
Final Report
CS 5604: Information Storage and Retrieval

Webpages (WP) Team:
Jostein Barry-Straume, Cristian Vives,

Wentao Fan, Peng Tan, Shuaicheng Zhang,
Yang Hu, Tishauna Wilson

December 18, 2020

Instructed by Professor Edward A. Fox

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

1

Abstract

The first major goal of this project is to build a state-of-the-art information retrieval
engine for searching webpages and for opening up access to existing and new webpage col-
lections resulting from Digital Library Research Laboratory (DLRL) projects relating to
eventsarchive.org.

The task of the Webpage (WP) team was to provide the functionality of making any
archived webpage accessible and indexed. The webpages can be obtained either through
event focused crawlers or collections of data, such as WARC files containing webpages, or sets
of tweets which contains embedded URLs. Toward completion of the project, the WP team
worked on four major tasks: 1.) Contents of WARC files searchable through ElasticSearch.
2.) Contents of WARC files cleaned and searchable through ElasticSearch. 3.) Event focused
crawler running and producing WARC files. 4.) Additional extracted/derived information
(e.g., dates, classes) made searchable.

The foundation of the software is a Docker container cluster employing Airflow, a Reasoner,
and Kubernetes. The raw data of the information content of the given webpage collections is
stored using the Network File System (NFS), while Ceph is used for persistent storage for the
Docker containers. Retrieval, analysis, and visualization of the webpage collection is carried
out with ElasticSearch and Kibana, respectively. These two technologies form an Elastic Stack
application which serves as the vehicle with which the WP team indexes, maps, and stores
the processed data and model outputs with regards to webpage collections.

The software is co-designed by 7 team members of Virginia Tech graduate students, all
members of the same computer science class, CS 5604: Information Storage and Retrieval.
The course is taught by Professor Edward A. Fox. Dr. Fox structures the class in a way for his
students to perform in a “mock” business development setting. In other words, the academic
project submitted by the WP team for all intents and purposes can be viewed as a microcosm
of software development within a corporate structure.

This submission focuses on the work of the WP team, which creates and administers
Docker containers such that various services are tested and deployed in whole. Said services
pertain solely to the ingestion, cleansing, analysis, extraction, classification, and indexing of
webpages and their respective content.

2

eventsarchive.org

Contents
List of Tables 5

List of Figures 6

1 Overview 7
1.1 Project Management . 7
1.2 Problems and Challenges . 7
1.3 Solutions Developed . 8
1.4 Future Work . 9

2 Literature Review 12
2.1 Intelligent Event Focused Crawling . 12
2.2 Chapters 19-21 in Introduction to Information Retrieval Course Book 12
2.3 Representational State Transfers (REST) . 12
2.4 RESTful API . 13
2.5 Text classification . 14
2.6 Text summarization . 14

3 Requirements 16
3.1 Overall Project Requirements . 16
3.2 WP Team Requirements . 16

4 Design 18
4.1 Approach . 18
4.2 Background Information and Methodology . 21
4.3 Tools . 22

4.3.1 Docker . 22
4.3.2 ElasticSearch . 22
4.3.3 JSON . 23
4.3.4 WARCIO . 23
4.3.5 BeautifulSoup . 23
4.3.6 WARC files . 23

4.4 Deliverables . 24

5 Implementation 26
5.1 Timeline . 26
5.2 Milestones and Deliverables . 28
5.3 Methods Selection . 30

6 User Manual 32
6.1 Service Utilization . 32

3

7 Developer Manual 34
7.1 Input . 34
7.2 Extract URLs . 34
7.3 Archive Webpages . 38
7.4 Extract Data . 40
7.5 Text Classification . 41
7.6 Text Summarization . 43
7.7 Indexing . 45
7.8 Unit testing . 47
7.9 Accessing the Virtual Machine . 49
7.10 Service Registration . 50

Bibliography 55

4

List of Tables
1 Tasks and Timeline . 26
2 Milestones . 28
3 Deliverables . 29
4 Containers and their function in the System . 29

5

List of Figures
1 Rancher Errors . 9
2 Deployed Services on Rancher . 10
3 YAML File for CI/CD Pipeline . 11
4 WP Task Approach . 18
5 Extract URL Flowchart . 19
6 Archive Webpage Flowchart . 19
7 Extract Webpage Data Flowchart . 20
8 Index Flowchart . 20
9 Example of a WARC File . 24
10 Example of index structure from ElasticSearch that the Index service creates 31
11 WP Team Container Registry . 32
12 Part of EXTRACT URL Code . 34
13 Part of Extract URL Code . 35
14 Output of Generate URL . 37
15 Example JSON Data . 38
16 Archive URL Input Data . 39
17 Output of Extract Data . 41
18 Text Classification Training . 42
19 Text Classification Examples . 43
20 Before Summarizing . 45
21 After Summarizing . 45
22 Input of ElasticSearch Data . 46
23 Code of ElasticSearch . 46
24 ElasticSearch Index Output Data Sample . 47
25 Unit Test Passed Examples . 48
26 Unit Test Failed Examples . 49
27 Using SSH to Connect to VPN . 50
28 Service Table . 51
29 Goal Table . 53
30 Reasoner Table . 54

6

1 Overview

1.1 Project Management

The web team (WP) is responsible for collecting, processing and storing webpages from different
sources. The main goal of our team is to ingest, clean, analyze, extract, classify, and index web-
pages. The sources include URLs obtained using "crawlers," tweets containing URL information
from the TWT team, WARC files, and other archives collected by Mohamed Farag. For the first
portion of the project, we spent much time on understanding related background and knowledge
about this work. We strove to develop an understanding of our duties as they relate to the other
teams. As such, we spent the first few weeks of this project familiarizing ourselves with the related
technologies, and reading related literature.

The WP (webpage) team consists of seven members, so having proper team management was
crucial to ensure success of the project. In order to achieve this, the team held weekly meetings and
stand-up meetings before every class. The stand-up meetings were especially helpful, since it gave
team members time to talk about what they had accomplished and how they would move on with
work related to the project. Discord was also commonly used to establish proper communication
amongst the team members. Furthermore, Discord facilitated communication with members of
other teams, which was relatively helpful to the ElasticSearch members to understand how to
proceed with the project and to understand how the data should be indexed.

Due to the nature of the project and the many people involved, the WP team used a divide-
and-conquer strategy, resulting in the formation of four sub-teams:

• Extract URLs

• Archive webpages

• Extract data

• Indexing

Also, Mohamed was a great point of contact, and meetings were established biweekly to seek
feedback and evaluation on the project’s progress. Class meetings were also used to meet with the
team and brainstorm ideas with other teams.

1.2 Problems and Challenges

We have faced a few challenges including:

A. Collect raw data: Databases of different media contain a large amount of data. Identifying
and accessing a sample collection of documents of a given topic is crucial when starting the
prototyping for this project.

B. Extract embedded links from data: Raw data cannot explain anything directly to the
user. Specific conditions must be set to grab useful information from it, no matter whether
they are links, keywords, etc.

7

C. Extract relevant texts from available links: Extracting raw webpage text will rarely
result in proper indexed data. Instead, protocols must be set in place to accurately isolate
key words and key text. Extracting those accurately from a large text corpus is crucial to
the success of the project.

D. Understanding nature of data: Since the WP team is new, there are challenges under-
standing what the output data (i.e., what is being indexed) should look like.

E. Port existing solution to deployment: A lot of the code written right now works well
locally. It will be necessary to port many of these solutions to their own Docker containers
running on a server that will contain many of the services required by the overall project.

F. Approach to Dockerization philosophy: Understanding the difference between a task
and a service has been an ongoing issue throughout the project. Thus, knowing what should
be a service and what shouldn’t be has affected what code and pipeline we Dockerize.

G. Using an abstract indexing service: There was a lot of debate on how the indexing
should be done, whether it was an integrated service in the WP pipeline, an independent
service developed by the WP team, or a service developed for the WP by another team (such
as the INT team).

