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Abstract

We show that at the onset of a cyclic fold bifurcation, a birhythmic medium composed of gly-

colytic oscillators displays turbulent dynamics. By computing the largest Lyapunov exponent, the

spatial correlation function, and the average transient lifetime, we classify it as a weak turbulence

with transient nature. Virtual heterogeneities generating unstable fast oscillations are the mecha-

nism of the transient turbulence. In the presence of wavenumber instability, unstable oscillations

can be reinjected leading to stationary turbulence. We also find similar turbulence in a cell cycle

model. These findings suggest that weak turbulence may be universal in biochemical birhythmic

media exhibiting cyclic fold bifurcations.
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I. INTRODUCTION

In studies of chemical turbulence in reaction diffusion systems near a Hopf bifurcation,

a reduction of the model to the complex Ginzburg Landau equation(CGLE) is very useful

[1, 2]. First, it allows to define a parameter set in the model leading to turbulence without

carrying out simulations [3]. Secondly, the detailed knowledge of the CGLE’s dynamics can

be very helpful [4, 5, 6, 7], because mathematical models from different disciplines displaying

dynamics near a Hopf bifurcation obey the same qualitative dynamics of the CGLE [8].

However, the CGLE alone is insufficient for a qualitative description of realistic models

in a neighborhood of a Hopf bifurcation, when other bifurcations occur nearby [9, 10].

For example, near a supercritical Hopf bifurcation point, another stable limit cycle may

exist, so that, depending on initial conditions, oscillations with two different frequencies and

amplitudes are possible. Such a situation called birhythmicity is a characteristic feature of

a number of well known models in biochemical oscillations [13, 14]. For these systems, the

CGLE cannot be used without appropriate modifications. Often, the best way to approach

these problems is simulations of the original models [10, 11].

To the best of our knowledge, little is known about turbulence in birhythmic media.

Intuitively, in a regime of a strong wavenumber instability, birhythmicity should not be a

factor. Therefore, turbulence in homogeneous birhythmic media and in coupled limit cycle

oscillators should have similar characteristics. In the absence of wavenumber instability,

high frequency oscillations are supposed to suppress slow oscillations and restore uniform

oscillations. But at the onset of a cyclic fold (CF) bifurcation in birhythmic media of a

biochemical origin, high frequency oscillations may be unstable. Thus, a complete suppres-

sion of slow oscillations may not be achieved in these systems. On the contrary, if unstable

oscillations emerge persistently, complex spatiotemporal motions are possible.

The goal of this work is to show that near cyclic fold bifurcations in birhythmic media,

virtual heterogeneities creating unstable oscillations can lead to a peculiar turbulence, inter-

mittency of small and large amplitude oscillations. We will first compute complex spatiotem-

poral behavior in a birhythmic medium composed of glycolytic oscillators. By calculating

the maximal Lyapunov exponent, the spatial correlation function, and the average tran-

sient lifetime, we will provide evidence that this behavior is weak transient turbulence. In

the presence of wavenumber instability transient turbulence may become stationary. Math-
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ematically, the instability of the faster oscillations is a result of a CF bifurcation driven

by the terms representing enzymatic regulations, suggesting that weak turbulence may be

common in biochemical birhythmic media exhibiting CF bifurcations. As further evidence,

we demonstrate weak turbulence in a cell cycle model. A biological system where weak

turbulence might possibly be found is presented in the closing section.

II. A BIRHYTHMIC MEDIUM OF GLYCOLYTIC OSCILLATORS

Let us introduce a birythmic medium composed of glycolytic oscillators,

dα

dt
= ν +

σiγ
n

Kn + γn
− σφ + Dα∆α, (1)

dγ

dt
= Qσφ − ksγ − Qσiγ

n

Kn + γn
+ Dγ∆γ, (2)

φ =
α(1 + α)(1 + γ)2

L + (1 + α)2(1 + γ)2
.

