Tweet Collections
Automatic Population
of

Metadata Spreadsheet

By

Brandon Chang, Kirk Chenault, Chris Keener, Joseph Widrig

Virginia Tech, Blacksburg, VA 24061
CS4624: Multimedia, Hypertext, and Information Access

May 2, 2018

Clients

Liquing Li & Zigian Song

TABLE OF CONTENTS

1. Table Of FIQUIES ... e 2
2. ADSIIACT. .. 4
3. INrOAUCTION. ... e 6
4. REQUINEMENES. .o e 7
o TR 1D 1= o | o P 8
6. Implementation........ ... 10
7. Testing and Evaluation.......... ..o 12

8. Users ManUal........c.oooiiiiiii e e 13

9. Developers Manual.........c..ciieii e 18
10.LeSSONS LEAINEA.t e 25
11.Acknowledgements. ... 27
12, REIEIEBNCES. ... e 28

TABLE OF FIGURES

1. Populating an input table with only a category as a keywordc.l. 6
2. Diagram showing the architecture and data flow of the software 9
3. Running a Flask application on Ubuntu to load a HTML template to localhost 11
4. Example of ontology category ‘Storm’ [visualized]..........ccoovvvieeeeiiiiiiiiiiiee 12
5. Python download Pageooviiiiiiiii e 13
6. Setting Up PYIhoN ... 14
7. The Python Tkinter [3] window when first loaded [Version 1] ..., 15
8. The Python Tkinter [3] window after given input [Version 1] ..., 15

9. This will happen when it is running the program. Do not close the window, or you will
[0S PrOGIESS. ...ttt e 16

10. This is the result when the program finished running. Click “Finish” to close the

11771 (o PP 16
11. . Example output from an errorfile. ...
17

P28 1= =1 1o o 1 18
13. Windows System Settingscooviiiii e 19
14. System Properties and Environment Variables ...
19

15. Viewing updated status of the program running in developer mode 20

16. Example output from running the csv_parser script. Given the argument ‘Collection

Terms’, this will return the values in the column for the specified rows 21

17. Part 1 of 2 of the Wikipedia [1] data retrieval script outlining how Wikipedia page and

their content will be retrieved. ... 22

18. Code for extracting categories from the OWL file to cross reference content for

spreadsheet ENtriES.o 23

ABSTRACT

This is a report generated to explain the details of the Tweet Collections project. The
report contains both a user manual and developer manual, as well a “lessons learned”
section. Throughout the process of completing this project, there have been many
things to take into consideration. These are documented so that any future readers will
be able to avoid pitfalls our team faced.

Over the past decade, social media use has grown exponentially. More and more
people are using social networks to connect and communicate with one another, which
has given birth to a new source of data: social media analysis. Since Twitter is one of
the largest platforms for text based user input, many tools have been created to analyze
data from this social media network.

The TweetCollections project is designed to analyze large amounts of tweet collection
metadata, and provide additional information that makes the tweet collections easy to
categorize and study. Our clients, Liuging Li and Zigian Song, have provided our team
with a set of tweet collections and have asked us to assign metadata to them so that
future researchers are able to easily find relevant collections. This includes assigning
tags and categories, as well as a description with an accompanying source. Formerly,
this process had been done by hand. While this improves the accuracy of the data
collected, it is too expensive and time consuming to maintain. Our team has been
tasked with speeding up the process, using scripts to find information for these fields
and fill them out.

The majority of technology used in our approach has been concentrated on Python and
its many libraries. Python has made it easy to quickly parse through our tweet collection
data by treating the input as an Excel file, as well as pulling other relevant information
from third party sources like Wikipedia. The driver will create a new, updated Excel file
with the additional data, categories, and tags. Additionally, an ontology will be produced
and serve as reference for categorizing topics listed in the fields from the input.

The GETAR team has created over 1400 tweet collections, containing over two billion
tweets. To help categorize this data, they also store metadata about these collections in
a Comma Separated Value (.csv) file. This project will result in a product that will take in
a CSV file of the archive of tweet collections metadata as input, with the required fields
(such as “Keyword” and/or “Date”) filled in, and produce a separate Comma Separated
Value file as output with missing fields filled in. The overarching problem is that each
category term is rather vague, and more data will need to be pulled out of this term.
Additionally, an ontology will be produced and serve as reference for categorizing topics
listed in the fields from the input. The completed project contains three Python scripts:
csv_parser.py, search_wikipedia.py, and GUI.py. Together, these create a program that
can take in an input CSV file and integer range for which lines to run, and then return a
new CSV file with the additional metadata filled in. Also included with the deliverable is
a populated Excel file, with over 150 additional entries of metadata, and an error file

containing recommendations for the ontology. These recommendations are generated
from any results our driver determines as ‘low relevance’, and returns options with a
higher term frequency.

