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Academic Abstract 
Environmental concerns are becoming increasingly relevant during a period of hemorrhaging ecosystem 
goods and services. Restoring these would result in positive outcomes for public health and economic 
benefit. This thesis seeks to address two environmental concerns: (1) accurate soil mapping and (2) 
treatment of nitrogen to affect water quality change. 

The current method of soil mapping, SSURGO (USDA‐NRCS Soil survey), is often erroneous and 
misleading. Two studies in this dissertation are conducted to evaluate the potential that different 
resolution digital elevation models (DEMs) have to distribute soil characteristics successfully. These 
studies are conducted in southwest Virginia and western Vermont. The aforementioned studies evaluated 
36 and 59 soil samples, respectively. Spatial characteristics, including slope, catchment area, and 
topographic wetness, are derived from several DEMs. In chapter 2, these characteristics are spatially 
compared, and we found that small resolution rasters result in narrow flow paths relative to coarser 
rasters. In chapter 3, we isolate the analysis to focus on resolution size, instead of a mix of both resolution 
size and generation method. This is done by recursively coarsening small rasters, deriving spatial 
attributes from said rasters and evaluating their potential to fit the soil characteristics of interest. Here we 
found that slopes generated from resolutions smaller than 11m were poor predictors of soil characteristics. 
Both chapters are finished by proposing and evaluating a soil map. Proposed regressions beat SSURGO 
in all investigated properties. Furthermore, proposed maps consistently beat out uninformed smallest 
resolution derived maps. 

Chesapeake bay water quality managers are struggling to achieve targets for nitrogen loading. This is in 
part due to the widespread presence of legacy nitrogen. Legacy nitrogen is an emerging issue, and springs 
exporting high levels of nitrogen are not uncommon in northern Virginia. This thesis explores, in part, a 
novel concept of treating large loads of nitrogen exported from a spring with a bioreactor. Bioreactors are 
a young science that most typically pair carbon heavy subterranean receptacles to agricultural drainage. 
This provides a location for nitrogen fixing bacteria to consume nitrate/nitrite, turning these into inert 
nitrogen gas. A spring fed bioreactor is studied for 10 months, and bioreactor conditions including 
influent and effluent nitrogen concentrations, bioreactor flow, and temperature are collected. A model 
driven by first order reaction equations is found to be most accurate with inputs of temperature and 
bioreactor age. The resulting marginal effects of these inputs were consistent with previously reported 
studies. 
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General Audience Abstract 
Centuries of industrialization have resulted in widespread human progress but have, at times, adversely 
impacted the environment. Constituents rely heavily on environmental services, such as clean air and 
water, to subsist. Environmental degradation has resulted in detrimental effects to public health, and 
remediation is currently economically viable. As such, there are strong incentives for researchers to 
understand environmental processes at a fundamental level.  
 
One such process is soil characteristic distribution. The distribution of soil characteristics, such as soil 
texture or organic matter, is especially important for agriculturalists, hydrologists and geotechnicians. Soil 
texture and organic matter distribution can affect crop yield, nitrogen export to surface waters, and 
structural stability of soils. Thus, accurate characterization of measured soil properties is paramount to 
multiple fields. The most typically used soil map is USDA‐NRCS Soil survey (commonly referred to as 
SSURGO). Currently, the SSURGO database is a poor predictor of soil characteristics. There is an 
opportunity to improve soil characteristic distribution using digital elevation models (DEMs). As DEMs 
become cheaper to develop, they are typically available in multiple resolutions and generation methods. 
In this research, several DEMs are used to better soil maps for watersheds in Southwest Virginia and 
Western Vermont. Both studies showed that DEMs can better distribute soils when compared to the 
current SSURGO maps. Additionally, we showed that the finest resolution dataset was not always best, 
and mixed resolution topographic wetness indices to be most advantageous for distributing soils. 
 
Another such process is remediation of surface waters from high loads of nitrogen and phosphorus. The 
Haber-Bosch method of producing nitrogen fertilizer is one of the most important human innovations in 
recent history. This method is likely responsible for the aversion of widespread famine in the early 1900s. 
However, residents of multiple river systems, including the Chesapeake Bay and the Mississippi River, 
are suffering from the adverse effects of widespread hypoxic/anoxic (with little/no oxygen, respectively) 
zones within water. These have partially been responsible for the decline of commercial ventures such as 
fisheries and tourism. These zones are caused by eutrophication, a process of unsustainable plant growth 
in the presence of nitrogen and phosphorus. Water quality managers typically target agricultural runoff 
and point source polluters when trying to eliminate anthropogenic nitrogen. However, legacy nitrogen 
(nitrogen stored in groundwater in excess of a year) has become an emerging concern for water quality. It 
is not uncommon for springs in karst areas to be contaminated with high concentrations of nitrogen. 
These springs present a point source that can be treated by an emerging technology: bioreactors. 
Bioreactors are subterranean, woodchip filled basins that provide a location for microbes to exchange 
water soluble nitrogen for inert nitrogen gas. The consistency in nitrogen loading and constant flow 
provide stability relative to more traditional bioreactor installations. Most typically, bioreactors are 
installed downstream of agricultural drainage systems, and influent flow and nitrogen load depend wholly 
on precipitation/irrigation and nitrogen application. In this thesis, a novel spring fed bioreactor is studied. 
Removal rates of nitrogen are quantified using a regression driven by reaction kinetics. The analysis 
showed bioreactor efficiency was intimately related to hydraulic residence time, nitrogen loading, 
bioreactor bed temperature, and bioreactor age. The spring fed bioreactor is found to be advantageous 
because of its consistency, and disadvantages because springs are colder and thus less efficient than 
typical irrigated runoff.
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Chapter 1: Introduction 

1.1 Problem Statement 

1.1.1 Improving characterization of different environmental processes and 
environmental engineering solutions 

 The accurate characterization of environmental processes is of great interest to a myriad of 
constituents including policy makers, recreational users, and businesses. Specifically, knowing how 
inputs, such as nitrogen applications on farmland or climate scenarios, would affect the environmental 
goods and services, defined as common-pool resources that residents and companies rely heavily on, is 
critical for stakeholders’ livelihoods. Services such as these are generally dwindling and several studies 
have evaluated the amount residents would pay to restore these services (Jordan and Elnagheeb 1993; 
Genius et al., 2008; Aguilar et al., 2018; Liu 2020). Hence, there is an economic incentive to understand 
environmental processes at a fundamental level and thus inform how these services work and how they 
can be restored via engineered solutions. The number of environmental processes and engineered 
solutions to address are vast; this thesis seeks to address a single environmental process (former) and a 
single engineered solution (latter): (1) soil characteristic distribution in a landscape, and (2) 
implementation of a bioreactor to treat groundwater contamination.   

1.1.2 Soil characteristic representation  

 Soil characteristics, such as texture (sand, silt, and clay), directly affect multiple environmental 
sciences including hydrology, agronomy, and geotechnical engineering. For example, soil texture can 
affect crop growth, nutrient export, structural stability of hillslopes, and construction projects among 
many other applications. As such, efforts to categorize soils in the United States are extensive. Currently, 
the USDA has about 20,000 soil samples (pedons) used to inform its current soil maps (Nemecek 2020). 
There are several studies that indicate this current methodology, USDA‐NRCS Soil Survey Geographic 
(SSURGO) method, is falling short in accurately representing soil characteristics (Collick et al., 2015; 
Fuka et al., 2016; Cole, 2017). SSURGO currently uses a combination of pedon information and 
landscape photographs to distribute soils. SSURGO distributed soil maps are prone to high error rates and 
the aforementioned studies have found a poor relationship between measured and SSURGO approximated 
soil properties. 
 Integration of digital elevation maps (DEMs - raster data that represents the landscape) to assist in 
soil characteristic distribution is a proposed alternative or enhancement to the current SSURGO maps.  
Several studies have considered using landscape as a predictor of soil characteristics (Moore et al., 1993; 
Collick et al., 2015; Fuka et al., 2016). This idea is physically based, as one would expect soil distribution 
to be linked to landscape characteristics. For example, water would preferentially take clay particles 
downhill over sand particles because sand is larger and thus harder to move. Multiple soil processes are 
linked to the landscape features that can be derived from DEMs such as landscape slope, catchment area 
(CA), and topographic wetness (TIV). CA is defined as the area of the landscape that can be expected to 
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drain to a single raster location in the watershed; TIV is a proxy for landscape wetness and is calculated 
using slope and CA as inputs. 
 As DEMs become easier and less expensive to generate, these datasets are becoming abundant 
and present in a variety of resolution sizes and generation methods. However, little has been done to 
identify how successful specific DEMs would be at distributing soil characteristics relative to other 
DEMs. DEMs have been documented to show that different resolutions result in different derived spatial 
attributes and these spatial attributes can affect environmental process modeling (Wolock & Price 1994; 
Zhang & Montgomery 1994; Hancock et al., 2006; Sørensen et al., 2006; Schumann et al., 2008; Vaze et 
al., 2010; Buchanan et al., 2014; Gibson et al., 2021). The aforementioned papers largely address 
topographic wetness and hydraulic processes and we are interested in doing the same for soil physical 
properties. 

1.1.3 Spring fed bioreactor 

 Extensive application of nutrients to assist in crop growth has resulted in high levels of 
groundwater contamination of nitrogen present in much of the eastern United States (Van Meter & Basu 
2017; Van Meter et al., 2018; Easton et al., 2019; Stephenson et al., 2021). High levels of nitrogen can 
cause “blue baby syndrome” if consumed and has resulted in widespread eutrophication in surface waters. 
Eutrophication, defined as a process of unsustainable aquatic plant growth followed by widespread death 
resulting in hypoxic/anoxic conditions, is a severe detriment to the ecology, economy, and recreational 
use of surface waters (Dodds et al., 2009; Dorgham 2014). Typically, this is a result of high, often 
anthropogenic, nutrient loads entering water bodies. Because groundwater concentrations of nitrogen are 
difficult to estimate and nearly impossible to eliminate the source instantaneously, legacy nitrogen 
(defined as water that contains nitrogen and has been subsurface for more than a year) has been cited as 
one of the biggest issues plaguing initiatives to rehabilitate river networks in the eastern United States 
(NRCS 2011).  
 This presents an opportunity to treat groundwater using an emerging area of research: bioreactors.  
Bioreactors, in this context, refers to a basin of organic carbon material where water is diverted and fed 
slowly (relative to its bypass) through the organic media. Woodchips (which are most typically used) 
provide a surface and carbon source for denitrifying bacteria. Bioreactors are an emerging nutrient 
reduction technology and research indicates their capability of reducing nitrogen from artificially drained 
agricultural fields (Christianson et al., 2012; Christianson et. al., 2013; Christianson et al., 2017; Rosen & 
Christianson, 2017;  Hassanpour et al., 2017; Bock et al., 2018; Coleman et al., 2019). These studies have 
found bioreactors to have a wide range of removal efficiencies that are often tied to influent 
concentration, bed temperature, and hydraulic residence time (amount of time water sits in the bioreactor) 
(HRT). Though all factors affecting bioreactor efficiency are of interest, it is particularly important to 
optimize the HRT because the amount of flow entering the bioreactor can be controlled by bioreactor 
designers and managers. Pairing bioreactors with springs provide a uniquely stable environment for 
microbial communities; the semi consistent loading and flow of spring water will likely benefit 
microbiological activity (Deng et al., 2012; Hassanpour et al., 2017; Lopez-Ponnada et al., 2017; Ali et 
al., 2021). This, paired with the presence of widespread legacy nitrogen present in the mid Atlantic 
provides an opportunity  for pairing bioreactors to springs contaminated with high levels of nitrogen 
(Stephenson et al., 2021). 
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1.2 Research Objectives 

The aim of this research described hereafter is to further our understanding regarding two environmental 
issues: soil characteristic distribution, and treating legacy nitrogen with bioreactors. Specifically, the 
objectives pursued are as follows: 

1. Understand how spatially derived metrics such as slope, catchment area, and topographic wetness 
values differ spatially when a suite of flow direction algorithms and DEMs are compared 

2. Propose and test a framework for distributing soil characteristics using multiple DEMs as 
predictors 

3. Offer a physically based model that explains how bioreactor performance relates to bioreactor 
conditions 

4. Recommend a method to help bioreactor managers maximize mass/time of nitrogen removed via 
denitrification 

1.3 Organization of thesis 

1.3.1 Chapter 1: Introduction 

Chapter 1 provides a brief introduction to the problems this research intends to advance, outlines the 
research objectives, and concisely explains the organization of the thesis. 

1.3.2 Chapter 2: Digital Elevation Model (DEM) assessment for landscape 
representation 

Chapter 2 addresses research objectives (1) and (2) by investigating a small watershed in southwest 
Virginia using four different DEMs ranging from 0.75m to 30m in resolution. This manuscript was 

submitted to Georderma, the global journal of soil science, on July 20th, 2022. The dataset is published 
via zendo ebuell (2022b). 
 
Attributions: I analyzed the data and led the writing of this chapter. Co-authors of the manuscript include 
Daniel R. Fuka, Amy S. Collick, Roja Kaveh, and Zachary M. Easton. Fuka and Easton contributed to the 
methods development and data interpretation. Fuka, Collick, Kaveh, and Easton contributed to manuscript 
preparation and review. 

1.3.3 Chapter 3: Integrating multiple Digital Elevation Models into soil 
characteristic distribution 

Chapter 3 further explores the general framework presented in chapter 2 and seeks to further address 
objectives (1) and (2) for two watersheds located in Vermont. Six DEMs were evaluated against 59 soil 
samples collected by the Vermont Association of Conservative Districts. The target manuscript 
submission date is late summer 2022. The dataset is published via zendo ebuell (2022a). 
 
Attributions: I analyzed the data and led the writing of this chapter. Co-authors of the manuscript include 
Roja Kaveh, Sabrina Mehzabin, Binyam Asfaw, Louise Koepele, Daniel R. Fuka, Amy S. Collick, 
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William Auchincloss, Zachary M. Easton. Kaveh, Fuka and Easton contributed to the methods 
development and data interpretation. Kaveh, Mehzabin, Asfaw, Koepele, and Auchincloss contributed to 
the writing of the introduction and the methods. Fuka, Collick, Kaveh, and Zachary M. Easton 
contributed to manuscript preparation and review. 

1.3.4 Chapter 4: Characterization of Nitrate Removal in a Spring Fed Bioreactor 

Chapter 4 seeks to address research objectives (3) and (4) using a spring fed bioreactor in northern 
Virginia. A year of daily data is used to train a physically based linear regression model and 
corresponding maximal nitrogen removal conditions are derived. The target manuscript submission date 
is fall 2022. 
 
Attributions: I analyzed the data and led the writing of this chapter. Co-authors of the manuscript include 
Kurt Stephenson, Daniel R. Fuka, and Zachary M. Easton. Stephenson, Fuka, and Easton contributed to 
the methods development, data interpretation, manuscript preparation, and review. 

