

A scheduling framework for dynamically
resizable parallel applications

Gautam Swaminathan

Thesis submitted to the faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
in

Computer Science and Applications

Dr. Calvin J. Ribbens
Dr. Dennis G. Kafura

Dr. Srinidhi Varadarajan

July 18, 2004
Blacksburg, Virginia

Keywords: Dynamic resizing, parallel applications, MPI-2,
scheduling framework

Copyright 2004, Gautam Swaminathan

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

A scheduling framework for dynamically
resizable parallel applications

by
Gautam Swaminathan

Committee Chairman: Dr. Calvin J. Ribbens
Computer Science and Applications

(ABSTRACT)

Applications in science and engineering require large parallel systems in order to solve

computational problems within a reasonable timeframe. These applications can benefit

from dynamic resizing during the course of their execution. Dynamic resizing enables

fine-grained control over resource allocation to jobs and results in better system

throughput and job turn around time. We have implemented a framework that enabled

dynamic resizing of MPI applications. Our framework uses the recently released MPI-2

standard that enables dynamic resizing. The work described in this thesis is part of a

larger effort to design and implement a system for supporting and leveraging dynamically

resizable parallel applications. We provide a scheduling framework, an API for dynamic

resizing and libraries to efficiently redistribute data to new processor topologies.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 iii

Acknowledgements

I would like to thank the people that helped me through this work in many ways. Without
them this research would not have been possible.

First of all, I would like to acknowledge my advisor, Dr. Ribbens, for his support,
guidance, and knowledge. His experience in the field was the guiding light behind
identifying and formalizing this thesis work out of the vast array of possibilities in this
field. His encouragement during difficult phases of the project is greatly appreciated.

I would like to thank Malarvizhi Chinnusamy, my research associate, without whose

support and contribution this project would not have been possible. I appreciate her

support and dedication, and am truly grateful to her.

Sandeep Prabhakar, Prachi Bora, Satish Tadepalli, and Jeevak Kasarkod; students who
had worked with Dr. Ribbens before, who were very easy to approach and gave useful
advise and guidance.

Sumithra Bhakthavatsalam, for being the wonderful person that she is.

And last but by no means the least, my parents, who have made great sacrifices
throughout their life so that I could have the opportunity to succeed.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 iv

TABLE OF CONTENTS

1. INTRODUCTION 1

2. LITERATURE REVIEW 4

2.1 Communication Software 4
2.1.1 Parallel Virtual Machine (PVM) 4
2.1.2 Message Passing Interface (MPI) 5

2.2 Mathematical Libraries 6
2.2.1 Linear Algebra Package (LAPACK) 6
2.2.2 Scalable LAPACK (SCALAPACK) 6

2.3 Dynamic Resizing Frameworks 7
2.3.1 Piranha 8
2.3.2 Adaptive Multiblock PARTI (AMP) 9
2.3.3 Adaptive MPI (AMPI) 9
2.3.4 Dynamic Resource Management System (DRMS) 10

3. DESIGN 13

3.1 Motivation and Approach 13

3.2 System Architecture 14

3.3 Resize Library and API 16
3.3.1 Contacting scheduler at a remap point 16
3.3.2 Expansion 17
3.3.3 Shrinking 17

3.4 Scheduler Components 17
3.4.1 Job Startup 17
3.4.2 Job Monitor 18
3.4.3 Performance Data Gatherer 18
3.4.4 Remap Scheduler 18

4. EXPERIMENTAL RESULTS 22

4.1 Experimental Setup 22

4.2 Adaptive Sweet Spot detection 22
4.2.1 Matrix Multiplication 23
4.2.2 LU Factorization 24
4.2.3 Improvement in iteration time 25
4.2.4 Redistribution overhead 26

4.3 Processor allocation decisions for job mixes 27
4.3.1 Job Mix 1 29
 29
4.3.2 Job Mix 2 30

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 v

4.3.3 System throughput and job turnaround time 31

5. CONCLUSIONS AND FUTURE WORK 33

5.1 Summary 33

5.2 Future Work 33

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 vi

LIST OF FIGURES

Figure 1, section 2.4.1: Tuple Spaces 8
Figure 2, section 2.4.4: DRMS Architecture 11

Figure 3, section 3.2: Architecture diagram 14

Figure 4, section 4.2.1: Sweet spots for matrix multiply on Ethernet 23

Figure 5, section 4.2.2: Sweet spots for LU Factorization on Ethernet 24

Figure 6, section 4.2.2: Sweet spots for LU Factorization on Myrinet 24

Figure 7, section 4.2.3: Matrix Multiplication, Redistribution overhead 26

 for N=9600

Figure 8, section 4.2.3: LU factorization, Redistribution overhead 26

 for N=9600

Figure 9, section 4.3.1: Job Mix 1 29

Figure 10, section 4.3.2: Job Mix 2 30

LIST OF TABLES

Table 1, section 4.2.3: Matrix Multiply sample application 25

for N=9600 on Ethernet

Table 2, section 4.2.3: LU Factorization sample application 25

for N=9600 on Ethernet

Table 3, section 4.3.3: Static processor allocation – job mix 1 31

Table 4, section 4.3.3: Static processor allocation – job mix 2 32

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 1

Chapter 1

Introduction

Applications in science and engineering require large parallel systems in order to solve

computational problems within a reasonable timeframe. These large parallel systems are

common at universities and research institutions and are frequently shared by multiple

users. The economic viability and scalability of interconnecting workstations by a high

speed network has led to the emergence of clusters of workstations. We expect the use of

these clusters to continue to grow in order to support the computational needs of the

scientific and engineering communities. However, these systems are still expensive, such

that a single user who requires running his engineering simulation on 500 nodes for a

period of 10 days, cannot afford such a system. Thus, these systems are generally shared

among multiple users, and efficient resource management becomes a key issue.

The problem of efficient resource management in such a system becomes even more

difficult when the job arrival rates and workload on the system are varying and

unpredictable. Conventional schedulers are static in nature, i.e, once a job is allocated a

set of resources, that job continues to use those resources till the end of execution. The

system does not have the ability to grant more resources to running jobs when there are

idle processors available. When a high priority job arrives in the system, this generally

leads to the suspension of lower priority running jobs.

