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ABSTRACT

One of the fundamental hurdles in realizing new spectrum sharing allocation policies is that of

reliable spectrum sensing. In this thesis, three research thrusts are presented in order to further

research in this critical area. The first of these research thrusts is the development of a novel

asynchronous and noncoherent modulation classifier for PSK/QAM modulated signals in flat-fading

channels. In developing this classifier, a novel estimator for the unknown channel gain and fractional

time delay is developed using a method-of-moments based estimation approach. For the second

research thrust of this thesis, the developed method-of-moments based estimator is extended to

estimate the signal-to-noise ratio of PSK/QAM modulated signals in flat-fading channels, in which

no a priori knowledge of the modulation format and channel parameters is assumed. Finally, in

the third research thrust, a distributed spectrum sensing approach is proposed in which a network

of radios collaboratively detects the presence, as well as the modulation scheme, of a signal through

the use of a combination of cyclic spectrum feature-based signal classification and an iterative

algorithm for optimal data fusion.

This work is due in large part to the support of the Bradley Fellowship Program at Virginia Tech.
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Chapter 1

Introduction

At present, the allocation of spectrum resources for wireless applications is done mainly through

the use of fixed and rigid spectrum licenses, in which a licensed user has exclusive rights to its

spectrum band [1]. It has been shown recently that this spectrum allocation policy is detrimental

to the efficient use of spectrum resources. For instance, [2] and [3] present spectrum occupancy

measurements at different geographical locations that demonstrate the severe underutilization of the

spectrum under this current regulatory policy. The Federal Communications Commission (FCC)

has acknowledged this spectrum underutilization through [4], in which the following statement

is made: “Preliminary data and general observations indicate that many portions of the radio

spectrum are not in use for significant periods of time.”

In order to deal with this spectrum underutilization problem, the FCC recently issued a Notice of

Proposed Rule Making (NPRM) in which new methods of spectrum utilization were proposed [5].

In particular, this NPRM describes the potential of spectrum sharing strategies in which secondary

cognitive radio users, defined as radios able to intelligently learn and adapt to changes as a function

of location/time/frequency [6], efficiently share the spectrum with legacy licensed primary users

without causing interference to these users. Based on these ideas presented by the NPRM, a new

wireless standard based on the use of cognitive radios is being developed through the IEEE 802.22

Working Group [7]. The goal of this standard is to develop a spectrum sharing environment in the

severely underutilized TV band as a means of providing wireless broadband access to rural and

1
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remote geographical areas. It is for these reasons, among others, that a significant research thrust

in cognitive radio technologies has developed in recent years. For example, an overview of cognitive

radio research at Virginia Tech can be found in [8].

One of the most difficult hurdles in the implementation of cognitive radios in spectrum sharing

environments is that of performing reliable spectrum sensing [9]-[12]. Spectrum sensing can be

thought of as one, or a combination, of the following (dependent on the a priori knowledge of

the signals in the environment): signal detection, signal classification (single-carrier/multi-carrier,

modulation format, etc.), and signal parameter estimation. Without reliable spectrum sensing,

secondary cognitive radio users operating in spectrum sharing environments can potentially cause

unintentional interference to other secondary users, or more importantly, to legacy primary licensed

users. Spectrum sensing is more difficult in these environments due to the fact that co-existing

systems may be uncooperative (especially primary users), and thus no, or little, information may

be known about these systems’ transmitted signals (such as modulation format, channel gain,

carrier phase, time delay, etc.). A recent overview of spectrum sensing research for cognitive radio

applications can be found in [13].

In addition to the implications on cognitive radio applications, spectrum sensing also has implica-

tions in military applications. For instance, reliable spectrum sensing can allow for more efficient

jamming and anti-jamming procedures, as well as an increased ability to intercept enemy commu-

nications [14]. It is due in part to these important uses for spectrum sensing that research in this

area continues to be of fundamental importance.

Chapters 2 and 3 of this thesis expand upon prior spectrum sensing research, such as [15]-[19], by

developing a novel method for the asynchronous and noncoherent sensing of PSK/QAM modulated

signals (termed digital amplitude-phase modulated signals in the following) in flat-fading channels.

More specifically, Chapter 2 develops a novel estimator for the unknown channel gain and fractional

time delay through the use of a method-of-moments based estimation approach. Using these esti-

mates, a novel classifier for the unknown digital amplitude-phase modulation scheme is proposed

based upon a composite hypothesis testing approach known as the quasi-hybrid likelihood ratio

test. Chapter 3 of this thesis expands upon the method-of-moments based estimation approach

developed in Chapter 2 in order to develop a novel asynchronous, noncoherent, and non-data-aided
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signal-to-noise ratio estimator for these signal types.

Chapter 4 of this thesis develops a novel distributed approach to asynchronous signal detection

and modulation classification through the use of a set of cooperative cyclic spectrum feature-based

classification radios, a fusion center, and an iterative algorithm for optimal data fusion. More

specifically, the set of spectrum sensing radios are assumed to make a local classification decision,

determined through the use of the observed signal’s cyclic spectrum estimate, that is sent to the

fusion center. The fusion center (a spectrum sensing radio itself) then makes the final global

decision for the system based upon its own cyclic spectrum estimate, as well as the set of local

decisions made by the spectrum sensing radios. In order to determine the local decisions at each

radio, as well as the final global decision at the fusion center, person-by-person optimal decision

rules are determined through the use of a non-linear Gauss-Seidel iterative algorithm [20].



Chapter 2

Asynchronous Classification of Digital

Amplitude-Phase Modulated Signals

in Flat-Fading Channels

2.1 Motivation for Work

This chapter concerns the development of an asynchronous and noncoherent likelihood-based mod-

ulation classifier for digital amplitude-phase modulated signals in flat-fading channels. Though

much work has been done on developing synchronous likelihood-based modulation classifiers in

recent years (see [21] for a great listing of such work), to the best of our knowledge the modulation

classification of asynchronously received signals in flat-fading channels has not been considered1.

This apparent lack of research can be attributed to the fact that, for likelihood-based approaches to

modulation classification, each of the unknown signal parameters must be handled with no knowl-

edge of the modulation scheme, either by removing the classifier’s dependence on the unknowns

through the use of their probability density functions (pdf), or through the classifier’s use of esti-

mates of the unknowns, each of which is made especially difficult in an asynchronous environment.
1For AWGN channels, Beidas and Weber present asynchronous likelihood-based classifiers for MFSK signals in

[22] and [23].

4
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2.2 Contribution

This chapter proposes an asynchronous and noncoherent modulation classifier for digital amplitude-

phase modulated signals in flat-fading channels. This classifier is based upon a composite hypothesis

testing approach known as the quasi-hybrid likelihood ratio test (qHLRT), in which estimates

of the unknown amplitude, phase, and fractional time delay are required. For estimating the

unknown amplitude and fractional time delay, a novel estimator based upon the method-of-moments

is proposed which requires no prior knowledge of the modulation scheme of the received signal.

Performance results are presented for the proposed estimator and modulation classifier assuming

the use of both rectangular and square root-raised cosine pulse shapes. These performance results

show that the proposed asynchronous classification system performs well compared to previously

developed synchronous classifiers, given an adequate observation interval.

2.3 Likelihood-based Modulation Classification Techniques

The modulation classification process can be formally defined as: Given a received signal r(t),

determine the modulation scheme used to represent the data from among the c possible modulation

schemes H1,H2, . . . , Hc. This is a hypothesis testing problem in which, as the name implies, the

correct hypothesis is determined by testing r(t) against each hypothesis Hi, i = 1, 2, . . . , c. In

traditional likelihood-based hypothesis testing modulation classification problems, it is assumed

that the signal parameters and the probability of each modulation scheme being used, P (Hi), are

known. For these problems, a Bayesian approach can be used, which leads to a decision rule that

minimizes the probability of classification error [24]. This approach classifies the received signal by

finding the maximum among the a posteriori probabilities P (Hi|r(t)). When each of the possible

modulation schemes are equally likely to be used (as will be assumed in the following), an equivalent

classifier is the maximum-likelihood classifier, which finds the maximum among p(r(t)|Hi).

When the non-data signal parameters are considered unknown, these traditional testing methods

must be extended. This is conventionally known as composite hypothesis testing [24]. For mod-

ulation classification applications, there are three main composite hypothesis testing approaches

typically considered (differing in how each handle the unknown parameters): the Average Likeli-
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hood Ratio Test (ALRT) ([15],[16]), the Generalized Likelihood Ratio Test (GLRT) [17], and the

Hybrid Likelihood Ratio Test (HLRT) ([18],[19]). Presented in the following is a brief summary of

each of these approaches (for a more detailed discussion on these approaches, refer to [21]).

For the ALRT, the set of unknown signal parameters, u, is considered to be random with known

conditional pdf p(u|Hi). Given this conditional pdf, the dependence on the unknowns is removed

by “averaging out” the set of parameters through

p(r(t)|Hi) =
∫

p(r(t)|u,Hi)p(u|Hi)du, (2.1)

where p(r(t)|u,Hi) is the pdf of r(t) conditioned on the unknown signal parameters and the modula-

tion scheme being used. This can be seen to be a form of the well known Total Probability Theorem.

While this likelihood-based approach is optimal for handling unknown signal parameters, it can

be difficult, if not impossible, to develop due to the multi-dimensional integration required when

handling multiple unknown signal parameters. Also, in the context of classifying signals in slowly

varying flat-fading channels, [18] states that the multi-dimensional integration required results in

an exponentially complex classifier for Rayleigh fading, while being mathematically intractable for

other fading models (such as Rice, Weibull, and Nakagami).

Another composite hypothesis testing approach is the GLRT, in which the unknown parameters are

considered to be deterministic and unknown. For this approach, maximum-likelihood estimates of

the unknown parameters are found conditioned on each of the possible modulation schemes. Thus,

the estimator is given by

max
Hi,u

p(r(t)|u,Hi) = max
Hi

{
max

u
p(r(t)|u,Hi)

}
. (2.2)

Once these estimates are found, they are then utilized by the modulation classifier. This sub-optimal

approach generally yields easier to implement classifiers than the ALRT-based approach. However,

this method can still be difficult to implement when handling multiple unknown signal parameters,

due to the multi-dimensional maximization required. Additionally, prior work has shown that the

GLRT fails in uniquely classifying nested constellations (such as 16-QAM and 32-QAM) and thus

may be inadequate for some classification problems of interest [21],[24].

The HLRT approach can be used to avoid some of the described modulation classification dis-

advantages of the ALRT and GLRT. For the HLRT, the classifier’s dependence on the unknown
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modulated data symbols is removed through (2.1) (as with the ALRT), while the unknown non-

data signal parameters are estimated using maximum-likelihood estimation through (2.2) (as with

the GLRT). This approach removes the need for multi-dimensional integration, while avoiding the

nested constellation problem [21]. However, the inherent difficulty in performing multi-dimensional

maximization is still present.