In Eqn. (1-2), α and γ represent dimensionless substrate and product concentrations

of glycolytic reactions, K, n, ν, σi, σ, ks, L and Q are parameters. For convenience, we

assume Q ≡ 1 throughout this paper. Dα, Dγ are diffusion constants for the substrate

and product. Our units of time and space are sec and cm, respectfully. When Dα = 0,

Dγ = 0 and σi = 0, Eqn. (1-2) is called the glycolytic oscillator. The term σiγ
n

Kn+γn represents

substrate recycling that drives birhythmicity. Recently, in Ref. [15], Eqn. (1-2) were shown

to support multiple wave fronts. Our concern in this paper is a different parameter region

where irregular spatiotemporal motions develop.

A phase plane analysis of Eqn. (1-2) shows that the mechanism of birhythmicity is

two regions of negative slope in the product nullcline [13]. A convenient way to illustrate

birhythmicity is a bifurcation diagram. We used a well known software package, AUTO [16],

for bifurcation analysis of the local model(Dα = Dγ = 0 in Eqn. (1-2)). Solid lines in Fig.

1 show stable steady states, dashed lines show unstable steady states. Stable limit cycles

are shown by filled symbols, unstable limit cycles by open circles. Filled circles represent

small amplitude oscillations with high frequencies. Large amplitude oscillations with low

frequencies are shown by filled diamonds in Fig. 1. A Hopf bifurcation point HB is located

at σi,cr ≈ 1.282. There are two CF bifurcations in Fig. 1, where stable limit cycles are
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replaced by unstable ones. Between these two CF points, which occur at σi,CF 1 ≈ 1.77 and

σi,CF 2 ≈ 1.83, two stable limit cycles coexist. Therefore, depending on initial conditions, one

of the limit cycles will be selected in simulations of the glycolytic oscillator with substrate

recycling.

A general mechanism of turbulence in oscillatory reaction diffusion systems is wavenumber

instability, i.e., instability of uniform oscillations against phase-like fluctuations [1]. In Eqn.

(1-2), there are two different uniform oscillations that might undergo wavenumber instability.

We want to provide evidence that these oscillations are stable against phase-like fluctuations

for the parameters in Fig. 1. For the fast, uniform oscillations which originate from the Hopf

bifurcation point shown by filled circles in Fig. 1, the stability condition can be obtained

by reducing Eqn. (1-2) to the CGLE,

Ȧ = (1 + ic0)A − (1 + ic2)|A|2A + (1 + ic1)∆A. (3)

In Eqn. (3) A is the complex amplitude, and ω, β, γ are real parameters. The CGLE has a

uniform oscillatory solution, A = exp(i(c0 − c2)t), that is stable if the condition 1+ c1c2 > 0

holds. In the appendix, we calculated c0, c1 and c2 corresponding to Eqn. (1-2). Our results

show that the uniform oscillations are stable for the parameters used in Fig. 1, for any

Dα > 0 and Dγ > 0. For Dα = Dγ we find that c1 = 0. Hence, the parameter region

we are interested in is deep inside the Benjamin-Feir stability region given by 1 + c1c2 > 0.

Although the CGLE is valid only near the HB point, it is likely that the uniform oscillations

will remain stable until the the next bifurcation in the system, i.e., CF 1 in Fig. 1 [8]. Next,

consider the uniform oscillations with low frequencies. Unlike the case of fast oscillations,

no analytic approach is available in this case. Note that oscillations shown by filled circles

and diamonds in Fig. 1 occur at the same parameters. Therefore, it is rather unlikely that

the slow oscillations undergo wavenumber instability, contrary to the fast ones. Thus, we

can assume that uniform, slow oscillations are also stable.

It is known that strong perturbations can switch oscillations from one stable orbit to an-

other in the glycolyctic model with substrate recycling [13]. Therefore, even if both uniform

oscillations in Eqn. (1-2) are stable against wavenumber instability, strong perturbations

can excite the system by switching the oscillations. This kind of excitability, however, will

not lead to turbulence; in the parameter interval [σi,CF 1, σi,CF 2], the fast oscillations will

suppress the slow ones as time progresses. But for |σi − σi,CF 1 | ≪ 1 where the fast oscil-
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lations become unstable, it is apparent that a complete suppression of slow oscillations is

impossible. Here, because of complex interactions between stable, slow and unstable, fast

oscillations, interesting spatiotemporal dynamics might develop. Therefore, we carried out

a detailed numerical study in the neighborhood of CF 1.