A dynamic resource manager that has the ability to modify resources allocated to jobs

during run time would result in more efficient resource management. It has been shown

in the literature that dynamic resource management results in better job and system

performance [2, 3, 4, 5, 6, 7, 8, 9, 10]. Dynamic resource management enables more fine-

grained control over resource usage of jobs, which conventional schedulers do not

provide. In a system that employs dynamic resource management, resources allocated to

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 2

a job can change due to internal changes in the job’s resource requirements or external

changes in the systems overall resource availability. Dynamic resource management

extends flexibility by enabling applications to expand to a greater set of resources to

utilize unused processors. Running applications can also shrink to a smaller subset of

resources in order to accommodate higher priority jobs. The system can change the

resources allocated to a job in order to meet a QoS deadline. Such a system, which

enables resizing of applications, can benefit both the administrators and the users. By

efficiently utilizing the resources, jobs can be completed at a faster rate thus increasing

system throughput. At the same time, by enabling applications to utilize resources beyond

their initial allocation, job turnaround time can be improved. The focus of this research is

on reconfiguring parallel applications to use a different number of processes, i.e., on

“dynamic resizing” of applications.

Additional infrastructure is required in order to enable resizing. Firstly, a programming

model that allows applications to utilize the ability to resize is required. This

programming model needs to be simple enough to implement such that existing code can

be ported to the new system. Secondly, run time mechanisms to enable resizing are

required. This includes the underlying system to provide the facilities required to allow

applications to grow and shrink to a varying number of processors and enable the

redistribution of the application’s global state to this new set of processors. Thirdly, a

scheduling framework that exploits the ability to resize to increase system throughput and

reduce job turn around time is essential. Such a scheduling framework should support

intelligent decisions in making processor allocation and reallocation in order to utilize the

system effectively by growing jobs to utilize idle processors, shrinking jobs to enable

higher priority jobs to be scheduled, changing resource allocations to meet QoS

deadlines, etc.

The work described in this thesis is part of a larger effort to design and implement a

system for supporting and leveraging dynamically resizable parallel applications. The

overall architecture of this system and our programming model is described in Chapter 3.

Algorithms and a library for process and data re-mapping are described in detail in [1].

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 3

The focus in this thesis is on the third aspect mentioned above, namely a scheduling

framework. The goal is to take advantage of dynamic resizing to improve both system

throughput and job turnaround time. Our approach is to allow the application and the

scheduler to work together to make resizing decisions. The application supplies good

choices for number of processors and processor topologies; the scheduler keeps track of

performance data of this application and other applications running on the system. We

have extended an existing parallel scheduler [11] to interact with the application to gather

performance data, use this data to make decisions about processor allocation, and adjust

processor allocations to maximize system utilization.

The remainder of this thesis is organized as follows. Chapter 2 describes background

information and a literature review of related work in this field. Chapter 3 describes the

architecture of the scheduling framework in detail. Chapter 4 describes experiments that

we conducted to evaluate our system. We conclude in Chapter 5 with future work that

can be done to improve our system.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 4

Chapter 2

Literature Review

2.1 Communication Software

A cluster is a collection of machines with their private memory and processor connected

by an interconnection network. Nodes communicate by passing messages across this

interconnection network. The complexity of message passing is abstracted into a

message passing software layer to enable programmers of parallel applications to

conveniently employ the underlying system. PVM [12] and MPI [13] are two popular

message passing libraries that provide a software layer to enable message passing.

2.1.1 Parallel Virtual Machine (PVM)

Historically, PVM was the first message passing library designed to work on a network

of workstations (NOW). However, the popularity of PVM among developers of parallel

applications has reduced over the years with the advent of MPI. Although PVM is

functionally equivalent to MPI, there are a few philosophical issues that have made MPI

more popular.

Control of PVM has always been primarily with the authors. A standards committee, on

the other hand, governs MPI, and implementers of MPI are required to strictly follow the

MPI standards guidelines. This has resulted in MPI being more portable to various

hardware platforms. Moreover, MPI provides a better interface to parallel application

developers by employing constructs such as communicators which PVM does not

provide. Communicators are a convenient way of partitioning processors involved in a

computation into subgroups and to reference these subgroups in order to perform a

specific task. However, the PVM legacy continues to exist and PVM implementations are

still used around the world.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 5

2.1.2 Message Passing Interface (MPI)

MPI is a message passing standard that is designed by a broad committee of vendors,

implementers and users. Many free and vendor supplied implementations of the MPI

standard are available today. The most popular free implementations of MPI are MPICH

from the Argonne National Laboratory and LAM MPI from Indiana University.

Recently, the MPI-2 standard [13] has been released, which among other features,

includes support for dynamic process management. This functionality has been

incorporated in the latest release of LAM MPI [33]. MPICH [34], however, has not yet

implemented this feature of the MPI-2 standard.

The dynamic process creation and management functionality was added to the MPI-2

standard upon the request from the user community. This feature was desired because of

the desire to exploit the dynamic process model discussed in Chapter 1, and was given

impetus by the PVM research effort [12] that had demonstrated the benefits of dynamic

resource management.

The MPI-2 standard enables process spawning through the API function call

MPI_COMM_SPAWN. The MPI-2 standard, however, does not place restrictions or

provide guidelines for how the actual spawning takes place, due to the fact that MPI

needs to be portable across many different systems. Thus tasks such as process startup,

reserving and scheduling resources, and returning information about available resources,

are left to third party vendors to build on top of MPI.

In this thesis, we have built a scheduling framework on top of the MPI implementation

provided by LAM in order to provide the resource management functionalities required

to enable the effective use of the dynamic process model of the MPI-2 standard.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 6

2.2 Mathematical Libraries

A large majority of scientific and engineering applications that run on clusters involve

number crunching numerical methods. Numerical libraries have been written that provide

a unified API to application programmers and can be optimized for the specific hardware

on which these applications are run. Basic Linear Algebra Subprograms (BLAS) are the

building blocks of numerical software [14]. Level 1 BLAS provide vector-vector

operations, Level 2 BLAS provide matrix-vector operations and Level 3 BLAS provide

matrix-matrix operations. Various vendor supplied BLAS exist today that are tuned to

run optimally on many hardware configurations. Numerical libraries such as LAPACK

[15] and SCALAPACK [16] employ the BLAS to provide methods for commonly used

numerical algorithms.

2.2.1 Linear Algebra Package (LAPACK)

LAPACK was designed to run efficiently on modern high-performance processors by

taking into consideration the multi-layered memory hierarchies of the machines. Earlier

numerical packages such as EISPACK and LINPACK disregarded the memory-hierarchy

and thus were prone to inefficiencies by spending too much time in the transfer of data

rather than in doing useful computation. LAPACK uses the BLAS to take advantage of

optimizations for the underlying hardware. Further, it predominantly uses Level 3 BLAS,

i.e., blocked matrix-matrix operations in the inner most loops of the functions to most

effectively utilize the memory hierarchy.