If a lower complexity estimation approach is used to estimate the unknown non-data signal param-

eters with the HLRT, as opposed to maximum-likelihood estimation, this is known as the quasi-

Hybrid Likelihood Ratio Test (qHLRT). This approach removes the need for multi-dimensional

integration and maximization, leading to lower complexity classifiers than each of the previous

approaches, while still being able to provide performance comparable to the HLRT [19]. It is this

approach that will be utilized in the development of the proposed asynchronous classifier. This ap-

proach is chosen due to its ease of use, and lower complexity requirements, over the other described

approaches when dealing with multiple unknown non-data signal parameters.

2.4 The Asynchronous qHLRT-based Modulation Classifier

In this section, the asynchronous qHLRT-based modulation classifier for digital amplitude-phase

modulated signals in slowly varying flat-fading channels is developed. The received signal is defined

as

r(t) = <
{ ∞∑

k=−∞
Skp(t− (ε + η)T − kT )αej(2πfct+θ)

}
+ n(t) (−∞ < t < ∞), (2.3)

where the symbol interval T , the carrier frequency fc, and the real-valued pulse shape p(t) are

assumed known. The pulse shapes considered in this work are assumed to satisfy the Nyquist

Intersymbol Interference (ISI) criterion and to be normalized to have unit energy. The term n(t)

represents a white Gaussian noise process with two-sided power spectral density N0/2 W/Hz, where

N0 is also assumed known.

The unknown signal parameters are considered to be the modulated data symbols, the fading

parameters α and θ, and the time delay parameters η and ε. The term Sk represents the k-

th unknown modulated data symbol, taken from the set of complex constellation values of the

modulation scheme being used. The unknown real-valued channel gain α and phase θ, due to the
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assumption of a slowly varying flat-fading channel, are considered constant during the observation

interval.

The unknown time delay, in symbol intervals, is represented by the two unknown parameters η and

ε. The delay term η represents the integer number of symbol intervals delayed, while the delay

term ε represents the remaining fractional symbol interval delayed (0 ≤ ε < 1). Thus, the unknown

total time delay can be represented by (ε + η)T .

The general synchronous receiver for signals of the form (2.3) can be seen in Fig. 2.1. Here, the

term synchronous is defined as knowledge of the fractional time delay ε, with no knowledge of η

assumed. This is a conventional matched filter receiver, in which the received signal is demodulated,

correlated with the pulse shape p(t), and sampled at the optimal sampling instant topt (defined to

be the sampling instant at which no ISI is present). For the pulse shapes considered in this work,

topt = (n + ε)T .

From Appendix A, the output of this receiver is shown to be the complex point

rn,ε = cn,ε − jsn,ε =
1
2
Sn−ηαejθ + noisen. (2.4)

From standard detection theory [25], the vector rε = [c1,ε− js1,ε, c2,ε− js2,ε, ..., cN,ε− jsN,ε] is a set

of sufficient statistics for the detection of the N symbols S1−η, S2−η, . . . , SN−η. Therefore, for the

modulation classification problem given an observation length of N symbols, finding the maximum

among p(r(t)|Hi) is equivalent to finding the maximum among p(rε|Hi) [15].

Assuming an observation length of Nc symbols, there are MNc
i possible modulated data symbol

sequences that can occur given the i-th modulation scheme, where Mi is the modulation scheme’s

cardinality. From the Total Probability Theorem,

p(rε|Hi) =
MNc

i∑

m=1

p(rε|sm,i,Hi)P (sm,i|Hi), (2.5)

where the vector sm,i is one of the MNc
i possible modulated data symbol sequences of length Nc.

More specifically, the set
{
s1,i, s2,i, . . . , sMNc

i ,i

}
corresponds to all possible modulated data symbol

sequences of length Nc of the i-th modulation scheme. Given that the samples rn,ε are independent

(based on the assumptions that there is no ISI and that the noise n(t) is white), p(rε|Hi) can be
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Figure 2.1: Conventional matched filter receiver for digital amplitude-phase modulated signals.

rewritten as

p(rε|Hi) =
Nc∏

n=1

Mi∑

k=1

p(rn,ε|Sk,i,Hi)P (Sk,i|Hi), (2.6)

where Sk,i is one of the Mi possible complex constellation values of the i-th modulation scheme.

A final simplification can be made by assuming that all of the complex constellation values are

equally likely. Taking the natural log of (2.6), and applying this final simplifying assumption, the

maximum-likelihood classifier can be written as [15]

Ĥ = arg max
Hi

Nc∑

n=1

ln

(
1

Mi

Mi∑

k=1

p(rn,ε|Sk,i,Hi)

)
, (2.7)

where the probability p(rn,ε|Sk,i,Hi) is determined in Appendix A. Combining equations (2.7) and

(A.12),

Ĥ = arg max
Hi

Nc∑

n=1

ln

{
1

Mi

Mi∑

k=1

e
− 2

N0
|rn,ε− 1

2
αejθSk,i|2

}
, (2.8)

where the terms common to each argument have been removed.

Finally, based on the qHLRT-based classification approach, the assumed unknown parameters α,

θ, and ε are replaced by their estimates (denoted byˆ). This leads to the final form of

Ĥ = arg max
Hi

Nc∑

n=1

ln

{
1

Mi

Mi∑

k=1

e
− 2

N0
|rn,ε̂− 1

2
α̂ejθ̂Sk,i|2

}
(2.9)

for the proposed asynchronous qHLRT-based modulation classifier, where rn,ε̂ is the output of the

receiver in Fig. 2.1 given the sampling instant (n + ε̂)T .
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2.5 Estimation of the Unknown Non-data Signal Parameters

Now that the proposed asynchronous qHLRT-based modulation classifier has been described, the

focus of this section is to present the development of the low complexity estimators used to estimate

the unknown non-data signal parameters α, θ, and ε. The major constraint on these estimators

is that they must estimate the parameters of interest with no prior knowledge of the modulation

scheme of the received signal (i.e. such benefits as training sequences are not available). Minding

this constraint, the estimators in this work are developed using an estimation approach known as

the Method-of-Moments (MoM).

The MoM is an estimation process in which unknown parameters are estimated through the solution

of a system of statistical moment equations. These statistical moment equations are in turn defined

from a known pdf that is a function of the unknown parameters. MoM estimators, while sub-

optimal, are usually much easier to implement than optimal maximum-likelihood estimators [26].

As an example application of their use in modulation classification, a synchronous qHLRT-based

classifier for digital amplitude-phase modulated signals in flat-fading channels was developed in

[19], where MoM estimates of α, θ, and N0 were used by the classifier. It is shown in [19] that,

given an adequate observation interval, the resulting classifier’s performance is comparable to that

of a classifier using maximum-likelihood estimates.

A major contribution of this chapter is the development of a novel MoM based estimator for α

and ε that is blind to the modulation scheme of the received signal. Therefore, the majority of the

discussion presented in the following will be on the development and performance of this estimator,

as well as its applications to the proposed asynchronous qHLRT-based modulation classifier.

2.5.1 General Formulation of the MoM-based Estimator for the Unknown Chan-

nel Gain and Fractional Time Delay

It will be shown in this section that a novel MoM-based estimator can be developed for the unknown

parameters α and ε through the use of the three moments Mλ1 = E[|rn,λ1 |2], Mλ2 = E[|rn,λ2 |2],
and Mλ3 = E[|rn,λ3 |2]. These moments will be defined in general for any arbitrary pulse shape that

satisfies the Nyquist ISI criterion, and will be defined specifically for the rectangular and square
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root-raised cosine pulse shapes in Sections 2.5.2 and 2.5.3, respectfully. From these developments,

it will be shown that the moments are a function of only the unknown signal parameters α and ε,

while not being a function of the parameters n, η and θ.

To begin this development, the first step is to define the set of moment equations to be used.

To do this, it is first assumed that the output of the matched filter in Fig. 2.1 is sampled at

tn,λ1 = (n+λ1)T , where n is an integer and λ1 is an arbitrarily chosen value with range 0 ≤ λ1 < 1.

It is important to note that the chosen value λ1 is not dependent in any way on the unknown time

delay parameters ε and η; it simply defines a sampling time for the output of the matched filter

receiver.

From (A.7), the output of the receiver given the sampling time tn,λ1 is

rn,λ1 =
1
2
αejθ

∞∑

k=−∞
{SkR(tn,λ1)}+ noisen, (2.10)

where

R(tn,λ1) =
∫ ∞

−∞
p(τ − (ε + η)T − kT )p(tn,λ1 − τ)dτ. (2.11)

Given (2.10), the first moment of interest is defined as

Mλ1 = E[|rn,λ1 |2] = E

[∣∣∣1
2
αejθ

∞∑

k=−∞
{SkR(tn,λ1)}+ noisen

∣∣∣
2
]

=
α2

4

{ ∞∑

k=−∞
E[|Sk|2]R(tn,λ1)

2

}
+

N0

2

Mλ1 =
α2

4
ψλ1 +

N0

2
, (2.12)

with

ψλ1 =
∞∑

k=−∞
R(tn,λ1)

2, (2.13)

assuming that the modulated data symbols are independent and from a symmetric modulation

scheme that is normalized to unit average power (i.e. E[<{Sk}] = 0, E[={Sk}] = 0, and E[|Sk|2] =

1). Given that tn,λ1 = (n + λ1)T , the term ψλ1 is given by

ψλ1 =
∞∑

m=−∞

{∫ ∞

−∞
p(τ)p(mT + (λ1 − ε)T − τ)dτ

}2

. (2.14)
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Based on (2.14), it is worth noting that the moment equation (2.12) is a function of the unknown

parameters α and ε, while not being a function of the parameters n, η, or θ.

Expanding on this idea to determine the next moment of interest, assume that the receiver now

has a sampling time of tn,λ2 = (n + λ2)T , where λ2 is a second arbitrarily chosen value with range

0 ≤ λ2 < 1 (λ2 6= λ1). Based on this new sampling time, a second moment defined equivalently

by (2.12) can be determined (Mλ2 = E[|rn,λ2 |2]). Note that each of the moments Mλ1 and Mλ2

are a function of the same unknown parameters α and ε. Therefore, these moment equations can

be solved in terms of α and set equivalent, resulting in an equation that is only a function of the

unknown parameter ε. Therefore,

α =

√
2(2Mλ1 −N0)

ψλ1

=

√
2(2Mλ2 −N0)

ψλ2

(2.15)

2Mλ1 −N0

2Mλ2 −N0︸ ︷︷ ︸
Moment Term

− ψλ1

ψλ2︸︷︷︸
Variable Term

= 0. (2.16)

In (2.16), two terms of interest have been labeled, the moment term and the variable term. The

moment term is a function of the moments Mλ1 and Mλ2 , as well as the known noise parameter N0.

