961 |.7245 | .6556 |.5917 | .5337 | .4817
o = 005, ns= 5

The probability of no signal is 1 — a.
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TABLE 5.7 PROBABILITY OF A TYPE II SAMPLING ERROR

AN=20.5

Gamma

Chart{ 1.00 | 1.25 | 1.50 | 1.75 | 2.00

2.25 | 2.50 | 2.75 | 3.00

X .7989 | .7351 | .6818| .6371| .5993| .5670| .5390{ .5146 } .4930

s” .9500 | .8922| .8239| .7533| .6854| .6226{ .5656| .5145| .4630

Joint| .8462| .7588| .6712| .5896| .5166] .4528| .3977| .3504| .3098

T .9049| .9049| .9049| .9049| .9049| .9049]| .9049| .9043| .9049

R&G | .8876| .7864| .6830| .5883| .5059| .4360| .3772} .3279| .2866
Repko| .9311 |.8513 |.7604 | .6708 | .5886 | .5158 |.4526 | .3983 |.3517
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TABLE 5.8 PROBABILITY OF A TYPE Il SAMPLING ERROR

AN=1.0
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TABLE 5.9 PROBABILITY OF A TYPE Il SAMPLING ERROR
AN=1.5
Gamma

Chart{ 1.00 | 1.25 | 1.50 | 1.75 | 2.00 | 2.25 | 2.50 | 2.75 | 3.00
X .0817| .0547| .0398| .0306 | .0245| .0203 | .0172| .0149| .0131
s? .9500| .8922| .8239| .7533| .6854| .6226| .5656 | .5145| .4690
Joint| .1290| .0826| .0561| .0398| .0293| .0221{ .0171} .0135{ .0108
T .2953] .2953| .2953{ .2953| .2953| .2953| .2953| .2953| .2953
R&G | .2630| .1535| .0948| .0618| .0421| .0299| .0219| .0164| .0127

Repko{ .3510 |.2138 | .1355 |.0898 | .0619 |.0442 |.0325 |.0245 |.0189
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TABLE 5.10 PROBABILITY OF A TYPE II SAMPLING ERROR

AN=2.0
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In the case that the relative shift in the mean is 50% , the X chart
is most powerful if the shift in the variance is not more than 50%. Any
higher shift in the variance causes the Reynolds and Ghosh statistic to
become the most powerful control chart.

As the shift in the mean increases, the Reynolds and Ghosh statistic
becomes less powerful compared to other charts. When A = 1.0 and the
variance increases upto 200%, the X chart is most powerful. For the case
where the ¥ is 2.25 and 2.50, the joint control chart is the best method to
use. However, after Y exceeds 2.75, the Reynolds and Ghosh chart once
again is the most powerful. The effect on increasing o to .05 is that the

joint chart becomes most powerful for all high shifts in the variance

except for when ¥ = 3. In this case, the Reynold and Ghosh is most
powerful.
In the case A = 1.5, the X chart is most powerful except where 7Y

is 3.00. For that situation, the joint control chart is more powerful.
When o = .05, the joint becomes the most powerful chart when ¥ = 2.50.

When N\ = 2.0, regardless of the magnitude of the shift in the
variance, the X chart is the most powerful tool to use.

As can be seen from Table 5.1, Repko’s chart does not have the
dictated alpha of .01. The control limit for the Repko’s plot is xg,.sg but
due to the approximations made related to the sample size, the actual alpha
is not .01. The alpha presented in Table 5.1 is the lower bound on the
actual alpha. Two values of the actual alpha are computed: the alpha
resulting from the expected value of the term U? and the lower bound of

alpha resulting from the maximum of U?. The first alpha is .0083 and the




lower bound alpha is .0072. The corresponding Type 1l error probabilities
differ at the most by .0005. Therefore, only the results from the lower

bound of alpha are presented.

If the control limit for Repko’s chart could be calculated exactly so
that the probability of a Type | error were .01, the Type Il error
probabilities would be identical to the results of Reynolds and Ghosh.

This can be seen from [19] and [20]:

Broglttnyo) = P(XPn,e) < OCan-a/Ys /b = pty, 0 = o))

¢ = A2 [19]
Brep(tiy,o,U?) = P( X2(n,c) < T/ /u = uy o = 0y)

c = n)\2

T = (n—1) [(’522"“‘2‘——“L1f)”2 + 12 + U?

