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Abstract

John Carroll Gordon

A new computationally facile analytical approximation of
electrostatic potential suitable for macromolecules.

The electrostatic properties of a molecule are often essential in determining its behavior; as
such, the ability to approximate these electrostatic potentials computationally is often es-
sential to obtaining a full understanding of how these molecules function. An approximate,
analytical solution to the (linearized) Poisson-Boltzmann equation is proposed that is suit-
able for realistic biomolecules of virtually any size. A comparison with accepted numerical
approaches on a large test set of biomolecular structures shows that the proposed method is
considerably less expensive computationally, yet accurate enough to be considered as a pos-
sible alternative. The utility of the approach is demonstrated by computing and analyzing
the electrostatic potential generated by full capsid of the tobacco ringspot virus (half a mil-
lion atoms) at atomic resolution. The details of the potential distribution on the molecular
surface sheds light on the mechanism behind the high selectivity of the capsid to the viral
RNA. These results are generated with the modest computational power of a desktop PC.
The applicability of the analytical approximation as an initial guess for traditional numerical
methods as a means of improving the convergence of iterative solutions is investigated and
found to be quite promising.
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Chapter 1

Introduction

The utility of electrostatic potential for gaining understanding of the function of proteins2

and nucleic acids3 has long been established. Electrostatic interactions are often a key factor
determining properties of biomolecules,2,4–7 including functions such as: catalytic activity,8,9

ligand binding,10,11 complex formation,12 proton transport,13 and structural stability.14,15

In-depth studies of electrostatics-based phenomena in large molecular systems require the
ability to compute the potentials and fields efficiently and accurately on and below the atomic
scale (approximately 2 Åand smaller).

A text-book example is the function of the enzyme acetylcholine esterase, which is a key
enzyme involved in the transmission of nerve impulses across synapses (nerve junctions).
This signal is passed by a mediator molecule acetylcholine that is steered into the enzyme’s
active site by electrostatic forces. Electrostatic steering contributes to the rapid reaction rate
required for this enzyme to function in the context of a mechanism for rapid impulse trans-
mission. Deciphering the underlying molecular mechanism was only possible by computing
a detailed picture of the electrostatic field and potential generated by the enzyme. Figure
1.1 demonstrates the electrostatic surface potential of acetylcholine esterase as computed by
DelPhi and displayed by GRASP.1,16, 17 The acetylcholine molecule is represented by the small
green molecule inside the red pocket (here colored red because its electrostatic potential is
negative). The negative electrostatic potential of the pocket attracts the positively charged
ligand to improve the rate of uptake. The importance of electrostatic potential is not unique
to acetylcholine esterase; electrostatic steering has been shown to play a significant role in a
broad range of neurological functions, such as: presynaptic vesicle-cell membrane fusion,18

norepinephrine uptake,19 and uptake of drugs such as cocaine by dopamine receptors.20

Electrostatic forces are the result of attractions and repulsions between positive and negative
charges. These forces are particularly powerful at the atomic scale, and apply even to
neutrally charged molecules (where the charge distribution may be uneven in some sense
but neutral overall). The Poisson-Boltzmann (PB) formulation for determining electrostatic
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Figure 1.1: Acetylcholine esterase bound to an acetylcholine mediator molecule.1

potential at a point in space is:

∇ǫ(~r)∇φ(~r) + κ−2(~r)sinh[φ(~r)] = −4πρ(~r)

lim
~r→∞

φ(~r) = 0 (1.1)

where ~r is the position in space, ρ(~r) is the charge density at ~r, κ is the Debye-Hückel
screening parameter, φ(~r) represents the electrostatic potential at position ~r, and ǫ is the
dielectric coefficient.21

Equation (1.1) is called the nonlinear Poisson-Boltzmann equation. Within the implicit sol-
vent model (in which solvent molecules are treated as a continuous dielectric environment
rather than as individual molecules in calculations), the nonlinear Poisson-Boltzmann equa-
tion is considered to be the most accurate description of electrostatic potential. However,
this equation is very difficult to solve for a given charge distribution.

∇ǫ(~r)∇φ(~r) = −4πρ(~r)

lim
~r→∞

φ(~r) = 0 (1.2)

Equation (1.2) is Poisson’s equation, the prototypical equation defining how electrostatic
potential behaves in a vacuum. In Poisson’s equation electrostatic potential is linear, in that
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increasing a charge by some factor increases the potential generated by that charge by the
same factor (φ(kρ) = kφ(ρ) where k is a constant). It is also additive, in that the sum of
the potential generated by two charge distributions is the same as the potential generated
by the sum of the two charge distributions (φ(ρ1 + ρ2) = φ(ρ1) + φ(ρ2)).

It can be seen that the nonlinear PB equation does not have these properties due to the expo-
nential term sinh[φ(~r)]. These properties are both physically and computationally desirable
because they are believed to be properties of electrostatic potential in general and because
they dramatically improve the computability of the problem. For these reasons, a linear
approximation of the PB problem is typically used in practice as a basis for approximating
electrostatic potentials.

This paper focuses on the more practical linearized Poisson-Boltzmann (LPB) equation. The
linear Poisson-Boltzmann equation is centered around using the Taylor series expansion of
the exponential term in Equation (1.1) to produce:

∇ǫ(~r)∇φ(~r) = −4πρ(~r) + κ2(~r)ǫ(~r)φ(~r)

lim
~r→∞

φ(~r) = 0 (1.3)

The linearization of the second term is the result of expanding the exponential e−ZA
φ(x)
kT as

1 − ZAcA
φ(x)
kT

+ 1
2
[Z2

AcA
φ(x)
kT

] − · · · and ignoring all terms of order 2 and higher. ZA is the
valence of mobile ion species A, cA is the concentration of mobile ion species A, and all
mobile ions are assumed to follow a Boltzmann distribution throughout the medium. The
resulting term κ2(~r) is equal to 8πe2I

ǫ(~r)kT
where I = 1

2
[Z2

AcA + Z2
BcB + · · ·], e is the charge of a

proton, and kT is a thermal unit.22 This approximation is valid only when −ZA
φ(x)
kT

≪ 1,
which is found to be valid for most practical cases. This linear equation has all the desirable
properties of Poisson’s equation.

Traditionally, methods based upon numerical solutions of the Poisson-Boltzmann equation
(herein referred to as the NPB approach) have been used to compute the electrostatic poten-
tial of biological structures. However the use of the NPB methodology to study electrostatic
properties of bio-molecules becomes problematic as ever larger, high-resolution structures
become available to structural biologists through the advances of X-ray crystallography and
other imaging techniques. For example, a recent NPB-based study of the ribosomal complex

– a structure of nearly 100,000 atoms – required sophisticated parallel computations on 343
CPUs of the Blue Horizon supercomputer23 for an unpublished amount of time. Viral cap-
sids, which are typically much larger, are expected to present an even greater challenge to
the traditional numerical approach. In this thesis, a radically different approach is used to
compute and analyze the electrostatic potential of the tobacco ringspot viral capsid. The
method is based on a closed form analytical solution of the Poisson-Boltzmann equation. Ex-
tensive comparisons with the numerical reference reveal that the method is accurate enough
for practical purposes; its computational efficiency allows us to perform the study of the
full viral capsid made up of half a million atoms on a desktop PC. The method is derived

3



in Chapter 4 and validated in Chapter 5. The method is conceptually facile to implement,
computationally facile to execute, and sufficiently accurate to be used in many applications.
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Chapter 2

Related Methods

2.1 Numerical Poisson-Boltzmann (NPB) Frameworks

Here follows a terse explanation of the general steps involved in solving partial differential
equations using numerical methods as a means of providing some understanding of their lim-
itations and strengths. The methods are first derived for example problems up to the point
that the problem becomes a system of simultaneous equations. An iterative method for solv-
ing these sparse matrix equations is then explained in order to complete the derivation and
to focus on the primary bottleneck involved in storing and computing these approximations.

2.1.1 Finite Difference Methods

Finite difference methods are useful for approximating the solution of differential equations
that are otherwise intransigent or overwhelmingly difficult to solve. However, the methods
themselves are easiest to present within the context of solving a simple problem. Poisson’s
equation (Equation (2.2)) is presented in one dimension as a means of focusing on the
method. Dirichlet boundary conditions are used to represent the values of u at both edges of
the solution. Equation (2.2) represents a common class of diffusion equations; u represents
an unknown function of an independent variable x, ρ represents a source term related to a
derivative of u, and k is an arbitrary terminal boundary value for x in order to use Dirichlet
boundaries on both sides of the domain for the sake of symmetry in the matrix solution.

∂2u

∂x2
= −ρ(x) (2.1)

u(0) = 0

u(k) = 0

(2.2)
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The key approximation used in the finite difference method is to estimate the gradients
by a differencing operator (for example a backward difference operator would be ∂f(x)

∂x
≃

f(x)−f(x−∆)
∆

)22,24–26 on a uniform distribution of finite sample points xi = x0 + i ∗∆ where ∆
is the uniform spacing value.

Equation (2.2) can be transformed to Equation (2.3) under a simple first order difference
operator with second order convergence.

u(xi+1) − 2u(xi) + u(xi−1) = −∆2ρ(xi) (2.3)

The differencing operator determines the order of the approximation being used in the finite
difference method. There are various differencing schemes with different orders of accuracy
including: forward differencing, backward differencing, and midpoint methods. These differ-
encing approximations determine the slope of a secant line about some point p. The secant
line, geometrically, represents the slope between two points. So a forward differencing oper-
ator would provide the slope between p and p + h, a backward differencing operator would
provide the slope between p− h and p where h is an arbitrary value. For a straight line, the
slope is constant, so the forward and backward differencing operators estimate the tangent
exactly and both evaluate to the same value. For this reason, they are viewed as first order
differencing operators.

For second order functions, the slope uniformly changes in a linear fashion so secant approx-
imations centered about p approximate the tangent at p exactly in the sense that it linearly
interpolates a linear derivative. For simple linear functions with constant derivatives, linear
interpolants still exactly represent the slope at p, so centered differencing operators capture
the slopes of both second order and first order equations. Therefore, centered differencing
operators result in second order approximations.

As the order of approximation improves, the support (elements in each row not equal to 0)
of the final matrix generally increases and so the amount of work required to solve the set
of simultaneous equations also increases. Therefore, selection of the differencing operator is
fundamental to the accuracy and time complexity of the overall method and should be done
with great care.
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Point of interest

i−1

f i+1

x i−1 x i+1x i

if

i+1/2f
i−1/2f∆

∆

∆x = h

f

Figure 2.1: Example finite element with approximations in one dimension.

It is useful to decompose the problem to a finite sub-domain to fully understand the tes-
sellation of interactions inherent in the solution. Figure 2.1 demonstrates a decomposition
of the problem into a single point-centered sub-domain in one dimension. The f values
represent approximations of the true solution while the ∆f values (blue lines) represent
approximations of the change in f between two points (uniformly scaled by 1

∆x
to obtain

approximations of the derivative). The ∆f values are indexed with i ± 1
2

to indicate that
these derivatives are approximated at the half distance between i and its adjacent points. It
can be seen that the distance between both the derivative estimates and the function sample
points are h and that xi interacts with the two adjacent sample points xi+1 and xi−1.
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h

0 x1 x2 x3 x4 x5 x6 x7 x8 x9x

Figure 2.2: Sample discretization of the given 1-dimensional problem.

The next step is to construct a uniform mesh of the domain such as that in Figure 2.2. The
xi values represent equidistant sample points along the domain where instances of Equation
(2.3) would be solved. Adjacent elements contain interdependencies generated through the
estimation of the partial derivative. The edges (x0 and x9) represent boundary values, which
have different fundamental equations describing them (such as u(x0) = 0) and require special
treatment. For our example, we are setting h = k

9
to use a fixed number of elements and to

keep the resulting set of linear equations small and presentable.