III. WEAK TURBULENCE IN A BIRHYTHMIC MEDIUM OF GLYCOLYTIC

OSCILLATORS

For numerical integrations of Eqn. (1-2) in one spatial dimension, we used the fourth

order Runge-Kutta method. Diffusion terms were approximated by the finite difference

method. Numerical parameters are δx = 0.005cm, δt = 0.05s. The system size is defined

as l = Nδx, where N is the number of spatial grid points. In this paper we present results

for periodic boundary conditions, but we also tested the main results with no-flux boundary

conditions. We also tested selected examples with smaller values of δx and δt for fixed l.

Our simulations show that Eqn. (1-2) are sensitive to initial conditions. By choosing initial

conditions as small perturbations of uniform, slow oscillations with large amplitudes, we

found that these oscillations are stable for σi < σi,CF 2. But, near and to the left of CF 1,

uniform, fast oscillations with small amplitudes are found to be unstable. They spiral out

from unstable orbits towards the orbit of stable, large amplitude oscillations. For strong

perturbations near the CF 1 bifurcation point, we found spatiotemporal irregular motions in

Eqn. (1-2).

Fig. 2 shows a gray scale plot of spatiotemporal dynamics in Eqn. (1-2). Oscillations

between the white and black colors show large amplitude oscillations displayed by γ(x, t).

There are also oscillations with higher frequency and smaller amplitude in Fig. 2. Because

the latter ones are unstable, they can not suppress large amplitude domains. Although

uniform, large amplitude oscillations are stable against small fluctuations, phase slips created

by strong initial perturbations cannot be eliminated as time progresses. As a result, spatially

nonuniform distributions of concentrations are seen at given time moments, Fig. 3. On the

phase plane, these nonuniform distributions generate motions attracted by unstable orbits

around the inner cycle shown in Fig. 4. We found that such unstable orbits act as a weak,

virtual heterogeneity emerging randomly. They cannot entrain the bulk oscillations, but in

their presence, phase slips cannot be eliminated. Instead, persistent spatiotemporal irregular
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motions develop.

To characterize the irregular motions in Fig. 2, we calculated the maximum Lyapunov

exponent λmax
lyap in 2N dimensional phase space [17]. First we made a very long run of Eqn.

(1-2) to confirm that the turbulence is stationary. Then, by using the same initial conditions,

we simulated Eqn. (1-2) and its linear system for computation of λmax
lyap for T1 = 2 · 105s. We

found that the largest Lyaponov exponent is positive and small, λmax
lyap ≈ 2 · 10−3. We also

calculated a two-point correlation function, C(x) =< γ(x0, t)γ(x0 + x, t) >, where < .. >

stands for an average over space and time [18]. Fig. 5 shows that C(x) ≈ const at small

values of x, indicating strong local coupling and an absence of short waves. A power-law

decay of the correlation function at intermediate values of x implies the presence of chaotic

motions. We found that the slope is κ ≈ −0.15. We also found no significant variations

of κ and λmax
lyap with changes of σi and l. The small values of κ and λmax

lyap > 0 suggest

that spatiotemporal irregular motions shown in Fig. 2-4 can be characterized as a weak

turbulence.

We found that in Eqn. (1-2), stationary irregular motions can develop only for certain

initial conditions and system sizes. In simulations with different initial conditions and system

sizes, we observed sudden collapses of turbulent dynamics. Collapse of turbulence in Eqn.

(1-2) means a complete suppression of small amplitude oscillations. Thus, we defined the

transient lifetime of turbulence tp as the time interval from initial conditions to the moment

when all oscillators come within a distance d of the orbit of stable, slow, large amplitude

oscillations. In our simulations we used d = 0.03. Following Ref. [12], we plot an average

transient lifetime tp versus the system size l in Fig. 6. Here, each filled circles is an average

of 20 simulations with different initial conditions. Fig. 6 shows that, as the system size

increase, tp grows exponentially.