U= 1, UVew = Xoume — 2500 (201

To obtain the correct alpha for Repko’s plot, T must equal X2n,1—a'

Therefore [20] becomes:

3rep(ﬂ1aanU2) = P Xz(n,cl < (in,x-a)/’Y, u = My O = O'x)
¢ = m\?
If the control limit for Repko’s chart is set so that T = X2, ., the

probability of a Type Il error for the Reynolds and Ghosh statistic is the

same as the probability of a Type Il error for Repko’s plot.

Tables 5.11 and 5.12 show the most powerful chart for each out-of-

control case examined. The X chart, the joint chart, and the Reynolds and
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Ghosh chart perform the best. The Reynolds and Ghosh statistic is the
most powerful when:

* The mean does not shift and the variance does.

* The mean shifts slightly and the variance shifts greatly.

The X chart is the most powerful when:

* The mean shifts and the variance does not.

* The mean shifts and the variance shifts slightly.
The joint chart is most powerful for the cases between the X chart and
the Reynolds and Ghosh chart:

* The mean shifts a moderate amount and so does the variance.

* The mean shifts a moderately large amount and the variance

shifts a large amount.
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Table 5.11 The Most Powerful Chart

a = .01
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Table 5.12 The Most Powerful Chart

a = .05

Gamma
A 1.00 | 1.25| 1.50( 1.75| 2.00] 2.25| 2.50| 2.75| 3.00
0.0 R&G | R&G | R&G | R&G | R&G | R&G | R&G | R&G
0.5 X X X R&C| R&G | R&G | R&G | R&G | R&G
1.0 X X X X |JOINT|JOINT|JOINT|JOINT| R&G
1.5 X X X X X X |JOINT|JOINT[JOINT
2.0 X X X X X X X X X
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5.3 CONCLUSION

Control charts portray two or three of the following dimensions:
1) location
2) wvariability
3) time
A comparison of charts has been made based on several out-of-control

cases of the location and variability dimensions.

The X chart plots the location statistic versus time. The s? chart
plots a variability statistic against time. Often the X and the s? charts are
used together to control the mean and variance of a variable. However,
the results

show that the X chart alone is the most powerful tool for over 50% of

the out-of-control cases examined.

The Reynolds and Ghosh chart is a method of combining the location
and variability dimensions of a variable with the time element. Repko’s
plot is another method of combining the location and variability dimensions
of a variable, but ignores time. Due to approximations made about the
sample size, Repko’s plot is not accurate for small sample sizes. However,
the control limit can be altered and the statistical properties of the
Reynolds and Ghosh statistic can be obtained. The advantage of the Repko
plot is the graphical ease with which it can be used. It also has the

advantage of direct application to process capability analysis.




67

The Reynolds and Ghosh statistic is the most powerful tool when
the variance shifts with a small shift in the mean. The Reynolds and
Ghosh is not sensitive to changes in the mean due to the compensation

effect. This can be understood intuitively. The Reynolds and Ghosh

statistic is the sum of two X°s. If one stays in control, the other must
become quite large to create a signal. When only the mean changes, the
Reynolds and Ghosh statistic is not sensitive. However, a shift in the
variance affects both terms, which is why the statistic is sensitive to

changes in the variance.

Z The joint control chart combines independent limits for the mean and
variance into one chart. No compensation effect between the two variables
occurs because the two statistics are not being numerically combined. The
time variable is ignored. The joint chart with a probability of a Type i
error o has the statistical properties of the X chart and the s? chart each

with o’ =1 - ( 1-a)%.

The joint chart is not the most powerful tool for all of the cases.
However, when moderate changes in the mean and large changes in the
variance occur, the joint chart is the best tool to use. The joint chart

performs close to the X chart in cases where the X chart is the most

powerful. The reason the joint chart is not more powerful than the X
chart is because when the probability of a Type I error decreases the
probability of a Type Il error increases. Therefore, the probability of a
Type Il error for the X limits within the joint chart is larger than the

probability of a Ty'pe II error for the X. Note that the joint chart can be
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defined to be closer to the limits of the X chart. In this case, the joint

chart would become closer in power to the X chart.