1.3 Solutions Developed

In order to deal with some of the challenges mentioned in §1.2, we often contacted Mohamed Magdy
Gharib Farag, a Research Scholar with Virginia Tech (mmagdy@vt.edu). Mohamed’s breadth of
knowledge pertaining to our project’s topic was invaluable to our success.

Mohamed was instrumental in aiding and guiding the WP team in solving the first three
challenges addressed in §1.2. As the WP team’s Subject Matter Expert (SME), Mohamed created
a Virtual Machine (VM) to store the collection of tweets containing URLs. In the initial phases of
development, a small sample of data was provided by the SME to establish a properly functioning
workflow. With the given sample data, the problems and challenges with regards to extraction of
embedded links and relevant text were able to be solved.

To refine our understanding of the overall goals, specific sub-tasks required, and final software
deliverable of our team, meetings and discussions took place with various members in our "com-
pany’s" organization. Prashant Chandrasekar was also of much help to further understand how
the indexing team will work with the integration team on the data ingestion objective.

The solution to this challenge was accomplished by revising the WP team’s System Workflow
Artifacts Guidelines (SWAG). In particular, discerning overarching goals versus required subtasks
for a goal was crucial for the WP team to ascertain a cognisant understanding of the nature of
the data and final output. Moreover, further refinement of the SWAG was important in the steps
of informing the design for the Front-End team, as well as generating a workflow based on the
established goals.

To solve the problem of deploying services, a local ElasticSearch Stack was developed by the

8

WP team. This served as an interim deployment site until a final end-point application could be
established by the Integration team. This will be realized by taking advantage of the Container
Registry hosted on GitLab. In other words, Gitlab has built-in Docker functionality. For more
information on Docker containers, please see [1].

In order to solve the Dockerization philosophy issues, many meetings with the course TAs and
professor were scheduled. After a lot of discussion, it was determined that each task in the pipeline
would work as its own service and will thus be Dockerized.

Initially it was believed that the INT team would provide an abstract indexing service that any
team could use. However, due to time constraints, it was decided that each team would provide
their own indexing service for their own respective data.

1.4 Future Work

All of our services have been deployed to cloud.cs.vt.edu. However, they are not currently working
on the cloud. For instance, all of the services related to data ingestion (extract_url,archive_webpage,extract_data,
and index). Many hours were spent troubleshooting, with little to show for it from a production
deployment standpoint. Please refer to Figure 1 for the two errors that are impeding proper func-
tioning services. Figure 2 shows the six services that have been deployed to the cs5604-wp-db
namespace on Rancher.

Figure 1: Rancher Errors

It is suspected that there is an issue with our service integration into Rancher. However,
our services were only able to be registered via Airflow on the due date of this finalized report.
Obviously, this does not leave much time for troubleshooting. Future work would entail resolving
these errors so that user may leverage our services via the website that the Front-End team has
developed. For what it is worth, these services work locally and their respective containers are

9

registered on Gitlab.

Figure 2: Deployed Services on Rancher

All of our services have unit tests and a YAML file exists for automated pipeline testing. Figure

10

3 shows a portion of the YAML file.

Figure 3: YAML File for CI/CD Pipeline

11

2 Literature Review

2.1 Intelligent Event Focused Crawling

During the course project, we have found Mohamed Farag’s dissertation [2] to be useful to under-
stand our problems at this time. Mohamed Farag’s dissertation explains the event focused crawler
which can obtain a collection of URLs related to some specific events. Also, the CodeOcean version
of EFC and the VM efc1.cs.vt.edu were helpful.

The motivation for the event focused crawler is the fact that there is a lack of archiving of
important global events. In order to make the crawler work efficiently, a database with high
quality URLs is required at first. Though our team will generally use crawled URLs sourced from
the Tweet Team which relates to a real world event, we plan to obtain URLs from some other
channels.

2.2 Chapters 19-21 in Introduction to Information Retrieval Course
Book

Chapters 19-21 of Introduction to Information Retrieval by Christopher D. Manning, et al. [3]
explained the basic use and structure of a crawler of hypertext. This method was originally
applied for searching and indexing, but all of the properties discussed in chapters 19-21 are able to
be applied to small or large projects. At this time, we will introduce those methods and properties
which are generally suitable to the scale of our current project.

Chapter 19 explained the principles and difficulties of constructing a web crawler. The web
content is a combination of diversified elements including not only text, but also voice, pictures,
and any other different types of media.

Chapter 20 discussed the general properties of a typical web crawler. A qualified crawler is
usually expected to be both robust and polite. Robustness means that the ability of a crawler is
not going to be trapped in certain domains. This helps determine how efficiently the crawler could
work. Politeness means that a crawler is not going to make the server suffer from a lot of requests.

Chapter 21 discussed how to use the anchor text and extended anchor text to judge whether a
link has enough information for crawling. Text analysis and two related website scoring algorithms
(hub score and authority score) are covered in this chapter.

2.3 Representational State Transfers (REST)

Representational state transfers (REST) is an architectural style for distributed hypersystems [4].
This architectural style is founded on 6 main principles:

• Client Server: The basis of REST is a separation between a client and server. The server
offers a list of services, and waits to receive a request from a client. Once the server receives
the request from a client, it can accept or deny the request, and respond to the client. The
key idea involves separating the user from the server (data storage), so data access can be
interfaced and accessible from many services. For instance, whilst the ElasticSearch server

12

efc1.cs.vt.edu

must be executed in a specific manner, requests to the ElasticSearch server can be done
through Python, Lucene, Java, etc., as long as the interface is provided.

• Stateless: The following constraints modified the client-server constraint to now be a client-
stateless-server constraint. What this means is that each request to the server must contain
all of the required information. It should not use any stored context to further understand
the request. This improves visibility, as the server can only interpret incoming requests in
one manner. It also improves reliability, as it allows the server to respond to partial failures.
Finally, it also improves scalability, as the server doesn’t have to store any sort of state in
between requests. The only downside is an increase in overhead, as there might be a lot of
repeat data in the requests from the client to the server.

• Cache: Cache constraints can be added such that requests to the server can be marked as
cached or not. If marked as cached, the request can be stored until a new fresh version is
needed. This improves efficiency and can save bandwidth. The only downside is sometimes
dealing with expired data.

• Uniform Interface: Decoupling components in the REST architecture makes the archi-
tecture portable, as it’s not dependent on a specific system. This means that keeping the
interface the same between any client and server helps with the portability of the architec-
ture, as the system type of the client does not matter. For instance, ElasticSearch follows
the REST architecture, and always uses JSON as a response, regardless of what system the
client employs.

• Layered System: REST has the constraint of hiding server intermediaries. This means
that a server can have multiple indices, and a client that connects to a server does not
know (or cares) what index it connects to. ElasticSearch follows this principle by allowing
multiple shards per node, as this information is hidden from a client that makes requests to
an ElasticSearch server.

2.4 RESTful API

Web services that conform to the REST architecture are defined as RESTful APIs [5]. More
specifically, HTTP RESTful APIs must:

• Have a base URI (Uniform Resource Identifier), which is a string of characters which unam-
biguously identify a source, usually adhering to a state of protocols and rules [6] (such as
starting with http). An example would be http://localhost:9200.

• Utilize standard HTTP methods.

• The media type which defines how data is transferred from the client and server (defining
the uniform interface), such as using JSON.

For instance, ElasticSearch is considered a RESTful API, and adhering to the HTTP REST
architecture makes it very useful for building an information retrieval system due to all of the
qualities and constraints mentioned above.

13

2.5 Text classification

Text classification has been a big part of retrieving relevant information, where filtering irrelevant
documents/record becomes essential. In order to identify the documents/records with the correct
topic that we want to archive, we need to perform text classification. There are three main
approaches to solve the problem: Statistical Approach, traditional machine learning and deep
learning.