For some initial conditions, when l is close to 2cm, the turbulent solution does not

collapse. The inset in Fig. 6 shows the number of cases, among 20 different simulations,

when a collapse of turbulence has not occurred by T = 106s. (These cases were not included

in calculations of the filled circles in Fig. 6.) We continued two cases in the inset (at

l = 1.75cm) up to T = 108s and did not observe a collapse of motions near the inner cycle

in Fig. 4.

Numerical experiments indicate that if virtual heterogeneities reside sufficiently far from

each other, a stationary pattern is possible in the interval σi ∈ [1.055, 1.075]. Fig. 7 gives
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an example of such a pattern. Here virtual heterogeneities are located from each other by

distances between 0.5cm and 1cm. Note that these quasi-periodic structures are not related

to a Turing instability, which emerges due to differences in diffusion coefficients. Unstable

oscillations at the onset of a CF bifurcation are the instabilities leading to these structures.

The cellular structures in Fig. 7 are breathing because of the unstable oscillations. Numerical

results show that as the system size increases, the cells breath coherently.

A collapse of turbulence can be prevented if there is a reinjection mechanism for the

unstable oscillations generated by the virtual heterogeneities. Naturally, wavenumber insta-

bility can be such a mechanism. Using our calculations in the appendix, we simulated Eqn.

(1-2) for parameters when the corresponding CGLE displays a wavenumber instability and

found that small amplitude oscillations exhibit phase instability near Hopf bifurcation. For

|σ − σi,CF 1 | ≪ 1 we found stationary weak turbulence.

IV. WEAK TURBULENCE IN A CELL CYCLE MODEL

In section III, we demonstrated that the CF 1 bifurcation point is crucial for turbulence

in Eqn. (1-2). Mathematically, the term representing substrate recycling drives CF bi-

furcations. In models of biochemical oscillations, terms representing enzymatic activities

naturally arise. As an enzyme can quickly switch from being active to inactive and back

again, ideal conditions for CF bifurcations exist in these models. Therefore, other biochemi-

cal reaction diffusion models may also display the weak turbulence discussed in the previous

section. As an example, consider a three variable model of the budding yeast cell cycle,

dX

dt
= m(k1 + k2T ) − (k3 + k4Y + k5Z)X + DX∆X, (4)

dY

dt
=

(k6 + k7Z)(1 − Y )

J1 + 1 − Y
− (k8m + k9X)Y

J1 + Y
+ DY ∆Y, (5)

dZ

dt
= (k10 + k11X) − k12Z + DZ∆Z, (6)

T = G(X, P, J2, J2), (7)

G(a, b, c, d) =
2ad

b − a + bc + ad +
√

(b − a + bc + ad)2 − 4ad(b − a)
, (8)

where the transcription factor T for X is given by the Goldbeter-Koshland function G [13].

X, Y , Z are dimensionless variables and m is a dimensionless parameter. Our units of time
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and space are min and cm, respectfully.

When DX = DY = DZ = 0, Eqn. (4-8) are the reduced version of a budding

yeast cell cycle model [19]. Here, X represents the concentration of cyclin-dependent pro-

tein kinase(CDK), Y and Z are concentrations of two different anaphase promoting com-

plexes(APC), APC/Cdh1 and APC/Cdc20 respectively. In Eqn. (4-5), m represents the

cell’s mass, which will be used as a primary bifurcation parameter. Eqn. (4-8) display CF

bifurcations as shown in Fig. 8. For small m, Eqn. (4-8) also display saddle node bifurca-

tions, a feature universal in cell cycle models [14, 19]. Here, our concern is the neighborhood

of CF 1 in Fig. 8.