INTRODUCTION

The Global Events and Trend Archive Research (GETAR) team, funded by the National
Science Foundation (NSF), has been collecting large amounts of data from Twitter for
research purposes. Through many of their projects related to tweet activity and
webpage analysis, the GETAR team has collected in total over 2 billion tweets. These
are organized into roughly 1500 different tweet collections. These collections can be
about trends, like climate change, or events, such as Hurricane Irma. The names of the
tweet collections are of three types: keyphrases/keywords, mentions, and hashtags.

A spreadsheet [11] has been generated to describe each tweet collection. In each row
of the spreadsheet, there are fields for the tweet collection title, a detailed description of
what the title means, where to find more information regarding the title, tags, categories
related to the title, starting date, and finally the total tweet count (Figure 1).

Previous personnel who were tasked with populating this data decided to work on the
spreadsheet manually. This has led to a partially filled out spreadsheet. Our group has
been tasked with creating an automated method where we could populate the
spreadsheet with the desired information. This will help lower the amount of time as
well as the cost needed to fill out the sheet manually.

In addition to working on the unfinished spreadsheet, our team will also work on
extending the ontology (an extended taxonomy) for events and trends. With the
massive amounts of data that GETAR s collecting, it's important that there exist some
more comprehensive ontology to help understand the data. Our team will apply
techniques that will help extend the ontology by recommending new terms and phrases
relevant to various tweet collections.

DEVE]ET Source | Wikipedia Description Category Event Count | Latest
Name Date

GIVEN GIVEN GIVEN Llinkto anarticle The most Search pre-existing Titleof GIVEN GIVEN
about ‘acid rain’ comprehensive and categories for the the Wiki
relevant sentence most relevant for page

found in the Wikipedia ‘acid rain’
article

Figure 1: Populating an input table with only a category as a keyword

REQUIREMENTS

Our team was presented a spreadsheet that contained the metadata for the tweet
collections that our client is archiving. When we met with the client to discuss what was
expected of our group, there were talks of completing the entire spreadsheet, whether it
be manually or automatically. Our client expressed concern, stating that they did not
believe that we would be able to fully complete the document during the allotted time
period. After discussing what would be a reasonable amount of work for our group, our
client decided that we should complete at least 150 rows worth of data. Our solution
would include a packaged program that could be used in the future in order to generate
information for any possible future entries. The programming environment was left for
the team to decide due to the many different ways that this project could be completed.
Our client has been very helpful and willing to communicate on a frequent basis in order
to address any issues that come up. Currently our requirements are to complete the
work already assigned, but it is possible we may readdress these requirements and try
to tackle some more advanced issues within the project.

DESIGN

The design process for this project was long and tedious. When we were first presented
the project, our group first considered using C as the core system for our program. This
was the language that our group was most comfortable with, considering we have had
many classes that used C. Once we settled on a language we started to discuss the
pros and cons of the language related to our project. C is a very powerful language and
it would be capable of completing our project, however some members expressed
concern over the amount of work needed to add all of the features. We met again and
brainstormed which language would be the easiest to manage all of the features, as
well as a language that would be easy for future developers to modify. One of our
members suggested Python as a language because it is extremely modular and many
users are familiar with it. Once we changed the foundation of our project to Python, we
found it much easier to proceed.

Python offers many libraries that support Comma Separated Value file parsing. For a
larger dataset, this should reduce run time since most of the computational work can be
done within the module. We also know that Python has a Wikipedia [1] library available,
since several of our members have used it before. Because the main source of data for
our spreadsheet will be pulled from Wikipedia [1], this provides more evidence for
choosing Python over another language. We can grab any page from Wikipedia [1], or
grab a series of keywords from a page, all in just one line of code. Another advantage
for data population with this language is the simplicity of making HTTP requests. It was
brought up from our client that not every entry in our Comma Separated Value file
dataset will have a Wikipedia [1] page. This brings up the concern that we will have to
pull data from an alternate website if Wikipedia [1] does not contain any relevant
information. Since we all have access to Virginia Tech’s rlogin cluster, we all have
access to Python version 2.

We decided that the project should include some sort of front end user interface to
make the project easier to use. This way, not everything would have to be done from a
command line. For the front end GUI, we discussed several possibilities. Since we had
decided on using Python at this point, our front end would have to be Python
compatible. (Any front ends built should have minimal effort connecting to the Python
scripts.)