The variable term is a function of the known pulse shape p(t), the chosen values λ1 and λ2, and the

unknown fractional time delay ε. Therefore, if the moments can be determined, estimates for the

unknown fractional time delay can be found by finding the zero crossings of (2.16) as a function of

ε. These estimates can then in turn be used to determine the possible estimates for the unknown

channel gain α through (2.15).

It will be shown for the pulse shapes considered in this work, rectangular and square root-raised

cosine, that it is possible to find up to two zero-crossings in (2.16). When more than one zero-

crossing is found, an estimation ambiguity exists in which there is more than one possible estimate

for the fractional time delay ε. To resolve this ambiguity, an additional moment Mλ3 = E[|rn,λ3 |2]
can be determined, where λ3 is a third arbitrarily chosen value with 0 ≤ λ3 < 1 and λ1 6= λ2 6= λ3.

This additional moment can be used with each of the moments Mλ1 and Mλ2 equivalently in the

zero-finding equation (2.16) to resolve the estimation ambiguity. This process will be discussed in

more detail in the following.

In practice, the moments Mλi are unknown a priori and thus must be estimated from the received
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signal. This is done through the use of the sample average of the matched filter outputs, defined as

M̂λi =
1

Nest

ni+Nest∑
n=ni

|rn,λi |2, (2.17)

where rn,λi is the matched filter output given the sampling time tn,λi = (n+λi)T , Nest is the number

of outputs observed, and ni is an arbitrary integer (ni = 0 in Fig. 2.1). It is readily understood

that any estimation error in the estimates of the moments will directly effect the reliability of the

estimates of the unknown parameters α and ε. Therefore, the more accurately these moments are

estimated, the better the accuracy of the α and ε estimates.

To summarize, the following steps define the proposed MoM-based estimator for α and ε:

1. Given the chosen values λ1, λ2, and λ3, determine the moment estimates M̂λ1 , M̂λ2 , and M̂λ3

using the sample average estimator defined by (2.17).

2. For each possible pair of moments ([M̂λ1 , M̂λ2 ], [M̂λ1 , M̂λ3 ], and [M̂λ2 , M̂λ3 ]), determine the

zero-crossings of (2.16). The corresponding zero-crossings are the fractional time delay esti-

mates ε̂. (The term ε̂ represents an imperfect estimate of the fractional time delay, due to

the moments being estimates and thus containing error.)

3. Determine the ε̂ values (one from each moment pair) that most closely agree. Save these

estimates and discard the remaining.

4. Using the saved ε̂ values, determine the corresponding amplitude estimates α̂ through (2.15).

5. Determine the final estimation values based upon the set of determined ε̂ and α̂ values.

In the following sections, the proposed MoM-based estimator for α and ε is discussed for two

pulse shapes of interest: rectangular and square root-raised cosine. In the performance analysis

presented in these sections, and in the modulation classification performance analysis in Section

2.6, the estimates α̂ and ε̂ are determined through the use of the moments Mλ1=0, Mλ2=1/3, and

Mλ3=2/3. In Step 1 of the estimation process defined above, these moments are estimated using Nest

uncorrelated, with regards to the noise, rn,λi values (i = 1, 2, 3 and n = ni, ni+1, . . . , ni+(Nest−1)).

For Step 2 of the estimation process, the possible fractional time delay estimates are determined
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from (2.16) through the well known Bisection Method of zero-finding [27]. Given the possible time

delay estimates found from Step 2, the ε̂ estimates saved in Step 3 are chosen as the set of estimates

(one from each moment pair) that have the smallest standard deviation between the estimates in

the set. Finally, for Step 5, the final estimates α̂ and ε̂ are determined by taking the mean of the

saved sets found from Steps 3 and 4.

2.5.2 Estimation given a Rectangular Pulse Shape

In this section, the performance of the proposed MoM-based α and ε estimator is analyzed under the

assumption that the received signal, defined by (2.3), utilizes the rectangular pulse shape defined

by

p(t) =





1√
T

for − T
2 ≤ t ≤ T

2

0 otherwise
. (2.18)

For this pulse shape, the matched filter receiver output (2.10), given the sampling time tn,λi =

(n + λi)T , is shown to be

rn,λi =
1
2
αejθ

∞∑

k=−∞
{SkR(tn,λi)}+ noisen

=
1
2
αejθ

∞∑

k=−∞

{
Sk

∫ ∞

−∞
p(τ − (ε + η)T − kT )p(tn,λi

− τ)dτ

}
+ noisen

rn,λi =
1
4
|ε− λi|αejθ(Sn−η−1 − 2Sn−η + Sn−η+1)

+
1
4
αejθ(Sn−η−1(ε− λi) + 2Sn−η + Sn−η+1(λi − ε)) + noisen. (2.19)

(It is worth nothing that (2.19) reduces to the optimal matched filter receiver output (A.9) given

ε = λi.)

Given (2.19), the moments Mλi = E[|rn,λi |2] can be shown to be defined by

Mλi =
(
− α2

(
ε

2
− λi

2

)
E[|Sn−η|2]− α2

(
ε2

8
− ελi

4
+

λ2
i

8

)
E[|Sn−η+1|2]

+α2

(
ε2

8
− ελi

4
+

λ2
i

8

)
E[|Sn−η−1|2]

)
sign(ε− λi)

+α2

(
ε2

4
− ελi

2
+

λ2
i

4
+

1
4

)
E[|Sn−η|2] + α2

(
ε2

8
− ελi

4
+

λ2
i

8

)
E[|Sn−η+1|2]

+α2

(
ε2

8
− ελi

4
+

λ2
i

8

)
E[|Sn−η−1|2] +

N0

2
, (2.20)
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assuming that the modulated data symbols are independent and from a symmetric modulation

scheme. If a further assumption is made that the modulation schemes are normalized to unit

average power (i.e. E[|Sn−η−1|2 = 1, E[|Sn−η|2 = 1, and E[|Sn−η+1|2 = 1), (2.20) can be reduced

to the simplified form

Mλi =
α2

4
[
1− 2|ε− λi|+ 2(ε− λi)2

]
︸ ︷︷ ︸

ψλi

+
N0

2
, (2.21)

where solving for α leads to

α =

√
2(2Mλi −N0)

1− 2|ε− λi|+ 2(ε− λi)2
. (2.22)

(Note that (2.21) is not a function of the unknown parameter η.)

Finally, given the two moments Mλi and Mλj (i 6= j), the zero-finding equation of (2.16) can be

shown to be defined as

2Mλi −N0

2Mλj −N0︸ ︷︷ ︸
Moment Term

− 1− 2|ε− λi|+ 2(ε− λi)2

1− 2|ε− λj |+ 2(ε− λj)2︸ ︷︷ ︸
Variable Term

= 0. (2.23)

It is worth reiterating that the moments Mλi and Mλj of (2.23) are not known a priori and thus

must be estimated using the sample average estimator defined by (2.17).

In Fig. 2.2, the variable term of (2.23) can be seen for different sets of λi and λj values. One

important observation that can be made from this figure is that, for a given value of the variable

term, there can be up to two possible values for the unknown fractional time delay ε (note that

only one solution exists when ε = λi or ε = λj). In regards to the proposed estimator, this can

result in what has been defined in Section 2.5.1 as an estimation ambiguity. Another important

observation that can be made from Fig. 2.2 is the effect of the choice of the chosen values λi and

λj on the variable term. As the “minimum distance” between these values increases (defined as the

minimum between the distance (λj − λi) and the wrap around distance ((1− λj) + λi), λj > λi),

so does the range of the variable term.

Under the assumption of a rectangular pulse shape, Figs. 2.3-2.5 present performance results of

the proposed α and ε estimator using the estimation process defined in Section 2.5.1. For these

performance results, the modulation schemes considered are BPSK, QPSK, 8-PSK, 16-QAM, and

64-QAM, with the modulation schemes considered to be normalized to unit average power. Also,
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the fading model is assumed to be Rayleigh, and the average power of α is assumed to be unity

(E[α2] = 1).

These plots show the proposed estimator’s performance as a function of both the SNR, defined here

as E[α2]
2N0

, and Nest. In Fig 2.3, it can be observed that as the SNR and/or Nest is increased, the

probability of estimation failure decreases. An estimation failure is defined to be when the estimator

fails to find an unambiguous estimate for the unknown fractional time delay ε (meaning that zero-

crossings can not be determined for two or more of the three possible zero-finding equations). Given

that an estimation failure does not occur, Figs. 2.4 and 2.5 present the average mean square error

(AMSE) of the estimates ε̂ and α̂, respectively. For these results, the AMSE is defined as

AMSE =
1

Nm

Nm∑

i=1

E[|x̂i − x|2], (2.24)

where x is the parameter being estimated and Nm is the total number of modulation schemes

assumed. As expected, as the SNR and/or Nest increases, the average mean square error of the

estimates decreases.
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Figure 2.2: Variable term given a rectangular pulse shape.
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Figure 2.3: Average probability of estimation failure given a rectangular pulse shape.
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Figure 2.4: Average mean square error of ε̂ given a rectangular pulse shape.
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Figure 2.5: Average mean square error of α̂ given a rectangular pulse shape.
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2.5.3 Estimation given a Square Root-Raised Cosine Pulse Shape

In this section, the performance of the proposed MoM-based α and ε estimator is analyzed under

the assumption that the received signal, defined by (2.3), utilizes the square root-raised cosine pulse

shape defined by

p(t) =
4β

π
√

T

cos((1 + β)π t
T ) + sin((1−β)π t

T
)

4β t
T

1− (4β t
T )2

(−∞ < t < ∞), (2.25)

where P (f) = |PRC(f)| 12 , PRC(f) is the frequency domain representation of the raised cosine pulse

shape pRC(t), and β is the roll-off factor.

For this pulse shape, the matched filter receiver output (2.10), given the sampling time tn,λi =

(n + λi)T , is shown to be

rn,λi =
αejθ

2

∞∑

k=−∞
{SkR(tn,λi)}+ noisen

=
αejθ

2

∞∑

k=−∞

{
Sk

∫ ∞

−∞
p(τ − (ε + η)T − kT )p(tn,λi − τ)dτ

}
+ noisen

rn,λi =
αejθ

2

∞∑

k=−∞





Sk

[
cos(πβ[(λi − ε) + (n− η − k)])

1− (2β[(λi − ε) + (n− η − k)])2
sin(π[(λi − ε) + (n− η − k)])

π[(λi − ε) + (n− η − k)]

]

︸ ︷︷ ︸
pRC([(λi−ε)+(n−η−k)]T )





+ noisen. (2.26)

(As was the case when considering a rectangular pulse shape, (2.26) reduces to the optimal matched

filter receiver output (A.7) if ε = λi.)