• Statistical Approach: A method is employed such as TF-DF and BOW(bag of words) to
perform the classification task. These methods perform classification by capturing certain
data’s probability distributions.

• Traditional machine learning approach: A method is employed such as decision tree, random
forest, or SVM (support vector machine) to perform the classification. These methods either
capture data’s probability distribution or determine the information structure to form the
basis of the classification task.

• Deep learning approach: Documents can go through an embedding procedure to convert into
contextualized embeddings via techniques such as Doc2Vec. Documents also can be contex-
tualized using language model methods such as BERT (Pre-training of Deep Bidirectional
Transformers for Language Understanding) [7], and then use a fully connected neural net for
final classification.

These three approaches are both powerful enough to achieve good F1 scores regarding the classi-
fication task but each of them has their own advantages and disadvantages: Statistical methods
only learn shallow information given from the text which makes it easier to implement but not
necessarily most accurate and robust to noisy data. Traditional machine learning does not depend
on a significant amount of data to train, and performs better in such settings. A deep learning
approach can better represent the documents when the number of training documents is enough.
By utilizing text classification, we have enhanced the understanding of our documents/records.

2.6 Text summarization

Text Summarization is a technique used to produce precise and accurate summaries of large
amounts of text, focusing on the portion that conveys useful information without losing its over-
all meaning. There are broadly two different approaches that are used for text summarization:
extractive and generative (also called abstractive).

• Extractive text summarization: As the name suggests, this is to extract one sentence
or a few sentences from a document or document set. The advantage of this scheme is that
it is simple and practical and will not be completely separated from the document itself. In
other words, the extractive summarization technique focuses on choosing how paragraphs,
important sentences, etc. produce a semantically equivalent shorter version of the original
documents. The implication of sentences is determined based on linguistic and statistical
features.

14

• Generative text summarization: Although extractive text summaries have their advan-
tages, they may also have shortcomings such as incoherent summary generation, poor control
of the number of words, and unclear subject matter of the target sentence.The quality of the
summary depends on the original text. There is no such problem with generative text sum-
marization, because it is an end-to-end process. This kind of technical solution can benefit
from translation tasks and dialogue tasks, so that it can absorb and learn from successful
experience with those.

15

3 Requirements

3.1 Overall Project Requirements

The goal of this project is to build an information storage and retrieval system. In order to do so,
the following requirements must be fulfilled:

• Build a state-of-the-art information retrieval and analysis system that can support 3 item
collections: electronic theses and dissertations (ETD), webpages (WP), and tweets (TWT).

• Support at least: 30k ETDs, 5B tweets, and 3 million webpages.

• Actively cooperate amongst teams to ensure teams don’t fall behind.

• Actively have each member track their progress each week using Ally.io.

• Actively have stand up each week to share the progress of each team member and help each
other with any blockers.

• Test solutions with small and large batches of real data, following a continuous integration
approach.

• Keep relevant code updated on git.cs.vt.edu in their proper branches in a well documented
manner.

• Dockerize solutions such as that the integration team can utilize and deploy them when
necessary.

3.2 WP Team Requirements

The WP team is in charge of creating a set of dockerized services. Then when piped together,
they can act as a pipeline which will take some sort of webpage data as input and index it through
ElasticSearch. In order to achieve this, the following requirements must be fulfilled:

• Unless otherwise stated, all textual information contained in the processed document must
be saved and transferred to other groups. It needs to be extended to support other types
of documents. The textual information is created by the groups of the WP team (Generate
URLs, Archive URLs, Extract Data, and Indexing).

• Create a set of dockerized services, divvied up among the sub-teams outlined in §1.1 to help
all other teams get used to the content.

• Create a working pipeline out of the dockerized services that can generate data from tweets
or a set of URLs.

• Create a service that connects to the integration team ElasticSearch server and ingests any
input data.

16

Ally.io
git.cs.vt.edu

• Dockerize the pipeline so that it can be deployed anywhere. Deploy it to make the container
more portable and use the server efficiently. The container isrepresenting a standardized unit
of software.

• Provide an optimal ElasticSearch index with correct schema that is usable by different teams
for the project. Since various intelligent text analysis algorithms require data to be extracted
in different formats, we also provide other teams with full-text data in the required format.

17

4 Design

4.1 Approach

Before tackling the design of the project, the team met with Mohamed to understand how the
team should be structured. It was discussed that the best approach would be to break into four
sub-teams as outlined in §1.1, to identify a set of goals for the project, and to identify a set of
tasks required for the project. Thus, the first goal was identified as generate data. That is,
given a set of tweets, extract relevant URLs from the tweets. Of course, it would not read in
tweets and outright generate the URLs, rather there would be a set of tasks that lead to the
eventual generation of the URLs (§1.1). Furthermore, this goal would include functionality to
read in data directly in URL format. A second goal, ingest data, will ingest data and generate
an ElasticSearch database. Thus, when both of these goals are coupled together, the following
workflow of tasks will be produced, as seen in Figure 4

Figure 4: WP Task Approach

In this case, each sub-team outlined in §1.1 is in charge of creating a working, dockerized
service. The first approach is to start with extracting URLs from tweet data in JSONL format
using Python scripts. This is identified as Extract URL; the flowchart that explains it is in Figure
5, which outlines the overall heuristic of the Extract URL service.

18

Figure 5: Extract URL Flowchart

Next, the extracted URLs will need to be converted to webpage data and archived. To convert
the extracted URLs to webpage data, the python requests library is used to get the HTML of the
webpage Next, to archive the webpage data, WARCIO, the WARC Streaming Library, is used to
archive the webpage data and metadata by filtering request and response records and generating
a WARC file with the webpage data. A flowchart that explains this is shown in Figure 6.

Figure 6: Archive Webpage Flowchart

19

Next, webpage data will need to be extracted from the newly generated WARC file. At first,
WARCIO will be used to grab the HTML, then BeautifulSoup will be used to extract text from
the HTML. A flowchart that explains this is shown in Figure 7.

Figure 7: Extract Webpage Data Flowchart

Lastly, ElasticSearch will be used to index all of the text and metadata (see Figure 8).

Figure 8: Index Flowchart

Notice that Figure 4 treats both goals as a set of continuous tasks, where the output of the
former is the input of the latter. Thus, a user generates data (e.g., has a set of tweets and wants
to extract the data associated with them), and then populates an ElasticSearch index with this
extracted data.

Apart from the main tasks identified above, two other independent tasks have been developed.
The first task is a text summary task. The idea is to take some raw text and provide a summary of

20

the text. The key idea is to provide quick information for users who are querying a lot of webpage
data from the ElasticSearch server. By doing so, users will get the general idea of a webpage by
reading the summary rather than the raw text of a webpage, as some webpages contain a copious
amount of text. The next task is a text classification task. Often, users want to populate the
ElasticSearch index with a lot of data, for instance, Twitter data. Many of the webpages collected
using Twitter data might be non-relevant. Thus, a text classification task that can filter out non-
relevant data can be useful to users. Note that both these tasks would act independently and don’t
necessarily belong to the pipeline outlined in Figure 4.

Each of the tasks identified above will be treated as an independent service, each running in
their own separate Docker container. The philosophy behind this decision comes from being able
to create a flexible pipeline that can be reduced or expanded. For instance, if a user wants to ingest
data, given webpage URLs and not tweets, the Extract URLs container would not be executed.
The pipeline would be easily expanded, by adding new containers, and by redirecting the input
and output of containers within the pipeline.

4.2 Background Information and Methodology

The aim of this project is to create an information retrieval system that the Virginia Tech library
could use. More specifically, the WP team was entrusted with providing the functionality of ingest-
ing webpage data. Original data was provided by Mohamed as tweet data. To further understand
the nature of the project and data, the team often met with Mohamed to gain clarification.