Equation (2.4) represents a matrix form of Equation (2.3). The matrix is square and sym-
metric because special care is taken at the boundaries (seen in the matrix as rows with only
two terms in them).

























−2 1 0 0 0 0 0 0
1 −2 1 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 0 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 1
0 0 0 0 0 0 1 −2

















































x1

x2

x3

x4

x5

x6

x7

x8

























= −∆2

























ρ1 − x0

ρ2

ρ3

ρ4

ρ5

ρ6

ρ7

ρ8 − x9

























(2.4)

Equation (2.4) is by no means representative of the form of two and three dimensional
problem. With each additional dimension, two interactions are incurred at some increased
distance in the matrix due to the numbering. In this case, for a domain with g elements
along an edge, two dimensional problems incur two additional terms g elements away in a row
column numbering and three dimensional problems require consideration of two dimensional
terms as well as two interactions g2 elements away in the same element numbering system.
The tri-diagonal nature of the one-dimensional problem, then, is unique to 1 dimensional
problems.
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16

1 2 3 4

8765

9 10 11 12

151413

Figure 2.3: Sample discretization of a simple two-dimensional domain.

The two dimensional domain in Figure 2.3 represents a simple two-dimensional discretization.
The red lines represent the dependencies of node 6, the green lines represent dependencies
upon a Dirichlet boundary condition which (in this example) has been separated over to
the other side of the equation to simplify it. For this particular example with 16 internal
elements, the matrix component of the equation representing these interdependent linear
equations is:

−4 1 1
1 −4 1 1

1 −4 1 1
1 −4 1 1

1 1 −4 1 1
1 1 −4 1 1

1 1 −4 1 1
1 1 −4 1 1

1 1 −4 1 1
1 1 −4 1 1

1 1 −4 1 1
1 1 −4 1 1

1 1 −4 1
1 1 −4 1

1 1 −4 1
1 1 −4

(2.5)
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2.1.2 Finite Element Methods

This entire section can be seen as a broad overview of Galerkin’s method for solving par-
tial differential equations, however there are much better resources available for advanced
study.21,23, 27–31 Here Galerkin’s method is used as an example to solve a typical finite ele-
ment problem as a means of touching on the steps involved. Equation (2.6) is used as an
example problem to explore the finite element approach to solving partial differential equa-
tions where p and u are unknown functions, Ω is a mathematical symbol representing the
domain, and ∂Ω represents the surface.

−∇[p∇u] = f(x, y)

u(x, y) = 0, un(x, y) = 0 : (x, y) ∈ ∂Ω (2.6)

First, Equation (2.6) is multiplied by a test function v of the same order and in the same
domain as u and integrated as a means of estimating the strain energy (which should be
minimized) of the approximation. This results in Equation (2.7) which is called the weak

formulation of the problem.

∫∫

Ω

−v∇[p∇u] =

∫∫

Ω

f(x, y)v (2.7)

Or after applying the “product rule” for gradient operators as well as Green’s theorem:

∫∫

Ω

[∇v · (p∇u)]∂x∂y −
∫

∂Ω

vpun∂s =

∫∫

Ω

vf∂x∂y (2.8)

The surface integral evaluates to 0 after applying boundary conditions, so Equation (2.8)
becomes:

∫∫

Ω

[∇v · (p∇u)]∂x∂y =

∫∫

Ω

vf∂x∂y (2.9)

The next step is to discretize the domain. A uniform grid spacing of h will be used here
with square elements similar to that in Figure 2.2. For a uniform square discretization, each
element will have four adjacent elements with whom it must share a boundary. Figure 2.4
contains an example numbering of the vertices on one element.

The next step is to construct a set of simple basis functions that must (in this case) have
defined first derivatives. A hat function is a standard linear interpolant which mathematically
represents the derivative of a delta function and the integral of a step function simultaneously.
Equation (2.10) represents a typical hat function of width w centered at k with a peak value
of z.

F (x) =















0 if x > k + w
0 if x ≤ k − w
z(x + w − k)/w if k − w < x ≤ k
z − z(x − k)/w if k < x ≤ k + w

(2.10)

10



1 v2

v3v4

v

Figure 2.4: Example vertex numbering for a canonical square element

A simple hat function will satisfy this requirement. Equation (2.11) is an example set of first
order basis functions that could be used for this problem.

N1(x, y) =
h − x

h
∗ h − y

h

N2(x, y) =
x

h
∗ h − y

h

N3(x, y) =
x

h
∗ y

h

N4(x, y) =
h − x

h
∗ y

h
(2.11)
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The partial derivatives of N defined in Equation (2.11) are:

∂N1(x, y)

∂x
=

−1

h
∗ h − y

h
∂N1(x, y)

∂y
=

h − x

h
∗ −1

h

∂N2(x, y)

∂x
=

1

h
∗ h − y

h
∂N2(x, y)

∂y
=

x

h
∗ −1

h

∂N3(x, y)

∂x
=

1

h
∗ y

h
∂N3(x, y)

∂y
=

x

h
∗ 1

h

∂N4(x, y)

∂x
=

−1

h
∗ y

h
∂N4(x, y)

∂y
=

h − x

h
∗ 1

h
(2.12)

Note that the Nk functions are designed to be 1 at vertex k and 0 elsewhere, also these
particular N functions are derived for a canonical element of dimension h with v1 at the
origin. To transform an arbitrary element whose v1 vertex is at (x0, y0), one would simply
subtract x0 from the x values in the functions and y0 from the y values, this is simply a
translation function because elements are uniformly sized due to the uniform spacing. The
next step is to approximate u and v by U and V defined in Equation (2.13):

u ≃ U = c1N1 + c2N2 + c3N3 + c4N4

v ≃ V = N1 + N2 + N3 + N4 (2.13)

The lack of constants to solve for in V can be attributed to a uniform weight factor in the
test function, which implies that each point in the equation is equally important. Constants
would exist in the V vector if some regions in the space were more or less important than
the rest.
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If U and V are represented as vectors:

V =









N1

N2

N3

N4









U = [N1, N2, N3, N4]

C =









c1

c2

c3

c4









∫∫

Ω

p∇V ∇UC =

∫∫

Ω

V f∂x∂y (2.14)

f is typically approximated in the same space as U by F = N1∗f1∗N2∗f2 +N3∗f3+N4∗f4.
Where fi is a discrete sample of f at vertex i.

The integrated outer product of ∇U and ∇V with the consideration of F :

Pj =
1

h2
∗









1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

















c1

c2

c3

c4









=









∫∫

Ω
F ∗ N1∂x∂y

∫∫

Ω
F ∗ N2∂x∂y

∫∫

Ω
F ∗ N3∂x∂y

∫∫

Ω
F ∗ N4∂x∂y









(2.15)

Equation (2.15) defines the linear equations for one element. The form of the final matrix
containing the solution for the whole domain will depend on the ordering of the elements,
as there are interactions with neighboring elements that share vertices. The final matrix
problem will be the sum of all Pj, which will be a sparse linear system. If the elements and
vertices are ordered correctly, then the system will be diagonally dominant and banded. The
C array will consist of sums of different unknown ci values from different elements. The last
step in solving this problem is to solve the matrix equation AC = F .

2.1.3 Solving the sparse linear systems

Both finite element and finite difference methods require the solution of a large set of linear
equations in the matrix equation Ax = b where A is sparse, positive definite, and diagonally
dominant. It is standard practice to approach this problem with the goal of quickly and
approximately solving the problem, and so relaxation methods are commonly used to solve
this set of equations.22,24, 32 Successive Overrelaxation is an iterative method for estimating
the solution to large, sparse matrix problems suited for applications of NPB methods to
large molecules. The method approximates the solution to Equation (2.16) for x without
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the expense of inverting A by progressively improving a guess of x until the error becomes
acceptably small.

Ax = b (2.16)

The general method is to start by decomposing A into C and E such that A = C − E
resulting in Equation (2.17), this technique is called “splitting”.

(C − E)x = b

Cx = b + Ex (2.17)

Equation (2.17) is recognizably Gauss-Seidel iteration, where Cxi = b+Exi−1.
24,33 A typical

matrix implementation of the SOR method follows the form described in Equation (2.18).

x(k) = x(i−1) − w(L + D)−1 ∗ ξ(i−1)

ξ(k) = Ax − b (2.18)

where D is the diagonal portion of A, L is the lower triangular portion of A, U is the upper
triangular portion of A, x(i−1) is the approximation from the last iteration, xi is the current
approximation of x being computed, ξ(i−1) is the residual from the previous approximation,
and 0 < w ≤ 2 is a weighting factor affecting the convergence of the method.24,34 Equation
(2.18) is repeated until ξi < conv where conv is some required convergence factor or allowable
error in the approximation.

2.1.4 NPB Computational Requirements

The solution of the algebraic system Ax = b dominates the computational and memory
requirements of finite difference and finite element methods. Here the computational and
storage costs of the SOR algorithm are analyzed as an example iterative solution.

The storage required to represent the matrix problem Ax = b depends upon the repre-
sentation of the matrix A. Naive implementations would store the zero values in memory,
resulting in N2 storage costs. However, in these cases A is typically a sparse diagonally
dominant matrix and so sparse representations will require only O(N) storage if zero values
are not stored.

The number of iterations required for SOR to reduce the initial error in x with N elements
by a factor of 10p can be bounded by 1

3
p
√

N if an optimal w is used.24 Each iteration
requires O(N) computations, so the approximate solution requires O(pN1.5) computations
to complete.

The analysis above applies to the abstraction that results from an initial problem. However,
it is useful to directly couple these computational requirements to the initial problem. The
complexity can be evaluated in terms of the length of one edge L of the q dimensional
problem with uniform grid spacing h. Trivially N = (L/h)q. By using this definition in
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conjunction with the analysis in terms of N , we can derive the computational and memory
requirements. Clearly as the dimensionality of the problem increases the computational
and memory requirements increase exponentially. In the case of PB solvers, the problem is 3
dimensional, and so in terms of the length of an edge of the domain it costs O(L/h)3 memory
to store and O(p(L/h)4.5) operations to reduce the error by a factor of 10p. It is perhaps more
intuitive, however, to view this problem in terms of its specific input – a three-dimensional
structure made up of M atoms. Each atom has some minimum excluded volume about
their centers within which other atoms cannot penetrate. A simple volume argument can be
used to show that for the volume of the cubic region N >= M with a correlation ranging
from N ≈ M3 for a linear arrangement of atoms to N ≈ M for a globular arrangement of
atoms. Most biological molecules are globular in some sense and so the best approximation
in this range for biological molecules in particular is N ≈ M . However, for the sake of
argument, analysis will be performed for both the upper and lower bounds of N relative to
M though the distance from the molecule to the edge of the finite domain will be ignored
because at most it is a linear multiple of M and drops out of any asymptotic analysis. In
the worst case for a cubic region, the molecule is linear such as a short string of DNA. In
these cases, N ≈ M3 for a cubic lattice so the memory required to store the discretization
will be O(M3) and the number of computations required will be O(M4.5). The vast majority
of molecules of interest, however, are enzymes which are typically globular proteins, so in
these cases N ≈ M . So in most cases, the memory required to store a cubic discretization
for molecular studies will be O(M) and the computational cost will be O(M1.5) where M
is the number of atoms. While not all finite element or finite difference methods use cubic
volumes with uniform grid spacing and a rectangular discretization, many NPB solvers do
use this discretization.