Given (2.26), the moments Mλi = E[|rn,λi |2] can be shown to be defined by

Mλi =
α2

4

{ ∞∑
m=−∞

pRC([(λi − ε) + m]T )2
}

︸ ︷︷ ︸
ψλi

+
N0

2
, (2.27)

assuming independent modulated data symbols from a symmetric modulation scheme that is nor-

malized to unit average power. Furthermore, solving for α in (2.27) results in

α =

√
2(2Mλi −N0)∑∞

m=−∞ pRC([(λi − ε) + m]T )2
, (2.28)
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which can be observed to not be a function of the unknown parameter η.

Finally, given the two moments Mλi and Mλj (i 6= j), the zero-finding equation of (2.16) can be

shown to be defined as

2Mλi −N0

2Mλj −N0︸ ︷︷ ︸
Moment Term

−
∑∞

m=−∞ pRC([(λi − ε) + m]T )2∑∞
m=−∞ pRC([(λj − ε) + m]T )2︸ ︷︷ ︸

Variable Term

= 0. (2.29)

Again, note that the moments Mλi
and Mλj

of (2.29) are not known a priori and thus must be

estimated using the sample average estimator defined by (2.17).

Fig. 2.6 presents plots of the variable term of (2.29) for different sets of λi, λj , and β values. As

was shown for a rectangular pulse shape, it can be observed that for a given value of the variable

term there can be up to two possible values for the unknown fractional time delay parameter ε.

Again, this can result in what has been defined in Section 2.5.1 as an estimation ambiguity.

It can also be observed from Fig. 2.6 that there are two factors that determine the range of the

variable term. The first of these factors is the so-called “minimum distance” that was previously

described for the rectangular pulse shape. The second factor is the roll-off factor β. It can be seen

that a decrease in β increases the side lobes of the pulse shape, which in turn effects the summations

of (2.29), causing the range of the variable term to decrease.

Under the same simulation conditions assumed given a rectangular pulse in Section 2.5.2, Figs. 2.7-

2.9 present performance results of the proposed α and ε estimator given a square root-raised cosine

pulse shape with roll-off factor β = 0.75. From these figures, the same trends in the performance of

the estimator can be observed given this square root-raised cosine pulse shape as was observed in the

previous section given a rectangular pulse shape. For instance, as the SNR and/or Nest increases,

the average probability of estimation failure decreases, as does the AMSE of the estimates α̂ and

ε̂.

2.5.4 The M-power Phase Synchronizer

For the proposed classification method, the well known MoM-based M -power phase synchronizer

is used in order to estimate the unknown phase θ [28]. The M -power phase synchronizer estimates
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Figure 2.6: Variable term given a square root-raised cosine pulse shape.
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Figure 2.7: Average probability of estimation failure given a square root-raised cosine pulse shape

(β = 0.75).
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Figure 2.8: Average mean square error of ε̂ given a square root-raised cosine pulse shape (β =

0.75).
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Figure 2.9: Average mean square error of α̂ given a square root-raised cosine pulse shape (β =

0.75).



23

θ through the use of a sample average estimator of the M -th moment of the receiver outputs rn,ε̂

(n = 1, 2, . . . , Nc), where M is chosen based upon the modulation scheme assumed.

For PSK modulation schemes, the estimator is defined as

θ̂M−PSK =
1
M

arg

{
Nc∑

n=1

rM
n,ε̂

}
, (2.30)

where M is the order of the PSK modulation scheme assumed. For QAM modulation schemes, the

estimator is defined as

θ̂QAM =
1
4
arg

{
Nc∑

n=1

r4
n,ε̂

}
, (2.31)

where M = 4 for all order of QAM schemes.

It should be mentioned that the phase estimates based upon the M -power phase synchronizer will

have an M -fold phase ambiguity [28]. This is due to the fact that the arg function only gives values

between −π and π, restricting the phase estimates to the range −π/M to π/M . However, for

symmetric modulation schemes, such as the schemes considered in this work, this phase ambiguity

will not result in a performance loss for the classification problem.

2.6 Performance Analysis of the Proposed Classifier

Fig. 2.10 presents the proposed asynchronous modulation classification system for digital amplitude-

phase modulated signals in flat-fading channels. In this system, the unknown parameters α and ε

are first estimated using the proposed MoM-based estimation process described in Section 2.5.1.

Based on the estimated fractional time delay ε̂, the received signal is then demodulated and sampled

to give the receiver outputs rn,ε̂. These outputs are then used by the M-power phase synchronizer,

discussed in Section 2.5.4, to provide the phase estimate θ̂. Finally, this phase estimate, along with

α̂ and rn,ε̂, is used to classify the received signal through the qHLRT-based modulation classifier

defined by (2.9).

Figs. 2.11 and 2.12 present performance results of the proposed modulation classification system

under the assumption that the pulse shape p(t) is given by a rectangular pulse and a square root-

raised cosine pulse, respectively. In this analysis, the modulation schemes considered are BPSK,
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Figure 2.10: The proposed asynchronous modulation classification system.

QPSK, 8-PSK, 16-QAM, and 64-QAM, all with signal constellations normalized to have unit average

power. The fading model is assumed to be Rayleigh and the average power of α is assumed to be

unity (E[α2] = 1). The two values Nc and Nest respectively represent the number of terms used

in the estimation of the unknown phase θ and the unknown parameters α and ε. Additionally, the

value Nc is the number of rn,ε̂ values used in the classification of the received signal.

These figures present the performance of the proposed classification system through the average

probability of correct classification. For this analysis, a classification error is defined as one of

two events: the proposed MoM-based estimator fails2, or the classifier, if no estimation failure has

occurred, decides upon an incorrect modulation scheme. As can be observed from these figures,

the effect of increasing Nest on the performance of the proposed classifier can be quite substantial.

This is due to the fact that, as Nest is increased, the estimates α̂ and ε̂ become more reliable (as

was shown in the performance plots of Section 2.5.1), thus improving the overall performance of the

classifier. Furthermore, for adequate values of Nest, the performance of the proposed classifier can

be observed to approach that of the classifier in which the unknown signal parameters are assumed

to be perfectly known.

2As previously stated, an estimation failure is defined to be when the estimator fails to find an unambiguous

estimate for the unknown fractional time delay ε (meaning that zero-crossings can not be determined for two or more

of the three possible zero-finding equations).
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Figure 2.11: Average probability of correct classification given a rectangular pulse shape (Nc =

500).
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Figure 2.12: Average probability of correct classification given a square root-raised cosine pulse

shape (Nc = 500 and β = 0.75).
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2.7 Conclusions

In this chapter, a novel asynchronous and noncoherent classifier for digital amplitude-phase modu-

lated signals in flat-fading channels was proposed. This classifier utilizes a likelihood-based approach

known as the quasi-Hybrid Likelihood Ratio Test, in which estimates of the unknown non-data sig-

nal parameters are required. These unknown parameters were considered to be the channel gain,

phase, and fractional time delay.

To provide these estimates, low complexity estimators based upon the method-of-moments were

utilized that were shown to require no prior knowledge of the modulation scheme of the received

signal. For the unknown channel gain and fractional time delay, a novel method-of-moments based

estimator was proposed. Performance plots were then presented for this proposed estimator given

two pulse shapes of interest, rectangular and square root-raised cosine. For the unknown phase,

the well known method-of-moments based estimator known as the M -Power Phase Synchronizer

was used.

Finally, performance results were presented for the proposed classifier for the two pulse shapes

considered. These performance results demonstrate that the proposed asynchronous modulation

classifier performs well compared to previously developed synchronous modulation classifiers, given

an adequate observation interval.



Chapter 3

Asynchronous SNR Estimation of

Digital Amplitude-Phase Modulated

Signals in Flat-Fading Channels

3.1 Motivation for Work

The majority of prior work in signal-to-noise ratio estimation has made use of fairly strong as-

sumptions concerning a priori knowledge of the received signal. For instance, many estimators

assume knowledge of the modulation scheme utilized by the signal, or more stringently, knowledge

of the transmitted set of modulated data symbols (usually through the use of training sequences)

[29]-[31]. Even more universally, perfect time synchronization between the transmitter and receiver

is almost always assumed [29]-[33].

While these common assumptions may be applicable in cooperative environments, this is not the

case in non-cooperative environments. For instance, in environments employing cognitive radios

[34],[35], it is likely that little information will be known about the neighboring signals (such as

non-cooperative primary users or other secondary cognitive radio users). In such an application,

the estimation of the signal-to-noise ratio can be of particular importance as a means of interference

avoidance, for instance. With this in mind, the goal of the work presented in this chapter is to

27



28

remove some of these common assumptions through the development of an asynchronous signal-to-

noise ratio estimator that does not require prior knowledge of the type of digital amplitude-phase

modulation scheme used.

3.2 Contribution

In this chapter, an asynchronous, noncoherent, and non-data-aided signal-to-noise ratio estimator

is developed for digital amplitude-phase modulated signals in flat-fading channels; in which no prior

knowledge of the modulation scheme of the received signal is assumed. The proposed estimator

utilizes a method-of-moments based approach similar to that of the estimator developed in Sec-

tion 2.5 for estimating unknown channel gain and fractional time delay. Performance results are

presented for the proposed estimator, assuming the use of both rectangular and square root-raised

cosine pulse shapes, that demonstrate the performance capabilities of the estimator.

3.3 Signal Model

As was the case in Chapter 2, the received signal is defined as

r(t) = <
{ ∞∑

k=−∞
Skp(t− (ε + η)T − kT )αej(2πfct+θ)

}
+ n(t) (−∞ < t < ∞). (3.1)

Here, the known signal parameters are considered to be the symbol interval T , the carrier frequency

fc, and the real-valued pulse shape p(t), where the pulse shape is assumed to satisfy the Nyquist

ISI criterion and to be normalized to have unit energy.

The unknown signal parameters are considered to be the modulation dependent data symbols, the

noise power, the fading parameters α and θ, and the time delay parameters η and ε. Again, Sk

represents the k-th unknown modulation dependent data symbol, taken from the set of complex

constellation values that define the modulation scheme used. The term N0/2, where N0 is unknown,

represents the two-sided power spectral density of the white Gaussian noise process n(t). The

unknown fading parameters α and θ, due to the assumption of a slowly varying flat-fading channel,

are considered to be constant during the observation interval. The unknown time delay is again
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represented by the two unknown parameters η and ε, which respectively represent the integer and

fractional number of symbol intervals delayed. Therefore, the total time delay is given by (ε+ η)T ,

with 0 ≤ ε < 1.