The WP team is new this year. Mohamed provided a collection of tweet data related to some
event (e.g., Coronavirus tweet data). Much of the data did not contain webpage URLs, due to the
way they were collected. The method employed to collect tweets was by using the Twarc Python
API, which allows the user to query and store tweets based on a certain keyword without checking
whether the tweet contains an embedded URL or not. Thus, preprocessing was required to filter
out tweets that did not contain embedded URLs. Moreover, certain tweets in the data became
unavailable. Whether the owner of the tweet deleted it, or the tweet was deleted for violating
Twitter’s terms of service, there were many cases where the tweet was not available. In this case,
the tweet was ignored.

In the 2017 offering of CS5604, there was a team named Collection Management Webpages
(CMW) that fetched webpages mentioned in given tweets, created WARC files covering them,
processed them, and loaded them into HBase. The WP team utilized some of the CMW team
functionality (fetching the webpages identified by the given tweets, creating WARC files, and
processing the files).

The tweet data was provided as JSONL files, as specified by the Twitter API [8]. Often, the
URL referenced by the tweet would be in a different field of the JSONL file, which depended on
what type of tweet it was: a standard tweet with the URL found in the text of the tweet, an
extended tweet with an embedded URL, a quoted tweet, or a quoted tweet of an extended tweet.
These seemed to be all of the types of tweets to be accounted for, and the relevant URL was found
in a different field within the JSONL file for each different type of tweet. Lastly, many of the

21

provided URLs were in a shortened version, so getting their expanded representation was crucial
to the success of the project.

4.3 Tools

The tools that will be used to develop this project will be Python, Rancher (Kubernetes), Kubectl,
Docker Hub, JSON formatted tweets, WARCIO - a fast, standalone library to read and write
WARC Format commonly used in web archives, BeautifulSoup - a Python package for parsing
HTML and XML documents, and ElasticSearch - a distributed, open source search and analytics
engine for all types of data.

4.3.1 Docker

Docker provides advantages similar to running a virtual machine. Some of those advantages include
always being able to run an application in the same environment. As a result, inconsistencies are
avoided with regards to the application’s behavior. In other words, if the application works on a
given computer, then it will work on another computer, as well as a live server [1].

Moreover, Docker enables a project to be delivered in a sandbox, which ensures both security
and eliminates conflicts between projects. Along the same line of thought, Docker makes it easier
to deploy another’s code within the organization. Due to its sandbox nature, the requirement for
installing tools and dependencies is removed as an initial step in deploying a given project.

It is important to note that Docker provides these advantages without the hassle and overhead
of managing virtual machines. This is because the code and environment are all wrapped up in a
Docker container. However, a container is not a full virtual machine. Virtual machines are resource
heavy on the host machine. The overhead is lower with a container because the host machine’s
kernel is shared, but everything on top of that is separate.

In other words, a container is a compromise between the extreme separation and sandbox
environment virtual machines offer. As a result, a container can be launched within seconds versus
minutes with virtual machines. This is extremely beneficial when collaborating in an organization
and performing code integration of various features that have been developed across teams.

More specifically, a container is a running instance of an image. An image is a template for
creating the desired environment. Images can be thought of as a snapshot of the system at a
particular point in time. Images are defined using a Docker file, which in turn is just a text file
that contains a list of steps to perform in order to create the image. Writing and running a Docker
file builds an image, which in turn runs and builds a container.

4.3.2 ElasticSearch

ElasticSearch is a search engine based on the Lucene library [9]. It provides a distributed, multi-
tenant full-text search engine with HTTP Web interface and schema-less JSON documents. Elas-
ticSearch is developed in Java and released as open source software under the Apache license. The
official client is available in Java, .NET, PHP, Python, Apache Groovy, Ruby, and many other

22

languages. In other words, ElasticSearch is a Lucene-based search server. It provides a full-text
search engine with distributed multi-user capabilities, based on a RESTful web interface.

ElasticSearch can be used to search various documents. It provides scalable search, has near
real-time search, and supports multi-tenancy. ElasticSearch is distributed, which means that the
index can be divided into shards, and each shard can have 0 or more copies. Each node hosts one or
more shards and acts as a coordinator to delegate operations to the correct shards. Re-balancing
and routing are done automatically. By using ElasticSearch in cloud computing, the goal is to
achieve a real-time, stable, reliable, and fast search.

4.3.3 JSON

JSON is a lightweight data interchange format based on JavaScript functionality [10]. Despite
being derived from JavaScript, JSON has cemented itself as a standard data format across many
languages and systems. JSON is founded on the idea of having key-value pairs. For each key,
which is a string, there is a corresponding value, which may be of different types. If the value is
encapsulated by curly braces, it’s considered an object and may have more fields within it. If it
isn’t, it can be a Boolean, String, number, or NULL.

JSONL is a type of JSON format which stands for "json lines." This means that a JSONL file
can have multiple objects per file, each object corresponding to a line. This file was used through
the pipeline, as it makes more sense to bulk transfer data rather than pass one JSON file at a time.

4.3.4 WARCIO

WARCIO: WARC Streaming Library [11] provides a fast, standalone way to read and write WARC
Format commonly used in web archives. WARCIO supports reading and writing of WARC files
compliant with both the WARC 1.0 and WARC 1.1 ISO standards. It can be installed with: pip
install WARCIO. This library is a spin-off of the WARC reading and writing component of the
pywb high-fidelity replay library, a key component of Webrecorder. The library is designed for
fast, low-level access to web archival content, oriented around a stream of WARC records rather
than files.

4.3.5 BeautifulSoup

BeautifulSoup [12] is a Python library which can grab data out from HTML and XML files. It
works by providing idiomatic ways of navigating, searching, and modifying the parse tree. It
commonly saves programmers hours or days of work. The reference covers Beautiful Soup version
4.9.2. The examples in this reference should work the same way in Python 2.7 and Python 3.8.

4.3.6 WARC files

The WARC (Web ARChive) file format provides a convention for connecting multiple resource
records (data objects) together [13]. Each resource record consists of a set of simple text titles and
an arbitrary data block to form a long file. The WARC format is an extension of the ARC file

23

format and is traditionally used to store "Web crawls" as a sequence of content blocks obtained
from the World Wide Web. Each capture in the ARC file has a single-line title that describes
the content and length of the harvest very briefly. Then comes the retrieval protocol response
message and content. The WARC format is a standard method for structuring, managing, and
storing billions of resources collected from the Web or elsewhere. It is used to build applications
for collection (such as the open source Heritrix Web crawler), as well as to manage, access, and
exchange content. The way the WARC file is created and the way the resources are stored and
presented will depend on the implementation of the software and application.

Figure 9: Example of a WARC File

4.4 Deliverables

In order to meet the overall project and team requirements, a set of deliverables was set in place.
First of all, three interim reports that acted as a draft of the final report were required to be
written.

• Interim Report 1: Interim report 1 contains a skeleton of the report and should contain
any relevant background information.

• Interim Report 2: Interim report 2 expands on IR1 by fixing any errors, including more
background information, and expanding on current progress. By IR2, each of the sub-teams
should have a working demo. It’s not necessary for the demo to work with relevant data
(should work with dummy data), as to not hinder the teams’ progress due to the nature of
each subsequent team depending on the previous teams’ output for their input.

• Interim Report 3: Interim report 3 expands on IR2 by fixing any grammatical errors
and addresses any comments made by the professor and classmates. Whilst the bulk of the
writing was done in IR2, IR3 should include any relevant information that was not present
in IR2.

24

• Final Report:The final report expands on I3 by fixing any grammatical errors and addresses
any comments made by the professor and classmates. The goal of the final report is to have
a finalized submission for VTechWorks.

Apart from interim reports and the final report, there are a set of tasks that will be handled
by their own Docker containers. These will be used by the integration team and webpage team to
provide certain webpage-related services. These services are highlighted in §4.1.

• Extract URLs: Create a service that reads in Twitter data as JSONL files, and extracts
any embedded URLs if possible.

• Archive Webpage: Create a service that reads in a list of URLs, filters webpages that
cannot be accessed successfully, and generates a singular WARC file for that given list.