2.1.5 NPB Strengths and Weaknesses

NPB methods have two primary strengths: accuracy and error approximation. They have
a large body of foundational research in Finite Difference and Finite Element methodolo-
gies and error estimation available for their approximations during and after calculation to
provide users with a hard upper bound on the error in their potential estimates. These
bounds are useful for quality control purposes to determine whether or not a particular NPB
approximation should be used for further calculations.

NPB methods suffer from a lack of scalability in terms of the number of points of interest.
The method requires O(M1.5) computations where M is the number of atoms even for a
single point of interest. The entire domain must be solved regardless of the number of
points of interest. In most cases, this means that more points are computed and stored than
requested. Because of the inherent storage requirements of the methods, this requirement
can preclude the calculation of electrostatic regions around very large molecules for even
small regions of interest such as binding sites, the molecular surface, or other significant
regions. It should also be noted that while the memory required in these implementations
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is O(M), it appears in practice to have a high (40 − 60) prefactor that can dramatically
influence the computability of large structures. Finally, for cubic volume decompositions,
the method does not scale well with the number of atoms in pseudo-linear molecules.

2.2 The Generailzed Born (GB) framework

The Generalized Born equation is a simple analytical formula used to compute the solvation
energy of a molecule. Energy is related to potential in that electrostatic energy is the product
of a potential and a charge at a given point in space, therefore the GB equation approximates
electrostatic potential in a sense.

The modern GB framework is actually quite a bit more complicated than that which will
be presented here. There are multiple ways to approximate the solvation energy that are
consistent with the GB methodology. Here, a very simple approach is presented with little
detail about the underlying complexities involved in implementing a GB solver. The fol-
lowing citations have much more information about existing modern GB models and their
derivations, implementations, and applications.35–41

In order to explain the GB framework, the electrostatic contribution to solvation free energy
must be defined. Equation (2.19) represents the standard representation of electrostatic
energy as a function of potential (φ(r)) and charge concentration (q(r)).

Gtot =

∫

φ(r)totq(r) (2.19)

Equation (2.20) represents the relationship between total energy Gtot, the energy due to
charge interactions in vacuum Gvac obtainable through the Coulomb equation ( q

d
), and the

energy due to polarization of mobile ions in the solvent dielectric environment Gpol.

Gtot = Gpol + Gvac (2.20)

Equation (2.19) translates to Equation (2.21) for a set of discrete point charges.

Gtot =
N

∑

i=1

qiφ
tot
i (2.21)

Upon inspection of Equation (2.21), it is clear that only potentials for the discrete set of
point charges (e.g. atomic centers) are required to calculate Gtot. The Generalized Born
approximation estimates the difference in energy of a molecule when it is brought from a
vacuum to the external dielectric environment ∆Gpol, from Equation (2.20) is Gtot − Gvac.
Since energy is the product of a potential with a charge in space, Equation (2.22) can be used
to model the change in energy as a difference in potentials at a position in space multiplied
by the charge at that point.
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∆Gpol =
1

2

N
∑

i=1

qi

(

φtot − φvac
)

(2.22)

The Generalized Born formulation approximates Equation (2.22) as Equation (2.23) where
the first term is the well-known Born formula and the second term is the pairwise Coulomb
potential contribution of other charges in the molecule, rij is the distance between atoms
i and j, ǫw is the ratio of the interior dielectric constant divided by the exterior dielectric
constant, and a is the radius of the sphere in which the charge is embedded (typically this
corresponds to the Born radius of the atom in question).

∆Gpol =

N
∑

i=1

q2
i

2ai

(

1

ǫw

− 1

)

+
1

2

N
∑

i=1

N
∑

j=1,j 6=i

qiqj

rij

(

1

ǫw

− 1

)

(2.23)

From Equation (2.22) we can see that the potential at atom centers can be derived from
Equation (2.23) by dividing by the charge of the given atom – resulting in Equation (2.24).

φpol
i =

∆Gpol

qi

=
qi

2ai

(

1

ǫw

− 1

)

+

N
∑

j=1,j 6=i

qj

rij

(

1

ǫw

− 1

)

(2.24)

2.2.1 GB Computational Requirements

GB quite trivially requires O(M) storage and O(Mk) computations to compute the elec-
trostatic potentials at k atom centers for a molecule consisting of M atoms. To compute
solvation energy, all atom centers must have their potential contributions calculated so it is
O(M2). The O(M) storage term is strictly to store the atom positions and charges. For any
given calculation, the sum can be computed and then written to disk directly because the
potential estimate at any given point is disjoint from the rest of the set.

2.2.2 GB Strengths and Weaknesses

The primary strength of GB lies in its scalability with molecular size. It does not need
to store the entire set of points of interest at one time because the solutions are disjoint.
Therefore each term can be computed and then stored to disk. Its computational complexity
is consistently O(N2) with regardless of molecular shape due to its analytical nature which
can be advantageous when considering a large set of arbitrarily shaped molecules where
storing a discretization can be impossible.

Electrostatic potential, by definition is a continuous function of space. It should be noted
that the Generalized Born equation is not suitable for calculation of electrostatic potential
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because it defines potential only at the centers of atoms. This potential is suitable for
calculation of free energy, but not for computation of electrostatic fields surrounding the
molecule. Therefore, it is rare to see the GB formula used outside of the context of free
energies – the purpose for which it was designed.
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Chapter 3

Motivation

Electrostatic forces are the strongest in nature. As such, electrostatic potentials are consid-
ered in every aspect of molecular modeling including but not limited to: quantum calcula-
tions,42,43 molecular dynamics simulations,44–48 and rational drug design.49,50 It is clear that
the GB methodology is not capable of determining electrostatic potential beyond the centers
of atoms. NPB methodologies accurately approximate electrostatic potential throughout
space, but at too great a cost to feasibly study many large system. So there is great call for
a computationally facile, consistently scalable approximation of electrostatic potential with
low memory requirements.

At the frontiers of molecular size, NPB calculations are often impossible or require the use of
sophisticated machinery such as a supercomputer to contain the discretization of the domain.
As such, an analytical approximation suitable for electrostatics calculations everywhere in
space would significantly benefit scientific exploration of the frontiers of molecular size by
escaping the large memory requirements inherent in discrete methods to approximate the
solution numerically.

In many cases, electrostatic potential is relevant only for significant regions in the domain
near a molecule such as the molecular surface, atom centers, or binding sites. For average
molecules, these types of regions tend to comprise a very small percentage of the molec-
ular volume, let alone the volume of the domain necessary to accurately approximate the
boundary conditions. In these cases, being able to directly calculate electrostatic potentials
in interesting sub-domains would provide a significant computational advantage.

Because of the high computational and storage costs of volumetric integral approaches to
numerical approximations of electrostatic potentials, some work has been done to approxi-
mate electrostatic potential using a boundary integral approach.51–53 The boundary integral
approach uses significantly fewer elements to approximate the solution near the molecular
surface fundamentally by constructing a discretization of the surface and solving a trans-
formed partial differential equation there. This approach suffers less from the scalability
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issues that volumetric discretization are known to have. However, for a small set of points
of interest, the method still requires the solution of the entire surface – meaning that it does
not scale down to one point of interest. The method also suffers from similar problems to the
GB model in that the problem is solved at the molecular surface and as points are sampled
farther and farther from the surface the accuracy deteriorates due to interpolation error.

If electrostatics calculations are ever to be brought to the desktop computer for any molecule
of current research interest, they must be made capable of scaling down in their computa-
tional complexity and storage costs with the number of points of interest. Analytical ap-
proximations are ideal candidates for this particular purpose because they tend to be defined
everywhere in space and solutions require little memory and computational time to approxi-
mate. Molecular imaging techniques are now beginning to determine the structures of more
and more large complexes at the atomic scale, and the tools that are traditionally used to
evaluate the properties of molecules must adapt to the change in scale in order to further
understand the properties of these complexes. As science moves from evaluating electrostatic
potential at the atomic scale for nanomolecules toward approximating electrostatic potential
for microcomplexes it is clear that even for supercomputers, a simple analytical approxima-
tion will be needed to analyze the electrostatic properties of these structures and determine
how they function.
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Chapter 4

Derivation of the analytical model

4.1 Problem set up

Recall that the electrostatic potential φ(~r) in and around a biomolecule can be computed as
the solution of the linearized Poisson-Boltzmann (PB) equation:

∇ǫ(~r)∇φ(~r) = −4πρ(r) + κ2ǫ(r)φ(r).

lim
~r→∞

φ(~r) = 0 (4.1)

Where ρ is the (fixed) charge distribution, the dielectric environment is given by the distance-
dependent function ǫ(r) and the effects of monovalent salt enter via the Debye-Hückel screen-
ing length of κ−1. One typically assumes a step-function transition between the solvent and
solute dielectric environments. In addition, mobile ions are assumed to exist only outside of
the so called ion exclusion radius. Under these assumptions, it is more convenient to solve
Equation (4.1) separately in the corresponding three regions defined in Figure 4.1. Appro-
priate continuity requirements are then applied at the manifolds of the regions to obtain
the unique, physically correct solution. There are two boundaries at finite distances inher-
ent to the system. The first boundary is the solvent excluded surface (molecular surface)
between the low dielectric region of the molecular interior and the high dielectric solvent.
This boundary represents the interface between the two dielectrics ǫin and ǫout. The second
boundary is set a distance b out from the molecular surface, where b is the ion exclusion or
Stern radius.

The Poisson-Boltzmann (PB) equation is solved separately in each region defined in Figure
4.1, and the additive constants are chosen to meet the proper continuity requirements at the
boundaries.

The fixed charges exist only in region I, and so the corresponding PB equation is:

∇2φi
I = − qi

ǫin

1

|~r− riêz|
(4.2)
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Figure 4.1: The three regions determining PB boundary conditions.

where the point charge density ρ = qiδ(r − riêz) is placed on the z-axis at position ri.

In region II:
∇2φi

II = 0 (4.3)

In region III:
∇2φi

III = κ2φi
III (4.4)

4.2 The no salt limit

4.2.1 Boundary Values and Geometry Definition

An analytical, closed-form solution of Equation (4.1) is desirable, but for an arbitrary charge
distribution inside the molecule it is only obtainable for simple, symmetric shapes. The
applicability of such solutions to realistic bio-molecular shapes is not guaranteed a-priori,
but the early success of this general philosophy is encouraging. As shown in Refs.,54,55

the approach – termed the ALPB in that work – is capable of providing more accurate
approximations for biomolecular solvation energy than the famous generalized Born (GB)
model. Here, the exact, Kirkwood-like56 infinite-series solution of the PB Equation (4.1) for
an arbitrary charge qi inside a spherical molecule is also used as a starting point. The κ = 0
case is presented first for clarity. Salt effects will be considered later.

In the κ = 0 case, there are only two distinct regions I and II, and so φII = φIII . These two
regions in the spherically symmetric case are: 0 ≤ r ≤ A and A ≤ r < ∞. placed on the
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Figure 4.2: Geometric parameters of interest on a sphere

z-axis. The solution of the Poisson equation for region I, Equation (4.2), is the sum of the
Coulomb’s potential due to the point charge qi and the reaction field part. Due to azimuthal
symmetry (charge qi is assumed to be placed on the z-axis) the solution depends only on the
angle θ through Legendre polynomials Pl(cos θ):

φi
I =

qi

ǫin

1

|~r − riêz|
+

∞
∑

l=0

Ālr
lPl(cos θ) (4.5)

Using the following definitions:

if ri > r, then ri = r> and r = r<

if ri < r, then ri = r< and r = r>, (4.6)

and the well-known identity,57

qi

ǫin

1

|~r − riêz|
=

qi

ǫin

∞
∑

l=0

r<
l

r>
l+1

Pl(cos θ) (4.7)

the equation for region I is:

φi
I =

qi

ǫin

∞
∑

l=0

r<
l

r>
l+1

Pl(cos θ) +

∞
∑

l=0

Ālr
lPl(cos θ) (4.8)

No fixed charges are present in region II, which gives:

φi
II =

∞
∑

l=0

B̄l

rl+1
Pl(cos θ) (4.9)
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where Ā and B̄ are constants determined by the continuity conditions at the boundary r = A:
φI(A) = φII(A) and ǫin

∂φI

∂r
|A= ǫout

∂φII

∂r
|A.