3.3.1 SNR Definition

Fig. 2.1 presents the general synchronous matched filter receiver for signals of the form (3.1). In

Appendix A, given the optimal sampling instant topt for the pulse shape p(t), the optimal output

of this receiver structure was shown to be

rn,ε =
1
2
Sn−ηαejθ + noisen, (3.2)

where noisen is a zero mean Gaussian random variable with variance N0/2. From (3.2), the average

output SNR is found to be

SNR = ρ =
E

[|12Sn−ηαejθ|2]

E [|noisen|2] =
α2

2N0
, (3.3)

where it is assumed that the received signal utilizes a modulation scheme with a signal constellation

that has been normalized to unit average energy (E[|Sn−η|2] = 1).

3.4 General Formulation of the MoM-based SNR Estimator

In Chapter 2, a novel MoM-based estimator was developed for estimating α and ε through the use

of the three moment equations

Mλi={1,2,3} = E[|rn,λi={1,2,3} |2] =
α2

4
ψλi={1,2,3} +

N0

2
, (3.4)

where

ψλi =
∞∑

k=−∞
R(tn,λi)

2 =
∞∑

m=−∞

{∫ ∞

−∞
p(τ)p(mT + (λi − ε)T − τ)dτ

}2

. (3.5)

In (3.4), rn,λi , defined by (2.10), represents the output of a receiver of the form in Fig. 2.1

with a sampling instant of tn,λi = (n + λi)T . The term λi is an arbitrarily chosen value with

range 0 ≤ λi < 1 (λ1 6= λ2 6= λ3), with no relationship between λi and the unknown time delay

parameters η and ε assumed.
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For the SNR estimator to be developed in the following, this same set of moment equations is used.

Through algebraic manipulation, (3.4) can be rewritten as

2
N0

= ρ
ψλi

Mλi

+
1

Mλi

, (3.6)

where ρ is the average output SNR defined by (3.3). As can be seen, (3.6) is a function of the

unknowns N0, ρ, and ε (ε being found in ψλi), while not being a function of n, η, or θ. Taking

two of the three available moment equations (choosing the Mλ1 and Mλ2 equations without loss of

generality), both equations can be rewritten as (3.6) and set equivalent, due to the left hand side

of each equation being a function of the same unknown term 2
N0

. Therefore,

ρ =
Mλ2 −Mλ1

Mλ1ψλ2 −Mλ2ψλ1

, (3.7)

which can be seen to be a function of the unknowns ρ and ε, while the dependence on the unknown

N0 has been removed.

To further remove the dependence on one of the two remaining unknowns, the Mλ3 equation can

be utilized. With this idea in mind, the Mλ3 equation is used with either of the other two mo-

ment equations (choosing the Mλ1 equation without loss of generality), to determine an equivalent

equation for ρ through (3.7). Therefore, two ρ equations are now available, one a function of Mλ1

and Mλ2 , and the other a function of Mλ1 and Mλ3 . Setting these ρ equations equivalent and

performing some algebraic manipulation1,

ρ =
Mλ2 −Mλ1

Mλ1ψλ2 −Mλ2ψλ1

=
Mλ3 −Mλ1

Mλ1ψλ3 −Mλ3ψλ1

(Mλ2 −Mλ1) ψλ3 + (Mλ1 −Mλ3) ψλ2 + (Mλ3 −Mλ2) ψλ1 = 0. (3.8)

Note that (3.8) is a function of only the moments Mλ1 , Mλ2 , Mλ3 , and the unknown fractional time

delay ε. Therefore, analogous to the α and ε estimator developed in Chapter 2, if these moments

can be determined, possible estimates of the unknown fractional time delay can be found by finding

the zero crossings of (3.8). These estimates in turn can then be used to determine the possible ρ

estimates through (3.7). Again, it is important to note that, in practice, the moments Mλi are not

known a priori and thus must be estimated. As discussed in detail in Section 2.5.1, it was shown
1It should be noted that (3.8) is found no matter which two of the possible three ρ equations are set equivalent.
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that these moments can be estimated through the use of a sample average of the matched filter

outputs, defined by (2.17).

For the pulse shapes considered in this work, rectangular and square root-raised cosine, two possible

ε estimates are found when determining the zero crossings of (3.8), as was the case with the α and

ε estimator developed in Section 2.5. This results in two potential estimates for the unknown

average output SNR ρ. However, in correct operation of this estimator, it was observed that these

ε estimates correspond to a positive and negative valued estimate for the SNR. Since the SNR by

definition must be positive, the correct estimate for the SNR and fractional time delay can thus

easily be determined.

Based on the above discussion, the proposed asynchronous MoM-based SNR estimator can be

summarized as follows:

1. Given the chosen values λ1, λ2, and λ3, estimate the moments M̂λ1 , M̂λ2 , and M̂λ3 using the

sample average estimator defined by (2.17).

2. Determine the zero-crossings of (3.8). The ε values corresponding to the zero-crossings are

the fractional time delay estimates ε̂.

3. Using these ε̂ values, determine the corresponding SNR estimates, ρ̂, through (3.7).

4. The final estimation values are determined by choosing the positive SNR estimate and its

corresponding ε estimate.

3.5 Performance Analysis of the Proposed SNR Estimator

In this section, the performance of the proposed SNR estimator is shown for the cases in which

the signal of (3.1) utilizes a rectangular pulse shape and a square root-raised cosine pulse shape.

Previously, Sections 2.5.2 and 2.5.3 defined these pulse shapes, and presented a detailed derivation

of the moments Mλi = E[|rn,λi |2] given these pulse shapes. These same derivations are valid for

the proposed SNR estimator.

For this analysis, the three moments Mλ1=0, Mλ2=1/3, and Mλ3=2/3 are used. These moments are
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estimated through the use of the sample average estimator defined by (2.17), using Nest uncorre-

lated, with respect to the noise, rn,λi
values (i = 1, 2, 3 and n = ni, ni + 1, . . . , ni + (Nest − 1)). In

determining the zero-crossings of (3.8), the Bisection method of zero-finding is utilized [27]. For the

received signal defined by (3.1), the symbol interval T is assumed to be 1, without loss of generality,

and the fading model is assumed to be Rayleigh, with the average power of the fading parameter α

assumed to be unity (E[α2] = 1). The roll-off factor, β, for the square root-raised cosine pulse shape

is considered to be 0.75. Finally, the modulation schemes considered are BPSK, QPSK, 8-PSK,

16-QAM, and 64-QAM, all with signal constellations normalized to have unit average energy.

Figs. 3.1-3.4 present performance plots of the proposed SNR estimator for each of the pulse shapes

considered. More specifically, in Figs. 3.1 and 3.2 for a rectangular pulse shape, and Figs. 3.3

and 3.4 for a square root-raised cosine pulse shape, the performance of the estimator is quantified

through the use of the normalized mean square error (NMSE), defined as

NMSE =
E[|ρ̂− ρ|2]

ρ2
, (3.9)

as well as by the normalized estimator bias (NBIAS), defined as

NBIAS =
E[ρ̂]− ρ

ρ
. (3.10)

(It is worth mentioning here that, for the simulation parameters considered, the probability of SNR

estimation failure was less than 1%, where an estimation failure is defined as no valid (positive)

SNR estimate being found.) As can be seen from these figures, the performance of the estimator

is approximately the same for each of the considered modulation schemes. Additionally, it can be

observed that increasing Nest improves the overall performance of the estimator. This makes sense

due to the fact that Nest defines the number of rn,λi values used to estimate the moments from

the sample average estimator defined by (2.17). The more rn,λi values used by this estimator, the

more reliable the moment estimates become, and by extension the more reliable the SNR estimate

becomes.
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Figure 3.1: Normalized mean square error of the proposed estimator given a rectangular pulse

shape.
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Figure 3.2: Normalized bias of the proposed estimator given a rectangular pulse shape.
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Figure 3.3: Normalized mean square error of the proposed estimator given a square root-raised

cosine pulse shape (β = 0.75).
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Figure 3.4: Normalized bias of the proposed estimator given a square root-raised cosine pulse

shape (β = 0.75).
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More interestingly, it can be observed from these figures that the NMSE and NBIAS begin to

increase with increasing SNR after a certain SNR value. This effect has been observed and described

for prior MoM-based, as well as non MoM-based, SNR estimation approaches, and is therefore not

unique to the proposed estimator [29],[30]. As a means of better quantifying this effect, Figs. 3.5 and

3.6, for rectangular and square root-raised cosine pulse shapes respectively, present histograms for

the output of the proposed SNR estimator given randomly chosen modulation schemes, excluding

estimation failures, conditioned on three different true SNR values (-10dB, 0dB, and 10dB), as well

as for three different values of Nest (1000, 5000, and 10000). From these figures, it can be observed

that for true SNRs of -10dB and 10dB, the histograms have tails that are much more pronounced,

and nonsymmetric, than for the histograms given a true SNR of 0dB. It is these asymmetric tails

that produce the larger NMSE and NBIAS values observed at these SNRs. It is worth noting that,

as expected, increasing Nest improves the NMSE and NBIAS by shrinking the tails of the histogram

and making the tails more symmetric.



36

−30 −20 −10 0 10 20 30
0

0.1

0.2

0.3

0.4

P
ro

ba
bi

lit
y 

of
 O

cc
ur

an
ce

(a)

 

 

−30 −20 −10 0 10 20 30
0

0.2

0.4

0.6

0.8

P
ro

ba
bi

lit
y 

of
 O

cc
ur

an
ce

(b)

−30 −20 −10 0 10 20 30
0

0.2

0.4

0.6

0.8

SNR Estimate (dB)

P
ro

ba
bi

lit
y 

of
 O

cc
ur

an
ce

(c)

True SNR = 0 dB

True SNR = −10 dB

True SNR = 0 dB

True SNR = 10 dB

True SNR = 0 dB

True SNR = −10 dB

True SNR = −10 dB True SNR = 10 dB

True SNR = 10 dB

Figure 3.5: Selected histograms of the proposed estimator given a rectangular pulse shape (a.

Nest = 1000, b. Nest = 5000, c. Nest = 10000)
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Figure 3.6: Selected histograms of the proposed estimator given a square root-raised cosine pulse

shape (β = 0.75) (a. Nest = 1000, b. Nest = 5000, c. Nest = 10000)
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3.6 Conclusions

In order to remove some of the more common assumptions made by prior SNR estimation tech-

niques, this chapter proposed a novel asynchronous, noncoherent, and non-data-aided SNR estima-

tor for digital amplitude-phase modulated signals in flat-fading channels. The general formulation

of this estimator was presented, which applies to any pulse shape that satisfies the Nyquist ISI

criterion, and is shown to utilize a method-of-moments based approach to parameter estimation

similar in form to the α and ε estimator developed in Chapter 2.