There are no experimental measurements of diffusion coefficients for CDK, and APC

factors. But it is known that diffusion coefficients of average sized proteins in cytoplasm are

order of 10−4 cm2

min
or smaller [20, 21]. As our goal is a demonstration of weak turbulence in a

representative model of biochemical oscillations, we choose DX and DZ arbitrarily subject

to this upper bond. For simplicity, we assume DZ = 0.

For simulations of Eqn. (4-8) we used the same method as in the previous section with

δt = 0.05min, δx = 0.005cm. We found numerically that for strong perturbations, Eqn.

(4-8) display a weak turbulence, Fig. 9. Typically, for DX ≤ DY , we found transient,

weak turbulence. When DX << DY , numerical experiments lead to stationary turbulence.

For instance, we simulated Eqn. (4-8) up to T = 107min for m = 3, DX = 6 · 10−7 cm2

min
,

DY = 10−4 cm2

min
, DZ = 0 and l = 1.28cm and found stationary turbulence for a number of

different initial conditions.

V. DISCUSSION

We have shown in this paper that two representative mathematical models of biochemical

oscillations exhibiting birhythmicity, glycolytic and cell cycle models, display weak turbu-

lence, intermiitency of large and small amplitude oscillations. We revealed that unsta-

ble oscillations near cyclic fold bifurcations are the mechanism of transient turbulence in

birhythmic media. In the presence of wavenumber instability, weak turbulence is stationary.

Recently, Stich et. al. [22, 23] proposed an amplitude model for birhythmic media.

An interesting question is whether the weak turbulence we discussed in this paper can be

found in their model? First, let us mention two important differences between our models
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and the amplitude model of birhythmic media. In our case, a cyclic fold bifurcation is

crucial for turbulence, but the amplitude model describes a pitch-fork bifurcation of limit

cycles. Secondly, both fast and slow oscillations in the amplitude equation are smooth, but

in our case, slow oscillations are strongly anharmonic. Besides these differences, it is well

known that if phase slips develop, the CGLE equation generates defects [24]. Thus, these

facts indicate that instead of intermittency of small and large amplitude oscillations, defect

turbulence is likely in the amplitude model of birhythmic media.

To date, there are no experimental evidences of weak turbulence in glycolysis or in the

cell cycle. Our results are pure theoretical predictions of mathematical models. The system

sizes we simulated are much larger than the typical size of an yeast cell (10−3cm). Therefore,

weak turbulence is not expected in yeasts. Interestingly, some slime molds grow as syncytial

plasmodia (many nuclei in a common cytoplasmic pool) that are many times larger than

a typical yeast cell; cells 15cm in diameter can be grown in the laboratory [25]. Waves of

nuclear division are observed in these multinucleate plasmodia [26, 27], and, as we have

shown it is possible that these waves exhibit weak turbulence. Note that weak turbulence

in the cell cycle would mean irregular oscillations of CDK. But for a normal cell cycle,

large amplitude oscillations of CDK are essential; CDK activity must drop below a certain

threshold for nuclei to exit mitosis and divide. Therefore, hypothetically, weak turbulence

in syncytial plasmodia might lead to mitotic arrest of certain nuclei in the plasmodium.

A more quantitative characterization of wavenumber instability of unstable oscillations

at the onset of a cyclic fold bifurcation, as well as simulations in two spatial dimensions [28]

are problems in the future.

APPENDIX A: COEFFICIENTS OF THE CGLE FOR A GLYCOLYTIC MODEL

WITH SUBSTRATE INHIBITION

In this appendix, following standard procedures in Ref. [1], we will calculate coefficients

of CGLE for the glycolytic model. For a convenience we assume Q ≡ 1 in Eqn. (1-3). First,

let us find uniform steady state solutions α0 and γ0,

γ0 = µ/ks, (A1)

α0 =
K4(−2µ + σ) + γ4

0(−2(µ + σi) + σ)

c̃
−
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−
√

−4ã2 + 4Lσãb̃ + (1 + γ0)2σ2b̃2

(1 + γ0)c̃

(A2)

where, ã = K4µ+γ4
0(µ+σi), b̃ = (K4+γ4

0), c̃ = 2(K4(µ−σ)+γ4
0(µ+σi−σ)). Next we perform

a linear stability analysis of (α0, γ0) against small fluctuations δα, δγ ∝ exp(iqx + iλt). At

the critical wavenumber qcr = 0, we obtain a characteristic equation,

λ2 + (a1 + a2 + ks)λ + a1ks = 0. (A3)