The joint chart has a graphical advantage over the X chart. It
shows any correlation between the two statistically independent sample
statistics X and s°. If any correlation is observed, it would be a result of
either the process or an outside influence. The correlation could provide
useful information for future process control. Since the joint chart has
the statistical properties of an X chart and has a graphical advantage over
the mean chart, it should be considered for use in cases where both the

mean and variance will change.

The t-statistic chart controls the sample mean of a normally
distributed variable without knowing the standard deviation. The t-
statistic proves to be a very weak tool for controlling the mean of a
variable. However, if nothing is known about the variability of the
process, the t test may be used to control the mean while data is being

collected about the variance.

In summary, the Reynolds and Ghosh sum statistic has been shown
to be the most effective procedure to control changes in the variance of a
variable. If Repko’s circular limit canvbe defined for small sample sizes, it
will have the same properties as the sum statistic. Another approach

would be to utilize the sum statistic so that it may be plotted like Repko’s.

For changes in the mean, the X chart is sensitive if the change in

the variance is small. The joint chart is powerful for cases in between the

sum statistic and the X chart. The joint chart has similar probabilities to
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the X chart and has the additional graphical information about the

relationship between the mean and variability.

Several areas exist to be examined further. In this work, the

probabilities of a Type | error for the limits within the joint chart were

set to be equal. Since the X chart is very powerful, it seems that the
joint chart limits could be “biased” towards the X limits. What would the
criteria be for setting the limits? Second, a cost analysis of the joint
chart could be developed. Third, further work could be done examining
data patterns in the joint chart. Interpreting correlation between the mean
and variance would lead to valuable knowledge about the production
process. The recapture of the time dimension by numbering the points

through time or some other method could also be explored.
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APPENDIX A

COMPUTER PROGRAM

0000000030000 80000000608800000000008080000000000000000800000800000800000000080000000

. COMPARISON OF ALTERNATIVE METHODS TO THE SHEWHART TYPE CHART
. BY DEBORAH A. HALL
. SUPPORTING COMPUTER PROGRAM

e This program computes the probability of a Type Il error for the foilowing

e control charts:

e 1. a mean chart

e 2. a variance control chart

e 3. a joint control chart

e 4. a t-statistic chart

¢ 5. a Reynolds and Ghosh sum statistic

e 6. a Reynolds process capability plot

e The following variabies are defined for the charts:

s« N = sample size

e ALPHA = probability of a type | error

s LAMBDA = (population mean - target mean) /standard deviation

o GAMMA = population variance / target variance

71




72

e EONE = probability of a type il error for the mean control chart

e ETWO = probability of a type It error for the variance control chart

e ETHREE = probabiity of a type i error for the joint control chart

e EFOQOUR = probabiity of a type il error for the t-chart

e EFIVE = probability of a type il error for the Reynoids and Ghosh chart

s ESIX = probabiity of a type Il error for the Repko plot

REAL K,N,ALPHA LAMBDA ,GAMMA ONE ETWO,ETHREE EFOUR,EFIVE,ESIX

DIMENSION USQR(50),ESIX(10)

REAL JONE,JTWO

INTEGER ©

OPEN(9,FILE='DATA' STATUS = ‘NEW’)

WRITE(e,¢) 'Input the sample size.’

READ(e,¢) N

WRITE(e,¢} ‘Input aipha, the probability of a type | error.’

READ (e,0) ALPHA

WRITE(9,19) INT(N), ALPHA

19 FORMATI(2X,'The sample size is’ i4,/,'Alpha is' f7.4,/,

$'LAMBDA GAMMA EONE ETWO ETHREE EFOUR EFIVE ESIX’)

e XK = k used in limits of a mean chart given a desired aipha

e Given an alpha, k is found by: prob(z > k) = aipha/2

WRITE(s,¢) ‘Input k so that prob(z > k) = alpha/2’

READ(e,¢) XK

e UCL = the upper control limit for a variance chart given an aipha

DF = N-1.




73

WRITE(e,®) ‘Input the upper controi limit for the variance chart’

READ(e,e¢) UCL

e TVALUE = limit for t chart

WRITE(e,¢) ‘Input the value for the t chart’

READ(e,») TVALUE

e SCL = limit used in sum statistic chart

WRITE(e,e) ‘Input the chi square for n d.f.’

READ(e,¢) SCL

e CHI = imit used in Repko’'s chart

WRITE(e,) ‘Input the value of chi square for 2 d.f.