• Extract Data: Given a WARC file, parse through the stored webpages and extract webpage
data into a JSON file, where each entry in the JSON file contains data for a single webpage.
The extracted webpage data currently includes: webpage title, URL, and webpage text.

• Index: Create a service that takes data input as JSONL, connects to an ElasticSearch server
(not spawned by the WP team), and ingests the given data to an ElasticSearch index. The
data will be indexed under the wp index.

• Summarize Text: Given a JSONL file with a text entry, return the same JSONL with an
extra field containing the text summary.

• Classify Text: Given a text file with each line in the file containing a given body of text,
parse said body of text and classify as either relevant (to COVID-19) or not, returning a text
file which records the classification results.

25

5 Implementation

5.1 Timeline

Table 1 shows our schedule. It contains the task description, our estimated timeline in weeks, team
members and/or sub-teams responsible for accomplishing the tasks, and the current status. This
schedule has been added to and changed over time.

Sub-teams and their respective members are as follows:

1. Extract URLs: Wentao Fan, Peng Tan, Yang Hu, Cristian Vives

2. Archive Webpage: Shuaicheng Zhang, Tishauna Wilson

3. Extract Data: Wentao Fan, Peng Tan, Yang Hu, Cristian Vives

4. Index: Cristian Vives, Jostein Barry-Straume

5. Classify Text: Shuaicheng Zhang

6. Summarize Text: Wentao Fan, Peng Tan, Yang Hu, Jostein Barry-Straume

Table 1: Tasks and Timeline

Task Timeline (week) Assignee Status
Conceptual background research
and system workflow artifact guide-
lines

1-4 ALL DONE

Assign sub-team membership and
establish project roles and respon-
sibilities

1 ALL DONE

Creation of separate sub-team git
branches in GitLab WP team
repository

2 Subteam
4

DONE

SSH into Virtual Machine created
by Mohamed and change password

3 ALL DONE

Initial meeting with Subject Matter
Expert (SME)

3 ALL DONE

Prototype script to output URLs
from tweets

7 Subteam
1

DONE

Prototype script to output WARC
files from URls

7 Subteam
2

DONE

Prototype script to output Web-
pages text from WARC files

7 Subteam
3

DONE

Continued on next page

26

Table 1 – continued from previous page
Task Timeline (week) Assignee Status

Prototype script to generate Elas-
ticSearch Index from sample JSON
API

7 Subteam
4

DONE

Create Local Elastic Stack applica-
tion to test indexing of sample data

7 Subteam
4

DONE

Team-2-team meeting with Integra-
tion team regarding Docker con-
tainers for each service

8 ALL DONE

Prototype script to generate Elas-
ticSearch Index from WARC files

10 Subteam
4

DONE

Acquire a larger sample data from
SME

10 ALL DONE

Test and validate extract URLs
script using a larger collection of
sample data

10 Subteam
1

DONE

Test and validate archive webpage
script using a larger collection of
sample data

10 Subteam
2

DONE

Test and validate extract data
script using a larger collection of
sample data

10 Subteam
3

DONE

Test and validate index script using
a larger collection of sample data

10 Subteam
4

DONE

Deploy services to Docker contain-
ers

10 ALL DONE

Implement webpage title classifica-
tion as an additional service

ALL DONE

Container testing, evaluation, and
integration into the CS cloud Ku-
bernetes cluster

13 ALL DONE

Finalize the services so they can be
dockerized

11 ALL DONE

Plan to conduct an end-to-end test 11 ALL DONE
Edit and Add to IR3 10 Tishauna DONE
Pipeline 10 Cristian

and
Jostein

DONE

Text Classification 12 Shuaicheng DONE
Text Summarization 12 Wentao

and Peng
and Yang

DONE

27

5.2 Milestones and Deliverables

Our milestones over time are shown in Table 2. We will provide deliverables as listed in Table 3.
Table 4 lists the container images per team along with their associated function within the system.

Table 2: Milestones

Task # Completion Date Milestone
1 09/17 Interim Report 1: Construct initial skeleton of the final re-

port and include any relevant background information com-
piled to date

2 10/04 All prototype services for each sub-team implemented
3 10/05 Interim Presentation 2: Demo live service of goals 1 and 2
4 10/08 Interim Report 2: Expand on IR1 to include project

progress to date
5 10/16 Extract URLs: Update service to output JSONL files con-

taining relevant webpage hyperlink
6 10/16 Archive Webpage: Update service to generate a singular

WARC file (many-to-one relationship)
7 10/16 Extract Data: Update service to clean and parse JSON

data
8 10/16 Index: Update service to take in WARC file as input instead

of pure JSON
9 10/23 Deploy each service to Docker containers
10 10/23 Index: Connect service to Integration team provided Elas-

tic Stack end-point
11 10/23 Implement working pipeline for data generation
12 10/23 Implement working pipeline for data ingestion
13 10/25 Interim Presentation 3: Live demo of data generation and

ingestion pipelines
14 10/30 Interim Report 3: Expand on report to include relevant

progress to date
15 11/20 Test and evaluate data pipelines and services
16 12/02 Final Project Presentation: Live demo of fully tested and

deployed software for data extraction and ingestion of web-
pages

17 12/09 Final Project Report: Deliver fully tested and deployed
software for data extraction and ingestion of webpages

28

Table 3: Deliverables

Task # Completion Date Deliverables
1 09/08 Teams formed
2 09/17 Interim Report 1
3 09/21 Reviews for Interim Report 1
4 10/8 Interim Report 2
5 10/12 Reviews for Interim Report 2
6 10/29 Interim Report 3
7 11/2 Reviews for Interim Report 2
8 12/2 Final presentations
9 12/9 Final Project Report

Table 4: Containers and their function in the System

Image Name Docker Image Function in the System

Extract
URLs

container.cs.vt.edu/
cs-5604-fall-2020/
wp/team-wp-repo/
extract_url

Take in as an input a collection of either tweets or
event focused crawler results, and return a set

of valid URLs for the given category of collection

Archive
Webpage

container.cs.vt.edu/
cs-5604-fall-2020/
wp/team-wp-repo/
archive_webpage

Take in as an input a set of URLs, and return a
WARC file containing all Webpages as an archive

Extract
Data

container.cs.vt.edu/
cs-5604-fall-2020/
wp/team-wp-repo/
extract_webpage

Take in as an input a WARC file,
then extract and return the webpage data

from the contained URLs in the form of JSONL

Text
Summa-
rization

container.cs.vt.edu/
cs-5604-fall-2020/
wp/team-wp-repo/
summarize_text

Take in as a JSONL file, then perform text
summarization on a given set of webpages’

content, and return a JSONL file
of said webpage summaries

Index container.cs.vt.edu/
cs-5604-fall-2020/
wp/team-wp-repo/
index_data

Take in as an input a JSONL file, perform
indexing, and populate an ElasticSearch index

Continued on next page

29

container.cs.vt.edu/cs-5604-fall-2020/wp/team-wp-repo/extract_url
container.cs.vt.edu/cs-5604-fall-2020/wp/team-wp-repo/extract_url
container.cs.vt.edu/cs-5604-fall-2020/wp/team-wp-repo/extract_url
container.cs.vt.edu/cs-5604-fall-2020/wp/team-wp-repo/extract_url
container.cs.vt.edu/cs-5604-fall-2020/wp/team-wp-repo/archive_webpage
container.cs.vt.edu/cs-5604-fall-2020/wp/team-wp-repo/archive_webpage
container.cs.vt.edu/cs-5604-fall-2020/wp/team-wp-repo/archive_webpage
container.cs.vt.edu/cs-5604-fall-2020/wp/team-wp-repo/archive_webpage
container.cs.vt.edu/cs-5604-fall-2020/wp/team-wp-repo/extract_webpage
container.cs.vt.edu/cs-5604-fall-2020/wp/team-wp-repo/extract_webpage
container.cs.vt.edu/cs-5604-fall-2020/wp/team-wp-repo/extract_webpage
container.cs.vt.edu/cs-5604-fall-2020/wp/team-wp-repo/extract_webpage
container.cs.vt.edu/cs-5604-fall-2020/wp/team-wp-repo/summarize_text
container.cs.vt.edu/cs-5604-fall-2020/wp/team-wp-repo/summarize_text
container.cs.vt.edu/cs-5604-fall-2020/wp/team-wp-repo/summarize_text
container.cs.vt.edu/cs-5604-fall-2020/wp/team-wp-repo/summarize_text
container.cs.vt.edu/cs-5604-fall-2020/wp/team-wp-repo/index_data
container.cs.vt.edu/cs-5604-fall-2020/wp/team-wp-repo/index_data
container.cs.vt.edu/cs-5604-fall-2020/wp/team-wp-repo/index_data
container.cs.vt.edu/cs-5604-fall-2020/wp/team-wp-repo/index_data

