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(ABSTRACT) 
 

Applications in science and engineering require large parallel systems in order to solve 

computational problems within a reasonable timeframe. These applications can benefit 

from dynamic resizing during the course of their execution. Dynamic resizing enables 

fine-grained control over resource allocation to jobs and results in better system 

throughput and job turn around time. We have implemented a framework that enabled 

dynamic resizing of MPI applications. Our framework uses the recently released MPI-2 

standard that enables dynamic resizing. The work described in this thesis is part of a 

larger effort to design and implement a system for supporting and leveraging dynamically 

resizable parallel applications. We provide a scheduling framework, an API for dynamic 

resizing and libraries to efficiently redistribute data to new processor topologies.  
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Chapter 1 

 

Introduction 
 
Applications in science and engineering require large parallel systems in order to solve 

computational problems within a reasonable timeframe. These large parallel systems are 

common at universities and research institutions and are frequently shared by multiple 

users. The economic viability and scalability of interconnecting workstations by a high 

speed network has led to the emergence of clusters of workstations. We expect the use of 

these clusters to continue to grow in order to support the computational needs of the 

scientific and engineering communities. However, these systems are still expensive, such 

that a single user who requires running his engineering simulation on 500 nodes for a 

period of 10 days, cannot afford such a system. Thus, these systems are generally shared 

among multiple users, and efficient resource management becomes a key issue. 

 

The problem of efficient resource management in such a system becomes even more 

difficult when the job arrival rates and workload on the system are varying and 

unpredictable. Conventional schedulers are static in nature, i.e, once a job is allocated a 

set of resources, that job continues to use those resources till the end of execution. The 

system does not have the ability to grant more resources to running jobs when there are 

idle processors available. When a high priority job arrives in the system, this generally 

leads to the suspension of lower priority running jobs. 

 

A dynamic resource manager that has the ability to modify resources allocated to jobs 

during run time would result in more efficient resource management. It has been shown 

in the literature that dynamic resource management results in better job and system 

performance [2, 3, 4, 5, 6, 7, 8, 9, 10]. Dynamic resource management enables more fine-

grained control over resource usage of jobs, which conventional schedulers do not 

provide. In a system that employs dynamic resource management, resources allocated to 
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a job can change due to internal changes in the job’s resource requirements or external 

changes in the systems overall resource availability. Dynamic resource management 

extends flexibility by enabling applications to expand to a greater set of resources to 

utilize unused processors. Running applications can also shrink to a smaller subset of 

resources in order to accommodate higher priority jobs. The system can change the 

resources allocated to a job in order to meet a QoS deadline. Such a system, which 

enables resizing of applications, can benefit both the administrators and the users. By 

efficiently utilizing the resources, jobs can be completed at a faster rate thus increasing 

system throughput. At the same time, by enabling applications to utilize resources beyond 

their initial allocation, job turnaround time can be improved. The focus of this research is 

on reconfiguring parallel applications to use a different number of processes, i.e., on 

“dynamic resizing” of applications. 

 

Additional infrastructure is required in order to enable resizing. Firstly, a programming 

model that allows applications to utilize the ability to resize is required. This 

programming model needs to be simple enough to implement such that existing code can 

be ported to the new system. Secondly, run time mechanisms to enable resizing are 

required. This includes the underlying system to provide the facilities required to allow 

applications to grow and shrink to a varying number of processors and enable the 

redistribution of the application’s global state to this new set of processors. Thirdly, a 

scheduling framework that exploits the ability to resize to increase system throughput and 

reduce job turn around time is essential. Such a scheduling framework should support 

intelligent decisions in making processor allocation and reallocation in order to utilize the 

system effectively by growing jobs to utilize idle processors, shrinking jobs to enable 

higher priority jobs to be scheduled, changing resource allocations to meet QoS 

deadlines, etc. 

 

The work described in this thesis is part of a larger effort to design and implement a 

system for supporting and leveraging dynamically resizable parallel applications. The 

overall architecture of this system and our programming model is described in Chapter 3. 

Algorithms and a library for process and data re-mapping are described in detail in [1]. 
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The focus in this thesis is on the third aspect mentioned above, namely a scheduling 

framework. The goal is to take advantage of dynamic resizing to improve both system 

throughput and job turnaround time. Our approach is to allow the application and the 

scheduler to work together to make resizing decisions. The application supplies good 

choices for number of processors and processor topologies; the scheduler keeps track of 

performance data of this application and other applications running on the system. We 

have extended an existing parallel scheduler [11] to interact with the application to gather 

performance data, use this data to make decisions about processor allocation, and adjust 

processor allocations to maximize system utilization. 

 

The remainder of this thesis is organized as follows. Chapter 2 describes background 

information and a literature review of related work in this field. Chapter 3 describes the 

architecture of the scheduling framework in detail. Chapter 4 describes experiments that 

we conducted to evaluate our system. We conclude in Chapter 5 with future work that 

can be done to improve our system. 
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Chapter 2 
 

Literature Review 

2.1 Communication Software 

A cluster is a collection of machines with their private memory and processor connected 

by an interconnection network. Nodes communicate by passing messages across this 

interconnection network.  The complexity of message passing is abstracted into a 

message passing software layer to enable programmers of parallel applications to 

conveniently employ the underlying system. PVM [12] and MPI [13] are two popular 

message passing libraries that provide a software layer to enable message passing. 