The first boundary condition gives:

qi

ǫin

∞
∑

l=0

ri
l

Al+1
Pl(cos θ) +

∞
∑

l=0

ĀlA
lPl(cos θ) =

∞
∑

l=0

B̄l

Al+1
Pl(cos θ) (4.10)

Every term above has a Legendre Polynomial dependence in the summation. Applying the
orthogonality of the Legendre Polynomial , the equality simplifies to a relation between Āl

and B̄l.
∫ 1

−1

Pl(x)Pĺ(x)dx =
2

2l + 1
δlĺ (4.11)

or, after integration

Āl =
1

A2l+1
(B̄l −

qi

ǫin

(ri)
l) (4.12)

The second boundary condition equates the normal components of the electric displacement
fields of the two regions.

− ǫout

∞
∑

l=0

(l + 1)
B̄l

Al+2
Pl(cos θ) = ǫin[

∞
∑

l=0

lĀlA
l−1Pl(cos θ)

− qi

ǫin

∞
∑

l=0

(l + 1)
ri

l

Al+2
Pl(cos θ)] (4.13)

The orthogonality relation between the Legendre Polynomials is used again to simplify Equa-
tion (4.13) thus providing the second relationship between Āl and B̄l.

B̄l =
ǫin

ǫout

[

qi

ǫin

ri
l − l

l + 1
A2l+1Āl

]

(4.14)

Equations (4.12 and 4.14) are solved simultaneously to give independent expressions for Āl

and B̄l:

Āl =
qi

A2l+1
ri

l

(

1

ǫout

− 1

ǫin

)

1

1 + l
l+1

β
(4.15)

B̄l = qiri
l

(

1

ǫout

− 1

ǫin

)

1

1 + l
l+1

β
+

qi

ǫin

ri
l (4.16)

4.2.2 Region I

Recall that the equation for region I is:

φi
I =

qi

ǫin

∞
∑

l=0

r<
l

r>
l+1

Pl(cos θ) +

∞
∑

l=0

Ālr
lPl(cos θ) (4.17)
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Let t = r<

r>
then the equation for region I becomes:

φi
I =

qi

r>ǫin

∞
∑

l=0

tlPl(cos θ) +
∞

∑

l=0

Ālr
lPl(cos θ) (4.18)

The following identity can now be used, and will be reused quite often in these derivations:

Identity

∞
∑

l=0

zlPl(cos θ) =
1√

1 + z2 − 2z cos θ
(4.19)

By applying Equation (4.19), Equation (4.18) becomes:

φi
I =

qi

r>ǫin

1√
1 + t2 − 2t cos θ

+
∞

∑

l=0

Ālr
lPl(cos θ) (4.20)

Figure 4.2 represents the geometry definition and defines cosθ =
r2
<+r2

>−d2

r<r>
. By replacing

cos θ with this identity and simplifying, the potential in region I, φI
i becomes:

φI
i =

qi

ǫind
+

∞
∑

l=0

[

qir
l
ir

l

A2l+1

(

1

ǫout

− 1

ǫin

)

1

1 + l
l+1

β

]

Pl cos θ (4.21)

Note that r> and r< have both fallen out of the equation. Factoring out constants and
simplifying yields:

φI
i =

qi

ǫind
+

(

1

ǫout

− 1

ǫin

)

qi

A

∞
∑

l=0

[

(rir

A2

)l 1

1 + l
l+1

β

]

Pl cos θ (4.22)

To simplify the equation, let s =
(

rir
A2

)

. Then

φI
i =

qi

ǫind
+

(

1

ǫout

− 1

ǫin

)

qi

A

∞
∑

l=0

[

sl 1

1 + l
l+1

β

]

Pl cos θ (4.23)

This is an exact expression for the spherical case, but still not a closed-form solution. The
key next step is to approximate l

l+1
≈ const = α for all l > 0 in the first of the above infinite

sums. Thus,

∞
∑

l=0

[

1

1 + l
l+1

β

]

zlPl (cos θ) ≈ 1 +
1

1 + αβ

∞
∑

l=1

zlPl(cos θ)

≈
[

1 − 1

1 + αβ

]

+

[

1

1 + αβ

] ∞
∑

l=0

zlPl(cos θ) (4.24)
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Where z (in this context) is s.

It was shown earlier that α = 32(3 ln 2−2)
3π2−28

− 1 ≈ 0.580127 results in a fairly accurate approx-
imation for this infinite sum.54,55 Applying Equations (4.24 and 4.19) to Equation (4.23),
one obtains:

φi
I =

qi

ǫind
+

qi

A

(

1

ǫout

− 1

ǫin

)

1

1 + αβ

[

1√
1 + s2 − 2s cos θ

+ αβ

]

(4.25)

Applying the identity for s, and simplifying yields Equation (4.26) for region I:

φi
I =

qi

ǫind
− qi

A

(

1

ǫin

− 1

ǫout

)

1

1 + αβ

[

A2

√

(A2 − r2
i ) (A2 − r2) + A2d2

+ αβ

]

(4.26)

4.2.3 Region II

The potential in region II, φII
i is:

φi
II =

qi

r

∞
∑

l=0

(ri

r

)l

[

1

ǫin

−
(

1

ǫin

− 1

ǫout

)

1

1 + l
l+1

β

]

Pl (cos θ) (4.27)

To simplify the notations, let t = ri

r
. Then

φi
II = −qi

r

(

1

ǫin

− 1

ǫout

) ∞
∑

l=0

[

1

1 + l
l+1

β

]

tlPl (cos θ) +
qi

r

1

ǫin

∞
∑

l=0

tlPl (cos θ) (4.28)

Applying Equations (4.24 and 4.19) to Equation (4.28): yields the following closed form

approximate expression for φII :

φi
II = −qi

r

(

1

ǫin

− 1

ǫout

)

1

1 + αβ

[

1√
1 + t2 − 2t cos θ

+ αβ

]

+
qi

r

1

ǫin

1√
1 + t2 − 2t cos θ

(4.29)

Figure 4.2 represents the geometry of the system and defines cos θ = ri
2+r2−d2

2rir
, with d being

the distance from the charge to test point. Therefore:

1√
1 + t2 − 2t cos θ

=
r

d
(4.30)

and:

t cos θ =
ri

2 + r2 − d2

2r2
(4.31)
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The substitutions reduce Equation (4.29) to

φi
II = −qi

r

(

1

ǫin

− 1

ǫout

)

1

1 + αβ

[r

d
+ αβ

]

+
qi

d

1

ǫin

(4.32)

Since β is dependent on both ǫin and ǫout, a two variable dependence is employed by letting
ǫin = βǫout. After simplification,

φi
II =

qi

ǫout

1

1 + αβ

[

1 + α

d
− α(1 − β)

r

]

(4.33)

The above formula approximates the electrostatic potential anywhere within or around the
spherical molecule. Its accuracy relative to the exact solution of the PB equation is discussed
in Chapter 5. To use the above formula for realistic non-spherical structures one needs a
meaningful definition of r, which is the distance to the sphere’s center in the spherical case.
For non-spherical molecules r = A + p is used, where A is the effective electrostatic size
(radius) of the molecule defined earlier,54,55 and p is the distance from the test point to the
molecular surface.

4.3 Introducing monovalent salt dependence

4.3.1 Boundary Values and Geometry Definitions

Equation (4.33) behaves as the sum of two point charge potentials proportional to 1
d

and 1
r

respectively. This realization guides the process of introducing an explicit salt dependence
into Equation (4.33). This will be done within the Debye-Hückel limit. As before, the
equations for the case of perfect spherical symmetry are derived, and then tested on realistic
structures.

4.3.2 Region III

A point charge potential in the presence of an evenly distributed ionic solution has the form
of a Yukawa potential: ∼ e−κr

r
, where κ−1 is the Debye screening length. Therefore, it is

natural to try the following ansatz:

φi
III = C̄

e−κr

r
+ D̄

e−κd

d
(4.34)

Where C̄ and D̄ are constants to be determined.

There are now three unknown constants whose values can be determined by matching the
boundary conditions and by considering the behavior of Equation (4.34) in the limiting
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cases where the exact solution of the corresponding linearized PB equation is known. A
combination of both methods is used. Namely, if the charge qi is located at the center of
the sphere, and thus the center of the spherical coordinate system, then the exact solution
of Equation (4.4) in region III must equal:

φi
III(d = r) =

qi

ǫout

1

1 + κ(A + b)

e−κ(r−A−b)

r
(4.35)

which gives us one equation of the three needed. Next, the continuity of the tangential
components of the electric field are used at the boundary: ∇φi

II |A+b = ∇φi
III |A+b which yields

two separate relations, one for each tangential coordinate variable. Due to the simplicity of
the θ-component, one uses:

∂φi
II

r2sin(θ)∂θ
|A+b =

∂φi
III

r2sin(θ)∂θ
|A+b (4.36)

The continuity of the potential itself gives φII |A+b = φIII |A+b. Using the three constraints
above yields the following independent expressions for the constants in Equations (4.41 and
4.34):

C̄ = − qi

ǫout

α(1 − β)

1 + αβ

eκŕ

1 + κŕ
(4.37)

D̄ =
qi

ǫout

1 + α

1 + αβ

eκd́

1 + κd́
(4.38)
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Figure 4.3: Geometric parameters of interest

Figure 4.3 represents the geometry of the system with salt and defines ŕ = A + b and
d́ =

√

ri
2 + (A + b)2 − 2ri(A + b)cos(θ). Using these representations, the the final analytical
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form for the potential in region III (solvent with mobile ions) is:

φi
III =

qi

ǫout

1

1 + αβ

[

1 + α

1 + κd́

e−κ(d−d́)

d
− α(1 − β)

1 + κŕ

e−κ(r−ŕ)

r

]

(4.39)

4.3.3 Region II

In region II, where no salt penetrates, the solution of the Poisson equation looks exactly
like Equation (4.33), except that a yet unknown constant, Ē, is now added to ensure the
continuity of the potential at the boundary between regions II and III.