Table 4 – continued from previous page
Team Name Container Image Function in the System

Classify
Text

container.cs.vt.edu/
cs-5604-fall-2020/
wp/team-wp-repo/
classify_text

Take in as an text file, perform text classification,
and produce prediction results to a text file

5.3 Methods Selection

This section is dedicated to the evaluation process that resulted in the selection of the best methods
for the WP team project.

For URL extraction, basic Python APIs such as "json" and "re" are utilized. Future software
development might involve implementation with the Tweepy API [14], due to its ease of use with
query handling of retweet and quote attributes. However, at the current time the priority was to
establish a baseline prototype that was up and running. The best method in the short term is to
use familiar tried and true APIs. In the long term, the best method to extract URLs may change.
Evaluation of the WP team’s current URL generation service needs to be tested on a large subset
of the data before any determination is made.

For archiving webpages, WARCIO is utilized. WARCIO is a Streaming Library that archives
the webpage data and metadata by filtering request and response records and generating WARC
files. This is the current best method for this service because of the wisdom imparted on the
WP team by way of the Subject Matter Expert (SME). The SME has intimate knowledge of web
archiving, so the WP team is following his suggestion to make use of WARCIO. Moreover, the
initial code to get started was provided by the SME and involves the WARCIO API. Currently
there are no plans to test other methods of web archiving, as the WP team feels this is not a good
use of their time.

For extracting webpage data, WARCIO is used to read the input since it is of the form of
a single WARC file for a given service process. From there, the BeautifulSoup and JSON APIs
provide the functionality for extracting webpage HTML data and writing it to a line delimited
JSON file. BeautifulSoup is the gold standard for webpage content extraction, so there really is
no need to test alternative implementations.

For indexing webpage data, the ElasticSearch API is utilized. Use of ElasticSearch is required
per the overall project, as well as the WP team, requirements. So by default, ElasticSearch is the
best choice to index the data.

For classifying text data, genism API, nltk API and scikit-learn API are used. These APIs are
used to form an end-to-end system. First genism API and nltk API are used to contextualize the
input texts into Doc2Vec embeddings(the raw input is in the text format, to convert it to acceptable

30

container.cs.vt.edu/cs-5604-fall-2020/wp/team-wp-repo/classify_text
container.cs.vt.edu/cs-5604-fall-2020/wp/team-wp-repo/classify_text
container.cs.vt.edu/cs-5604-fall-2020/wp/team-wp-repo/classify_text
container.cs.vt.edu/cs-5604-fall-2020/wp/team-wp-repo/classify_text

format for SVM, it’s better using embedding techniques) to capture the overall meaning/semantic
information of the documents, and, through scikit-learn API’s one-class SVM classifier, these
generated contextualized embeddings are being classified to either relevant to the COVID-19 or
not. The reason for using one-class SVM is because we don’t have a significant amount of training
data and test data to utilize deep learning techniques (fully connected neural nets etc.) and one-
class SVM is sufficient to perform classification to draw a decision boundary when there are only
positive data.

Figure 10: Example of index structure from ElasticSearch that the Index service creates

31

6 User Manual

6.1 Service Utilization

The WP Team has Dockerized its Minimal Viable Product into a pipeline of services. This pipeline
is currently six Docker containers. Each container represents one service, and as such carries out
one task when started. Right now input for each container is done through environment variables,
which are appropriately set each time the container is spun.

As is shown in Figure 11, all Docker containers are registered in the Container Registry in
Gitlab. Please refer to Figure 11 for how to copy the following commands:

• Login

• Build an Image

• Push an Image

Figure 11: WP Team Container Registry

For the convenience of future developers, please refer to the below snippet of code in which you
can find all four commands to run each Docker container via the command line.

####################################
Container 1: Extract URL Service
####################################
docker run \

32

--env TWEET_INPUT_FILE=data/coronavirus0408_100.jsonl \
--env URL_OUTPUT_FILE=data/urls.txt \
--env VERBOSE=true \
-v /"$(pwd)"/data:/code/data extract_url

##
Container 2: Archive Webpage Service
##
docker run \
--env URL_INPUT_FILE=data/urls.txt \
--env WARC_OUTPUT_FILE=data/out.warc.gz \
--env VERBOSE=true \
-v /"$(pwd)"/data:/code/data archive_webpage \

##
Container 3: Extract Webpage Service
##
docker run \
--env WARC_INPUT_FILE=data/out.warc.gz \
--env JSONL_OUTPUT_FILE=data/output.jsonl \
--env VERBOSE=true \
-v /"$(pwd)"/data:/code/data extract_webpage \

###################################
Container 4: Index Data Service
###################################
docker run \
--env JSONL_INPUT_FILE=data/output.jsonl \
--env INDEX=wp \
--env ADDRESS=elasticsearch.cs.vt.edu:9200 \
--env VERBOSE=true \
-v /"$(pwd)"/data:/code/data index_data \

##########################
Summarize Text Service
##########################
docker run -v /"$(pwd)"/data:/code/data summarize_text

#########################
Classify Text Service
#########################
docker run -v /"$(pwd)"/data:/code/data classify_text

33

7 Developer Manual

7.1 Input

One starting point involves extracting URLs from tweets. The raw data of tweet text with em-
bedded URLs is required. Raw data of tweets can be obtained from the Internet, other groups’
support, or anywhere else. Store the tweet text with embedded URLs according to a specific
formatting (e.g. JSON) so that "Extract URLs" can begin to work on this.

It is recommended to preprocess the raw data to filter out tweets without URLs before starting
"Extract URLs". However, "Extract URLs" is still able to work with non-preprocessed data.

7.2 Extract URLs

This includes collecting raw data from Twitter and other media, and extracts specific URLs from
the raw data. This is the start of this service.

With help from Mohamed, we use a Python script (extract_url.py) to preprocess JSON files
that contain tweet data and extract any URLs present in any tweets. Once extracted, the URLs
will be stored in a txt file.