The resulting product contains the following files: CollectionTable.csv, csv_parser.py,
CTRontology.owl, errors.txt, GUI.py, OutputCollectionTable.csv, README,
search_wikipedia.py, and stoplist.txt. The CollectionTable.csv is an example
spreadsheet to be filled in by our product, while the OutputCollectionTable.csv is an
example result of running our product. The errors.txt file is generated from our product
when there is a field that is too ambiguous as a search term, and it will recommend
adding more ontology categories. The stoplist.txt is a simple stoplist containing common
words that do not need to be searched. This file can be modified if the user notices a

need for a more restrictive list. Lastly, the Python scripts run the program with the files
aforementioned.

The Python scripts are implemented with a front-end GUI.py script calling upon the
csv_parser.py module. Inside the csv_parser.py module, it iterates through the given
input CSV file and then pulls the search terms. The csv_parser.py module then calls on
the search_wikipedia.py to bring back a page from wikipedia so it can parse the results
and cross reference it with the ontology. The csv_parser module then takes that page
and processes it, returning a word count map and a summary sentence. Finally, this
script puts the resulting data into the output file and continues on to the next line. The
complete flow of our product can be seen in Figure 2.

Input C3V ;{ GUlLpy }

h i
1 Results
CSV_F'ARSER.WJ »| Output C3V
A
for every row in Input C3SV returns
results for
each query
Y

[SEARCH_WIKIPEDIA py

Figure 2: Diagram showing the architecture and data flow of the software

IMPLEMENTATION

The hardest challenge for executing our design ideas was figuring out how to create our
Python sandbox environment. Since we are all VT students in the computer science
department, we have access to both rlogin (a Linux cluster) as well as VTGitlab (Git for
version control). We soon realized this would not be enough, since rlogin does not give
us root access, for security reasons, and prevents us from experimenting with other
libraries. Rlogin only lets us test Python libraries that are already installed on the
cluster. One example of a Python library relevant to this project is the CSV Python
library module, which lets us parse/update a CSV file.

Other libraries like Wikipedia [1] and Flask [2] need to be installed using Python’s pip
command. Because we do not have root access on rlogin, this means we needed
another environment that supports Python. We decided to use a virtual machine
running Ubuntu Linux. This gives us an easy to use environment as well as quick
access to download any third party tools.

For our front end, the first option would be using something like a GUI library for Python.
Tkinter [3] provides a simple GUI for Python applications. We looked into using this
library at first, but the options are fairly limited. If this project were to be used in the long
run, we decided a nicer GUI would be the best option. Several members of the group
are familiar with HTML, so it was in heavy consideration. A web-based application
would certainly provide the best looking GUI with the set of tools we have. Simply using
Twitter's Bootstrap [4], along with editing different CSS elements, should make the most
user friendly interface. The next problem would be connecting the Python scripts with
the front end.

Several of our group members have some experience with web design, and the Flask
[2] framework. Flask [2] is a Python microframework for creating Python based web
applications. In short, Flask [2] could do all the complicated server-client
communication and computation in the back-end, connecting our Python scripts to the
front end HTML page. The other added bonus is that if this project were to become
used on a larger scale, instead of using a localhost to display the HTML, you could set
up a server to allow others to access the program and use the tools we created (Figure
3).

After much debate, the team decided to revert back to Tkinter [3] due to complications

with Flask [2]. It was decided that our front end did not need to have much functionality
other than input and output, therefore we turned back to Tkinter [3] due to its simplicity.

10

localhost:5000/
e C @ @ localhost:* v @ W in @ =
v Your Firefox is critically out of date. An update is required to staysecure | Update Mow | LearnMore X

e Hello World

cbrandon@cbrandon-VirtualBox: ~/Desktop/hypertext/flask

File Edit View Search Terminal Help

cbrandon@cbrandon-VirtualBox:-~ : ks s

brandon-VirtualBox:~/L xt/flaskS python app.py

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

* Restarting with stat

* Debugger is active!

* Debugger PIN: 935-883-614

127.0.0.1 - - [26/Mar/2018 20:11:49] "GET / HTTP/1.1" 200 -

127.0.0.1 - - [26/Mar /2018 20:11:53] "GET /favicon.ico HTTP/1.1" 404 -

Figure 3: Running a Flask application on Ubuntu to load a HTML template to localhost

11

TESTING AND EVALUATION

For testing purposes, we have created a separate sandbox in rlogin to traverse and
manipulate spreadsheet data. This is connected on VTGitlab so that all users can
access and run various scripts on the spreadsheet data, with the option to discard their
changes at the end of their session.