1.3.5 Chapter 5: Conclusions 

This chapter summarizes the findings presented in the research and reinforces impacts of each manuscript 
developed for this thesis.  
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Abstract 

Currently, the SSURGO method of distributing soils is prone to high error rates. This study is conducted 
to propose a new method of distributing soils using multiple DEMs as inputs. Thirty-six soil samples are 
analyzed for clay content, organic matter, and horizon thickness for A and BA horizons in southwest 
Virginia. Four DEMs (USGS ⅓ and 1as; 2010 and 2018 aerial LiDAR) are analyzed for spatial 
differences between derived properties (slope, Specific Catchment Area (SCA), and TI). Using 
multivariate regression, these soil properties are predicted, and a framework for soil map distribution is 
proposed. The disagreement of TI across multiple DEMs was largely driven by the differences between 
SCAs, which varied widely because of the resolution differences. Fine resolution routes flow through 
much smaller rasters which carved out narrower flow paths when compared to those from coarser DEMs. 
When evaluating soil properties, coarse resolution DEMs showed promising results for relating soil 
properties for the BA horizon. A mixture of coarse and fine resolution DEMs are found to be 
advantageous when pairing a slope and SCA to predict the distribution of a soil characteristic. This 
proposed framework of integrating multiple DEMs into soil characteristic distribution has the potential to 
improve soil property mapping. 
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2.1 Introduction 

Correct representation of the landscape is critical in a number of applications, including land-use 
planning, infrastructure siting, soil science, surface energy budgets, hydrologic studies, and flood 
inundation analysis and predictions (Moore et al., 1993; Malczewski, 2004; Tovar-Pescador et al., 2006; 
White et al., 2011; Bove et al., 2020; Muthusamy et al., 2021). How landscapes have been measured has 
changed over time from measurements made from the surface, from the use of sextants to precision GPS 
surveying, and from remote sensing platforms using imagery, radar, GPS, and Light Detecting and 
Ranging (LiDAR) from satellites, aircraft, all the way down to just above the surface using unmanned 
aerial vehicles (UAVs) and robots (Rodr’ıguez et al., 2006; Rock et al., 2011; Tachikawa et al., 2011; 
Fankhauser et al., 2014). 
 Digital elevation models (DEMs) are a common way of storing and displaying land surface 
elevation (Mukherjee et al., 2013). Raster (grid-based) DEMs are georeferenced representations of the 
earth and have been created in a variety of ways including digitizing ground survey contour lines, by 
synthetic aperture radar (SAR), and other photogrammetric stereo models including both aerial and 
satellite imagery (Kelly et al., 1977; USGS, 1993). SAR-based measurements use multiple radar images 
of a landscape, while photogrammetric methods use images from at least two different vantage points of 
the same area to create a DEM (Mukherjee et al., 2013).  More recently, DEMs generated using LiDAR 
and differential GPS (typically ~0.3-1m) are becoming increasingly common (Resop et al., 2019; Muhadi 
et al., 2020). Differential GPS, often used in small ground campaigns, employs information from 
satellites to georeference points across a landscape (Wilson & Atkinson, 2005). LiDAR measures light 
reflected from the object (ground surface) to determine the elevation (US Department of Commerce, 
National Oceanic and Atmospheric Administration, 2021). 
 Typical DEM resolutions in the U.S. range from 30m grids, often a combination of digitized 
contour lines and methods, to <10 cm resolution for airborne LiDAR campaigns. Each of the methods 
also has the capability to provide varying resolutions with new campaigns, for instance, photogrammetric 
methods produce resolutions of 5m to 30m, and LiDAR produces even finer resolution DEMs, down to 
cm scales. 
 DEMs and their derived attributes (slope, aspect, drainage area, topographic wetness index, etc.) 
are important data for the assessment of any surface process using terrain analysis (Wolock & Price, 
1994; Mukherjee et al., 2013).  In many cases, terrain influences the spatial distribution of hydrological, 
geomorphological, and biological properties such as the location of wetlands (Goldman et al., 2020), soil 
moisture patterns (Western et al., 1999), and soil chemistry (Dindaroglu et al., 2021). Because of their 
widespread use, and relative ease of generation, terrain models are easy to find, oftentimes with multiple 
resolutions and generation techniques available for a single area of the landscape. Terrain characteristics 
are most typically represented using DEMs. Extraction and calculation of terrain attributes from DEMs 
provide essential information on the geomorphic variation of the landscape. Terrains are often described 
by their primary (slope, elevation, specific catchment area) or secondary (derived indices using 
combinations from primary attributes) characteristics (Oksanen and Sarjakoski, 2005; Sena et al., 2020) 
such as the upslope and downslope topographic indexes (Hjerdt et al., 2004; Lanni et al., 2011). 
 For instance, Moore et al. (1993), Collick et al. (2015), and Fuka et al. (2016), demonstrate that 
elevation data and derived terrain metrics, including the topographic index, show characteristic 
correlations with soil properties, including organic matter, soil texture, horizon thickness, and spot 
measurements of elevation. Although several studies have demonstrated strong relationships between 
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terrain attributes and various other properties (soil among them), there are no studies in the literature that 
evaluate how various DEM resolutions, DEM processing methods, and derived characteristics impact 
relationships between terrain characteristics and landscape properties. 
 This research assesses if and how varying DEM development methods, resolutions, and 
derivative indices can be combined to increase the knowledge of the spatial characteristics of the 
landscape. We specifically evaluate the influence of DEM resolution, DEM processing, and flow 
direction algorithms on correlations with landscape attributes, including soil properties, and derived 
terrain attributes including watershed boundaries, specific catchment area (SCA), slope, and the upslope 
topographic index (TI).  
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2.2 Materials and methods 

2.2.1 Study Location/Watershed Description 

This study was conducted at the Virginia Tech StREAM Lab (Stroubles Research, Education, and 
Management https://www.bse.vt.edu/research/facilities/StREAM_Lab.html) (figure 2-1), a watershed 
with an area of 26 km2 containing a mixture of agricultural, forested, and urban land use, and that has 
been used extensively for ecohydrological research (Parece et al., 2010; Thilakarathne et al., 2018). 
Within the StREAM Lab, we selected a small subwatershed, Doc’s branch, a tributary with a watershed 
area of 2 km2 consisting of mixed agricultural (58%), developed (23%), and forested (19%) land use. 

2.2.2 Digital Elevation Models 

Four DEMs commonly used in hydrological studies were used for this study (table 2-1). These 
include USGS 1 arcsecond (arcsec) resolution (28m horizontal resolution), USGS ⅓ arcsec resolution 
(9m resolution) (USGS, 1993; Archuleta et al., 2017), a DEM based on a 2010 LiDAR (1.5m resolution)  
(Benham, 2010; Resop et al., 2019), and a DEM based on a more recent 2018 LiDAR (0.76m resolution) 
(Simpson, 2018; Drewberry, 2019). The USGS ⅓ arcsec and 1 arcsec DEMs were created using a number 
of different techniques, compiled, and stitched together by USGS to produce the USGS NED (Gesch et 
al., 2002). The USGS DEMs for the Docs Branch watershed were developed using a combination of 
LiDAR and ISFAR. Both the 2010 and 2018 LiDAR datasets were created by the Virginia Information 
Technologies Agency (VITA). Metadata for the DEMs are summarized in table 2-1. 
 The DEMs used in this analysis represent the landscape over the range of years (~1960 to 2018) 
that they were developed. Over the time spanned by the DEMs, there is one notable alteration to the 
watershed elevations: the expansion of Highway 460 in 2016 (figure 2-1), though none of these 
alterations were within the contributing areas of sampling locations for this study. 

 Table 2-1: Summary of DEMs evaluated, where those marked “various” did not have metadata 
describing those details for the specific locations. 

DEM 
abbreviation 

Source 
Data 

Acquisition 
Date 

Data collection sensor 

Vertical uncertainty  
Horizontal 
Resolution non- 

vegetated 
vegetated 

2018 LI  VGIN 1/7/2018 
Leica ALS-50  
LiDAR system 

5.7 cm 10.8 cm 0.76 m 

2010 LI VGIN 3/30/2010 
Riegl LMS-Q1560 

and/or Riegl VQ1560i 
19 cm 37 cm 1.5 m 

1/3as USGS 
Between 

1960&2016 
Various Various Various 9 m 

1as USGS 
Between 

1960&2016 
Various Various Various 28 m 
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2.2.3 Soil Sampling 

         Thirty six soil sampling locations were chosen to reflect a range of terrain, landuse, and geomorphic 
conditions throughout the watershed. Soil sampling locations were chosen such that the positions were 
distributed across the watershed, were accessible with sampling machinery, and represented the expected 
variability in watershed properties (Figure 2-1). Soil cores were taken in November of 2019 by the 
investigators using a #5-UV Model Hydraulic Soil Core Sampling machine (Giddings Machine Company) 
mounted on the back of a John DeereTM Gator Utility Vehicle. Soil cores were pressed until the full depth 
of the core contained a sample (core tubes are 126 cm in length) or until encountering a layer of material 
that couldn't be penetrated by the Giddings, with an approximate force of 6.6*105 kg/m2. Clay content, 
organic matter content, and horizon depth were measured in the A and BA horizons 

2.2.4 Laboratory Analysis 

         Soil attributes analyzed include horizon thickness, soil organic matter content, and soil texture for 
each horizon. After collecting soil cores, horizons were identified. The soil horizons identified included 
A/Ap, BA, and Bt horizons. In four instances, the cores did not have BA horizons. Horizon thicknesses 
are measured to the middle of the boundary with an error of +/- 1 cm. 
 Organic matter was measured by loss on ignition tests for each horizon for all soil cores using 
Sparks et al. (2020). Samples ranging from 50g to 250g were incinerated at 425 oC for at least 4 hours. 
Gravel (as defined as particles larger than 2mm in their biggest dimension) was found by separating the 
gravel out using a 2-mm sieve and calculating the ratio of gravel weight to total sample weight (after loss 
on ignition test is done). Fractional sand, silt, and clay (defined as rough diameters between 2-0.06mm, 
0.06mm-0.002mm, and 0.002-0mm, respectively) were determined using the hydrometer method (ASTM, 
2014). After the hydrometer is read at the times indicated by the protocol, this data was fed into the 
“texture” function using the "envalysis" package in R to extract the fraction of clay and sand (Steinmetz, 
2021). All laboratory analysis is conducted by the investigators of this project. 
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Figure 2-1 Doc’s Branch Watershed as delineated by United States Geological Survey (USGS) ⅓ arcsec 
digital elevation model. The blue line in satellite view shows the watershed boundaries, red points show 
the locations for soil pedon samples, and the green point shows the basin pour point.  
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2.2.5 SSURGO Soils Data 

For comparisons against measured soil properties, SSURGO soils properties were extracted for 
each sampling location from the USDA-NRCS Soil Survey Geographic (SSURGO) database using the 
soilDB R package (Beaudette et al., 2019). The SSURGO database distributes soils based on 
measurements made at 20,000 pedons, spanning all American states and most territories (Nemecek, 
2020). On average, this is a sampling density of roughly 1 pedon for every 350 to 500 km2. Although 
much of the continental United States exceeds this density, realistic sampling densities are still fairly 
sparse (Gatzke et al., 2011). For the study watershed there are three nearby pedons, approximately 15km 
southwest of the watershed (Nemecek, 2020). 
 The SSURGO soils were extracted from the database at each of the soil sampling locations. 
Horizon depth, clay, and organic matter were used to compare against the measured soil properties. 
SSURGO often presented two to three options for soil classifications, and a high, low and regular value 
for each. All were extracted and evaluated. The regular values are used in this study. This dataset is used 
to compare to the measured data and acts as a control to see how well using this popular method would 
represent the watershed soils. 

2.2.6 Digital Elevation Model Processing 

         DEM-derived spatial characteristics used for this analysis include slope, upslope contributing area 
(SCA), topographic index value (TIV), and topographic index class (TIC) derived using two different 
flow algorithms (D8 and D-infinity, described below). The data generated by these raster manipulations 
were extracted from the distributed rasters by overlying the spatial locations of the 36 soil sampling 
locations and extracting the associated raster value. These numeric values are correlated against soil 
properties measured in the watershed. All DEM processing and data extraction were performed in R using 
the TauDEM (Tarboton, 2005), raster package (Karney, 2013), and shapefiles packages (Stabler, 2013). 

2.2.6.1 Slope 

         To calculate slope at each raster, the steepest downslope descent is calculated and the value is 
assigned to that raster. For D8, slope is defined as the steepest drop over two adjacent cells, and for Dinf, 
the slope is calculated along the triangular facet of the plane with the steepest slope across adjacent cells. 
(Tarboton, 1997, 2014). 

2.2.6.2 Flow Direction 

          Prior to calculating SCA, the flow direction routing between adjacent cells must be determined. 
Two methods of routing flow between neighboring DEM cells are evaluated: D8 and D-Infinity (Dinf). 
The D8 flow routing algorithm routes all flow to a single raster following  the steepest down-slope 
gradient. The Dinf flow routing algorithm proportions flow to adjacent downslope cells based on the 
steepest downgradient slope from a triangular grid centered on each adjacent downslope cell, partitioning 
flow between all adjacent downslope cells. The differences between the D8 and Dinf methods and a more 
in-depth discussion can be found in Tarboton (1997). 
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2.2.6.3 Specific Catchment Area (SCA) 

         The catchment area of a particular point is the area that drains to that location (as specified by the 
input DEM in units of L2). The SCA is the catchment area normalized by the length of the raster (or the 
resolution of the raster) yielding a value in units of L. Here we use SCA because it has shown better 
correlation with physical properties in previous studies (Moore et al., 1993; Collick et al., 2015; Fuka et 
al., 2016). The SCA is calculated as: SCA = CA/raster length. Where CA is the upslope contributing area 
per unit of contour line (m2) and raster length is the width of the raster (m). 
 As discussed previously, D8 assumes that all flow is routed into one adjacent down slope raster 
(based on steepest descent), and thus determining the catchment area for this application is simply the 
sum of all upslope cells. Catchment area for Dinf differs in one key way; the Dinf algorithm assigns the 
next raster's catchment area proportional to the amount of flow the raster is receiving from the uphill 
raster, thus weights the resulting grid based on proportional contributing area (Tarboton, 1997). 

2.2.6.4 Topographic Index Value (TIV) and Topographic Index Class (TIC) 

The Topographic Index (TIV) is a grid created by combining SCA and slope raster as: 

𝑇𝐼𝑉 =  𝑙𝑛 (
( )

)   

where slope is topographic slope of the cell (expressed in radians), (Lyon et al., 2004; Easton et al., 
2008). The Topographic Index Class (TIC) reclassifies the TIV into equal-area groups, and for this study, 
10 TICs were selected per the methods of Easton et al. (2008), who showed that 10 classes generally 
provide sufficient detail to discriminate processes at a sub-field scale. TICs are created such that TIV 
above the 90th percentile are assigned a TIC of 10, TIV in the 80th-90th percentile are assigned a TIC of 
9, and a TIV in the 0th-10th percentile are assigned a TIC of 1. 

2.2.7 Correlation Analysis 

All of the measured and generated data described above are subject to various correlation 
analysis. We correlate derived terrain characteristics among DEMs and DEM processing methods (e.g., 
watershed boundaries, slopes, TIV, etc. derived from the DEMs with like characteristics from the other 
DEMs) as in Figures 2-2 - 2-5, as well as with measured properties (e.g., soil physical measurements) and 
database extracted properties (e.g., SSURGO soils data) as in Figure 2-6. 

2.2.8 Multivariate Regression to Predict Soil Properties 

Regression analysis was used to predict soil properties. To constrain the analysis and to provide 
regressions that were both interpretable and not overfitted, we limited the number of predictors (derived 
data) to a single slope and a single SCA (two input parameters total) [eq 2-1]. 

Y = m1*slope + m2*ln(SCA) + b        eq. 2-1 

Where Y is soil property of interest (organic matter, horizon thickness, or clay content for the A or BA 
horizon), slope is a single input of slope selected from the eight slope options (four DEMs for both D8 
and Dinf flow directions), SCA is a single input of SCA selected from the eight SCA, and m1, m2, and b 
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are regression estimates. Note that the log of SCA is taken because a log transformation of SCA 
linearized the relationship between SCA and soil properties. The best pairing of slope and SCA was 
determined by forward step regression comparing all pairwise combinations and evaluating the resulting 
Akaike Information Criterion (AIC). Regressions yielding the lowest AIC were selected as the most 
appropriate model to predict a given soil property. AIC is selected over the Bayesian information criterion 
because Type II error is preferred over Type I error for this application (Friedman et al., 2009). 

2.2.9 Evaluating Prediction of Soil Characteristics 

         Using Markov chain Monte Carlo (MCMC) analysis, the prediction capability of a suite of spatial 
inputs is evaluated. The soil characteristic of interest is randomly split into a training and testing dataset of 
18 samples each. A regression is trained on the training dataset and applied to the testing dataset to evaluate 
model robustness. This process is repeated 1,000 times; 1,000 repetitions is confirmed to be sufficient for 
result convergence. To create soil characteristic maps for visualization, the resulting MCMC regression 
coefficients are averaged and applied to the applicable spatial rasters.  
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2.3 Results 

The data and results described in the DEM/soil analyses can be found at ebuell (2022). 