Performance results of the proposed SNR estimator were presented considering two common pulse

shapes of interest, rectangular and square root-raised cosine. More specifically, these performance

results demonstrated the average normalized mean square error and average normalized bias that

can be achieved by the proposed SNR estimator for a sampling of common digital amplitude-phase

modulation schemes. From these results, it was observed that the performance of the proposed

SNR estimator is a function of two parameters: the length of time the received signal is observed

and the actual SNR of the received signal. It was shown that, in order to estimate very low, or

very high, SNR values with reliability, the observation time must be adapted to compensate.



Chapter 4

Distributed Cyclic Spectrum

Feature-based Modulation

Classification

4.1 Motivation for Work

In single-radio spectrum sensing applications, such detrimental effects as fading and shadowing

can greatly decrease the radio’s ability to accurately perform spectrum sensing. Furthermore, for

weak primary user signals, a single-radio system may require a very long, and perhaps impractical,

sensing interval to provide for a given level of spectrum estimation accuracy. Therefore, in order

to reduce the sensitivity requirements of each individual spectrum sensor, and to take advantage

of radio signal variability, it is only natural to perform spectrum sensing in a distributed manner.

In the literature, there has been a relatively long history of research in this area in the context of

the more general problem of distributed detection and estimation theory [36],[37]. More recently,

a number of papers have proposed, and partially addressed, distributed spectrum sensing in the

context of cognitive radios. See [38]-[40], among others.
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4.2 Contribution

In this chapter, a novel approach to spectrum sensing is developed in which a network of radios

collaboratively detects the presence, as well as the modulation scheme, of a signal through the use

of a combination of cyclic spectrum feature-based signal classification and an iterative algorithm

for optimal data fusion. The development begins with a detailed discussion on both the radio-level

and network-level aspects of the proposed system. After this discussion, a nonlinear Gauss-Seidel

iterative algorithm is presented in order to determine the person-by-person optimal decision rules

for this system. Performance analysis demonstrates that the proposed distributed system results

in a significant increase in the probability of signal detection and correct modulation classification

over single radio systems.

4.3 System Model of the Proposed Distributed System

Fig. 4.1 presents the block diagram of the proposed distributed signal detection and modulation

classification system. From this diagram, it can be seen that the proposed system consists of two

components. The first of these components is the set of N spectrum sensing radios. As their name

implies, the function of each of these radios is to observe the transmitted signal (utilizing one of M

possible modulation schemes), and based upon this observation, determine the local classification

decision un = i (n = 1, 2, . . . , N and i = 1, 2, . . . , M). These local decisions are then transmitted by

their respective radios to the second component of the proposed system, termed the fusion center.

The function of the fusion center is to make the final global classification decision u0 = i, based

on its own observation of the transmitted signal and the set of N local classification decisions u

(u = {u1, u2, . . . , uN}).

In order to make this final global decision, as well as the local classification decisions un, decision

rules must be determined for the fusion center and each radio’s DM stage, respectively. In this

work, “person-by-person” optimal decision rules are determined through the use of a non-linear

Gauss-Seidel iterative algorithm [20]. This algorithm, and its use in determining these decision

rules, is discussed in Section 4.5.
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Figure 4.1: Block diagram of the proposed distributed signal detection and modulation classifi-

cation system.

4.4 The Radio-Level AMC Stage

Now that the general model of the proposed distributed signal detection and modulation classifi-

cation system has been described, the following two sections present in greater detail the proposed

functionality of the individual spectrum sensing radios of the system. In the block diagram of Fig.

4.1, it can be seen that the N spectrum sensing radios are assumed to consist of two stages: an

“automatic modulation classification” (AMC) stage and a “decision making” (DM) stage. In this

section, a detailed discussion on the proposed AMC stage of the radios is presented, while in Section

4.5 a more detailed discussion is presented on the proposed DM stage of the radios.

Fig. 4.2 presents the block diagram of the proposed AMC stage. As can be seen, this stage can be

broken down into two areas: feature extraction and pattern matching. The first step of the AMC

stage is to observe the transmitted signal, and based upon this observation, estimate the signal’s

cyclic spectrum [41],[42]. The next step of the AMC stage is to determine the estimated cyclic

spectrum’s α-profile [9],[43]. These first two steps constitute the feature extraction aspect of the

AMC stage and are discussed in more detail in Sections 4.4.1 and 4.4.2.
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Figure 4.2: AMC stage block diagram.

In the final step of the AMC stage, the determined α-profile is used as the input to a trained

feed-forward back-propagation neural network to provide the soft local classification decision yn

(n = 1, 2, . . . , N). This step constitutes the pattern matching aspect of the AMC stage and is

discussed in more detail in Section 4.4.3. Finally, this soft decision output is then used as the

input to the radio’s DM stage to determine the final local classification decision un. As mentioned,

the decision rules used by the DM stage to determine un given yn are discussed in more detail in

Section 4.5.

The use of α-profiles in single radio modulation classification systems was first proposed in [9] and

[43]. In these papers, α-profiles are created from the spectral coherence function, while in this work

the magnitude of the cyclic spectrum is used. In regards to the use of a neural network for pattern

matching, [43] utilizes a MAXNET structure with one neural network for each possible modulation

scheme and a discrete output; while in this work, a single neural network and a continuous output

is used. This particular setup is used in order to facilitate the determination of “person-by-person”

optimal decision rules for the proposed distributed system, and is a contribution of this work.

4.4.1 Cyclic Spectrum Estimation

As mentioned, the first step of the proposed AMC stage is to estimate the cyclic spectrum, Sα
x (f),

of the received signal [41]. In this work, this estimation is accomplished through the use of a “time-

smoothing” algorithm known as the FFT Accumulation Algorithm. The purpose of this algorithm

is to provide an efficient FFT-based formulation of the time-smoothed cyclic periodogram of the

received signal, which can then be used to determine the cyclic spectrum estimate Ŝα
x (f). This

process is defined in more detail in the following.
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From [42], the time-smoothed cyclic periodogram is defined as

Sα
xT

(n, f)∆t =
∑

r

XT (r, f1)X∗
T (r, f2)g(n− r), (4.1)

where ∆t is the observation time of the received signal, f = (f1 + f2)/2 is the spectral location

parameter, α = f1 − f2 is the spectral separation parameter, and g(n) is a unity area weighting

function. The terms XT (r, f{1,2}) of (4.1) are complex demodulates of the sampled received signal

x(n) and are defined as [42]

XT (n, f) =
N ′/2−1∑

r=−N ′/2

a(r)x(n− r)e−j2πf(n−r)Ts , (4.2)

where a(r) is a data tapering window (considered here to be a Hamming window) of duration

T = N ′Ts and Ts is the sampling period. If the data tapering window a(r) of (4.2) is normalized

such that
∑

r |a(r)|2 = 1, the time-smoothed cyclic periodogram and the cyclic spectrum have the

relationship [42]

Sα
x (f) = lim

∆f→0
lim

∆t→∞
Sα

xT
(n, f)∆t, (4.3)

where ∆f = 1/T . As can be seen from this relationship, given an adequate observation interval

∆t, and appropriate data tapering window a(r), the cyclic spectrum estimate Ŝα
x (f) can be di-

rectly determined from the time-smoothed cyclic periodogram found through the use of the FFT

Accumulation Algorithm.

4.4.2 α-Profile Determination

The next step of the spectrum sensing radio’s AMC stage is to determine the α-profile from the

estimated cyclic spectrum. In this work, an α-profile is determined by taking the maximum of the

magnitude of the estimated cyclic spectrum along the spectral location parameter f for each value

of the spectral separation parameter α. More succinctly,

profile(α) = max
f

[∣∣∣Ŝα
x (f)

∣∣∣
]
. (4.4)

In the literature, α-profiles are commonly used in modulation classification systems over the com-

plete estimate of the cyclic spectrum [9],[43]. This can be attributed to the fact that the amount of

data contained in an α-profile is much smaller (by a factor of the number of samples in f) than that
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contained in the cyclic spectrum estimate itself, while still providing unique, modulation specific,

characteristics useful for modulation classification. This decrease in data size is useful due to the

fact that it can greatly reduce the computational complexity of the pattern matching algorithm.

Figs. 4.3-4.6 present sample α-profiles (normalized to have a maximum value of 1) for BPSK, QPSK,

MSK, and FSK modulated signals transmitted in an AWGN channel, under the assumption that

the signals utilize a rectangular pulse shape and have an Eb/N0 value of 10dB. These profiles are

shown for only positive values of the spectral separation parameter α due to the fact that these

profiles are an even function with respect to α = 0. This characteristic of the α-profile is true

for any real signal, due to the fact that the magnitude of the cyclic spectrum is itself an even

function with respect to α = 0 [41]. Therefore, when considering real signals, a further reduction

in the computational complexity of the pattern matching algorithm can be achieved by removing

redundancy through use of only the positive (or negative) half of the α-profiles.

4.4.3 The Feed-Forward Back-Propagation Neural Network

As previously mentioned, the proposed AMC stage can be broken down into two areas: feature

extraction and pattern matching. In the previous two subsections, a discussion was presented on the

steps comprising the feature extraction aspect of the AMC stage, in which a modulation dependent

feature known as an α-profile is determined from observation of the transmitted signal. In this

subsection, a discussion is presented on the pattern matching aspect of the AMC stage, in which

an α-profile is used to determine the soft local classification decision yn.

In this work, yn is determined through the use of a feed-forward back-propagation neural network

that has been trained using a Delta-Bar-Delta adaptive learning rate algorithm [44]. For the

simulation results to be discussed in the following, the training parameters of this algorithm are:

• κ = 0.035, γ = 0.333, and β = 0.7

• An initial learning rate of 0.8.

• Four nodes in the hidden layer.

• An activation function of tanh(x) for both the hidden and output layers.
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Figure 4.3: Sample α-profile for a BPSK modulated signal with an Eb/No of 10dB.
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Figure 4.4: Sample α-profile for a QPSK modulated signal with an Eb/No of 10dB.
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Figure 4.5: Sample α-profile for a MSK modulated signal with an Eb/No of 10dB.
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Figure 4.6: Sample α-profile for a FSK modulated signal with an Eb/No of 10dB.
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More specifically, in this work it is considered that the training of the neural network is done off-

line through the use of a set of α-profiles created from signals with known modulation schemes

and Eb/N0 values in the dB range of interest. Given this training process, the target modulation

dependent values for the neural network output are set to be discrete values evenly spaced between

-1 and 1, the range of the activation function tanh(x).