READ(e,¢) CHI

o K = k used in limits of joint control chart

ALPHALl = 1. - (1.-ALPHA)ee .5

CALL VNORMAL(ALPHA1/2.K)

e CL = used in joint contro! chart

FIVE = 1. - ALPHAL

CALL VCHISQRIFIVE,DF,CL)

0000000000008 0000088000000000 * * L *e

e A Zo loop is performed. Lambda i1s incremented from O to 2 by .5. Gamma

e is incremented from 1 to 3 by .25.

0080800000000 00800000 e see

LAMBDA = -6

DO 691 =15

LAMBDA = LAMBDA + .5

GAMMA = .75
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DO 79Ja=1,9

GAMMA = GAMMA + 25

900000000000 0080000040008000080000008000800000000000800000000000000008800800084003800

. THE X CONTROL CHART

o ZONE and ZTWO are the expressions subtracted to compute the probability

e of a type Il error, EONE. The function RNORMAL computes the cummuiative

e probability of the normal distribution.

ZONE = (-LAMBDAs(nes . 5)) - ABSIXK)/(GAMMAse 5)

ZTWO = (-LAMBDAe¢(Nee 5)) + ABSIXK)/{GAMMAee .5)

EONE = RNORMAL(ZTWO) - RNORMAL(ZONE)

0000000600000 0040000802000003040040900000000050006000000000000800003300800000000¢0

. THE VARIANCE CONTROL CHART

s Given an alpha, the upper control limit is the chi-square value corresponding

o to aipha and the degrees of freedom, N - 1. The subroutine VCHISQR is used to

s find the upper limt.

¢ DF = degrees of freedom

e VALUEC = value used to compute probability of type Il error

e ETWO = probability of a type Il error

VALUEC = UCL/GAMMA

CALL CHISQR(DF,VALUEC ETWO)

Py Py 000060000 PPYYYY Y 00088086

. THE JOINT CONTROL CHART

o Given an alpha, the alphas for the two sets of limits has to be computed.

. ALPHA1l = the ailpha for the separate limits

. ALPHA = the overail alphs
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. ONE = first term

. = probability that the mean doesn’'t signal

. TWO = second term muitiplied in computing the probability of a type Il

. error

. = probability that the variance doesn’t signal

. ETHREE = probability of a type Il error

JONE = (-LAMBDA ¢ (Nee.5)) - (ABS(K)/GAMMAese §)

JTWO = (-LAMBDA ¢ (Nee .5)) + (ABS(K)/GAMMAee §)

ONE = RNORMAL(JTWO) - RNORMAL(JONE)

SIX = CL/GAMMA

CALL CHISQRI(DF,SIX,TWO)

ETHREE = ONE+TWO

se0e .0 seseene

. THE T CHART

s Given an aipha, the t-value is computed. The type !i error probabiity then

e computed.

. TVALUE = absolute value of the upper and lower limits

. COMP = term used in computing type il error probabiity

. EFOUR = type ll error probability

COMP = TVALUE - LAMBDAe(Nes 5)

IF (COMP.GE .0} THEN

CALL TSTAT(DF,COMP AREAL)

PROB! = 1. - ((1.-AREAL)/2.)

COMP2 = ABS(-TVALUE - LAMBDAeNee 5}

CALL TSTAT(OF,COMP2,AREAZ2)
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PROB2 =(1.-AREA2)/2.

EFOUR = PROB1-PROB2

END IF

IF (COMP .LT.0) THEN

CALL TSTATI(DF,ABS(COMP) AREAL)

PROBI1 = (1.-AREA1)/2.

COMP2 = ABS(-TVALUE-LAMBDAeNee 5)

CALL TSTATI(DF,COMP2,AREA?2)

PROB2 = (1.-AREA2)/2.

EFOUR = PROB1-PROB2

END If

THE SUM STATISTIC

o To compute the type Il error probability for the sum statistic, the non-

e central chi-square distribution is used.

SCL = chi-square vaiue for aipha and n degrees of freedom

100 PARA = LAMBDAse2eN

TSUM = SCL/GAMMA

CALL CHINONIN,PARA, TSUM,EFIVE)

THE REPKO PROCESS CAPABILITY PLOT

e This subprogram computes the “true” aipha m Repko’s process capabilty plot

s when the sampie size is jess than thirty. Contours are done with regard to

e values of U.