2.3.1 DEM Differences 

Elevation differences between DEMs are shown in supplemental materials, Figure 2-S1. As 
expected, the differences between the DEMs are greatest when comparing the higher resolution LiDAR to 
the coarser resolution ⅓ and 1 arcsec USGS sourced DEMs, with differences of +/-5-10m not uncommon. 
Figure 2-S1 also reveals differences between similarly processed DEM sources, such as the USGS 1 
arcsec and the ⅓ arcsec, where differences of +/- 2.5m are widely present. Differences between the 
LiDAR DEMs were generally constrained to +/- 0.5 m. The elevation differences between DEMs was 
manifested in stream network and watershed boundary delineation differences although some of the 
difference in watershed boundary was attributable to the construction of the 460 interchange between pre 
2018 acquisition missions (e.g., 2010 LiDAR,  USGS ⅓, 1 arcsec) and the most current LiDAR (e.g., 
2018 LiDAR). There are also differences present that cannot be attributed to construction where the 2010 
LiDAR is substantially different from both of the USGS ⅓ and 1 arcsec DEMs, due primarily to DEM 
resolution. While there were some minor differences in flow paths, all DEMs approximated the same flow 
path extent. 
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Figure 2-2 Spatial differences between slopes from various DEMs using the Dinf flow direction 
algorithm. These are calculated by the following equation: Coarser resolution - finer resolution (eg. 
2010LIDAR - 2018LIDAR). Resulting watershed boundaries are found in the lower right corner. 2018LI 
- blue, 2010LI - green, 1/3as - purple, 1as - orange. 
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Figure 2-3 Spatial differences between ln(SCA) from various DEMs sources using the Dinf flow direction 
algorithm. These are calculated by the following equation: Coarser resolution - finer resolution (eg. 
2010LIDAR - 2018LIDAR). 
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Figure 2-4 Spatial differences between TIV from various DEMs sources using the Dinf flow direction 
algorithm. These are calculated by the following equation: Coarser resolution - finer resolution (eg. 
2010LIDAR - 2018LIDAR). 
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Figure 2-5 Spatial differences between TIC from various DEMs sources using the Dinf flow direction 
algorithm. These are calculated by the following equation: Coarser resolution - finer resolution (eg. 
2010LIDAR - 2018LIDAR).  
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2.3.1.1 Slope 

Figure 2-2 displays the correlations among DEM derived slopes using the Dinf flow direction 
algorithm (DEM derived slopes using the D8 algorithm in Figure 2-S2 for reference). A comparison of 
figures 2-2 & 2-S2 reveals few differences, spatially or in magnitude, between choice of flow direction 
algorithm. Indeed, the correlation coefficients between the slopes derived by the two algorithms is 0.99 
(data not shown). There are however differences among slopes from various DEMs. Positive values 
(green) show areas where the slope in the coarser resolution is calculated to be higher than the finer 
resolution. Negative values (orange) show areas where slope in the finer resolution is greater than the 
slope in the coarser resolution. Both LiDAR based DEMs yield more frequent high slopes when 
compared to both the ⅓ and 1 arcsec DEMs. As the DEM resolution becomes finer, each grid integrates a 
smaller fraction of the landscape, and can thus capture smaller landscape features, such as short steep 
banks in the near stream region and the steep hill slope in the south-eastern area of the watershed. 
Interestingly, while both LiDAR DEMs show steeper slopes on the face of that hill slope, they also show 
shallower slopes at the top of the hill slope (area in green near the watershed boundary). There are fewer, 
although still interesting differences, between the LiDAR DEMs slope values. Although there was no 
clear bias towards over or under estimating slope (e.g., there are an equal number of orange and green 
pixels), slope differences between the LiDAR DEMs do tend to be of greatest magnitude in the near 
stream areas (figure 2-2). Similar results are seen for the slope comparison between the coarser ⅓ and 1 
arcsec DEMs (figure 2-2). 

 2.3.1.2 SCA 

Similar to slope, there are few differences in SCA between the two flow direction algorithms, 
except perhaps a slight bias towards higher estimated SCA using the D8 algorithm (e.g., more positive 
values in Figure 2-S3 than in Figure 2-3). This is perhaps not surprising given that D8 routes flow to only 
one adjacent downslope neighbor, thus accumulating SCA faster. The spatial differences and their 
magnitudes between the two flow direction algorithms are not significant: the correlation coefficient 
between SCAs derived by the two flow direction algorithms is 0.99, indicating minimal differences 
between algorithms. 
 The largest differences tend to be found between the higher resolution LiDAR based DEMs and 
the coarser resolution ⅓ and 1 arcsec DEMs, with the ⅓ and 1 arcsec DEMs showing greater SCA in the 
flow paths than the LiDAR DEMs. Indeed both the preponderance of positive (green) values and the 
distributions with positive central tendencies in Figure 2-3 indicate a positive bias by the coarser DEMs. 
This is due to SCAs derived from LiDAR routing flow through smaller grid cells than the coarser USGS 
resolutions. However, there are also some substantial differences in non-flow path areas, such as the 
northern region of the study area, where the coarser ⅓ and 1 arcsec DEMs have substantially greater SCA 
values. There are some smaller differences between the LiDAR DEM SCA values, but the differences do 
not have a systematic directional bias (figure 2-3), but are greatest in magnitude in the near-stream areas. 
Differences between the ⅓ and 1 arcsec DEMs are similarly minor although there is a slight bias for the 
coarser 1 arcsec DEM showing larger SCA values, particularly in near-stream flow paths (figure 2-3). 
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2.3.1.3 TIV 

Figure 2-4 shows the differences in TIVs for the Dinf algorithm (figure 2-S4 shows the D8 TIV 
comparisons). Unlike Slope and SCA, there are some differences between the TIV as calculated by the 
two flow direction algorithms. The coarser ⅓ and 1 arcsec DEMs had higher correlations between D8 and 
Dinf (0.93-0.98), indicating more similarity, while the higher resolution LiDAR DEMs were less similar, 
with coefficients of 0.85-0.87. Differences attributable to the DEMs is also apparent, although they tended 
to be propagations of the patterns and differences seen in the SCAs, with the positive (green) values and 
the distributions with positive central tendencies in figure 2-4 indicating a positive bias by the coarser 
DEMs. While the bias is greater in the near stream flow paths, there is also the tendency towards positive 
bias across the entire spatial domain. 

2.3.1.4 TIC 

Figure 2-5 displays the results for TI Class (TIC) using the Dinf flow direction algorithm. Figure 
2-S5 shows the spatial differences for TIC for the D8 flow direction algorithm.  Both flow direction 
algorithms produced approximately similar distributions, with both showing a positive (green) bias in the 
near stream flow paths and a negative bias (orange) on the contributing hillslopes for the coarser DEMs. 
The largest differences in figure 2-5 are clearly due to resolution scales, with the largest differences 
between TICs between higher resolution LiDAR DEMS  and the coarser resolution USGS ⅓ and 1 arcsec 
DEMs with +/- 1 standard deviation around the mean encompassing up to 8 TICs. There were less 
differences between the LiDAR DEMs, with 1 standard deviation encompassing 6 TICs (Figure 2-5). The 
smallest differences between DEMs was between the ⅓ and 1 arcsec products, with +/- 1 standard 
deviation around the mean encompassing 4 TICs (figure 2-5). 

2.3.2 Relating spatial data to soil physical properties 

         We have shown that various source DEMs result in different landscape representations, as 
expressed in the estimates of slope, SCA, TIV, and TIC. Next we use simple correlation and multivariate 
regression to determine how well the various DEM attributes relate to, and can be used to predict, soil 
properties in the watershed. 
 As figure 2-6 shows, there is little evidence that any single DEM results in better correlations 
(using simple 1:1 comparisons) with soil properties in the watershed. Likewise no single derived DEM 
product (Slope, SCA, TIC, TIV) is clearly better at capturing the variation in soil properties. There are 
mixed positive and negative correlations, and soil properties are not always most correlated with the 
highest resolution DEM products, although LiDAR based DEMs tended to be more strongly correlated 
with specific soil properties such as horizon thickness, and lower resolution with organic matter and a-
horizon clay content (figure 2-6). LiDAR derived Dinf SCA and TIV tended to be more highly correlated 
with soil properties than D8 SCA and TIV, while for lower resolution 1 and ⅓ arcsec DEMs there is not a 
considerable difference between flow routing algorithms.   
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Figure 2-6 Correlations between measured soil properties and derived spatial data as expressed by the 
coefficient of correlation, R 

 

Figure 2-7 Summary of multivariate TIV regressions predicting soil properties. Left column shows the R2 
of the resulting paired multivariate regression. The remaining columns show the paired inputs for the 
regression and regression coefficients. 

2.3.2.1 Multiple Regressions of Varying Input Resolutions    

         Using the forward step selection algorithm to select predictors (one slope and one SCA each with 
four resolutions and two flow direction routing algorithms), optimal regressions and their corresponding 
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correlation are displayed in figure 2-7. This analysis reveals several interesting findings, first, combining 
information from multiple DEMs provides more information about the soils distribution in the watershed 
than using information from a single DEM (compare figures 2-6 & 2-7). Second, the highest resolution 
DEMs were selected as regression predictors only 5 out of 12 times, indicating that there is as much if not 
more information in lower resolution DEMs, at least for slope estimates (e.g., only one LiDAR based 
slope was selected). However, higher resolution LiDAR SCAs appear to provide more information than 
lower resolution SCAs (LiDAR selected 4 out of 6 times). It is interesting to note that lower resolution 
slopes and higher resolution SCAs were often paired as the selected predictors. This is because increasing 
the resolution quickly inflates the slope estimates (Sadeghi et al., 2011). Additionally the magnitude of 
the regression coefficients are substantially larger for the slope predictors (several orders of magnitude in 
some cases), indicating that the slope predictor is having a much larger effect on the dependent (soil) 
variables than the SCA predictor. 
 We compare the topographically distributed soil properties and SSURGO-derived soil data to the 
measured data at 36 locations in the StREAM lab watershed that were well distributed across the TI 
classes. Figure 2-8 shows the results of the multivariate regression and SSURGO vs measured soil 
properties. For all three soil properties and both soil horizons the multivariate regression method provides 
much better estimates of measured values than SSURGO, the U.S. finest resolution soils data.Cleary 
including terrain attributes results in significant improvements of soil characterization. Indeed previous 
studies of Moore et al. (1993) and Fuka et al. (2016) both showed significant correlations between terrain 
adjusted soil properties and measured pedon data. As is evident in Figure 2-8 the multivariate regression 
resulted in predicted soil properties more closely following the 1:1 line and all with positive regression R2 
values (0.10-0.38), while the SSURGO estimates often fall far from the 1:1, and have negative regression 
R2 values. R2 is calculated using the following equation: R2  = 1-sum of squared error/sum of squared 
total. From this equation we can see that once R2 go negative they can get quite large in magnitude quite 
quickly. As such, the interpretation of these results puts little emphasis of the magnitude of negative R2s. 
That considering terrain characteristics improves soil property prediction is perhaps not surprising, as 
others have postulated that relationships between terrain and soil characteristics in saturation excess-
dominated soils (Ciolkosz & Waltman, 2000; Buchanan et al., 2014; Collick et al., 2015) which these 
results support, and can be used to create spatially distributed soil maps. 

 

Figure 2-8 SSURGO and multivariate regression distributed soil property compared to measured property 
for the A and BA horizons 
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2.3.2.2 Soil Property Mapping 

         The multivariate TIV regression analysis discussed in the methods and in the previous section can 
be used to improve soil property distribution mapping. Applying the multivariate regressions spatially 
across the StREAM lab results in soil property distribution maps for the A horizon, shown in figure 2-9 
and for the B horizon, shown in Figure 2-10. For all three soil properties (A or BA horizon thickness, 
organic matter, and clay content) the multivariate regression provides better predictions as shown in 
figures 2-9 and 2-10 A1-A3, where the verification data R2 used to test the multivariate regression shows 
a distribution centered well above 0, while the individual correlations are centered around an R2 of 0. The 
spatial maps  for the multivariate regressions provide further corroboration that the use of topographic 
data to infer spatial variability in soil properties can be used to generate high-resolution soils data, even 
when using lower resolution data (figures 2-9 and 2-10 B1-B3). 

Figure 2-9 Probability density plots of the Monte Carlo test data for individual correlations shown in 
Figure 2-6 and multivariate regressions in Figure 2-7 for A horizon thickness (A1), A horizon organic 
matter (A2), and A horizon clay  content (A3); A horizon thickness (B1), A horizon organic matter (B2), 
and A horizon clay content (B3 map from the multivariate regression; and A horizon thickness (C1), A 
horizon organic matter (C2), and A horizon clay content (C3) maps from SSURGO 
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Figure 2-10 Probability density plots of the Monte Carlo test data for individual correlations shown in 
Figure 2-6 and multivariate regressions in Figure 2-7 for BA horizon thickness (A1), BA horizon organic 
matter (A2), and BA horizon clay content (A3); B horizon thickness (B1), BA horizon organic matter 
(B2), and BA horizon clay content (B3 map from the multivariate regression; and BA horizon thickness 
(C1), BA horizon organic matter (C2), and BA horizon clay content (C3) maps from SSURGO 
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2.4 Discussion 

Accurate classifications of soils are integral to a wide variety of applications including achieving 
sustainability goals (Keesstra et al., 2016), watershed modeling (Anderson et al., 2014), erosion rates (Lal 
et al., 2018), and containment transport (Yu et al., 2018). Many of these processes have direct 
ramifications on public health, water quality, infrastructure and management. Although it is apparent that 
soils affect a broad range of environmental processes at a fundamental level, attempts to classify them 
have fallen short (Cole, 2017), and environmental science as a whole stands to gain better insight if soils 
are represented with increasing accuracy (Zhuo and Han, 2016). In the United States, the finest resolution 
nationally available soil is the SSURGO database.The SSURGO database distributes soils based on a 
collection of roughly 20,000 pedons that spans all American states and most territories (Nemecek, 2020). 
On average, this is a sampling density of roughly 1 pedon for every 350 to 500 km2. Though much of the 
continental United States exceeds this density, realistic sampling densities are still fairly sparse. Thus, 
methods that can spatially downscale or improve finer resolution (sub field) estimates of soil properties 
are useful for any number of scientific disciplines. Indeed, Figure 2-8 shows that using terrain information 
in DEMs improves soil property characterization. Figures 2-9 and 10 corroborate this spatially, where 
using terrain properties provides a better estimate of the spatial distribution of soil properties than 
SSURGO. 
 We also show that the highest resolution DEMs do not always provide the greatest information 
content as related to soils, especially in deeper horizons. Thus, even though DEM resolutions continue to 
trend towards higher resolution, it is clear there is information in lower resolution products that is 
valuable in characterizing landscapes (Stolt et al., 1993; Wolock & Price, 1994; Sørensen and Seibert, 
2007; Li et al., 2008). 
 In many instances, correlations between soil characteristics and slope or SCA were stronger for 
lower resolutions, particularly in the deeper BA horizon. Furthermore, the D8 flow direction algorithm 
indicates stronger correlations of slope in the BA horizons of lower resolution DEMs likely due to D8 
being limited to a single flow direction, which may better represent the more static topography of deeper 
soils. Whereas soil characteristics in the shallower A horizon correlated better with the finer resolution 
spatial characteristics (Figure 2-6) and the more diverse flow routing partitioning in Dinf. In the case of 
the two LiDAR datasets, flow directed to a single downslope cell (D8) may diverge from its neighboring 
cells because of localized surface changes exposed due to higher sample density of LiDAR compared to 
the USGS datasets while Dinf will partition across more downslope cells. However, Figure 2-7 suggests 
that there may be a point in which obtaining higher resolution LiDAR data has little to no benefit in 
increasing our knowledge about soil morphological processes. Or any benefit is limited to localized 
surface changes or transformations, which are exposed at these higher sampling densities (Thomas et al., 
2017), such as the development of fine-scale flow paths and erosion networks, and not to processes at 
deeper, more stable horizons. 
 For the multivariate regressions, both surface and subsurface horizon thickness were best 
captured with lower resolution DEMs (28m and 9m, respectively).  Similar results were seen by Zhang & 
Montgomery (1994) who found that 10 m was the optimal resolution to explain several hydrologic 
features, and more recently Buchanan et al. (2014) suggest the optimal resolution for TIV-soil moisture 
correlation was 3m. Our results, from both the individual correlation analysis and the multivariate TIV 
regressions, corroborate these studies, with the optimal resolution generally falling between 1 to 10m. 
Furthermore, our findings suggest that there may be a point in which the benefits to obtaining higher 
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resolution data provides little additional information on soil morphology. For example, coefficients in the 
multivariate regressions between soil characteristics in the BA horizon and SCA in the highest resolution 
LiDAR were relatively low in magnitude (e.g, slope coefficients were often an order of magnitude 
greater) indicating SCA has a more limited effect on regression model predictions. 
 Using the multivariate TIV regressions to predict soil properties improves the estimates of 
spatially distributed properties. This has important implications in many fields outside of soil science, 
where the focus has often been on vertical relationships between soil properties, and less on how soils are 
distributed spatially (Buol et al., 1989). For instance, knowledge of the spatial distribution of soil 
properties provides insight into how water moves in and across landscapes, important for water resource 
management and modeling (Lin, 2012), and topography is one of the key controls on soil development, 
which is important for many forms of soil and water resource management. Furthermore, as is evident in 
Figures 2-9 and 2-10 C1-C3, SSURGO and other soils databases are subject to uncertainties related to the 
boundaries of landscape units (i.e. the distinct brakes between SSURGO soils), the extrapolation of pedon 
point observations to soil-type polygons, and the variable intensity of sampling (Fuka et al., 2016), which 
are reduced in the multivariate TIV regression modeling approach. 
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2.5 Conclusions 