2.1.1 Parallel Virtual Machine (PVM) 

Historically, PVM was the first message passing library designed to work on a network 

of workstations (NOW). However, the popularity of PVM among developers of parallel 

applications has reduced over the years with the advent of MPI. Although PVM is 

functionally equivalent to MPI, there are a few philosophical issues that have made MPI 

more popular.  

 

Control of PVM has always been primarily with the authors. A standards committee, on 

the other hand, governs MPI, and implementers of MPI are required to strictly follow the 

MPI standards guidelines. This has resulted in MPI being more portable to various 

hardware platforms. Moreover, MPI provides a better interface to parallel application 

developers by employing constructs such as communicators which PVM does not 

provide. Communicators are a convenient way of partitioning processors involved in a 

computation into subgroups and to reference these subgroups in order to perform a 

specific task. However, the PVM legacy continues to exist and PVM implementations are 

still used around the world. 
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2.1.2 Message Passing Interface (MPI) 

MPI is a message passing standard that is designed by a broad committee of vendors, 

implementers and users. Many free and vendor supplied implementations of the MPI 

standard are available today. The most popular free implementations of MPI are MPICH 

from the Argonne National Laboratory and LAM MPI from Indiana University. 

 

Recently, the MPI-2 standard [13] has been released, which among other features, 

includes support for dynamic process management. This functionality has been 

incorporated in the latest release of LAM MPI [33]. MPICH [34], however, has not yet 

implemented this feature of the MPI-2 standard.  

 

The dynamic process creation and management functionality was added to the MPI-2 

standard upon the request from the user community. This feature was desired because of 

the desire to exploit the dynamic process model discussed in Chapter 1, and was given 

impetus by the PVM research effort [12] that had demonstrated the benefits of dynamic 

resource management. 

 

The MPI-2 standard enables process spawning through the API function call 

MPI_COMM_SPAWN. The MPI-2 standard, however, does not place restrictions or 

provide guidelines for how the actual spawning takes place, due to the fact that MPI 

needs to be portable across many different systems. Thus tasks such as process startup, 

reserving and scheduling resources, and returning information about available resources, 

are left to third party vendors to build on top of MPI.  

 

In this thesis, we have built a scheduling framework on top of the MPI implementation 

provided by LAM in order to provide the resource management functionalities required 

to enable the effective use of the dynamic process model of the MPI-2 standard. 
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2.2 Mathematical Libraries 

A large majority of scientific and engineering applications that run on clusters involve 

number crunching numerical methods. Numerical libraries have been written that provide 

a unified API to application programmers and can be optimized for the specific hardware 

on which these applications are run. Basic Linear Algebra Subprograms (BLAS) are the 

building blocks of numerical software [14]. Level 1 BLAS provide vector-vector 

operations, Level 2 BLAS provide matrix-vector operations and Level 3 BLAS provide 

matrix-matrix operations. Various vendor supplied BLAS exist today that are tuned to 

run optimally on many hardware configurations. Numerical libraries such as LAPACK 

[15] and SCALAPACK [16] employ the BLAS to provide methods for commonly used 

numerical algorithms.  

2.2.1 Linear Algebra Package (LAPACK) 

LAPACK was designed to run efficiently on modern high-performance processors by 

taking into consideration the multi-layered memory hierarchies of the machines. Earlier 

numerical packages such as EISPACK and LINPACK disregarded the memory-hierarchy 

and thus were prone to inefficiencies by spending too much time in the transfer of data 

rather than in doing useful computation. LAPACK uses the BLAS to take advantage of 

optimizations for the underlying hardware. Further, it predominantly uses Level 3 BLAS, 

i.e., blocked matrix-matrix operations in the inner most loops of the functions to most 

effectively utilize the memory hierarchy. 

2.2.2 Scalable LAPACK (SCALAPACK) 

In order to run LAPACK effectively on a distributed memory parallel clusters, a layer 

was introduced above LAPACK, that employed explicit message passing to incorporate 

off processor memory into the memory hierarchy. SCALAPACK has been written in 

Single-Program-Multiple-Data style (SPMD), and is amenable to be used in parallel 

SPMD programs. 
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The test applications in this thesis employ SCALAPACK functions to perform matrix-

matrix multiplication and LU factorization: two functions that are commonly used and 

are ideal model applications for a large subset of the scientific code. 

 

2.3 Dynamic Resizing Frameworks 

Several mechanisms have been employed to enable dynamic resource management. What 

follows is a general overview of the work done in this field. The relevant work is dealt 

with in more detail in Sections 2.4.1, 2.4.2, 2.4.3 and 2.4.4. 

 

In the Master/Worker model [17,18], a global entity distributes the tasks and the data 

associated with these tasks to worker programs that return the result of their computation 

to be collected by the global entity. Thread migration is another concept that is used to 

enable dynamic resource management by enabling threads to migrate from heavily 

loaded machines to lightly loaded machines [19, 20, 21, 22, 23]. The fork/join model is 

similar to thread migration and the master/worker model and is used extensively on 

shared memory multiprocessors [9, 24, 25, 26, 27, 28]. In this model, a few kernel level 

threads are scheduled for execution on the underlying processors. These kernel threads 

act as virtual processors for user-level threads that are assigned to them from a shared 

task queue. 