In Eqn. (A3), a1 and a2 are given by

a1 =
σ(1 + γ0)

2(L + 2Lα0 + (1 + α0)
2(1 + γ0)

2)

(L + (1 + α0)2(1 + γ0)2)2
, (A4)

a2 =
4K4γ3

0σi

(K4 + γ4
0)

2
− 2σLα0(1 + α0)(1 + γ0)

(L + (1 + α0)2(1 + γ0)2)2
. (A5)

Let us define such a critical value for the bifurcation parameter σi = σi,cr that

a1 + a2 + ks ≡ 0. (A6)

Eqn. (A6) is the condition for a Hopf bifurcation; the characteristic equation has pure

imaginary solutions, λ0 = ±i
√

a1ks.

Let µ be defined by µ =
σi−σi,cr

σi,cr
. We develop the Jacobian matrix L of Eqn. (1-3) in

powers of µ,

L = L0 + µL1 + .... (A7)

At µ = 0 the Jacobian is given by

L0 =

∣

∣

∣

∣

∣

∣

∣

−a1

a1

a2

−ks − a2.

∣

∣

∣

∣

∣

∣

∣

. (A8)

We find the right u0 and left u0
∗ eigenvectors of L0 corresponding to λ0,

u0 =







−1 + i
√

ks

a1

1





 , (A9)

u0

∗ =
1

2

(

−i

√

a1

ks

, 1 − i

√

a1

ks

)

. (A10)
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We find further,

L1 =
4K4γ3

0σi,cr

(K4 + γ4
0)

2

∣

∣

∣

∣

∣

∣

∣

0

0

−1

1

∣

∣

∣

∣

∣

∣

∣

. (A11)

Let us first find c0 in the CGLE. It is given by c0 = Imλ1

Reλ1
, where

λ1 = u0

∗L1u0 =
2K4γ3

0

(K4 + γ4
0)

2
σi,cr. (A12)

We see that λ1 is pure real, therefore, c0 = 0. Now following again [1], we find c1,

D =

∣

∣

∣

∣

∣

∣

∣

Dα

0

0

Dγ

∣

∣

∣

∣

∣

∣

∣

, (A13)

d′ + id′′ = u0

∗Du0, (A14)

c1 = d′′/d′ =

√

a1

ks

(

Dα − Dγ

Dα + Dγ

)

. (A15)

Calculation of c2 is a little more tedious. We need to find [1],

V+ = V̄− = −(L0 − 2λ0)
−1

M0u0u0, (A16)

V0 = −2L0
−1M0u0ū0, (A17)

g = g′ + ig′′ = −2u0

∗M0u0V0 − 2u0

∗M0ū0V

−3u0

∗N0u0

∗u0

∗ū0. (A18)

Parameter c2 in the CGLE is given by a formula, c2 = g′′/g′. We find that c2 = g̃′′

g̃′
, where

g̃′ = −3ks[ksmα2(2mα2 − mαγ) + a1((2mα2 − mαγ)(mα2 − mα,γ + mγ2)

−ks(nα2γ − 3nα3)) + 3a2
1(nαγ2 − nα2γ + nα3 − nγ3)], (A19)

g̃′′ =

√

ks

a1
[10k2

smα2
2 + a1ks(14mα2

2 − 14mα2mα,γ + mαγ
2 + 10mα2mγ2 + 9ksnα3) +

+a2
1(4(mα2 − mα,γ + mγ2)2 + 3ks(nαγ2 − 2nα2γ + 3nα3))]. (A20)