Results presented here indicate that even though resolutions are increasing, there is information in 
lower resolution products that should be maintained and included in landscape characterization. We 
identified some notable differences among different DEM resolutions and formulations of DEM derived 
products (Slope, SCA, TIV) and their correlation to spatial patterns of soil properties. Most importantly, 
we found that some TIV forms correlate relatively well with soil properties, and can be used to predict 
soil properties. Our principal findings include: 

– There are not many scale-dependent differences between D8 and Dinf flow direction routines 
–Coarse resolution DEMs showed greater promise on predicting surface horizon characteristics 

while both high and low resolutions provide insight on deeper horizon properties (i.e., BA 
horizon). 

– Mixed resolution TIVs achieved good predictions of soil properties in agricultural fields. 
Future studies should seek to understand how differences in DEMs and or DEM derived products can 
translate into differences in model outputs. Evaluating other indexes and or spatial mapping techniques 
such as the Downslope Topographic Index (which may be more appropriate for capturing deeper soil and 
hydrologic processes), or how various filtering approaches can be employed to smooth discrete soil 
property boundaries (Buchanan et al., 2014). 
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Supplemental Materials 

 
 
Figure 2-S1 Numerical differences between DEMs (Coarser resolution-Finer resolution). Watershed 
boundaries and stream networks: 2018 LI - blue, 2010 LI - green, ⅓ as - purple, 1 orange - red 
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Figure 2-S2 Spatial differences between slopes from the source DEMs using the D8 flow direction 
algorithm. These are calculated by the following equation: Coarser resolution - finer resolution (eg. 
2010LIDAR - 2018LIDAR). Resulting watershed boundaries are found in the lower right corner. 2018LI 
- blue, 2010LI - green, 1/3as - purple, 1as - orange. 
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Figure 2-S3 Spatial differences between ln(SCA) from source DEMs using the D8 flow direction 
algorithm. These are calculated by the following equation: Coarser resolution - finer resolution. 
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Figure 2-S4 Spatial differences between TIV from source DEMs using the D8 flow direction algorithm. 
These are calculated by the following equation: Coarser resolution - finer resolution. 
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Figure 2-S5 Spatial differences between TIC from source DEMs using the D8Dinf flow direction 
algorithm. These are calculated by the following equation: Coarser resolution - finer resolution. 
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Abstract 
SSURGO method for distributing soil properties is prone to error. This research proposes a novel method 
to distribute soils using multiple DEMs. The Vermont Association of Conservative Districts analyzed 59 
soil samples located in western Vermont. Derived properties including slope and catchment area are 
calculated from six DEMs (USGS 1m, ⅓ as, and 1as, aerial LiDAR, SRTM, and GDEM). The general 
relationship between soils and DEM derived slopes and catchment areas are explored. Small resolution 
rasters are recursively coarsened and evaluated for soil characteristic representability to isolate effects of 
resolution from generation method or reported error. Slopes derived from fine resolutions were largely 
uninformative because of their high instances of zeros. Soil maps are then generated using a multivariate 
regression that uses a single slope and catchment area as inputs; resulting maps outperformed SSURGO 
distributed soil maps. In all cases, these regressions resulted in inputs that were from two DEMs meaning 
multiple DEMs have the opportunity to better soil maps.  
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3.1 Introduction 

Digital elevation models (DEMs) represent the earth’s surface using a georeferenced grid, where 
each square has an assigned elevation and resolution (Guth et al., 2021). DEMs are used broadly in 
multiple applications including geology, hydrology, ecology, meteorology, and floodplain mapping 
(Azizian & Brocca, 2020; Han et al., 2020; Steger et al., 2020; Zhang et al., 2020; Celis et al., 2021). 
Historically DEMs were produced using ground surveying, and manual photogrammetry of aerial images 
(Miller, 1958). During the 1980s, remote sensing-based DEMs began emerging using methods such as 
stereoscopic imaging (typical space-borne resolutions: 30m to 90m), synthetic aperture radar (InSAR - 
typically 30m), laser imaging and scanning, and light detection and ranging (LiDAR) (typical resolutions 
ranging from 0.3m-2m) (Hutsul & Smirnov, 2017; Zhang et al., 2019; Goyal et al., 2021). Most are 
produced using aircrafts (most typically for generating LiDAR or stereoscopic imaging) or satellites 
(most typically used for stereoscopic imaging) (Farr et al., 2007; Stoker et al., 2008; Tachikawa et al., 
2011).  

DEMs are primary data sources for analyzing the natural processes occurring in a landscape from 
which spatial attributes such as upslope area (the area of a landscape that contributes flow to a location of 
interest), slope, and topographic wetness can be extracted. These attributes affect soil characteristics, soil 
water distribution and abundance, susceptibility of landscapes to erosion, soil-moisture content and the 
distribution of flora and fauna (Wilson & Gallant, 2000; Nabiollahi et al., 2018; Raduła et al., 2018; 
Kopecký et al., 2021; Telak et al., 2021). DEM derivatives can be integral in our understanding of the 
landscape. For example, upslope area can be used to calculate theoretical flow accumulation, steady-state 
area contour runoff rate, soil characteristics, and soil-water content. Similarly, slope is integral to 
landscape morphology as it is used in determining overland and subsurface flow velocity, vegetation, 
cattle grazing density, susceptibility to erosion, soil water content, and land capability class (Moore, 1991; 
Wu et al., 2008; Paz-Kagan et al., 2016). Topographic wetness is used to describe the spatial distribution 
of soil-water content. This attribute helps identify locations that have a high probability of transporting 
nutrients (commonly referred to as critical source areas) (Collick et al., 2015). Identifying these critical 
areas can help keep livestock away from the pollutant concentration areas, making landscape wetness an 
important attribute with respect to management and policy applications. Thus DEMs and derived spatial 
characteristics have the opportunity to help us fundamentally understand landscape processes.  

Landscape spatial characteristics are also integral in soil connectivity pattern and soil distribution 
in the landscape (Odeh et al., 1991; Thomas et al., 2016; Jancewicz et al., 2019). A physically-based 
relation between spatial attributes and measured soil properties can improve the accuracy of prediction of 
soil variables at unsampled locations (Moore et al., 1993; Odeha et al., 1994; Collick et al., 2015; Fuka et 
al., 2016). Spatial attributes derived from DEMs have been shown to distribute specific soil properties, 
including A-horizon thickness, organic matter content, extractable P, pH, and sand and clay content more 
accurately than traditional soil databases (Moore et al., 1993). Previous studies show strong relationships 
between a myriad of DEM-derived spatial characteristics and soil properties.  

Many types of DEMs are available with differing resolutions and generation methods. When 
comparing one DEM to another, these DEMs often differ in spatially derived datasets such as slope and 
catchment area. Many studies have found coarse DEM datasets to be irrelevant (Muthusamy et al., 2021) 
and thus the prevailing narrative often is researchers assume the finest resolution dataset is best and 
should be used as a default. However, it is important to consider that landscapes and their soils are formed 
over long periods of time. It is likely that a small resolution raster alone will be insufficient to describe 
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soil distribution due to a small raster being far outsized by the landscape features driving the soils 
distribution. There is an opportunity to distribute soils with increasing accuracy if spatial characteristics 
from several DEMs of differing resolution and age are considered. 

This study evaluated the relationship between DEM derived characteristics, including slope, 
upslope contributing area and measured soil properties. Six DEMs, which differ in generation method and 
resolution, were used to evaluate the effects of scale on representing soil properties. Additionally, by 
using multiple well-informed spatial datasets, we can distribute soil properties better than that of 
SSURGO or traditional choices of finest resolution DEMs. 
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3.2 Materials and methods 

3.2.1 Study Area 

The study was conducted in the Little Otter Creek (LOC) and Dead Creek (DC) watersheds, in 
the Lake Champlain Basin located in Addison County, Vermont (figure 3-1). The LOC and DC watershed 
sizes are 160 km2 and 100 km2, respectively. Both watershed land uses include predominately 
agricultural land in the Lake Champlain basin with rolling topography and elevations ranging from 48 m 
to 113 m. Land use in both LOC and DC watersheds is dominated by dairy cropping systems with 44% of 
LOC and 65% of DC areas in hay production and 5% and 10% of LOC and DC in row crop agriculture, 
respectively. The majority of the remaining area is forested (36% for LOC and 14% for DC) and wetlands 
(10% for LOC and 5% for DC) with small areas of residential and industrial land (<6%) (Homer et al., 
2004; USGS, 1994). Soils in the watersheds include Vergennes clay (27% LOC, 64% Dead Creek), and 
Covington and Panton silty clays (10% LOC, 22% Dead Creek). Rock land occupies 12% of the area in 
LOC. The climate in the area is humid continental with mean annual precipitation of 1100 mm and mean 
annual temperature of approximately 7.5 C. 
 

 
Figure 3-1 Study area map, location of the LOC and DC watersheds in the Lake Champlain watershed, 
VT, and a land use map of the watersheds 
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3.2.2 Soil Data 

Soils samples were collected at fifty-nine locations (figure 3-1) and analyzed following the 
Cornell Soil Health protocol (Moebius-Clune et al., 2016) as collected by the Vermont Association of 
Conservative Districts (USDA NRCS, 2019). Six-inch soil cores were collected in agricultural fields 
between Fall 2020 and Fall 2021. Twenty-seven sites were located in the LOC watershed and thirty-two 
sites were located in the DC watershed (figure 3-1). Soil data of interest from the report include texture, 
water capacity, soil organic matter.  

 
Table 3-1: Summary of DEM metadata 
 

DEM 
Abbreviation Source 

Relevant Citations 
(data, metadata, and 
reported uncertainty) 

Data 
Acquisition 
Date 

Data Collection 
Sensor V

er
ti

ca
l 

U
nc

er
ta

in
ty

 
(1

 s
d)

 

R
es

ol
ut

io
n 

LOC LiDAR VCGI 
Quantum Spatial, 
2018; VCGI et al., 
2018 

Nov. 2017 
Leica ALS 70 
and Riegl LMS 
Q1560 

0.1 m 0.7 m 

DC LiDAR VCGI 
Quantum Spatial, 
2016; VCGI et al., 
2016 

2013-2015 

Leica ALS 70 
and Optech 
Gemini LiDAR 
sensor 

0.1 m 0.7 m 

1m USGS 
Arundel et al., 2015; 
USGS, 2019 

Unknown Various 0.1 m 1.0 m 

1/3as USGS USGS, 2019 1960-2016 Various 2.4 m 1 10.3 m 

1as USGS USGS, 2019 1960-2016 Various 4.1 m 2 30.9 m 

SRTM USGS Farr & Kobrick, 2000 
Between 
2000 and 
2014 

Spaceborne 
Imaging Radar-
C 

9.7 m 30.9 m 

GDEM NASA NASA et al., 2019 2000-2013 ASTER 12.1 m 3 30.9 m 

1,2,3 Uncertainty evaluated by a third party study: (1) Haneberg, 2006; (2) Holmes et al., 2000; (3) Abrams 
et al., 2019 
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3.2.3 Digital elevation models (DEMs) 

DEMs were selected in a variety of scale/resolution and acquisition methods, including aerial 
LiDAR, historical USGS surveys, and the global SRTM and ASTER GDEM missions (Farr and Kobrick, 
2000; Reuter et al., 2009; NASA et al., 2019). LiDAR utilizes visible or near infrared pulses to calculate 
distance/elevation. The USGS national DEM database uses a suite of historical surveys and contemporary 
resources (most typically LiDAR) to create national standardized (in resolution) DEMs (USGS, 1993). 
The Shuttle Radar Topography Mission (SRTM) produces DEMs of the earth utilizing phase-difference 
between two radar images using a technique called interferometric synthetic aperture radar (InSAR) (Farr 
et al., 2007). The Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), 
utilized space borne stereoscopic imaging using space borne infrared cameras to create global DEM 
between 830 N and 830 S (Tachikawa et al., 2011). A summary of different types of DEMs is given in 
table 3-1.  

3.2.4 Spatial Data Processing 

Each DEM described above was subject to a series of spatial operations, slope, specific catchment 
area (SCA), topographic index value (TIV), and topographic index class (TIC). These operations are 
conducted for two flow direction algorithms. Flow direction algorithms define flow parsing between 
rasters and as is such, flow direction algorithm choice affects the calculated slope and SCA (and therefore 
TIV and TIC). 

The flow direction algorithms investigated are D8 and D-infinity (Dinf). These are two methods 
of routing flow between neighboring DEM cells that differ in their routing algorithms. D8 selects a single 
downslope raster (using steepest descent) to which all upslope accumulated flow is routed. Dinf 
proportions flow to adjacent downslope cells based on the steepest downgradient slope from a triangular 
grid centered on each adjacent downslope cell. The differences between the D8 and Dinf methods and a 
more in-depth discussion can be found in Tarboton, 1997. 

 To calculate slope, at each raster the steepest downslope descent is calculated and the value is 
assigned to that raster. For D8 slope is defined as the steepest drop over two adjacent cells, and for Dinf, 
the slope is calculated along the triangular facet of the plane with the steepest slope across adjacent cells 
(Tarboton, 1997, 2014).  

The catchment area of a particular point is the area that drains to that location (as specified by the 
input DEM in units of L2. The SCA is the catchment area normalized by the length of the raster (or the 
resolution of the raster) yielding a value in units of L. Here we use SCA because it has shown better 
correlation with physical properties in previous studies (Moore et al., 1993; Collick et al., 2015; Fuka et 
al., 2016). The SCA is calculated as:  

SCA = CA/(Raster Length)           
Where CA is the upslope contributing area per unit of contour line (L2) and raster length is the width of 
the raster (L). The Topographic Index (TIV) is a grid created by combining SCA and slope raster as:  

TIV = ln (SCA/tan(slope))           
where slope is topographic slope of the cell (expressed in radians), (Lyon et al., 2004; Easton et al., 2008). 
The Topographic Index Class (TIC) reclassifies the TIV into equal-area groups, for this study 10 TICs 
were selected per the methods of Easton et al., (2008), who showed that 10 classes generally provide 
sufficient detail to discriminate processes at a sub-field scale. TICs are created such that TIV above the 
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90th percentile are assigned a TIC of 10, TIV in the 80th-90th percentile are assigned a TIC of 9, and TIV 
in the 0th-10th percentile are assigned a TIC of 1.  