 

High Performance Fortran [29] is an extension to Fortran that allows data redistribution 

and virtual processor grid annotation in conventional Fortran code, thus potentially 

enabling such programs to run on varying processor mappings in a system that supports 

HPF. HPF provides no constructs for specifying the number of processors that the 

application can resize to, thus leaving it to the underlying system to provide mechanisms 

to determine processor allocations. Adaptive Multiblock PARTI [30] is one such library 

that leverages HPF for adaptive resizing.  

 

The Dynamic Resource Management System (DRMS) [2] enables resizing by extending 

the SPMD model. In the Single Program Multiple Data (SPMD) model, a single program 
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executes on multiple machines, and parallelism is achieved by restricting program flow 

based on processor id’s and communicating data and messages between processors by 

means of an underlying message library. DRMS achieves resizing by linking a library 

that exposes its API to the SPMD program. The SPMD program uses this API to 

communicate with the DRMS system at strategic points in the program where resizing is 

possible. These strategic points are known as schedulable and observable points (SOPs). 

The SPMD program continues to run at its allocated resource level till it encounters its 

next SOP. It is at this SOP that decisions on resizing are made based on the internal 

change in requirements of the application or an external change in resource availability. 

Section 2.4.4 explains the DRMS architecture in more detail. 

2.3.1 Piranha 

Piranha is a system that is build upon the Linda [31] worker model. The tuple space in 

Linda performs the role of the global state pool. This global state pool enables producers 

and consumers of data to interact in an uncoupled fashion via the tuple space, thus 

enabling anonymity.  

 

 

 

 

 

 

 

 

 

 

Figure 1: Tuple Spaces 
    

In the above figure, a data producer stores the data on which computation has to be 

performed in the global tuple space. As processors become available, worker processes 

on those processors read the data from the global tuple space, perform the computation, 

and store the result back in the global space. 

1. Data producer 

Tuple Space 

2,3. Worker 

Data 
Data 

Result 
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This model is highly effective for resizable applications as it allows free processors to use 

the tuple space as the single point of contact for more work. Piranha supports resizable 

applications by harnessing idle cycles in a workstation environment. Workstations join 

the computations when they become idle, and withdraw when their owners need them. 

While Piranha is effective for many applications such as DNA sequencing, it is not very 

effective for data parallel programs such as LU factorization. As stated in section 2.2.2, 

our primary focus is the resizing of such data centric applications as they account for a 

vast subset of current high performance scientific code. 

2.3.2 Adaptive Multiblock PARTI (AMP) 

The Adaptive Multiblock PARTI (AMP) system enables resizing by spawning a job to 

the maximum number of processors it can run on. It then enables applications to run on a 

subset of these machines by redistributing the data to an active partition, and requiring all 

processes outside of this partition to run as skeleton processes. Resizing is achieved by 

changing the size of the active partition and redistributing data to this new partition. 

 

 AMP puts a hard bound on the maximum amount of parallelism that can be employed by 

an application. Moreover, AMP’s skeletons must be time shared with tasks of other 

applications on the same machine, which is not always supported on clusters that restrict 

machines to single jobs. 

 

2.3.3 Adaptive MPI (AMPI) 

Adaptive MPI is an implementation and extension of MPI that supports processor 

virtualization. Processor virtualization is achieved by running parallel applications as user 

level threads and migrating these user level threads from processor to processor. 

Processor virtualization is enabled by Charm++ [19], which is the underlying framework 

that supports multithreading and automated load balancing. In order to use AMPI, the 

user breaks down a parallel application into a number of fine-grained chunks. The 

number of chunks is independent of the number of available processors and is usually 

much larger. When the user program is run under the AMPI framework, each of these 
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chunks are treated as a virtual MPI process (VP) and are implemented as user level 

threads. AMP and Charm++ support the migration of these user level threads from 

processor to processor.  

 

The load balancing system of Charm++ automatically instruments the application to 

gather performance statistics of the VP’s. Periodically, or on demand, the system remaps 

the chunks to processors in order to achieve better load balancing and to reduce the 

communication overhead. User level thread migration is also used to expand or shrink the 

number of processors allocated to a job. 

 

Due to the adoption of user level threads, AMPI is very effective for applications that 

have fine grained parallelism. However, data centric scientific applications employ a far 

coarser granularity of parallelism, which is not amenable to be split up into a large 

number of user level threads.  

2.3.4 Dynamic Resource Management System (DRMS) 

As mentioned earlier, DRMS enables resizing by extending the single-program-multiple-

data (SPMD) model. Schedulable and observable points (SOPs) are placed at points in 

the application code where the applications resource requirements change when it moves 

from one stage of the computation to another, or when the application can benefit from a 

resizing operation. 
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Figure 2: DRMS Architecture 
 

When an application reaches an SOP, it contacts the Task coordinator (TC). It provides 

the TC a list of possible sizes that the application is willing to grow to. An application 

developer can provide this list through annotations in the source code. These annotations 

are converted to DRMS API calls by a precompiler. Every application running under 

DRMS has a TC associated with it. The applications TC in turn contacts the Resource 

Coordinator (RC). The RC, in coordination with the Job Scheduler and Analyzer (JSA) 

decides on a resizing decision and informs the application of the decision. The 
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application is then terminated and restarted on the new set of processors and its previous 

state is restored. The application’s global state is then redistributed to the new set of 

processors after which computation can resume.  

