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(ABSTRACT) 

When discrete piezoelectric actuator patches bonded on structures are used for active 

shape, vibration, and acoustic control, the desired deformation ficld in the structure is 

obtained through the application of localized line forces and moments generated b A 
& 

expanding os contracting bonded piezoelectric actuators. An impedance-based model to 

predict the dynamic response of cylindrical shells subierted io cacuation trom surface- 

bonded induced strain actuators is presented. The essence of the immedance approach is to 

include the actuatorsiructure impedance ratio in the calculations of the actuator forces 

applied to the structure, which will retain the dynamic characteristics of the actuators. 

The appropnaie representation of the loading due io in-ohuse and out-of-phase 

actuation is discussed. Due to the curvature of the shell, ihe representation of ibe i-phase 

actuation with an equivalent in-plane line force applied along the edge of the actuator results 

in the appiication cf erroneous rigid-body transverse force. To avcid these rigid body terces, 

the action of the actuator needs to be represented by am equivalent in-plane force and a 

transverse distributea pressure applied in the region of the actuator patch to maintain the 

structure self-equilibrium. 

A full derivation of the impedance model is included, taking great care in the 

structural and actuator impedance definition. It is found that the actuator's output dynamic 

force in the axial and tangential direction are not equal. Various case studies of a cylindrical 

thin shell are performed to illustrate the capabilities of the developed impedance model. The 

in-phase and out-of-phase actuation authority of induced strain actuators bonded to the 

surface of a shell is compared. It is shown that out-of-phase actuation has better authority in



exciting the lower ordcr bending modes, while in-phase actuation has better authority in 

exciting the higher order circumferential modes. 

Dynamic finite clement analysis has been performed using piezoclectric elements 

available in ANSYS 5.0. The good correlation between the finite clement results and the 

impedance model confirms the analytical solution. Expcrimental data of a circular ring 

actuated in-phase and out-of-phase by a piczoclectric matcrial (PZT) were also compared to 

the derived impedance model.
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Chapter 1 

Introduction 

11 Motivation 

In any mechanical system with moving parts, specia! attention must ve given to 

reduce vibrations and accompanying noise. If the system cannot be balanced or is 

subjected to random vibrations, passive or active contro! of the structure can be considered 

to reduce vibrations. One way to perform active control is to use shaker type actuators, but 

this involves many moving parts external to the base structure. Induced strain actuators, 

like piezoelectric materials and shape memory alloys, can also be used in vibration and 

acoustic control. What distinguishes induced strain actuators trom conventional hydraulic - 

and elecirical actuators, and makes them especially attractive for smart stniciures, is thei 

~ ability to change their dimensions and properties without utilizing any moving paris. The 

absetice of mechariica! parts allows the induced strain actuators to be easily integrated (either 

through embedding or through surface-bcnding) into the base structure. When integrated, 

. the induced strain actuators apply iccalized strains and direcily infinence ihe extensional and 

bending responses of the structural elements. Efficient structural contro! can then be 

obtained by applying forces directly on the structure at critica] locations, which will eliminate 

the undesirable dynamic. effects due to changes in the apparent structural impedance. Also, 

the integration within the structure ensures an overall force equilibrium between the forcing 

actuator and the deforming structure, thus precluding any rigid body forces and torques. 

Since this concept for vibration and acoustic control was introduced, nurnerous 

efforts have been made to analytically model the induced strain actuation of structures to 

further understand the mechanisms involved in the strain and stress transfer between the 

actuators and the structure. In the earlier analytical models, the actuator was subjected to a 

constant voltage and the actuator output force is computed from static considerations (i.e. 

local actuator/structural geometric and material properties), which resulted in frequency 

independent equivalent actuator forces and moments. For dynamic analysis of intelligent 

structures, the statically determined actuator forces and moments were simply assumed to



be constant over the whole frequency range of interest and were then introduced in the 

equations of motion. This static-based approach to dynamic analysis of intelligent 

structures shows important shortcomings in the accuracy of the calculated dynamic 

structural response because it neglects all the dynamic interactions between the actuators 

and the structures. In vibration control, the dynamic issues are present and should be 

considered in the modeling. Furthermore, these models did not take account of the 

different stiffnesses of the structure in different directions, which will mistakenly result in 

equal actuator output forces in both directions. 

In shell structures, the in-plane and out-of-plane displacements are coupled and the 

equations of motion can not be solved independently. Models have been developed based on 

layered shell theory, i.e., the analytical mode] assumes that the induced strain actuator 

material comprises a total, distinct layer of the shell. However, layered actuatcrs are only of 

theoretical interest, since typical piezoceramic actuators cam not be imaplemented on curved 

surfaces due to their brittle properties. Discrete actuator patches bonded on thin shell 

structures can be implemenied in practical appiucatians but only few models adapted from 

plate theory were proposed. At first sight, this adaptation seeras periectly reasonable because 

the shell is thin. However, even for thin shells, the displacement coupling is important 

enough to introduce important errors when such plaie adaptations to shells are made. 

Impedance models based on the dynanuc properties of the actuators and the. 

structure have also. been proposed. The essence of the impedance approach is to include .. 

the actuator/structure impedance ratio in the calculations of the actuator forces applied to the 

structure, which will retain the dynamic characteristics of the actuators. Thus far, work as 

been done on beams and plates. Impedance models were also derived for shells, but lack 

in accuracy and only applied to out-of-phase actuation. 

12 Objectives 

In this dissertation, the principal objective is to develop an accurate model for shell 

structures excited harmonically with induced strain actuator surface bonded patches. The 

impedance modeling approach, which is an effective method in modeling the dynamic 

interaction between the induced strain actuators and the structure, will be used. The 

impedance model will strengthen all the weaknesses of the previous analytical models; such



as actuator forces’ independence to frequency, actuator forces’ equality in the axial and 

tangential directions, model based on plate equations neglecting curvature effects, and 

omission of the actuator/structure dynamic interaction. The derived model is to be 

comprehensive, being developed for two dimensional cylindrical shells excited in-phase, 

out-of-phase, or unsymmetrically. Case studies of rings and shells are to be compared to 

dynamic finite element analysis and experimental data. 

13 Dissertation Organization 

This dissertation is a collection of papers presented at various conferences focusing 

on intelligent material systems and structures. Because of this organization, the reader 

might find some repetition in each chapter, but each cnapter has the advantage of being 
o 

independent. A detailed list of the paper references can be found in Appendix A, 

The dissertation begins with a literature review on the mechanics of induced strain 

actuation of intelligent structures. The review will concentrate on the static and dynamic 

analytical modeling of beams, plates, and shelis, on the finite elernent modeling, and on the 

actuator/structure interaction. To help the reader lovate the present work in the literature, all 

chapters of the dissertation are included in the review. 

Preliminary work to understand the difficulties created by the in-plane/out-of-plane 

coupling proper to curved structures is presented in Chapter 3. The specia] considerations 

needed for the in-phase actuation of sheils are discussed. Based on these considerations, a 

closed form model for a ring statically actuated in-phase is presented in Chapter 4. The 

core of the dissertation comes with the impedance modeling presented in Chapters 5, 6, and 

8. The model derivation of a one dimensional circular ring harmonically actuated out-of- 

phase and in-phase are presented in Chapters 5 and 6, respectively. An extended model for 

two dimensional circular shells harmonically actuated in-phase, out-of-phase, or 

unsymmetrically is presented in Chapter 8. All the derived models are compared with finite 

element analysis throughout the dissertation, along with an experimental verification 

presented in Chapter 7. Finally, in the final chapter, conclusions and recommendations for 

continuing research are presented.



Chapter 2 

Review of the Mechanics of Induced Strain 
Actuation of Intelligent Structures 

Abstract 

For more than ten years, intelligent systems and structures have created great interest 

in the research community, both in the academia and in the industry, because of their 

enormous possibilitics in vibration and acoustic control, shape control, and health monitoring. 

Intelligent structures consist of a full integration of its sensing, processing and actuation 

capabilities within the base siructure. This review will focus on the actuation part of 

intelligent systems, particularly on the nechanics of induced strain actuators. Analytical 

models for beams, plates, and sheils are first presented. Two types of modeis are corsidered: - 

Static; the action of the actuators.is based on the static response of ihe intelligen: struciures, 

and dynamic; the fuli dynamic interaction between the induced strain actuators and the 

Structure is considered. A discussion on the finite element modeling of intelligent struciures 

thea 
is then presented. Final}y, the actuator/stracture interaction is discussed, concentrating on the 

bonding layer effects, the actuator edge effects, and the external loading effects. 

2.1 Introduction to Intelligent Structures 

In the design of space, aeronautic, and automotive structures, new technologies are 

needed to create high performance structures that are light, energy efficient, and autonomous. 

One of these new technologies is intelligent material systems and structures. Many names 

have been given to intelligent material systems and structures: smart, sense-able, multi- 

functional, and adaptive. The concept of intelligent materials is fairly new, only appearing in 

the eighties. Nevertheless, tremendous research efforts have been done in this new 

engineering discipline because many believe that it will bring the current state of technology 

to a higher level. The birth of intelligent materials systems and structures was made possible 

by three great technological advancements made since the 1960's. The three technologies’



combination that lead to the development of intelligent structures are: (i) laminated materials 

which allow the incorporation of active elements, (ii) usage of off-block diagonal terms in the 

material constitutive equations which allows the coupling of the mechanical, electromagnetic, 

thermal, and physical properties, and (iii) development of the microelectronics, bus 

architectures, switching circuitry, and fiber optics which allows the necessary processing, 

control, and artificial intelligence (Crawley, 1993). With the extended research done on 

intelligent material systems and structures during the last decade, a review of the current 

literature would give some perspective on what has been done thus far, and which path future 

research should take. 

In this chapter, a review of the mechanics of induced strain actuation of intelligent 

structures is presented. But first, a brief introduction to intelligent structures will show the 

great possibilities of this new idea, followed by a comparison of various induced strain 

materials. The heart of the chapter will come when mumerous static structural response 

models of induced strain actuation are reviewed. Then, a closer look at the structural/actuator 

interaction is made to verify the validity of the popular perfect bonding assumption and its 

consequences. The chapter concludes with the review of dynamic models which have the 

advantage of including the dynamic interaction between the structure and the actuators. 

2.1.1 Intelligent Structures Definition 

Various definitions have been giver to intelligent structures, and no consensus has 

been reached thus far. Some authors argue. that the intelligent structures’ definition should be 

based on biological analogy (Davidson, 1990; Rogers, 1992), while others have more 

technical definitions. The five-step technical definition presented by Wada, Fanson and 

Crawley (1990) is presented in Figure 2.1. Although the different views are somewhat 

different, they all reduce to the same idea: intelligent systems and structures are highly 

integrated structures capable of adapting themselves to their environment. 

2.1.2 Intelligent Structures Components 

With the intelligent material systems and structures definition established, a short 

discussion of their three principal components (actuators, sensors, and electronic controls) will 

now be presented. Based on the biological definition of intelligent structures, the actuators 

can be seen as the artificial muscle, the sensors as the artificial nerves, and the electronic



controls as the brain. More extended discussions of the intelligent structure components can 

be found in other references (Crawley 1993). 

.. Adaptive Structures 
.. Sensory Structures 

... Controlled Structures 
.. Active Structures 

.. Intelligent Structures M
O
Q
W
 > 

Figure 2.i Definition of intelligent structures. (Wada et al., 1990) 

2.2 Induced Strain Actuators 

Actuator systems can ce divided into two broad categories. In the first category, the 

actuators are applied to the surface or ate embedded within the structure itself. In the second 

category are actuators used in truss-like structures where they replace some of the truss 

elements of the structure (Wada, Fanson and Crawley, 1990). The actuators in the first 

category are almost invariably induced strain actuators such as piezoelectric actuators, 

whereas in the second category the active truss members can be conventional displacement 

actuators (screwjacks), where the length of the member is controlled, or force actuators (voice 

coil), where the load in the member is controlled. This second category of actuators is widely 

used in active trusses. Deployable space structures will make use of such active trusses not 

only for deployment, but also for making fine resolution adjustments of the structural 

surfaces (Natori et al., 1988). 

Induced strain actuators develop strains, through a change in their physical properties, 

in response to an external non-mechanical stimulus such as electric fields, temperature 

gradient or magnetic fields. These developed strains, capable of controlling



material/structural geometrical configurations, mechanical properties, and internal stress- 

Strain characteristics, can be used to apply controlled forces to the structure. The most 

commonly used induced strain actuators in the first category, which includes shape memory 

alloys, electrorheological fluids, piezoelectrics, electrostrictors, and magnetostrictors. 

2.3 Static Models of Induced Strain Actuators Coupled with 

Intelligent Structures 

The interaction between induced strain actuators and intelligent structures has been 

modeled a number of times thus far. and a review of the most common models will now be 

presented. When integrated into a structure (either through embedding or surface-bonding), 

induced strain actuators apply localized strains that directly influence the extensional and 

bending responses of the structure. It has been demonsirated that induced strain actuators 

generate a set of forces concentrated close to the edges of the actuator and their action can be 

represented -by iine forces cr momenis applied along the periphery of the actuator (Liang and 

Rogers, 1989). The induced strain actuators are often used in pairs, bonded on opposite sides 

of the structure. By controlling the voltage. applied on each actuator it is possible to drive the 

actuators in-phase (boih actuators expanding or contracting together), which creates an 

extensional deformation of the middle surface or out-of-phase (one actuator expands while 

‘the other contracts), which creates beriding deformation of the middle surface. Between these 

two extreme cases, unequal voltage application wil: create a combination of extension and 

bending. An actuator bonded only on one side of the structure is the most common case of 

unsymmetric actuation. The general objective in the modeling of induced strain actuators is 

to establish an equation that will convert the primary variable (electrical voltage applied to the 

actuator) to an equivalent loading that can be applied to the structure to represent accurately 

the action of the induced strain actuator. 

In this section theoretical models in which the actuator output force is obtained from 

Static considerations (i.e., local actuator/structural geometric and material properties) are 

presented. If vibrational control or dynamic analysis is desired, the static fixed amplitude 

actuator forces are simply applied over the whole frequency range of interest. For models 

including dynamic interaction between the actuator and the structure, the reader is referred to 

section 2.5. Also, only models assuming perfect bonding between the actuator and the



structure and no external loading will be discussed for the moment. Various models relaxing 

these restrictions will be presented in section 2.4. 

2.3.1 Beam and Plate Analytical Models 

Analytical models involving flat structures, i.e., one-dimensional beams and two- 

dimensional plates, will be the first type of intelligent structure presented. The models have 

been derived based on theory of elasticity, Bernoulli-Euler beam theory, or classical plate 

theory. The analytical models that have been derived thus far can be separated into three 

different groups. The first group contains the earlier models developed for beam structures 

and is often referred as the pin-force models. In the pin-force models, the actuators and the 

structure are considered to be separate elastic bodies and forces are transferred from the 

actuators to the structure by “pins” at the edges of the actuaters. The first pin-force model 

was developed for a cantilever beam with a layer of PVDF bonded on one side only (Bailey 

and Hubbard, 1985). The modeling was based on a force equilibrium between the actuator 

and the beam, and a constant actuator force output proportional to the applied voltage was 

obtained. Another early model for out-of-phase actuation was developed by Fanson and 

Caughey (1987). In this case, the equivalent moment loading on the structure was simply 

given by the free induced strain multiplied by the extensional stiffness of the 

actuator: M =(1,+t,)Egtz\. This equation assumes a free expansion of the actuator, even 

though the structure to which it is bonded will not allow such free exp2nsion. 

A more extensive model was then proposed by Crawley and de Luis (1987) to model 

in-phase and out-of-phase actuation of beam structures. This model allows discrete patches 

of induced strain actuator to be bonded or embedded within the structure, with considerations 

for the bonding layer and preexisting strains in the structure (see section 2.4). When the 

actuators are surface bonded, the strain distribution in the structure (Fig 2.3a) is assumed to 

be uniform in the actuator and vary linearly across the structure, with a strain compatibility at 

the interface. The equivalent actuator force and moment to be applied to the structure are 

presented in Table 2.1. With the assumed strain distribution, the pin-force model will 

accurately predict the in-phase deformation of the beam but will incorrectly predict the out- 

of-phase deformation of the beam for relatively thick actuators. This can be attributed to the 

assumed uniform strain distribution in the actuators, which allow the actuators to bend. 

Additionally, the actuator flexural stiffness is not included in the modeling as it should be 

(Chaudhry and Rogers, 1994). For the embedded actuator case, the strain distribution is



assumed to vary linearly across the actuators and the structure, to satisfy strain compatibility 

between the structural layers and the actuator layers (Fig. 2.3b). The difficulties experienced 

in out-of-phase actuation of surface bonded actuators modeling will therefore not occur. 

A generalization of the pin-force model to two-dimensional plates has been done by 

Hagood et al. (1989). Using the same strain distribution in the actuator (Fig. 2.3a), similar 

equivalent force and moment are found (only different in the (/-v) term). The forces and 

moments in the x and y directions are equal in magnitude, and no twisting moment will be 

present in isotropic plates. 
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Figure 2.2 Effect of the thickness ratio on the three basic beam models for out-of-phase 
actuation. (Chaudhry and Rogers, 1994) 

Modifications have been made to the pin-force model to enhance its ability to 

accurately describe the structural response (Chaudhry and Rogers, 1994). In this “enhanced 

pin-force model,” the actuators and the structure are still treated as separate entities, but the 

actuator flexural stiffness is included in the structural moment-curvature equations. In this 

new model, the structural surface strains will not approach the actuation strains for relatively 

thick actuators (see Fig. 2.2) and will not predict the structural response as accurately as the 

Bemouilli-Euler model that will be discussed next.
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Figure 2.3. Assumed Strain distribution through the thickness of the actuators and the 
structure for out-of-phase actuation. 

The second group of static analytical models will now be presented. Jn this group, the 

modeling is based on a more accurate assumed strain distribution through the thickness of the 

structure and the actuators. All models assume a linear strain distribution through the 

thickness of the structure and the actuators (Fig 2.3c). The first model using this improved 

Strain distribution was presented by Crawley and Anderson (1990) for the actuation of beams. 

This model was developed for embedded and surface bonded actuators and is often called the 

“Bemouilli-Euler” or “consistent strain” model. For out-of-phase actuation, the curvature 

Strain is directly dependent on the structure/actuator thickness ratio due to the inclusion of the 

actuator bending stiffness. When compared to a finite element analysis, the Bernoulli-Euler 

model was found to give a more accurate prediction of the structural response. For in-phase 

actuation, there is no difference between the pin-force and the Bernoulli-Euler models since 

10



the assumed strain distribution are the same in both cases. For embedded actuators, the strain 

relation for out-of-phase actuation is different form the one obtained by Crawley and de Luis 

(1987) even though the assumed strain distributions are the same. The difference can be 

attributed to the simplification made by Crawley and de Luis (1987) which included the 

actuator and beam stiffnesses at the actuator location. 

A consistent plate model was developed by Crawley and Lazarus (1989). This model 

is a simple extension from the one-dimensional beam model to a two-dimensional plate 

model. This closed form model is once again applied to plates with free boundary conditions 

and no external loading. For more complicated boundary conditions and geometry with 

external loading, an approximate solution based on the Ritz formulation was proposed. 

A model assuming a linear stress variation through the thickness of the actuators and 

the structure was developed by Dimitriadis et al. (1991). In this spherical pure bending 

model, the equivalent moment to out-of-phase actuation is based on the moinent equilibrium 

about the neutral axis. However, it should be pointed out that the stress slopes across the 

Structure and the actuators were assumed to be umform through the thickness in this 

- modeling effort (Fig. 2.3d). Since the elastic properties of the actuators and the structure are 

usually different, the stress slopes should be different in each layer, given a linear strain 

variation through the thickness. 

- Kim and Jones (1991a) modified the Dimitriadis et al. (14991) mode! to take account 

of the different elastic properties in the actuators and the structure, which will have the effect 

of varying the stress slopes through the thickness (see Fig. 2.3e). This analytical model 

including a bonding layer is developed based on the shear Jag theory, but first, a reduced 

model assuming perfect bonding will be discussed. The reader is referred to section 2.4.1 for 

more details on the bonding layer effect. It can be seen from Table 2.1 that the equivalent 

moment is the same as the one obtained from the consistent plate theory (Crawley and 

Lazarus, 1989). Shown in Fig. 2.4 is a comparison of the equivalent moment based on the 

pin-force, the consistent plate, and the Dimitriadis et al. (1991) models. Based on the finite 

element analysis that was performed by various authors (Chaudhry and Rogers, 1994; 

Crawley and Anderson, 1990), the consistent plate model or the Kim and Jones (1991a) 

model gives the most accurate results. The same authors also demonstrated that the effective 

moment will be nearly identical whether static analysis or Love's equation of motion are used 

for actuators bonded on composite structures (Kim and Jones, 1991b). The non-linear 

1]



theory of composite beams was also used to model the actuators action on the structure (Kim 

and Jones, 1991c). 
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Figure 2.4 Comparison of the effective bending moment obtained from various models. 
(Kat and Jones, 19914) 

Using the same stress distribution through the thickness as Kim and Jones (1991a), 

Masters and Jones (1993) derived an analytical model for actuators embedded withii the 

Structure. An equation for the equivalent moment directly dependent on the actuator 

thickness and location was derived. This equation can be reduce to the Kim and Sones 

(1991a) model if the actuaiors are suiface bonded. 

Various Optimization studies of ithe actuator thickness, stiffness, and location were _ 

performed. It was shown that the optimal actuator thickness is primarily dependent on the 

actuator and structural elastic properties. If the Young's modulus of the actuator was 3-5 

times less than the Young's modulus of the structure, surface bonded actuators were shown tc 

be the most efficient. However, if the Young's modulus of the actuator is increased, the 

actuator location is within the structure. (Masters and Jones, 1993). For given actuator 

properties, the influence of the location of the actuator in the laminate was also considered 

(Masters and Jones, 1991). It was shown that for thin structures, the optimal location is on the 

surface, while for thick structures it is within the composite. 

A conservation of strain energy model was developed by equating the applied 

moment on the cross section of the edges of actuators to determine the induced linear strain 

distribution and the equivalent axial force and bending moment induced by the actuators 

12



Table 2.1 Comparison of the equivalent actuator force and moment of surface bonded actuators. 
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(Wang and Rogers, 1991a). Like the pin-force model, the strain energy model overestimates 

the structural response for low thickness ratios. 

The classical laminate plate theory was used to model the action of discrete induced 

strain actuator patches (Wang and Rogers,1991b). Their work provided a theoretical basis for 

general application of induced strain actuators, but the equivalent force and moment were 

based on the free expansion of the actuators. The theoretical results have indicated that this 

approach is most accurate for high actuator thickness to plate thickness ratios and 

overestimates the force and moment induced by actuators for thin laminates. Lee (1990) also 

applied the classical laminate plate theory to the design of piezoelectric laminate for bending 

and torsional modal control. 
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Figure 2.5 The linear shear stress variation modeis more accurately the effective forces near 
the actuator ends. (Lin and Rogers, 1992b) 

The last model group contains more accurate and relatively complex analysis that 

accounts for transverse shear effects that were neglected in all the previuos mcdels. Among 

them is the nonlinear model proposed by Pai et al. (1992a, 1992b) in which piezoelectric 

plate response to large rotations and small strains was investigated. Another nonlinear 

analytical model for distributed control of beam structures was derived by Zhuang and Baras 

(1992) using the Timoshenko beam theory which includes the shear effect and rotational 

inertia. Also, a linear shear stress variation model based on an approximate through-the- 

thickness linear shear stress field was proposed by Lin and Rogers (1992). The advantage of 
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this model is that it captures the physics of induced stress field in a closed form solution. 