All of the measured and generated data described above were subject to correlation analysis. We 
correlate derived terrain characteristics among DEMs and DEM processing methods (e.g., slopes, TIV, 
etc derived from the DEMs) with with measured properties (e.g., soil physical measurements) and 
database extracted properties (e.g., SSURGO soils data). 

The first iteration of this investigation included TIVs and TICs as potential informants on soil 
distribution. As TICs are watershed specific, a single watershed is considered for section 3.2.3.1. LOC is 
selected over the DC watershed because initially, the researchers believed that streamflow simulation 
using a hydrological model would become relevant to this project. Flow simulation and calibration of 
watersheds within a short period of time are challenging for hydrologists. Thus, LOC watershed, 
instrumented with daily flow data for the past 30 years, was selected over DC with 2 years of flow data. 

3.2.5 Multiple Regression 

Multiple regression analysis was used to evaluate how well the derived data for slope and SCA 
represent measured soils [eq 3-1]. 

Y = m1*slope + m2*ln(SCA) + b        eq. 3-1 

Where Y is soil property of interest (organic matter, predicted AWC, sand, or clay), slope is a single input 
of slope selected from the twelve slope options (six DEMs for both D8 and Dinf flow directions), SCA is 
a single input of SCA selected from the twelve SCA, and m1, m2, and b are regression estimates. Note that 
the log of SCA is taken because a log transformation of SCA linearized the relationship between SCA and 
soil properties. Constraining the regression inputs to a single slope and SCA is attractive because these 
two inputs together result in an established method for prediction of soil wetness: TIV and TIC. 
Currently, TIVs are calculated using a single DEM for both slope and SCA. Of particular interest is 
exploring how different resolutions may be combined to distribute soils. Information on slope and SCA 
from each individual DEM were extracted from the rasters for each sample location in Figure 3-1 and 
regressed against the various soil parameters described previously. Forward stepwise regression is utilized 
to choose the two best inputs that result in the lowest Akaike Information Criterion (AIC) and have a 
single input from both the slope and SCA category. The regression with the lowest AIC is selected 
(Portet, 2020). 

3.2.6 LiDAR Aggregation and Evaluation 

LiDAR aggregation seeks to discern if the patterns we are seeing are the result of different 
collection methods and errors or if they are the result of resolution size differences. To do this, much of 
the same steps described above is applied to a single raster at several different coarseness. The raster 
package in R (Karney, 2013) is used to combine the 0.7m LiDAR, 1m USGS, and ⅓ as USGS data into 
coarser resolution DEMs for evaluation. The “aggregate” function creates coarser rasters and can then 
assign mean values to the coarsened rasters. After the LiDAR data is aggregated, correlation can be 
evaluated. The aggregated data was compared to the evaluated physical soil data on SCA and watershed 
slope from all 59 soil sampling locations. Correlation between the DEM aggregate data and physical data 
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was evaluated to determine if the data has higher correlation due to resolution size instead of randomness 
or collection method.  

3.2.7 Cross validation  

The cross validation analysis is conducted in order to compare the finest resolution slope and 
SCA for both flow direction algorithms (using eq. 3-1 but for LiDAR slope and SCA) to our trained 
multiple regressions results discussed in section 3.2.5. This analysis is conducted in order to depict how 
robust the regressions are to cross validation. Linear regressions for all three regression cases (LiDAR 
D8, LiDAR Dinf, and informed regression hereafter referred to as multiDEM/multivariate regression) 
trained on 30 randomly selected soil samples for each measured soil property. Following this, the 
remaining 29 samples are used to test the regression. Relevant statistics are saved and the process is 
repeated until convergence in results is found. 
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3.3 Results 

 
Figure 3-2 Correlations between spatially extracted characteristics and measured soil properties 

3.3.1 Slope, SCA, TIC and TIV relationships  

 Slope, SCA, and topographic wetness values (TIV and TIC) are correlated with soil 
characteristics for the 28 soil samples in the LOC watershed. Topographic wetness classes can only 
appropriately be applied within watershed, hence, a single watershed is considered for section 3.3.1. 
Figure 3-2 compares all measured soil properties (sand, clay, predicted AWC [available water content], 
and organic matter) to all combinations of spatial characteristics (slope, SCA, TIV, and TIC), DEMs 
(LIDAR, 1m USGS, ⅓ as USGS, 1 as USGS, SRTM, and GDEM), and both flow direction algorithms 
considered (Dinf and D8). 

As is evident in figure 3-2, the strongest correlations (both negative and positive) were associated 
with the slope estimates derived from nearly all of the DEMs, with the exception of the LiDAR DEM and 
GDEM. Calculating TIVs and TICs do not enhance correlations with soil properties (figure 3-2). Consider 
columns 9-12 in figure 3-2: the strength of the correlations observed in these columns are not strongest in 
the topographic wetness columns (11 and 12) and slope and SCA (columns 9 and 10) are as strong or 
stronger than topographic wetness. This is consistently observed in ~90% of correlations (64 of 72 
comparisons). In theory, TIVs convey more information than its individual inputs (SCA and slope) and as 
a result, it is reasonable to expect them to correlate stronger than its individual inputs. However, this is 
seldom the case. For the TIV correlations to be stronger than their individual inputs, the correlations for 
SCA and slope would need to be opposite (i.e. one correlation positive, the other negative). This occurs 
very rarely (8 of 72 comparisons) in this set of data. In the rare case when topographic wetness is more 
informative than its individual inputs, TIVs and TICs are weakly correlated and thus not overly 
informative.    

From this data, it is clear that the conventional calculation of topographic wetness is not 
enhancing representation of soils. The available soil data spans two watersheds; as a result, eliminating 
topographic wetness would yield additional power for the remaining analysis. Therefore, the remaining 
analysis will no longer explore TIV and TIC, and an additional 32 soil samples from the DC watershed 
can be included. 
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3.3.2 Slope 

DEM derived slopes are correlated against six measured soil properties for 59 soil samples in 
LOC and DC basins. The relationships between measured soil properties and resolution and flow 
direction algorithm choice are examined for the application of soil distribution. 

3.3.2.1 Flow direction algorithms 

Choice of flow direction algorithm did not considerably impact the slope results (maximum 
pairwise difference between Dinf and D8 correlations is 0.02 with most pairwise differences below 0.01) 
as can be viewed Figure 3-S1. As Chapter 2 of this thesis shows, extracted slope calculations can be 
expected to not vary between D8 and Dinf. The key difference between Dinf and D8 presents itself 
strongly when considering flow routing schemes at a large scale (larger than individual rasters). However, 
the difference between the algorithms when considering a single raster are subtle. When referring to 
Tarboton, 1997, we see that the greatest difference between flow direction is 45 degrees. The extracted 
slopes for this slight difference in direction result in very similar slope values between the two flow 
direction algorithms. As a result of this finding, the remaining 3.3.2 sections will consider slopes derived 
from Dinf, though all findings described can be applied to the D8 collection of slopes.  

3.3.2.2 Digital Elevation models  

 
Figure 3-3 Measured soil properties correlated with DEM derived slope for the Dinf algorithm  
 

Similar to figure 3-2, figure 3-3 is a correlation plot that compares all measured soil properties 
(sand, clay, predicted AWC, and organic matter) to all DEMs (LIDAR, 1m USGS, ⅓ as USGS, 1 as 
USGS, SRTM, and GDEM) for slope Dinf. This section aims to investigate the relationship between 
slope resolution and their ability to accurately describe soil properties. 

Generally, slopes from coarse resolution DEMs outperform slopes from a finer resolution DEM 
(figure 3-3). For slope, all strongest correlations were found when comparing 1as or ⅓ as slopes to 
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measured soil. Of note, the SRTM 30m resolution raster did quite well when considering the raster’s 
reported errors (table 3-1; USGS 1as: 4.1m, SRTM: 9.7m). Slope correlations for the GDEM raster 
performed the worst (table 3-1; GDEM: 12.1m). This could be the result of two things (1) the threshold 
for error with respect to this application is between 9.7m and 12.1m vertical uncertainty (expressed as a 
standard deviation; table 3-1) or (2) the methodology of generating DEMs using stereographic imagery 
via satellite images is not good at accurately representing the landscape relative to the InSAR method. All 
best correlation magnitudes between measured soil properties and slope fell between 0.42 and 0.52.  

Slope correlations for the LiDAR (0.7m) are large in magnitude but they disagree directionally 
from all other correlations when comparing the LiDAR column (1) to all other columns (2-6). When 
considering if there is a “right” and “wrong” correlation sign for each soil property, one must consider 
how said soil property would be expected to relate to slopes. Consider relating clay to the slope of a 
location. Locations with high slopes can be expected to transport clay away from that location, whereas 
locations with low slopes can be expected to deposit clay. Both organic matter and AWC can be expected 
to be large where there is a wet location in the watershed. Most typically, wet locations occur on flat 
ground. Lastly, sand is likely to be high at high slopes because of the relative absence of clay. As such, it 
is expected that all measured soil properties aside from sand are negatively related to slope. When 
considering this, LiDAR performs worse than the coarser resolutions. Similarly, 1m USGS do not 
correlate strongly with measured soil properties as well as its coarser counterparts. It is certainly 
surprising that the most recent, highest resolution data is performing poorly for slopes. 

3.3.2.2.1 Distinguishing between DEM resolution and DEM generation method 

  
Figure 3-4 LiDAR, 1m, and 1/3as DEMs are aggregated to generate slopes derived from increasingly 
coarse resolution data. Correlations from derived data are plotted.  
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To further investigate the pattern observed in figure 3-3, we isolate effect of resolution from 
generation method, by using a single fine resolution DEM (LiDAR, 1m, and ⅓ as) to generate 
increasingly coarse DEMs. The effect of this coarsening is then observed against measured soil property 
correlations (figure 3-4).  

As the LiDAR DEM raster is coarsened the slope correlations strengthen and plateau at resolution 
equivalent to 11m. This pattern is observed strongly throughout all 4 measured soil properties. This 
plateau extends well past the region displayed in figure 3-4; when the resolution considered is expanded, 
300m rasters consistently correlate stronger with measured soils than slopes derived from fine resolution 
(0.7m to 4.9m) rasters (data not shown). This is particularly notable because scientists frequently choose 
the finest resolutions for the majority of applications, however, in this case, considering a slope derived 
from 300m DEM to inform the distribution of soils yields better results than choosing slopes derived from 
5m DEM.  

Additionally, the increasingly coarsened slope resulting from LiDAR approaches the plateau 
slower than that of 1m DEM. This is particularly of interest because this effect cannot be explained by 
resolution size alone. To further explore this anomaly, the distribution of extracted slopes for the 59 data 
points are observed in figure 4-5. Figure 4-5 displays an explanation for why slopes at low resolutions are 
not correlating well with soil properties: slopes for small resolutions are often zero. This is especially true 
for the LiDAR DEM and this issue propagates through several iterations of aggregation. Small resolutions 
effectively assign more of the watershed rasters zeros. As a result, small rasters assign select rasters 
higher slopes than their coarser counterparts. This finding is consistent with Sørensen & Seibert (2007) 
who finds that smaller rasters have higher variance when compared to their coarse counterparts. As 
resolution increases in size, slopes become more typically nonzero, and thus have a better potential for 
describing soils in a watershed using traditional correlation techniques.  

 
Figure 3-5 Distribution of extracted slopes found in the aggregation of LiDAR and 1m DEMs 
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3.3.3 Specific catchment area 

 The methods applied to section 3.3.2 to slope are now applied to SCA. 

3.3.3.1 Flow direction algorithm 

 
Figure 3-6 Correlations between measured soil properties and SCA derived from multiple DEMs and 
flow directions 

 When considering the directionality of the correlations for SCA, the displayed results in figure 3-
6 are opposite of the patterns expected. For example, when considering the distribution of clay, one would 
expect for SCA to relate positively with this value, i.e. the larger the area that drains to a location the 
more likely that location is going to have clay deposited. However, consider a scenario where the 
locations of interest lie on top of tile drainage. A location with a large SCA is likely to be targeted for tile 
drainage installation. Such a location would actively drain any excess water. This could result in leaching 
of clay, and result in low organic matter content due to its relative dryness. We believe this may be 
occurring in our watershed resulting in a flipping of expected correlation signs. A brief exploration of 
aerial photos indicates that tile drainage is likely present in some fields in the region, though it is 
unknown the extent of their installation. 

When comparing flow direction algorithms (figure 3-6 comparing odd columns to even columns), 
generally, the coarser resolution datasets are similarly correlated while the finer resolutions have more 
variability. For example, consider columns 11 and 12: the correlations observed in column 11 are nearly 
identical to the correlations observed in column 12. However, when fine resolutions are considered 
(columns 3 and 4) there is a considerable difference in the strength of correlations when comparing the 
two flow direction algorithms to measured organic matter. Dinf (column 3) performs better for 1m USGS 
than its D8 counterpart (column 4). The opposite relationship is observed for LiDAR (columns 1 and 2). 
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3.3.3.2 Digital elevation models 

SCA 1m Dinf outperforms all other SCA combinations for the six measured soil properties 
(figure 3-6). All correlation magnitudes between measured soil properties and 1m Dinf ln(SCA) fell 
between 0.30 and 0.43. Though the general trend observed here is not as clear to interpret as that of figure 
3-5 (slopes), there are still important insights that can be drawn from figure 3-7 (lnSCA Dinf) and 3-S2 
(lnSCA D8). In figure 3-7, we see that the SCAs derived from resolutions less than 5 meters have a high 
potential to predict soil characteristics but prediction value is not robust to resolution change. SCAs 
derived from resolutions above 5 meters are not very useful and have low correlations. When comparing 
figure 3-S2 to figure 3-7, we see that D8 does not have as many high magnitude correlations below the 5-
meter resolution implying that Dinf is a better choice than D8. Interestingly, we see that GDEM is 
predicting soil characteristics well when compared to the aggregated DEMs and other 30m DEMs. 
Unfortunately, these results do not paint as clear a picture as to what resolution to choose. It is likely that 
the fine DEM SCAs are best but they also result in highly variable correlations for soil properties. For the 
coarser DEMs, we see general agreement that there is little prediction power for soil characteristics except 
for the GDEM DEM. 

 

Figure 3-7 LiDAR, 1m, and ⅓ as DEMs are aggregated to generate ln(SCAs) Dinf derived from 
increasingly coarse resolution data. Correlations from derived data are plotted. 
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3.3.4 Considering multiple DEMs to distribute soils 

3.3.4.1 Informing multiple DEM pairings 

 It is likely that slope and SCA have different information to offer in distributing soils and thus, a 
two-input regression analysis is implemented to use two inputs (slope and SCA) to predict the distribution 
of one output (measured soil property) using the methods described in section 3.2.5 and equation 3-1. 
Regression pairings (a single input from slope and ln(SCA)) are displayed in figure 3-8. The best 
correlating slopes and ln(SCA)s are selected by the automated process described in section 3.2.5 to yield a 
2 input, and in all cases, a multidem regression. For all 4 measured soil properties, inputs derived from 
two different DEMs (a coarse resolution DEM for slope and the 1m Dinf ln(SCA)) result in the most 
advantageous combinations. For all displayed regression pairing, the slope regressor was the more 
significant of the two regressors. With these regressions, an alternative to topographic wetness is 
proposed that combines 2 DEM attributes to find a proxy for combining the knowledge that slope and 
SCA have to offer in distributing measured soil properties without constraining them and their relative 
importance or directionality with the TIV calculation.  

 
Figure 3-8 Multiple regression correlations and corresponding inputs. Resulting regressions had p-values 
< 0.05. 