2.2.2 Scalable LAPACK (SCALAPACK)

In order to run LAPACK effectively on a distributed memory parallel clusters, a layer

was introduced above LAPACK, that employed explicit message passing to incorporate

off processor memory into the memory hierarchy. SCALAPACK has been written in

Single-Program-Multiple-Data style (SPMD), and is amenable to be used in parallel

SPMD programs.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 7

The test applications in this thesis employ SCALAPACK functions to perform matrix-

matrix multiplication and LU factorization: two functions that are commonly used and

are ideal model applications for a large subset of the scientific code.

2.3 Dynamic Resizing Frameworks

Several mechanisms have been employed to enable dynamic resource management. What

follows is a general overview of the work done in this field. The relevant work is dealt

with in more detail in Sections 2.4.1, 2.4.2, 2.4.3 and 2.4.4.

In the Master/Worker model [17,18], a global entity distributes the tasks and the data

associated with these tasks to worker programs that return the result of their computation

to be collected by the global entity. Thread migration is another concept that is used to

enable dynamic resource management by enabling threads to migrate from heavily

loaded machines to lightly loaded machines [19, 20, 21, 22, 23]. The fork/join model is

similar to thread migration and the master/worker model and is used extensively on

shared memory multiprocessors [9, 24, 25, 26, 27, 28]. In this model, a few kernel level

threads are scheduled for execution on the underlying processors. These kernel threads

act as virtual processors for user-level threads that are assigned to them from a shared

task queue.

High Performance Fortran [29] is an extension to Fortran that allows data redistribution

and virtual processor grid annotation in conventional Fortran code, thus potentially

enabling such programs to run on varying processor mappings in a system that supports

HPF. HPF provides no constructs for specifying the number of processors that the

application can resize to, thus leaving it to the underlying system to provide mechanisms

to determine processor allocations. Adaptive Multiblock PARTI [30] is one such library

that leverages HPF for adaptive resizing.

The Dynamic Resource Management System (DRMS) [2] enables resizing by extending

the SPMD model. In the Single Program Multiple Data (SPMD) model, a single program

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 8

executes on multiple machines, and parallelism is achieved by restricting program flow

based on processor id’s and communicating data and messages between processors by

means of an underlying message library. DRMS achieves resizing by linking a library

that exposes its API to the SPMD program. The SPMD program uses this API to

communicate with the DRMS system at strategic points in the program where resizing is

possible. These strategic points are known as schedulable and observable points (SOPs).

The SPMD program continues to run at its allocated resource level till it encounters its

next SOP. It is at this SOP that decisions on resizing are made based on the internal

change in requirements of the application or an external change in resource availability.

Section 2.4.4 explains the DRMS architecture in more detail.

2.3.1 Piranha

Piranha is a system that is build upon the Linda [31] worker model. The tuple space in

Linda performs the role of the global state pool. This global state pool enables producers

and consumers of data to interact in an uncoupled fashion via the tuple space, thus

enabling anonymity.

Figure 1: Tuple Spaces

In the above figure, a data producer stores the data on which computation has to be

performed in the global tuple space. As processors become available, worker processes

on those processors read the data from the global tuple space, perform the computation,

and store the result back in the global space.

1. Data producer

Tuple Space

2,3. Worker

Data
Data

Result

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 9

This model is highly effective for resizable applications as it allows free processors to use

the tuple space as the single point of contact for more work. Piranha supports resizable

applications by harnessing idle cycles in a workstation environment. Workstations join

the computations when they become idle, and withdraw when their owners need them.

While Piranha is effective for many applications such as DNA sequencing, it is not very

effective for data parallel programs such as LU factorization. As stated in section 2.2.2,

our primary focus is the resizing of such data centric applications as they account for a

vast subset of current high performance scientific code.

2.3.2 Adaptive Multiblock PARTI (AMP)

The Adaptive Multiblock PARTI (AMP) system enables resizing by spawning a job to

the maximum number of processors it can run on. It then enables applications to run on a

subset of these machines by redistributing the data to an active partition, and requiring all

processes outside of this partition to run as skeleton processes. Resizing is achieved by

changing the size of the active partition and redistributing data to this new partition.

 AMP puts a hard bound on the maximum amount of parallelism that can be employed by

an application. Moreover, AMP’s skeletons must be time shared with tasks of other

applications on the same machine, which is not always supported on clusters that restrict

machines to single jobs.

2.3.3 Adaptive MPI (AMPI)

Adaptive MPI is an implementation and extension of MPI that supports processor

virtualization. Processor virtualization is achieved by running parallel applications as user

level threads and migrating these user level threads from processor to processor.

Processor virtualization is enabled by Charm++ [19], which is the underlying framework

that supports multithreading and automated load balancing. In order to use AMPI, the

user breaks down a parallel application into a number of fine-grained chunks. The

number of chunks is independent of the number of available processors and is usually

much larger. When the user program is run under the AMPI framework, each of these

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 10

chunks are treated as a virtual MPI process (VP) and are implemented as user level

threads. AMP and Charm++ support the migration of these user level threads from

processor to processor.

The load balancing system of Charm++ automatically instruments the application to

gather performance statistics of the VP’s. Periodically, or on demand, the system remaps

the chunks to processors in order to achieve better load balancing and to reduce the

communication overhead. User level thread migration is also used to expand or shrink the

number of processors allocated to a job.

Due to the adoption of user level threads, AMPI is very effective for applications that

have fine grained parallelism. However, data centric scientific applications employ a far

coarser granularity of parallelism, which is not amenable to be split up into a large

number of user level threads.

2.3.4 Dynamic Resource Management System (DRMS)

As mentioned earlier, DRMS enables resizing by extending the single-program-multiple-

data (SPMD) model. Schedulable and observable points (SOPs) are placed at points in

the application code where the applications resource requirements change when it moves

from one stage of the computation to another, or when the application can benefit from a

resizing operation.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 11

Figure 2: DRMS Architecture

When an application reaches an SOP, it contacts the Task coordinator (TC). It provides

the TC a list of possible sizes that the application is willing to grow to. An application

developer can provide this list through annotations in the source code. These annotations

are converted to DRMS API calls by a precompiler. Every application running under

DRMS has a TC associated with it. The applications TC in turn contacts the Resource

Coordinator (RC). The RC, in coordination with the Job Scheduler and Analyzer (JSA)

decides on a resizing decision and informs the application of the decision. The

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 12

application is then terminated and restarted on the new set of processors and its previous

state is restored. The application’s global state is then redistributed to the new set of

processors after which computation can resume.