Indeed, the actuator impetus exerted internally in integrated actuator/structure system will be 

different from the response obtained from an externally applied equivalent loading. 

Furthermore, the structural response cannot be described properly based on a conventional 

theory of structural mechanics. Based on this more accurate formulation, the variation of the 

equivalent force and moment along the axial direction can be described more accurately (Fig. 

2.5). This modeling effort has the advantage of eliminating the discontinuity at the actuator 

boundary, as opposed to the pin-force and consistent models which predict a constant force 

and moment over the entire length of the actuator. 

2.3.2 Shell Structures 

The coupling between the in-plane and the out-cf-plane displacements found in 

curved structures needs to be considered in the study of structural response io inguced strain 

actuation. This coupling adds camplexity to the governing equations, which can no longer 

be soived independenily. For such structures with curvatures such as rings and shells, 

analytical models based on iayered sheli theory, plate theory. and shell goverming equations 

have been proposed. 

2.3.2.1 Layered Shells 

- =: Layered shell modeis 1p which a distributed induced strain actuator comprises a total 

and distinet layer will now be presented. The implementation of the actuator layers is only 

possible for polymer piezoelectric material, which has very limited actuation capabilities. 

Induced strain actuator patches bonded on the surface of the shell or embedded within the 

shell will only be discussed in the “Discrete Patch Actuation Of Shells” section 2.3.2.2. 

Extensive work on layered shells has been done at the University of Kentucky by Tzou and 

co-workers. An analytical model for multi-layered thin shells with distributed piezoelectric 

actuators was proposed by Tzou and Gadre (1989). In this work, the theoretical development 

is based on Love's thin shell theory in which the transverse shear deformations and rotary 

inertias are neglected, and the governing equations are based on Hamilton's principle. The 

action of the piezoelectric actuators is included in the governing equations through the 

resultant forces and moments, which are based on the summation of the original strains and 

the actuator induced strains. The vibration control of layered thin shells has been proved to 

be possible and efficient. In Tzou and Tseng (1990), the model was extended to include the 
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coupling between sensor and actuator layers. The sensor voltage from the direct piezoelectric 

effect of the shell was derived using Maxwell's theory and induced strain equivalent loading 

was proposed for open-loop control and for closed-loop feedback control. Experimental 

work was done on a beam to verify the theoretical model simplified to beams (Tzou and 

Zhong, 1991). An analytical model for thick composite piezoelectric shells was proposed by 

Tzou and Bao (1993). In thick shells some assumptions made in the derivation of the thin 

shell models can no longer be made, such as the transverse deformations and rotary inertias 

that must now be included. Based on a triclinic anisotropic piezoelectric material, the 

electromechanical equations for thick shells were derived. To include geometrical 

nonlinearities due to large deformations, a piezothermoclastic nonlinear mode! was derived 

(Tzou et al., 1994). The von Karman assumptions which neglect the nonlinear effects due to 

large in-plane deflections and keep the nonlinear effects of transverse deflections were used 

in model derivation. The transverse shear deformations and rolary inertias ate again 

neglected in this model. Ii is found that the transverse equilibrium equation 1s greatly 

influenced by the nonlinear terms. Finally, to increase the conutrot of the actuators on the 

structure, a segmentation of the distributed active layer was proposed (Tzou and Fu, 1994a, 

19945). 

A model based on the general thin laminate sheli theory was proposed by Jia and 

Rogers (1990). The shell governing equations were derived in a similar fashion as in Tzou 

and Gadre (1989), bui the transverse disiance is not neglected compared to the radii of the 

shell, i.c., 1+% #1. The derived forcing terms are fincuoas of the actuation forces and 

moments, which are directly dependent on the applied voltage 

An axisymmetric composite cylinder with surface bonded or embedded PVDF 

induced strain actuator layer was studied by Mitchell and Reddy (1993). The analytical 

model is based on the Navier equations of elasticity for axisymmetric geometries and requires 

only the governing equations and constitutive model to be linear. No assumptions are made 

conceming the stresses and strains, but the shearing stresses and strains €,g = €,g =O,g =O7z@ 

are zero due to the axisymmetry of the specially orthotropic cylinder considered. An 

elasticity solution of an axisymmetric composite cylinder statically loaded with embedded 

piezoelectric laminae was also derived (Mitchell, 1992). 

A theoretical model based on Reissner's shell theory which does not neglect the 

transverse shear deformation and rotatory inertia was proposed by Larson and Vinson 
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(1993a). The shell governing equations were developed using Hamilton's principle and 

considered shell anisotropy. The derived model was shown to be identical to the classical 

shell theory model if the transverse shear deformation is neglected. This theoretical model 

has been applied to curved beams and rings (Larson and Vinson, 1993b). 

2.3.2.2 Discrete Patch Actuation of Shells 

The first category of analytical shell models for discrete induced strain actuator 

patches is based on a direct adaptation of the plate theory. The equivalent actuator force 

and/or moment obtained from plate models are directly applied to the shell governing 

equations, with no considerations of the shell curvatures. In Sonti and Jones (1991), work on 

active vibration control of thin shells was done and an important assumption was made: small 

piezoelectric actuators. This assumption allows one to negiect the added mass and stiffness of 

the actuators and, mosi importantly, to neglect the coupling between the in-plane and out-of- 

plane displacements. Other work on piezoelectrically actuated sheil structures was proposed 

--by Lester and Lefebvre (1997). Again, the sheil model is adapted from the plate model, in 

which the curvatures of the sheli are neglected. The basis of such assumptions was that the 

small size of the actuators compared to the shell radius will not introduce important error in 

the shell response calculations, even though the curvature effects were omitted. 

Models for discrete actuator patches have alzo been derived based on the shell 

governing equations. Using Leve's thin shell theory, Sorti and Jones (1993) derived the 

~ equations of motion of a composite thin shell and obiained approximate expressions for the 

equivalent actuator forces and moments to be applied to the edges of the actuator. When 

actuated in-phase, a uniform pressure over the actuater footprint was found im the equivalent 

loading. Chaudhry et al. (1994) looked more closely at this uniform pressure created by in- 

phase actuation (Chapter 3). Based on the thin shell Donnel theory, expressions for the 

equivalent forces and moments that represent the action of the actuator patches have been 

developed. The main conclusion of this work was that, due to the curvature of the shell, the 

representation of the in-phase actuation with only an equivalent in-plane line force applied 

along the edge of the actuator results in the application of erroneous transverse rigid-body 

forces. To avoid these rigid body forces, a uniform transverse pressure over the footprint of 

the actuator must be applied to maintain the self-equilibration of the shell. Using this 

concept, the in-phase actuation of a one-dimensional ring was modeled and the structural 

response was obtained in a closed form (Chapter 4). 
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2.3.3 Other Structural Applications 

In this section, a brief review of various papers on the modeling of induced strain 

actuation of intelligent structures is presented. Not all papers that fall into this category are 

presented here, but those presented will give an overview of the application possibilities of 

intelligent structures. 

Various analytical models for the induced strain actuation of more complex plate 

structures were developed. The modeling of laminated plates containing nonlinear actuators 

undergoing small strains using the equations of elasticity and Maxwell's governing equation 

was performed by Carman and Reichik (1994). The shape contro: of elastic plates using 

multiple embedded piezoelectric actuator patches was studied analytically by Agarwal et al. 

(1994). Sun (1993) presented a theoretical model lor composite laminates consisting of 

piezoelectric materials and behaving with flexibdie deformation properties. An analytical 

model of a geometrically nonlinear composite plate with piezoelectric stiffeners was presented 

by Birman (1992). The actuation of clamred elliptic niezcelectric laminates was modejed Dy 

Lee (1994) using the classical lamination theory, Moiré interferometry experimenis were 

conducted to investigate the induced strain actuation of surface bonded and embedded 

actuators (Mollenhauer, 1997). 

_-°- Twist, shear, and torsion can be epphed io a structure with induced strain actuators. 

An ifttegrated theory was used tw modelthe bendingAwisting/shearing actuation of Jaminated - 

beams (Lee and Sun, 1994). The tofsién and bending actuation of structures with 

piezopolymer was explored by Lee (1989). Numierous papers were dedicated to the study cf 

torsional control using piezoelectric actuators (Kawiecki and Smith, 1994; Park and Chopra, 

1994, Park et al., 1993; Smith and Kawiecki, 1992; Sung et al., 1990). A 

Piezoceramic/polymer matrix composite which provides high stiffness and orthotropic 

symmetry for bending and twisting was developed by Wetherhold and Wang (1994). Also, 

theoretical models of the nonuniform surface deformation of piezoelectric ceramic-polymer 

composites with 2-2 connectivity (Cao et al., 1993) and with 1-3 connectivity (Cao et al., 

1992) were presented. This work was extended to include surface plates and are added to the 

composite to improve the deformation uniformity (Cao, 1993). 

Several ideas to improve the induced strain actuation of intelligent structures have 

been studied. The interdigitated surface electrodes idea was presented by Hagood et al. 

(1993) to improve the transverse actuation of piezoceramics. The effect of shaped 
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piezoceramic actuators on the excitation of beams was studied experimentally by Kim et al. 

(1993) and analytically by Diehl and Cudney (1994). The enhancement of the structural 

control using discretely attached induced strain actuators was studied by Chaudhry and 

Rogers (1992). A development of piezoelectric fiber composites for structural actuation was 

proposed by Hagood and Bent (1993). A linear piezoelectric motor prototype with light 

weight, large force and velocities, and micro and macro positioning characteristics was built at 

Vanderbilt University (Newton et al., 1994). Many other piezoelectric motor designs have 

also been under study (Fleischer et al., 1989; Goto and Sasaoka, 1988; Kumada, 1985; 

Kurosawa and Ueha, 1991; Kurosawa et al., 1988; Niedermann et al., 1988; Ohnishi et al., 

1989; Schadegrodt and Salomon, 1990). 

2.3.4 Finite Element Models 

The analytical models that have been presented ure generally applicable to simple 

structures such as beams, plates, and shells, with poundary conditions that can be easily 

modeled. For more complex structures, analyiica! modeling becomes strenuous, and 

numericai methods, such as finite elesient analysis, should be considered to resolve such 

problems. A simple way to perform finite clernent analysis of integrated structures ts to use 

the analogous thermal expansion to model the induced strain actuators. This approach is 

helpful in the static analysis cf integrated structures in that a gives the structural deformation 

response and- stress distribution but docs not include the eleciromeschanical coupiing effects. .. 

Following next is a review of the work done on ihe imograiion of the piezoelectric effect. in 

the finite element method. 

A finite element model based on the theory of elasticity and the Maxwell's electrical 

theory of piezoelectrics has been developed by Ha and Chang (1990) using the variational 

principle. An eight-node, 32 degrees of freedom (three normal displacements and one 

electrical per node), three-dimensional composite brick clement was used to model the 

mechanical and electrical response of piezoelectric actuators integrated in a laminated 

composite. An important conclusion from this work was that the inclusion of the three- 

dimensional incompatible modes, which take account of the large bending in the structural 

response, is necessary to obtain accurate results. Static and dynamic simulations were 

performed on beams and plates (Ha et al., 1991, 1992) and compared to experimental data to 

verify the proposed finite element model. A different finite element model for two- 

dimensional plates was also proposed by Hwang and Park (1993). A four-node element with 
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a single electrical degree of freedom per element and three degrees of freedom per node (one 

normal displacement and two rotations) was developed. The equation derivation was based 

on Hamilton's principle and the classical lamination theory. 

A finite element model was also proposed to model integrated actuators to shell 

structures (Tzou and Ye, 1994). The layerwise constant shear angle theory is used to develop 

a laminated quadratic C° piezoelastic triangular shell finite element. This element (quadratic 

in-plane and linear transverse) has twelve nodes with four degrees of freedom per node (three 

displacements and one electrical). The model is applied to two cases: bimorph and semi- 

circular shell. 

Models for two-dimensional plates based on the first order shear deformation piate 

theory were developed by various authors. In all of following models, no electrical degree of 

freedom is included since the induced strain loading is being applied as external loading. 

‘The direct electromechanical coupting is therefore not available. First. Chandrashenkhara 

and Agarwal (1993) proposed a nine-node isoparametric quadrilateral element with five 

degrees cf freedom per node “three displacements and two rotations) The piezoelectric 

constitutive equations. are included in this finite element modei and the actuator moment 

loading is applied to the element boundaries after discretization of the mesh. The use of the 

shear theory only requires a C° eiement, as opposed to the C! element necessitated by the 

classical plate iaminate theory. Similar work on nine-noded isoparametric quadrilateral 

element with five degrees of freedom per node was proposed by Shah et al. (1993a, 1993p). 

In this later work, it is shown that the stress field is strongly influenced by the shape of 

actuators and that actuators with sharp corners should be avoided. Another formulation 

based on the first order shear deformation laminated plate theory was proposed by Detwiler 

et al. (1994). The variational principle is used to derive quadrilateral isoparametric element 

with 20 degrees of freedom. 

Finite element models using the concept of global/local response have also been 

applied to piezoelectric material. First, an eigenstrain formulation was used to model the local 

effects of embedded induced strain actuators or sensors and then was combined to a finite 

element method for the global structural response (Accorsi, 1993). An important feature of 

this method is the reduced time of computation acheived by performing only once a global 

finite element analysis of the structure without integrated induced strain actuators. Then, for 

various shapes, sizes, and locations of the actuators, only a solution of the eigenstrain is 
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necessary. This method is more flexible for the design of integrated structures. Another 

global/local finite element procedure was proposed by Robbins and Reddy (1993). In this 

work, laminated composite plates with embedded or surface bonded induced strain actuators 

were analyzed by dividing the structure into subregions, which has the capability of 

determining the three-dimensional effects. This proposed finite element model combines the 

variable kinematic finite elements and the finite element mesh superposition. 

Work on the magnetostrictive effect has been studied on a smalier scale than the 

piezoelectric effect. Nevertheless, a finite element model for embedded magnetostrictive 

devices was proposed by Kannan and Dasgupta (1994a). The structural response to applied 

magnetic fields was obtained using a two-dimensional, coupled, linear finite element model 

(Kannan and Dasgupta, 1994a, 1994b). The magnetomechanical interactions were fully 

integrated in this model. Work on the direct effect of magnetostrictive sensors was also 

performed by the same authors (Kannan and Dasgupta, 1994c). 

Finally, piezoelectric elements are pinw available in comznercial finite element codes: 

ANSYS 5.0 by Swanson Analysis snd ABAQUS by HKS. A snort review of the capabilities 

of both packages is presented in Lin ef al. (1094). 

2.4 Actuator/Structure Interaction , Be 

Yo implement the induced-strairr actuators on the structure, an adhesive is necessary to 

transfer the strain from the actuator to the siructure. The quality of the bonding layer that 1s 

used will have an important impact on the response of the structure. In most of the static- 

based models presented in the previous section, an important simplification was made: a 

perfect bond between the actuator and the structure was assumed with a full transfer of the 

shear stresses exactly at the edges of the actuator. Such a simplification will define the 

structure at the edges of the actuator as the critical region. This removes the critical region 

from the bonding layer, which is most likely to fail in operation. Issues such as the thickness 

and compliance of the bonding layer and the intensive shear and peeling stresses at the 

actuators edges must be taken into consideration if a complete understanding of the 

actuator/structure interaction is desired. A review of more extensive studies of the bonding 

layer and the free-edge effects on the structure is presented next. 
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2.4.1 Bonding Layer Effect 

Different bonding techniques such as adhesive bonding, diffusion bonding, silicate 

brazing, and metal brazing can be used to join piezoceramic actuators to metallic structures. 

Adhesive joints are the most convenient way to bond the actuators since they may be cured at 

room temperature, have small residual stresses, and distribute stresses during service (Cawley, 

1991). 
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Figure 2.6 Effect of the shear lag parameter on the actuator and structure strains. 

(Crawley and de Cuis, 19873 

The first analytical model which considers the bonding iaver in the actuator/strucire 

interaction was based on the classic shear tag theory, which assumes an clastic bonding layer 

of a finite thickness (Crawicy and de Luis, 1987). The strain between the acwator and the 

structure is transferred through the shear stress present in the bonding layer. The work was 

performed on a simple beam submitted to out-of-phase actuation. The theoretical mode! was 

based on four assumptions: (i) only in-plane constant shear stress through the thickness of the 

bonding layer, (ii) uniform strain distribution through the thickness of the actuators, (iii) 

linear strain distribution through the thickness of the beam, (iv) only external forces causing 

pure bending can be applied to the beam. In this analysis, the principal conclusion 

conceming the bonding layer was that the shear stress in the bonding layer is only present 

over a small distance from the edges of the actuator, with no shear stress at the middle of the 

actuator (See Fig. 2.6). It was also found that, to obtain good shear transfer between the 

actuator and the structure, a large shear lag parameter which is primarily dependent on the 

22



stiffness and thickness of the bonding layer is needed. The shear lag parameter is essentially 

a means of quantifying the “quality” of the bonding layer between the actuator and the 

structure. For the perfectly bonded case in which the shear-lag parameter approaches infinity, 

the induced strain is transferred between the actuator and the structure over an infinitesimal 

distance at the edges of the actuator. In typical engineering applications, the perfect bonding 

assumption is acceptable for shear lag values larger than 30. 

A refinement of the Crawley and de Luis (1987) model was proposed by Crawley and 

Anderson (1991). In this work, the Euler-Bernoulli beam theory was used to predict the 

response of a beam to in-phase and out-of-phase actuation. The difference between the two 

models is in the assumed strain distribution through the thickness (see section 2.3.1.1) that 

was considered in the modeling of the bonding layer. The pure shear in the bonding jayer 

and the absence external loading of the structure assumptions were, however, mainiained. in 

general, one can draw the same conclusions conceming the effect of the bonding Jayer as for 

the model developed by Crawley and de Luis (1987), but with more accurate resulis. 

‘Another model also based on the shear lag theory for the out-of-phase actuation oF 

beam structures. was derived by Kim and Jones (1991) under the assumption ef composite 

plates. Again, a continuous linear strain distribution across the plate thickness is assumed, 

with the linear stress distribution depending on the material properties of each of the layers 

(actuator, adhesive and structure}. Based on this different stress distribution, ihe effective 

bending moments were derived taking into consideralion the influence of the bonding layer. 

Similar conclusions to Crawley and de Liis (1987) were citained. For example, a thicker 

layer will reduce the effectiveness of the strain transfer (Fig. 2.7). A study of the optimal 

actuator thickness for maximizing the effective moment induced to the siructure was 

performed. It was found that the influence of the bonding layer stiffness is not significant 

when compared to the influence of the piezoelectric actuator stiffness in the determination of 

the optimal actuator thickness. 

Under cyclic loading, delamination of the bonding layer is likely to occur and will 

decrease the strain transfer effectiveness. It was shown that edge delamination significantly 

will reduce the structural coupling between the actuator and the structure, while inner 

delamination will have only a small effect (Kim and Jones, 1992). The edge delamination 

will also reduce the authority of the actuators at low frequencies (Kim and Jones, 1991d). 
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The dynamic response and natural frequency alterations due to delamination in composites 

with embedded actuators was also investigated by Babu and Hanagud (1990). 
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Figure 2.7 Effective curves illustrating the influence of the bonaing laver thickness on the 
optimal piezoactuator thickness. (Kim and Jones, 1991a) 

A Static-based model was developed by [m and Alturi (1989) for a beam subjected to 

general loading, having less assumptions than the model proposed by Crawicy and de Luis 

(1987), The shear stress distributions in both the top and bottom bonding layers were 

. considered, with a possible application cf upsymmetric induced strains. to the actuators 

bonded on the beam structure. In this model the effects of the transverse shear and axia} 

forces, in addition to a bending moment ov the beam, was included in the formulation of the 

governing equilibrium equations. Based on this study, « was found thai the shear suess 

transmitted through the bonding layer is greatly influenced by the externally applied axial 

and shear forces. The shear stress distribution over the length of the actuator is still 

concentrated at its ends, but the magnitude at both ends of the actuator can be significantly 

different. 

A model based on the theory of elasticity and solved approximately by the principle 

of complementary energy was derived by Lin and Rogers (1994a). The analytical model is 

applied to the in-phase and out-of-phase actuation of a beam structure. The axial normal, 

shear, and transverse normal stresses were all included in the modeling of the bonding layer. 

The results of this approach were compared to the models based on the shear lag theory. 

When compared to the present elasticity model, the shear lag theory over-predicts the 
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effective force and moment near the actuator edges because the bonding layer is incapable of 

carrying normal and shear loads (see Fig. 2.8). Parametric studies showed that a relatively 

thick and/or compliant bonding layer will cause non-negligible reduction in the transfer of 

the actuation mechanism, particularly close to the edges of the actuator. 
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Figure 2.8 Reduced effective moment near the ends of the actuator when a bonding layer is 
considered. (Lin and Rogers, 1994a) 

‘Finite element analysis fas also been used io study the effect of the bondme layer 

(Robbins and Reddy, 1991). Using the generaiized plate theory, a finite elemncnt formulation 

is applied to a beam structure including a bonding layer. This approacn satisfies all the 

boundary conditions without using a large number of elements. This finite element 

formulation, however, restricts the thickness of the bonding layer to be the same order of 

magnitude as the structure and the actuator and involves heavy computations. 

An experimental investigation to determine the optimum adhesive layer parameters 

using Taguchi methods has been performed by Onders and Naganathan (1994). Different 

types of adhesive, bond layer thickness, and type of base metal were considered in order to 

maximize the strain transfer of the system. 

2.4.2 Edge Effects 

The interaction mechanisms between the actuator and the structure have been 

theoretically modeled based on various theories such as shear lag, elasticity, and linear shear 
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stress field. According to these models, a high interfacial shear stress state near the ends of 

the actuator was desirable to obtain a good structure/actuator interaction, i.e., effective strain 

transfer from the actuator to the structure. Such conclusions were reached because issues 

such as interfacial shear and peeling stresses were not considered, although the low strength 

interfacial bond is most likely to be the weakest structural component. Such models are thus 

valid only in a distance approximately four actuator thicknesses away from the actuator edges 

(Liang and Rogers,1989). Another neglected aspect is the excessive stress gradients in the 

bonding layer which can be present and are able to initiate debonding of the actuator from 

the structure. 

A theoretical model capable of predicting the ir:terfacial shear and peeling stresses has 

been developed by Lin and Rogers (1993). The refined model is based on an approximate 

through-ihe-thickness second order axiaj torraal siress ficld, solved using the principle of 

complementary energy after converting the induced sirain actuation probieni to a boundary 

value probiem. The solutions of the whole ficld siress distritition are obtained for in-phase 

and out-of-phase actuation for aciuators perfectly bonded to ‘he structure {no bending layer 

present iri the modeling). It was found that the effective actuator force atieruates near the 

ends of the actuators, which reduces the discontinuities at the actuater edges. The interfacial 

shear siress vanishes at the ends of the actuator, with a pesk at one actuator thickness from the 

edges. The interfacial peeling stresses peak al the edge and then decrease with increasing 

- distance trem the actuator edge. 

An extended model 1o include the bending layer was later proposed by the same 

authors (Lin and Rogers, 1994a). This model has already been discussed in section 2.4.1. It 

was pointed out that thick and/or compliant bonding layer causes noticeable losses in the 

transfer of the actuation mechanism. Nevertheless, the bonding layer yields low interfacial 

shear and peeling stresses, which is beneficial to the structural integrity. 

A finite element analysis of embedded and surface bonded induced strain actuators 

was performed to study the stress distribution in the proximity of the actuators (Shah et al., 

1993c). In their work, it was concluded that the stress concentration at the edges of the 

actuators are sufficient to initiate cracks at the edges and that stress concentrations are lesser 

for the embedded case. A quasi-three-dimensional finite element analysis was also used to 

study the interfacial stress distribution in composites with embedded piezoeletric layers (Shah 

et al., 1990). The principal conclusions were that the maximum interlaminar stress is not 
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affected by the location of the piezoelectric layer and that an addition of a glass layer will 

reduce the stress levels. 