As we worked on implementation of pulling content from Wikipedia [1], we began testing
different algorithms to pull descriptive sentences. We ran several tests on mock input
CSV files to ensure that we would not alter the original file. Upon updates with our
client, we have determined to make copies of all data generated, to ensure validity.

Another aspect of our project evaluation involves the updated ontology. Protege [10] is
a data visualization tool recommended by the client. This will allow you to visualize
relationships between categories in our OWL file, as seen in Figure 4. Our code does
not update the OWL file directly, rather, in the errors.txt, it will make suggestions for new
categories to be manually added through Protege. Our client has requested this
approach be done in order to minimize the number of erroneous entries being added to
the OWL file.

Icontains vI Search I Clear -

AR ENEEIDENCIEREE |

BB 3|5 dn |G 4| E

¥ owl:Thing i
B Disaster_Management fﬁ]
¢ Disaster_Types

¥ Compound

------ " Cultural_Disappearance

...... & Famine

¥ Manmade

¥ Conflict_Based

------ ' Crowd_Event

¥’ Human_Systems_Failure
¥ Industrial

b Hazardous_Materials
- Hazardous_Waste
Mine_Accident
Mine_Collapse
Mine_Explosion e
Mine_Fire
Missile_Accident
Nuclear_Accident
Pipeline_Accident
Pollution
Tunnel_Accident
L Utility_Failure

b0 Transport

----- " Psychological

]

[-
>

b4

|

¥4 Natural
-1 Biological
-0 Climatological

' Geophysical

(0 Change_in_Coastline
~ Mass_Movement_Dry

Mass_Movement_Wet
' Seismic_Activity

 Volcano
" Meteorological

-4 Location

E]

& Mass_Movemens

et

@ Severe_Thunders
torm

< [

Figure 4: Example of ontology category ‘Storm’

12

USER’S MANUAL
Starting with Python

Once you download the files that accompany this project, there is some setup that must
be done to ensure that your machine is ready to begin. This project uses Python, a
programming language that is not guaranteed to be native to your machine. If you are
not sure if Python is installed, the next few paragraphs will walk you through setting up
Python so that this project is ready to run.

To begin the installation process you must first download a Python installer. Our group
used the installer from https://www.python.org/downloads/ (Figure 5). Once you
download this installer and begin running it, you will select all of the default options until
you see a screen that appears similar to Figure 6.

Python

& python’ - I

About Downloads Documentation Community Success Stories News Events

Download the latest version fsi Windows

Download Python 3.6.5 § Download Python 2.7.15

Release date Click for more

[

[

Python 3.4.8 2018-02-05
Python 3.5.5 2018.02.05
Python 3.6.4 2017.12.19

Python 3.6.3 2017-10-03

L

Pythen 3.3.7 2017-09-19

Figure 5: Python download page

13

https://www.python.org/downloads/

42 Python 2.7.15 (64-bit) Setup b 4
Customize Python 2.7.15 (64-bit)

Select the way you want features to be installed.
Click on the icons in the tree below to change the
C way features will be installed.

=3] Pythan i
--------- ‘= ~ | Register Extensions

......... =B~ Tl Tk

--------- ‘= ~ | Documentation

--------- (=~ | Utility Scripts

......... g I:Iil:l

......... =~ | Test suite

4

Prepend C:\Python27Y to the system Path
variable. This allows you to type 'python’ into a
command prompt without needing the ful path.

python

a far This feature requires OKB on your hard drive.
windows
Disk Usage Advanced < Back Cancel

Figure 6: Setting up Python

This part of the installation asks what sections of Python you wish to install on your
machine. To ensure that everything works correctly, it is advised that you install all of
these. There is an important change that must be made before proceeding. In Figure 6
there is a string of text that is highlighted that says “Add python.exe to Path”. You must
scroll down until you can select this line and make sure that it is installed correctly. This
will allow you to execute Python files without any issue. Once this has been updated,
you can continue through the installation by selecting the default options until it finishes.
Now Python is installed on your machine and can be used to execute .py files. Before
our project is ready to run you must first open up a terminal. You can use either the
command line if you are on Windows or terminal if you are on Linux. Once you have the
terminal open, run the command “pip install wikipedia”. This is required for our project to
access the wikipedia library. After pip installs the wikipedia package into your Python
folder, you will be able to run our project. In order to run the project, open the folder
“TweetCollections” and right click on the file “GUIl.py”. Select the option “open with” and
you will be prompted to select a program to open the file. If the Python installation was
successful, you should be able to open with the Python terminal and a window will
appear.