The current implementation of DRMS is application and user centric. The scheduler

makes scheduling decisions based on the applications requirements and processor

availability. The scheduler does not make decisions based on the performance of the

application. There is a performance data gatherer (PDG), but it does not play a role in the

scheduling decision made by the JSA. In our approach the scheduler and the application

work together to make resizing decisions. The application provides good choices for the

number of processors and processor topologies, and the scheduler takes into account the

performance characteristics of the application and other applications in the system while

making scheduling decisions.

Under DRMS, remapping requires killing and restarting a job on the new set of

processors. This involves a significant overhead in comparison to our system where

resizing is achieved without the need to kill and restart the application.

Moreover, DRMS is designed to work on the IBM RS6000 SP. It not been ported to Unix

based clusters which are popularly employed today for high performance computing, and

does not take advantage of the new MPI-2 dynamic process management functionality.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 13

Chapter 3

Design

3.1 Motivation and Approach

Current scientific codes that run on parallel machines use the MPI message passing layer

for communication. The MPI-1 standard assumes a static processor model, i.e. an

application cannot dynamically change the number of processors it is running on during

the course of its execution. Thus, these applications do not take advantage of a dynamic

processor model. The release of the new MPI-2 standard enables the dynamic processor

model. The work done in this thesis is part of a wider effort to leverage the ability to

dynamically allocate resources to applications during their execution. One of the

interesting benefits that our framework provides is the ability to automatically find ‘sweet

spots’ for parallel applications, i.e., to find the number of processors that a particular code

and problem instance runs well on.

In order to provide dynamic resizing of applications, work was done in three broad areas.

Firstly, a scheduling framework was created. This scheduling framework gathers

application performance data and enables the making of scheduling decisions based on

this performance data, the current resources allocated to the jobs in the system, and jobs

waiting to be scheduled. The work done in this thesis concentrates on this aspect of

dynamic resizing.

Secondly, in collaboration with Chinnusamy [1], a programming model for resizable

applications was created. This includes the API that applications use to communicate

with the scheduler to make resizing decisions and to gather performance data.

Thirdly, mechanisms for mapping processor topologies and redistributing data from the

old processor grid to the new processor grid were implemented [1]. In order to enable

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 14

ease of portability of existing applications to our framework a library that performs these

operations efficiently is included in the framework. This library was implemented on the

top of SCALAPACK [16]. BLACS [32], the communication layer of SCALAPACK was

modified to support dynamic process management. However, the algorithms are not

specific to SCALAPACK and can be easily implemented on the top of other frameworks.

3.2 System Architecture

...

Figure 3: Architecture diagram

The above figure shows the general architecture of our framework. A command line

interface is used to schedules an application. The user provides the initial number of

processors that the application must start on. Once processors become available for the

DQ Server

Startup

Job

Monitor

Remap

Scheduler

Perf Data

Gatherer

3. Resize Request/
 Perf Data

User Resize
Application Library

LAM - MPI

DQ client on n0

n0 n1 n2 n3

n4

2. Job Startup

5. Job Done

6. Job Done

1. Job Startup

4. Resize Response

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 15

application to be started at this initial size, the job startup thread of the scheduler

schedules this application on the assigned processors.

When the job is started the Job Monitor is notified. The application also notifies the Job

Monitor when the application is terminated, so that the scheduler can reclaim all

resources allocated to this application. Notifications to kill the job are sent through the

command line, and the Job Monitor is responsible for killing the application on all nodes

and reclaiming the processors.

At the end of every computational loop, the application contacts the scheduler. The

application provides performance data to the scheduler. Currently the metric used to

measure the performance of the application is the time taken to compute per iteration.

The Performance Data Gather (PDG), which stores performance information for all

applications currently running in the system, gathers the performance data provided by

the application. This data is used to make application-resizing decisions.

When the application contacts the scheduler, the Remap Scheduler (RS) makes the

decision of whether to allow the application to grow to a greater number of processors,

shrink the processors allocated to a job and reclaim the processors to schedule a different

application, or permit the application to continue at its current processor allocation. A

decision to shrink can be made because the application has grown to a size that has not

provided a performance benefit, and hence the RS asks the application to shrink back to

its previous size. An application can also be asked to shrink if there are applications

waiting in the wait queue to be scheduled. The RS determines the running applications

that it needs to shrink such that the overall performance hit to the system is minimized.

The heuristic used by the RS to make shrink decisions is described in Section 3.4.4. The

RS can also ask the application to expand to a greater number of processors if there are

idle processors in the system. The heuristic used by the RS to make expand decisions is

described in Section 3.4.4. If the RS is not able to provide more processors for the

application to expand, and determines that the application does not need to shrink, it asks

the application to continue to run at its current processor allocation.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 16

The resize library, which is linked to the application, is used to perform data

redistribution and construction of new processor topologies when the RS asks the

application to shrink or expand. After the resize library has performed the resizing of the

application, the application can perform its computation on the new set of processors.

This process continues for the lifetime of the application

3.3 Resize Library and API

The following pseudocode gives a high level view of a typical scientific application.

1. Do in a Loop
a. Compute

2. End loop

In our framework we have introduced API calls that communicate with the scheduler and

perform expansion and shrinking of the processor set. The following pseudocode gives a

high level view of an application that supports resizing under our framework.

1. Do in a Loop

a. Compute
b. Contact scheduler at remap point.

i. if (response is no change)
1. continue

ii. if(response is expand)
1. start up processes on the new processors.
2. Redistribute data to the new processor set.

iii. if (response is shrink)
1. Redistribute the data to the new set of processors.
2. Terminate processes on the relinquished processors.
3. Signal the scheduler on completion of the redistribution, so

that the scheduler can free the resources.
2. End loop

3.3.1 Contacting scheduler at a remap point

At the end of a computational loop the application reaches its remap point. At this remap

point it contacts the scheduler with performance data for the previous computational

loop. This performance data includes the time spent computing and the time spent to

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 17

remap data if a remap was performed in the previous computational loop. The scheduler

makes a decision on whether to allow the application to expand, to ask the application to

shrink or to continue at its current processor allocation. The application then uses the

underlying remap library to perform expansion or shrinking if required.

3.3.2 Expansion

If the scheduler asks the application to expand, it provides the application with the list of

processors that it can use to expand to. The underlying remap library [1] then spawns the

applications processes on these new processors and remaps the applications global data to

the new processor set.