USQR(1) = 1.
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USQRI(2) = CHI - ((N-1.)/(N+1.)}ee2 ¢2 oN

do 321 o = 1,2

o RTERM = chi-square value for alpha and n degrees of freedom

200 RTERM = (N-1.) o (({(CHI-USQR(0))/(2.eN))ee 5 + 1 Jee2) + USQR(0)

CALL CHISQR(N,RTERM,REPKO)

B = 1. - REPKO

TREPKO = RTERM/GAMMA

PARA = LAMBDAee2eN

CALL CHINONIN,PARA, TREPKQ ESIX(O))

321 CONTINUE

WRITE(s,49)LAMBDA,GAMMA EFOUR,ESIX(1),ESIX(2)

WRITE(9,49)LAMBDA,GAMMA EF OUR,ESIX(1),ESIX(2)

49 FORMATI(F4.2,7F6.4)

79 CONTINUE

69 CONTINUE

STOP

END

. SUBROUTINES

0000060000000 000000000080060082000030800000800000000000080000000000800080000000000

. THE NON-CENTRAL CHI-SQUARE DISTRIBUTION

e The non central chi-square distribution is calculated in the foliowing

e subroutine. A infinite series expansion is used. The expansion is terminated
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e after twenty-five terms. At that point, the sum is being increased by only

e 0000001 or less. if not, the sum in iIncreased by five terms.

¢ The expansion is equation 26.4.25 on page 342 of Abramowitz and Stegun.

. V = degrees of freedom of noncentra|
. P = non centraiity parameter
3 VALUE = central chi-square vailue for alpha and ndf degrees of freedom

SUBROUTINE CHINONI(V,P,VALUE,PROB}

DOUBLE PRECISION T1,TERM,SUM,FACT

SUM = 0.

111 N = 28

DO 100 J =0, N

DF = V+2.eREAL(J)

CALL CHISQR(OF,VALUE,CHI)

T1 = EXP(-P/2.)

T2 = (P/2.)es)

TERM = (T1eT2) /FACT(J) ¢ CHI

SUM = SUM + TERM

100 CONTINUE

PROB = SUM

if (term.gt..0000001) then

N=N+S5§

GOTO 111

END F

RETURN

ENO
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DOUBLE PRECISION FUNCTION FACTUT)

DOUBLE PRECISION EVEN

EVEN = 1

DO 30t = 1,)T

EVEN = | ¢ EVEN

30 CONTINUE

FACT = EVEN

RETURN

END

' *sscocves seccvcee TR Y YRR YT YT RYY YT
. INVERSE INTERPOLATION

¢ These subroutines compute the value x from a known distribution associated

e with a known cummuiative probability. (Reference: Random Variables in

¢ Digital Simutation by J.W. Schmidt)

¢ R = the probability known

e XO = the starting value for the search, let it be the expected value

e F = the cummuiatibe probability

e S = the increment by which x will increase or decrease. S was caiculated

. so that A is obtanable

e A = eorror in estimate, 0005

¢ D = indicator to increment or decrement the estimate of x




e U = upper Iimit used in interpoiation

e L = lower limit used in interpolation

e X = the value sought

¢ The Normal Distribution

SUBROUTINE VNORMALI(R,X)

REAL L

INTEGER D

X0 = -2.6

A = .00005

F = RNORMAL(X0)

S = .0001

QUESTION = ABSI(R-F)

IF(QUESTION.LT.A) THEN

GO TO 15

END F

IF ((R-F).LT.0.0) THEN

D=-1

U = X0

FU = F

END F

IF ((R-F).GT.0.0) THEN

D=1

L = X0

FL = F




81

END IF
§ X1 = X0 + DeS

F1 = RNORMALI(X1)

QUESTION = (R-F1)

IF(ABSIQUESTION) .LT.A) THEN
GO TO 14

END IF

IF(D.EQ.-1 .AND. QUESTION.LT.0) THEN

U= X1

FU = F1
X0 = X1
GO TO §
END F

IFID.EQ.1.AND.QUESTION.GT.O) THEN
L=2X1
FL=F1
X0 = X1
GO TO §
END IF

IFID.EQ.-1 . AND.QUESTION.GT.O) THEN

|
L = X1 |
|

FL = F1 |
END

F(D.EQ.1 AND.QUESTION.LT.O) THEN

U = X1




FU a F1

END IF

11 X0 = (Us(R-FL) + Le(FU-RW/(FU-FL)

F = RNORMALI{XO0)