14

The window that opens when the script executes can be seen in Figure 7. The “Browse”
button will prompt you to input the file you wish to run through our program. Once the
user has provided the input file, a “Calculate Run” option appears (see Figure 8). When
the user clicks the “Finish” button, it will close both the window and the file generated (in
the same directory as where you pulled the input file).

& Tweet Collections — O *

File Path:
Enter CSV File

Browse

Optional Parameters:
Start Indesx

0
End Index

-1

Search Term:

v Populate all?

Figure 7: The Python Tkinter [3] window when first loaded [Version 1]

74 Tweet Collections e | .

File Path:
C:/Users/Chris/Desktof

Browse

Optional Parameters:
Start Index:
1050
End Index:
1060
Search Term:

[+ Populate all?

Calculate Run

Figure 8: The Python Tkinter [3] window after given input [Version 1]

15

74 Tweet Collections (Mot... — “

File Path:
C:/Users/Chris/Desktof

Browse

Optional Parameters:
Start Index:
1050
End Index:
108
Search Term:

[Populate all?

Calculate Run

Figure 9: This will happen when it is running the program. Do not close the window, or
you will lose progress.

7k

File Path:
C:f/Users/Chris/Desktogp
Browse
Optional Parameters:
Start Index:

1030
End Index:
1060

Search Term:

[Populate all?

Finich

Figure 10: This is the result when the program finished running. Click “Finish” to close
the window.

Discussions of the Use Environment

On the top of the interface, provide an input file through file selection via the ‘Browse’
button. At the very bottom, you receive the computed file through a ‘Finish’ button. In
between, there are optional parameters for the user that provide more flexibility. The
‘Start Index’ text box will take a positive integer, representing the starting line that the
user wishes to begin updating the CSV file. Note that the line number is the same as it
will appear in the CSV input file. The ‘End Index’ text box will take a positive integer
number. This represents the line the user would like to stop editing the input CSV file.
The search term text box is an additional search parameter. When this box is

16

non-empty, it will tag this search term in the Wikipedia search query. This will help
increase the relevance of the returned results, if the generic search was too ambiguous.
Leave this box empty to perform a generic search. The last optional field is the
“Populate All” checkbox. Leave a checkmark in the box if you wish to run the whole
document, otherwise if left unchecked, it will run from the starting index to the ending
index. See Figure 1 for a list of the fields.

Use Case

Providing an input file and optional parameters given to the product, where the specified
fields in the file that are filled out will be run through our algorithm, and then putting the
found information into a receiving file.

Tutorials on Use

When on the interface, simply click the “Browse” button and then select the file from
your computer. Fill out any optional parameters if you wish. Once you click “Calculate
Run”, this will process the file you submit with our Python driver. If the file is
incompatible, the “Calculate Run” button will not appear. Once the file has been
processed (Figure 9), a “Finish” button will appear at the bottom of the window. Click the
“Finish” button to close the window (Figure 10).

Results

After running the program, two files are created. The first file is ‘OutputCollectionTable’.
This is the updated CSV file, complete with Wikipedia links, tags, descriptions, and
categories. The original input file will not be altered, to preserve accuracy. The second
file is ‘errors.txt’ (Figure 11). This will contain any flags, or errors that popped up during
the run. Current flags that we catch include failure to find a page, disambiguation errors
within the Wikipedia library, and low ontological relevance. Any issues with the file that
is generated should be placed in this file so that the users will be able to see them.

ng for wikipedia page "#nrv 2012°
SEARCHING FOR THE TERMS:

Figure 11: Example output from an error file

17

DEVELOPER’S MANUAL

This project was developed in Ubuntu version 16.04.4, and Windows 10. Note that we
used a shell that supports Unix/Linux commands for Windows, so all the commands
and examples demonstrated in the manual are Linux/Unix based.

For Windows: Git Bash provides a nice shell that uses Linux/Unix based commands as
well as supporting Git for future project changes (see: https://gitforwindows.org/).

For Mac: Mac is a Unix-based operating system, and as such, most of the bash
functionality outlined in the Ubuntu sections is present natively in the MacOS shell.

Python:

The source code for our project is built using Python version 2.7.14. To run the script,
you must have Python installed (see User’s Manual for details). Linux/Unix users should
already have Python installed. You can check Python’s version by using ‘python
--version’ or ‘python -V’ in the command line. You will also need ‘pip’ in order to install
the necessary packages and libraries we have used in this project. See Figure 12 on
how to install pip via linux.

cbrandon@cbrandon-VirtualBox: ~
File Edit View Search Terminal Help
brandon@cbrandon-VirtualBox:~S python3 --version
ython 3.6.3

brandon@cbrandon-VirtualBox:~$ sudo apt-get install python.pip
[sudo] password for cbrandon:

Reading package lists... Done

Building dependency tree

Reading state information... Done

Figure 12: Installing pip

If you use a Windows operating system, ‘pip’ should already be installed upon installing
Python 2.7.14, and can be found at https://www.python.org/downloads/ (See User’s
Manual for how to install Python for Windows.)