Ē =
qi

ǫout

1

1 + αβ

[

1 + α

d́

(

1

1 + κd́
− 1

)

− α(1 − β)

ŕ

(

1

1 + κŕ
− 1

)]

(4.40)

φi
II =

qi

ǫout

1

1 + αβ

[1 + α

d
− α(1 − β)

r

]

+ Ē (4.41)

4.3.4 Region I

To ensure continuity at the boundary between regions I and II, Ē as is included in region
II is added to produce the form in Equation (4.42):

φi
I =

qi

ǫind
− qi

A

(

1

ǫin

− 1

ǫout

)

1

1 + αβ

[

A2

√

(A2 − r2
i ) (A2 − r2) + A2d2

+ αβ

]

+ Ē (4.42)

Equation (4.39), together with Equations (4.41 and 4.42) and the additive constant from
Equation (4.40) define the electrostatic potential at every point in space outside of the
molecule. There are four parameters with the unit of length, r, d, d′ and r′ that enter
the equation. The geometric interpretation of d′ and r′ is shown in Figure 4.3. Note that
Equation (4.39) is a sum of scaled Yukawa potentials and therefore is a solution of the PB
equation. Of course, it is only an approximate solution even for a spherical case. At first
glance, the existence of such a solution, not equal to the exact one, may appear to contradict
the uniqueness theorem for the PB equation. However, notice that the approximate solution
satisfies only some but not all of the boundary conditions. In fact, a detailed analysis (not
presented here) shows that the solution based on the simple ansatz Equations (4.34 and 4.41)
can not simultaneously satisfy all of the boundary conditions, which resolves the apparent
paradox. An extensive testing of the approximate solution on realistic structures is presented
in Chapter 5.
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4.4 ALPB Implementation (GEM) and Features

4.4.1 GEM Implementation

In addition to formulating the approximate analytical model for computing electrostatic
potential for macromolecules, we have constructed a sandbox for exploring electrostatic phe-
nomena at the molecular scale called GEM. It is structured to be highly available to develop-
ers and users alike. Functionality is accessible through linking to C libraries, command line
parameters, and through the visual interface. The implementation is decomposed into three
major libraries: file I/O, calculation, and visualization. The package is built and configured
under the GNU tools “autoconf” and “automake” to aid in cross platform development and
distribution.

The file I/O library contains algorithms to read: PQR files, MSMS surface files, AVS phi
maps from MEAD, and DelPhi phi maps. It also contains algorithms to write: xyzr files, tga
image files, AVS phi maps in MEAD format, and DelPhi phi maps. Correctly reading AVS
phi maps and DelPhi phi maps is not a trivial task in and of itself. Having the ability to
read and write these formats available in an open-source library will significantly ease further
development of open source algorithms intended to interact with or replace MEAD or DelPhi
in a given scenario.

The calculations library contains numerous algorithms to perform useful calculations such
as: approximating the analytical potential described in this paper, estimating the electro-
static radius of a molecule,54 extrapolating bond information from inter-atomic distances and
electrostatic radii, determining the color of atoms by their type, sorting spatial locations by
radix, and sampling a uniform cubic lattice. All of these methods are of fundamental impor-
tance to the computation and display of electrostatic potential or the display of molecular
structure in general.

The visualization library contains two major components: dialogs and drawing. The dialogs
component contains a set of novel dialogs developed to aid in the design of further user
interactions including an extensible modified open file dialog, a specialized status dialog that
makes use of Motif timer callbacks to provide pseudo-threads while monitoring the status of
long processes, and a “tellUser” dialog to provide a simple interface for a notification system.

These libraries have been leveraged to produce four example programs: gem – the elec-
trostatics calculation and viewing program, gridmath – a simple program to apply various
unary operators (*, +, -, /) to all members of two uniform grid files, printgrid – a simple
program to produce human-readable grid files from standard binary files, and diffgrids – a
program to compute the RMSD error and max error between two uniform grid files for the
purposes of testing the accuracy of various approximations against a baseline.
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Figure 4.4: A screen shot demonstrating some view features of GEM.

4.4.2 GEM Computational Requirements

In order to compute P points of interest about a molecule consisting of N atoms, GEM
requires O(N) memory. There is no need to continue to store points after they are calculated,
and so they can be output directly as the algorithm calculates the potential at the next
point. This attractive feature sets it apart from packages based on NPB methodology where
the entire domain must be solved in order to provide approximations of even 1 point of
interest. The freedom from this limitation is a crucial practical advantage when analyzing
the electrostatic properties of such molecules. As an example, the RAM required by GEM
to store the potential map of the surface of the TRSV virus consisting of 651, 544 surface
grid points is only 30 Mb. This is an insignificant overhead for even the modest desktop
computer. The corresponding requirements are orders of magnitude larger for the NPB
solutions. For example, in order to store a finite mesh (at a typical resolution of 0.25
ångströms per grid point) of floating point values for a molecule of the size of TRSV virus,
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about 12003 (1, 440, 000, 000) separate grid points would be needed, requiring a minimum
of nearly 13 GB of memory assuming 8 byte double representation of electrostatic potential
per mesh point.

Due to the additivity of the electrostatic potential, GEM must compute the contributions
from each charge in the molecule to each point of interest; without any further approxima-
tions or optimizations its time complexity is O(MP ) where M is the number of atoms in
the molecule and P is the number of points of interest. The algorithm scales well with the
number of points of interest or the number of charges in the molecule. If P ≃ M then GEM
requires between O(M2) and O(M4) computations to approximate the potential field in the
volume depending upon the shape of the molecule.

4.5 GEM Strengths and Weaknesses

GEM has similar strengths to the GB method with the added strength of being capable
of approximating electrostatic potential everywhere in space. Its low memory requirements
are particularly advantageous when computing electrostatic potential for macromolecules
where conventional computers are incapable of containing a suitable discretization for NPB
methods. Its computational scalability extends to smaller molecules belonging to large search
domains for high throughput computational screening.

The primary weakness of GEM is the unbounded error in its approximations. The vast
majority of approximations fall within thermal noise but that does not guarantee a suitably
accurate solution in every case. Ideally, this error will be bounded by further research or
a hybrid numerical/analytical solution will be developed to limit and determine the error
while retaining the computational facility of the analytical approach presented in this work.
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Chapter 5

Validation of the analytical approach

The analytical approximation is validated through three primary methods: testing against
the exact solution for a perfect sphere, visually examining results relative to numerical solu-
tions on a variety of molecular shapes, and finally analysis of individual vertex errors for a
set of 580 small biomolecules relative to available NPB approximations.

5.1 Testing against the exact solution on a sphere

The exact solution of the PB equation for spherical geometry is used, given by Equation
(4.28), to test the accuracy of the approximate solution directly. The existence of an exact
expression for φ also allows us to estimate the accuracy of the numerical PB procedures used
here as reference. A partial sum of the first N = 200 terms in the infinite series in Equation
(4.28) is taken to represent the exact solution; the partial sum converges to machine precision
when N is approximately 100 for the spherical geometry used.

In Figure 5.1, the exact error of Equation (4.33) is represented by the red line; the blue
line represents the exact error of DelPhi,2,32 a representative numerical solution to the PB
equation. The approximate analytical expression Equation (4.33) is quite accurate on a
sphere. In fact, it is more accurate than the NPB solution for most points on the surface of
the sphere.

The 0.25 Å resolution used for the spherical test case provides insight into the accuracy of
the φNPB being used as a reference. The NPB solutions based on 0.5 Å grids used here as
a reference for the realistic bio-molecular test are expected to be less accurate than 0.25 Å
solutions used in the spherical case because as the resolution of the discretization increases
the accuracy of numerical approximations increases. It is therefore probable that in some
cases, the disagreement between the analytical model and the NPB reference is due to
inaccuracy in the reference as opposed to the inherent inaccuracies of the proposed method.
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Figure 5.1: Percent error of NPB and GEM potential estimates on a sphere.

The use of 0.25 Å grid spacing would result in prohibitively large memory requirements for
a substantial subset of the 580 molecule test set.

5.2 Testing against NPB on realistic biomolecular shapes

Figure 5.2 contains images of the electrostatic potential computed at the surface of various
biomolecules for which the analytical solutions based on symmetric shapes are expected to
deviate most from the NPB reference described in Appendix D. Right column: analytical
potential. Left column: numerical reference. A continuous color scale is used to represent
the potential, from red (−1.8 kCal/mol/|e|) to white (0) to blue (+1.8 kCal/mol/|e|). The
structures used are: the Alzheimer’s disease amyloid A4 peptide (top), human apolioprotein
C-II (middle), the lysozyme (bottom).

No exact solutions of the PB equation are available for realistic biomolecular shapes; therefore
the accepted approximate numerical solutions are used here to test the analytical approx-
imations on a set of 580 representative biomolecules listed in Appendix A.58 The error is
estimated as (φGEM −φNPB) over a combined total of 9, 384, 884 points sampled as described
in Appendix F. For comparison, the “error” distribution (φNPB − φNPB) is also calculated
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Figure 5.2: Electrostatic potential
computed at the surface of various
biomolecules.

for two popular finite-difference PB solvers DelPhi2,32 (the baseline NPB approximation
used for estimating the error of the analytical approximation) and MEAD59 which may serve
as a practical scale to which the (φGEM − φNPB) deviations can be compared. To obtain
probability distributions, errors are categorized into 1000 equidistant ranges of width 0.005
kCal/mol/|e| ranging from −2.0 to 2.0 kCal/mol/|e| and the number of points in each classi-
fication are divided by the total number of sample points in the set. The standard deviations
of the distributions are 0.41 for (φGEM − φNPB) and 0.19 for (φNPB − φNPB).

Figure 5.2 demonstrates the strong overall agreement between φGEM and φNPB for the
biomolecular sample set. The blue curve represents the distribution of (φGEM −φNPB) while
the red curve represents the distribution of (φNPB − φNPB) which should ideally be 0 but
is not in practice. Both of these quantities are computed at every vertex point about the
triangulated solvent excluded surface of each of the 580 representative biomolecules used
in the test set. The vast majority (91.92%) of vertex errors fall within thermal noise (kT
per unit charge). Note that φNPB, φGEM , and φexact all asymptotically approach 0 as the
distance to the surface (and consequently distance to charge sources) approaches ∞, so the
above error is expected to decrease as one steps further away from the molecular surface.
In this sense, the absolute error shown likely corresponds to an upper bound on the error
everywhere in the solvent space.

It is possible in principle that the distribution of average errors per molecule would be funda-
mentally different from the distribution of errors in Figure 5.2 because this classification was
discarded during the consideration of absolute vertex error on a per vertex basis. Therefore,
all 8.08% of the errors outside of thermal noise might feasibly belong to a class of molecules
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whose characteristics defeat the analytical approximation. The distribution of the average
magnitude of vertex errors per molecule is determined as a means of capturing the relation-
ship between molecular characteristics (captured by the identities of molecules) and error.
The average absolute vertex error on a per molecule basis is computed as:

Errj =

nj
∑

i=0

|φ(i)
GEM − φ

(i)
NPB|

nj

(5.1)

where j is the structure index, nj is the number of vertex points for structure j, and i is
the vertex index. As seen in Figures 5.3 and 5.3, molecular identity plays little role in the
determination of vertex error as can be seen by the fact that almost all average magnitudes of
error fall within 0.41kCal/mol/|e|, the standard deviation of the overall vertex error curve.
Figure 5.3 also offers some insight into what kinds of vertex errors can be expected on average
for a random realistic biomolecule. Given that Figure 5.2 indicates that 91.92% of vertices
fall within thermal noise, it is reassuring to see that all average vertex errors for all molecules
also fall within thermal noise.

0 0.1 0.2 0.3 0.4 0.5
Average Vertex Error

0

100

200

300

400

N
um

be
r 

of
 M

ol
ec

ul
es

Figure 5.3: Average surface potential dif-
ferences between PHINPB and PHIGEM .

0 0.1 0.2 0.3 0.4 0.5
Average Vertex Error

0

100

200

300

400

N
um

be
r 

of
 M

ol
ec

ul
es

Figure 5.3: Average surface poten-
tial differences between PHI

(
NPB1) and

PHI
(
NPB2).