3.3.4.2 Contextualizing multidem findings with current soil distribution method 

Often, researchers use the SSURGO database to distribute soils and it is important in our research 
to contextualize our method to the standard method. The spatial attributes selected for prediction of each 
soil property can be found in figure 3-9. Reported R2 values are calculated constraining both scenarios to 
the identity line. SSURGO does quite poorly for all soil properties and yields a negative R2 (figure 3-9). 
This means that using the average measured soil characteristic for each respective graph is a better 
predictor than SSURGO predicted soils. R2 is calculated using the following equation: R2  = 1-sum of 
squared error/sum of squared total. From this equation we can see that once R2 go negative they can get 
quite large in magnitude quite quickly. As such, the interpretation of these results puts little emphasis of 
the magnitude of negative R2s. In contrast, the DEM distributed clays predict with some success. It should 
be noted that SSURGO can be expected to predict measured soils better than an average case in figure 3-9 



56 

because there is an unusually high density of pedons (that inform SSURGO) surrounding the 
measurement locations (Nemecek, 2020).  

 
Figure 3-9 Measured soil properties compared to SSURGO and multiple regression derived soils content. 
R2 displayed are calculated using the identity line (drawn) as the input model. 
 

3.3.4.3 Distributing soil properties 

Typically, scientists gravitate towards the newest, highest resolution data. In this section this 
default method is compared to informed DEM selection (figure 3-8). The 59 data points were split into 
two subsets: training and testing. Regression coefficients are generated using the training dataset and this 
regression fit is applied to the testing dataset and corresponding fit statistics are extracted. This is done 
recursively in a cross validation analysis as described in section 3.2.7. Please note that synthetically 
coarsened DEMs from section 3.3.3.1 is not considered for soil property distribution. Section 3.3.3.1 is 
executed for data exploration and is not appropriate for predicting soil distributions without careful 
consideration. 
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The multidem multivariate regression outperforms the default finest resolution regression (figure 
3-10, column A). To distribute the soil properties for the multidem regression (B1-B4; D1-D4), the 
respective average coefficient and intercept resulting from each cross validation is used. Then, using the 
two rasters that informed this regression analysis (figure 3-8), a raster of distributed soil property content 
is created. When comparing the best regression to the SSURGO, continuous gradients of soil property 
change is observed more often in the multivariate regression case. Effectively, this means that when 
traversing from one location to another, it is likely that a gradual change in measured soil property is 
observed. This is more realistic than the abrupt soil property changes observed by SSURGO.  

One aspect that SSURGO has a large advantage over our proposed method is observed when 
bedrock is present. Locations with bedrock areas often have dramatic slopes well above the range of 
calibration for input slopes and as a result soil property prediction for the proposed method is likely to do 
poorly on bedrock outcrops.  
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Figure 3-10 Probability density plots of the Monte Carlo test data for individual R2 for multivariate regressions in 
Figure 3-8 and finest resolution case for LOC sand content (A1), LOC clay content (A2), LOC predicted available 
water content (A3), and LOC organic matter content (A4); LOC sand content (B1), LOC clay content (B2), LOC 
predicted available water content (B3), and LOC organic matter content (B4) map from the multivariate regression; 
and LOC sand content (C1), LOC clay content (C2), LOC predicted available water content (C3), and LOC organic 
matter content (C4) maps from SSURGO. DC sand content (D1), DC clay content (D2), DC predicted available 
water content (D3), and DC organic matter content (D4) map from the multivariate regression; and DC sand content 
(E1), DC clay content (E2), DC predicted available water content (E3), and DC organic matter content (E4) maps 
from SSURGO. 
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3.4 Discussion 

3.4.1 Topographic wetness 

The findings presented in this research discuss the multiple shortcomings of using topographic 
wetness to distribute soils: (1) Topographic wetness classes can only appropriately be applied within 
watershed, and (2) Topographic wetness did not provide additional information to soil property 
distribution despite containing more information than its individual inputs. The second issue could be a 
function of multiple issues that were evident in this research.  

SCA was found to be oppositely correlated than expected. We suspect this may be attributed to 
the presence of tile drainage. Areas with high SCAs are likely targets of tile drainage and thus can be 
expected to artificially present soil properties associated with dry soil. Leaching of nutrients through tile 
drainage has been widely documented in research (Randall & Iragavarapu, 1995; Dinnes, 2002; Moriasi 
et al., 2013). Because slope and SCA were correlated directionally the same, topographic wetness did not 
strengthen correlations between measured soil properties. 

Similarly, the topographic wetness provides a rigid framework for how soil wetness is distributed. 
As a result, topographic wetness sets the relative importance of slope and SCA. Often, SCA is the main 
driver in the topographic wetness calculation due to its wide range of values. In this research, we found 
slope to be more strongly related to soil properties. It is likely that even if the SCA correlations were 
consistent directionally to our perceived knowledge, topographic wetness would still not do as well 
because SCA is emphasized more than slope despite slope being a stronger in predictor of soil properties, 
much like the results presented in chapter 2 of this dissertation. To overcome this, multiple regression for 
an SCA and slope collection are considered to best distribute soil properties. 

3.4.2 Effect of flow routing algorithm 

 Flow direction algorithm did not make a large impact on our findings. As is consistent with the 
findings in chapter 2, flow direction algorithm choice did not considerably impact slope results. Flow 
direction algorithm choice did affect the SCAs correlations (as expected) for the finer resolutions, but not 
enough evidence was presented to definitively indicate whether Dinf or D8 was preferred. It is possible 
that the extra complexity added by the possible presence of tile drainage has made the results from the 
SCAs less informative.  

3.4.3 Effect of resolution 

 Slopes derived from coarse resolution data outperformed their finer resolution counterparts. The 
optimal slope for correlating slopes between measured soil properties was typically 30m. Both LiDAR 
and the 1m resolutions did poorly. To further investigate this relationship, several DEMs were recursively 
coarsened, and correlations at each coarsening were observed. The optimal resolution derived from 
resolution differences (and not generation method) occurred at resolution greater than 10m. This plateau 
extends past 300m; of note is that slope rasters generated from 300m rasters are preferred to those 
generated from rasters less than 5m. This relationship is attributed to the assigned slopes for small rasters 
which are, in many cases, zero. Datasets that contain multiple zeros do not have the opportunity to 
correlate well due to the dataset distribution. This relationship became a non-issue for raster resolutions 
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greater than 10m. Both Wolock & Price (1994) and Sørensen et al., (2006) find that resolution size can 
greatly affect the distributions of slopes and discuss this in more detail. 
 In this case, it is likely that all derivations of slope are appropriate representations of the 
landscape (aside from slopes derived from DEMs with large errors i.e., GDEM). Gillin et al., (2015) 
discusses how slopes derived from DEMs should consider the application of the slope information. For 
example, if slope is being used to evaluate farm equipment use, slopes derived from DEMs that have 
raster sizes similar to the size of the equipment may be most applicable, as that is the slope that the farm 
equipment is likely to experience. Applying similar logic, we must consider the resolution driving the 
slope processes that distribute soils. In this instance, a 30m slope (for 3 of 4 measured properties) was 
most advantageous.  
 The 1m Dinf SCA outperforms all other combinations for the six measured soil properties. There 
were no strong relationships that could explain this favorability. The possible presence of tile drainage 
and the biased soil sampling could massively affect this lack of finding. In future studies, information 
regarding drainage and a broader range of land uses for soils samples is recommended.  

3.4.4 Advantages of pairing multiple DEMs 

 Slope and SCA both have different information to offer to those looking to understand the driving 
processes behind the geomorphologic distribution of soils. As is such, pairing these two landscape drivers 
together, much like topographic wetness, has the opportunity to further inform our understanding of soil 
property distribution. Currently, there is extensive research on ways to better distribute soils (Ibáñez et al., 
2009; Chaney et al., 2019), but seldom are the processes that drive these distributions considered. This is 
especially problematic considering the relative densities of sampled DEMs and soils (i.e., the sampling 
density of DEMs is far denser than the sampling density of soils). Distributed soil maps have vast 
applications (Di Luzio et al., 2004; Anderson et al., 2006) and bettering them can benefit a wide range of 
research. The research presented here found that multiple DEMs were most advantageous in all 4 
properties examined. In all cases, slopes derived from coarse resolutions were most informative, while 
SCAs derived from 1m Dinf were best. When comparing the ideal pairings to SSURGO and LiDAR, the 
ideal pairings were more robust to testing and better predictors of measured soil properties. By using 
multiple DEMs to distribute soil properties, we are allowing the representation of multiple geomorphic 
process scales to inform the distribution of soil properties.  

3.4.5 Contextualizing process with standard procedure: SSURGO 

 SSURGO was found to distribute soil properties poorly which is consistent with Moore et al., 
(1993), Collick et al., (2015), Fuka et al., (2016), and Cole (2017). The map of SSURGO distributed soil 
properties was realistic, though abrupt changes of measured soil property were observed. This was likely 
the main issue driving SSURGO’s poor prediction of measured soil characteristics. SSURGO will likely 
outperform our proposed method when exposed bedrock is present. There is certainly an opportunity to 
capitalize on the strengths of SSURGO, such as identifying surface level geologic formations. 

3.4.6 Future work: consider geomorphology and climate 

If we were going to apply the findings presented here, it is likely that our findings would not 
translate well to another physiographic region. Different physiographic regions would have different 
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climates, topography, feature size, and vegetation. These factors would directly affect the mechanisms of 
landscape change such as erosion and deposition. In flatter locations, slope will likely not be a large 
driver of geomorphology. In dry locations, flow paths will likely be considerably more important. In 
mountainous, temperate locations, considering aspect for distribution could be fairly advantageous 
because of differences in wetness on sun-facing slopes as displayed by Gibson et al., (2021). There is 
certainly an opportunity to supplement and improve SSURGO distributed soils as displayed by Moore et 
al., (1993), Collick et al., (2015), Fuka et al., (2016), and Cole (2017). However, developers must 
consider a balance between complete modeling of geomorphic processes and overly constrained models. 
It is likely that we would not have to consider some inputs such as soil parent material because we could 
overcome these variables by using existing pedons. Even without having to understand the geologic time 
scale processes, modeling soil distributions using landscape attributes is daunting. Evaluating the best 
resolution for soils and hydrologic processes has been somewhat researched (Wolock & Price, 1994; 
Zhang & Montgomery, 1994; Hancock et al., 2006; Sørensen et al., 2006; Schumann et al., 2008; Vaze et 
al., 2010; Buchanan et al., 2014; Gibson et al., 2021). Between these papers and this research, there is 
considerable disagreement between what the best resolution is. In reality, the true answer is unlikely to be 
the same for all regions studied and is likely to not be consistent across different soil properties and 
hydrologic measurements. The proposed framework of considering multiple DEMs has a great deal of 
flexibility, and as a result could be applied widely to multiple physiographic regions. However, this 
widespread application should not be done haphazardly but done with consideration to the true 
geomorphic processes that created the properties we are looking to understand. 
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3.5 Conclusions 

We identify coarse resolution slopes for this landscape as the best distributors of measured soil properties. 
Using this information, combined with the information from calculated SCAs, we are able to better 
predict soil properties than conventional SSURGO distributed soils. Our principle findings include:  

1. The rigidity of the traditional topographic wetness calculation, combined with conventional 
methods of using SCAs and slopes from a single DEM resulted in topographic wetness being 
non-advantageous for this application. 

2. Choosing the finest resolution DEM for all applications is ill-advised. 
3. Considering multiple DEMs allows for flexibility when applying these findings across multiple 

physiographic regions.  
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Supplemental Materials 

 
Figure 3-S1 Correlations between extracted slopes and SCAs and measured soil properties 

 
Figure 3-S2 LiDAR, 1m, and 1/3as DEMs are aggregated to generate ln(SCAs) D8 derived from 
increasingly coarse resolution data. Correlations from derived data are plotted.   
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Abstract 
Groundwater contaminated with nitrogen (commonly referred to as legacy nitrogen) is a widespread issue 
and is cited as being a major issue plaguing water quality managers. Investigators employ a novel 
method: installation of a bioreactor fed by a nutrient rich spring located in Northern Virginia. The spring 
and bioreactor effluent are monitored for 10 months and bioreactor efficiency is quantified using a suite 
of inputs including hydraulic residence time, bioreactor bed temperature, and bioreactor age. A model 
driven by the governing equation for first order kinetics is used to predict load removal (g/m3/d). The 
spring fed bioreactor removed 21% or 1.5 g/m3/d of nitrogen on average. The spring fed system, when 
compared to an edge of field system, provided a stable environment for microbial activity, however, the 
spring fed system was also considerably colder and thus less efficient. 
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4.1 Introduction 

Legacy nutrients, resulting from excess anthropogenic inputs and subsequent storage in soil, 
sediment, or groundwater, introduce a critical time lag between changes in nutrient inputs and observable 
reductions in loads delivered to downstream waters and often prevent the attainment of water quality 
improvement goals (Sharpley et al., 2013).  The accumulated stores of legacy nutrients have been 
identified as an important factor that accounts for the lack of observable water quality improvement in 
many regions (Sharpley et al., 2013; Kleinman et al., 2019; Stackpoole et al., 2019; Noe et al., 2020). 

In the Chesapeake Bay watershed recent studies have shown elevated concentrations of nitrogen 
(N) stored in groundwater (Greene et al., 2005), and Van Meter & Basu (2017) found that legacy N is a 
large component of contemporary N load, contributing nearly 50% of the N load in the Susquehanna 
River Basin. Furthermore, a National Research Council report cautioned that achievement of Bay water 
quality objectives could be significantly delayed by legacy nutrients (NRCS, 2011). Nitrogen leached to 
groundwater may take decades to centuries to be discharged to surface waters. In the Chesapeake Bay 
region, lag times for legacy nitrogen are reported to be between less than a year to more than 50 years 
(Lindsey, 2003; Phillips & Lindsey, 2003; Sanford & Pope, 2007; Meals et al., 2010). Thus, legacy N 
continues to contribute to surface water impairment even if contemporary N loads are reduced or 
eliminated. However, little research has been devoted to developing practices to treat legacy nutrients and 
few existing agricultural or urban best management practices (BMPs) can remediate these nutrient 
reservoirs (Chen et al., 2018). 

Emergent groundwater, often expressed as springs or seeps, offers a unique and unrealized 
opportunity to treat legacy N because they are points of concentrated groundwater discharge that can 
transport significant N loads. Indeed, Easton et al., (2019), analyzing data on spring flows and N 
concentrations in the Mid-Atlantic, suggest that the quantity of legacy N released via identified springs is 
in excess of 3,690 kg/yr.  Springs provide an opportunity to remediate legacy N, not only due to the 
magnitude of the nutrient loads they export (Easton et al., 2019), but also because their concentrated flow 
makes them amenable to treatment by existing BMPs. Denitrifying bioreactors hold promise to address 
concerns derived from legacy N, as they have demonstrated performance as a BMPs to treat agricultural 
drainage in a range of conditions. Bioreactors are lined, organic carbon substrate (typically woodchips) 
filled receptacles, designed to intercept nitrogen-rich water. Woodchips act as a carbon based electron 
donor that fuels microbial denitrification.Woodchip bioreactors typically remove 15-50% of the nitrogen 
at a rate of 0.5 to 22 g/m3/d of N (Schipper et al., 2010; Christianson et al., 2012; Bock et al., 2015; 
Easton et al., 2015; Bock et al., 2018). Similar performance was verified by Easton et al., (2019) in the 
first reported application of bioreactor to remove N from a pilot-scale (32 m3) spring bioreactor in 
Southwest Virginia. The spring had an estimated median NO3-N flux of 0.23 kg/d with an estimated 41% 
NO3-N load reduction annually (range of removal: 5-88%), and often achieved reductions of greater than 
65% during the warmer summer months. 