In order to execute Python programs you must have Python in your path variable. You
can check your path variable in Windows by visiting system settings as seen in Figure
13. Once you are in system settings you must click on “Advanced System Settings”.
This will bring you to a screen that can be seen in Figure 14. By clicking on
“‘Environment Variables” you will see a screen that contains many different variables. By
navigating to the Path variable you can verify that Python is correctly appended and
ready to run.

18

https://www.python.org/downloads/

A system - O

A B 5 Control Panel > System and Security > System v|® | Search Control Panel P

Control Panel Home . s ,
View basic information about your computer

& Device Manager Windows edition

& Remote settings Windows 10 Home

& System protection @ 2017 Microsoft Corparation. All rights reserved.

o Windows10

) Advanced system settings
Systemn

Manufacturer: ASLSTek Comnuter Inc

Figure 13: Windows System Settings

Environment Variables

Computer Name Hardware Advanced System Protection Remote :
User variables for keene

You must be logged on as an Administrator to make most of these changes. Variabl
anaple

Value

Ch\Users\keene\OneDrive

Performance

OneDrive

'_ Vieugl clfects; precessorschiduling :memory usage. and vitid! memory: Path Ch\Users\keene\AppData‘Local\Microsoft\WindowsApps;
= TEMP Ch\Users\keene\AppData\Local\Temp
il TMP Ch\Users\keene\AppData\Local\Temp
User Profiles
Desktop settings related to your signdn
] .
EELTIE New... Edit... Delete
1
| Startup and Recovery ;
| System startup, system faiure, and debugging information T
Variable Value
Sl ComSpec CAWINDOWS\system32\cmd.exe
] MUMBER_OF_PROCESSORS 8
| Enwironment Variables... os Windows_NT
Path C:\Python27\C:\Python2T\Scripts; C:\Program Files (x868)\Intel\iCLS...

Figure 14: System Properties and Environment Variables
Running the Program in Developer Mode

This project supports running a version where output is tracked to the console. This
involves constant updates on each row of the CSV being updated, as well as any
exceptions, errors, and warnings that have been caught by the program. This mode
can be used for tracking bugs and making changes to the program. To run in developer
mode, open the project folder. Via command line, run ‘python GUI.py’. This will launch
the Python module responsible for opening up the GUI. Run the program in the usual
manner (explained in the User Manual).

19

You can track the status of the program running in the terminal, as demonstrated in

Figure 15.

74 Tweet Collections (Not ... —

File Path:
C:/Users/Chris/Desktog

Browse

Optional Parameters:
Start Index:
13
End Index:

5q

Search Term:

W Populate all?

Calculate Run

Figure 15: Viewing updated status of the program running in developer mode

CSV Parsing:

CSV (Comma Separated Values) is a type of file our program uses such that it can be
used to traverse elements from the tweet collections datasheet. By creating a module
that can access data elements from the spreadsheet, we will be easily able to insert
data into each column, as well as pull information by column. We start by extracting the
keyword from an input file using our csv_parser.py file. Figure 16 shows some output of
our code detecting keywords from the original file.

20

[cbrandon@boxelder TweetCollections]$./csv_parser.py
keywords are:
keywords are: LAX shooting
keywords are: #Isaac
keywords are: hurricane sandy
keywords are: hurricane
keywords are: hurricane isaac
keywords are: @NOAA
keywords are: California storms
keywords are: #egypt
keywords are: #jan25
keywords are: Nigerian school attack
keywords are: Nigeria school attack
keywords are: Connecticut shooting
keywords are: connecticut school shooting
keywords are: kentucky shooting
keywords are: christiansburg mall shooting
keywords are: santa monica shooting
keywords are: atlanta school shooting

Figure 16: Example output from running the csv_parser script. Given the argument
‘Collection Terms’, this will return the values in the column for the specified rows

21

Wikipedia:

The primary source for event descriptions will be Wikipedia. We have installed a library
entitled “Wikipedia” for use in retrieving pages and their contents (source:
https://pypi.python.org/pypi/wikipedia). The contents of each article will be compared

against the ontological categories in the ontology (.owl) file to estimate the relevance of
the content found within the article. Additionally, it can be used to isolate the relevant
sentences to become the description in the spreadsheet (Figure 17). This is
accomplished by calculating the term frequency of the words found in the ontology, and
determining which sentence contains the highest score.