Figure 12: Part of EXTRACT URL Code

34

1. Import several important packages to process the JSONL file:

from __future__ import print_function
import JSON, fileinput, re, logging

2. Set configuration of log file:

logging.basicConfig
(filename="extractURLs.log", level=logging.INFO)

Figure 13: Part of Extract URL Code

3. Using package fileinput to get info from a tweet JSON stream line by line:

for line in fileinput.input(’coronavirus0408_100.JSONl’):

4. Use the JSON package to parse the JSON data stream and print the “unshortened” URL:

try:
tweet = JSON.loads(line)

except Exception as e:
garbage in, garbage out
logging.error(e)
#return line
continue

don’t do the same work again
if ’unshortened_url’ in tweet and tweet[’unshortened_url’]:

35

#return line
print(tweet[’unshortened_url’])
continue

#tweet = JSON.loads(line)

5. If the tweet data stream is stored with entities as the key, then another data analysis method
is used. The output URLs will be embedded with corresponding data type as defined: URLs
are labeled as "cool type" if usable, otherwise they are labeled as "weird type."

if "entities" in tweet:
#lng = tweet["lang"]
#if lng != ’en’:

#print("Not English " + tweet["id_str"])
#print("Not English " + tweet["lang"])
#continue

for url_dict in tweet["entities"]["urls"]:
if ’unshortened_url’ in url_dict:

#print(url_dict[’unshortened_url’])
url = url_dict[’unshortened_url’]

elif ’expanded_url’ in url_dict:
#print(url_dict[’expanded_url’])
url = url_dict[’expanded_url’]

else:
#print(url_dict[’url’])
url = url_dict[’url’]

if url:
if re.match(r’^https?://Twitter.com/’, url):
don’t hammer on Twitter.com urls that we know are not short
#url_dict[’unshortened_url’] = url

continue
print(url)

36

Figure 14: Output of Generate URL

6. Example Input Data: See Figure 21

37

Figure 15: Example JSON Data

7.3 Archive Webpages

In this step, we want to extract webpages from the extracted URLs from the first step and archive
them in the form of WARC files, which will facilitate the following steps. The Web Archive
(WARC) format specifies a method for combining multiple digital resources into an aggregate
archive file together with related information, which can easily be used to handle and process.

1. Import several important packages to process the URLs file including warcio, sys, and re-
quests:

from warcio.capture_http import capture_http
import requests # requests must be imported after capture_http
import sys

2. Get data in URLs file from command line argument

urlsFile = sys.argv[1]

38

3. Read lines from the file to extract URL lists

with open(urlsFile) as f:
urls = f.readlines()

urls = [u.strip() for u in urls]

4. Filter Request and Response Records. 200 is a success code. If the request doesn’t return
200, it means the webpage is not successfully retrieved therefore we will filter it out.

def filter_records(request, response, request_recorder):
return None, None to indicate records should be skipped
if response.http_headers.get_statuscode() != ’200’:
return None, None

return request, response

5. Archive Webpages into WARC file

with capture_http(’test.warc.gz’):
for url in urls:

requests.get(url)

6. Example Input Data (Figure 22)

Figure 16: Archive URL Input Data

39

7.4 Extract Data

After WARC files are generated from the Archive URLs group, the warcio Python module is used
to grab the HTML from the WARC files. Once the HTML is obtained, BeautifulSoup is used
to extract text from HTML files. Then, the HTML’s content is transferred to a JSON file using
JSON and Jsonlines. After that, these JSON files will be transferred to ElasticSearch to generate
indexes for further usage.

1. Import important packages to process the WARC files

from warcio.archiveiterator import ArchiveIterator
from bs4 import BeautifulSoup
import JSON
import re

2. Using BeautifulSoup API to get text content from HTML and store the URL, title, text
content into dict

def parse_content(url, content, JSON_file):
soup = BeautifulSoup(content, ’html.parser’)
content = soup.get_text()
content = re.sub(’\n\r+’, ’\n\r’,re.sub(’\n+’, ’\n’, content))
title = soup.find(’title’).string
JSON_list.append({"URL":url, "title":title, "webpage_text":
↪ content})

3. Using JSONlines and JSON API to process HTML information.

def transfer_JSONl(content):
with open(’output.JSONl’, ’w’) as outfile:

for entry in JSON_list:
JSON.dump(entry, outfile)
outfile.write(’\n’)

4. Reading WARC file in the way of file stream

JSON_list = []
i = 0
url_list = []
with open(’new1.warc’, ’rb’) as stream:

5. Using Warcio API to load file stream and get URL of HTML and the content of HTML

for record in ArchiveIterator(stream, arc2warc=True):
if record.rec_type == ’response’:

if ’text/html’in record.http_headers.get_header(’Content-Type’):
url = record.rec_headers.get_header(’WARC-Target-URI’)

40

#check for duplicate!
if url in url_list:

continue
url_list.append(url)
print(record.rec_headers.get_header(’WARC-Target-URI’))
print(i)
print("----")
i+=1
parse_content(url, record.content_stream().read(), JSON_list)

6. Generate a JSON file in the current folder

transfer_JSONl(JSON_list)

7. Example Data:

Figure 17: Output of Extract Data

7.5 Text Classification

Text Classification is a function that classifies text according to a certain category or categories.
The category of text we are classifying in this task is COVID-19 information. The overall system
used is an embedding algorithm that captures the semantic information from the texts and then an
SVM classifier uses these contextualized embeddings for final classification. In order to make the
system work, training is required when we first want to capture the category we want to classify.
This is done by feeding in relevant text data to train a set of parameters that convert input texts
to embeddings(parameters of DOC2Vec is saved), and then use these embeddings to train the
parameters in the one class SVM(parameters of SVM is also saved). Eventually the pipeline is
ready to use for future classification by the predict function. The input of the model is just raw text
and the output is a file containing the classification results. The category can be easily changed
to a different subject by simply retraining the model with text data from a desired category. The

41

train function will save the parameters trained on the given category and use that as the basis for
text classification on selected category.

1. Import necessary library

from gensim.test.utils import common_texts
from gensim.models.doc2vec import Doc2Vec, TaggedDocument
from nltk.tokenize import word_tokenize
from sklearn.svm import OneClassSVM
from joblib import dump, load
import numpy as np
import os
import nltk

2. Initialize the classifier which loads pretrained models

model = CoronaClassifier()

3. Read the text file

text_input = open(input_file, ’r’)
lines = text_input.readlines()
print(text_input)
print(lines)

4. Make Predictions

predictions = model.predict_multiple(lines)
print(predictions)

5. Write results to a text file

with open(output_name, ’w’) as outfile:
for predict in predictions:

outfile.write("{}\n".format(predict))

6. Example of training and saving parameters of Doc2Vec and SVM:

Figure 18: Text Classification Training

42

7. Example of how text classifcation results:

Figure 19: Text Classification Examples

7.6 Text Summarization

Text summarization is a function of summarizing text, grabbing key words or information from
the input text and removing unwanted words, punctuation and links. The format of the input and
output are set to be the same. We use JSON files as input and output in this case.

1. Import important packages to process the JSON files

import os
import nltk
import string
import jsonlines
from bs4 import BeautifulSoup as bs
from nltk.corpus import stopwords
from gensim.summarization import summarize
#pip install rouge
from rouge import Rouge
import json

2. Methods for removing HTML tagging, punctuation, and stopwords, and for generating rough
scores.

nltk.download(’stopwords’)
def remove_html(text):

soup = bs(text, ’lxml’)
return soup.get_text().strip()

def remove_punctuation(text):
return "".join([c for c in text if c not in string.punctuation])

def remove_stopwords(text):
return [w for w in text if w not in stopwords.words(’english’)]

43

def rouge_score(summary, reference):
summary = [summary]
reference = [reference]
rouge = Rouge()
rouge_score = rouge.get_scores(summary, reference)
print()
print(rouge_score[0]["rouge-1"])
print(rouge_score[0]["rouge-2"])
print(rouge_score[0]["rouge-l"])
print(’---’)

3. Summarization method to the input JSON files.

def sum1(file):
with open("output.jsonl", "r+", encoding="utf8") as f:

for item in jsonlines.Reader(f):
content = remove_html(item[’webpage_text’])
summary = summarize(content)
summary = summary.replace(’/\r?\n|\r/g’, ’’).strip()
print(summary)
rouge_score(summary, content)

4. Check type and condition of the input file

def notempty(file):
if os.path.getsize(’output.jsonl’):

print(’The file is NOT empty!!’)
else:

print(’The file is EMPTY!!’)

def is_json(file):
try:

json.loads(file)

except Exception as e:

return e
return True

5. Example of how summarization works:

44

Figure 20: Before Summarizing

Figure 21: After Summarizing

7.7 Indexing

Given a collection of indexable JSON data, the Indexing service conducts the following tasks:

• Connect to the ElasticSearch server end-point found at elasticsearch.cs.vt.edu. This is done
via HTTPS on port 9200 with a private authentication token.