QUEST = (R-F)

IFIABS(QUEST).LT .A) THEN

GO TO 15

END IF

IFIQUEST LT.0.) THEN

U = XO

FU=F

END IF

IFIQUEST.GT.0.) THEN

L = XO

FL = F

END IF

GO TO 11

14 X0 = X1

1§ X = X0

RETURN

END




¢ The Chi-square Distribution

SUBROUTINE VCHISQR(R,0F ,X)

REAL L

INTEGER D

X0 = DF

A = 00005

CALL CHISQRI(DF,X0,F)

S = .000S8

QUESTION = ABS(R-F)

IF(QUESTION.LT.A) THEN

GO TO 16

END F

IF ((R-F).LT.0.0) THEN

D= -1

U = X0

FU=F

END IF

IF ((R-F).GT.0.0) THEN

D=1
L = X0
FL =F
END IF
§ X1 = X0+ DeS
CALL CHISQR(DF,X1,F1)

QUESTION = (R-F1)



IFIABS(QUESTION).LT A} THEN

GO TO 14
END IF
IF(D.EQ.-1 .AND. QUESTION.LT.0) THEN
Ua X1
FU = F1
X0 = X1
GO TO §
END F
IF(D.EQ.1 .AND.QUESTION.GT.O) THEN
L = X1
FL = F1
X0 = X1
GO TO §
END iF
IF(D.EQ.-1.AND.QUESTION.GT.O) THEN
L =X1
FL = F1
END IF
IFID.EQ.1.AND.QUESTION LT.O) THEN
U= X1
FU = F1
END IF
11 X0 = (Ue(R-FL) + LQ(FU.-RJ)/(FU-FL)

CALL CHISQR(DF,X0,F)




QUEST = (R-F)

IF(ABSIQUEST).LT.A} THEN

GO TO 15

END F

IFIQUEST.LT.0.) THEN

U = XO

FU = F

END IF

IF(QUEST.GT.0.) THEN

L = XO

FL = F

END IF

GO TO 11

14 X0 = X1

1§ X = X0

RETURN

END

e The T Distribution

SUBROUTINE VTSTAT(R,DF ,X)

REAL L

INTEGER D

X0 = 1.282

A = .0008




CALL TSTATI(DF, X0,F)

S = .001

QUESTION = ABS(R-F)

IF(QUESTION.LT.A) THEN

GO TO 18

EMND IF

IF ((R-F).LT.0.0) THEN

0=-1

U = X0

FU = F

END IF

IF ((R-F).GT.0.0) THEN

D=1

L = X0

FL=F

END IF

§ X1 = X0 + DeS

CALL TSTATI(DF,X1,F1)

QUESTION = (R-F1)

IFIABS(QUESTION) LT A} THEN

GO TO 14

END IF

IF(D.EQ.-1 .AND. QUESTION.LT.0) THEN



X0 = X1

GO TO §

END F

IF(D.EQ.1.AND.QUESTION GT .O) THEN

L= X1

FL = F1

X0 = X1

GO TO §

END iF

IF(D.EQ.-1 . AND.QUESTION.GT.O) THEN

L = X1

FL = F1

END IF

IFID.EQ.1 .AND.QUESTION.LT.O) THEN

U = X1

FU = F1

END IF

11 X0 = (Us(R-FL) + Le(FU-R))/(FU-FL)

CALL TSTAT(DF,XO,F)

QUEST = (R-F)

IF(ABS(QUEST).LT.A) THEN

GO TO 15

END IF

IFIQUEST .LT.0.) THEN

U = XO




FL = F

END IF

GO 7O 11

14 X0 = X1

1§ X = X0

RETURN

END

0000800000000 00000000000000000000000000008000000000000000000000020000000000000

. THE T-DISTRIBUTION

o This subroutine computes the probabiity, TPROB, that the absolute value

s of a t-statistic is less than the value T- the probability that t is between

e -T and + T. The degrees of freedom are V. The probability is computed from

¢ a series expansion. The equation is found on page 948 of Abramowitz and

e Stegun, eqs. 26.7.3 and 26.7.4. Three cases are examined: the degrees of

¢ freedom are even, odd and not equal to 1, or equai to 1.

e TSTAT = subroutine name

. V = degrees of freedom

|
\
\
\
J
|

END F

IFIQUEST.GT.0.) THEN
L = XO

. S = value for which probability is computed for

e TPROB = probability




SUBROUTINE TSTAT(V,S,TPROB)

INTEGER DENOM

DIMENSION TERM(100)

SUM = 0.0

Pl = 2.eASIN(1.)