In [33]¢

In [34]:

import urllib2

owl filename = 'CTRontology-080414 - update.owl'

import wikipedia

temp = urllib2.urlopen("https://en.wikipedia.org/w/api.php?action=query&titles=Main$20Page&prop=revisions&rvprop=cont
temp = wikipedia.search("Pizza")

temp = wikipedia.page("Pizza").content

pages = wikipedia.search("9/11")

pages

HTTP GET and scrape existing links
wikipedia.page.content new queries

[u'September 11 attacks',

u'Fahrenheit 9/11',

'9/11 conspiracy theories',

“11/9° ;

'9/11 (2017 f£ilm)',

'Hijackers in the September 11 attacks',
'Casualties of the September 11 attacks',
'National September 11 Memorial & Museum',
'9/11 Truth movement',

'9/11 (2002 f£ilm)']

=

eECcEEEEER

page = wikipedia.page(pages[0])
content = page.content
content

to the attacks were still in the court system. On October 17, 2006, a federal judge rejected New York City\'s refusal
to pay for health costs for rescue workers, allowing for the possibility of numerous suits against the city. Governme
nt officials have been faulted for urging the public to return to lower Manhattan in the weeks shortly after the atta
cks. Christine Todd Whitman, administrator of the EPA in the aftermath of the attacks, was heavily criticized by a U.
S. District Judge for incorrectly saying that the area was environmentally safe. Mayor Giuliani was criticized for ur
ging financial industry personnel to return quickly to the greater Wall Street area.\nThe United States Congress pass
ed the James L. Zadroga 9/11 Health and Compensation Act on December 22, 2010, and President Barack Obama signed the

act into law on January 2, 2011. It allocated $4.2 billion to create the World Trade Center Health Program, which pro
vides testing and treatment for people suffering from long-term health problems related to the 9/11 attacks. The WTC

Health Program replaced preexisting 9/11-related health programs such as the Medical Monitoring and Treatment Program
and the WTC Fnuiranmental Health Center nracram \n\n\n=== Reannmic ===\n\nTha attarke had a cimnificant acanamic imna

Figure 17: Part 1 of 2 of the Wikipedia [1] data retrieval script outlining how Wikipedia

pages and their content will be retrieved

22

https://pypi.python.org/pypi/wikipedia

Usage and Accessing Page Content:

Our usage of the Wikipedia [1] library is as follows: first, a search is made using the
wikipedia.search(string) function, where the string is designated by driver code written in
Python for each Twitter data collection. This search returns an array of page names for
wikipedia pages containing relevant information. Our current iteration of the program
chooses the first search result to be the page we check for relevance. Relevance is
determined by pulling categories out of the ontology file and using it as a cross
reference (Figure 18). If no relevance to the keyword is found, the script will then check
the subsequent pages. Relevance is estimated after the page’s content is accessed in
the next step, where we return the page object to be stored in a temporary variable
using the wikipedia.page(string) function. The content is then accessed by the
page.content function.

In [32]: 1 £ = open(owl_filename, 'r'
lines = f.readlines()
#lines

In [55]: for line in lines:

line = line.replace(' ', ' ")

if 'Class IRI=' in line:
line = line.replace('<Class IRI=\"#', ''")
line = line.replace('\"/>', '")
if line.upper() in content.upper():

print line

#print line.upper()

Figure 18: Code for extracting categories from the OWL file to cross reference content
for spreadsheet entries

23

Front End:

The front end of the project uses Tkinter [3] to support communication between the
Tkinter [3] window and the Python driver. Note: Tkinter is included with the standard
Microsoft Windows and Mac OS X installation of Python.

Because the Tkinter [3] window directly interacts with the Python driver, each input and
output will be on a one-to-one mapping. This results in simplicity and could be
expanded upon in future implementations to allow the interface to run multiple files in
one session. To learn more about Tkinter [3], see https://wiki.python.org/moin/Tkinter.

Please note that the code will not change the input file, but only will create a new
version of the original file with the missing fields within it filled in.

24

https://wiki.python.org/moin/TkInter

LESSONS LEARNED

Throughout the process of working on this project, our group has overcome
many obstacles. With each issue that we ran into, we made sure to take note of what
went wrong and how we could have avoided them in the future. Many of these issues
can be avoided with proper communication and planning.