Some modifications in the implementation design of piezoceramic patches have been 

proposed to reduce the high stress gradients present in the localized regions near the ends of 

the actuator. These modifications consisted of employing partial electrodes to the actuator 

surfaces instead of fully electroding the surfaces, examining actuators with chamfered ends, 

and using structural caps to reduce the stress concentrations in the bonding layer (Walker et 

al., 1993). Based on a finite element analysis, axial and normal stress reduction of the order 

of 80% were obtained with a 60% reduction of the shear stress, for typical cases of in-phase 

and out-of-phase actuation. The two best arrangements in reducing the stress levels were 

found to be the partial electrode and the edge cap configurations. 
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Figure 2.9 Reduced interfacial and peeling stresses with inactive actuator edges. 
(Lin and Rogers, 1994b) 

A more extensive analytical study of partial electroding was performed by Lin and 

Rogers (1994b). When the partial electroding technique is used, the interfacial shear stress is 

reduced because the actuation force is now not only transferred by the interfacial shear force, 

but also by the normal force on the inactivated ends of the actuator. This will significantly 

reduce the interfacial and peeling stresses (see Fig. 2.9). The strain transfer from the actuator 

to the structure will increase slightly near the ends of the actuator, with an improved 
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performance for stiffer inactive edges. To minimize the free edge effect, it was found that an 

inactive edge with a length of two actuator thicknesses is optimum for better performance. 

Special attention has also been given to embedded piezoelectric actuators in 

composite materials. Various studies showed that the structural integrity will be affected by 

presence of embedded actuators. Crawley and de Luis (1987) reported a reduction of 20% in 

the ultimate strength of glass/epoxy laminates. Because of the presence of inert implants in 

the composite laminate, discontinuities will be created and will increase the interlaminate 

Stresses at these locations. A solution was proposed by Singh and Vizzini (1993) to reduce 

the negative effects created by embedded actuaiors: interlaced piezoceramic actuators. Such 

a technique reduces the maximum interlaminar shear siress by 25% and the maximum 

interlaminar normal stress by 35% and moves the initial delamination location away from the 

interface between the actuator and the composite. 

2.4.3 External Loading Effects 

m
t
 Thus far, very few of the anaiyiical models discussed considered the boundary 

conditions of the structure. It was genereiiy assumed that the structure had free boundary 

conditions and was noi subjected to any extemal! loading. However, some studies showed that 

the boundary conditions can have an important impact on the structural response and shouid 

therefore be considered for more accuraie theoretical modeling. 

~ In the pin-force modei developed by Crawley and de Luis (1987), the equations for 

the equivalent force and moinent were included. Strains due to extermal loading or 

deformations that are not caused by the actuation of the induced strain actuators thernseives 

can be included in the structure at the ends the of the actuator. The preexisting strains in the 

Structure at the ends of the actuators must be known in advance. No case study was 

presented. 

Chaudhry and Rogers (1993) presented an analysis of the effect of externally applied 

moments on a beam actuated out-of-phase with various boundary conditions. It was shown 

that boundary conditions which prevent the free actuation of the structure have the same 

effect as external loading. The authors concluded that, if the actuators are replaced with a set 

of equivalent moments on the structure without considering the effect of external loading 

and/or constrained boundary conditions, a large error in the structural response is found. An 

optimization study for maximizing the strain induced in the structure showed that the 
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optimum thickness ratio changes with the external load and also with the electric field applied 

across the actuator. This behavior was reported to be caused by the external load that the 

actuators must work against in addition to working against the structural stiffness. 

A model based on the theory of elasticity, including external loading, was derived by 

Lin and Rogers (1994c). This model is a simple extension of the model discussed earlier 

(Lin and Rogers, 1993). Including the effect of external loading, the effective force and 

moment due to in-phase and out-of-phase actuation, respectively, showed an excellent match 

with the finite element analysis performed. In this analysis, it was also demonstrated that the 

interfacial shear stress distribution is altered with external loads, and the maximum interfacial 

shear and peeling stresses are a linear function of the external loads. The model proposed by 

Im and Alturi (1989), presented earlier, included the effects of extemmally applied transverse 

shear and axial normal forces. It was also shown that the external leads nave noticeable 

effects on the magnitude of the interfacial shear stresses. Because this model is based on the 

shear iag theory, it lacks quantitative accuracy. 

A nonlinear theory of larsinated piezoelectric plates was proposed by Pai et al. 

(1992) Ti this work, in addition co the actuator induced joads, external itoading was 

considered in the mode] formulation. 

2.5 Models Including the Dynamic Interaction of the Actuators 

and the Structure 

All of the analytical models presented in section 7.2 neglected the dynamic properties 

of the actuator. The modeling efforts were based only on static considerations, which resulted 

in frequency independent equivalent actuator forces and moments. For dynamic analysis of 

intelligent structures, the statically determined actuator force and moment were simply 

assumed to be constant over the whole frequency range of interest and were then introduced 

in the equations of motion. This static-based approach to dynamic analysis of intelligent 

structures shows important shortcomings in the accuracy of the calculated dynamic structural 

response. In this section, models that includes the dynamic characteristics of the actuator and 

the structure will be presented. 
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2.5.1 Dynamic Modeling Approach 

Issues associated with coupling the piezoelectric actuator dynamics to mechanical 

system dynamics were discussed by Hagood et al. (1990). Based on Rayleigh-Ritz energy 

formulation, the equations of motion for piezoelectrically coupled electromechanical systems 

were derived. This model includes dynamic coupling between the structure and the electrical 

network through the piezoelectric effect. In this dynamic model, the governing equations of 

the electroelastic system (Eq. 2.1) includes the mass and stiffness of the integrated PZT patch. 

bo
 

—
 (M+M,\F+(K+K,p\r-Ov=Brf 

where r and v represent the generalized displacement and voltage coordinates. © denotes 

electromechanical coupling matrix and By is the forcing matrix. f is the vector of external 

point forces. Case studies of a cantilevered beam with surface bonded induced strain 

actuators with direct voltage-driven electrodes and direct charge-driven electrodes were 

presented. The actively contrciled cantilevered beam was tested and favorable resulis were 

obtained. However, actuator force loading is not explicitly expressed es a runction of the 

actuator input impedance and the host structural mechanical impedance. As the active 

control force needs to be calculated, the blocking force was used so that the induced force 

loading is still independent of the dynamics of the hosi structure and frequency. 

oe Inman (1990) investigated the phenomenon of the control/structure inieraction (CSD. 

for the lumped dynamic sysiem. It was assumed that the actuators-used for.coatral nave 

second-order dynamics. The effects of added actuator dvnamics to the state feedback in 

vibration suppression problems were considered in the modeling. The stability ofthe 

integrated control system was specifically discussed. 

2.5.2 Impedance Modeling Approach 

An impedance model based on the dynamic properties of the actuators and the 

structure has been proposed by Liang et al. (1993a). This analytical model is able to model 

the dynamic response of the intelligent structure accurately by including the dynamic 

interaction between the actuators and the structure. The essence of the impedance approach 

is to match the actuator impedance to the structural impedance along the edges of the 

actuators. This modeling approach includes the actuator stiffness and damping, but not the 

actuator mass loading. Based on the structural impedance, the induced strain actuator force 
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output will be frequency-dependent, and this will result in a more accurate prediction of the 

dynamic response. The impedance model has been shown to be more accurate than static- 

based models for the calculation of the dynamic structural response of intelligent structures. 

The impedance modeling approach has been applied to numerous cases. An 

impedance model for a beam under out-of-phase actuation was proposed by Liang et al. 

(1993b) and then extended to two dimensional plates (Zhou et al., 1994a). The impedance 

approach was also applied to curved structures, such as out-of-phase actuated rings (Rossi et 

al. 1993). Extended models for rings structures including the transverse shear resuliant were 

proposed for out-of-phase actuation (Chapter 5) and in-phase actuation (Chapter 6). Two- 

dimensional shell model for out-of-phase actuation (Zhou et al. 1993) and for general 

actuator loading (Chapter 8) completed the work on this dynamic modelization approach. 

Experimental work on plates (Zhou et al., 19944) and rings (Rossi et al., 1993; 

Chapter 7) was performed to verify the impedance models A computer implementation of 

the impedance mode! for Euler-Bernoulli beams with various boundary conditions, loading 

conditions, structural damping, and stiffness and miass toading was performed by 

Subramaniam et al. (1993). 

Using the impedaiice approach, the coupled electro-mechanical analysis of induced 

Strain actuators can be easily mtegrated to determine the power consumption and energy 

transfer in the electro-mechanical system (Liang et al., 1962, 1993c). An extended thermo- 

electro-mechanical study was proposed by Zhou et al. (1994n} to estimate the temperature 

and thermal stress distribution in the actuators. 

2.6 Summary 

In this chapter, a review of the mechanics of induced strain actuation of intelligent 

structures was presented. A discussion of the intelligent material systems and structures 

concluded with the enormous possibilities of such intelligent systems. An overview of the 

principal induced strain actuation materials showed that no material has a large advantage 

over the others, each material being appropriate in its own field of application. The variety of 

static models of induced strain actuators coupled with intelligent structures showed various 

levels of performance in the structural response modeling. The most common Euler- 

Bernoulli model showed better performance than the pin-force model due to the more 
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accurate assumed strain distribution through the structure and the actuators. A drawback of 

the static models is the impossibility of including the dynamic characteristics of the intelligent 

system. The actuator/structural interaction was shown to have an important impact on the 

structural response. The bonding layer decreases the strain transfer from the actuator to the 

structure, the edge effects can create peeling and interfacial stresses reaching the ultimate 

strength, and the external loads greatly affect the response of the system. The impedance 

modeling approach, which includes the actuator and structural dynamic characteristics, was 

reported to give better results over the static models for the dynamic response cases. Altough 

this review consisted only of a brief overview of the current status of the research conducted 

on the induced strain actuation of smart structures, it gives an insight on the importance of 

pursuing the research, development, and design of this promising field of inteiligent material 

systems and structures. 
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Chapter 3 

Special Considerations for the Equivalent Loading of 
Induced Strain Actuation of Shell Structures 

Abstract 

Based on the thin-shell Donnell theory, a model to represent the action of discrete 

induced strain actuator patches symmetrically bonded to the surface of a circular cylindrical 

shell has been developed. The model provides estimates of the bending curvatures due to the 

out-of-phase actuation and the in-plane strains due to the in-phase actuation of the bonded 

actuator patches. The magnitudes of the induced curvature and the in-plane strain are found 

' to be identical to those of plates; however, due to the strain-displacement relations in 

~ cylindrical coordinates, the in-plane and out-of-plane displacements are coupicd. Expressions 

for the equivalent forces and moments that represent the action of the actuator patches have 

been developed. Due to the curvature of the shell, the representation of the in-phase 

actuation with an equivalent in-plane line force applied along the edge of the actuator results 

in the application of erroneous rigid-body transverse forces. To avoid these rigid body 

forces, a method to represent the in-phase actuation with a system of self-equilidrating forces 

is proposed. The action of the actuator is then represented by an equivalent in-plane force | 

and.a transverse distributed pressure applied in the region of the actuator patch. Finite 

element verification of the proposed model is presented. The displacements due io the actual 

actuator actuation are compared with the proposed model, and very good agreement is found. 

3.1 Introduction 

In recent years there has been a great surge of interest in research on shape, vibration 

and acoustic control of structures with induced strain actuators like piezoelectric materials and 

shape memory alloys. What distinguishes induced strain actuators from conventional 

hydraulic and electrical actuators, and makes them especially attractive for smart structures, is 

their ability to change their dimensions and properties without utilizing any moving parts. 
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These actuator materials contract and expand just like the muscles in the human body. When 

integrated into a structure (either through embedding or through surface-bonding), they 

apply localized strains and directly influence the extensional and bending responses of the 

structural elements. Because of the absence of mechanical parts they can be easily integrated 

into the base structure. Integration within the structure ensures an overall force equilibrium 

between the forcing actuator and the deforming structure, thus precluding any rigid body 

forces and torques. 

Induced strain actuators, like piezoelectric materials when bonded to the surface of a 

structure, generate a set of forces which are concentrated close to the edges of the actuator. 

Therefore, their action is often represented by line moments or forces applied along the 

periphery of the actuator. This represeniation simplifies analysis because the structure does 

not have to be discretized (to represent the non-uniform strecturail properties in the regions of 

the patches) and global structural equations can be soived with the actuator forces appearing 

-as discretely applied exterial forces. This analysis method, although approximate 

(approximate because the actuator mass aiid stiffness are noi represented and actuator forces 

derived from static ard siress-free boundary conditions are used), gives reasonably accurate 

resulis for small and thin patches of actuators. Aiso, for the case of straight structural 

members like beams and plates, it does not pose any problems such as the equivalent actuator 

forces producing rigid-hody motion. For shell-type structures, however, due to their 

curvature. this simple representation is nol appropriate for ihe case of in-phase actualion. In- 

phase actuation. refers to the case when the two actuators bonded to the top and bottom 

surface of the shell are activated to produce strains in the same direction. Because the 

circumferential forces used to represent the action of the actuator are not co-Jinear they 

produce rigid-body transverse forces on the shell. Thus, certain special mcdifications must 

be made to such a representation scheme to accommodate the special characteristics of the 

shell structures. The modification proposed and verified in this chapter is the application of a 

uniform transverse pressure across the footprint of the actuator. 

To date, a number of models to represent the action of actuators on beams and plates 

have been proposed (Crawley and Lazarus, 1989; Lee, 1990; Crawley and Anderson, 1990; 

Wang and Rogers, 1991a; Dimitriadis, Fuller and Rogers, 1991). For shells, the only models 

that have been developed are based on layered shell theory, i.e., the analytical model assumes 

that the induced strain actuator material comprises a total, distinct layer of the shell (Tzou and 

Gadre, 1989; Jia and Rogers, 1990). In the work that has been reported on vibration and 
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acoustic control of shells using piezoelectric actuators, plate models are often adapted to 

shells (Sonti and Jones, 1991; Lester and Lefebvre, 1991). At first sight, this adaptation seems 

perfectly reasonable because the shell is thin and r/t, is large. This does, however, pose a 

problem for the representation of in-phase actuation forces because the actuator forces are no 

longer co-linear as in the case of beams and plates, and as stated earlier, this results in a rigid- 

body force being applied to the shell (see Fig. 3.1). If this is not recognized, then the action 

of in-phase actuation of even a small actuator patch will result in an erroneous response and 

can lead to a totally wrong solution. In a recent model for curved piezoelectric actuators, 

Sonti and Jones (1993) also recognized this fact and showed the necessity of including a 

uniform transverse pressure, in addition to the axial and tangential forces, to correctly 

represent the action of in-phase actuation. 

  

Figure 3.1 Nor-equitibrium of discrete tangential forces in shell structures. 

A model has been developed to compute the equivaient forces and moments applied 

by a pair of symmetrically-bonded actuator pairs, and is described here. This is followed by 

a discussion of the special considerations for shell-type structures. The development of the 

model is similar to the work of Crawley and Lazarus (1989) for plates, and relies on classical 

lamination theory (CLT). 

3.2 Model Formulation 

A model describing the interaction between surface-bonded actuators and a circular 

cylindrical shell has been developed based on Donnell's theory. For completeness a short 
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derivation of the accompanying equations of motion is also presented. Consider a thin 

circular cylindrical shell, as shown in Fig. 3.2. We start with the following Donnell's 

assumptions (+o = I, r—R) for the kinematics of deformation: 

  

  

oO 

0,2) =u? (x,0) — ; dl u(x 2) =u (4,0) — 2 (3.1) 

ow? 

,9,z)=v?(x,@) — , 3.2 v(x, 0,z) =v" (x,8) 236 (3.2) 

w(x,8,z)=w?(x,8) . (3.3) 

In the above, z is the local thickness coordinate, measured from the middle surface of the 

shell. The superscript zero denotes displacements of the cylindrical panel's middle surface 

  
Figure 3.2. Thin circular cylindrical shell coordinate system. 

The pertinent strain-displacement relations in cylindrical coordinates are: 

    

  

Ou ou? Ow? 
Ey = T= Ex + 2K! EL = a Ke =o Be (3.4) 

vw ow 4s > (Ove lw? a-w? 
Eg = —— + —=€9 +72Kq; EG = +—; Kp =-——— >= (3.5) 

Oo ROO R88 8 RGg RR? 8 R239? 

and 
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The resultant force-strain relations for a layered composite laminate are given by (Jones, 

1975): 

N\_[A B]fe2]_ [Na 
(tlle ble [im an 

where 

{Na}=J[O|A}az (3.8) 

{My} =J|O]{A}zaz (3.9) 

are the equivalent of thermal forces in CLT. Note that A is the free induced strain developed 

in the actuator in response to an applied voltage (A, = &d2, =Vd3,/t,). The three governing 

equilibrium equations are: 

ON 5 ON x6 ~O . Che ONO ni =O, (3.10) 
Ox Ro@ Psts ’ 

ON x -- ONoo _ Pigv? =f, (2.473 

ox ROG 

and 

3°M O°M,g  o°Meg = N ; 
ae Rae Rea? RP (3.12)   

with boundary conditions at x=+L/2 and @=+0/2. For an unconstrained symmetric panei with 

no externally applied forces or moments, i.e., N, M=0, Equation (3.7) reduces to: 

0) TA BYA(N 
(l-{ >| ef (3.13) 

A 

For a symmetric shell (B=0), the above equations are uncoupled, and 

ol _. —l je b=[Ay {Na} (3.14) 

{x}=[D]/{Ma} . (3.15) 
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To obtain simplified expressions for the induced curvature, we assume that the shell is 

isotropic and has the same Poisson's ratio as the actuator. For such a case, the [A] and [D] 

matrices reduce to: 
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2 
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Rewriting in a more convenient way, 
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With these assumptions, the following expression for the induced bending sirains due to the 

out-of-phase actuation is obtained from equation (3.15) (t; = shell thickness, tg = actuator 

thickness): 

  

\ 

Ky ol14a)2 ‘ 
l. 

Kg =? (° ; (3.20) 
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where 

yards pik (3.21) 
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and for in-phase actuation, the following expression for induced middle-surface strains is 

obtained from equation (3.14): 
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The above expressions for the middle-surface strains for the case of in-phase 

actuation and the bending strains for the case of out-of-phase actuation are the same as those 

obtained for plates; however, the circumferential strain is now coupled with the out-of-plane 

displacement (equation (3.5)). 

To solve a plate or a shell problem, an expression for a set of equivalent forces is 

often developed. These forces, when applied along the edges of the footprint of the actuator, 

on the structure result in the same degree of bending strains and in-plane middle-surface 

strains as those obtained from equations (3.20) and (3.22). The equivalent forces and 

moments are obtained by substituting the bending strains and the in-plane strains from 

equations (3.20) and (3.22) into equation (3.7), with Ny, and M4 set to zero. For out-of- 

phase actuation, che equivalent moments are found to be: . 

  

[Max | Yt? (ye) 2 
al =e Tata (3.23) 

1 og OFY tate 0) 

--and for im-phase actuation, the folowing expression for the equivalent axial and tangential 

force is obtained: 

  

  

N ‘ 
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The tangential force obtained from the above equation, when applied to the shell 

along the two circumferential edges of the actuator will not be co-linear, due to the curvature 

of the shell, and will have an erroneous component resulting in a rigid body mode. This 

situation has already been illustrated in Fig. 3.1. This occurs due to the simplifying 

assumptions in the above formulation. In actuality, a set of self-equilibrating stresses are 

developed between the shell and the bonded actuator, and there is no rigid body force 

developed. 
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To remedy this situation, we have proposed the application of an equilibrating 

uniform radial pressure applied across the footprint of the actuator. The magnitude of the 

uniform pressure is obtained from simple statics and is equal to —Ng/R (Fig. 3.3). This set 

of forces, i.e., an equivalent tangential force given by equation (3.24) and a uniform radial 

pressure, now provide a convenient means of representing the action of surface-bonded 

actuators which are actuated in-phase. To verify whether this set of forces results 

approximately in the same displacement field as a true actuator bonded to a cylindrical shell a 

comparison with a finite element model is made. 

  

Figure 3.3 Adequate equivalent loading to maintain equilibrium. 

3.3 Finite Element Modeling and Verification 

Two finite element models have been constructed to verify the equivalent loading 

scheme. A 6" radius, 0.032" thick and 1” deep ring with piezoelectric actuators 1/6 of the 

ring thickness and covering an arc 10° long («) have been used. Making use of symmetry, 

only the top half needs to be modeled. The first model, shown in Fig. 3.4a, consists of beam 

elements. First, the actuation is simulated by specifying a coefficient of thermal expansion 

for the elements in the actuator region and then applying a known temperature to the model. 

Second, an equivalent self-equilibrating load, i.e., pressure and tangential force, 

corresponding to the temperature, is applied (equations (3.23) and (3.24)). The radial and 

tangential displacements obtained from the above analysis are identical and therefore not 

shown. It must be noted that the pressure loading must be transformed to nodal forces only 

(lumped loading). The lumped loading is often better for flat elements representing a curved 

surface (De Salvo and Swanson, 1979). 
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4a. Beam finite element model 
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Figure 3.4 Finite element modeis used to verify the theoretical model. 

The second finite element modei uses plane stress elements in the actuator region to 

include the actuator's stiffness and uses beam elements for the rest of the shell (Fig. 3.4b). A 

- rigid -element connecting the five nodes .at the end of the plane stress element region is 

introduced. A constraint equation is then used te ensure the continuity in the. rotations 

between the beam and plane stress elements. Again, thermal expansion is used to simulate the 

Static action of the actuators on the shell. 

The radial and tangential displacements are shown in Fig. 3.5. Discrepancies between 

the equivalent loading model and the plane stress finite element model exist since no 

assumptions about the actuator stiffness or about the equivalent loading are made in the latter 

model. The differences are however greater in the actuator region due to the added structural 

stiffness of the actuators. Even though displacement differences are present, the plane stress 

finite element model validates the derived model since it gives results of the same order of 

magnitude with similar deformed shapes as opposed to when only point tangential forces 

(without a transverse pressure) are used. The deformed shape of the analytical model and the 

plane stress finite element model are shown in Fig. 3.6. Also shown in Fig. 3.5 are the 
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Figure 3.5 Comparison of the displacements predicied by the proposed self-equilibraiing 
equivalent forces, the plane stress finite element model and the tangential force alone (no 
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Figure 3.6 Deformed shape of the ring using the self-equilibrium loading and the plane 
stress elements. 

displacements of the same ring if only discrete tangential forces are applied (without 

transverse pressure). This model using only tangential forces does not satisfy the ring's 
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self-equilibrium. Major displacement discrepancies between the proposed equivalent loading 

model and the case using only tangential forces are observed both in shape and magnitude. 

Using the tangential forces alone over predicts the displacements by a factor of up to 1000, as 

seen on the right vertical axis of Fig. 3.5 (note that the scales of the two vertical axis are 

different). Also, a reaction force in the x-direction at the clamped boundary is present if 

uniform pressure is not applied. This reaction force should not be present since the actual 

ring with bonded actuators is in self-equilibrium. Adequate equivalent loading did not show 

any reaction force in the x-direction at the clamped boundary. 