3.3.3 Shrinking

If the scheduler asks the application to shrink, the application first uses the underlying

remap library [1] to redistribute the applications global data to the smaller subset of

processors. It then terminates the processes on the processors that it will relinquish and

responds to the scheduler asynchronously with the list of processors that have been

relinquished.

3.4 Scheduler Components

Our scheduling framework was implemented by extending and modifying the DQ

scheduler designed originally by Dr. Srinidhi Varadarajan and implemented by Satish

Tadapalli [11].

3.4.1 Job Startup

When an application is scheduled by the user via a command line interface it enters the

wait queue of the scheduler. When processors become available to start this application at

the initial size requested by the user, the Job Startup thread of the scheduler initiates the

applications startup on the set of processors assigned to it. The Job Startup thread sends

the job start information to the DQ client on the first node (node 0) of the processors that

have been assigned to the job. The DQ client then starts the application on all processors

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 18

and is responsible for sending job start, job end signals to the scheduler. The DQ client is

also responsible for killing the application if required.

3.4.2 Job Monitor

The Job Monitor thread of the scheduler interacts with the DQ client on node 0 during the

lifetime of the application. If an application fails due to internal error the DQ client sends

a signal to the job monitor to this effect so that the job can be killed and all resources

allocated to the application freed. The DQ client also sends periodic heart beat messages

to the Job Monitor thread [11]. If the application fails on one of the processors due to

hardware error, then the Job Monitor is able to detect this situation due to missing heart

beats and hence is able to kill the application on all processors and free the resources

allocated to it.

3.4.3 Performance Data Gatherer

When an application contacts the scheduler at a remap point, it provides application

performance data for the just completed computational loop. This data is stored by the

PDG to be used by the RS to make future remap decisions.

For every application the PDG stores a sorted list of the various processor sizes the

application has run at and the performance of the application at each of these sizes. The

PDG also maintains an active stack of the processor sizes that the application can shrink

to and the performance penalty associated with shrinking to a smaller size.

3.4.4 Remap Scheduler

The following pseudocode gives a high level view of the remap scheduler.

1. determine available idle nodes in the system.
2. determine the number of nodes required by the next application in the wait queue.
3. If (wait_num_nodes > available nodes)

a. Should this application shrink?
i. If Yes ask application to shrink

ii. Else ask application to continue at its current size.
4. determine if previous expansion was beneficial.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 19

a. If No, ask application to shrink to previous size. We have determined
sweet spot for this application.

5. Determine if this applications can expand to occupy idle nodes in the system.
a. If Yes, expand.
b. Else continue at the current size.

When there are applications waiting to be scheduled in the wait queue, the currently

running applications are not allowed to expand to occupy idle processors in the system.

The RS determines if the current application is one of the applications that needs to

shrink in order to make processors available for the applications in the wait queue. This

decision is made such that the overall performance penalty to all applications as a result

of shrinking is minimized.

However, if the wait queue is empty and there are idle processors in the system, then the

RS determines if the current application is one of the applications that can expand to

occupy the idle processors. This decision is made such that the overall performance

benefit among all the running applications is maximized. An application that has just

returned from an expansion and has not benefited from that expansion, i.e. the

performance of the application degraded as a result of the expansion is required to shrink

to its previous size. This application will not be considered for expansion purposes

beyond the point where it did not show a performance gain. This point is known as the

sweet spot for that application.

Sweet spot determination

The PDG maintains a sorted list of the various processor sizes that each application has

run on and the performance data associated with these sizes. As long as there is

performance improvement the scheduler allows an application to grow to a larger

processor allocation assuming that idle processors are available in the system. However,

if the application reaches its sweet spot, a processor size where the application no longer

shows performance gain, the RS will not allow the application to grow beyond this point.

The application may shrink to accommodate other applications and then later grow back

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 20

to its sweet spot when idle processors become available, but it will not be considered for

expansion beyond its sweet spot.

Shrink decisions – calculating performance penalty

An application can shrink under two conditions:

1. The application has determined its sweet spot.

2. The application has to forfeit some of its processors for other applications

in the wait queue.

When an application contacts the scheduler at a remap point, the RS determines if this

application needs to shrink in order to accommodate the waiting applications. This

decision is based on relative performance hits of all applications running in the system.

The application uses the processor size stack information gathered by the PDG to

determine the processors each application can relinquish and the performance

degradation of the applications for each of the sizes it can shrink to. The RS constructs a

shrink points (SP) list. Each entry in the shrink point list consists of the Job ID of the

application, the number of processors that are made available if the application shrinks to

a smaller size and the performance hit it will suffer as a result of this shrinking. The RS

sorts this list in ascending order of performance hit, and picks SP’s that will satisfy the

processor requirements of the next job in the wait queue.

If the RS is able to find SP’s such that applications can shrink to accommodate the

waiting application, and the application that has currently contacted the scheduler is one

of these applications, then the application is asked to shrink to its SP. As a result of this

shrinking more idle nodes become available in the system.

Active applications that are required to shrink will shrink to their corresponding SP’s as

and when they contact the scheduler until enough processors are available to schedule the

job in the wait queue.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 21

Expand decisions – calculating performance gain

The expansion decision is made in a similar fashion to the shrink decision. For all

applications that are running at a smaller size than there is performance data available for,

a Expand Point (EP) list is created. The EP list consists of the Job Id of the application,

the number of processors it will expand by and the performance gain it will achieve as a

result of this expansion. This list is sorted and if the current application is one of the

applications that can expand to an EP to occupy idle processors it is asked to expand.

In the case where idle processors are available and no running applications have

performance data beyond their currently running size, then the applications are allowed to

expand to their next greater size. It is in this phase that new performance data is gathered

by the PDG.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 22

Chapter 4

Experimental Results

4.1 Experimental Setup

For our experiments, we used a homogeneous cluster comprising of 36, 1.4MHz

AMD Opteron processors. Experiments were conducted by using both the Gigabit

Ethernet interconnection network and the Myrinet interconnection network.

4.2 Adaptive Sweet Spot detection

The sweet spot detection experiments were performed for SPMD programs whose

primary compute intensive tasks were Matrix Multiplication and LU Factorization.

Experiments were conducted for various data sizes so as to provide relevant results

within the processor limitations of our test cluster.