THETA = ATAN(s/(Vee 5))

00800000000 00000000000000080000800000000000800300000000000000000000080048000000000

s Case |: degrees of freedom are odd and greater than 1

0900000000000 00800000080008000008000880800000000000000800003008000020088080000000000

IFGNT(V/2.).NE.V/2. .and. V.NE.1.) THEN

DO 110 = 1,iNT(V-2.),2

NUM = 1

DENOM = 1

DO 120K = 2, i-1,2

NUM = NUM ¢ K

120 CONTINUE

DO 130 J = 1,1,2

ODENOM = DENOM « J

|
0008008000000 0000000000000004080000000000080000300000000300000000000000%0000000

130 CONTINUE

TERM() = COS(THETA) ee (V-2.) o REALINUM)/REAL(DENOM)

|
|
SUM = SUM + TERM(I) '
|
110 CONTINUE |

|

TPROB = 2./Ple{THETA + SIN(THETA)eSUM)



END IF

9000800000008 000000000000800008000000000008800000003000800000000000800002000020008000

e Case ll: 1 degree of freedom

0068000000000 0000 00 es0ee 0000805000000 080800000000000000000000000

IFONT(V) EQ.1) THEN

TPROB = 2./Pl « THETA

END IF

¢ Case Hli: degrees of freedom are even

000480000808 050008000300000800000000000000 *

IFUNT(V/2.).EQ.V/2.) THEN

DO 140 i = 0, INT(V-2.),2

NUM = 1

DENOM = 1

DO 150 J=1,1-1,2

NUM = NUM o J

150 CONTINUE

DO 160K = 2,1, 2

DENOM = DENOM o K

160 CONTINUE

TERMU) = COS(THETA)eel » REAL(NUM)/REAL{DENOM)

SUM = SUM + TERML)

140 CONTINUE

TPROB = SIN(THETA)eSUM

END F



The subroutine CHISQR computes the probability, CPROB, of being less than the

*

« value CHI2. The probability distribution is chi-square with V degrees of

» freedom. The two series expansions for the cumulative density function

e are found on page 941 of The Handbook of Mathematicai Functions, edited by

e M. Abramowitz and 1.E. Stegun. The first expansion, {(Eq. 26.4.4, p.941),

¢ is used when the degrees of freedom are odd. The second expansion,

s (Eq. 26.4.5, p.941), is used when the degrees of freedom are even.

¢ CHISQR = subroutine name

. P = degrees of freedom

. CHI2 = value probability 13 computed for

. PROB = probability

SUBROUTINE CHISQR(P,CHI2,PROB)

|
\
RETURN
END
° cose PP .o oes eeeecsecsceccsssoe
. THE CHI-SQUARE DISTRIBUTION
!
\
\
\
\
|



INTEGER V

DOUBLE PRECISION E1,£2,CZ, TERM,SUM,ETERM,ESUM,CPROB

CQ = 1.-RNORMAL(CHI2ee .5)

Pt = 2.6ASIN(1.)

CZ = 1./(2.9 Pilee SeEXP(-CHI2/2.)

V = NINT(P)

9000000000000 00000080038000000000890000000000800000000000800000800008000080000000000

¢ Case |: degrees of freedom are odd

0000000000000 00000000000500000800008008000808000400080000080000008008000000000000000

IFUNT(V/2) NE.V/2.) THEN

SUM = 0.

DO 100 | = 1, INT((V-1.)/2.)

tDENOM = 1.

DO 200 J = 1,2el-1,2

tDENOM a tDENOM s real(J)

200 CONTINUE

El = (CHI2es 5)ee(20i-1)

TERM = E1/tDENOM

SUM = SUM + TERM

100 CONTINUE

CPROB = 2.6CQ + 2.¢CZeSUM

END IF

00000600 P 08808008088 00000000 0000¢

e Case ll: degrees of freedom are even




IFONT(V/2) EQ.V/2.) THEN

ESUM = 0.