From the finite plane stress element model shown in Fig. 4b, it is possible to justify 

the use of a uniform radial pressure on the actuator footprint to maintain the self-equilibrium 

of the ring. Figure 3.7 shows the radial stress distribution through the thickness of the 

actuator and the ring. This stress distribution is virtuaily coustant over the whole actuator 

region, except at the ends of the actuator, which vaiidates the use of a uniform radial pressure 

in the analytical model. With the actuators removed, an equilibrating radial pressure applied 

on both sides of the shell is necessary to produce the same stress distribution on the shell 

surface (z/ts=/, -/) shown in Fig. 3.7. Because the inierest is in global shel! deformations, the 

equilibrating pressure can be appiied on one side cnly or ou ue shell midplane, since it will 

produce the same shell response. 
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Figure 3.7 Radial stress distribution through the thickness in the actuator region. 
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3.4 Conclusions 

In this chapter, a model to represent the action of discrete induced strain actuator 

patches bonded to the surface of a circular cylindrical shell is developed based on Donnell's 

theory. Expressions to represent the actuator forces and moments have been developed for 

shells and are found to be the same as those obtained for plates. However, this equivaient set 

of forces and moments produces a rigid body mode resulting from the non-colinearity of the 

tangential forces due to the shell curvature. To avoid this rigid body mode, unitorm pressure 

is applied in the region of the actuator patch. This solution method is verified using finite 

element modeling and shows very good agreement. 
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Chapter 4 

Static Modeling of In-Phase Actuation of 
Actuators Bonded on Ring Structures 

Abstract 

A closed-form model to represent the in-phase actuation of induced strain actuators 

bonded to the surface of a circular ring is developed. Due to the inherent shell curvature, the 

equivalent discrete tangential forces generally used to represent the in-phase actuation of the 

actuators (such as in pin- force models) are not co-linear and resuli in the application of rigid body 

forces on the shell. This 1ion-equiiibrium state violates the principle cf self-equilibrium of fully 

integrated structures, such as piezoelectricaily actuated shells. The solution to this non- 

equilibrium problem is to apply a uniform transverse pressure over the actuator regicu to maintain 

equilibrium. Using this adequate equivaicnt loading scheme for in-phase actuation, a response 

model for a circular ring is derived based om shell governing equations. 

To verify the in-phase actvaticu response model, finite element analysis is performed. A 

perfect match between the in-phase actuation response mode! and the finite clement results, when 

the actuator mass and stiffness are neglected, validaies the derived analytical model. If the seif- 

‘equilibrium is ‘not maintairied {point-force modei), the predicted deformed shape is compietely 

different from the actual shell response to in-phase actuation. Thus, by simply applying a 

uniform transverse pressure along with the discrete tangential forces in order to mainiain the self- 

equilibrium of the shell, the shell response can be modeled accurately. 

4.1 Introduction 

Piezoelectric actuators have been used for active shape, vibration and acoustic control of 

structures because of their adaptability and light weight. Their ability to be easily integrated into 

structures makes them very attractive in structural control since all moving parts encountered with 

conventional actuators are eliminated. Structural control is obtained by simply embedding PZT 
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‘actuators in the structure or bonding them on the structure. In structural control, the desired 

deformation in the structure is obtained by the application of localized line forces and moments 

generated by the expanding or contracting bonded or embedded PZT actuators. In the case of 

vibration and acoustic control, the piezoelectric actuators, by the application of these line forces, 

will change the impedance of the structure to reduce the unwanted dynamic effects at given 

frequencies. 

Previous research performed on PZT-actuated beam and plate structures has led to 

models describing their response (Crawley and de Luis, 1987; Crawley and Anderson, 1990; 

Dimitriadis, Fuller and Rogers, 1991; Liang, Sun, and Rogers, 1993; Wang and Rogers, 1991; 

Zhou, Liang and Rogers, 1994a). Simple but efficient models were proposed to describe the 

response of a plate structure to bonded/embedded piezoelectric actuators (Crawley and Lazarus, 

1989). By simiply replacing the PZT actuator with line forces and moimerns along its edges, very 

accurate results are produced even though this type of mode! is approximate since ine mass and 

stiffness of the actuatcr is not considered. However, much less research has been done on 

structures with curvature. Some experimentai work (Fuller ¢! a!., 1990) and adaptations of flat 

structure models to curved structures have been made (‘ester and Lefebvre, 1891; Sonti and 

Jones, 1993). Some models based on sheli equations have aiso been proposed (Larson and 

Vinson, 1993b; Rossi, Liang and Rogers, 1993b; Sonti and Jones, 1991; Zhou. Liang and Rogers. 

1993). 

in the previous chapter, the author considered the modeling of piezoelectric actuator 

patches on circular cylinders. When the piezociectric actuators are actuated in-phase, it is found 

that the point force model used to represent the actuator creates a rigid body motion since the 

equivalent line forces are not collinear due to the curvature of the shell (Fig. 4.1). Since the PZT 

actuators are integrated within the structure, self-equilibrium must be satisfied. This equilibrium 

discrepancy between the actual structure and the equivalent loading scheme will produce serious 

errors when the shell response, based on the line force representation of the actuator, is calculated. 

Until now, no models take account of this non-equilibrium application of the equivalent line 

forces. The solution proposed to solve this problem is to apply a uniform transverse pressure over 

the actuator location to eliminate the rigid body mode. Good agreement between the equivalent 

loading model and the actual response of the piezoelectrically-actuated structure was found. 

In this chapter, a model for in-phase actuation response of a piezoelectrically-actuated 

circular ring, which takes into account the non-collinear equivalent line forces, is proposed. 
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4.2 Shell Equivalent Loading Model 

The first step in this paper is to repeat the conclusions established in the previcus chapter. 

An equivalent loading scheme for shell structures was presented. It was shown that in the case of 

in-phase actuation, a rigid body mode was present due to the fact that the equivalent line forces 

Ng are not collinear (Fig. 4.1). 

  
Figure 4.2 Adequate equivalent loading to maintain equilibrium. 

To eliminate this non-equilibrium state of the structure, a transverse uniform pressure is 

added (Fig. 4.2). The magnitude of the transverse pressure from simple statics is then: 

_Ne 
R 3 Dp, = (4.1) 
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where 

    

  

Ny =—s!s-—2— A (4.2) 
l-v2+y 

and 

Y,t 
=—s, 4.3 yY Yt, (4.3) 

when the Poisson's ratio of the shell and the piezoelectric actuator are assumed to be the same. Y, 

t, L and R are the Young's modulus, the thickness, the tree induced strain and the radius of the 

ring, respectively, while the subscripts s and a stand for shell and actuator, respectively. Ifa 

circular ring is considered, the Poisson's effect disappears since there are no constraints in the 

axial direction. Thus, for the case of a ring, the Poisson's ratio in equation (4.2) is set to zero. 

Based on this equivalent loading scheme, a response mode! for a circular ring with two discrete 

tangential forces and a uniform radial pressure will be derived. 

4.3 Derivation of Governing Equations 

A brief overview of the governing equations of a thin ring subjected io radial pressure 

and discrete tangential loading will be presented (Soede!, 1981). in the case of a thin circular 

- ring, only the in-plane siress resuliants Ng, Mg and Og, are present and a linear variation in the 

tangential direction and a constant radial displacemem through the thickness are assumed 

(Kirchhoff's assumption, Soedel, 1981): 

  

v=v?+zB (4.4a) 

w=w? (4.4b) 

1 aw 
=—| y?— 4.4 

p R c oo } 440) 

where fis the rotational displacement and v° and w? are the neutral surface tangential and radial 

displacements, respectively. 

Under those assumptions, the strain-displacement relation is: 
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1{ wv? z {av dw? _f ol, 2) 4.5 

6 [= ™ }a(¥ 06? 49) 

The membrane force, bending moment and transverse shear force resultants are obtained 

by integrating the stress components through the thickness of the ring: 

  

  

Noe = [i ,O0dz = eo Y,€9dz = R | 30 +w (4.6a) 

2,9 \ pt, /2 pt, /2 _ Di wv? dw , 
Mo = onede= ["H Yoegede= | 30 — 387 | (4.6b) 

_ ft, /2 acm 
Og = ar Og, dz, (4.6¢) 

where the membrane and bending stiffnesses are: 

K=¥,t,, (4.7a) 

3 
D Teh (4.7) 

lz 

respectively. It must be noted that the Poisson's ratio is not present in the stiffness expressions 

equation (4.7) since the ring is free to deform in the axial direction. 

The equilibrium equations derivation is based on the energy method, using Hamilton's 

principle: 

t, 7 . re [ [6(U -£, -E,)~ dK |di=0, (4.8) 

where 6(U-Ep-Ey) is the total variational potential energy and OK is the variational kinetic energy. 

Since the ring is subjected to static loading, the kinetic energy term is equal to zero. The Love 

ring equations for the equivalent loading scheme are found to be: 

Noo , 1 Moo , No s(g_@,)=0, (4.9a) 
Rd@ RRdO R 

d’Moo Noo 
Rede oR! G90) 
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The derived equilibrium equations (equation (4.9)) are very similar to those obtained when a 

pressure loading is considered. The difference appears in the tangential line loading term 

N . . 
as 5(@—@,) which replaces the pg(@) term when tangential pressure loading is considered in 

equation (4.9a). 

Indeed, this difference occurs in the potential energy of the external line loading used in 

Hamilton's principle, which is given by: 

E, =| Nov’ dx. (4.10) 

Rewriting the previous equation under a double integral by introducing a Dirac function: 

Ey = (4 5(9--6, \v* Rd@ dx, (4.113 

where 9, is the location of the applied line load. The loads are assuined to be applied on the 

neutral surface of the ring. 

Finally, the necessary boundary conditions for the ring are: 

* 

Nop =Nog or vo =v" . (4.12a) 

Mag = Mog or B= 2, (4.12b) 

and 

Og, = Oy or w? =w (4.12c) 

4.4 Derivation of The In-Phase Actuation Response Model 

With the governing equations now derived, the next step is to apply them to the particular 

problem shown in Fig. 4.3. To simplify the analytical model derivation, the actuator stiffness will 

be neglected. 

As established previously, the ring is subjected to discrete tangential forces at the end of 

N ; 
the modeled actuator and to a uniform radial pressure of magnitude (> equation (4.1)), to 
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ensure equilibrium of the ring. The loading of the ring is expressed using Dirac and Heaviside 

functions: 

ng = No|d — 5° | (4.13) 

N. _ 
pp =—— 8H", (4.14) 

where 

(4.15a) 

(4.15b) 

(4.16a) 

(4.16b) 

(4.17a) 

(4.17b) 

  
  SS

 

  
        

Figure 4.3 Adequate equivalent actuator loading on the ring. 

The integration constants will be determined from the continuity conditions at @=0,2z: 

w°(0)=w°? (27) (4.18a) 
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v?(0) = v°(2n) (4.18b) 

B(0) = B(2n). (4.18c) 

From the rotational displacement expression equation (4.4c), it is possible to rewrite the 

continuity conditions of equation (4.18c), by making use of equation (4.18a), as: 

w’’(O)=w’?(2n). (4.18d) 

Combining the equilibrium equations (4.9), the differential equation for the moment ir the ring is 

obtained as follows: 

3 a Moe «lon. p’[ Nes py |= 0. (4.19) 

Substituting the loading expressions equations (4.13) and (4.14) in the previous equation 

(equation (4.19)), it can be seen that the right hand side of the equation will be zero. Solving the 

differentiai equation (equation (4.19)), an expression of the moment distribuvion in the ring is 

obtained: 

Mog = C1 4+-C2Sind + C3Cose. (4.20) 

. Combining the two stress-displacement equations (4.6). the following differential equation is 

  

  

obtained: 

w(oy+ 81 (Book — ites | (4.24) 
da’ D\ KR : 

Rewriting the second equilibrium equation (Eq, ¢4.9b)): 

_ 1 4 Mee , py (4.22) 06 R do? r 

\ Substituting the expression of the moment equation (4.20) and the tangential force equation (4.22) 

into equation (4.21), the following differential equation in w°(@) is obtained: 

d’w(@) RR? 
w°(@)+——- = 

D D D _* —* _ |s; —— ~=y |. (4.23 702 cre, sino Cs 14 Re |cose | (4.23) 
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  For thin rings, the RR: term is neglected since its value is much less than one. The radial 

displacement equation is obtained using Laplace transform: 

2 C; (I~ Cos6)+ (sind 6 Cos6) + (6 Sind) - 
oR 2 2 w°(9) =—— (4.24) 

D =e: Cos” \H™ -(1-Cos* \H*|+ w?(0)Cos@ + w? (0)Sin@ 

Introducing equation (4.24) in equation (4.6a), the tangential displacement differential equation is 

. , €o, 
dv°(6) —C,(1~-Cos6)- “2 (sino - 9 Cos0)—— (6 Sin8) — | 
a = . ' (4.25) 

dé D a2 [cose H” ~Cos@* Ht —w’?(0)Cos6 - w° (0)SinO | 

Solving this equation using Laplace transformation and applying continuity conditions equation 

(4.18), the equations of the tangentiai and radial displacements are found to be: 

RN, { Sin@,,.. . . Fa ee pp ges } ; 
¥°(@) = —--— 8? Es (Sing -- ACos@) +1 Sine H™ ~Sin@™ H*|t, (4.26) 

i. R 4 

and 

, RN, {Sin@, |. f, 2 ede fy . 1 : 
w°(@) = ee 5in@+ { i-Cos@ VT -47- Cosé")H™ |r. (4.27) 

a ; : J 

4.5 Finite Element Verification 

The developed in-phase actuation response model is verified using finite element 

analysis. A ring of 6" radius, 0.032" thickness and 1" deep, and piezoelectric actuators 1/6 of the 

ring thickness and covering an arc 30° long (2@,), are used. A Young modulus of 30Msi and 

9.1Msi are used for the ring and the PZT actuators, respectively. Making use of symmetry, the 

finite element model consists of beam elements in the upper half of the ring only, as shown in 

Fig. 4.4. Two load cases are considered: i) temperature contraction equivalent to 1000 pstrain of 

the beam elements modeling the actuator region; and ii) equivalent discrete forces and uniform 

pressure loading from equations (4.1) and (4.2). The finite element analysis results are shown in 

Fig. 4.5, as well as the in-phase actuation response model results. A single curve can be observed 
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since the curves match perfectly. Also shown in Fig. 4.5 are the displacements of the same ring if 

only discrete tangential forces are applied (point force model). The point force model does not 

satisfy the ring's self-equilibrium. Major displacement discrepancies between the in-phase 

actuation response and the point force model occur both in shape and magnitude. The point force 

model overpredicts the displacements by a factor up to 1000. Fig. 4.6 shows the deformed shape 

of the self-equilibrium loading and the non-equilibrium loading with the displacements magnified 

       

   

Actuator 

Kegion 
    

Figure 4.4 Beam finite element modet. 
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Figure 4.5 Match of displacements between the analytical model and the beam finite element 
model. 
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Figure 4.6 Deformed shape of the ring with and without self-equilibrium loading. 

by a 250 and 1 factor, respectively. lt can be seen again that when a uniform pressure is nct 

applied to maintain equilibrium, the deformed shape is erroneous. Aiso, a reaction force in ihe x- 

direction at the clamped boundary condition is present if the uniform pressure is not applied. This 

reaction force should not be present since the actual ring with bonded actuators is in se) < a vi
es

, 

equilibrium. The adequate equivaleit loading did not show any reaction force in the x-direction at 

the clamped boundary condition. The verifization of the results also have been made with 10° 

and 60°-long piezoelectric patches, and the coincidence is still perfect between the in-phase 

actuation response mode] and tne finite clemeni analysis 

However, it must be meriioned that ihe response of the ring is very sensitive to the 

applied !oad in the finite clement model. An error of 0.1% in the magnitude of the applied 

equivalent line force will completely change the response of the ring. This sensitivity of the 

nodal displacements is due to the low stiffness of the ring (0.032" thick only). The application of 

a tangential line force of 0.1% magnitude of the applied equivalent line force on the ring wili 

produce nodal displacements of the same order as the self-equilibrium loading nodal 

displacements. 

Also, the pressure loading must be transformed to nodal forces only (umped loading). 

The lumped loading is often better for flat elements representing a curved surface (De Salvo and 

Swanson, 1979). 
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Figure 4.7 Plane stress finite element model. 

Up to this point, the added stiffness of the actuators has been neglecied both in the 

analytical model and the finite element analysis. A second finite element model, using plane 

stress elements in the actuaior region to include the actuator’s stiffness, is made to compare the 

actual behavior of the system to the derived analytical model (Fig. 4.7). To keep the FE mode! 

small, the actuator size is reduced to 10° (20g). The radial and tangential displacemenis are 

shown in Fig. 4.8. Disparities between the analytical mode! and the plane stress finite element 

-modei are present since the actuator stiffness is not neglected and no assumptions towards 

equivalent loading are made on the latter one. Increased actuator stiffness will turther increase 

the disparitics between the two solutions. But, it should be borne in mind that in typical 

applications, the actuator patches are small and add minimally to the baseline structural stifuess.. 

“Even though displacement differences are present, the plane stress finite elemerit mode! validates © | 

the derived analytical model since it gives results of the same order of magnitude with similar 

deformed shapes as opposed to the point force model previously discussed. The deformed shape 

of the analytical model and the plane stress finite element model is shown in Fig. 4.9. 

The discussion of in-phase actuation of induced strain actuators symmetrically bonded on 

shells can be extended to unsymmetric actuation. Unsymmetric actuation is obtained when the 

actuators on each side of the shell are submitted to voltages of different magnitudes, or when a 

single actuator is bonded on one side of the shell. Unsymmetric actuation is a combination of 

extension and bending of the shell and can be solved using simple superposition. Thus, for 

unsymmetric actuation, the equivalent loading will consist of discrete tangential forces and 

moments at the ends of the actuator(s) and a distributed transverse pressure over the actuator(s) 

footprint to maintain the self-equilibrium of the shell. 
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Figure 4.8 Match of displacements between the analytical model and the plane Stress jinite 
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Figure 4.9 Deformed shape of the ring using the self-equilibrium loading and the plane Stress 
elements. 
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4.6 Conclusions 

In this chapter, a closed-form solution for a ring subjected to in-phase actuation of surface 

bonded strain actuators is presented. The loading used to represent the in-phase actuation consists 

of uniform transverse pressure and tangential line forces to maintain the self-equilibrium of the 

shell structure. The results of the in-phase actuation deformation model are in exact agreement 

with the finite element results when actuator stiffness is neglected. If the actuator stiffness is 

considered, the analytical model gives a good approximation of the shell's deformed shape. If the 

self-equilibrium is not maintained (point-force model), the predicted deformed shape is 

completely different from the actual shell response to in-phase actuation. Thus a uniform 

transverse pressure in addition to the tangential line loads 1s necessary to preclude rigid body 

motion and to obtain accurate displacement response. 
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Chapter 5 

Impedance Modeling of Out-of-Phase Actuation of 
Actuators Bonded on Ring Structures 

Abstract 

Two impedance models representing out-of-phase actuation of induced strain actuators 

bonded to the surface of a circular ring are compared. The first impedance model includes the 

transverse shear stress, while the second model neglects it. But first, a discussion of the proper 

way to apply the equivalent loading due to the out-of-phase aciuaiion is discussed. The loading 

due to actuation can be represetited in the shell governing equations either as an induced uniform 

moment over the footprint of the actuators or as an extemal line moment at the ends o1 the 

actuators. A compariscn between the impedance modeling and the more conventional static 

modeling approach is also made and shows corivergence with the impedance models at low 

frequencies. A full derivaticn of the impedance models 1s included, taking great care in the 

structural impedance definition. A dynamic finite elemem analysis using piezoelectric elements 

available in ANSYS 5.6 is performed to verify che impedance models. The impedance model 

including the transverse shear stress shows an excellent match with the finite element results. 

5.1 Introduction 

The use of piezoelectric materials (PZT) within intelligent structures for active control of 

the shape and vibration has been under study for some time now. Great interest has been drawn 

to vibrational and acoustical control of cylindrical bodies, like aircraft fuselage and submarine 

hull, in the recent years. Bonding PZT actuators on the surface of the structure or embedding 

them within the structure will allow efficient structural control, by applying localized forces on 

the edges of the actuator or by changing the structural impedance. In order to simplify the 

analysis of piezoelectric actuated structures, models have been developed to further extend the 

understanding of this type of intelligent material systems. Numerous models for PZT-actuated 

beams and plates which describe the structural response have been proposed (Crawley and de 
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Luis, 1987; Crawley and Anderson, 1990; Wang and Rogers, 1991; Dimitriadis et al., 1991; 

Crawley and Lazarus, 1989). Adaptations of flat structure models to model curved structures 

(Sonti and Jones, 1991; Lester and Lefebvre, 1991) have been done. Models have also been 

developed using the shell governing equations (Sonti and Jones, 1993; Larson and Vinson, 

1993b). All the previous models are based on the structural stiffness and do not include the 

dynamic effects of the system in the development of the equivalent actuator force output. An 

impedance model developed by Liang et al. (1993a, 1993c) includes these dynamic effects. 

Based on the structural impedance, the actuator force output will be frequency-dependent, and 

this will result in a more accurate prediction of the dynamic response. Models using the 

impedance approach have been proposed for beams (Liang et al., 1993b), plates (Zhou et al., 

19944) and shells (Rossi et al., 1993; Zhou et al., 1993). The essence cf the impedance modeling 

approach is to match the aciuator impedance with the structural impedance at the ends of the 

actuators. Based on this method, ii is possibte to replace the actuators with equivaient moments 

on the structure and noi nave te deal with the non-uniform structural properties. This facilitates 

greatly the solution of the global shel] equations. 

Zhou et al. (1993) studicd the out-of-phase actuation of a circular cylinder with a discrete 

line moment applied aiong the edges of the actuator using modal expansion to determine the 

mechanical impedance and displacements. Howevei, the transverse shear stress was neglected as 

a simplification. Rossi et al. (1993) studied the out-of-phase actuation of a circular ring using a 

uniform induced. moment on the actuaior foovprin: and the Rayleigh-Ritz method to model the 

mechanical. impedance and dispiacements. However, the definition of the mechanical impedance 

of the siructure was not appropriate in that paper: the mechanical impedance was defined as the 

tangential force divided by the tangential velocity at the end of the actuator bonded on the top 

surface of the ring only. This definition would be appropriate if a single actuator is bonded to the 

ring on the top surface. For out-of-phase actuation, the ring is subjected to a pure moment 

generated by forces applied on the ring by actuators bonded on the top and bottom surfaces of the 

ring. Since the forces are coupled, the force applied on the ring by the actuator on the bottom 

surface should also be included, since it will have an impact on the displacements on the top 

surface of the ring, and vice-versa (Fig. 5.1). Thus, the proper definition of the impedance based 

on the tangential force and the tangential velocity at the end of the actuator should be as follows: 

Frop | =| Zor i Viop (5 1) 

F; bottom Lip Z bb Vottom 
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This equation can be simplified substituting Fi5, = Foottom = F for out-of-phase 

actuation. Also, the mechanical impedance can be defined as the moment divided by the 

rotational velocity at the ends of the actuator, as in Zhou et al. (1993). This latter approach will 

be used for its accuracy as well as its simplicity. Both impedance definitions can be shown to be 

equal through simple geometrical relations. Thus, corrections need to be made to the impedance 

model developed by Rossi et al. (1993). 

In this chapter, the application of the out-of-phase actuation loading which can be 

included either as an induced moment distribution over the footprint of the actuator or as discrete 

external moments at the ends of the actuators will be discussed. Then, the impedance model 

derivation including the shear stress resultant will be presented and compared to the previous 

impedance model neglecting the shear stress resultant. The chapter will conclude with a finite 

element verification of the impedance models. 

  

  

Figure 5.1 One-dimensional ring with bonded PZTactuators actuated out-of-phase. 

5.2 Out-of-Phase Equivalent Loading 

Before presenting the impedance model, a discussion of the appropriate method of 

applying the actuators loading to shell structures is required. The moment loading on the 

structure can be applied in two different fashions: i) induced uniform moment loading on the 

actuator footprint (Fig. 5.2a); ii) external line moment loading on the actuator edges (Fig. 5.2b). 