The reasonable performance of the analytical approach to compute the electrostatic poten-
tial around realistic biomolecules is not completely unexpected; after all, success of the use
of simple shapes in a related problem – deriving approximate expressions for biomolecular
solvation energy – has had a long history.55,56, 60 Figure 5.2 demonstrates the noteworthy
agreement between the analytical electrostatic potential introduced here and the NPB ref-
erence for particularly irregular molecular shapes. For some of the more spherical molecules
the analytical solutions might even be more accurate than the corresponding approximate
numerical solutions obtained with commonly used parameter settings. This is because for a
perfect sphere, the analytical approach is indeed more accurate than the NPB approach at
grid resolution of 0.25 Å. Therefore, some of the deviations between φGEM and φNPB seen
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in Figure 5.2 may be due to inaccuracies of φNPB itself. Finally, one should also consider
these errors within the already approximate implicit solvent PB framework being solved. Re-
cent studies show that the differences between explicit and implicit solvent representations
themselves are not negligible.61
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Chapter 6

Applications

6.1 Surface Potential of the TRSV Viral Capsid

The Tobacco Ringspot Virus (TRSV) belongs to the Comoviridae family of the Genus
Nepovirus. The TRSV satellite sequence was determined in 1969 and brought forth the
concept of a virus having its own parasite that is dependent on the host virus for encapsi-
dation.62 The TRSV virus is believed to represent a very simple precursor to the nepovirus,
picornavirus, and comovirus families because its capsid is made of a single protein subunit,
it has no lipid coat, and its polyproteins have no cleavage sites.63 Despite its considerable
evolutionary age, there are only 2 known satellite sequences.64 This is especially puzzling
considering the observed mutation rate of the satellite RNA.65 These observations suggest
the presence of a powerful and specific selection agent in the TRSV life cycle, likely the
capsid itself. Further experimental evidence suggests that the mechanism is structure-based:
circular satellite RNA with the same sequence as the native one is rejected by the capsid.66,67

The precise mechanism underlying the selectivity of the TRSV capsid for its RNA is still
unknown. Since electrostatics plays a major role in protein - nucleic acid interactions, taking
these effects into account is expected to be critical for solving the puzzle.

The capsid serves a dual purpose, one for the exterior and one for interior. The outside
interacts with the environment during the various stages of the virus’ life cycle. As the
virion moves from the vertical vector to the cytoplasm of a tobacco plant cell to the plant
sap, it experiences multiple pH values which uniformly changes the outside electrostatic
potential. The inside of the capsid has a repeated area of distinct, positive electrostatic
potential. These areas are located at the center of a 5 protomer subunit (pentamer) and
could serve as an RNA binding site. Details about where the capsid structure is obtained
can be found in Appendix A.

38



6.1.1 The Outer Surface

The entire TRSV capsid is protonated for a broad range of pH values as described in Ap-
pendix B. The pH for which the overall charge of the capsid is computed to be 0 (isoelectric
point) is 7.15. The resulting PQR structure files differ by the placement of Hydrogen atoms
(positive charges) at protonation sites throughout the surface of the molecule. The molecular
surface of each structure is triangulated by the program MSMS with a resolution of 2.5 Å per
vertex; then electrostatic potential is computed by the analytical approximation presented
in this work 3 Å outside the molecular surface to determine if and how pH affects the surface
potential of this massive structure.

Figure 6.1 is a pictographic representation of the outer surface of the TRSV viral capsid color-
coded according to the computed electrostatic potential on its surface. The computations
are performed at a constant salt concentration (0.15 M) and three different pH values shown
under each structure. A continuous color scale is used, from red (corresponding to -4.68
kcal/mol/|e|), to blue (+4.68 kcal/mol/|e|). The regions of zero potential are shown in
white. The arrow points to an outcropping that corresponds to the center of the pentamer
shown in Figure 6.2.

Figure 6.1: Electrostatic potential around the outer surface of the TRSV viral capsid.

Infection usually occurs through the vertical vector: Xiphinema americanum.68,69 The ne-
matodes acquire the virions during feeding on an infected plant. These virions become
caught in the stylet extension, anterior esophageal lumen, and esophageal bulb.70,71 From
these regions, the virions are deposited in a healthy plant cell during a later feeding.68 The
release of the virions from these regions in the nematode is proposed to initiate through
a pH change due to salivation by the nematode.71,72 The absence of strong electrostatic
repulsion in the capsid leading to its structural stability in the neutral pH range makes sense
biologically; the virion is known to use the sap of a healthy tobacco plant of pH 6.2 as a
means for circulating through the plant in attempt to find other mechanically damaged cells
to infect.73 The build up of a fairly uniform negative charge across the capsid at high pH,
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Figure 6.1 (right panel), diminishes its stability due to Coulomb repulsion. This is consistent
with the theorized swelling of the capsid at pH greater than 8.0.69 In living cells, swelling
might be the mechanism causing the virion to release its RNA in cell compartments that
have high pH.

6.1.2 The Inner Surface

Figure 6.2 is a representation of the inner surface of the pentamer subunit color-coded
according to the computed electrostatic potential. The computations are performed at three
different pH values shown under each structure with a constant salt concentration of 0.15
M. A continuous color scale is used from red (corresponding to -4.00 kcal/mol/|e|) to blue
(+4.00 kcal/mol/|e|). The regions of zero potential are shown in white. The proposed RNA
binding pocket is seen as a bright blue spot in the center of the structure which remains
distinct throughout the entire pH range. The primary source of this region of intense positive
potential is a “ring” of ten arginines. Each protomer of the pentamer provides two sequential
arginines (residues 453 and 454) which are in close proximity to each other in the pentamer
structure.

Figure 6.2: Electrostatic potential around the inner surface of the TRSV capsid.

The pocket resembles a narrowing dome: near the surface it is approximately 50 Å wide,
it narrows deeper in to a more cylindrical shape with a diameter of roughly 20 Å. The
entire site from top to bottom is roughly 40 Å deep. This pocket might represent the RNA
binding site and play a key role in the observed high selectivity of the TRSV capsid for
its RNA. The positively charged arginine ring attracts RNA; geometry determines which
RNAs are structurally compatible with it. Namely, there are 3 sequence-dissimilar RNA
particles involved in TRSV infection: RNA-1, RNA-2, and the 359 or 360 nt short satellite
sequence RNA-s. Mature TRSV capsids are known to contain almost exclusively either one
of these 3 RNA particles or nothing; small changes in the RNA sequence are known to
preclude the corresponding particle to be captured by the capsid.66,67 Moreover, it has been
shown experimentally that circular RNA with the sequence identical to RNA-s fails to be
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encapsidated.66,67 This peculiar phenomenon provides the key support for the hypothesis
that the determining factor for the strong selectivity for the RNA encapsidation is structural
in nature.

Figure 6.3: The predicted secondary structure of TRSV satellite RNA in two conformations.

The evidence comes from an analysis of structural models of the native and circular RNA-s.
While both RNA-1 RNA-2 are too large (7514 nt74 and 3929 nt75 respectively) for the avail-
able theoretical tools to make confident predictions of their 3D or even secondary structures,
the 359 nt long RNA-s sequence is short enough for its secondary structure to be computed
with confidence.76 To explain why the circular form of RNA-s may be structurally incompat-
ible with the RNA binding pocket described above, the differences between the structures of
RNA-s in its native (unligated) and circular forms produced by ligation of its 3’ and 5’ ends
are of particular interest. As seen in Figure 6.3, the 3’ and 5’ ends of RNA-s are adjacent,
which suggests that no re-arrangement of the secondary structure occurs upon ligation that
forms the circular RNA-s. Therefore, the differences between the native and circular RNA-s
may only come from their corresponding 3D structures. Indeed, the native RNA-s is likely
to bend around the single-stranded section (marked by blue in the bottom right of Figure 6.3
) opposite to the break between its 3’ and 5’ ends. A wedge-like local 3D structure can form
that can fit into the binding pocket in Figure 6.2; the ∼ 20 Å diameter of the narrow part
of the “dome” is just enough to accept the 1 or 2 unpaired bases on the 5’ end of RNA-s.
This is in contrast to the ligated RNA-s structure where this same section ( marked by red
in the bottom left of Figure 6.3 ) becomes double-stranded with much less flexibility – the
corresponding 3D structure is likely to remain “straight” around this section. Fitting it into
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the binding pocket will be much less favorable energetically than in the case of the native
RNA-s.

6.2 Using GEM to Improve the Performance of NPB

solvers

All finite element and finite difference methods for solving the Linear Poisson-Boltzmann
equation have one fundamental problem. The Dirichlet boundary condition φ(∞) = 0 is de-
fined at an infinite distance from the source charge, and the elements must eventually reach
the boundary. This means that, strictly speaking, the boundary of the finite field must reach
infinity to converge upon the exact solution. As a means of addressing this problem, NPB
solvers make use of some simple analytical solution such as q/d where q is the charge and
d is the distance from the point to the charge to approximate electrostatic potential at a
non-infinite distance from the molecular surface. Initialization of the boundaries by such an
approximation is a weakness of all NPB methods, and is simply a byproduct of the need
to define a finite domain. Coarser approximations of electrostatic potential require larger
distances from the molecular surface to the boundary of the discretization, and so they re-
quire more memory and computational time to approximate electrostatic potential for the
same molecule. Clearly, a highly accurate analytical approximation of electrostatic potential
could significantly decrease the ratio V/M of the volume of the approximation relative to
the volume of the molecule for which the approximation is computed without introducing
large errors or convergence issues due to inaccurate boundary values. The analytical approx-
imation presented in this work could feasibly be used by NPB solvers as an initialization
of boundary potentials or even to initialize the entire volume for use with iterative matrix
solutions to improve the rate of convergence.

Most large scale iterative methods make use of some intelligent choice for an initial guess
of the solution to improve convergence of the iterative matrix solution to the problem.
While it may make sense for generalized PDE and ODE solvers to use best average case
initializers, specialized applications like NPB solvers may benefit more from the use of a
specialized initializer using domain-specific knowledge to formulate an initial guess in these
specific cases. One ideal such specialized initial approximation might be a rapid analytical
approximation of electrostatic potential. Though an initializer can not improve the memory
required to contain the discretization, they may improve the computational cost to iteratively
solve these problems.

One application of the analytical approximation presented in this work may be as an initial
guess for iterative approximate solutions. GEM generates a reasonable approximation to
the PB problem, therefore, it should be an ideal initial guess to improve convergence for
an iterative method like SOR. Revisiting the SOR analysis from Chapter 2.1.4, the total
number of iterations (each consisting of O(N) operations) to reduce the error by a factor
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of p is 1
3
p
√

N where N is the cardinality of the unknown vector. Therefore, by reducing p
significantly, we might also greatly improve the time complexity of this computation.

6.2.1 Conceptual validation on a spherical geometry
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Figure 6.4: Relative rates of convergence for the spherical model.

MEAD is a popular NPB solver that employs the finite difference method. It is an ideal can-
didate for experimentation into boundary and mesh initializations for the following reasons:
it is open source, it employs Successive Overrelaxation to solve its matrix equation, and it
allows the input of an initial guess to the solution which is used as a means of approximating
the results of using an internal pre-conditioner based on the analytical model presented here.

The spherical model demonstrated in Figure 5.1 is used for which it has been shown that
the GEM model generates more accurate potentials than even a fully converged MEAD ap-
proximation. It is clear that the accuracy of the initial guess of an iterative method affects
the time required to converge (if the initial guess is the correct answer then it would require
only 0 iterations to discover and converge). However, it is not necessarily true that the GEM
solution will converge very rapidly because of the differences in molecular representations
used by the two methods enumerated in Appendix G.
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Initializing MEAD with GEM electrostatic potentials dramatically improves the performance
of the SOR component of the algorithm. Figure 6.4 demonstrates the differences in RMSD
convergence for GEM initialized electrostatic potentials versus MEAD running with no ex-
plicit initialization, achieved by using a Debye initialization at the boundary of the solution.
The black line represents the RMSD observed when MEAD is explicitly initialized with the
GEM solution. The green line is thermal noise / 103 converted to raw potential units used
by MEAD, which represents one example physically relevant convergence criterion. For this
test, a domain of 120 ångströms with elements equally spaced .25 ångströms apart was used
(241 x 241 x 241 total elements) to provide an accurate formulation of the problem.