 

The current implementation of DRMS is application and user centric. The scheduler 

makes scheduling decisions based on the applications requirements and processor 

availability. The scheduler does not make decisions based on the performance of the 

application. There is a performance data gatherer (PDG), but it does not play a role in the 

scheduling decision made by the JSA. In our approach the scheduler and the application 

work together to make resizing decisions. The application provides good choices for the 

number of processors and processor topologies, and the scheduler takes into account the 

performance characteristics of the application and other applications in the system while 

making scheduling decisions. 

 

Under DRMS, remapping requires killing and restarting a job on the new set of 

processors. This involves a significant overhead in comparison to our system where 

resizing is achieved without the need to kill and restart the application. 

  

Moreover, DRMS is designed to work on the IBM RS6000 SP. It not been ported to Unix 

based clusters which are popularly employed today for high performance computing, and 

does not take advantage of the new MPI-2 dynamic process management functionality. 

 

 

 

 

 

 

 

 

 

 

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1


 

 13    

 
Chapter 3 
 

Design 

3.1 Motivation and Approach 
 
Current scientific codes that run on parallel machines use the MPI message passing layer 

for communication. The MPI-1 standard assumes a static processor model, i.e. an 

application cannot dynamically change the number of processors it is running on during 

the course of its execution. Thus, these applications do not take advantage of a dynamic 

processor model. The release of the new MPI-2 standard enables the dynamic processor 

model. The work done in this thesis is part of a wider effort to leverage the ability to 

dynamically allocate resources to applications during their execution. One of the 

interesting benefits that our framework provides is the ability to automatically find ‘sweet 

spots’ for parallel applications, i.e., to find the number of processors that a particular code 

and problem instance runs well on. 

 

In order to provide dynamic resizing of applications, work was done in three broad areas. 

Firstly, a scheduling framework was created. This scheduling framework gathers 

application performance data and enables the making of scheduling decisions based on 

this performance data, the current resources allocated to the jobs in the system, and jobs 

waiting to be scheduled. The work done in this thesis concentrates on this aspect of 

dynamic resizing.  

 

Secondly, in collaboration with Chinnusamy [1], a programming model for resizable 

applications was created. This includes the API that applications use to communicate 

with the scheduler to make resizing decisions and to gather performance data. 

 

Thirdly, mechanisms for mapping processor topologies and redistributing data from the 

old processor grid to the new processor grid were implemented [1]. In order to enable 
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ease of portability of existing applications to our framework a library that performs these 

operations efficiently is included in the framework. This library was implemented on the 

top of SCALAPACK [16]. BLACS [32], the communication layer of SCALAPACK was 

modified to support dynamic process management. However, the algorithms are not 

specific to SCALAPACK and can be easily implemented on the top of other frameworks. 

3.2 System Architecture 
 
 

 

 

 

 

 

  

 

 

 

 

 

 

 
 

 

 

 
 

...                                                                                                
 

 
Figure 3: Architecture diagram 

 
The above figure shows the general architecture of our framework. A command line 

interface is used to schedules an application. The user provides the initial number of 

processors that the application must start on. Once processors become available for the 

DQ Server 

 

Startup 

Job 

Monitor 

 

Remap 

Scheduler 

 

Perf Data 

Gatherer 

3. Resize Request/ 
    Perf Data 

User                Resize 
Application       Library 

LAM - MPI 

DQ client on n0 

n0 n1 n2 n3
 

n4 

2. Job Startup 

5. Job Done 

6. Job Done 

1. Job Startup 

4. Resize Response 

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1


 

 15    

application to be started at this initial size, the job startup thread of the scheduler 

schedules this application on the assigned processors. 

 

When the job is started the Job Monitor is notified. The application also notifies the Job 

Monitor when the application is terminated, so that the scheduler can reclaim all 

resources allocated to this application. Notifications to kill the job are sent through the 

command line, and the Job Monitor is responsible for killing the application on all nodes 

and reclaiming the processors. 

 

At the end of every computational loop, the application contacts the scheduler. The 

application provides performance data to the scheduler. Currently the metric used to 

measure the performance of the application is the time taken to compute per iteration. 

The Performance Data Gather (PDG), which stores performance information for all 

applications currently running in the system, gathers the performance data provided by 

the application. This data is used to make application-resizing decisions. 

 

When the application contacts the scheduler, the Remap Scheduler (RS) makes the 

decision of whether to allow the application to grow to a greater number of processors, 

shrink the processors allocated to a job and reclaim the processors to schedule a different 

application, or permit the application to continue at its current processor allocation. A 

decision to shrink can be made because the application has grown to a size that has not 

provided a performance benefit, and hence the RS asks the application to shrink back to 

its previous size. An application can also be asked to shrink if there are applications 

waiting in the wait queue to be scheduled. The RS determines the running applications 

that it needs to shrink such that the overall performance hit to the system is minimized. 

The heuristic used by the RS to make shrink decisions is described in Section 3.4.4. The 

RS can also ask the application to expand to a greater number of processors if there are 

idle processors in the system. The heuristic used by the RS to make expand decisions is 

described in Section 3.4.4. If the RS is not able to provide more processors for the 

application to expand, and determines that the application does not need to shrink, it asks 

the application to continue to run at its current processor allocation. 
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The resize library, which is linked to the application, is used to perform data 

redistribution and construction of new processor topologies when the RS asks the 

application to shrink or expand. After the resize library has performed the resizing of the 

application, the application can perform its computation on the new set of processors. 