4.4.4 Simulation Results of the Proposed AMC Stage

In order to demonstrate the functionality of the proposed cyclic spectrum feature-based AMC stage,

and in order to highlight the benefits of this stage on correctly detecting and classifying signals, a

sample simulation is presented. For this sample simulation, it is assumed that a radio observes one

of five possible signal types in an AWGN channel. The first of these signal types is assumed to be

the case in which only noise is observed. The remaining four possible signal types are assumed to

be a transmitted signal that utilizes a rectangular pulse shape and one of four possible modulation

schemes: namely, BPSK, QPSK, MSK, or FSK. Example α-profiles for these signal types were

shown previously in Figs. 4.3-4.6.

The feed-forward back-propagation neural network for this sample simulation is trained for signals

with an Eb/N0 range of -2 to 5dB through the training method described in Section 4.4.3. More

specifically, a set of α-profiles were determined for each possible signal type given this Eb/N0 range

of interest and were used to train the neural network. For this training, the target modulation

dependent values for the neural network output were defined to be: −1 for BPSK, −0.5 for FSK,

0 for noise only, 0.5 for MSK, and 1 for QPSK.

Figs. 4.7 and 4.8 present empirical conditional pdfs of the output of this trained AMC stage given

signals with Eb/N0 values of 0 and -2dB, respectively. As can be seen, the empirical conditional

pdfs of the output of the trained neural network have relatively small overlap with respect to each

other even at these low Eb/N0 values. Additionally, it can be observed from these figures that

the empirical conditional pdfs are concentrated around their respective target training values, as

expected. For instance, the conditional pdf for the FSK signal type is concentrated around the

FSK training value -0.5, while the conditional pdf for the noise only signal type is concentrated

around the noise only training value 0.
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Figure 4.7: Empirical conditional probability density functions of the output of the AMC stage

(Eb/N0 = 0dB).
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4.5 Decision Rules for the Fusion Center and the Radio-Level DM

Stage

For the proposed distributed system of Fig. 4.1, it is assumed that each spectrum sensing radio’s

DM stage sends a local classification decision, un, to the fusion center in the form of a message that

takes on a value in a finite alphabet (i.e. un = 1, 2, . . . ,M , where M is the number of hypotheses

assumed). These un values are then used by the fusion center in order to determine the final global

classification decision u0. This is opposed to centralized schemes, in which each radio transmits

to the fusion center its “observation” yn. For these centralized schemes, classical detection theory

still applies [24]. The distributed scheme proposed here, sharing of local decisions as opposed

to observations, offers the possibility for a drastic reduction in communication requirements as

opposed to a centralized scheme, at the cost of some performance reduction [36].

In the literature, there has been a relatively long history of research in distributed detection and

estimation theory. For instance, person-by-person optimal decision rules for a distributed system

of the form considered here, with the difference being that the fusion center does not make its own

observation of the environment, were derived in [36] and [37] using a Bayesian hypothesis testing

approach. For the proposed distributed system of Fig. 4.1, assuming that the local decisions made

by the DMs are conditionally independent and that each radio can observe all possible hypotheses,

the fusion center’s person-by-person optimal decision rule has the form [20]

u0 = arg min
i∈(1,...,M)

M∑

j=1

p(y0, u1, . . . , uN |Hj)P (Hj)Ci,j

= arg min
i∈(1,...,M)

M∑

j=1

p(y0|Hj)
N∏

n=1

P (un|Hj)P (Hj)Ci,j , (4.5)

where Ci,j is the cost of deciding u0 = i given the hypothesis Hj . Additionally, the person-by-person

optimal decision rule for each radio’s DM stage has the form [20]

un = arg min
k∈(1,...,M)

M∑

i=1

M∑

j=1

P (u0 = i|un = k, Hj)p(yn|Hj)P (Hj)Cij . (4.6)

It can be seen from (4.5) and (4.6) that the solution to this M -ary decentralized Bayesian hypothesis

testing problem is given by a system of nonlinear equations that are coupled through the conditional
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probabilities P (un|Hj) and P (u0 = i|un = k, Hj). An intrinsic issue with distributed detection

problems is that the computational effort required to solve these coupled decision rules becomes

prohibitive as the number of spectrum sensing radios, and/or the number of hypotheses assumed,

for the distributed system increases. Furthermore, Tsitsiklis and Athans show in [37] that even the

simplest problems of decentralized decision making are hard from an algorithmic viewpoint, and

that it becomes an NP-complete problem if the measurements at each sensor are not independent.

In order to circumvent the “brute-force” computation of these person-by-person optimal decision

rules, an iterative approach based on the well-known Gauss-Seidel algorithm was proposed in [20].

This algorithm allows for a more computationally efficient means for solving the optimal decision

rules, at the expense of requiring messages to be transmitted among the fusion center and the

radios in the system. This algorithm consists of the following steps:

1. Choose arbitrary mappings (i.e. decision regions) for the decision rules of each radio’s DM

stage. From these arbitrary mappings, determine the probabilities P (un|Hj) for all n and j.

2. Using the fusion center’s decision rule, (4.5), determine the total system cost (Bayes Risk)

through

R =
M∑

i=1

M∑

j=1

Ci,jP (u0 = i|Hj)P (Hj), (4.7)

as well as the coupling probabilities through

P (u0 = i|un = k,Hj) =
∑
un

P (u0 = i|Hj , un = k,un)




N∏

q=1,q 6=n

P (uq|Hj)


 , (4.8)

where un = {u1, ..., un−1, un+1, ..., uN}.

3. Update the mapping of the decision rule of each radio’s DM stage through the use of the new

coupling probabilities, (4.8), and the DMs’ decision rule, (4.6).

4. Repeat Step 2, if the total cost previously found matches the new total cost (or agrees within

a predefined threshold), stop. Otherwise, repeat Step 3.
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4.6 Performance Analysis

In this section, two simulation cases are presented in order to demonstrate the performance gains

that can be obtained when using the proposed distributed signal detection and modulation clas-

sification system over a single radio system. In each of these cases, it will be assumed that each

of the radios in the distributed system are identical, and that there are 5 equally likely hypothe-

ses (H = {H1,H2, H3,H4,H5}). For the decision rules for each of these cases, person-by-person

optimal decision rules are found through the use of the Gauss-Seidel algorithm, as was defined in

Section 4.5.

For the first case to be considered, the decision rules are found based upon the assumption that

the output of each radio’s AMC stage is a Gaussian random variable, defined as yn = N(mj , σ).

The mean mj of this Gaussian random variable is defined to be dependent on the hypothesis Hj

(j = 1, 2, . . . , 5), while the standard deviation σ of the Gaussian random variable, considered here

to be a metric of the “noise” at each radio, is not. These hypothesis dependent mean values are

considered to be the following: m1 = 0,m2 = −1,m3 = 1,m4 = −0.5, and m5 = 0.5.

Based on these assumptions, Fig. 4.9 presents the average probability of classification error for

varying values of the “noise” metric σ. From this figure, it can be observed that the proposed

distributed system outperforms a single radio system for all values of σ, with this gain becoming

particularly more noticeable at lower values of σ. For instance, at σ = 0.125, a distributed system

with 3 radios and a fusion center outperforms the single radio system by almost two orders of mag-

nitude. Fig. 4.10 extends this analysis, for three specific values of σ, by showing the performance

of the distributed system for 0 (a single radio system) to 5 radios working collaboratively with a

fusion center. As can be seen from this figure, increasing the number of radios in the distributed

system from 0 to 5 provides almost an order of magnitude gain in performance for these chosen σ

values.

In Section 4.4.4, example empirical conditional density functions for the output of the proposed

cyclic spectrum feature-based AMC stage were presented. For the second simulation case to be con-

sidered here, the decision rules are found based upon these empirical conditional density functions,

as opposed to the first simulation case in which well-known conditional Gaussian distributions were



52

10.90.80.70.60.50.40.30.20.1250.1
10

−4

10
−3

10
−2

10
−1

10
0

Standard Deviation (σ)

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n 
E

rr
or

 

 

Single Radio
1 Radio w/ Fusion
2 Radios w/ Fusion
3 Radios w/ Fusion

Figure 4.9: Average probability of classification error vs. σ.
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considered. It should be noted that these empirical conditional density functions are determined

based upon values of yn that are obtained by performing two non-linear operations on the estimate

of the cyclic spectrum (i.e. profiling, (4.4), and neural network-based pattern matching) . This

cyclic spectrum estimate is in turn given by the multiplication of two Gaussian processes, when

assuming an AWGN channel. Therefore, to the best of our knowledge, there is no closed form

solution for these conditional density functions. It is for this reason that empirical conditional

density functions are used.

In determining the decision rules for this simulation case (as well as for the first simulation case

considered), the cost Ci,j is given by the cost matrix

C =




0 15 15 15 15

5 0 10 10 10

5 10 0 10 10

5 10 10 0 10

5 10 10 10 0




,

where again Ci,j is the cost of choosing hypothesis Hi given hypothesis Hj . With respect to this

second simulation case, i = 1, 2, . . . , 5 and j = 1, 2, . . . , 5 represent the noise only, BPSK, QPSK,

FSK, and MSK hypotheses, respectively. The values of this cost matrix were chosen in order to not

only penalize misclassification, but to penalize missed detection more greatly than misclassification.

In other words, the highest cost value, 15, is associated with the costs C0,j , where j 6= 0.