One alternative way of viewing the improvement experienced by using GEM as an initializer
is to measure the ratio of work required to converge to within a given error bound. In this
case, rather than viewing the problem in terms of how much accuracy can be achieved given
a fixed number of iterations we view the problem as how many iterations are required to
achieve a given accuracy. Because computational cost is of such importance in so many
areas of biological research regarding electrostatic potential, viewing the problem in terms
of computational cost is appropriate. In this case, a performance efficiency ratio can be
used to view the performance speed improvement experienced by using GEM initializations
relative to using a default initialization. Figure 6.5 plots the performance improvements
experienced on the spherical test case with a grid resolution of .5 ångströms. The performance
improvement for a given RMSD convergence factor is measured by Equation (6.1).

perfRMSD =
NPB default

GEM initialized
(6.1)

Where NPB default is the number of iterations required to achieve the given RMSD by de-
fault and GEM initialized is the number of iterations required to achieve the given RMSD
by using GEM as an initial guess. Three candidate convergence values were selected based
on thermal noise (kT): kT

10
, kT

100
, and kT

1000
. These values represent viable, increasingly conser-

vative choices for error in the potential estimations relative to the uncertainty inherent in
sampling the physical state of the molecule to obtain the structure.

At less than kT
10

, the gem initialized solution provides infinite performance improvement (as
it requires 0 iterations to converge). However, as the required accuracy is increased, the
performance improvement decreases as one would expect due to the way iterates are formed.

6.2.2 Stepping toward reality: two intersecting spheres

There are multiple levels of complexity involved in stepping away from the simple spherical
model toward real biomolecules including the increased complexity in the charge distribution
and the increased complexity of the surface. Since NPB methods discretize both the surface
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Figure 6.5: Speed improvements observed in the spherical test case.

and the charge distribution in such a manner as to fundamentally modify the problem, it is
useful to view what effects (if any) this might have on using GEM as a preconditioner for NPB
methods. Under ideal conditions, of course, these effects could be negated by running GEM
on the discretized problem rather than the free space problem. Two intersecting spheres offer
the ability to view the effects of adding complexity to the surface without adding complexity
to the charge distribution. In this way, the effects of discretizing the surface and charge
distribution can be determined as the problem increases in complexity.

Figure 6.6 demonstrates the performance improvements experienced by using GEM as a
preconditioner for the intersecting sphere model at .5 ångström resolution. The performance
improvement ranges from 3 to 4.19 and is not a monotonic function. Since the charges and
placements are similar to the spherical test case, the charge distribution has not increased
in complexity relative to the simple spherical case, however the surface representation has
increased in complexity. One immediate observation of the problem is that performance
improvement is no longer highest where required accuracy is lowest. It is clear, at this point,
that surface complexity plays a significant role in determining how well GEM initializations
perform as it has changed very little and the resulting curve has changed dramatically.

6.2.3 Conceptual validation on a real bio-molecule test set

The performance improvement experienced in Figure 6.4 may be unique to the spherical
geometry upon which GEM was derived. Therefore, similar analysis is performed on 19
molecules from the biological test set as an additional step toward validating the applicability
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Figure 6.6: Speed improvements observed in the more complicated ideal test case.

of GEM as a pre-conditioner. The structures used for this validation are listed in Appendix
A. The average performance improvement for a given RMSD convergence factor is measured
by Equation (6.1).

average perfRMSD =
1

19

19
∑

i=1

perf
(i)
RMSD (6.2)

Where perf
(i)
RMSD is defined in Equation (6.1).

Figure 6.7 demonstrates the minimum, maximum, and average performance improvements
experienced by using GEM as a preconditioner for the 19 biomolecule test set. Of primary
interest is the average efficiency ratio; however, the minimum and maximum efficiency ratios
experienced are somewhat enlightening in that they provide measures of how much the
performance improvement changes by molecule.

The average efficiency ratio improves with desired accuracy up to 10−3 kT where it begins to
break down. At this point, there are any number of possible explanations for this effect in-
cluding effects of Chebyshev acceleration or long-term effects of representational differences.

At this point, it is clear that as the complexity of the problem increases, the predictability
of error decreases. This is likely related to the discretization process, though these effects
are unknown at this point. It is interesting to see that the best biomolecular performance
improvement is higher than the best spherical test improvement or dual sphere performance
improvement. This is somewhat reassuring while simultaneously puzzling.

This analysis provides a computational bound requirement for GEM to be used as an initial
guess to volumetric finite difference methods. In order for this pre-conditioner to break even
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Figure 6.7: Performance improvements experienced in the biomolecular test.

on this particular set in terms of computational work, it must be capable of computing elec-
trostatic potential throughout the volume in between 1

3
and 2

3
of the time required for the

finite difference approximation to converge using SOR under current conditions (differing
applications with differing representations of the surface and charge distribution). A for-
mulation of the algorithm specifically for grid outputs may be capable of performing within
this computational bound, but has not yet been explored. It must also be considered that
this requirement may change dramatically if the GEM initializer is used on the exact same
charge distribution and surface representation as the numerical algorithm.
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Chapter 7

Discussion

There are fundamental differences in approach and result between the analytical methodology
presented in this work and standard numerical approaches. These differences must be taken
into account when selecting an approximation for a specific application. There are many uses
for electrostatic potential and many sources of molecular structures. Many things should
be considered when determining how electrostatic potential should be treated in a given
case: the resolution of the structure being studied, the source of the partial charges in the
structure, time constraints on the computation, and finally the domain of interest.

The resolution of molecular structures determined through molecular imaging techniques
varies with the crystallization process and equipment used from less than 1 ångström to
more than two ångströms. Near the molecular surface, the possible rearrangement of atoms
can significantly alter the electrostatic potential and contribute a great deal to error at close
proximities.

Partial charges are needed for any approximation of electrostatic potential, and are typ-
ically determined through use of databases containing expected partial charges for most
residues. There could be significant variation in these partial charges due to thermal noise
and throughout the proper functioning of these molecules and so again some error does exist
in the partial charge assignments though it does not vary in a known manner and typically
is approximated as thermal noise or 1 kT .

Some computations, while accurate, are too computationally intense to be feasible in a given
pipeline. These specialized pipelines – such as docking determinations, folding problems,
molecular dynamics, and high throughput drug screening – involve large highly dynamic
problems that require approximations of electrostatic potential to be computed rapidly so as
to enable these algorithms to run at a sufficient speed to be computationally and economically
viable.

For reasonably small domains of interest relative to the size of the molecule in question, an
analytical approximation can be computed much faster and with less memory overhead than
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numerical approximations due to the independence of each sample point from the others.
For these cases such as the interior and exterior surface area of the tobacco ringspot viral
capsid, the domains of interest are significantly smaller than the volume of the structure
and can be computed significantly faster and with fewer resources than standard volumetric
finite difference methods.
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Chapter 8

Summary

Various force-field methods of approximating the linearized Poisson-Boltzmann equation in
the continuum dielectric model have been reviewed and an additional model has been derived
for use in high-throughput situations to replace the GB model and broaden the spectrum
of options available for electrostatic estimations for macromolecules. Some experimentation
has been done with regard to using the new analytical method in conjunction with standard
numerical methods as a means of investigating its applicability as a boundary initializer for
volumetric finite difference approximations of electrostatic potential. The method has been
tested and applied to one macromolecular example (a viral capsid) where it can be computed
overnight on a desktop computer. This application of the analytical method derived in this
work demonstrates the power of the method as well as its applicability to large molecules or
complexes where numerical solutions would be prohibitively costly in terms of memory and
computational time.

50



Appendix A

Structures

The Tobacco Ringspot Virus (TRSV) capsid is constructed from 60 identical protomers.
The PDB file 1A6C contains the x-ray crystallographic coordinates of the single protomer at
3.50Å resolution; the transformation matrix given in the PDB file header is used to properly
rotate and align each unit to form the complete capsid icosahedral structure.

The structures used to test the analytical electrostatic potential against the numerical PB
reference are selected as follows. Start from the 600 representative biological molecules
used for the testing purposes in earlier works.55,58 Then numerical PB solvers DelPhi2,32

and MEAD59 with the default settings are used to generate the electrostatic potential on a
255 × 255 × 255 cubic grid with 0.5 Å grid spacing. Finally, 20 of the 600 structures are
excluded from the test set because either DelPhi or MEAD fail to output the potential map.
For most of the failed cases the attempted calculation fails due to the requested memory
exceeding the 1GB RAM capability of the test PC. Table A.1 contains the PDB codes of all
the remaining molecules included in the test set for validating the analytical method. Codes
listed in red were also used to evaluate the average speed increase experienced when using
GEM as a pre-conditioner for NPB methods. However, in addition to the red codes listed
in the table, BDNA, beta.bondi, lyso, and Mb.Hhelix were used to supplement the set with
some small, non-spherical molecules.
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Table A.1: The PDB codes of the 580 molecule test-set used to validate the GEM method.