This process continues for the lifetime of the application 

3.3 Resize Library and API 
 
The following pseudocode gives a high level view of a typical scientific application. 
 

1. Do in a Loop 
a. Compute 

2. End loop 
 

  
In our framework we have introduced API calls that communicate with the scheduler and 

perform expansion and shrinking of the processor set. The following pseudocode gives a 

high level view of an application that supports resizing under our framework. 

  
1. Do in a Loop 

a. Compute 
b. Contact scheduler at remap point. 

i. if (response is no change) 
1. continue 

ii. if(response is expand) 
1. start up processes on the new processors. 
2. Redistribute data to the new processor set. 

iii. if (response is shrink) 
1. Redistribute the data to the new set of processors. 
2. Terminate processes on the relinquished processors. 
3. Signal the scheduler on completion of the redistribution, so 

that the scheduler can free the resources.  
2. End loop  

 

3.3.1 Contacting scheduler at a remap point 
 
At the end of a computational loop the application reaches its remap point. At this remap 

point it contacts the scheduler with performance data for the previous computational 

loop. This performance data includes the time spent computing and the time spent to 
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remap data if a remap was performed in the previous computational loop. The scheduler 

makes a decision on whether to allow the application to expand, to ask the application to 

shrink or to continue at its current processor allocation. The application then uses the 

underlying remap library to perform expansion or shrinking if required.  

 

3.3.2 Expansion 
 
If the scheduler asks the application to expand, it provides the application with the list of 

processors that it can use to expand to. The underlying remap library [1] then spawns the 

applications processes on these new processors and remaps the applications global data to 

the new processor set. 

3.3.3 Shrinking 
 
If the scheduler asks the application to shrink, the application first uses the underlying 

remap library [1] to redistribute the applications global data to the smaller subset of 

processors. It then terminates the processes on the processors that it will relinquish and 

responds to the scheduler asynchronously with the list of processors that have been 

relinquished. 

3.4 Scheduler Components 
 
Our scheduling framework was implemented by extending and modifying the DQ 

scheduler designed originally by Dr. Srinidhi Varadarajan and implemented by Satish 

Tadapalli [11]. 

3.4.1 Job Startup 
 
When an application is scheduled by the user via a command line interface it enters the 

wait queue of the scheduler. When processors become available to start this application at 

the initial size requested by the user, the Job Startup thread of the scheduler initiates the 

applications startup on the set of processors assigned to it. The Job Startup thread sends 

the job start information to the DQ client on the first node (node 0) of the processors that 

have been assigned to the job. The DQ client then starts the application on all processors 
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and is responsible for sending job start, job end signals to the scheduler. The DQ client is 

also responsible for killing the application if required.  

3.4.2 Job Monitor 
 
The Job Monitor thread of the scheduler interacts with the DQ client on node 0 during the 

lifetime of the application. If an application fails due to internal error the DQ client sends 

a signal to the job monitor to this effect so that the job can be killed and all resources 

allocated to the application freed. The DQ client also sends periodic heart beat messages 

to the Job Monitor thread [11]. If the application fails on one of the processors due to 

hardware error, then the Job Monitor is able to detect this situation due to missing heart 

beats and hence is able to kill the application on all processors and free the resources 

allocated to it. 

3.4.3 Performance Data Gatherer 
 
When an application contacts the scheduler at a remap point, it provides application 

performance data for the just completed computational loop. This data is stored by the 

PDG to be used by the RS to make future remap decisions. 

 

For every application the PDG stores a sorted list of the various processor sizes the 

application has run at and the performance of the application at each of these sizes. The 

PDG also maintains an active stack of the processor sizes that the application can shrink 

to and the performance penalty associated with shrinking to a smaller size.  

 

3.4.4 Remap Scheduler 
 
The following pseudocode gives a high level view of the remap scheduler. 
 

1. determine available idle nodes in the system. 
2. determine the number of nodes required by the next application in the wait queue. 
3. If (wait_num_nodes > available nodes) 

a. Should this application shrink? 
i. If Yes ask application to shrink 

ii. Else ask application to continue at its current size. 
4. determine if previous expansion was beneficial. 
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a. If No, ask application to shrink to previous size. We have determined 
sweet spot for this application. 

5. Determine if this applications can expand to occupy idle nodes in the system. 
a. If Yes, expand. 
b. Else continue at the current size. 

 
 
When there are applications waiting to be scheduled in the wait queue, the currently 

running applications are not allowed to expand to occupy idle processors in the system. 

The RS determines if the current application is one of the applications that needs to 

shrink in order to make processors available for the applications in the wait queue. This 

decision is made such that the overall performance penalty to all applications as a result 

of shrinking is minimized. 

 

However, if the wait queue is empty and there are idle processors in the system, then the 

RS determines if the current application is one of the applications that can expand to 

occupy the idle processors. This decision is made such that the overall performance 

benefit among all the running applications is maximized. An application that has just 

returned from an expansion and has not benefited from that expansion, i.e. the 

performance of the application degraded as a result of the expansion is required to shrink 

to its previous size. This application will not be considered for expansion purposes 

beyond the point where it did not show a performance gain. This point is known as the 

sweet spot for that application. 

 
Sweet spot determination 
 

The PDG maintains a sorted list of the various processor sizes that each application has 

run on and the performance data associated with these sizes. As long as there is 

performance improvement the scheduler allows an application to grow to a larger 

processor allocation assuming that idle processors are available in the system. However, 

if the application reaches its sweet spot, a processor size where the application no longer 

shows performance gain, the RS will not allow the application to grow beyond this point. 