Using the thin shell theory (Soedel, 1976), the equations of motion can be written in 

terms of the internal shell bending moment M,x, Mx, and Mgg, with both the actuator induced 
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uniform moment my, and mg, and the external line moment m, and me simultaneously applied 

to illustrate the differences, as (note that from Soedel (1976), the external line moments, m, and 

Mg , appear on the right-hand side of the equation): 

Nx, Neo 
  

  

      

at = Dalsll” (5.2a) 

O° (Myx =x) +2 d*Mze + 3°(Moo—mo) _ Neo = p,t,w? + om, + dg (5.2c) ax? ROO (RA)? R TSS" Oe” R700, 

where the induced uniform moments can be written using Heaviside functions: 

m, = M,| H{x-x;)— H(x— x) H(@-@;)- H(0 -@,)| (5.34) 

my == Mal H{x-—-x))— H(x— x) A(@-@,)- H(@-65)], (5.30) 

and the external line moments can be written using Dirac functions oedel, 1975): 

m, = M,|6(x—x;)-5(x—x,)]]H(6-0,)- H(0-6,)| (S.4a) 

ng = Mal H(<~ x;)— H(x—x,\](@-@,)- 8(8 -9,)1. (5.4b) 

’ The induced uniform moments cart be transferred to the right-hand side of the equations (5.2b and 

5.2c), resulting in the following equations: 

ae 5 Hoe, Z| ae, Me = Pt” 41 ate , Mg (5.5? 
ox ROO RL &x | RAO “RROO R2 

    

0°M,, .0°Myg  0?Mgg Noo 9 .O-m,  d°’my am, omg 
5 2 + > = P,two +——* + stmttG 

Ox oxRIO (ROY R ox’ (Rae) ak ~——-R*0 
  (5.5c) 

From equation (5.5), it can be seen that whether the action of the actuators is modeled as an 

induced uniform moment or as an external line moment, the equations of motion are the same; the 

two last terms on the right hand side of the equations being equals. Thus, the moment applied by 

the actuators can be included in the governing equations either as induced uniform moment on the 

actuators footprint or as external line moments on the actuators edges. 

The external line moment loading can be seen as the pin-force approach, since the 
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actuator is simply replaced by line moments of appropriate magnitude on the actuator edges using 

Dirac functions (Fig. 5.2a). For the induced uniform moment loading, the moment is not 

considered to be external and is included in the equilibrium equations as piezoelectricity induced 

loading. The moment will be uniform over the actuator footprint and is expressed using 

Heaviside functions (Fig. 5.2b). 

  

      
    

A” 

Mo = M,|6(@-6;)- 5(0-6,)] Mg = M,|H(0-8,)—H(8-@,)| 

| . 
a | | re 5, sO 8 

2a) External Equivalent Loading 2b) Induced Uniform Loading 

Figure 5.2 Different representations of the moment loading 

* 

Mg 

a 
i 

term in equation (5.5b), is neglected compared to the tangential stress resultant. This 

In Zhou et al. (1993), the loading coming from the shear stress resultant, which is the -   

approximation violates the static equilibrium of the system. For a thin shell, this approximation 

will have an increasing impact on the behavior of the structure with an increasing shell thickness. 

For greater accuracy and completeness, the equations including the transverse shear will be 

derived. 

5.3. Impedance Model Derivation 

In this section, a brief derivation of the impedance model based on two approaches, i.e. 

Rayleigh-Ritz and modal expansion, will be presented. The models will be derived for a thin 

circular ring with a pair piezoelectric actuators bonded on the top and bottom of the ring surface 

to create a pure bending moment (Fig. 5.1). The linear Love-Kirchhoff theory (Leissa, 1973; 

Soedel, 1981) is used since the ring is assumed to be thin. The symmetry of the system will be 

considered in the development of the impedance model. 

5.3.1 System Dynamic Modeling 

The first step in impedance modeling is to model the dynamic interaction between the 

actuators and the shell structure. Only the final equations are presented next (details can be found 
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in Rossi et al. (1993), Zhou et al. (1993) and Liang et al., (1993a)). The mechanical moment 

admittance is defined on the basis of the discrete applied moment and the rotational velocity at 

the end of the actuator (Fig. 5.1): 

p=? = jg. (5.6) 

where Mg is the actuator output moment, which is frequency-dependent, and @ is the rotational 

velocity. The minus sign indicates that the structural reactions are equal and opposite to the 

output force of the actuator. The induced moment created by the two actuators is simply given by 

(force times the distance between the actuators): 

Mg = Fo(t, +t,). (5.7) 

The force output of the actuator is given by: 

E 
2d2,EYt Fy =-"— 320 aa (5.8) 

‘7 Z+Z, 

and the short-circuit actuator mechanical impedance is: 

_¥et ata k a= 
io tan(kR@,), 

  

(5.9) 

' where yh is the actuator Young's modulus at constant field, d22 1s the charge coefficient of the 

PZT actuator, E is the applied electrical field and k is the wave number. f, and ty are the structure 

and actuator thicknesses, respectively. 

5.3.2 Determination of the Structural Impedance 

The impedance calculation at the ends of the actuator can be done using two different 

methods: i) by solving the equations of motion by expanding the tangential and radial 

displacements with an appropriate assumed solutions (Rayleigh-Ritz); ii) by using the modal 

expansion technique (Zhou et al., 1993). The modal expansion technique leads to a formulation 

similar, but different, to that Rayleigh-Ritz technique. The Rayleigh-Ritz method uses trial 

functions which only needs to satisfy the all boundary conditions of the system. On the other 

hand, the modal expansion technique uses the eigenfunctions of the system which satisfies both 

all boundary conditions and the differential equations. If the eigenfunctions are used as trial 
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functions in the Rayleigh-Ritz method, the modal expansion technique and the Rayleigh-Ritz 

method will give the same results. When the eigenfunctions of the system are available, they 

should be used since they produce more accurate results. However, for complicated boundary 

conditions, the eigenfunctions of the system are not always available and the Rayleigh-Ritz 

method should be used. Brief derivations of the structural impedance for both the Rayleigh-Ritz 

and the modal expansion techniques are now presented. For simplicity, the equation will only be 

derived for a free-floating one-dimensional ring. Using the same guidelines, the structural 

impedance for general shells can be derived. 

5.3.2.1 Structural Impedance Based on the Rayleigh-Ritz Method 

The equation of motion for the ring can be written in matrix form (Soedel, 1981) as: 

  

  

  

2 | r 2 4 ~3 ‘ ( * \ 

Kor el er) “| ie yo) | I Rae? |" R?| Rae" | RLRIO} R| RO J) pel lel Rs esto 
. ; y _ si. = ¢ . * \ AO. J 

A) 21,2) ew if at] wey Pw, Lf amg \) 
RL RAO |” R| RId8* | R? oe" | ; | R Re8 | 

where the bending stiffness is: 

3 

p=tsh (5.1ia) 
2 

and the extensional stiffness is: 

(5.13b) 

Y, is the complex Young's modulus of the ring, and p, is the density of the ring. The complex 

Young's modulus is used to include the damping through the structural damping factor. The 

Poisson's ratio is not present in the stiffness expressions due to the one-dimensional state of the 

ring. Taking into consideration the free floating boundary conditions of the ring, the tangential 

and radial neutral axes displacements, v? and w®, respectively, have the following assumed 

solutions 

v°(t,0)= > V,Sin(n@)e™ (5.12a) 
n=l 

w?(t,0)= YW, Cos(nd)e'™. (5.12b) 
n=1 
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Introducing the tangential and radial displacement expressions (equation 5.12) in the equation of 

motion (equation 5.10), a linear system of equations is obtained: 

D K D K Mo sin(n@ 

Teh REM FPO’ Ram pe f er 7 OS ‘ . (5.13) 
Pi Kp Pint 4 te W, nM g sin(n@, ) 

R R R R TR 

From equation 5.6, the mechanical moment admittance of the ring can be determined: 

| 2 1) ~ p.1,0* |sin*(n0,) 
  (5.14) 

§.3.2.2 Structural Impedance Based on Modal Expansion 

The structural impedance will now be calculated using ihe modal expansion technique. 

Since the ring is thin, only the dominant bending modes are used. The general solution of the- 

response of a thin shell subiected to a uniform induced moment can be determined by solving the 

following Love equations (Soedel, 1976; Soedei, 1981). 

k 

Lolv?,w* |= pts? st “<3 (5.15a) | . 

, | Li amg 
L,(v°,w?)-- pytw? =——| --— |, (5.15b) 
A ) Pls al Rae | t 

where the modal expansion series solution for a free floating ring is: 

v°(t,0) = ¥ pa(t)V,Sin(n8) (5.16a) 
n=2 

w°(t,0)= ¥.p,(t)W,Cos(n6), (5.16b) 
n=2 

where py is the modal participation factor. The first natural frequency (n=/), which is zero, 

corresponds to the rigid body motion mode and will not be included in the series. Making use of 

the eigenvalue analysis, the usual modal expansion technique yields: 
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p,(t)+ o%p,(t)= Fe, (5.17) 

where the forcing function F’y is: 

omg Mo Oo x F, = 6)+—2v°(@) | Rd@ 5.1 
. Sakon marke (22, { repo’ ( ) 0.18) 

he solution of the governing equation (equation (5.17)) is: 

  

F.e® 
Pr(t)=——> (5.19) 

—-W n 

The radial and tangential displacements responses of the ring are thus obtained: 

  

    

  

  
  

  

  

Ty ( vo | | * | wt" sin(ad, )sinfnd je | 
y°(t,6) = —- Me | a | (5.2 1a) 

0,t, mR? n= y2 \ » 2 

4+] ha, - 0° | 
i | js ’ { 

L 4 4 

iy 1 
|) A 4g jsin(n@, )cos( n@ je | 

2M, 2iiw, i) ° 
w°(4,0)=-—— 5 Yi ~—— |, (5.210) 

LGR 2: ( Y* ? 
Pals , Ty +1 leo? ;-0") | 

t \ n i ‘ 
I oat 

where the -—- ratio is obtained from the eigenfunction analysis of the systera 
n 

4 \ 
2 i ( n’D 

Pst, @,, R? | Re + K | 

n= \ J (5.22) 
2(,2 . “ W, n{n’D | 
xi > t+ K 
RR) 

From equation (5.6), the expression of the mechanical moment admittance is obtained: 

o|" in*(n®,) 

a : “ 
n 

        

(5.23) 
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5.4 Theoretical Results 

To verify and compare the impedance models, a case study of a circular aluminum ring 

with G1195 piezoelectric actuator patches bonded to its surface is made. The material and 

geometric properties of the system are shown in Table 5.1. Two actuator sizes of 10° and 30° arc 

length are used to consider the influence of the actuator size on the accuracy of the theoretical 

models. When the size of the PZT actuator is kept small and thin (compared to ring), the stiffness 

and mass loading of the actuators can be neglected in the analytical models. The results from the 

Static approach will be compared to the impedance models. 

Table 5.1 Material and geometric properties of the PZT actuator and the aluminum ring. 
  

  

  

Aluminum | PZT 
Ring Actuator 

Young's Modulus, Pa 56.5% 10? 63x 10° 

Density, kg/m> 2647 7650 

Loss factor 0.006 9.901 

Piezo. Coefficient d32, m/V N/A -166 x 10°12 

Applied clectric field, V/m NA 2.625 x 109 

Radius,cm Arc length, ° 12.475 10° and 30° 

Thickness, mm 3 0.23           
Figure 5.3 shows the structural impedance fur iic two uinpedance models and the actuator 

impedance. The lower peaks of the curves correspons to the natural frequencies of the original 

cylinder, as expected. Only small differences are found between the two impedance models, 

including or not the shear stress resultant. The impedanice levels of the actuator and the structure 

are in the same order of magnitude at structural resonance, which indicates a good dynamic 

interaction between the piezoelectric actuators and the structure. 
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The next figure (Fig. 5.4) shows the actuator output force based on the two impedance 

models. The dotted horizontal line is the actuator force output calculated with the static approach 

(Crawley and de Luis, 1988). Both models shows similar behavior, but only the impedance 

model including the shear stress resultant converge to the static force at low frequencies; as it 

should be. It can also be observed that the actuator force output is heavily dependent on the 

excitation frequency. 

The four following figures show the radial displacement frequency response of the 

structure for different cases and locations. Figures 5.5 and 5.6 show the radial displacement of 

the ring at 30° and 90° from the actuator, respectively, for a 10° piezoceramic actuator patch. The 

displacements without the shear stress resultant are overestimated when compared to the case 

when the shear stress resultant is included in the second governing equation. At higher 

frequencies, the influence of the shear stress resuJiant 1s minimal. but significant at low 

frequencies. Thus, the inclusion of the shear stress resultant in the governing equations does not 

imply major complications and thus should be considered for greater accuracy. Figure 5.7 shows 

the radial displacement frequency response a: 96° for a larger piezoceramic actuator patch (30°). 

The same conclusions can be drawn on the influence of the siiear stress resultant. Finally. a case 

study of a larger radius ring is presented in Fig. 5.8. Am increased radius or a reduced ring 

thickness will decrease the shear stress level in the structure. Once again, above the third 

resonant mode, the shear stress resultant have smna}t impact on the structural response. At lower 

frequencies, the differences are still present but are smaller. The dotted lines are from the finite 

element analysis which will be discussed next. 

we .. Se 
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5.5 Finite Element Verification 

The impedance models developed have been verified using finite elements. A dynamic 

analysis was performed using piezoelectric elements available in ANSYS 5.0. Making use of 

symmetry, the finite element model consists of structural plane stress elements for the ring, and 

the actuator is modeled with plane stress piezoelectric elements (Fig. 5.9). The impedance 

models used free floating boundary conditions, as well as the dynamic finite element model. In 

the modeling of the piezoelectric elements, great care must be taken in the input of the 

piezoelectric material properties to obtain accurate results. 

The frequency response of the ring using finite elements at 30° and 90° from the actuators 

are shown in Figs. 5.5 and 5.6 (dotted lines) along with the impedance models’ frequency 

responses. Both at 30° and 90°, the frequency response of the impedance model match with great 

accuracy the dynamic finite element analysis. The finite element natural frequencies are a litile 

lower than the ones obtained from the impedance models duc to the increased stiffness provided 

by the actuators in the finite element model. With an increasing actuator size, this discrepancy 

increases too. For a larger piezoceramic actuator (Fig. 5.7), the match between the finite element 

analysis and the theoretical models is still very good, even though small discrepancies are preseni 

due to the increased mass and stiffness of the actuators and due to the assumptions made in the 

impedance modeling. 

  

  

a 
Figure 5.9 Finite Element Model. 

The next step is to look at the structural response at low frequency (5 Hz) where the 

response of the ring will be similar to the static response. The radial and tangential displacement 

amplitudes are shown in Figure 5.10. The displacements predicted by the impedance models 

shows an excellent match with the finite element results. The deformed shape of the ring is 
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shown in Figure 5.11. As noted earlier, the impact of neglecting the shear stress resultant is 

significant. Differences of up to 75% in the displacements are obtained when the shear stress 

resultant is ignored. However, the difference only shows in magnitude, the deformed shape of the 

ring being the same. 
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The final step is to look at the response of the ring at higher frequency, i.e., 500 Hz, 

where the fourth mode is dominant. Figure 5.12 shows the radial and tangential displacement 

amplitudes. The displacements predicted by the impedance models are still in excellent 

agreement with the finite element results. 
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5.6 Conclusions 

Two impedance models to represent out-of-phase actuation of induced strain actuators 

bonded to the surface of a circular ring have been compared. The first impedance model includes 

the transverse shear stress, while the second model ignores it. Based on the shell governing 

equations, it was shown that the moment produced by the actuators can be included in the 

governing equations either as an induced uniform moment on the actuators footprint or as an 

external line moment on the actuator's edge. Impedance models for ring structures, based on 

Rayleigh-Ritz and modal expansion, were developed and applied to a particular case. The 

impedance model ignoring the shear stress resultant showed a significantly different response at 

low frequencies when compared to the full impedance model. The analytical results were verified 

using a dynamic finite element analysis with piezoelectric elements available in ANSYS 5.0. The 

impedance mode! including the shear stress resultant gives an excellent prediction of the 

structural response when compared to the finite element model. 
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Chapter 6 

Impedance Modeling of In-Phase Actuation of 
Actuators Bonded on Ring Structures 

Abstract 

An impedance model to describe the in-phase actuation of induced strain actuators 

bonded to the surface of a circular ring has been developed. The essence of the impedance 

approach is to match the actuator impedance with the structural impedance at the ends of the 

actuators. This approach enables the mcdel io include the dynamic effects of the system. 

Impedance modeling is based on the Rayleigh-Ritz method of represent the structural response of 

shells. The appropriate represestation of the joading due Lo iti-ohase actuation is discussed. Te 

verify the impedance model, dynamic finite element analysis has been performed using 

piezoelectric elements available in ANSYS 5.0. A good correlation between the finite element 

results and the impedance modei validates the analytical solution. A comparison between the 

impedance model and the more conventicnal static modeling approach is also made. The 

convergence of the impedance tnodel displacements tu ihe static model displacements at low 

frequencies further validates the derived impedance model. 

6.1 Introduction 

Piezoelectric actuators have been used for active shape, vibration, and acoustic control of 

structures because of their adaptability and light weight. Their ability to be easily integrated into 

Structures makes them very attractive in structural control since all of the moving parts 

encountered with conventional actuators are eliminated. Structural control is achieved by simply 

embedding PZT actuators in the structure or bonding them on the surface of the structure. In 

structural control, the desired deformation in the structure is obtained by the application of 

localized line forces and moments generated by the expanding or contracting bonded or 

embedded PZT actuators. In the case of vibration and acoustic control, the piezoelectric actuators 
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will change the apparent impedance of the structure at the disturbance location, which will reduce 

the unwanted dynamic effects in the structure. 

Previous research performed on PZT-actuated beam and plate structures has led to 

models describing their response (Crawley and de Luis, 1987; Crawley and Anderson, 1990; 

Wang and Rogers, 1991; Dimitriadis et al., 1991; Zhou et al., 1994a; Liang et al., 1993b). Other 

simple but efficient models were also proposed to describe the response of a plate structure to the 

piezoelectric actuators (Crawley and Lazarus, 1989; Hagood et al., 1991). By simply replacing 

the PZT actuator with line forces and moments on its edges, very accurate results are achieved 

even though this type of model is approximate since the mass and stiffness of the actuator is not 

considered. However, much less research has been performed on structures with curvature. 

Some experimental work (Fuller et al., 1990) and adaptations of flat structure models to curved 

structures have been made (Sonti and Jones, 1991; Lester and Lefebvre, 1991). Models based on 

shell equations have also been proposed (Rossi et al., 1993; Sonti and Jones, 1993; Zhou et al., 

1993; Larson and Vinson, 1993b). All these models were developed for out-of-phase actuation of 

the PZT actuators. Less extensive work has been done on in-pnase actuation cf shelis (see 

Chapters 3 and 4) (Lester and Lefebvre, 1991; Scnti and Jones, 1993). tn-phase actuation refers 

to the case when the actuators bonded on the top and on the bottorn cf the structure expand or 

contract together. 

‘In this chapter, a discussion of the appropriate representation cf the equivalent in-phase 

loading for shells is first done. Then, an impedance mode! of a circular ring actuated in-phase, 

based on the Rayleigh-Ritz mettiod, is derived. This is followed by a case study and a finite 

element verification of the theoretical results. 

6.2 In-Phase Equivalent Loading 

In chapter 3, the modeling of piezoelectric actuator patches on circular cylinders was 

considered. When the piezoelectric actuators are actuated in-phase, it is found that the point force 

model used to represent the actuator creates a rigid body motion since the equivalent line forces 

are not collinear due to the curvature of the shell (Fig. 6.1). Since the PZT actuators are 

integrated within the structure, self-equilibrium must be satisfied. 

78



  

Figure 6.1 Equivalent loading to maintain self-equilibrium of the shell structure. 

To eliminate this non-equilibrium state of the structure, a transverse uniform pressure is added 

(Fig. 6.1). The magnitude of the transverse pressure from simpie statics is then: 

  

N 
P= aa (6.1) 

where 

N,=Ng= als —_A (6.2) 
i—-v2t+y 

and 

y= ast (6.3) 
Vita 

when the Poisson's ratio of the shell and the piezoelectric actualor are assumed to be the same. Y, 

t, L and R are the Young's modulus, the thickness, the free induced strain and the radius of the 

ring, respectively, while the subscripts s and a stand for shell and actuator, respectively. If a 

circular ring is considered, the Poisson's effect disappears since there are no constraints in the 

axial direction. Thus, for the case of a ring, the Poisson's ratio in equation (6.2) is set to zero. 

This equivalent loading, used to represent in-phase actuation, is included in the shell governing 

equations as external loading. Another approach to include the in-phase actuation loading is to 

consider an induced uniform loading on the actuator footprint. 

Using the thin shell theory of a circular cylinder (Soedel, 1976), the equations of motion 

can be written in terms of the internal shell membrane forces, Nxx, Nx, and Ngg, with both the 

actuator-induced tangential and axial forces, n, and ng, as: 
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where the discrete induced uniform tangential and axial forces can be written using Heaviside 

functions: 

n, =N,[H(x-x,)— H(x— x2) H(0-9,)-H(@-@,)] (6.5a) 

ng = No| H(x-x))— H(x-x2/l| #(4 -8,)- (0 -@,)}. (6.5b) 

The induced uniform tangential and axial forces can be transferred to the right-hand side of the 

  

equation: 

ON ON on ee Be Rae Pe Se se 
ON x6 ON 69 OM .9 , Moo <0 ONg 
ON ro , Noo , 1 —* + —— |= 0.t.v + 6.6b 

me | ROO RL ox Rae) °°” “R36 (6.66) 

2 ~2 2 . 
OM, Mo, Moo Noe. og 5 ye M8. (6.6c)   -F 
ox? hk ROO (RIBP RO” 

Writing the same shell governing equations, but including the equivalent external ioading (axial 

and tangential line forces (n, and Ng) and uniform radial pressure (¢ p, ) (Soedel, 1976): 

    

ON, . Nyo | 
2k 4 OE = ft ij? (6.7a 
Ox Rab = Pots? +n, (078) 

ON og  ONgg 1 [ 9 Mos 0, Ne Oexd 4» NOG 4 OT) x8 4 68 |  ¢ 79 4 8B 6.7b 
& Rod RL ox  Roo| P*’ ~'R (0.7) 

2 2 2 0°M,, _,9°M,o + "Moo _ Noo = p,t,w° + p,, (6.7C) +2 
ax?” &kRIO (RABY R 

where the external equivalent loading can be written using Dirac functions: 
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n, = N,|5(x—x,)— 6(x— x) H(@-0,)- H(0-6,)| (6.8a) 

ng = No| H(x—x,)— A(x x2)|]5(@ - 6,) - 6(8 - 8,)| (6.8b) 

p, = —=2[H(x- x,)— H(x— x )|| H(@-0,)—H(@ -6,)]. (6.8c) 

From equations (6.6) and (6.7), it can be seen that whether induced uniform tangential and axial 

forces or external equivalent loading is used alone, the equations of motion are the same. Thus, 

the tangential and axial forces produced by the actuators can be included in the governing 

equations either as induced uniform membrane forces on the actuators’ footprint or as external 

equivalent loading on the actuators’ edges 

+ _ 
  

      

    

ng = Ng|5(8 — 6;)— 5(8 — 6) ng = Nol H(8--8;)- H(8 - 82)| 
4 ~ 

| a 07 | f : 8, a 8 
+ 

2a) External Equivalent Loading 2b; Induced Uniform Loading 

Figure 6.2 Different representations of the loading. 