When our team gathered together to discuss our milestones we were very
confident in our ability to get a working solution quickly. We set our milestones up in
such a way that a majority of the work was scheduled to be done early in the semester.
Once we started working on the project, we quickly found that we would need more time
in order to get a proper product. To split up the work evenly, our team decided to divide
each of the problems into modules so that each member could progress on their own
solution without holding back another member from working. Once each module is
complete, we will be able compile all of the files together using a driver in Python. This
solution has allowed us to address the timeline issue without causing problems.

Our group encountered other issues with the project regarding the programming
environment. We originally wanted to use rlogin as the host environment because we all
had access to it, and it is also hosted by Virginia Tech. We quickly found out that we
would not be able to download the packages that we needed, so we decided to move to
a local environment. Our group decided to utilize Ubuntu because it has Python
pre-installed and would be easy to set up. We created our virtual machine and started
designing our front end using Flask [2]. After our first few meetings we scheduled
another meeting to work on the user interface. Unfortunately the virtual machine that
contained the files had become corrupted, and we could not retrieve the files. Even
though the loss was not very large because the Ul was still in beta, our team learned
the lesson of creating multiple backups in case of data loss. Due to this loss, we moved
to the simpler interface, Tkinter [3], since it provided enough functionality to complete
our objective.

Another issue that arose while creating this project was the realization of the
complexity needed for our algorithms to determine how to best describe events and
identify valid sources. Since we only have a single collection term and date to cross
reference each entry, this brings up a lot of ambiguity. In order to counter this, we have
several countermeasures including a hardcoded threshold value, but more advanced
metrics should be taken with further versions of this project.

Since this project was created as a prototype for our client, there are several
recommendations we have for future edits. The first edit would be to polish off the user
interface. We have created a simple design, creating a seamless experience for the
user, but if more complex heuristics are added, the GUI should be updated as well. As
for the heuristics, there is room for added levels of complexity. To find relevant articles
from Wikipedia, our algorithm just searches the name, date, and a keyword (optional)
and uses the pre-existing ontology to determine relevance. The ontology provided is

25

not finished, so this method of comparison may be too naive or become outdated in the
future.

26

ACKNOWLEDGEMENTS

Client:

Liuqing Li: liuging@vt.edu
Zigian Song: zigian@vt.edu

Special thanks to the National Science Foundation (NSF [5]) for Global Event and Trend
Archive Research (GETAR [6]) grant 11IS-1619028

27

mailto:liquing@vt.edu
mailto:ziqian@vt.edu

REFERENCES

[1] Wikipedia Foundation, accessed 29 April 2018 www.wikipedia.org

[2] Armin Ronacher, Flask, accessed 29 April 2018 http://flask.pocoo.org/

[3] Andy Salnikov, Introduction to Tkinter, accessed 29 April 2018
https://wiki.python.org/moin/Tkinter

[4] Mark Otto, Bootstrap, accessed 28 April 2018 http://getbootstrap.com/2.3.2/

[5] National Science Foundation, accessed 30 April 2018 https://www.nsf.gov/index.jsp
[6] Global Event and Trend Archive Research, accessed 30 April 2018
http://www.ctrnet.net

[7] Traversy Media, Python Flask From Scratch, accessed 25 April 2018
https://www.youtube.com/watch?v=zRwy8gtgJ1A

[8] Installing Ubuntu inside Windows using Virtualbox, 20 October 2012, accessed 29
April 2018 _http://www.psychocats.net/ubuntu/virtualbox

[9] Ronacher, Armin, Flask web development one drop at a time, accessed 26 March
2018 http://flask.pocoo.org/

[10] Protege, accessed 2 May 2018 https://protegewiki.stanford.edu/wiki/Main_Page
[11] GETAR, TweetCollectionsSpreadsheet.csv, accessed 5 February 2018
https://docs.google.com/spreadsheets/d/13wUfD-BI49Wklog8Zezfg TuuwQVOPKIIS9um
mORoM80/edit#gid=0

28

http://www.wikipedia.org/
http://flask.pocoo.org/
https://wiki.python.org/moin/TkInter
http://getbootstrap.com/2.3.2/
https://www.nsf.gov/index.jsp
http://www.ctrnet.net/
https://www.youtube.com/watch?v=zRwy8gtgJ1A
http://www.psychocats.net/ubuntu/virtualbox
http://flask.pocoo.org/
https://protegewiki.stanford.edu/wiki/Main_Page
https://docs.google.com/spreadsheets/d/13wUfD-BI49Wkloq8ZezfqTuuwQV0PKIIS9umm0RoM80/edit#gid=0
https://docs.google.com/spreadsheets/d/13wUfD-BI49Wkloq8ZezfqTuuwQV0PKIIS9umm0RoM80/edit#gid=0