Variability in N removal rates in bioreactors is largely attributable to influent N concentrations, 
temperature, and hydraulic residence time (HRT).  The characteristics and influence of these factors, 
however, can differ between bioreactors that treat agricultural drainage and those that treat spring flow. 
Several studies have shown that bioreactors can effectively remove nitrogen in fluctuating systems 
(Schipper et al., 2010; Christianson et al., 2017; Hassanpour et al., 2017; Rosen & Christianson, 2017; 
Bock et al., 2018). However, the relative stability of spring flow and nitrogen loading compared to that of 
agricultural drainage systems suggests spring bioreactors may outperform their edge-of-field counterparts. 
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Indeed, Christianson et al., (2011) demonstrated that constant influent flow rates result in greater N 
removal in bioreactors than fluctuating flow rates. Targeting high N flux springs could provide 
opportunities for a single bioreactor to treat significantly greater N loads more cost-effectively. 
Temperature is a significant factor influencing N removal rates and water temperatures from groundwater 
discharge may be lower and show less variation than water with greater influence of ambient air 
temperature. For example, Christianson et al., (2012), Christianson (2013), and Hassanpour et al., (2017) 
indicate that N removal rates show relatively little influence from other factors (HRT for example) when 
water temperature is below 16 C. 

Both influent N concentrations and temperature are (largely) properties of the system and are 
therefore difficult to control (Chun et al., 2010).  Hydraulic residence time, however, is a function of the 
bioreactor size and the volume of water treated, both to some extent controllable, either by adjusting 
effective bioreactor volume and/or the amount of water treated (Chun et al., 2010; Moorman et al., 2015). 
Since many springs may have relatively constant flow, the volume of water diverted to spring bioreactors 
could be actively managed to improve N removal rates after construction. Studies by Hassanpour et al., 
(2017), Bock et al., (2018), and Coleman et al., (2019) report significant HRT effects on bioreactor 
removal rates, with N removal rates declining as HRT increases across the range of HRTs evaluated (3 to 
65 hrs across the three studies). Although, all three studies (Hassanpour et al., 2017; Bock et al., 2018; 
Coleman et al., 2019) note that influent N concentration and temperature had significant interaction 
effects with HRT on N removal rates. Notably the effect of both influent concentration and temperature 
on N removal rates were found to decrease as HRT increased. 

This study evaluates the N removal performance of a first of its kind large scale spring bioreactor 
in the Shenandoah Valley, Virginia (Smith Creek).  The objectives of this work are to: 

1. Quantify the effect of N loading and hydrologic regime (flow permanence and variability) on N 
removal rate from a spring bioreactor. 

2. Characterize the effect of variable environmental conditions (temperature, influent N 
concentration) on bioreactor N removal rates. 

3.  Evaluate which observed HRTs results in the highest load removal. 
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4.2 Materials and methods 

4.2.1 Site description and bioreactor design     
A spring fed denitrifying bioreactor, located outside of Harrisonburg, Virginia (38.473893, -

78.774883) was constructed during the summer of 2020 (figure 4-1). The bioreactor measures 
approximately 50x15x1 m and largely follows NRCS bioreactor construction guidelines, including a flow 
control structure to control flow, a liner to prevent exchange of groundwater and treated flow, and 0.3 m 
of topsoil overtopping the bioreactor (NRCS, 2015). Water from the spring is routed via 6” PVC pipe 
from the spring head to the inlet of the bioreactor (figure 4-1). To minimize preferential flow, the spring 
influent is distributed across the top of the bioreactor by a 15 cm PVC manifold that spans the width of 
the bed.  A water-level control structure (AgriDrain Corp.) governs flow at the outlet of the bioreactor by 
positioning removable stoplogs. During installation, the bed was filled with locally sourced mixed 
hardwood wood chips with a porosity of 0.58. 
 USGS sampling of spring flow at the Smith Creek (n=23) from 2012 to 2019 ranged from 460 
m3/d to 6750 m3/d with a median flow of 3,200 m3/d. The bioreactor size was based on achieving 4-12 
HRT under the assumption of diverting 40-50% of spring flow. A 612 m3 bioreactor would achieve a 4 
HRT the last quartile of sampled flow while a minimum 12 hr HRT would treat 75% of treated flow. 

 

Figure 4-1 Bioreactor location and physical layout 
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4.2.2 Data Collection 

 All data is collected by the investigators using the methods described hereafter. Flow was 
measured using a pressure transducer (720 module, Teledyne ISCO) installed in the outlet control 
structure; and a power source consisting of three deep cycle marine batteries in parallel recharged by a 
150-W solar panel. Flow was recorded on 15-min intervals. Since the bioreactor largely operates under 
steady state conditions we assumed inflow is equal to outflow. 

Bioreactor bed data was recorded on 15-minute intervals using a TROLL 9500 multiparameter 
water quality monitoring instrument (In-Situ Inc.) equipped with temperature, dissolved oxygen (DO), 
oxidation-reduction potential (ORP), and pH measurement capacity. The probe was placed 8m from the 
outlet of the bioreactor at a depth of 0.6m below the surface of the bioreactor. The data was stored locally 
on the ISCO autosampler. Roughly 30% of the bed temperature data was missing due to outages in the 
TROLL probe. To fill in this bed data, air temperature from a weather station located 9 km northwest of 
the bioreactor was is used. This is downloaded using the rnoaa package in R (Chamberlain, 2021). We 
developed a rolling 3-day average smoothing spline to approximate bed temperature (R2: 0.99, data not 
shown).  

Aqueous samples were collected at the inlet and outlet using a 24-bottle autosampler (6712, 
Teledyne ISCO). Outlet samples are collected at intervals of 100 and 350 m3/d, depending on season, and 
whether any changes to HRT were made. Inlet samples were collected at 200 m3/d intervals 
(approximately equal to ¼ d intervals). At both the inlet and outlet four 200 mL samples were aggregated 
into a single 1 L autosampler bottle. Autosampler bottles were prepared with 5 mL of 10% sulfuric acid to 
achieve a sample pH < 2 and prevent degradation at ambient temperature following the method of Burke 
et al., (2002) and Dunderman et al., (2019). Samples were retrieved from the field bi monthly and new 
bottles with sulfuric acid are placed in the field every two weeks. Prior to analysis, samples were 
neutralized using 5-15 M sodium hydroxide (NaOH) and filtered with 0.45 micrometer nylon filters. 
Often, during the aforementioned process, samples are again frozen until nutrient analysis is conducted. 
Samples were analyzed using a flow injection analysis (FIA, QuikChem 8500, Lachat Instruments) with 
the cadmium reduction method for NOx (Lachat method 10- 107-04-1-A). Following analysis, all 
samples were stored at -10C to ensure QAQC standards were met. All numeric results reported pass the 
following QAQC standards: (1) all blanks (filtered in lab, filtered in field or unfiltered) result in a 
concentration that is below the detection limit, (2) matrix spikes are 100% +/- 15% recovery from the 
control sample and the known added amount of NOx-N and (3) all check samples are within +/- 0.5 mg/L 
of known concentration. All lab analysis described is conducted by the investigators.  

4.2.3 Data processing and Calculations  

 While data collection began in 2020, the startup phase of bioreactor operation was not 
representative of long term, steady state conditions of interest for this research. Therefore, the data 
subjected to analysis began in July 2021. All calculations and subsequent statistical analyses were 
performed using the R language and environment for statistical computing (R Core Team, 2022). 

4.2.3.1 Nutrient Loading and Removal 

Nutrient loading and removal were assessed for a 10-month period beginning 10 months after 
bioreactor installation, beginning July 2021. Inlet and outlet measurements are paired using a 12 hr 
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moving window, resulting in 203 paired observations. If multiple outlet concentration measurements were 
available for a given inlet pairing, the average outlet concentrations were used for calculations. 
To enable measurement of the bioreactor flow rate, the outlet drainage control structure was fitted with an 
AgriDrain 45° v-notch weir and rectangular weir (AgriDrain Corp), enabling quantification of flow up to 
880 m3/d. Flows above 880 m3/d are measured by treating the drainage control structure above the v-
notch as a rectangular weir (Rosen & Christianson, 2017; Shokrana & Ghane, 2021).   

 
  

Eq. 4-1 
 

 
Where Q is flow (m3/d), h is hydraulic head (cm), and l is length of weir crest (cm) (l = 16cm) when the 
v-notch weir is full. Average daily flow is calculated by averaging the 15-minute flow measurements for 
24 hours centered around the average sampling time of the inlet and outlet samplings. Nutrient loading 
and removal rates were calculated by multiplying average daily flow by influent concentration or influent 
less effluent concentration, respectively, normalized to total bed volume (612 m3).  

Hydraulic residence time (HRT), or the average time influent remains in contact with bioreactor 
media was determined assuming ideal plug-flow using the equation for theoretical HRT: 
HRT = ρ V/Q                Eq. 4-2 
where HRT is in hr, ρ is the media porosity (m3/m3), V is the saturated media volume/bed volume (m3), 
and Q is the flow rate (m3/hr). Nitrogen removal rates were calculated from the time series of flow, N 
concentration measurements, and bioreactor characteristics described above collected during the second 
year of operation. The statistical significance and 95% confidence intervals of mean removal rates and 
removal efficiencies were determined with one-sample t-tests.  
RE = 100*(1- Cout/Cin)                Eq. 4-3 

Where RE is removal efficiency expressed in percent, Cout and Cin are effluent and influent concentration, 
respectively (mg/L). 
 
Initial exploration of the data revealed that effluent concentrations were explained well by a first order 
kinetics relationship with HRT as follows: 

                                                                                                          Eq. 4-4 

Where k is the reaction rate (1/hr), and t is the HRT (hr). This assumption of first order kinetics is 
consistent with Lepine et. al (2016) and Chun et. al (2010). The reaction constant, k, is influenced by both 
bioreactor bed temperature and bioreactor age therefore it follows that k can be further partitioned as: 

                                                                     Eq. 4-5 

Where temp is bioreactor bed temperature (oC); age is bioreactor age (days); k1 is the baseline reaction 
rate for temp = 0 and age = 0; k2 is the reaction rate increase when temp increases by 1 oC; and k3 is the 
reaction rate increase when age increases by one day. Rearranging Eq. 4-4 to isolate the reaction 
constants (k1, k2, k3) gives: 
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                                                        Eq. 4-6   

Assessment of the linear model residuals for Eq. 4-5 yielded strong autocorrelation in time and thus first 
order autoregressive model (AR1), similar to that applied in Bock et al. (2018) was deemed most 
appropriate: 

                           Eq. 4-7   

Where et-1 is the error term at t-1 and AR1 is the regression coefficient on et-1. The response was 
determined to be appropriately represented by an AR1 model because their autocorrelation for lags 1-4 
and lags 6-25is less than 0.14 which corresponds to the a = 0.05 significance level. Lag 5 had an 
autocorrelation of 0.21. Because there is no physical reason that might explain why lag 5 is important but 
lags 1-4 aren’t, and because this autocorrelation value is small we do not include this in our regression. 
Reaction constants in Eq. 4-6 were determined by linear regression of the negative natural log of the ratio 
of inlet and outlet concentrations normalized by HRT against k1, k2, and k3. Please note that the dependent 
variable in Eq. 4-6 is used for the sole purpose of approximating the coefficients k1, k2, k3, and AR1. Once 
these estimates are known, the load removal equation expressing load removed results in: 

                                     Eq. 4-8 

Where LR is load removed in (g/m3/d), and Q is flow (m3/d). Substituting Q = ρ V/HRT from Eq. 2 into 
Eq. 7, and noting V cancels, this can be rewritten as: 

                                    Eq. 4-9  

Thus, Eq. 4-9 relates the load removed by the bioreactor to the influent concentration and 
hydraulic residence time modified by bioreactor age and temperature dependent processes, similar to 
models proposed by Bock et al. (2018), Christianson et al. (2012), Lepine et al. (2016) and Povilaitis & 
Matikienė (2020). The model was fit using 299 days of data. Model parameters were selected by 
evaluating model residuals, term significance, and model interpretability consistent with Bock et al. 
(2018), Christianson et al., (2012), Hassanpour et al., (2017), and Lepine et al., (2016). Homoscedasticity 
in residuals was verified visually. A Shapiro-Wilks test indicates that the model residuals are normally 
distributed with a p-value = 1.987e-08.  
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4.3 Results 

4.3.1 Bioreactor Performance Summary 

Nutrient loading to the bioreactor averaged 7.7 g/m3/d. The bioreactor cumulatively removed an estimated 
21% of the influent N at an average rate of 1.5 g/m3/d (table 4-1). A one sample t-test indicates that the 
true average removal efficiency and load removed observed is significantly different than zero (95% 
confidence interval: 20.3% to 22.0%, or 1.47 to 1.56 g/m3/d, respectively). The mean influent 
concentration of the bioreactor was 6.5 mg/L and the concentrations were fairly consistent, ranging 
between 5.6 and 7.4 mg/L. The average HRT and bioreactor bed temperature was 13.3 hours and 11.8 oC, 
respectively. Please note that the reported flows, HRTs, and temperatures are reported on a 15-minute 
interval. Average daily values are used for the regression analysis. Time series data is plotted in figure 4-
2. Figure 4-3 explores the relationship between load removal and inputs including HRT, bioreactor 
temperature, and bioreactor age.  

 Table 4-1: Summary statistics of bioreactor conditions and performance 

 Minimum 1st Quartile Mean Median 3rd Quartile Maximum Variance N 

Load removed 
 (g/m3/d) [kg/d] 0.43 [0.26] 1.34 [0.82] 1.47 [0.91] 1.53 [0.94] 1.68 [1.04] 2.96 [1.82] 0.12 [0.05] 203 

Removal efficiency  
(%) 5.27 16.86 21.14 21.33 24.55 37.08 35.72 203 

Influent concentration  
(mg/L) 5.61 6.24 6.48 6.52 6.82 7.43 0.19 203 

Effluent concentration 
mg/L) 3.86 4.67 5.10 5.14 5.60 6.59 0.41 203 

Influent load (g/m3/d) 
 [kg/d] 3.43 [2.11] 6.75 [4.16] 7.66 [4.72] 7.44 [4.58] 8.55 [5.27] 9.82 [6.05] 2.3 [0.87] 203 

Effluent load 
(g/m3/d) [kg/d] 2.41 [1.48] 5.26 [3.24] 5.97 [3.68] 5.92 [3.64] 6.98 [4.3] 8.51 [5.24] 2.21 [0.84] 203 

Flow (m3/d) 346 625 711 688 813 911 23822 34285 

HRT (hours) 9.41 10.55 12.06 13.31 13.73 24.77 14.99 34285 

Bed temperature  
(deg C) 9.10 11.30 11.80 12.08 12.90 15.10 1.34 25267 
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Figure 4-2 Summary of bioreactor performance; on the x-axis is date and corresponding bioreactor age 
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Figure 4-3: Relating load removal to HRT (x-axis), bioreactor temperature (represented in color, rounded 
to the nearest whole oC), and bioreactor age (represented in point shape, rounded to the nearest hundred 
days) 
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4.3.2 Estimating bioreactor performance 

4.3.2.1 Secondary analysis: finding reaction rate k 

Eq. 4-7 is used to determine values for k1 - k3 and the AR1 coefficients (Table 4-2).  