The extemal equivaient loading can oe seen as the pin-rforce approach, since the actuator - 

is simply replaced by line forces of appropriate magnitude on the actuator edges using Dirac 

functions (Fig. 6.2a) along with the uniform pressure to maintain self-equilibrium. The induced 

uniform loading is closely related to the equation derivation proposed by Dimitriadis et al. (1991). 

The induced uniform tangential and axial forces are not considered to be extemal and are 

included in the equilibrium equations in a similar fashion to thermal! loading. The induced forces 

will be uniform over the actuator footprint and will be expressed using Heaviside functions (Fig. 

6.2b). 

6.3 Impedance Model Derivation 

An impedance model of a free floating thin cylindrical ring excited in-phase by a pair of 

PZT actuators has been derived (Fig. 6.3). The PZT patches are assumed to be perfectly bonded 

to the structure so that the action of the PZT actuators can be replaced by discrete line forces on 
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the edges of the actuators. The linear Love-Kirchoff theory (Leissa, 1973; Soedel, 1981) is used 

since the ring is assumed to be thin and the stress distribution through the thickness of the 

actuators will be assumed constant. 

  

  
Figure 6.3 One-dimensional ring with bonded pzt cctuaivrs actuated in-phase. 

The structural impedance is defined or. the basis of discrete applied loads and velocities at 

the ends of the actuator. The mechanical admittance (H} and impedance (Z) can be defined as: 

os _ v7 
fg = ey? = =. (6.9) 

2H 

where the minus sign in the previous equation is necessary to taxe account cf the opposite or 

negative reactions of the structure to the output forces of the actuators and v? and w® are the 

midplane tangential and radial velocities, respectively. Since there are two actuators, a factor of 2 

needs to be included in equation (6.9) for the structural impedance definition. 

6.3.1 System Dynamic Modeling 

In this section, the dynamic interaction between the actuators and the shell structure is 

under study. The essence of impedance modeling is to match the structural impedance with the 

actuator's impedance at its ends; the dynamic actuator force output is thus obtained. 

The actuators bonded on the shell are excited in-phase by applying an electric field in the 

radial polarization direction. Under Love's assumptions for thin shells, the equation of motion of 

a shell vibrating in the tangential direction can be expressed as: 
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pail?(10)= YE Se ’ 6.10 a R06 (6.10) 

where Pg is the PZT density and ye is the PZT complex Young's modulus at zero electric field, 

such that the mechanical dissipation of the actuator can be included. 

The piezoelectric actuator patch is thin and has a large radius of curvature with a limited 

length in the tangential direction. In other words, the actuator's patches are almost flat. These 

characteristics enable us to simplify the problem by assuming the actuators to be flat and the 

strain-displacement relation in given by equation (6.11). As a practical matter, for practical cases, 

the bending of the flat PZT actuator patches on the structure is very limited due to the brittle 

nature of piezoelectric material. 

  “—— (6.11) 

0,07 (1,0) = YE 5. (6.12)   

Solving equation (6.12) and assuming harmoniic excitation by separating the displacement into 

tine and spatial domain, the tangential displacement response of the actuator is given by: 

oO _ : are lL iat , 12 v°(2,0) =[AsinkR@ + BeoskRBle™, (6.13) 

where q is the input angular velocity, and the wave number is given by: 

kK? =@? Pa (6.14) 
a 

Using the constitutive equations of the PZT actuator and appiying the proper boundary conditions 

(Rossi et al. 1993; Zhou et al. 1993), the actuator force output of the actuator at 6g is given by: 

E Z\q 432 taY, 
F, = —2 ———__ 6.15 

8 Zlo +Za (6.15) 

where the short-circuit actuator mechanical impedance (Liang et al., 1993b) is: 

Yuk 
= —2 4 _, (6.16) 

imtankR@, 
a 
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with d32 and E being the piezoelectric constant of the actuators and the electric field applied to 

the actuators, respectively. 

At this point, the impedance characteristics of the actuator and the structure have been 

used to calculate the dynamic tangential force. The actuator impedance is known (equation 

(6.16)), but the structural impedance remains unknown. The next step is to calculate the 

structural impedance of a circular cylinder submitted to the equivalent loading of in-phase 

actuation. 

6.3.2 Determination of the Structural Impedance 

Using thin shell theory, the equations of motion of a circular ring submitted to the in- 

phase equivalent loading (Soedel. 1981: Chapter 3) can be written in matrix form: 

on 

    

3? D| # | Ki a] pl & ( K| Sas |+ a3 pac? | & | Rag | el BP | _ eae R200" | R?| R°062| R|RoO| R| R290" ify "| fe RAO, 0647) 

“ilaaa la 2 | Kp at | lw le \- a RdO | R| R706? | R? | R994) | VR 

The bending stiffness is: 

Denti (6.18) 
f2 

and the extensional stiffness is: 

K=Y,t,. (6.19) 

The Poisson ratio is not present in the stiffnesses expressions due to the one-dimensional state of 

the ring. 

Assuming harmonic excitation of the actuators, the tangential and radial midplane displacements, 

v? and w®, respectively, will thus have the following Rayleigh-Ritz assumed solutions 

(Meirovitch, 1986): 

@)= ¥ V,Sin(no)e (6.20) 
n=0 

w?(t,0)= > W,Cos(noye™. (6.21) 
n=0 
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Introducing the tangential and radial displacement expressions (equations (6.20) and (6.21)) in the 

equations of motion (equation (6.17)), a linear system of equations is obtained: 

Vin 2F, sin(nd,) | 4 
Icky | - 7st) (6.22a) 

n aR h 

where: 

D 

C Re” ——zn? + p.t* -an an 5 

CR RE ge get Pai 
and, for n=0, 

2 - 

PstsO” C (wy f a 

4 A Vel al (6.220) 
=z t Psts@ it ‘o} L o-R J 

Solving equation (6.22), the tangential and radiat displacements are obtained. The structural 

admittance can now be determined according to equation (6.9): 

( 2 D 22 v\. 2 | _2i@ & { Patst? “aan (n - 7} sin (n0,) 

mR £4 I IC] 
| 
L 

  H   (6.23)   

1 R
a
e
 

sn
ee

r 
. 

With the structural admittance available, it is now possible to obtain the dynamic actuator force 

Output from equation (6.15) and calculate the structural response to in-phase actuation. 

6.4 Theoretical Results 

To verify the impedance model, a case study of a circular aluminum ring with G1195 

piezoelectric actuator patches was made. The material and geometric properties of the system are 

shown in Table 6.1. The size of the PZT actuator was kept small enough (10°) to be able to 

neglect the stiffness and mass loading of the actuators and to satisfy the impedance model 

assumptions. The results from the static approach were compared to the impedance model. 
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Table 6.1 Material and geometric properties of the PZT actuator and the aluminum ring. 
  

  

  

        

Aluminum PZT 
Ring Actuator 

Young's Modulus, Pa 59.5 x 10? 63 x 109 

Density, kg/m? 2647 7650 

Loss factor 0.006 0.001 

Piezo. Coefficient d32, m/V N/A -166 x 10°12 

Applied electric field, V/m N/A 2.625 x 10° 

Radius,cm Length, ° 12.475 10° 

Thickness, mm 3 0.23 
  

Figure 6.4 shows the structural and actuator impedance. The lower peaks of the curves 

correspond to the natural frequencies of the original cylinder, as expected. For this particular 

case, the dynamic interaction between the actuator and the ring is limited due to the lower input 

impedance levels of the actuator compared to the impedance levels of the ring. {[f a thicker 

actuator is used, the actuator impedance is increased and the dynamic interaction between the 

actuator and the structure is increased. However, for in-phase actuation, an unreasonable actuator 

thickness (1 mm), which corresponds to one-third of the shell thickness, is needed to obtain a 

good interaction (Fig. 6.4). 

The actuator output force is shown in Fig. 6.5. The solid line corresponds to the 

impedance model, and the dotted line is the actuator output force based cn the static model. The 

difference of the force magnitude between impedance and the static model is less than 1% at w = 

0. At the natural frequencies, the magnitude of the impedance model output force does net 

increase dramatically. It can thus be concluded that the first natural modes, which are bending 

modes, are only slightly excited by the in-phase actuation of the shell. 

Figures 6.6 and 6.7 show the radial displacement of the ring at 30° and 90° from the 

actuator, respectively. The natural frequencies of the original structure, obtained from a 

theoretical approach (Soedel, 1981), match those obtained from the analytical impedance model. 

The dotted and dashed lines are from the finite element analysis which will be discussed next. 
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6.5 Finite Element Verification 

The finite element technique has been used to verify the theoretical impedance model. 

The dynamic analysis was performed using piezoelectric elements available in ANSYS 5.0. A 

harmonic electrical field was applied to the piezoelectric elements in two finite element models. 

The first model does not include the actuators that are bonded to the surface of the shell. Instead, 

he structure itself in the region of the actuator is modeled with the piezoelectric elements, to 

which the harmonic electrical field is applied (Fig. 6.8a). The second model includes the 

piezoelectric actuators on the structure, to which the electrical field is applied (Fig. 6.8b). The 

theoretical results are expected to match the finite element model without the actuators since the 

stiffness and mass added by the actuators is not considered in the impedance model. The finite 

element results including the actuator mass and stiffness should be close to the theoretical 

predictions due to the smaji thickness and size of the actuators. For both finite element models, 

the symmetry of the structure was used to reduce the size of the models. The structure was 

modeled using plane siress elements and the actuators (with actuator medel) or actuator region 

(withoui actuator model} were modeled using piezoelectric plane siress clements. Free floating 

boundary conditions have been used for both models. 

mm Actuator 

Region 
  

  

Hy Actuators 
  

  

8b) With actuators 

Figure 6.8 Finite element models without and with actuators. 
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The radial and tangential displacements of the structure at low frequency (5 Hz) are 

shown in Figures 6.9 and 6.10, respectively. In this figure, it can be observed that the impedance 

model matches the results of the finite element model without actuators. When the actuator 

stiffness is included, the displacements do not match the theoretical results. The discrepancies 

mainly occur in the actuator region where the increased stiffness will reduce the radial 

displacement amplitude. Nevertheless, the results are close enough to those obtained by the 

impedance model to validate the theoretical model. At very low frequencies, the dynamic results 

should converge towards the static results. 

The static model for in-phase actuation developed in chapter 3 is also shown in Figures 

6.9 and 6.10. It can be seen that the displacement based on the static model matches the 

displacements based on the impedance model. A coordinate transformation, from free floating to 

fixed at 180°, was applied to the impedance and finite element models so that it could be 

compared with the static model. 

The structural radial and tangential displacements at 500 Hz, where the fourth mode is 

dominant, are shown in Figures 6.1] and 0.12, respectively. Once again, the displacements 

' predicted: by the impedance modei match those obtained with the finite element model without 

actuators. If the actuator stiffness and mass are included, the displacements are slightly different, 

but still close enough to the theoretical modei to be conclusive. 

Finally, the frequency response of the stnictura! radial displacements at 30° and 90° from 

the actuator are shown in Figures 6.6 and 6.7, respectively In both cases, the impedance model 

accurately matches the finite element vesults without actuators. The differences between the finite 

element model with actuator mass and stiffness is observed once again. 

6.6 Conclusions 

An impedance model for the in-phase actuation of induced strain actuators bonded to the 

surface of a circular ring has been developed. A discussion of the appropriate representation of 

the loading due to in-phase actuation is presented. It is shown that the in-phase loading can be 

either included as induced uniform forces on the actuator footprint or as external equivalent 

loading. To verify the impedance model, two dynamic finite element analyses were performed 

(with and without actuator mass and stiffness), using piezoelectric elements available in ANSYS 

5.0. A good correlation between the impedance model and the finite element results validated the 

analytical model. 
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Chapter 7 

An Experimental Study of the Actuation 
Authority of Rings and Shells 

Abstract 

The in-phase and out-of-phase actuation authority of induced strain actuators bonded to 

the surface of a shell is compared using previously derived models. In-jhase refers to a situation 

where both actuators bonded on the top and bottem surtaces of the shell are actuated to produce 

Strains in the same direction; out-of-phase refers to opposite direction strains. It is shown that 

out-of-phase actuation has etter authority in exciing the lower order bending modes, while in- 

phase actuation has better authonty in exciting the higher order cir umferential modes. In-phase 

actuation does excite the tower order bending modes thrcugh in-plane and out-of-plane 

displacement coupling, but an order of magnitude Jower. 

Experimental results of a circular ring actuaied in-phase and out-of-phase by a 

piezoelectric material (PZT) are presented. Difterent methods of bonding straight actuators on 4 

circular ring are investigated. The effecis of segmenting actuators inte small strips are studied. 

Experimental verification of the impedance models is conclusive, parucularly for the out-of-phase 

actuation. 

7.1 Introduction 

Structural vibration control has always been important in the design of efficient and 

reliable mechanical systems. Recently, a novel approach using induced strain actuators for such 

vibrational control has been presented, which can also be extended to acoustic control. Induced 

strain actuators are particularly interesting because they can be fully integrated in or on the 

structure itself. By applying forces directly on the structure at critical locations, efficient 

structural control can be obtained. In vibrational and acoustic control, the undesirable dynamic 

effects are eliminated by modifying the apparent structural impedance, through the induced strain 
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actuators. This approach eliminates the moving parts encountered in the bulky shaker- type 

actuators, which are conventionally used. Such actuators, since they are bonded right on the 

surface of the structure, do not need a back reaction to function. 

When induced strain actuator patches, like piezoelectrics, are symmetrically bonded to 

the surface on each side of the structure, they generate a set of forces along the edges of the 

actuators. The two actuators can be activated in-phase or out-of-phase. In-phase actuation refers 

to the case where both actuators expands and contract together. This type of actuation creates 

extensional in-plane forces on the structure. Out-of-phase actuation refers to the case when one 

actuator expand and the other contracts and vice-versa. Bending moments are applied to the 

structure at the actuator edges when out-of-phase actuation is used. Thus, the same actuator sel- 

up, depending upon the type of actuation used, can generate very different structural actuation 

and response. 

Theoretical studies based on static application of piezoelectric forces and moments on 

beam structures were proposed by Crawley and De Luis (1987}, Crawley and Anderson (1990), 

Wang and Rogers (1991), asd Dimitriadis et al. (1991). Models were aisa extended to two- 

dimensional plate struciures (Crawley and Lazarus, 1989; Hagcod et al., 19913. Adaptations of 

plate models to shells structures were proposed (Sonti and Jones, 1991; Lester and Levebvre, 

1991). Models based on shell equations have also been proposed (Sonti and Jones, 1993; Larson 

and Vinson, 1993b; Chapter 4). 

Theoretical impedance-based models on the dynamic inicraction between the actuators 

and the siructure have also been proposed for beams (Liang et al., 1993b), plates (Zhou et al., 

1994a), and shells (Rossi et al., 1993; Zhou et al., 1993; Chapters 5 and 6). The essence of the 

impedance approach is to match the actuator impedance to the structural impedance at the edges 

of the actuators. The impedance models are more accurate in the modeling of the structural 

response due to its dynamic considerations. 

Most of the models mentioned above were developed for pure out-of-phase loading, 

except for the in-phase models presented by Lester and Lefebvre (1991) and in Chapter 6. 

All of the theoretical models referred to above were developed independently, without 

any comparison of the authority of in-phase and out-of-phase actuation. Only Lester and 

Lefebvre (1991) did such a comparison. However, some drawbacks are present in the modeling 

proposed by Lester and Lefebvre (1991). No self-equilibrium considerations for the in-phase 
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actuation were included, and the shell model is a plate adaptation. It is shown in Chapter 3 that 

special considerations need to be made to eliminate the rigid-body transverse forces inherent to 

curved structures when in-phase actuation is used. The action of the actuators has to be 

represented by an equivalent in-plane force and a transverse pressure applied in the region of the 

actuator patch. 

In this chapter, a comparison in the authority of in-phase and out-of-phase actuation for 

rings is presented. Also, an experimental verification of the impedance models for both in-phase 

and out-of-phase actuation is presented. 

7.2 Impedance Models 

The comparison of the in-phase and out-of-phase actuation is based on theoretical 

impedance models that have been developed in chapters 4 and 5. Only a brief review of those 

models will be presented. The derived irapedance model applies to a free-floating thin circular 

ring (Fig. 7.1). In the impedance model, the piczoelectric actuators are assumed to be pertecily 

bonded on the structure and to have the same curvature as the structure. The impedance madels 

were derived using the linear Love-Kirchhoff theory for thin shells. 

Zz 

  

  

Figure 7.1 One-dimensional ring with bonded PZT actuators actuated in-phase or out-of-phase. 
The force applied by the actuators at the edge is shown. 

The structural impedance is defined on the basis of discrete applied loads and velocities at 

the ends of the actuators. For in-phase actuation, the mechanical admittance (Hj,,) is defined on 

the basis of the tangential velocity (v) (equation (7.1a)) while for out-of-phase actuation (Hoy), it 
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is defined on the basis of rotational velocity (@) (equation (7.1b)). The mechanical impedance 

(Z) is simply the inverse of the mechanical admittance (H): 

b 

Hin av (7.1a) 

6 How = (7.1b) 

where the discrete applied in-phase tangential force and out-of-phase moment on the structure are 

(see Fig. 7.1): 

N=2F (7.24) 

M=(tq+ty)F . (7.2b) 

From the system dynamic modeling between the structure and the actuator, the dynamic: 

actuator force output (F) can be shown to be (Liang et al., 1993b): 

a (7.3) 
Zig +Zq 

where the short-circuit actuator mechanical impedance is: 

E 
Y, " i, ‘ - 

a tok (7.4) 
@ imtankRO, , 

and d32, E, ye , R, tz and t, are the piezoelectric constant. the electric field. the actuator Young's 

modulus, the shell radius, and the thicknesses of the actuator and structure, respectively. 

The final step in impedance modeling is to obtain the structural impedance. The 

Rayleigh-Ritz method is used for the solution of the equations of motion of a circular ring 

submitted to the in-phase or out-of-phase equivalent loading. Solving the linear system of 

equations, the structural admittance for in-phase and out-of-phase actuation are, respectively 

(chapters 4 and 5): 

(7.5a)   
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io = baa _ \- pio? (sin?(n6,) 

H = 

out = ed 2 i 
    (7.5b) 

The two impedance models for in-phase actuation and out-of-phase actuation have been 

verified using finite element analysis (Chapers 4 and 5). 

7.3. Comparison Of In-Phase And Out-Of-Phase Actuation 

A comparison between the in-phase and out-of-phase actuation of a shell structure has 

been made. The comparison focuses on the structural radial displacements produced by the 

actuators and on the efficiency to excite the structural resonant modes. These are the most 

relevant factors needed when vibration and noise control is considered. As a case Study, the 

models were applied to a circular stee! ring with G119S piezoeleciric actuaicr patches, the 

dimensicn for which are presented in Table 7.i. 

Table 7.1 Materia! and geometric properties of the PET aciuator and the stee! ring. 
      

    

  

  
  

  

    

Steel Ring | PZT Actuator 

Young's Modulus, Pa 190.5 x 10° 63x 10° 

Density, kg/m? 7850) 7650 

Loss factor 0.006 G.001 

Piezo. Coefficient d32, m/V N/A -166 x 10°!* 

Applied electric field, V/m N/A 6.G x 109 

Radius / Length, cm 30.16 3.76 

Width, cm 3.175 3.175 

Thickness, mm 6.3 0.25     
Figure 7.2 shows the structural impedances for both in-phase and out-of-phase actuation. 

The in-phase impedance has a greater magnitude than the out-of-phase impedance. For 

comparison, the actuator impedance (dashed curved) is also shown in Figure 7.2. Good actuation 

authority is obtained when the structural and actuator impedances are of the same order of 

magnitude. Based on this observation, in-phase actuation will have more limited authority on the 

structure than out-of-phase actuation. The first six bending modes are shown in Figure 7.2. The 
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structural resonant frequencies, which are the lower peaks, match the theoretical values given by 

Soedel (1981). Out-of-phase actuation has a larger impact on the structure at resonant 

frequencies as opposed to in-phase actuation. Indeed, when the shell is actuated in-phase, the 

bending modes are only slightly excited through the in-plane/out-of-plane coupling property of 

shells. However, the in-phase actuation has the capabilities of exciting the higher-frequency 

circumferential modes, as opposed to out-of-phase actuation. 
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Figure 7.2 Structural impedance for in-phase and out-of-phase actuation. 

The radial displacement frequency response at 30° from the actuator is presented in 

Figure 7.3. The displacements produced by in-phase actuation are an order of magnitude smaller 

than those obtained by out-of-phase actuation, for the same electrical field applied to the 

piezoelectric actuators. Unlike in-phase actuation, out-of-phase actuation is very effective in 

exciting the natural bending modes of the structure. Since the frequency range of interest in 

structural vibration control is low, out-of-phase actuation is thus more efficient than in-phase 

actuation for ring structures. 

This conclusion can be extended to two-dimensional shells. Based on an impedance 

model developed for shells (Chapter 8), the response of a shell of same dimension as the ring 

(Table 7.1) but 75cm long has been calculated. The actuator center is at coordinates (x=37.5cm, 
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6=0°). The radial displacement frequency response at (xv=/5cm, 0=30° is presented in Figure 

7.4. Once again, the displacements produced by in-phase actuation are smaller than those 

produced by out-of-phase actuation. However, the clear advantage of using out-of-phase over in- 

phase that was found for one-dimensional rings is not as obvious for two-dimensional shells. The 

displacement magnitudes are closer to each other, showing a factor of about 5 only for this 

particular case. Nevertheless, out-of-phase actuation is still more efficient than in-phase 

actuation. 

This conclusion is different from that reported by Lester and Lefebvre (1991). In their 

paper, a theoretical model based on a Static approach was presented for in-phase and out-of-phase 

actuation. It is stated that in-phase actuation excites the lower bending modes more efficiently 

than out-of-phase actuation. The reason for this erroneous conclusion is simply the omission of 

the self-equiJibrating pressure that needs to be used for in-phase. actuation. Without this extra 

pressure ioading, the shell response will produce erroneous larger displacements. Experiments 

were performed on a fuselage-type structure, including stiffeners and a floor. This structure ts 

more compiex, and thus more difficult to comnare to a simply-supoorted cylinder. 
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ring. 
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Figure 7.4 Authority comparison of in-phase and oui-of phase activation for a two-dimensional 
shell 

7.4 Bonding of Piezoceramic Actuators on Curved Surfaces 

Due to their brittle nature, piezoceramic materials can only tolerate a very small curvature 

before they will break. This creates a problem when actuators need to be used with curved 

structures. A possible way to obtain a curved piezoceramic actuator is to machine the desire 

curvature in a thick actuator. This method involves high machining accuracy, only provides 

limited curvatures, and is expensive. It is also possible to directly fabricate actuators with a 

curvature, but this is perhaps even more expensive, keeping in mind today's limited market. 

Thus, there is a need to adapt flat piezoceramic actuators to curved structures. 

The most convenient way to apply an actuator on a curved structure is to machine a flat 

surface on the structure (Fig. 7.5). This provides an easy and inexpensive means of obtaining the 

desired actuation/sensing. However, this technique is not possible for all situations. For large 

radius/thickness ratios, the machining of the flat surface can be done without affecting the 

structural properties of the shell; but, for thin shells, the structural properties can be greatly 
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modified. Also, the machining of a flat surface can be simply impossible due to the location or 

the size of the actuator/sensor. 

  

Figure 7.5 Methods for bonding flat actuators on curved Structures. 