The application may shrink to accommodate other applications and then later grow back 
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to its sweet spot when idle processors become available, but it will not be considered for 

expansion beyond its sweet spot. 

 

Shrink decisions – calculating performance penalty 
 
An application can shrink under two conditions: 

1. The application has determined its sweet spot. 

2. The application has to forfeit some of its processors for other applications 

in the wait queue. 

 

When an application contacts the scheduler at a remap point, the RS determines if this 

application needs to shrink in order to accommodate the waiting applications. This 

decision is based on relative performance hits of all applications running in the system. 

 

The application uses the processor size stack information gathered by the PDG to 

determine the processors each application can relinquish and the performance 

degradation of the applications for each of the sizes it can shrink to. The RS constructs a 

shrink points (SP) list. Each entry in the shrink point list consists of the Job ID of the 

application, the number of processors that are made available if the application shrinks to 

a smaller size and the performance hit it will suffer as a result of this shrinking. The RS 

sorts this list in ascending order of performance hit, and picks SP’s that will satisfy the 

processor requirements of the next job in the wait queue.  

 

If the RS is able to find SP’s such that applications can shrink to accommodate the 

waiting application, and the application that has currently contacted the scheduler is one 

of these applications, then the application is asked to shrink to its SP. As a result of this 

shrinking more idle nodes become available in the system.  

 

Active applications that are required to shrink will shrink to their corresponding SP’s as 

and when they contact the scheduler until enough processors are available to schedule the 

job in the wait queue. 
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Expand decisions – calculating performance gain 
 

The expansion decision is made in a similar fashion to the shrink decision. For all 

applications that are running at a smaller size than there is performance data available for, 

a Expand Point (EP) list is created. The EP list consists of the Job Id of the application, 

the number of processors it will expand by and the performance gain it will achieve as a 

result of this expansion. This list is sorted and if the current application is one of the 

applications that can expand to an EP to occupy idle processors it is asked to expand.  

 

In the case where idle processors are available and no running applications have 

performance data beyond their currently running size, then the applications are allowed to 

expand to their next greater size. It is in this phase that new performance data is gathered 

by the PDG. 
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Chapter 4 

 

Experimental Results 

4.1 Experimental Setup 

For our experiments, we used a homogeneous cluster comprising of 36, 1.4MHz 

AMD Opteron processors. Experiments were conducted by using both the Gigabit 

Ethernet interconnection network and the Myrinet interconnection network.  

4.2 Adaptive Sweet Spot detection 

The sweet spot detection experiments were performed for SPMD programs whose 

primary compute intensive tasks were Matrix Multiplication and LU Factorization. 

Experiments were conducted for various data sizes so as to provide relevant results 

within the processor limitations of our test cluster.  

 

The input parameters for a given run of an application include the data size (N) and initial 

processor allocation. After every computational loop the application contacts the 

scheduler with performance information of the just completed computation. The 

scheduler gathers this information and allows the application to grow its number of 

processors as long as there is improvement in the iteration time. Once the application 

grows to a size that does not provide an improvement in computational time, the 

application is shrunk back to the previous size where it continues to execute for the rest 

of the computation. This point is known as the sweet spot. Note that for a large enough 

value of N the application can grow to occupy all processors and continue to show 

improvement in iteration time.  
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4.2.1 Matrix Multiplication  

Sw eet Spot For Matrix Multiply on Ethernet
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Figure 4: Sweet spot for matrix multiply on Ethernet 
     

The above graph shows the performance data gathered by the scheduler during the matrix 

multiplication application execution for different sizes of N. For very small values of N, 

the framework is able to quickly determine the sweet spot within a few iterations. For 

example, for N=2400, the application grows to 4 processors but it is then realized that the 

expansion was not useful as it did not result in an improvement in the iteration time. The 

application then shrinks back to 2 processors and continues at this size for the rest of the 

computation. 

 

For larger values of N, the framework iterates for a longer period of time before 

determining the sweet spot. This ramp up time is acceptable under the condition that the 

application will be iterating many hundreds or even thousands of times during the course 

of its execution.  
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4.2.2 LU Factorization 

 

Figure 5: LU Factorization on Ethernet
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Figure 6: LU Factorization on Myrinet
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The above two graphs show the performance of the LU factorization model application 

for different sizes of N as they grow towards their sweet spots on two different 
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interconnection networks – Gigabit Ethernet and Myrinet. As shown by the above graphs, 

the performance characteristics are similar to the matrix-multiplication model application 

and follow the same trend regardless of a change in the underlying interconnection 

network. A scheduling framework to improve throughput and reduce job turnaround time 

as shown in Section 4.3 can leverage this nature of data centric applications. 

4.2.3 Improvement in iteration time 

The following tables illustrate the rate of improvement in iteration time of our sample 

matrix-multiply and LU factorization applications as they grow towards their sweet spot. 