Test PDB Codes
2trx 7a3h 5gcn 4ull 4eug 3znf 3vub 3sil 3rpb 3phy 3msp 3mef
3lri 3crd 3chb 2vik 2u2f 2tps 2tmp 2sob 2rel 2ptl 2pth 2prf
2pcf 2orc 2olb 2nlr 2ncm 2mrb 2lis 2lfb 2jhb 2ifo 2ife 2if1
2hir 2hgf 2gva 2gcc 2gat 2fmr 2ezm 2ezk 2ezh 2end 2ctc 2bid
2alc 2a3d 1zto 1zta 1yui 1yub 1yua 1xpa 1xnb 1xna 1xbl 1whi
1wfb 1wdb 1vre 1vpu 1vgh 1uxc 1uwo 1utr 1urk 1ums 1u2f 1tsg
1trl 1tpm 1tof 1tns 1tle 1tfb 1tbn 1tbd 1tba 1tba 1swu 1svq
1svf 1suh 1ssn 1sro 1shc 1sgg 1scy 1sap 1rxr 1rrb 1rpr 1rot
1rip 1rie 1rge 1res 1rcs 1rch 1rax 1r2a 1qyp 1qu5 1qtw 1qtt
1qts 1qto 1qtn 1qtn 1qsv 1qry 1qqv 1qqi 1qqf 1qp6 1qop 1qnr
1qnd 1qn0 1qm9 1qlo 1ql0 1qks 1qkl 1qkf 1qk9 1qk7 1qk6 1qjo
1qhk 1qh4 1qgp 1qft 1qfr 1qfq 1qfd 1qdp 1qck 1qa5 1psm 1prr
1pou 1pon 1pnj 1pnb 1pnb 1pms 1pmc 1pls 1pir 1pih 1pfs 1pfl
1peh 1pcp 1pcn 1pce 1paa 1pa2 1om2 1olg 1oaa 1ntc 1ns1 1noe
1nls 1nkl 1ngr 1ngl 1neq 1nct 1ncs 1myf 1mut 1mun 1mro 1mro
1mnt 1mla 1mkn 1mkc 1mgs 1mfn 1lyp 1lre 1lea 1ksr 1krs 1koe
1kla 1kjs 1khm 1kdx 1jwe 1jun 1joy 1jli 1jhb 1jba 1ixh 1itf
1isu 1irs 1irp 1irl 1irf 1ioj 1inz 1imt 1il6 1ija 1iie 1ihv
1ica 1ibx 1iba 1i6w 1i5j 1i5h 1i5g 1i27 1i25 1i1s 1i0h 1hzy
1hzn 1hyw 1hyk 1hyi 1hx2 1hsq 1hs7 1hre 1hpw 1hp8 1hnr 1hks
1hhn 1hev 1hdo 1hcd 1hbw 1ha9 1h8c 1gyf 1gw3 1gp8 1gnc 1gio
1ghh 1ghc 1gh9 1ggw 1ge9 1gd0 1gab 1g9l 1g90 1g84 1g7e 1g7d
1g6s 1g6e 1g66 1g61 1g5v 1g4f 1g2h 1g26 1g25 1g1e 1fyj 1fyc
1fyb 1fwq 1fwp 1fwo 1fw9 1fvl 1fu9 1fsh 1fre 1fr3 1fqq 1fp0
1fo5 1fmh 1fm0 1fjn 1fjk 1fje 1fj2 1fgp 1fdm 1fd8 1fcy 1fct
1fbr 1faf 1fa4 1fa3 1f8p 1f81 1f5y 1f53 1f41 1f3r 1f3c 1f24
1f0z 1ezt 1ezo 1ezg 1eza 1exk 1exg 1exe 1eww 1ews 1ewi 1ev0
1euw 1esx 1es9 1erx 1erd 1erc 1eqo 1eq3 1ep0 1eo1 1eo0 1enw
1elk 1ekt 1ej5 1eiw 1eit 1eik 1ehx 1ehs 1ehj 1eh2 1egx 1ef4
1edx 1edv 1eds 1eci 1e8r 1e8l 1e88 1e7l 1e6u 1e6q 1e68 1e5u
1e5g 1e53 1e4u 1e3y 1e3t 1e2b 1e29 1e19 1e17 1e0z 1e0l 1e0h
1e0e 1e0a 1e01 1dz7 1dxz 1dx8 1dx7 1dx0 1dwm 1dvj 1dvh 1dv0
1duj 1du6 1du2 1dtv 1ds9 1ds1 1dro 1dqz 1dqc 1dqb 1dpu 1dp7
1dp3 1dny 1dmc 1dlx 1dl6 1dl0 1dj0 1dip 1dgq 1dgn 1dfs 1dfe
1def 1dec 1de3 1de1 1ddf 1dci 1dbf 1dbd 1daq 1d8v 1d8j 1d8b
1d7q 1d6g 1d1h 1d1d 1cz4 1cyu 1cye 1cx1 1cwx 1cww 1cw5 1cur
1cou 1coo 1cok 1co4 1cn2 1cmr 1cmo 1clh 1cl4 1ckv 1ck2 1chl
1chc 1cg7 1cfe 1cf4 1ce4 1cdq 1cdb 1ccm 1cch 1c9q 1c89 1c7u
1c7k 1c75 1c5e 1c55 1c4e 1c3y 1c2n 1c20 1c1k 1c1d 1c05 1c01
1bzk 1bzg 1byy 1byq 1bym 1byi 1by1 1bxo 1bxd 1bwx 1bw6 1bw3
1bvh 1bve 1buy 1buq 1bt7 1bsh 1brz 1brv 1br0 1bqv 1bpv 1bpr
1boe 1bo9 1bo0 1bnr 1bno 1bmx 1bmw 1bmr 1bm4 1blr 1blj 1bla
1bl1 1bku 1bkr 1bjx 1bj8 1bip 1bi6 1bhu 1bh4 1bgk 1bfm 1bds
1bdc 1bct 1bci 1bc6 1bby 1bbn 1bbi 1bbg 1bb8 1baq 1bal 1bak
1ba9 1b9u 1b91 1b8w 1b8o 1b6f 1b64 1b4r 1b22 1b1a 1b16 1az6
1ayj 1axj 1axh 1awj 1aw6 1aw0 1auz 1auu 1arb 1aq5 1aps 1apc
1ap8 1ap7 1ap0 1aoy 1ao8 1aml 1akp 1ak6 1ajy 1ajw 1aje 1aj3
1aiw 1ahl 1ah9 1ah2 1agg 1afo 1afh 1af8 1adr 1adn 1aci 1aca
1ac0 1a93 1a66 1a23
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Appendix B

Protonating the TRSV Capsid

The standard continuum electrostatics methodology77,78 is used to protonate the viral capsid.
The full structure contains 4617 titratable groups – too many for the standard continuum
solvent based approach. Therefore the number of titratable groups is reduced by generating
a subsection of the capsid surface such that one protomer unit is completely surrounded by
other protomers. This results in a nine protomer (enneamer) subsection of the surface with
one unit in the center and eight units surrounding it. The enneamer contains 981 titratable
sites, which is still too many for the standard continuum solvent based approach. Only the
groups in the central unit are considered to be titratable in the calculations, the others are
set in their standard protonation states. The total number of groups treated as titratable is
therefore reduced to 125.

The AMBER79 set of partial atomic charges is used here for the protein charges. For the
protonated states of Asp and Glu, in which the correct location of the proton is not known
a priori a “smeared charge” representation is used, in which the neutralizing positive charge
is symmetrically distributed: 0.45 on each carbonyl oxygen atom and 0.1 on the carbon
atom. The web server H++80 is used to perform the calculations with the following settings:
0.15M monovalent salt concentration, internal dielectric 6, and external dielectric 80. The
computed pKas of the central unit are used to set its protonation state at each pH . The
full capsid is then constructed from this protonated unit as described in Appendix A. The
biologically relevant pH interval from 4 to 9 is divided into 100 equidistant points: for each
pH value the full capsid is constructed in the corresponding protonation state.
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Appendix C

Generating the Secondary Structure
of TRSV Satellite RNA

The program MFOLD81,82 is used with the default setting to generate the secondary structure
of TRSV satellite RNA. Its sequence length is 359 nt which is within the confidence range
of the MFOLD methodology. The lowest free energy conformation is chosen, with ∆G =
−141.28 kcal/mol.

The sequence of the TRSV satellite RNA:83

1: accggatgtgctttccggtctgatgagtccgtgaggacgaaacaggactg

51: tcaggtggccgaaagccaccacgtaaactagtgaaccgtgctgcgtagcg

101: taggggtctgctacctcgttggaggtggagattgtagccttcgtgtgggc

151: gcggcggtgtagctagtcaaggcgtaccaggtaatataccacaacgtgtg

201: tttctctggttgacttctctgtttgttgtgtcattggttcccggatctcg

251: cattagcggcgacggggtattctcattcgacatggaagtttgagagaccg

301: cgcctctacactatgcgcggccggggcgaatccaaattgttctagcccga

351: taccctgtc
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Appendix D

Generation of reference NPB
electrostatic potential

The reference electrostatic potential around each of the test structures is computed using
DelPhi2,32 and MEAD59 with a 255 × 255 × 255 cubic box. The default MEAD and DelPhi

convergence criteria are used in all cases.

For the “perfect sphere” test case, the external medium is assumed to be pure water with
a dielectric constant of 80 and no mobile ions (κ = 0). The internal medium is assumed to
have a dielectric constant of 1.

Biologically realistic conditions have been used for the 580 realistic biomolecular structures.
The solvent is assumed to be a dielectric constant of 80, a salt content of 0.145M, and an
ion exclusion radius of 2.0 Å. The internal medium is assumed to have dielectric constant of
4.
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Appendix E

Generation of molecular surfaces

For each of the 580 bio-molecules in the test set described in Appendix A, the molecular
surface is obtained through the program MSMS84 using a probe radius of 2.0 and a triangle
density of 3.0 triangles per Å. The molecular surface sets the boundary between the interior
and exterior dielectric environments. The vertices that make up the MSMS molecular surface
are then used as a basis for the sample points used to test the analytical formula against the
NPB reference because electrostatic potential is largest near the surfaces of molecules (and
so error is likely to be similarly larger).

56



Appendix F

Sampling points

The electrostatic potential estimations provided by numerical solvers right at the molecular
surface may be sensitive to the details of the surface definition. To avoid the related artifact,
sample points 1.5 Å away from the molecular surface (described in Appendix E) are chosen.
That is sample points are obtained by projecting each MSMS surface vertex outwards, 1.5
Å along its surface normal.

For each sample point, two potential values are obtained: φGEM (the analytical approxima-
tion) and φNPB (the numerical approximation). The φGEM is calculated via Equations (4.41
and 4.39). The φNPB is taken to be φNPB of the nearest finite-difference grid point.

The probe radius used in MSMS must satisfy probe > p+R/2 where p is the projection length,
R is the grid resolution. This ensures that, inside regions of negative curvature, the sample
points do not get projected back into the solute. The minimal such probe radius given grid
grid resolution of 0.5 Å and projection length of 1.5 Å would be 1.75 Å; however, 2.0 Å is
used as a means of partially addressing differences in the surface representation used by the
reference NPB solvers and MSMS.

For hybridization experiments, a grid of φ values identical in format and orientation to the
MEAD method are generated. This involves using a uniform spacing throughout the volume of
the molecule and its surrounding solvent. A grid dimension of 40 Å and element spacing of
.5 Å is used. This results in an 81x81x81 cubic volume of uniformly spaced approximations
with 1 point in the exact center of the field.
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Appendix G

Representational Differences Between
GEM and MEAD

Both MEAD and GEM take as input a PQR file, which generally contains the physical loca-
tions, charges, and radii of all atoms making up a molecule. There are two fundamental
differences in representation that can be a source of error in calculations using hybrid meth-
ods. First, the charge distributions are not treated in the exact same way. Second, the
molecular surfaces are not treated in the exact same way.

The charge distribution, realistically, is continuous across the molecule and does not exist as
a set of point charges located at individual locations in space. As part of the finite difference
methodology ρ values are desired at every point in space. It is also desirable that ρ be as
smooth as possible within the confines of its defined space. As a means of coping with this
MEAD spreads the charge of a given atom across all grid points within the volume of a given
atom. The resulting transformed set of point charges is smooth, but fundamentally different
from the distribution provided by the PQR input file. GEM treats the charge distribution
as a set of point charges defined exactly as they are given in the input file. These differences
are particularly important near singularities (locations of point charges). Within the interior
of the molecule, it is given that ~r will be within the radius of one or more atoms. Within
GEM, φ approaches a singular value in a uniform manner relative to the centers of the input
atoms. Within MEAD, φ approaches smaller singularities because |~r| is bounded, and these
singularities are more prevalent due to the smearing of the charges.

The solvent excluded surface of a molecule can be defined in a number of ways, and var-
ious treatments have been discussed for this problem. There are three dominant ways to
define molecular surface right now, the union of the Vanderwall’s radii of all atoms, the Con-
nolly surface,85 and the Gaussian surface.86 Connolly surfaces are derived by simulating the
“rolling” of a spherical probe about the surface of the molecule to determine which crevices
are inaccessible to water. The Gaussian surface is defined as the sum of a set of Gaussian
functions defining the density of the atoms, and a cut-off is used to determine the location
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of the manifold. GEM makes use of the Connolly surface as provided by the popular pro-
gram MSMS, and uses the definition provided directly. It is unknown how the reference NPB
methods generate their molecular surfaces, but it is known that Finite difference methods
operate at a fixed resolution in a cubic lattice. Points that are located within the molecule
are flagged as interior and points that are located outside the molecule are flagged as ex-
terior. The exact surface is less important in finite difference methods than the flagging of
interior and exterior points, and determining if a point is on the surface is done by checking
to see if the points on either side of it have a different classification regarding its location
(interior or exterior). The surface is important in GEM, in that it is used to determine the
depth of an atom in the molecule, it plays a role in determining mobile salt effects, and it
determines where the sample point lies (region I, II, or III). Therefore, surface differences
between GEM and MEAD can have a significant effect on calculations throughout space, but
are most powerful near the surface itself where misclassification of a sample point would
result in significantly different potential approximations.
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