An alternative to bonding flat piezoceramic actuatcrs is to cut them into small pieces, and 

bond them next to each other on the structure (Fig. 7.5). The piezoelectric pieces aie bonded as 

close as possible, but leaving a gap to avoid electrical short circuit’ The space between the 

actuators is small enough to be neglected, so that all pieces can be considered as a single actuator. 

With a sufficient number of pieces, the actuator could be considered curved. This technique does 

not involve the machining of ihe structure and has no lin: on the size of the actuator, but has 

other drawbacks. The first difficulty is the bonding of the actuator itself on the curved surface. 

For each piece, a non-uniform adhesive layer must be present to accommodate the flatness of 

each piece (Fig. 7.6). Because of this, it is very difficult io obtain bonding comparable to a flat 

actuator on a flat surface chat will transfer the actuator's induced strain to the structure. A second 

difficulty is to bond each piece as close as possible to each other, in order to obtain a global 

‘uniform patch, but leaving a gap for the electrical insulation. In this technique, it is assumed that 

each actuator piece will cancel the effect of the adjacent actuator, oniy producing a global effect 

on the structure. 

PZT actuator 

  

  

  Nonuniform 
adhesive layer 
      

            

Figure 7.6 Schematic illustration of a non-uniform adhesive layer accommodating a flat PZT on 
a curved Structure. 
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7.5 Experimental Verification 

A Steel ring actuated in-phase and out-of-phase by surface-bonded PZT actuators was 

used to experimentally verify the impedance models. The material and geometrical properties of 

the ring and the actuator used are shown in Table 7.1. The two bonding techniques discussed 

previously were used. Firstly, a flat surface was machined on the ring. The structural integrity 

was not affected by the machining process due to the relatively large thickness and radius of the 

ring and the small actuator patch. Secondly, the actuators were bonded on the curved surface, 

breaking it into four pieces of 9 mm each and leaving a thin gap between each piece. For the 

remainder of the chapter, the single piece continucus actuators bonded on the machined flat 

surface will be referred to as "flat actuators,” while the segmented actuators bonded on the curved 

surface will be referred to as "segmented actuators". 

VIS A random signal produced by the WCA Zonic AND and amplified with a Trek 50/751 

high voltage power amplifier was applied to the piezoelectric actuators. The ring velacily 

response was measured using a Polytec laser vibrometer system and data was acquired with WCA 

Zeta software on a Macintosh Quadra. The experimental set-up is shown in Figure 7.7. The ning 

was Suspended using fishing linc to simulate free-floating boundary conditions. Finally. the out- 

of-plane velocity measurements were done at angles of 30° and 150° from the actuatcr. The Jaser 

vibrometer system is able to measure accurately velocities up to 1 micron/s. The experimenta! 

ring was chosen such that the velocities produced by the actuators, which are driven at half cf the 

depoling electrical field, will be large enough to be measured accurately. 

  WCA Zenic AND Power Ampilfier 
  
  

              

    

IN QUT IN OUT 

@009| @ 

Laser   
        

        

Mactintosh Quadra 950 

      

  

Figure 7.7 Experimental set-up used to measure the out-of-plane velocities of the structure. 

The ring's radial frequency response at 30° from the actuator (see Fig. 7.7) subjected to 

out-of-phase actuation is shown in Figure 7.8. The flat actuators show a better match to the 

impedance model than the segmented actuators. The segmented actuators produce smaller 
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displacements than the flat actuators, due to the increased bonding layer thickness and, gaps 

between each piece, which will reduce the actuators authority on the structure. Nevertheless, 

both the flat and segmented actuators show a conclusive match with the theoretical impedance 

model. 

The ring's frequency response at the same location due to in-phase actuation is shown in 

Figure 7.9. In this case, the match between the impedance model and the experimental resulis is 

not as conclusive. The differences might be attributed to the actual bonding of the actuators on 

the curved surface. The theoretical model cannot exactly model the actual experimental set-up, 

the bonding layer having an impact on the structural response, likewise for the machined flat 

surface. Taking account of those considerations, the theoretical and experimental results show a 

good match at the resonant frequencies. 

The structural response at 150° from the actuator is not presented since the same 

conclusions would be drawn. 
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Figure 7.8 Experimental and impedance model ring response to out-of-phase actuation. 
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Figure 7.9 Experimental and impedance model ring response to in-phase actuaiion. 

  

  

   

     

            

104 ¢ r t r 
E 

| 
~ 1054 
= 
wo 
3 
a 

= 1065 
< Fi 
= i . 7 

o . . 
& i ‘ 
8 4 

oS . . 

r 107F if 3 
a FE f ; 
a - t if 5 

sy . 1 
mM 7098. |—— Segmented, Inside 4 

F | ------ Segmented, Outside] 3 
P| cesses Flat, Inside 4 
| | —~~ Flat, Outside 7 

10°9 ! ! | L L I \ 1 ! 

0 100 200 300 400 500 600 700 800 900 1000 

Frequency (Hz) 

Figure 7.10 Experimental structural response to actuators bonded on the inside and on the 
outside of the ring. 
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The next figure (Fig. 7.10) shows the structural response if each actuator is excited 

separately, i.e., a single actuator on the inside of the shell or on the outside of the shell. It can be 

observed that an actuator bonded on the inside will produce a similar response to an actuator 

bonded on the outside of the shell, both for the flat and segmented actuators. Once again, the 

segmented actuators produce smaller displacements than the flat actuators. 

7.6 Actuator Response Superposition 

A finite element analysis has been performed using the experimental ring dimensions to 

verify single-side actuation. The model uses piezoelectric elements available in ANSYS 5.0 and 

is shown in Figure 7.11. The strictural response of the ring to inside actuation and outside 

actuation is presented in Figure 7.12. The structural response of each actuator cannot be 

considered to be the same. even though only small discrepancies are present. However, tor thin 

shells, the side of the sheli on which the actuator is bonded wil! not have an important imipaci on 

the structural response. If ihe radius is increased to infinity (ilat structure), the structural response 

will be exactly the same. 

     
en    

  

Figure 7.11 Finite element model using PZT elements. 

The finite element structural response illustrated in figure 7.12 shows an excellent match 

with the experimental results, as well as with the impedance model results that were presented in 

Figure 7.10. 

The superposition of the response due to a single actuator to get the total in-phase and 

out-of-phase response is now considered. If the displacements due to the inside actuator are 

subtracted from the displacements due to the outside actuator, the pure out-of-phase solution is 

obtained exactly (equation (7.6a)). If the displacements are added, the pure in-phase solution is 
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also obtained exactly (equation (7.6b)): 

Uil outside ~ i inside = Hil outphase (7.6a) 

Uiloutside * Mil inside = | inphase (7.6b) 

The converse is also true. The structural response of a single actuator bonded on the 

inside or outside surface of the shell can be obtained from the in-phase and out-of-phase structural 

responses (equation (7.7)). To a larger extent, any unsymmetrical voltage application on the 

actuators can be expressed as a linear combination of pure in-phase loading and pure out-of-phase 
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Figure 7.12 Structural response at 30° from the actuators bonded on the inside and on the 
outside of the ring, using finite element analysis. 
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7.7 Conclusions 

In this chapter, the actuation authorities for different actuation schemes were presented, 

namely, in-phase and out-of-phase actuation of thin shells. Based on the radial response of the 

ring, it is shown that in-phase actuation has lesser authority, and out-of-phase actuation has higher 

authority than in-phase actuation. Also, out-of-phase actuation is more efficient in exciting the 

lower order bending modes of the ring, while in-phase actuation has the capability of exciting the 

higher circumferential modes. 

The experimental verification of the out-of-phase impedance model was very conclusive. 

An excellent match between the theoretical and experimental resujts was cbserved. tlowever, the 

match is more difficult for the in-phase actuation case. Greater discrepancies are found due to 

the smaller displacements involved and to the greater sensitivity to the boriding of the actuators 

on the structure. Nevertheless, the in-phase actuation experimental results are still similar io the 

theoretical results, both in shape and magnitude. 

Finally, a short discussion on the superposition of the structurai responses is presented. it 

is shown that pure in-phase and pure out-of-phase actuation can be used to model the more 

general unsymmetric actuator loading, by using simple linear superposition. 
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Chapter 8 

Impedance-Based Modeling of Actuators Bonded 
to Shell Structures 

Abstract 

When discrete piezoelectric actuator patches bonded on structures are used for active 

shape, vibration, and acoustic control, the desired deformation field in the structure is 

obtained through the application of localized line forces and moments generaied by 

expanding or contracting bonded piezoelectric actuatars. An impedance-based model to 

predict the dynamic response of cylindrical shelis subjected tc excitation from surface- 

bonded induced strain actuators is presented. The essence of the impedance approach is to 

match the actuator impedance with the structural impedance at the ends of the actuators, 

which will retain the dynamic characteristics of the actuators. A detailed derivation of the 

actuator and structural impedance is included. It is tound that the actuator’s output dynarnic 

force in the axial and tangential direction are not equal. Various case studies of a cylindrical 

thin shell are performed to illustrate the capabilities of the developed impedance inodel. Out- 

of-phase actuation is shown to be the most efficient in exiciting the iower order bending 

modes of shell structures. The paper is concluded with a finite element analysis verification 

of the derived impedance model. 

8.1 Introduction 

In any mechanical system with moving parts, special attention must be given to 

reducing vibrations and accompanying noise. If the system cannot be balanced or is 

subjected to random vibrations, passive or active control of the structure can be considered to 

reduce vibrations. One way to perform active control is to use shaker type actuators, but this 

involves many moving parts external to the base structure. By fully integrating the vibration 

control components within the base structure, self equilibrium of the complete system is 

insured and simplifies the overall design of the mechanical system. Piezoelectric (PZT), and 
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other induced strain actuators are one type of actuators which can be easily integrated in the 

structure. When PZT patches are bonded or embedded in the structure, they apply forces or 

moments which are concentrated at the edges of the actuator. Using those forces and 

moments on the structure, the vibrations can be reduced by modifying the apparent structural 

impedance. 

The piezoelectric actuators are often used in pairs, bonded on opposite sides of the 

Structure. By controlling the voltage applied on each actuator it is possible to drive the 

actuators in-phase (both actuators expanding or contracting together), which creates an 

extensional deformation of the middle surface or out-of-phase (one actuator expands while 

the other contracts), which creates bending deformation of the middle surface. In between 

these two extreme cases, unequal voltage application will create a combination of bending and 

extension. An actuator bonded only on one side of the stricture is the most common case of 

unsymmetric actuation. Out-of-phase and in-phase actuation wili have a different impact on 

the vibrational response of the structure, out-of-phase actuetion being more suitable for 

exciting the structural bending modes and in-phase being more suitable extensional modes 

(Chapter 7). 

A number of theoretical models have been proposed for out-of-phase actuation of 

beams (Crawley and de Luis, 1987; Crawley and Anderson, 1990; Wang and Rogers, 1991; 

Dimitniadis et al., 1991) and plates (Crawley aad Lazarus, 12°59. Hageod ¢! al., 1988). Other 

models based on the layered shell theory have also been proposed (Txou and Gadre, 1989; 

Jia and Rogers,1990). For sheSis actuated with discrete actuator patches; plate models were 

adapted to shells (Sonti and Jones, 1991; Lester and Lefebvre, 1991) and other models 

directly based on the shell governing equations (Sonti and Jones, 1993; Larson and Vinson, 

1993b; Chapter 4). In all of these models, the actuator output force is computed from static 

considerations (i.e. local actuator/structural geometric and material properties) and, for 

vibrational control, the static fixed amplitude actuator forces are simply applied over the 

whole frequency range of interest. 

Impedance models based on the dynamic properties of the actuators and the structure 

have also been proposed. The essence of the impedance approach is to match the actuator 

impedance to the structural impedance along the edges of the actuators. Impedance models 

for out-of-phase actuation have been derived for beams (Liang et al., 1993b), plates (Zhou et 

al., 1994a), rings (Rossi et al., 1993; Chapter 5), and shells (Zhou et al., 1993). An 
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impedance model for in-phase actuation of rings has also been proposed (Chapter 6). 

Even though unsymmetrical actuation can be represented with simple linear 

superposition of in-phase and out-of-phase actuation (Chapter 7), no model for such 

unsymmetrical actuation has been presented yet. In this paper, an impedance-based model 

of two-dimensional shells subjected to in-phase, out-of-phase, and unsymmetrical actuation is 

proposed. 

8.2 Impedance Model Derivation 

An impedance-based model for a simply supported thin cylindrical shell excited with 

piezoelectric actuator(s) is derived (Fig. 8.1). The impedance model is derived in four major 

steps: (1) Calculation of the structural impedance ai ithe edges of the actuators using the shell 

governing equations and the appropriate boundary conditions; (2) Calculation of the actuator 

impedance; (3) Calculation of the actuator curput force based on the structural and actuator 

impedances interaction: and (4; Application of the frequency-dependent actuator output 

forces to the shell governing equations previously used to obtain the shell response. 

The assumptions used in the following derivation are a perfect bonding of the 

actuators ta the structure, a.constant siress distribution through the thickness of the actuators, 

and a thin shell. Based on these assumptions, the linear Love-Kirchoff sheil thecry is used. 

In view of the mechanics through which the forces from the actuator are transferred to the 

sub-structure, the actuator patches are veplaced by discrete line forces and moments along the 

edges of the footprint of the actuator (Crawley and de Luis, 1988). 

oO Ww 

e
n
 

=
 

     
Figure 8.1 Simply supported thin shell with surface bonded actuators. 
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The pair of piezoelectric actuators can be excited independently if the substructure is 

not used as a ground and electrical insulation between the actuators and the structure is 

introduced (Fig. 8.2). This type of bonding allows the pair of actuators to be excited in- 

phase, out-of-phase, one actuator alone, or unsymmetrically. 

Electrical Insulation Layers 

  

FB inside 
inside 

Figure 8.2 Unsymmetric actuation created by eiectricaily insuiating the actuators from the 
structure. 

he superposition cf the in-phase and out-of-phase actuation structural responses will 

be used 10 predict the response due to unsymmetrical actuation. It was shown in Chapter 7 

that any unsymmetrical actuation can be expressed as 4 linear combination of pure in-phase 

actuation and pure out-of-phase actuation. The appropriate weighting facters for in-phase 

(€4) and out-of-phase actuation (€°), which are based on the free induced strains (A) applied 

on each actuators, are: 

zi _ Ninside + Sousicie (8.1a) 5 = > , ° 
ZA max 

—A sree + Naureis fe = itis cue (8.16) 
max 

where Amg x is the largest of the inside or outside actuator free induced strain. Based on this 

definition, the free induced strain ratios &! and € will vary from -1/2 to 1, €° = ] being pure 

out-of-phase and &' = / being pure in-phase. The x ratios are dependent only on the free 

induced strain, assuming identical actuators are bonded on both sides of the shell. For cases 

where the actuators do not have the same thicknesses, the equation derivation becomes more 

complicated due to different actuator impedances. However, a simple superposition of the 

structural response to actuators bonded on the inside and on the outside of the shell can still 

be used to predict the dynamic response using this method. 
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8.2.1 Determination of the Structural Impedance 

The dynamic response of structures can be described through its impedance or 

admittance. The structural admittance, which is simply the inverse of the impedance, and is 

defined based on the velocity response of the cylinder at the edges of the piezoelectric 

actuator, both in the x and the @ directions. Making use of linear superposition, the 

admittance definition (equation (8.2)) has been separated into two parts: pure in-phase 

actuation admittance and pure out-of-phase actuation admittance. H,, and Hgg are the direct 

admittances which directly couple the forces in the x and @ directions, while Hyg and Hg, are 

the cross admittances which couple the input forces in the x and @ directions to the response 

in the @ and x directions, respectively. In the case of one-dimensional structures, the coupling 

disappears and the admitiance definition simplifies to a single term instead of the 2 x 2 matrix 

involved for two dimensional structures. 

      

  

    

  

2 2 406 

aye] aes ta) av? nye] Mis ha) aw? ; 
Inphase 2? ox ! Inphase 2 ox 4 (8 2a) 

| Gut hase { !Outphase J} +O ee, 
Pe -/ X=Xy % X=Xy 

-(H,F, + Hoo} 

\ " \ 
’ 2 19 I 2 -0O 

2s is tla) a" | Sf yyop etal ae - 
Inphase 2 R26 | Inphase 2 =k , (2 Oh) 

| , (%.2b} 

  

I Outphase ! 'Outphase Ag=o, 6=6, 

(HF, + HgFe) 

where u°?, v? and w®? are the axial, tangential, and radial midplane displacements, respectively. 

tis the thickness and subscripts a and s stand for actuator and sheli, respectively, and K is the 

radius of the shell. Fy and Fg are the actuator output forces in the x and @ directions. In 

equation (8.2), the minus sign on the right hand side is necessary to indicate that the actuator 

Output forces are equal and opposite to the structural reactions. 

The first step of the impedance approach is to calculate the structural impedance of 

the cylinder, which will be dependent on the actuator's location, the boundary conditions, and 

the physical properties of the shell. The structural impedance calculations will be based on 

the modal expansion method. This method is numerically efficient and accurate when the 

natural modes are available, which is the case for a simply supported shell. The Rayleigh-Ritz 

method can be used for more complex shell boundary conditions. Using the thin shell 
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theory of a circular cylinder, the equations of motion including the actuator induced forces 

and moments are (Soedel, 1981): 

  

  

    

on 
L °, °, °\- s <li? = x . 8.3a i(u ve,w ) Pst ut Es ( ) 

0 . on om Ly(u?,v?,w?|— pty” =a er (8.3b) 

6 . a? a La(u?,v?,w? | pytgib? = “B+ 7 + Dah ; (8.3c) 

where the induced uniform tangential and axial forces can be written using Heaviside 

functions: 

n, = Ny {A(x —x)- Hlx- x)l[H(@ — @;)- H(@- 62) | : (8.4a) 

ng = Ne|H(x — x) - M(x - x2) H(6 - 6) - H(@- 6,)], (8.4b) 

with an in-phase force magnitude of: 

N,=2F,€', | (8.5a) 

No =2Foe' ; (8.5b) 

and where the induced uniform tangential and axiai mornenis can also be written using 

Heaviside functions: 

m, = M,|H{x — 4) -— H(x- x2) ]/H(@ - 6) - H(@-&)], (8.6a) 

mg = Mo[H(x - x1) ~~ H{x - x2) H(@ - 6,)- 4(0-9)|, (8.6b) 

with an out-of-phase moment magnitude of: 

My = (ta t+ts)F.8° , (8.7a) 

Mo = (ta +ts)FoS° . (8.7b) 

In the solution of the structural impedance, the actuators’ forces are transferred to the 

midplane of the structure, and the actuators are removed from the structure. It is noted that, 

at this stage, the actuator output forces F, and Fg are still unknown. For a general 

unsymmetric actuation, the shell will be subjected both to in-plane forces (equations (8.4 and 

8.5)) and out-of-plane moments (equations (8.6 and 8.7)) on the edges of the actuators (Fig. 
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8.3). 

    _—_ 
¥ inside 2Sidy 

  

Figure 8.3 Transfer of the actuator's forces to the shell midplane. 

Using the modal expansion method, the forced response of the shell is expressed with 

the following series (Soedel. 1981): 

u;(x,0,0)= Y pUix( x0 , (8.3) 
k 

where px is the modal participation factor. For a simply supporied cylindrical shell, the axial, 

tangential, and radial displacements are assumed to be under harmonic loading and may be 

expressed as: 

Uap = Uap = Amny COSOx SING , {8,9a) 

Uo4 = Vinnp = Brnp Sin ox sin n@ , (8.9b) 

O34 = Wranp = Cmnp Sin 0x Cosné ; {8.9c) 

T ' : : : : 4 
where a=. The subscript p refers to the bending, torsional and extensional modes. 

Based on the eigenvalue analysis of the system, the Love operators L;(u?,v?,w?| are obtained, 

as well as the natural frequencies @,,,, and the displacement ratios App /Cmnp aNd Bray /Crmnp 

(Soedel, 1981). 

Li{u°,v?,w?} =— pt OU iy - (8.10) 

Substituting equation (8.10) in equation (8.3), the modal expansion method yields: 

By + OGD, = Fue’ , (8.11) 

with the forcing function Fy: 
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2nl 

Fy = Fan d@dx , (8.12) 
- PstsN s**mnp aN | Ne o’m, d*mg 

-~—+ + W, 
Rak? R*06? 

where 

Nianp = ConpNmnp = j [bap * Vig + Wranp Rd@dx (8.13) 

Solving equation (8.11), the modal participation factor is 

F, . 
=... (8.14) Px ar ~ we 

At this point, the forced response of the shell under steady state excitation is determined as: 

3 . 

u°(x,0.0= YD Y{8 Arnnp [Corp (So cos n8 - Co sin nd)cosoxhe , (8.15a) 
p=im=ln=l 

3 . 

v°(x4,60=-> 3 ¥ 19 Branp [Cmnp (So sinn6 + Cg cosnd)sin cx le , (8.155) 

  
  

p=\1m=1n=1 

3 ——_ -_ 

wix,Oc= yd > Yo (Se cosn9—C Cy sinn@)sin ax}e’™: (8.15¢) 
p=im=in=1 

where 

9 =—___*____| Sw, ). sree (Me , ie.) (_No Maat, Mon), (8.162) 
PstsN map| @mnnp ~ © Cimnp ‘ Cmnp Ra R a). \ Ron Rh R a | 

Sg =sinn@, —sinn€, (8.16b) 

Cg =cosn@, —cosn@, . (8.16c) 

Based on the admittance definition (equation (8.2)), the direct structural admittances are: 

  

2 
3 2 

Hy, -= yy > in| Arnnp [Cn 2) + Xow® (Sg cosn@, ~ Cg sinn@,)C,¢, (8.17a) 
a p=|m=1n=1 n nA 
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—Lin(J + nBrnnp [Cmnp | Branp [Cmnp ) 
  + 

  

  

  

  

12 Ran . Hee =~ XDD (s§+C§)sinax,>;  (8.17b) 
a p=Im=In=1 Loun(n + Branp [Cmnp) 

Rea 

and the cross admittances are: 

“tinh OX Sone Cony Bene), 
3 

Ho, = = » Ran (Sg cosn@, — Cg sinn@,)C, > ,(8.18a) 
@ p=lm=[n=1 Xout (n + Brnp |Cmnp) 

R2 

3 n\Amnp |Cno \Bmnp |C 
Hy = y Xin(Armap [Cap | Bap | mop), Lou 53 cf sina, ;  (8.18b) 

Rg p=lm=ln=1 nr R J 

where 

Rio 2! 
tin = - 228 (8.19a) 

Psls Nonnp| Oranp - a" 

  

2 
Ria (t, +tg) €° 
sty IN” lw? — aw?) Psts 2Nranp|Omnp ~ O° | 
  Cy, (8.19b) Nout =~ 

C,, = COS Ox) — COS Ax2 , (8.19c) 

and (x9,09) are the coordinates of the actuator center. 4¢ =*2 -*1 and R, = R(62—9,) are the 

actuator dimensions in the axial and tangential directions. Finally, the structural impedance 

along the actuator edges is obtained by inverting the admittance matrix: 

Lyx Ly Aly, me] _ ; (8.20) 
oe Z| Le Hog 

8.2.2 Determination of the Actuator Impedance 

With the structural admittance now determined, the next step in the impedance 

approach is to calculate the actuator impedance and match it to the structural impedance. 

Making use of the isotropy of the actuator in the 1-1 and 2-2 plane and assuming a thin shell, 

the Love's equations of motion of the PZT actuator vibrating in the axial and tangential 
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directions can be expressed as: 

  

OE 
jo = YE = | 8.21a 

Pal Qa ox ( ) 

Of 
jon ye 8 . 8.21b PaV a Roe ( ) 

where Pg is the PZT density and Y/ is the PZT complex Young's modulus at zero electrical 

field. The complex Young's modulus is used to include the piezoelectric material's damping. 