• Invoke ElasticSearch’s bulk call to iterate through the input file, adding each document to
the ’WP’ index. If the ’WP’ index does not exist on elasticsearch.cs.vt.edu, it is created.

The below itemized numerical list shows the format of the input file, the code for the indexing
data service, and subsequently the format of the output file of the service:

1. ElasticSearch Input Data

45

Figure 22: Input of ElasticSearch Data

2. ElasticSearch Code

Figure 23: Code of ElasticSearch

3. ElasticSearch Indexed Output

46

Figure 24: ElasticSearch Index Output Data Sample

7.8 Unit testing

Unit tests are usually automated tests written and executed by software developers to ensure that
a part of an application (called a "unit") conforms to its design and performs as expected. In
process programming, a unit can be an entire module, but more generally a single function or
process. In normal programming, a unit test is generally a class that inherits the previous class,
we use this method for unit testing.

Using TestExtractData as example:

1. Import important packages to process the Unit Test for Extract Data

import unittest
from warcio.archiveiterator import ArchiveIterator
from bs4 import BeautifulSoup
import json
import re
#Import the method we want to test from ExtractData
from ExtractData import extract_from_warc

2. Use the unittest package that comes with Python to build the Unit test class.

class Test_method(unittest.TestCase):

@classmethod
def setUpClass(cls):

47

print("Before test case============")

@classmethod
def tearDownClass(cls):

print("after test case============")

3. Build the corresponding test method according to the method to be tested

def test_extractData(self):
str_ = ’https://reut.rs/2JMr0jI’
Flag = 0

with open(’covid.warc.gz’, ’rb’) as file:
extract_from_warc(file)

with open("output.jsonl",’w’) as output_file:

for line in output_file.readlines():
print(line)
if str_ in line:

Flag=1
break

self.assertEqual(Flag, 1)

4. Run this test

if (__name__ == ’__main__’):
unittest.main(argv=[’first-arg-is-ignored’], exit=False)

5. The Output of The Unit Test Passed:

Figure 25: Unit Test Passed Examples

6. The Output of The Unit Test Failed:

48

Figure 26: Unit Test Failed Examples

In this Unit Test, we will import the method needed to test. Create a test case by subclassing
unittest.TestCase. This separate test is defined using methods whose names begin with the letters
test. In test-extractData, it will use to test the imported method. When the test passes, the output
window will display Passed. If the test fails, the output window will display the corresponding
error message.

7.9 Accessing the Virtual Machine

Accessing the virtual machine is a necessity when interacting with the project, as it contains all
the sample Twitter data that Mohamed provided. In order to do so, an account on the virtual
machine, SSH, and a connection to the Virginia Tech VPN will be required. Accessing the virtual
machine is done by following these steps:

1. Request an account for the virtual machine from Mohamed.

2. Install SSH in a shell that can operate SSH such as gitlab for Windows. This step is not
required for Mac and Linux users.

3. Connect to the Virginia Tech VPN, as outlined §??

4. SSH into the virtual machine through tml.cs.vt.edu using the provided password

49

Figure 27: Using SSH to Connect to VPN

5. Success! You have access to the VPN with all the tweet data.

7.10 Service Registration

To deploy services to cloud.cs.vt.edu, a series of tables were created and provided to the Integration
team. These tables follow Prashant Chandrasekar’s (peecee@vt.edu) Artifact Guidelines, which
initially served to both inform the design for the front-end team and generate workflows based on

50

the goals.

Figure 28: Service Table

51

The three tables (Service, Goal, and Reasoner) allow the Integration team to register our
deployed services on Rancher. Table 28 shows the services the WP team has registered on Airflow.
Table 29 shows the goals the WP team has registered on Airflow. Table 30 shows how the services

52

and goals work together based on file inputs and outputs.

Figure 29: Goal Table

53

All service related data and corresponding files for goals are listed in these three tables. In
other words, all goals contain a corresponding file. The environment variables listed in table 29
are passed into the registered Docker containers automatically through Airflow. The code for each
corresponding service is modified to read data from environment variables. Additionally, each
Dockerfile defines their respective environment variables and sets their values to the NFS file path
for the given input variable.

Figure 30: Reasoner Table

54

References
[1] Docker Documentation | Docker Documentation. [Online]. Available from: https://docs.

docker.com/, 2020.

[2] Mohamed Magdy and Gharib Farag. Intelligent Event Focused Crawling. PhD thesis, Blacks-
burg, VA.

[3] Schütze Hinrich Manning D. Christopher, Raghavan Prabhakar. Introduction to Information
Retrieval.

[4] Roy Thomas Fielding. Fielding Dissertation: Chapter 5: Representational State Transfer
(REST). In Architectural Styles and the Design of Network-based Software Architectures.
UNIVERSITY OF CALIFORNIA, IRVINE, University of California, Irvine, 2000.

[5] Leonard Richardson and Mike Amundsen. RESTful Web APIs. O’Reilly Media.

[6] URIs, URLs, and URNs: Clarifications and Recommendations 1.0. [Online]. Available from:
https://www.w3.org/TR/uri-clarification/, 2020.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

[8] Twitter. Twitter API Documentation | Docs | Twitter Developer. [Online]. Available from:
https://developer.twitter.com/en/docs/twitter-api, 2020.

[9] GitHub - elastic/elasticsearch: Open Source, Distributed, RESTful Search Engine. [Online].
Available from: https://github.com/elastic/elasticsearch, 2020.

[10] Douglas Crockford. JSON. [Online]. Available from: https://www.json.org/json-en.html,
2020.

[11] WARCIO: WARC (and ARC) Streaming Library. [Online]. Available from: https:
//github.com/webrecorder/warcio#:~:text=Install%20with%3A%20pip%20install%
20warcio,WARC%20records%20rather%20than%20files., 2020.

[12] Beautiful Soup Documentation. [Online], Available from: https://www.crummy.com/
software/BeautifulSoup/bs4/doc/, 2020.

[13] Github - WARC Specifications. [Online]. Available from: https://iipc.github.io/
warc-specifications, 2020.

[14] Tweepy Documentation. [Online], Available from: http://docs.tweepy.org/en/latest/,
2020.

55

https://docs.docker.com/
https://docs.docker.com/
https://www.w3.org/TR/uri-clarification/
https://developer.twitter.com/en/docs/twitter-api
https://github.com/elastic/elasticsearch
https://www.json.org/json-en.html
https://github.com/webrecorder/warcio#:~:text=Install%20with%3A%20pip%20install%20warcio,WARC%20records%20rather%20than%20files.
https://github.com/webrecorder/warcio#:~:text=Install%20with%3A%20pip%20install%20warcio,WARC%20records%20rather%20than%20files.
https://github.com/webrecorder/warcio#:~:text=Install%20with%3A%20pip%20install%20warcio,WARC%20records%20rather%20than%20files.
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://iipc.github.io/warc-specifications
https://iipc.github.io/warc-specifications
http://docs.tweepy.org/en/latest/

	List of Tables
	List of Figures
	Overview
	Project Management
	Problems and Challenges
	Solutions Developed
	Future Work

	Literature Review
	Intelligent Event Focused Crawling
	Chapters 19-21 in Introduction to Information Retrieval Course Book
	Representational State Transfers (REST)
	RESTful API
	Text classification
	Text summarization

	Requirements
	Overall Project Requirements
	WP Team Requirements

	Design
	Approach
	Background Information and Methodology
	Tools
	Docker
	ElasticSearch
	JSON
	WARCIO
	BeautifulSoup
	WARC files

	Deliverables

	Implementation
	Timeline
	Milestones and Deliverables
	Methods Selection

	User Manual
	Service Utilization

	Developer Manual
	Input
	Extract URLs
	Archive Webpages
	Extract Data
	Text Classification
	Text Summarization
	Indexing
	Unit testing
	Accessing the Virtual Machine
	Service Registration

	Bibliography