In the above expressions, mα2 = (∂2φ(α,γ)
∂α2 )α0,γ0

, mαγ = (∂2φ(α,γ)
∂α∂γ

)α0,γ0
, mγ2 =

2(3K8γ2

0
−5K4γ6

0
)σi,cr

(K4+γ4

0
)3

− (∂2φ(α,γ)
∂γ2 )α0,γ0

, nα3 = (∂3φ(α,γ)
∂α3 )α0,γ0

, nα2γ = (∂3φ(α,γ)
∂α2∂γ

)α0,γ0
, nαγ2 =

(∂3φ(α,γ)
∂α∂γ2 )α0,γ0

, nγ3 = (∂3φ(α,γ)
∂γ3 )α0,γ0

. To save space we do not present here cumbersome

expressions for these derivatives.
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For parameters in Fig. 1 we find that σi,cr = 1.282 and c2 ≈ 2.21. From Eqn. (A15) we see

that if Dα = Dγ, c1 = 0. Therefore, 1+c1c2 > 0 for parameters used in this paper. If Dα = 0,

Eqn. (A15) gives the minimal value, c1 = −0.47. In this case 1 + c1c2 ≈ −0.03, therefore,

wavenumber instability is possible. However, turbulence must be weak as the parameters

are very close to the stability condition 1 + c1c2 > 0 [2]. A stronger wavenumber instability

is possible, for example, for µ = 0.28s−1, K = 12, Dα = 5 · 10−7 cm2

s
, Dγ = 1 · 10−5 cm2

s
and

other papameters are the same as in Fig. 1. In this case, we find that σi,cr ≈ 1.095 and

1 + c1c2 = −0.416.
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LIST OF FIGURES

FIG. 1. A bifurcation diagram of Eqn. (1-3). HB marks a Hopf bifurcation point, CF1,2

mark cyclic fold bifurcations. Parameters are: ν = 0.25s−1, n = 4, K = 11.5, σ = 11s−1,

ks = 0.05s−1, L = 3400000.

FIG. 2. Space-time pattern of γ in a weak turbulent regime of Eqn. (1-2). The space and

time spans are l = 1.75cm and T = 5 · 103s. The pattern was obtained by recording γ(x)

with a time interval τ = 5s. Dα = Dγ = 1 · 10−5 cm2

s
and σi = 1.065s−1. Other parameters

are the same as in Fig. 1.

FIG. 3. Snapshots of spatial distributions of α at two different time moments. Parameters

are the same as in Fig. 2.

FIG. 4. A phase plane view. The outer cycle shows the orbit of stable uniform oscillations

with a period τ = 300s. The inner cycle shows the orbit of small amplitude, fast oscillations

with a period τ = 290s at σi = 1.08s−1. With the decrease of σi, the inner cycle disappears,

but it still can attract neighboring trajectories creating a virtual, chaotic heterogeneity in

Eqn. (1-2). The solid lines show oscillator distributions at two different time moments.

Parameters are the same as in Fig. 2.
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FIG. 5. A log-log plot of the spatial correlation function. Parameters are the same as in

Fig. 2.

FIG. 6 Average transient lifetime versus the system size. The inset shows the cases when

a collapse of turbulence has not occurred by T = 106s. Parameters are the same as in Fig.

2.

FIG. 7. Breathing periodic structures. l = 3.5cm, other parameters, as well as the time

and space spans are the same as in Fig. 2.

FIG. 8. Bifurcation diagram of a cell cycle model. Rate constants ki are in units min−1,

k1 = 0.002, k2 = 0.053, k3 = 0.01, k4 = 2, k5 = 0.05, k6 = 0.04, k7 = 1.5, k8 = 0.19,

k9 = 0.64, k10 = 0.005, k11 = 0.07, k12 = 0.08. Other parameters are P = 0.15, J1 = 0.05,

and J2 = 0.01, l = 1.28cm, DX = 6 · 10−7 cm2

min
, DY = 10−4 cm2

min
and DZ = 0.

FIG. 9. Turbulence in a cell cycle model. Space time plot of Y field in Eqn. (4-8). The

space and time spans are L = 1.28cm and T = 2500min. The pattern was obtained by

recording Y (x) with a time interval τ = 5min.
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