Under thin shell assumption, the piezoelectric patch is thin with a large radius of 

curvature. If the actuator patch is small enough, the actuators can be assumed to be flat and 

the strain-displacement relations for flat structures can be used. This assumption allows us to 

decouple the radial displacement of the shell from the dynamics of the piezoelectric actuators, 

  

1.€.: 

je a2 \ 
eo) ae) . (8.22) 

ROO! 

Thus, the equations of motion in the axial and tangential directions for the PZT actuator are: 

. 240 
  

  

poll =¥F SS, (8.23a) 

2 

0,0 = ¥E a . (8.23b) 

Assuming harmonic excitation by separating the displacements into time and spatial domains, 

the solution of the equations of motion will give the axial and tangential response of the 

actuator: 

u°(x,t)=[Asin(kx) + Bcos(kx)| fe (8.24a) 

v°(6,t) =(C sin(kR@) + Dcos(kRO)| ele ; (8.24b) 

where q is the input angular velocity and k is the wave number, which is given by: 

p 
2 =a Te . (8.25) 

a 
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The short-circuit direct input impedances of the piezoelectric actuators in the axial and 

tangential directions are respectively defined as: 

_ yf la KR a 

~ i@tan(ki,) ’ (8.26a) Qxx 

Yet kt 
2260 = —4 4-42 8.26 

60 i@ tan(kR, ) ( b) 

and the short-circuit cross input impedances are: 

yz tikl, 
=—4 2-4, 8.27 ico tan( kl, (8.272) ax 

YytgkR, . 8.27b) 
i@ tan(kR, ) (5.270) atx = 

Finally, the constitutive equations of the piezoelectric actuator: 

    
  

l Ay? f 4 Vy 

Ey] | oe | | MER, VE tat, [Pel . [431 fet ae p= | Ya fal ee ate (8.28) 
E 

5 | Ya tgRq YP tala 

      

where d3; are the piezoelectric constants of the PZT actuators, FE is the electrical field and vz is 

the actuator's Poisson's ratio. 

8.2.3 Structural/Actuator Dynamic Interaction 

With the structural and actuator impedances now determined, the third step in the 

impedance modeling is to consider the structural/actuator dynamic interaction (Fig. 8.4). The 

interaction between the actuator is taken into account by the equilibrium and compatibility 

equations, which state the equilibrium of the forces between the actuator and the structure at 

the actuator edges. Applying the displacement boundary conditions (u,.9 =0, vg.9 =9) 

(Zhou et al., 1993) to equation (8.28), B and D are found to be zero. The remaining 

unknowns A and C will be determined using the constitutive equations of the piezoelectric 

actuator (equation (8.28)) at x = 1, and @ = 6,: 
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kcos(kl, 2 —V, ae + Za. kcos(kR, | 2 -—v fe a 
ax Laxx La & Za ee A d 

Z Z Zz Zz tee fre . (8.29) 

k cos(kl, { xo Va Za.) kcos(kR, \2 —Vy Zn x 4 Zo. 96 32 

aQx abé 

  

ax Laxx 

Based on the impedance definition, the dynamic actuator forces output per unit length are: 

F,= -2 (A sin(kl)Zx +C sin(kR, )Z,6)e™ , (8.30a) 
a 

Fo = - 2 (Asin( ki, )Zx + C sin(kR, )Ze9 )e™ (8.30b) 
a 

Thus, the dynamic actuator force output has been calculated based on the structural 

impedance. 

  
Figure 8.4 Dynamic interaction between the piezoelectric patch and the shell structure 

represented by mechanical impedance. 

8.2.4 Shell Response Calculations 

Using the dynamic actuator force output, the shell response can be calculated based 

on the shell governing equations developed in section 8.2.1. The axial, tangential and radial 

displacements are given in equation (8.15). 
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8.3 Theoretical Results 

The derived impedance model that was presented in Fig. 8.1 will be applied to the 

thin cylinder, with dimensions and properties given in Table 8.1. The dimensions were 

chosen such that the shell is thin and the actuators are small enough not to increase the 

structural stiffness substantially. The shell is made of aluminum and G1195 piezoelectric 

actuator patches are used. Various case studies are presented, with a particular attention to 

pure out-of-phase and to pure in-phase actuation. For comparison purposes, all actuators are 

always excited with a free induced strain (A) of £1000 Ustrain. 

Table 8.1 Material and geometric properties of the PZT actuator and the aluminun shell. 
  

  

  

        

Aluminum shell PZT Actuator 

Young's Modulus, Pa 69x 10? 63 x 109 

Density, kg/m3 2700 7650 

Poisson's ratio 0.3 0.3 

Loss factor () 006 0.001 

Piezo. Coefficient d32, m/V N/A , 7166 x 10° iz 

Applied electric field, V/m N/A 8.20 x 109 

Radius / Length, cm 10.45 10° 

Width, cm 34 2 

Thickness, mm 1.1 0.24 
  

The structural admittance for in-phase actuation is shown in Fig. $8.5. The four peaks 

corresponds to the first four natural frequencies of the shell, as expected. The reader's 

attention should be drawn to the cross admittances Hyg and Hgy. In most cases, one can 

expect the cross admittances to be equal. However, it can be easily seen that the cross 

admittances are different both in shape and magnitude, having different antiresonant 

frequencies. This difference is due to the admittance definition that was used in equation 

(8.2). In that equation, the admittance definition was based only on Fy, and Fg. However, if 

a special attention is given to the third equilibrium equation (equation (8.3c)), one will notice 

the presence of the induced uniform tangential force ng, It was previously discussed that this 

loading term ng can be viewed as an external transverse pressure load, necessary to maintain 

the self equilibrium of the shell when actuated in-phase (Chapter 3). If viewed as such, the 

admittance definition is not only dependent on the forces Fy and Fg, but also on the radial 
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Figure 8.5 Structural admittance for in-phase actuation. Cross admittances are not equal 
when two dimensional admittance definition is used. 
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Figure 8.6 Structural cross admittances for in-phase actuation are equal when three 
dimensional admittance definition is used. 
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nA : : : : : 
pressure term se Based on this observation, the admittance for pure in-phase actuation can 

be defined as a 3 x 3 matrix: 

        

        

“0 “oO _ * 

[2 honor 2 hota = [Hace + Ho, Fg + H,,.Fo | (8.31a) 

x=X2 x=X 

“0 “oO __ * 

[2% hvtoe - [2s hrtere ~ [Hao + Hoge + Heke iF (8.31b) 
6=6. d=6, 

2\° w°d0 = -[H,, F, + Hop Fa + HF | ; (8.31c) 

where Fy is the term resulting from radial pressure term. Using this definition, the cross 

admittances will all be exactly equal, as shown in Fig. 8.6. However, for the purpose of the 

impedance modeling, it is necessary to lump the radial pressure term Fg with the tangential 

force Fg in the admittance definition. This is attributed to the close dependency between the 

two loads involving Fg. 
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Figure 8.7 Structural admittance for out-of-phase actuation. Slight difference in the cross 
admittances due to the transverse Shear stress included in the equations. 
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The structural admittance for out-of-phase actuation is shown in Fig. 8.7. Once 

again, the cross admittances Hyg and He, are not exactly equal. This time, the difference is 

due to the transverse shear resultant that is included in the governing equations (Chapter 7). 

If the shear stress resultant is omitted in the second governing equation, the cross admittances 

will become equal since the admittances will now have only one dependency on Mg. For 

both in-phase and out-of-phase actuation, an increased shell radius will reduce the differences 

between the cross admittances; and for plates, the cross admittances will be exactly equal. 

Admittance graphs are not presented for unsymmetric voltages applied to the PZT actuators, 

since they will be a simple linear combination of the in-phase arid out-of-phase admittances. 

The in-plane forces created by the in-phase actuation of the piezoelectric patches are 

shown in Fig. 8.8. In the impedance technique. the force calculations are based on both the 

actuator and the structural impedances. In Fig. 8.5, the direct admittance in the axial 

direction is different from the direct admitiance in the tangential direction Thus, if the 

admittances are different, the dynamic forces produced by the actuators should also be 

different in the axial and tangential directions. This can be obseived in Fig. 8.8. The dashed 

line, a static model previously developed (Wang and Rogers, 1991), agrees wel} with the 

impedance model for the force in the x direction only. However, when this static model or 

other static models are used, there is no distinction between the two directions and the actuator 

forces are thus mistakenly assumed to be equal. At the natural frequencies of the structure, 

the tangential equivalent force deveioped is larger than ‘he axial equivalent force. This 

behavior is a simple characteristic of the system, the structural tangential admittance being 

smaller than the direct axial admittance. The next figure (Fig. 8.9) shows the dynamic 

equivalent moments produced by pure out-of-phase actuation. The conclusions are similar to 

those of in-phase actuation, and produced moments of different magnitude in the axiai and 

tangential directions. 

The radial displacement response to in-phase and out-of-phase dynamic actuation of 

the shell at (x=0.09, @=90% is presented in Fig. 8.10. For comparison purposes, the shell 

response using static modeling? is also presented. The most remarkable characteristic of Fig. 

8.10 is the greater authority of out-of-phase actuation when compared to in-phase actuation. 

The displacements produced by out-of-phase actuation are an order of magnitude larger than 

the displacements obtained from in-phase actuation. This behavior is predictable based on 

the admittances plots (Fig. 8.5 and 8.6), since the shell has greater tangential impedance. 

Thin shells are more sensitive to transverse loading (out-of-phase actuation) than to in-plane 
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Figure 8.8 Dynamic equivalent forces produced by pure in-phase actuation on the structure 
re not equal in the axial and tangential directions. 
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Figure 8.9 Dynamic equivalent moments produced by pure out-of-phase actuation on the 
structure are not equal in the axial and tangential directions. 
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loading (in-phase actuation). The transverse natural modes are directly excited when out-of- 

phase actuation is used, while they are only excited through the in-plane/out-of-plane 

coupling property of shells when in-phase actuation is used. The resonant frequencies of the 

shell based on the impedance model are shifted to the right when compared to the resonant 

frequencies based on the static model. This behavior is due to the increased stiffness of the 

actuators on the host structure which is included in the impedance model, as opposed to the 

static model where the actuator stiffness is not included. 

In Fig. 8.11, the shell response to a single actuator bonded on the inside and on the 

outside of the shell at (x=0.09, @=90°) is shown. Even though the shell is thin, the shell 

response is different. The finite element analysis that will be presented in the next section 

verifies this shell response, as well as the linear combination of pure in-phase and out-of- 

phase actuation (equation (8.1)) concept to model unsymmetrical actuation. Thus, special 

considerations should be taken when single sided actuation is used. 

A number of other cases were simulated using the impedance model, but oniy the 

most relevant information obtained from them will be discussed. Firstly, the stiffness of the 

actuator has an importani impact on the behavior of the system. A thicker actuacor will 

produce higher forces on the host structure, but it will also be more difficult to mode! the 

shell response due to the increased non-uniformity of the host structure. Changing the type 

of actuation material also changes the stiffness of the sctuawor, e.g. PVDF has a smalle 

Young's modulus than piezoceramic material, and thus will have a lesser authority on the 

structure. The size of the actuator patches bonded on the structure also needs to be | 

considered when designing such structures. Another design parameter is the location of the 

actuator patch on the structure: the mechanical impedance of the structure is dependent on 

the actuator location and will thus affect the dynamic forces produced by the actuators. At a 

particular location, the actuator patches will be efficicnt in exciting some resonant 

frequencies, while another location will be more efficient at exciting other resonant 

frequencies. Many cases using different shell and actuator dimensions were considered and 

all showed better authority when out-of-phase actuation is used. 
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Figure 8.16 The comparison of the structural response between in-phase and out-of-phase 
actuation shows greater authority for out-of-phase actuaiion at (x=0.09, 0=90°). 
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Figure 8.11 Even for thin shells, the structural response to single side actuation (inside and 

outside patches) is not equal at (x=0.09, @=90°). 
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$8.4 Finite Element Verification 

To verify the derived impedance model, a finite element analysis of the case study 

presented in the previous section was carried out. Making use of symmetry, the finite element 

model consists of only one quarter of the shell, and uses thin shell elements. The actuator 

patches are also modeled with thin shell elements, and are connected to the shell structure with 

rigid elements. The finite element analysis will only consider static actuation and will be 

compared to the impedance model with an excitation frequency of 5 Hz, which is well below 

the first natural frequency of the shell. This model does not make any assumption on the 

actuator stiffness or mass. Three different types of loading on the finite element model were 

considered. Firstly, thermal contraction and/or expansion of the actuators is used to simulate 

in-phase or out-of-phase actuation. The deformed shapes of the shell under such actuation 

are presented in Figures §.12 and 8.13. 

  
Figure 8.12 Structural response to static in-phase actuation based on finite element 

analysis. 
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Figure 8.13 Structural response to static out-of-phase actuation based on finite element 

analysis. 

The second loading type use line forces and moments, and uniforra pressures applied 

on the elements modeling the shell structure leaving the actuators elements in the model to 

include their stiffness. The magnitudes of the forces and moments are based on the actuators 

free expansion and are given by (Chapier 3): 

  

  

Yy'ty 

yet, 
My =(t, + tg) _ axE . (8.32b) 

The displacements obtained by this second model matches almost exactly the 

displacements from the thermal loading case, and is thus the appropriate way to apply the 

loading when the actuators are left on the structure. Finally, the third type of loading also use 

line forces and moments and uniform pressures applied on the elements modeling the shell 

structure, but the actuator elements are removed from the model, leaving a uniform structural 

stiffness. However, for this case the magnitudes of the forces and moments are based on the 

continuity of the strains at the interface of the shell and the actuators, which is often referred 

to as the Euler-Bernoulli model, and are given by (Chapter 3): 
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_ Yyty 2 - dyoE , 8.33 
j-vlt+y (8.538) 

Meg =(ty +ta)—2& Fe dank, (8.33b) 
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TT 

where T is the thickness ratio ts/tg. The deformed shape based on this loading is the same as 

the two previous cases, but differs in magnitude. This magnitude difference comes from the 

assumptions made in the derivation of the equivalent forces and moments applied to the shell. 

In the equation derivation, the boundary conditions are assumed to be free. When shells are 

considered, the structure is a closed body and does not have free boundary conditions, since 

stresses will be present in the whole shell. The same phenomena occurs for simpler structures 

such as beams (Chaudhry and Rogers, 1993). When the beam is simply supported. the 

boundary conditions will be free and the equivalent loading based on the Euler-Berncull 

method will give accurate results. If the boundary conditions are changed to clamped, the 

assumed stress free boundary condition in the equation derivation is no longer valid and will 

produce errors in the magnitude of the structural displacements. In Figures 8.14 and 8.15, 

‘the displacemenis of the sheli at x=0.09 based on the two loading types are presented. It can 

be easily seen from the displacements that the deformed shape is similar, bui differs in the 

magnitude. 

The fina] step mu) this paper is to directly compare the impedance model at 5 Hz with 

the static finite element model. For both in-phase and out-of-phase actuation, the radiai 

displacements based on the impedance model match the finite element results in shape, but 

not in magnitude (Figs. 8.14 and 8.15). In the impedance modeling. the actuator stiffness is 

included in the calculations of the actuator forces output. At that point of the modeling, no 

assumptions have been made either on the mass or the stiffness of the actuators. When the 

displacements are calculated using the dynamic actuator forces, the displacement equations 

(equation (8.15)) are based on a uniform shell stiffness, not including the increased mass or 

stiffness due to the actuators. Neglecting the actuator stiffness will reduce the stiffness of the 

integrated system, and thus produce larger impedance model displacements seen in the last 

two figures. The discrepancies between the impedance model and the finite element analysis 

will reduce with decreasing actuator size and thickness. 
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Figure 8.14 Comparison of the dispiacements of the static finite element model and the 
impedance model at 5 Hz for out-of-phase actuation at x=0.09. 

x105 
15 T — T ? “ T T 7 T TT 

Out-of-Phase 

  

Ra
di
al
 
di
sp
la
ce
me
nt
s 

(m
) 

  

—— Impedance Model | 
veneee FEA, Equivalent force loading 
ao FEA, Temperature loading           £ —__—   -1.5 L —— L — —__1 

0 20 40 60 80 100 120 140 160 180 

Theta 

Figure 8.15 Comparison of the displacements of the static finite element model and the 
impedance model at 5 Hz for in-phase actuation at x=0.09. 
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8.5 Conclusions 

In this chapter, an impedance-based model to predict the dynamic response of 

cylindrical shells subjected to excitation from surface-bonded induced strain actuators was 

presented. The strength of the impedance model over the conventional static approach is the 

inclusion of the dynamic interaction between the induced strain actuators and the host 

Structure. In its derivation, the impedance model includes the actuator mass and stiffness for 

a more accurate representation of the actual system. The impedance model also considers the 

different shell stiffmesses in the axial and tangential directions. Doing so, it was found that the 

actuators’ dynamic forces in the axial and tangential direction are not equal and are 

frequency dependent. However, in the shell response calculations the actuator mass and 

stiffness are neglected to simplify the shell governing equations, and thus wil! over-predict the 

displacements. Out-of-phase actuation is shown to be more efficient than in-phase actuation 

in exciting the lower order bending modes of shell structures. The impedance-based model 

for low frequencies was validated by a static finite element analysis. 
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Chapter 9 

Conclusions and Recommendations 

9.1 Conclusions 

In this dissertation, an impedance-based model to predict the dynamic response of 

shells actuated with surface-bonded induced strain actuators was presented. Gerieral basis for 

the induced strain actuation of shell structures were first introduced. Then, the impedance 

model was derived for pure out-of-phase actuation and pure in-phase actuation of one- 

dimensional rings, followed with a generalization to unsynimetric actuation of two- 

dimensional shells. Finite element analysis and experimental work were performed and 

compared to the derived impedance model. The strength of the impedance model over the 

conventional static approach is the inclusion of the dynamic interaction between the induced 

strain actuators and the host structure. Because of its dynamic characteristics, the impedance 

modeling approach is the appropriate tool to be used in the vibrational and acoustical control 

of structures. 

The principal conclusions of this dissertation are: 

¢« Based on Donnell's theory, the expressions to represent the actuator forces and 

moments for shell structures are found to be the same as those obtained for plates. 

However, due to the curvature of the shell, the representation of the in-phase actuation 

with an equivalent in-plane line force applied along the edge of the actuator results in 

the application of erroneous rigid-body transverse forces. To avoid these rigid body 

forces, a method to represent the in-phase actuation with a system of self-equilibrating 

forces must be applied. Thus, the action of the actuator should be represented by an 

equivalent in-plane force and a transverse distributed pressure applied in the region of 

the actuator patch. 

* A discussion of the appropriate representation of the loading due to out-of-phase 

actuation and in-phase actuation was presented. For out-of-phase actuation, the 

loading can be represented in the shell governing equations either as an induced 
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uniform moment over the footprint of the actuators or as an external line moment at 

the ends of the actuators. For in-phase actuation, the loading can be represented in 

the shell governing equations either as induced uniform forces on the actuator 

footprint or as a combination of external tangential forces at the ends of the actuators 

and an external uniform transverse pressure over the footprint of the actuators. 

The transverse shear stress resultant has an important impact in the modeling of out- 

of-phase actuation. If the shear stress resultant is neglected in the governing 

equations, a significantly different response at low frequencies from the full 

impedance model is obtained. The impedance model including the shear stress 

resultant gives an excellent prediction of the structural response when compared to 

the dynamic finite element model. 

The impedance model for the in-phase actuation of induced strain actuators bonded 

to the surface of a circular ring has a good corretation with the dynamic finite 

element results. 

Linear superposition of pure in-phase and pure out-of-phase actuation can be used to 

model the more general unsymmetric actuator joading. 

The actuators’ dynamic forces in the axial and tangential direction are not equal 

because the impedance inodei considers different shell stiffnesses in the axial and 

tangential directions, as it should be. 

In-phase actuation has lesser authority on shell structures than out-of-phase actuation. 

Aiso, out-of-phase actuation is more efficient in exciting the lower order bending 

modes of the shell because in-phase actuation only excite the bending modes through 

in-plane and out-of-plane displacement coupling, while out-of-phase actuation excite 

the bending modes directly. On the other hand, in-phase actuation has the capability 

of exciting the higher circumferential and axial modes, as opposed to out-of-phase 

actuation. 

The experimental verifications used to validate the impedance model were conclusive. 

An excellent match for out-of-phase actuation was obtained, with a more difficult 

match for in-phase actuation. The larger discrepancies are found due to the smaller 

displacements involved and to the greater sensitivity to the bonding of the actuators 
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on the structure. Nevertheless, the in-phase actuation experimental results are still 

similar to the theoretical results, both in shape and magnitude. 

¢ Various finite element models were used and compared to the derived impedance 

model. When the actuator mass and stiffness are neglected in the finite element 

model, an perfect agreement with the impedance model is obtained. However, if the 

actuator stiffness is considered in the finite element model, the analytical model only 

gives a good approximation of the shell's deformed shape. In the impedance 

approach, the actuator mass and stiffness are included in the derivation of the 

dynamic equivalent actuator forces, but are neglected in the final shell response 

calculations . 

* The piezoelectric elements available in ANSYS 5.0 are an efficient mean to dynamic 

analysis of induced strain actuated structures. 

In summary, two important messages to remember: (i) the plate models can not be used to 

model curved structures; (ii) the impedance approach should aiways be used when induced 

Strain actuators are excited harmonically. Using the conventional static-based introduces 

many assumptions, which will results in important modeling errors. 

9.2 Recommendations 

In this dissertation, 2 complete imnpedance model for simply supported circular 

cylindrical thin shells was presented. This work have limitations for practical applications 

because of the targeted shell structure used in the modeling derivation. To extend the reach 

of this work, a few recommendations on possible future work are suggested: 

¢ Experimentation on two dimensional shells could be done to verify the accuracy of 

the dynamic response obtained from the impedance model. In present work, the two 

dimensional impedance model was only verified using a static finite element analysis. 

This verification was found satisfactory since the dynamic characteristics were verified 

for one dimensional rings. Further verification of the two dimensional impedance 

model could also be done using the full version of ANSYS 5.0 (the academic version 

available at CIMSS has limited number of elements). 
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Based on the impedance model, a coupled electro-mechanical model for shell 

structures could be easily derived. Such model would provide important information 

on the power consumption of the induced strain actuators and the energy transfer in 

electro-mechanical system. 

Extend the two dimensional impedance model to a larger array of boundary 

conditions, such as clamped-clamped, free-free, cantilever, etc... However, some 

difficulties may arise in the choice of the appropriate shape functions to model the 

shell deformation for some boundary conditions. Numerical methods such as the 

Rayleigh-Ritz solution could be used to solve for the system parameters. In this work, 

only simply-supported boundary conditions were used. 

Extend the two dimensional impedance model to open shelis and curved panels. 

Such structures are solved from the same governing equations as closed shells, but 

uses different boundary conditions. 

Extend the derivation of the impedance modeling io more general shelis, i.c., 

anisotropic shejls, composite shells, elliptic cylinders or shells with double curvatures. 

This extended model could be based on the layered shell theory In this work, the 

impedance model derivation was limited to circular cyiindrical shells. 

{Investigate the possibility to apply the derived impedance model to more complex 

structures like aircraft fuselage and submarine inuils. ‘These complex structures 

contains nonuniform properties due to the presence of siiffeners, floors, and windows 

that will greatly complicate modeling of the structural response to induced strain 

actuation. The goal of this investigation would be to determine if the same 

conclusions obtained for simple shells can be transiaied to more complex structures, 

conclusions like better authority of out-of-phase actuation over in-phase actuation 

and better efficiency of out-of-phase actuation in exciting the lower order bending 

modes. 
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