 
Current processor allocation New processor allocation %improvement in iteration 

time 

2 4 46.9 
4 6 20.9 
6 9 25.8 
9 12 9.4 

12 16 19.7 
16 20 4.1 
20 25 0 

Table 1: Matrix multiplication sample application for N=9600 on Ethernet 
 

Current processor allocation New processor allocation %improvement in iteration 

time 

2 4 51.9 
4 6 11.3 
6 9 28.5 
9 12 12.6 

12 16 12.0 
16 20 -20.5 

Table 2: LU Factorization sample application for N=9600 on Ethernet 
 

As the application grows towards its sweet spot, the improvement in iteration time is not 

as much as compared to the initial stages of expansion. This property is leveraged, as 

shown in Section 4.3. Applications can be shrunk to a size that is less than the sweet spot 

without suffering a large performance penalty. The processors thus freed can be used to 

schedule other applications in the wait queue.  

The sample applications used in our experiments perform computations with two-

dimensional matrices of N rows and N columns. The above tables show that the 
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improvement in performance is more pronounced when the application grows from a 

non-square processor grid to a square processor grid. 

4.2.4 Redistribution overhead 

Figure 7: Matrix Multiplication, Redistribution overhead for N=9600
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Figure 8: LU Factorization, Redistribution overhead, N=9600
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The above tables show the overhead of redistribution in relation to the improvement in 

iteration time. The processor sizes indicate the new processor set the application is 

running at. The redistribution overhead is the time taken to redistribute data from the 

previous processor size to the size indicated in the charts. The application under 

consideration starts at an initial processor allocation of 2. 

 

The model applications that we have considered are computationally intensive, i.e., the 

amount of time spent in computation is many magnitudes higher than the amount of time 

spent communicating data between processors. As a result of this, the time spent in 

redistributing data from one processor size to another is also far less than the amount of 

time spent in one loop of the computation for the processor sizes. Thus, even a small 

improvement in the computational rate can compensate for the redistribution time within 

a few iterations of the application at the new processor size. 

 

The redistribution time does not result in a significant overhead in our model 

applications. However, for other scientific applications that employ functions such as the 

Jacobi method that are not very computationally intensive per iteration, the redistribution 

cost can be significant in comparison to the improvement in iteration time. Work done by 

Chinnusamy [1] aims at minimizing the redistribution overhead so that these applications 

can also benefit from dynamic processor allocation. 

4.3 Processor allocation decisions for job mixes 
 
In our framework, the adaptive sweet spot detection was used as a basis to implement 

scheduling strategies that leverage the fine grained control over processor allocations to 

jobs concurrently running on our test cluster. Experiments were conducted to demonstrate 

the potential benefit of dynamic processor allocation and parallel job resizing. 

 

When jobs are concurrently running in a system and are competing for resources, not all 

jobs can adaptively realize their sweet spot and run at that sweet spot for the entirety of 

their execution. A job can grow to use the available resources while it continues to 

achieve a performance benefit. Even though the job might not have achieved its sweet 
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spot, it might have to shrink to accommodate other jobs that have been scheduled based 

on its relative performance gains while expanding in comparison to other running 

applications. 

 

Since our system bases shrinking decisions on minimizing the overall performance hit to 

the system, applications that are closer to their sweet spot, and hence have not shown 

high performance gains in the later part of their growing phase are more likely to get 

shrunk than applications who are in the initial stages of their expansion phase and are 

showing significant performance gains. 

 

Short running jobs benefit greatly in our system. Long running jobs can be shrunk to a 

smaller size without a significant performance hit, allowing the small job to be scheduled. 

This would not be possible in a conventional queuing system where the small job would 

have to wait for the completion of the larger job before being scheduled. The large job 

can quickly regain its original size after the completion of the smaller job. 

 

Long running jobs also benefit from our system, since they have the ability to utilize the 

resources beyond their initial allocation, and users are not faced with the decision of 

scheduling the job on a smaller set of processors than desired based on current resource 

availability.   
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4.3.1 Job Mix 1  

 

Figure 9: Job Mix 1
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The above graph shows the lifetime of four jobs that were scheduled on our system. The 

total number of processors available in our test cluster is 32. Applications modify their 

processor sizes within this constraint. Our sizes for application data were influenced by 

the limitation of 32 processors. On a larger cluster comprising of hundreds or even 

thousands of processors, much larger applications can execute: larger in terms of both 

data size and processor allocations. 

 

Initially, Jobs 0, 1 and 2 were scheduled with processor allocations of 4 processors each. 

These jobs are long running jobs and expanded to utilize the unused processors in the 

system. Job 0 was able to determine its sweet spot at 9 processors and continued at this 

size for the rest of its life time. Jobs 1 and 2 expanded to 12 processors and continued to 

run at that size till Job 3 was scheduled. As a result of job 3’s presence in the wait queue, 

jobs 1 and 2 shrank to 6 processors in order to accommodate job 3’s request of 12 
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processors. Since job 3 was a short running job, job 1 and 2 were able to expand back to 

12 processors after the completion of job 3. 

 

4.3.2 Job Mix 2 
 

Figure 10: Job Mix 2

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time (sec)

#
 p

ro
c

Job 0 Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7

 
 
The above graph shows the life time of 7 jobs that were scheduled on our system. 