DO 300 K a 1, INT((V-2.)/2.)

DENOM = 1.

DO 400 L = 2,2eK,2

DENOM = DENOM s« reali(l)

400 CONTINUE

E2 = (CHI2ee Slee(2¢K)

ETERM = E2/DENOM

ESUM = ESUM + ETERM

300 CONTINUE

CPROB = (2.¢Pl)es SeCZe(1 +ESUM)

END IF

PROB = 1. - CPROB

IF(PROB.GT.1.) THEN

PROB = 1.

END IF

RETURN

END

. THE NORMAL DISTRIBUTION

eThis function computes the cumuiative density function vaiue, RNORMAL,




¢ of the Z value X. An approximation i1s used, with error of less than 8

[

decimal places. The equation used can be found on page 832 of The Handbook

¢ of Mathematical Functions, edited by Abromowitz and Stegun, equation 26.2.17.

e The approxumation is to be used for only positive vajues of Z. However,

e due to the symmetry of the normal distribution, negative values of Z are easy

e to compute.

¢ RNORMAL = name of function, probability

3 X = value probability is computed for

0000000308000 0000000080000000 * ® 0008600800000 0000000

FUNCTION RNORMALI(X)

DOUBLE PRECISION T,PROB,Z,P!

e 0800008808 csesece PPeY . secece .

o If the z coordinate is negative, it is changed to positive. At the end of

* the subprogram, the probability computed is subtracted from 1 so that the

e answer is correct for the negative z .

0000000000008 00800000804800080030800000000000000000000008000880800008008000080000

IF (X.LT.0.) THEN

X =-X

Na=1

END IF

Pl = 2. ¢ ASIN(1.)

Z = 1./(2.eP1)ee.5 o EXP(-XeX/2))



T =1./(1. + (.2316419 « X))

81 = .3198381530

82 = -.366563782

B3 = 1.781477937

B4 = -1.821266978

BS = 1.330274429

PROB 2 1. -Z ¢ (BleT+B26Tee2.4B36Tee3.+B40Tee4 +BSeTee5.)

IF (N.EQ.1) THEN

PROB = 1. - PROB

X = - X

END IF

RNORMAL = PROB

RETURN

END




APPENDIX B

EQUATIONS USED IN COMPUTER PROGRAM

THE NORMAL DISTRIBUTION

The cumulative density function [P(x)] for the standard normal is
not in a closed form. However, several approximations exist [Abramowitz

and Stegun 1972 p.932]. The approximation with the smallest error is:

P(x) = 1 — Z(x)(bjt + byt® + byt® + bet* + bst®) + e(x)

_1
1 + px
7.5 X 107°
.2316419

= .319381530
-.356563782
1.781477937
-1.821255978
1.330274429

density function of the normal distribution




THE CHI-SQUARE DISTRIBUTION

The cumulative density function [Q(X?|v)] for the chi-square
distribution has an exact series expansion [Abramowitz and Stegun 1972,
p.941]. One expansion is used when the degrees of freedom are even,

another when the degrees of freedom are odd.

v—1

2 — < X
QI = 2000 + 2200 3 133 o)

2r—1

v are odd, X =\l;2

y—2
\ e x2r
Qi) = 2r Z00 |1 + 2 "2.4.6...(2r)]

v are even, X =Jx2

THE T DISTRIBUTION

The probability density function for the t-distribution has an exact
series expansion [Abramowitz and Stegun 1972, p.948].
A(t/y) = Prob(Jt,] < t)
040..(”_3]

Ait/y) = %{ 0 + sinfcosd + Zcos®® + .- + %w__mcosv-zgl}

(v>1 and odd)

A/y) =20
(v=1)
A(t/v) = sinf[l + %cosze + %—',%cos‘e + ... 4 %{-i—:—i—:—:—:x—:i-;cos”'zel}

(v even)




THE NON-CENTRAL CHI-SQUARE DISTRIBUTION

The cumulative density function P(x’?|, \) can be expressed as an

infinite series expansion [Abramowitz and Stegun 1972, p.942]. The

expansion is terminated when the term being added is less than 1077,

x© J
P2, N) = e 2 (—*g,i’ POC2 W +25)
=0 ‘

A = the non-centrality parameter
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