The input parameters for a given run of an application include the data size (N) and initial

processor allocation. After every computational loop the application contacts the

scheduler with performance information of the just completed computation. The

scheduler gathers this information and allows the application to grow its number of

processors as long as there is improvement in the iteration time. Once the application

grows to a size that does not provide an improvement in computational time, the

application is shrunk back to the previous size where it continues to execute for the rest

of the computation. This point is known as the sweet spot. Note that for a large enough

value of N the application can grow to occupy all processors and continue to show

improvement in iteration time.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 23

4.2.1 Matrix Multiplication

Sw eet Spot For Matrix Multiply on Ethernet

0

100

200

300

400

500

600

700

2 4 6 9 1 1 2 2 3

o f Pr o cesso rs

N=2400 N=4800 N=9600 N=12000

Figure 4: Sweet spot for matrix multiply on Ethernet

The above graph shows the performance data gathered by the scheduler during the matrix

multiplication application execution for different sizes of N. For very small values of N,

the framework is able to quickly determine the sweet spot within a few iterations. For

example, for N=2400, the application grows to 4 processors but it is then realized that the

expansion was not useful as it did not result in an improvement in the iteration time. The

application then shrinks back to 2 processors and continues at this size for the rest of the

computation.

For larger values of N, the framework iterates for a longer period of time before

determining the sweet spot. This ramp up time is acceptable under the condition that the

application will be iterating many hundreds or even thousands of times during the course

of its execution.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 24

4.2.2 LU Factorization

Figure 5: LU Factorization on Ethernet

0

50

100

150

200

250

300

350

2 4 6 9 1 1

proc

T
im

e
 (

se
c) n=1200

n=2400

n=4800

n=9600

Figure 6: LU Factorization on Myrinet

0

5

10

15

20

25

30

35

40

45

50

2 4 6 9 1 1 2 2 3 3

proc

T
im

e
 (

se
c) N=2400

N=4800

N=6000

N=7200

The above two graphs show the performance of the LU factorization model application

for different sizes of N as they grow towards their sweet spots on two different

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 25

interconnection networks – Gigabit Ethernet and Myrinet. As shown by the above graphs,

the performance characteristics are similar to the matrix-multiplication model application

and follow the same trend regardless of a change in the underlying interconnection

network. A scheduling framework to improve throughput and reduce job turnaround time

as shown in Section 4.3 can leverage this nature of data centric applications.

4.2.3 Improvement in iteration time

The following tables illustrate the rate of improvement in iteration time of our sample

matrix-multiply and LU factorization applications as they grow towards their sweet spot.

Current processor allocation New processor allocation %improvement in iteration

time

2 4 46.9
4 6 20.9
6 9 25.8
9 12 9.4

12 16 19.7
16 20 4.1
20 25 0

Table 1: Matrix multiplication sample application for N=9600 on Ethernet

Current processor allocation New processor allocation %improvement in iteration

time

2 4 51.9
4 6 11.3
6 9 28.5
9 12 12.6

12 16 12.0
16 20 -20.5

Table 2: LU Factorization sample application for N=9600 on Ethernet

As the application grows towards its sweet spot, the improvement in iteration time is not

as much as compared to the initial stages of expansion. This property is leveraged, as

shown in Section 4.3. Applications can be shrunk to a size that is less than the sweet spot

without suffering a large performance penalty. The processors thus freed can be used to

schedule other applications in the wait queue.

The sample applications used in our experiments perform computations with two-

dimensional matrices of N rows and N columns. The above tables show that the

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 26

improvement in performance is more pronounced when the application grows from a

non-square processor grid to a square processor grid.

4.2.4 Redistribution overhead

Figure 7: Matrix Multiplication, Redistribution overhead for N=9600

0

50

100

150

200

250

300

350

4 6 9 12 16 20

processors

T
im

e
(s

e
c

)

Improvement in Iteration Time Redistribution Time

Figure 8: LU Factorization, Redistribution overhead, N=9600

0

20

40

60

80

100

120

140

160

180

4 6 9 12 16

processors

T
im

e
 (

s
ec

)

Improvement in Iteration Time Redistribution Time

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 27

The above tables show the overhead of redistribution in relation to the improvement in

iteration time. The processor sizes indicate the new processor set the application is

running at. The redistribution overhead is the time taken to redistribute data from the

previous processor size to the size indicated in the charts. The application under

consideration starts at an initial processor allocation of 2.

The model applications that we have considered are computationally intensive, i.e., the

amount of time spent in computation is many magnitudes higher than the amount of time

spent communicating data between processors. As a result of this, the time spent in

redistributing data from one processor size to another is also far less than the amount of

time spent in one loop of the computation for the processor sizes. Thus, even a small

improvement in the computational rate can compensate for the redistribution time within

a few iterations of the application at the new processor size.

The redistribution time does not result in a significant overhead in our model

applications. However, for other scientific applications that employ functions such as the

Jacobi method that are not very computationally intensive per iteration, the redistribution

cost can be significant in comparison to the improvement in iteration time. Work done by

Chinnusamy [1] aims at minimizing the redistribution overhead so that these applications

can also benefit from dynamic processor allocation.

4.3 Processor allocation decisions for job mixes

In our framework, the adaptive sweet spot detection was used as a basis to implement

scheduling strategies that leverage the fine grained control over processor allocations to

jobs concurrently running on our test cluster. Experiments were conducted to demonstrate

the potential benefit of dynamic processor allocation and parallel job resizing.

When jobs are concurrently running in a system and are competing for resources, not all

jobs can adaptively realize their sweet spot and run at that sweet spot for the entirety of

their execution. A job can grow to use the available resources while it continues to

achieve a performance benefit. Even though the job might not have achieved its sweet

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 28

spot, it might have to shrink to accommodate other jobs that have been scheduled based

on its relative performance gains while expanding in comparison to other running

applications.

Since our system bases shrinking decisions on minimizing the overall performance hit to

the system, applications that are closer to their sweet spot, and hence have not shown

high performance gains in the later part of their growing phase are more likely to get

shrunk than applications who are in the initial stages of their expansion phase and are

showing significant performance gains.

Short running jobs benefit greatly in our system. Long running jobs can be shrunk to a

smaller size without a significant performance hit, allowing the small job to be scheduled.

This would not be possible in a conventional queuing system where the small job would

have to wait for the completion of the larger job before being scheduled. The large job

can quickly regain its original size after the completion of the smaller job.

Long running jobs also benefit from our system, since they have the ability to utilize the

resources beyond their initial allocation, and users are not faced with the decision of

scheduling the job on a smaller set of processors than desired based on current resource

availability.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 29

4.3.1 Job Mix 1

Figure 9: Job Mix 1

0

2

4

6

8

10

12

14

0 500 1000 1500 2000 2500 3000 3500

Time (sec)

p

ro
c

Job 0 Job 1 Job 2 Job 3

The above graph shows the lifetime of four jobs that were scheduled on our system. The

total number of processors available in our test cluster is 32. Applications modify their

processor sizes within this constraint. Our sizes for application data were influenced by

the limitation of 32 processors. On a larger cluster comprising of hundreds or even

thousands of processors, much larger applications can execute: larger in terms of both

data size and processor allocations.