Initially Jobs 0, 1, 2 and 3 were scheduled. The data sizes of these jobs were chosen such 

that they represented four jobs in the range from very short running job to long running 

job. Jobs 2 and 3 were short running jobs that remained at their initial processor 

allocation and terminated, hence releasing these processors to Jobs 0 and 1 running on the 

system. Job 0 utilized these extra processors in order to realize its sweet spot at 16 

processors and continued at this processor allocation for the rest of its life time. Job 1 was 

able to expand to 12 processors from its initial allocation of 9 processors and continued at 

that size for the rest of its lifetime. After the completion of Jobs 2 and 3, Job 4 was 

scheduled. Job 4 was able to expand to a larger size only after the completion of Job 1. It 

then expanded from its initial allocation of 4 processors to 12 processors. However, Job 4 
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had to shrink back to 6 processors because of the presence of Job 5 in the wait queue 

which was waiting for 6 processors. After the competion of Job 4, Job 5 and Job 6 were 

able to expand beyond their initial allocation. Job 7 was also scheduled during this stage. 

After the completion of the other jobs, Job 7 was able to expand to occupy all the 

computational resources of the system and realize its sweet spot. 

 

4.3.3 System throughput and job turnaround time 
 
System throughput is the average time after which a job is completed in the system. It is 
the time taken by the jobs in the system divided by the number of jobs in the system. 
 
Job turn around time is the total time taken by the applications to execute in the system 
divided by the number of applications.  
 
The tables below show the comparison of the time spent in the system by the jobs in Job 

Mix 1 on a static scheduler in comparison to our dynamic processor allocation approach. 

 

Job 
static proc 
allocation 

start 
time end time 

total 
time 

Dynamic 
start time 

End 
Time 

Total 
Time 

0 6 0 3616 3616 0 2853 2853 
1 6 0 3652 3652 0 2826 2826 
2 6 0 3622 3622 0 2913 2913 
3 12 0 408 408 1498 1906 408 

Improvement in total time jobs spend in the system = 2298 seconds 
Improvement in throughput = 184.8 seconds/job 
 

Table 3: static processor allocation job mix 1 
 

 
As shown in the above table, if all jobs are scheduled initially in the static scheduler, the 

system throughput and the job turnaround time are greater than in the case of the dynamic 

scheduler. This is because jobs 0,1 and 2 are not able to take advantage of the idle 

processors after the completion of job 3.  

 

In the above case, Jobs 0,1 and 2 executed on 6 processors and could have run more 

efficiently if they had been scheduled on 9 processors each. This would mean that Job 3 

would have to wait for the completion of these jobs before being scheduled. 
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Job 
static proc 
allocation 

start 
time end time 

Total 
time 

Dynamic 
start time 

End 
Time 

Total 
Time 

0 9 0 2746 2746 0 2853 2853 
1 9 0 2887 2887 0 2826 2826 
2 9 0 2965 2965 0 2913 2913 
3 12 2965 3373 408 1498 1906 408 

Improvement in total time jobs spend in the system = 6 seconds 
Improvement in throughput = 115 seconds/job 
 

Table 4: static processor allocation job mix 2 
 

 
If jobs 0,1 and 2 were scheduled with 9 processors instead of 6, as in the previous case, 

they are able to perform better, hence alleviating the job turnaround time problem. As 

shown in the above table, the total time spent by jobs in the static system is only 6 

seconds greater than the amount of time spent in our dynamic system. However, job 3 is 

not able to startup until the other jobs in the system have completed. Hence the 

throughput of the system is still significantly better  than in the case of dynamic 

scheduling. 
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Chapter 5 
 

Conclusions and Future Work 
 
This chapter summarizes the features provided by our framework and future work that 

will extend the functionality of our framework. 

5.1 Summary 
 
We have provided a framework that enable parallel applications to dynamically resize 

efficiently during their execution. Our scheduling framework enables applications to 

iteratively expand to occupy more processors and determine the processor allocation at 

which the application performs the best. Under the condition of multiple applications 

being scheduled under our framework, applications are able to shrink to accommodate 

new applications without undertaking a severe performance penalty and are able to grow 

back to larger sizes when idle processors are made available. Our framework enables the 

scheduler and the application to work together to make good resizing decisions. The API 

provided by us enables conventional SPMD programs to be easily ported to take 

advantage of dynamic resizing. 

 
We believe that with the introduction of the MPI-2 standard, dynamic processor 

management will be popularized and application developers will consider this aspect 

during their application development in order to achieve better throughput and job turn 

around times. 

 

5.2 Future Work 
 
Exploring different processor topologies and historical data. 
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Scientific applications can use the processors assigned to them under many different 

processor topologies. For example, if the application views the processors as a 2-D grid 

of MxN, then many choices of M and N are possible for any given total processor size. 

The performance of the application on these different processor topologies will be 

different based on data distribution and the communication properties of the application. 

Performance data can be gathered at these different processor topologies to get a better 

understanding of the application performance. Moreover, recommender systems can be 

used to use this information to predict performance of applications at topologies for 

which data is not available. The data collection phase can be significantly reduced if the 

information from previous runs of the application can be incorporated in the sweet spot 

determination process.  

 

Other performance metrics 
Our framework uses the time spent by the application in one iterative loop of its 

computation. Performance metrics such as machine load averages, applications parallel 

efficiency and speed up can be used to explore other definitions of sweet spots. 

Thresholds need to be determined such that application do not expand if the performance 

gain is not within a given threshold. 

 

Extend scheduling framework 

Our scheduling framework provides the basic functionality required for dymanic 

processor management. In order to be used as a viable scheduling system constructs such 

as job priorities, reservations and Quality of Service need to be addressed. With the 

growing popularity of grid computing through the Globus framework work needs to be 

done in order to make our work viable across multiple clusters and on a global scale. 
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