Tables 4.1-4.3 present performance results under these simulation assumptions using the empirical

conditional density functions shown in Fig. 4.8 for an Eb/No value of -2dB. As expected, it can be

seen from these tables that utilizing the proposed distributed system provides a significant perfor-

mance gain over a single radio system. For example, the probability of correctly classifying MSK

increases from 86.28% for a single radio system to 99.70% for a distributed system with 3 radios

and a fusion center. This performance gain can be seen even more directly through observation of

the average probability of classification error. This error decreases from approximately 5.16% for

a single radio system to approximately 0.21% for a distributed system with 3 radios and a fusion

center.
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Table 4.1: Probability Matrix for the Single Radio Case

Hypothesis

Noise BPSK QPSK FSK MSK

Noise 0.9721 0.0020 0.0003 0.0000 0.0150

BPSK 0.0062 0.9780 0.0015 0.0067 0.0780

QPSK 0.0000 0.0000 0.9357 0.0000 0.0420

FSK 0.0001 0.0103 0.0001 0.9933 0.0022

MSK 0.0216 0.0097 0.0624 0.0000 0.8628

Table 4.2: Probability Matrix for the Distributed Case (1 Radio with Fusion Center)

Hypothesis

Noise BPSK QPSK FSK MSK

Noise 0.9953 0.0002 0.0000 0.0000 0.0016

BPSK 0.0009 0.9980 0.0000 0.0019 0.0097

QPSK 0.0000 0.0000 0.9748 0.0000 0.0184

FSK 0.0000 0.0011 0.0000 0.9981 0.0001

MSK 0.0038 0.0007 0.0252 0.0000 0.9702

Table 4.3: Probability Matrix for the Distributed Case (3 Radios with Fusion Center)

Hypothesis

Noise BPSK QPSK FSK MSK

Noise 0.9985 0.0000 0.0000 0.0000 0.0000

BPSK 0.0001 0.9998 0.0000 0.0008 0.0003

QPSK 0.0000 0.0000 0.9949 0.0000 0.0027

FSK 0.0000 0.0000 0.0000 0.9992 0.0000

MSK 0.0014 0.0002 0.0051 0.0000 0.9970
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4.7 Conclusions

In this chapter, a novel approach to spectrum sensing was developed based upon the distributed

processing of local decisions made by multiple spectrum sensing radios. Performance analysis

demonstrates that the proposed system provides a significant increase in the probability of signal

detection and correct modulation classification over single radio systems, at the expense of requiring

messages to be transmitted among the fusion center and the radios in the system. The results

presented here demonstrate that, in the context of cognitive radio systems for example, performing

spectrum sensing in a distributed manner can greatly increase the probability of detection (there

is a radio using this frequency at this location) and correct classification (and this signal is from a

primary user of the spectrum) which would ultimately lead to a lower probability of interference

among systems, enabling cognitive radio systems to achieve a more efficient utilization of the

spectrum.
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Chapter 5

Summary and Conclusions

Spectrum sensing is a very important function for any radio that has no, or limited, knowledge of

signals in its spectral and spacial environment. It is due to this fact that spectrum sensing is a

critical component in many military applications, in which enemy signals are inherently uncooper-

ative. Additionally, spectrum sensing is a critical component in the realization of newly proposed

spectrum sharing paradigms between primary licensed users and secondary cognitive radio users.

It is due to these important applications that the work presented in this thesis focuses on the

furthering of research in this critical area through three spectrum sensing research thrusts.

The first spectrum sensing research thrust of this thesis was described in Chapter 2. In this chap-

ter, a novel asynchronous and noncoherent likelihood-based modulation classification system was

proposed for classifying PSK/QAM modulated signals in flat-fading channels. This proposed classi-

fication system differs from prior work in classifying these signal types through the consideration of

not only the fading parameters (channel gain and phase) as unknown non-data signal parameters,

but also the time delay as an unknown non-data signal parameter.

The developed classifier is based upon a composite hypothesis testing approach known as the

quasi-Hybrid Likelihood Ratio test. In this approach, the classifier’s dependency on the unknown

modulated data symbols is “averaged out” through the use of the total probability theorem, while

the unknown non-data signal parameters are estimated and used by the classifier. In order to esti-

mate the unknown channel gain and fractional time delay for use in the proposed classifier, Chapter

56
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2 also presented a novel method-of-moments based estimation approach for these unknowns that

requires no prior knowledge of the modulation scheme of the received signal. In order to quantify

the performance of the proposed estimation and classification methods, simulated performance re-

sults were presented given the received signal’s use of either a rectangular or square root-raised

cosine pulse shape. It was shown from this analysis that the performance of the proposed estimator

and classifier were a direct function of the received signal’s pulse shape and signal-to-noise ratio,

as well as the observation time of the signal. Finally, it was shown that the proposed classification

system performs well compared to previously developed synchronous classification systems given

adequate observation time.

The second spectrum sensing research thrust of this thesis was presented in Chapter 3. In this

chapter, a novel asynchronous, noncoherent, and non-data-aided signal-to-noise ratio estimator was

proposed for PSK/QAM modulated signals in flat-fading channels, in which no prior knowledge of

the modulation scheme of the signal is required. This estimation approach differs from prior work

in signal-to-noise ratio estimation of these signal types through the consideration of time delay

as an unknown parameter. The proposed estimator was shown to be based upon an extension of

the method-of-moments based estimation approach developed in Chapter 2, where here the added

assumption is that the noise power of the received signal is also unknown. Simulated performance

results were presented for the proposed estimator that show that the performance is a function of

not only the pulse shape and observation time of the received signal, but is also a function of the

true signal-to-noise ratio. More specifically, it was shown that at a certain signal-to-noise ratio, the

proposed estimator’s performance begins to degrade with increasing signal-to-noise ratio.

The third and final spectrum sensing research thrust of this thesis was presented in Chapter 4, in

which a novel signal detection and modulation classification system was proposed based upon the

distributed processing of local classification decisions made by multiple spectrum sensing radios.

This chapter first presents the proposed functionality of the individual radios of the distributed

system and can be summarized by the following steps: cyclic spectrum estimation from observation

of the received signal, extraction of an α-profile from the cyclic spectrum estimate, determination of

a soft decision through pattern matching of the α-profile by a trained feed-forward back-propagation

neural network, and the determination of a hard decision using this soft decision and a determined
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decision rule for each radio.

After the radios’ functionality was described, this chapter then presented person-by-person optimal

decision rules for determining the local hard decisions at each radio, as well as for determining the

final global hard decision at the fusion center. An iterative approach based upon the well known

Gauss-Seidel algorithm was presented in order to solve for these person-by-person optimal deci-

sion rules. Finally, simulated performance results of the proposed distributed signal detection and

modulation classification system were presented. These results demonstrated the performance im-

provements, in terms of increased signal detection probability and lower probability of classification

error, that can be achieved with the proposed distributed system over a single radio system.



Appendix A

Determining p(rn,ε|Sk,i, Hi)

The output of the synchronous conventional matched filter receiver of Fig. 2.1 is defined as

rn,ε = cn,ε − jsn,ε = f(topt)− j·g(topt), (A.1)

where topt is the optimal sampling instant for the pulse shape p(t) (defined to be the sampling

instant at which no ISI is present). For the pulse shapes considered in this work, topt = (n + ε)T .

Solving for the values f(topt) and g(topt) (assuming an integer number of cycles in T and ignoring

the double frequency components),

f(topt) =
∫ ∞

−∞
r(τ) cos(2πfcτ)p(topt − τ)dτ

=
∫ ∞

−∞

[
<

{ ∞∑

k=−∞
Skp(τ − (ε + η)T − kT )αej(2πfcτ+θ)

}
+ n(τ)

]
cos(2πfcτ)p(topt − τ)dτ

=
1
2

∞∑

k=−∞

∫ ∞

−∞
<{Sk} p(τ − (ε + η)T − kT )α cos(θ)p(topt − τ)dτ

−1
2

∞∑

k=−∞

∫ ∞

−∞
={Sk} p(τ − (ε + η)T − kT )α sin(θ)p(topt − τ)dτ + noisef(topt)

f(topt) =
∞∑

k=−∞

{[α

2
<{Sk} cos(θ)− α

2
={Sk} sin(θ)

]
R(topt)

}
+ noisef(topt) (A.2)
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and

g(topt) =
∫ ∞

−∞
r(τ) sin(2πfcτ)p(topt − τ)dτ

=
∫ ∞

−∞

[
<

{ ∞∑

k=−∞
Skp(τ − (ε + η)T − kT )αej(2πfcτ+θ)

}
+ n(τ)

]
sin(2πfcτ)p(topt − τ)dτ

= −1
2

∞∑

k=−∞

∫ ∞

−∞
<{Sk} p(τ − (ε + η)T − kT )α sin(θ)p(topt − τ)dτ

−1
2

∞∑

k=−∞

∫ ∞

−∞
={Sk} p(τ − (ε + η)T − kT )α cos(θ)p(topt − τ)dτ + noiseg(topt)

g(topt) =
∞∑

k=−∞

{
−

[α

2
<{Sk} sin(θ) +

α

2
={Sk} cos(θ)

]
R(topt)

}
+ noiseg(topt), (A.3)

where

noisef(topt) =
∫ ∞

−∞
n(τ) cos(2πfcτ)p(topt − τ)dτ, (A.4)

noiseg(topt) =
∫ ∞

−∞
n(τ) sin(2πfcτ)p(topt − τ)dτ, (A.5)

and

R(topt) =
∫ ∞

−∞
p(τ − (ε + η)T − kT )p(topt − τ)dτ. (A.6)

Substituting these values into (A.1), we have

rn,ε =
1
2
αejθ

∞∑

k=−∞
{SkR(topt)}+ noisen, (A.7)

where noisen = noisef(topt) − j·noiseg(topt). Remembering that the pulse shape p(t) is assumed to

satisfy the Nyquist ISI criterion and to be normalized to have unit energy,

R(topt) =





1 where (k = n− η)

0 otherwise
. (A.8)

Therefore, given (A.8), the matched filter output can be simplified to the final form

rn,ε =
1
2
Sn−ηαejθ + noisen. (A.9)

In (A.9), rn,ε can be shown to be a complex Gaussian random variable conditioned on the modulated

data symbol Sn−η (recall that α and θ are considered deterministic). Due to this fact, the random
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variable rn,ε can be completely defined in terms of its mean and variance. The mean is found to be

E[rn,ε|Sn−η] = E

[{
1
2
Sn−ηαejθ + noisen

} ∣∣∣Sn−η

]

= E

[{
1
2
Sn−ηαejθ

} ∣∣∣Sn−η

]
+ E[noisen]

E[rn,ε|Sn−η] =
1
2
Sn−ηαejθ (A.10)

and the variance is found to be

V AR[rn,ε|Sn−η] = E[|rn,ε −E[rn,ε]|2|Sn−η]

= E

[{∫ ∞

−∞
n(τ) cos(2πfcτ)p(topt − τ)dτ

}2
]

+ E

[{∫ ∞

−∞
n(τ) sin(2πfcτ)p(topt − τ)dτ

}2
]

=
∫ ∞

−∞

∫ ∞

−∞
E[n(τ1)n(τ2)] cos(2πfcτ1) cos(2πfcτ2)p(topt − τ1)p(topt − τ2)dτ1dτ2

+
∫ ∞

−∞

∫ ∞

−∞
E[n(τ1)n(τ2)] sin(2πfcτ1) sin(2πfcτ2)p(topt − τ1)p(topt − τ2)dτ1dτ2

=
∫ ∞

−∞

N0

2
cos(2πfcτ)2p(topt − τ)2dτ +

∫ ∞

−∞

N0

2
sin(2πfcτ)2p(topt − τ)2dτ

=
N0

2

∫ ∞

−∞
p(topt − τ)2dτ

V AR[rn,ε|Sn−η] =
N0

2
. (A.11)

Finally, given these determined values for the mean and variance of rn,ε, the conditional probability

density function p(rn,ε|Sk,i,Hi) is found to be [26]

p(rn,ε|Sk,i,Hi) =
1

πV AR[rn,ε]
e
− 1

V AR[rn,ε]
|rn,ε−E[rn,ε]|2 =

2
πN0

e
− 2

N0
|rn,ε− 1

2
αejθSk,i|2 . (A.12)
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