Initially, Jobs 0, 1 and 2 were scheduled with processor allocations of 4 processors each.

These jobs are long running jobs and expanded to utilize the unused processors in the

system. Job 0 was able to determine its sweet spot at 9 processors and continued at this

size for the rest of its life time. Jobs 1 and 2 expanded to 12 processors and continued to

run at that size till Job 3 was scheduled. As a result of job 3’s presence in the wait queue,

jobs 1 and 2 shrank to 6 processors in order to accommodate job 3’s request of 12

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 30

processors. Since job 3 was a short running job, job 1 and 2 were able to expand back to

12 processors after the completion of job 3.

4.3.2 Job Mix 2

Figure 10: Job Mix 2

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time (sec)

#
 p

ro
c

Job 0 Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7

The above graph shows the life time of 7 jobs that were scheduled on our system.

Initially Jobs 0, 1, 2 and 3 were scheduled. The data sizes of these jobs were chosen such

that they represented four jobs in the range from very short running job to long running

job. Jobs 2 and 3 were short running jobs that remained at their initial processor

allocation and terminated, hence releasing these processors to Jobs 0 and 1 running on the

system. Job 0 utilized these extra processors in order to realize its sweet spot at 16

processors and continued at this processor allocation for the rest of its life time. Job 1 was

able to expand to 12 processors from its initial allocation of 9 processors and continued at

that size for the rest of its lifetime. After the completion of Jobs 2 and 3, Job 4 was

scheduled. Job 4 was able to expand to a larger size only after the completion of Job 1. It

then expanded from its initial allocation of 4 processors to 12 processors. However, Job 4

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 31

had to shrink back to 6 processors because of the presence of Job 5 in the wait queue

which was waiting for 6 processors. After the competion of Job 4, Job 5 and Job 6 were

able to expand beyond their initial allocation. Job 7 was also scheduled during this stage.

After the completion of the other jobs, Job 7 was able to expand to occupy all the

computational resources of the system and realize its sweet spot.

4.3.3 System throughput and job turnaround time

System throughput is the average time after which a job is completed in the system. It is
the time taken by the jobs in the system divided by the number of jobs in the system.

Job turn around time is the total time taken by the applications to execute in the system
divided by the number of applications.

The tables below show the comparison of the time spent in the system by the jobs in Job

Mix 1 on a static scheduler in comparison to our dynamic processor allocation approach.

Job
static proc
allocation

start
time end time

total
time

Dynamic
start time

End
Time

Total
Time

0 6 0 3616 3616 0 2853 2853
1 6 0 3652 3652 0 2826 2826
2 6 0 3622 3622 0 2913 2913
3 12 0 408 408 1498 1906 408

Improvement in total time jobs spend in the system = 2298 seconds
Improvement in throughput = 184.8 seconds/job

Table 3: static processor allocation job mix 1

As shown in the above table, if all jobs are scheduled initially in the static scheduler, the

system throughput and the job turnaround time are greater than in the case of the dynamic

scheduler. This is because jobs 0,1 and 2 are not able to take advantage of the idle

processors after the completion of job 3.

In the above case, Jobs 0,1 and 2 executed on 6 processors and could have run more

efficiently if they had been scheduled on 9 processors each. This would mean that Job 3

would have to wait for the completion of these jobs before being scheduled.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 32

Job
static proc
allocation

start
time end time

Total
time

Dynamic
start time

End
Time

Total
Time

0 9 0 2746 2746 0 2853 2853
1 9 0 2887 2887 0 2826 2826
2 9 0 2965 2965 0 2913 2913
3 12 2965 3373 408 1498 1906 408

Improvement in total time jobs spend in the system = 6 seconds
Improvement in throughput = 115 seconds/job

Table 4: static processor allocation job mix 2

If jobs 0,1 and 2 were scheduled with 9 processors instead of 6, as in the previous case,

they are able to perform better, hence alleviating the job turnaround time problem. As

shown in the above table, the total time spent by jobs in the static system is only 6

seconds greater than the amount of time spent in our dynamic system. However, job 3 is

not able to startup until the other jobs in the system have completed. Hence the

throughput of the system is still significantly better than in the case of dynamic

scheduling.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 33

Chapter 5

Conclusions and Future Work

This chapter summarizes the features provided by our framework and future work that

will extend the functionality of our framework.

5.1 Summary

We have provided a framework that enable parallel applications to dynamically resize

efficiently during their execution. Our scheduling framework enables applications to

iteratively expand to occupy more processors and determine the processor allocation at

which the application performs the best. Under the condition of multiple applications

being scheduled under our framework, applications are able to shrink to accommodate

new applications without undertaking a severe performance penalty and are able to grow

back to larger sizes when idle processors are made available. Our framework enables the

scheduler and the application to work together to make good resizing decisions. The API

provided by us enables conventional SPMD programs to be easily ported to take

advantage of dynamic resizing.

We believe that with the introduction of the MPI-2 standard, dynamic processor

management will be popularized and application developers will consider this aspect

during their application development in order to achieve better throughput and job turn

around times.

5.2 Future Work

Exploring different processor topologies and historical data.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 34

Scientific applications can use the processors assigned to them under many different

processor topologies. For example, if the application views the processors as a 2-D grid

of MxN, then many choices of M and N are possible for any given total processor size.

The performance of the application on these different processor topologies will be

different based on data distribution and the communication properties of the application.

Performance data can be gathered at these different processor topologies to get a better

understanding of the application performance. Moreover, recommender systems can be

used to use this information to predict performance of applications at topologies for

which data is not available. The data collection phase can be significantly reduced if the

information from previous runs of the application can be incorporated in the sweet spot

determination process.

Other performance metrics
Our framework uses the time spent by the application in one iterative loop of its

computation. Performance metrics such as machine load averages, applications parallel

efficiency and speed up can be used to explore other definitions of sweet spots.

Thresholds need to be determined such that application do not expand if the performance

gain is not within a given threshold.

Extend scheduling framework

Our scheduling framework provides the basic functionality required for dymanic

processor management. In order to be used as a viable scheduling system constructs such

as job priorities, reservations and Quality of Service need to be addressed. With the

growing popularity of grid computing through the Globus framework work needs to be

done in order to make our work viable across multiple clusters and on a global scale.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 35

REFERENCES

[1] M. Chinnusamy. Data and processor re-mapping strategies for dynamically resizable parallel
applications. Master’s Thesis. Virginia Tech, 2004.

[2] J. E. Moreira and V. K. Naik. Dynamic Resource Management on Distributed Systems Using
Reconfigurable Applications. IBM Research Report RC 20890, 1997. IBM Journal of Research
and Development, Vol. 41, No. 3, pages 303-330, May 1997.

[3] Park, K.-H. and Dowdy, L. W. Dynamic partitioning of multiprocessor systems. International
Journal of Parallel Programming, 18(2):91–120, 1989.

[4] Tucker, A. and Gupta, A. Process control and scheduling issues for multiprogrammed shared-
memory multiprocessors. In Proceedings of the 12th ACM Symposium on Operating Systems
Principles, pp. 159–166, December 1989.

[5] Leutenneger, S. T and Vernon, M. K. The performance of multiprogrammed multiprocessor
scheduling policies. In Proceedings of the ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pp. 226–236, May 1990.

[6] Gupta, A., Tucker, A., and Urushibara, S. The impact of operating system scheduling policies
and synchronization methods on the performance of parallel applications. In Proceedings of the
ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, May 1991.

[7] McCann, C., Vaswami, R., and Zahorjan, J. A dynamic processor allocation policy for
multiprogrammed shared-memory multiprocessors. ACM Trans. Comput. Syst., 11(2):146–178,
May 1993.

[8] Naik, V. K., Setia, S. K., and Squillante, M. S. Processor allocation in multiprogrammed,
distributedmemory parallel computer systems. Technical Report RC 20239, IBM Research
Division, October 1995. To appear in Journal of Parallel and Distributed Computing.

[9] McCann, C. and Zahorjan, J. Processor allocation policies for message-passing parallel
computers. In Proceedings of the ACM SIGMETRICS Conference on Measurement and Modeling
of Computer Systems, pp. 19–32, May 1994.

[10] Squillante, M. S. Job Scheduling Strategies for Parallel Processing, volume 949 of Lecture
Notes in Computer Science, chapter On the benefits and limitations of dynamic partitioning in
parallel computer systems, pp. 219–238. Springer-Verlag, 1995.

[11] S. Tadepalli. DQ Scheduler. Master’s Thesis. Virginia Tech, 2003.

[12] PVM. http://www.csm.ornl.gov/pvm/pvm_home.htmlhttp://www.csm.ornl.gov/pvm/pvm_home.html

[13] MPI. http://wwwhttp://www-unix.mcs.anl.gov/mpi/

[14] J. Dongarra and I. Duff and D. Sorensen and H. van der Vorst. Numerical Linear Algebra
for High-Performance Computers. SIAM, Philadelphia, 1998.

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://www.csm.ornl.gov/pvm/pvm_home.html
http://www
http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 36

[15] LAPACK Project, http://www.netlib.org/lapack/http://www.netlib.org/lapack/

[16] ScaLAPACK Project, http://www.netlib.org/scalapack/www.netlib.org/scalapack/
[17] D. Gelernter and D. Kaminsky. Supercomputing Out of Recycled Garbage: Preliminary
Experience with Piranha. Proceedings of the International Conference on Supercomputing,
ACM, pages 417-427, July 19-23, 1992.

[18] Seti At Home. http://setiathome.ssl.berkeley.eduhttp://setiathome.ssl.berkeley.edu.

[19] L.V. Kale and Sanjeev Krishnan. CHARM++ : A Portable Concurrent Object Oriented
System Based On C++. Proceedings of the Conference on Object Oriented Programming
Systems, Languages and Applications, Sept-Oct 1993.

[20] Sathish S. Vadhiyar and Jack J. Dongarra. SRS - A Framework for Developing Malleable
and Migratable Parallel Applications for Distributed Systems.

[21] Amnon Barak and Oren La'adan. The {MOSIX} multicomputer operating system for
high performance cluster computing. Future Generation Computer Systems. Volume 13,
pages 361-372, 1998.

[22] J. Casas, D. Clark, R. Konuru, S. Otto, R. Prouty, and J. Walpole. MPVM: A Migration
Transparent Version of PVM. Technical Report CSE-95-002, 1, 1995.

[23] Fred Douglis and John K. Ousterhout. Transparent Process Migration: Design
Alternatives and the Sprite Implementation. Journal of Software - Practice and
Experience, volume 21-8, pages 757-785, 1991.

[24] Robins, K. A. and Robins, S. The Cray X-MP/Model 24, volume 374 of Lecture Notes in
Computer Science. Springer-Verlag, 1989.

[25] Gupta, A., Tucker, A., and Stevens, L. Making effective use of shared-memory
multiprocessors: The process control approach. Technical Report CSL-TR-91-475A, Computer
Systems Laboratory, Stanford University, 1991.

[26] Moreira, J. E. On the Implementation and Effectiveness of Autoscheduling for Shared-
Memory Multiprocessors. PhD thesis, University of Illinois at Urbana-Champaign, 1995.

[27] Polychronopoulos, C. Auto-scheduling: Control flow and data flow come together. Technical
Report 1058, Center for Supercomputing Research and Development, University of Illinois at
Urbana-Champaign, December 1990.

[28] Edjlali, E., Agrawal, G., Sussman, A., and Saltz, J. Data parallel programming in an adaptive
environment. In Proceedings of 9th International Parallel Processing Symposium, Santa Barbara,
CA, April 1995.

[29] Koelbel, C. H., Loveman, D. B., Schreiber, R. S., Steele Jr., G. L., and Zosel, M. E. The
HighPerformance Fortran Handbook. The MIT Press, Cambridge, MA, 1994.

[30] Edjlali, E., Agrawal, G., Sussman, A., and Saltz, J. Data parallel programming in an adaptive

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://www.netlib.org/lapack/
www.netlib.org/scalapack/
http://setiathome.ssl.berkeley.edu
http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

 37

environment. In Proceedings of 9th International Parallel Processing Symposium, Santa Barbara,
CA, April 1995.

[31] Carriero, N. and Gelernter, D., How to Write Parallel Programs: A Guide to the Perplexed,
ACM Computing Surveys, volume 21, pages 323-358, September 1989.

[32] The BLACS Library. http://www.netlib.org/blacs/http://www.netlib.org/blacs/

[33] LAM-MPI. http://www.lamhttp://www.lam-mpi.org/

[34] MPICH. http://wwwhttp://www-unix.mcs.anl.gov/mpi/mpich/

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://www.netlib.org/blacs/
http://www.lam
http://www
http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