Table 4-2: Approximating reaction rates resulting from regression analysis of Eq. 4-7 

 
Multiple 

regression results 

k1 0.027 

k2 8.81E-04 

k3 -3.95E-05 

AR1 0.472 

4.3.2.2 Estimation of load removal 

In this section we apply the deductions found in 4.3.2.1, ARIMA regression, to eq. 4-9. In doing 
so, we find that the autocorrelation issues are satisfied by the inclusion of the AR1 coefficient. This model 
results in an R2 of 0.63 (figure 4-3), when comparing predicted load removal to measured load removal. 
Using the range of values observed in the bioreactor, an hour increase of HRT results in a decrease of 
between 0.004 g/m3/d (for low load removal conditions) and 0.03 g/m3/d (for high load removal 
conditions). A single degree increase in temperature can be found to increase load removed between 0.06 
g/m3/d (for low load removal conditions: old bioreactor and large HRT) and 0.08 g/m3/d (for high load 
removal conditions). Similarly, a single day increase in bioreactor age can be found to decrease load 
removed between 0.002 g/m3/d (for low load removal conditions) and 0.003 g/m3/d (for high load 
removal conditions). Lastly, an increase of 1 mg/L of nitrogen inlet concentration results in between 0.13 
g/m3/d (for low load removal conditions) and 0.33 g/m3/d (for high load removal conditions). 
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Figure 4-4 Comparing modeled and measured load removal 

From looking at figure 4-4, we see that the model is able to predict load removal with some 
success. To visualize specifically the effects that bioreactor conditions have on load removal, figure 4-4 is 
generated. Please note that a generalized reaction constant k will be explored in figure 4-4 such that: k = 
k1 +k2*temp+k3*age+AR1*et-1 
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Figure 4-5 Visualization of how bioreactor conditions affect load removal via the relationship explained 
by eq. 4-9 

Please note that the graphics displayed are condensing several dimensions into fewer dimensions. 
For example, reaction rate (k) is linearly related to bioreactor age, temperature, and the et-1. Plots (A) and 
(B) are visual representations of how much the ARIMA method affects the relationship between input bed 
temperature and bioreactor age respectively. For figure 4-5(A), the colors represent all the data points that 
have bioreactor ages corresponding to the legend; the solid line represents the trend for the average 
bioreactor age in each category and the dotted lines represent the trend for the maxima and minima of the 
bioreactor age in each category. If no ARIMA method was used, all data points would fall between the 
dotted lines of their respective color. The ARIMA method is displayed as affecting the values of reaction 
rate k a good deal. This effectively makes relationships between modeled output and inputs more difficult 
to evaluate. 
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 In figure 4-4(C) and (D) we see how much variability these visualizations show when condensing 
higher dimensional data. Both (C) and (D) are representations of the model output plotted against a model 
input (i.e. R2 = 1). When comparing figure 4-4(C) and (D) to figure 4(E) and (F) we see some additional 
noise appear in both graphics that can be attributed to model prediction error. Generally, additional noise 
is present for small reaction constants (k) and for large HRTs. The additional error associated with large 
HRTs may be an artifact of HRTs being difficult to calculate (Christianson et al., 2011) and a small error 
in calculation results in a large HRT error when HRTs are large.  
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4.4 Discussion 

4.4.1 Modeling load removal 

         In this research we found that by using a physically based regression model, we were able to 
predict load removal of nitrogen with moderate success (R2 = 0.63). There is some agreement that 
denitrifying bacteria adhere to first order reaction kinetics (Chun et al., 2009; Christianson et al., 2012; 
Lepine et al., 2016) [eq. 3], and we used this principle to derive a multivariate linear regression model 
[eq. 7]. The aforementioned regression model is then directly applied to load removal [eq. 9]. The 
resulting equation formation agreed with the general consensus between Christianson et al. (2012), 
Lepine et al. (2016), and Povilaitis & Matikienė (2020) that load removal decreases exponentially as HRT 
increases. 
 Contextualizing the resulting specific coefficient is difficult, because few have specified a model 
similar to this research. The formulation proposed by Lepine et al. (2016) was similar to our final results, 
as both formulas related load removal to Euler’s number (e) to the power of -HRT; though Lepine et al. 
(2016) relates this term to load removed via a straight regression. Though the resulting equation from 
Lepine et al. (2016) poses a striking similarity, it is constrained by static coefficients when compared to 
the proposed model. As such, the value that would correspond to the reaction rate constant (k) would 
likely be considerably different if the model was respecified identically to the model proposed in this 
paper. However, this issue should not entirely preclude the comparison of the models. Lepine et al. (2016) 
finds k = 0.22; when the values from table 4-2 are used to calculate k using average temperature and 
bioreactor age for the “loading test period” in this study (~12.5 oC and 218 days, respectively), the result 
is k=0.028. It should be noted that (1) Lepine et al. (2016) is modeling a considerably different system; 
the bioreactor N loading is substantially larger, and (2) the calculated reaction rate constant for the 
proposed method is extrapolated slightly for bioreactor age (bioreactor agemin = 332 days).  

4.4.2 What affects load removal 

4.4.2.1 HRTs 

         Over the range of inputs, a single hour increase in HRT resulted in a decrease of between 0.004 
and 0.03 g/m3/d. This result is relatively consistent with the literature. Bock et al. (2018) finds an hour 
increase in HRT results in a decrease of 0.06 g/m3/d when load removal is linearly related to HRT. 
Christianson et al. (2012) finds an hour increase results in a decrease of 0.03 g/m3/d (for the Pekin 
bioreactor which is most similar to the N influent concentrations examined in this paper) when load 
removed is linearly related to HRT. Povilaitis & Matikienė (2020) finds an hour increase in HRT results 
in a maximum of 0.056 g/m3/d (for inputs that correspond to the aforementioned 0.03 g/m3/d removal) 
when load removed is related via LR~HRT^-constant. Please note that: (1) both Bock et al. (2018) and 
Christianson et al. (2012) contain additional linear inputs that relate to HRT, so these comparisons could 
change considerably in a differently specified model and (2) the range of HRTs evaluated in Povilaitis & 
Matikienė (2020) (2-9.5 hrs) is entirely below the range of HRTs evaluated in this investigation, and thus 
the aforementioned comparison is lightly extrapolated (LRHRT=10 - LRHRT=11). 
 This analysis was largely driven by finding the best HRTs to maximize load removal. We found 
that load removal was maximized at HRT = HRTmin for all bioreactor conditions evaluated. This 
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contradicts Addy et al. (2016) and Christianson et al. (2012), who suggest that optimal HRTs depend on 
bioreactor conditions. Prima facie, our findings disagree with well-established research, however, these 
two ideas are not mutually exclusive. Given the proposed equation [eq. 9], maximal load removal occurs 
at HRT = 0 hours. Though this is certainly counterintuitive, the range of HRTs evaluated were not near 
HRT = 0 hours (HRTmin = 9.4 hours [table 4-1]), and thus drawing this conclusion so far outside of the 
observed data is ill-advised. This presents an obvious opportunity to refine this investigation: test lower 
HRTs to see when the assumption of first order reactions is no longer advantageous for model prediction. 
We anticipate there to be a single nonzero HRT (less than HRTmin) that would correspond to a maximal 
load removal, and the optimal HRT value would depend on bioreactor conditions. Thus, this corroborates 
the ideas put forward by Addy et al. (2016) and Christianson et al. (2012). 
 Despite the investigators’ best efforts, smaller HRTs could not be obtained due to deteriorated 
construction of the concrete that contained the spring. The bioreactor was designed to field an estimated 
40-50% of the spring flow (median flow: 3,200 m3/d), but investigators could not divert more than 20% 
consistently to the bioreactor. With these design constraints, the designed bioreactor ultimately was too 
large to treat typical flows in the desired HRT range (4-8hrs). Lastly, it is also important to note that 
theoretical calculations can often be fairly erroneous when compared to true HRTs (Christianson, 2013). 
This study would have benefitted from a tracer test to corroborate the true HRT of the system. 

4.4.2.2 Temperature  

         Spring fed bioreactors are expected to have colder bed temperatures (especially in the summer) 
relative to their surface fed counterparts. It is well established that lower temperatures inhibit bioreactor 
efficiency (Christianson et al., 2012; Hoover et al., 2016; Hassanpour et al., 2017; Bock et al., 2018; 
Povilaitis & Matikienė, 2020); this is corroborated by our findings. We find that a single oC increase in 
temperature corresponds to an increase of load removal between 0.06 and 0.08 g/m3/d (for low and high 
removal rate conditions, respectively). Bock et al. (2018) found, for the same inputs that correspond to the 
0.08 g/m3/d, a single oC increase in temperature corresponds to an increase of load removal of 0.16 
g/m3/d. 
 We could seek to increase bioreactor temperature thus increase load removal via the following 
untested ideas: adding black geotextile fabric to the bioreactor surface (to both decrease the surface 
albedo and eliminate plant growth, thus reducing transpiration [an endothermic process]), or increasing 
piping length. However, bioreactor managers and designers should be cognizant of the surface water 
standards (Surface Water Standards with General, Statewide Application; 9VAC25-260-60. Rise above 
Natural Temperature, 1992, Surface Water Standards with General, Statewide Application 9VAC25-260-
70. Maximum Hourly Temperature Change, 1992) that specify modifications to effluents cannot warm 
the overall system. The temperature was measured at the spring, bioreactor outlet, and downstream of the 
merging of the bioreactor effluent and bypass stream twice. This indicated (albeit weak because of small 
sample size; n=2) that the bioreactor had a cooling effect (if any) on the smith creek for the evaluated 
reactor. 

4.4.2.3 Bioreactor age 

In this study, we found that a single day increase in bioreactor age decreased load removal by 
between 0.002 and 0.003 g/m3/d. This is somewhat similar to the findings of Christianson et al. (2012). 
When the bioreactor age was increased by a single day, the Green county and Hamilton county bioreactor 
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load removal decreased by 0.004 and 0.003 g/m3/d, respectively. It should be noted that these bioreactors 
were selected for comparison over the Pekin bioreactor because the evaluation period for both Green and 
Hamilton county were much closer to that of the bioreactor studied. 
 There is a concern for this bioreactor’s longevity in particular because the nitrifiers were fixing 
nitrogen in cold temperatures. Maxwell et al. (2020) finds that the long-term decline is more rapid for 
colder reactors when compared to an otherwise equal warmer reactor. This is especially true when a 
bioreactor is subjected to both cold temperature and HRTs < 20 hours which was found to accelerate 
organic carbon losses (Jéglot et al., 2022). Povilaitis & Matikienė (2020) notes that biochar addition may 
help particularly cold reactors (temp < 10oC), while it’s been found to be largely non-advantageous for 
warm systems. Thus, addition of biochar could help combat the aforementioned shortened longevity 
associated with cold water bioreactors, though more research is needed to confirm the validity of this 
strategy. 

4.4.2.4 Other predictors (not found to be significant in proposed model) 

         Predictors that we found to be insignificant for modeling but were collected included pH, DO 
(dissolved oxygen), and ORP (oxidative redox potential). pH data ranged from 7.0 to 7.8. It is 
understandable that pH played a nonsignificant role in the effect of denitrification given the results from 
Antoniou et al. (1990) who found that an optimum denitrifying pH occurred at 7.8, and the difference in 
expected denitrification for the temperature range observed in our system was small. The karst nature of 
this location makes bioreactor installation especially advantageous because of high pHs relative to other 
systems (typical ranges between 5-7) (Bock et al., 2018; Povilaitis & Matikienė, 2020).  
 DO concentrations were zero for 99.1% of data points. The high instances of zeros make this a 
poor predictor for bioreactor performance. In addition, these values indicate optimal DO conditions as 
defined by Metcalf et al. (1991). There is certainly an opportunity to evaluate the fluxes of DO as the 
treated water moves towards the outlet much like the experiment constructed by Christianson et al. 
(2013). As water enters the bioreactor, the DO will not instantaneously become zero. A setup such as this 
could help us identify the critical distance between the beginning of the bioreactor and the DO 
measurement such that DO measurements are mostly nonzero. This would produce data that could have 
potential to inform load removal models. 

4.4.3 Advantages and disadvantages of spring fed over traditional edge of field 
bioreactors 

It is most typically recommended that the design of the bioreactor revolves around mitigating 
issues that arise from unsteady systems (Christianson, 2013). For example, bioreactors must be designed 
around peak flows (NRCS, 2015) because a high flow could result in flooding and adverse destruction for 
a bioreactor that is undersized. However, if a bioreactor dries out completely, aerobic nitrification can 
lead to increased leaching of dissolved organics, and hydrogen sulfide production (Lopez-Ponnada et al., 
2017). Currently, the research specifies bioreactor sizing to be mostly related to these two adverse effects, 
and the majority of field scale studies are constrained by these. However, for spring fed bioreactors, 
wetting-drying cycles are rare (for nonseasonal springs), and flows are typically semi-uniform. As a 
result, the optimal design of a spring fed bioreactor could considerably deviate from the conventional 
design specifications. Arguably, designing a spring fed system is straightforward relative to its surface 
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water counterpart because of semi-uniform input conditions. If the bioreactor design is simplified for 
spring bioreactors, it will be considerably easier to design a system around targeted HRTs. Spring fed 
bioreactors provide an interesting niche that can allow researchers to explore small HRTs. Currently there 
is some consensus that load removed relates to HRTs as an exponentially decaying function (Christianson 
et al., 2012; Lepine et al., 2016; Povilaitis & Matikienė, 2020). However, this does not make physical 
sense at the HRT = 0 boundary condition, where theoretical load removed would also be zero. There is a 
clear need to evaluate the relationships between load removed and HRT for small HRT in a field setting. 
This campaign can be uniquely applied to spring fed bioreactors because their design is arguably much 
simpler and does not rely on nonuniform flow conditions for design. 
 In addition to the possible simplification of bioreactor design, semi-uniform inputs result in 
favorable denitrification conditions. Traditional applications of bioreactors are complicated by fluctuating 
systems. A spring fed system eliminates wetting and drying cycles, providing a more stable environment 
for denitrifying microbes. In fact, Hassanpour et al. (2017) finds, at their Chemung county site, that semi-
uniform flow provides stable conditions for denitrifiers and found this site in particular to be considerably 
more efficient with respect to HRT when compared to two other bioreactors. 
 Though the uniform conditions of bioreactor inputs are advantageous in many ways, this was also 
disadvantageous for this study because a small range of bioreactor treatments and performance resulted in 
a small application range of the resulting model. When referring to table 4-1, we see that a small range of 
removal efficiencies and bioreactor conditions are explored relative to other studies. Hassanpour et al. 
(2017), Lepine et al. (2016), Christianson et al. (2012), Povilaitis & Matikienė, (2020), and Christianson, 
et al. (2012) evaluate bioreactor efficiencies between 0-100%, 0-100%, 7-100%, 10-80%, 12-76%, 
respectively. These ranges of explored removal efficiencies are considerably larger than the removal 
efficiencies reported in this study (5-37%). In consideration of a future study, it is important to design the 
bioreactor such that a wider range of HRTs and possibly other inputs, such as inlet concentrations and bed 
temperature, can be evaluated. 
 In addition to the aforementioned benefits, spring fed bioreactors provide a unique opportunity to 
address legacy nitrogen. Legacy nitrogen is a widespread, difficult water quality issue to address 
(Lindsey, 2003; Phillips & Lindsey, 2003; Sanford & Pope, 2007; NRCS, 2011; Easton et al., 2019). Both 
Easton et al. (2019) and Stephenson et al. (2021) have identified spring fed bioreactors as a unique way to 
address prevalent high N loadings of springs in the Chesapeake Bay. 
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4.5 Conclusions 

Results presented herein indicate that the reaction kinetics model is a successful predictor of load 
removal, and all the marginal effects of temperature, bioreactor age, and HRT were well aligned with 
existing research. Our principle findings include: 

1. The spring fed bioreactor studied adheres to first order reaction kinetics, and the reaction kinetics 
equation was successfully applied to modeling bioreactor performance via load removal. 

2. Spring fed bioreactors have their advantages (stable environment for denitrifying microbes) and 
disadvantages (colder and therefore less efficient). 

Future studies should seek to design a spring fed system such that a greater variety of bioreactor 
states can be explored. Additionally, spring fed bioreactors could provide a unique opportunity for 
economic solutions proposed by Jones et al. (2010), McKibben (2022), and Stephenson et al. (2021) that 
pay constituents who implement best management practices based on the amount of contaminant they are 
able to remove. Spring fed bioreactors are somewhat predictable (relative to edge-of-field systems), and 
thus quantifying performance may be easier in a system such as this. 
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Chapter 5: Conclusions 

5.1 Distributing soil maps (Chapter 2 & 3) 

In the United States the finest nationally available classifications of soil physical properties is the 
SSURGO database. The SSURGO database distributes soils based on a database of roughly 20,000 
pedons that spans all American states and most territories (Nemecek 2020). On average, this is a sampling 
density of roughly 1 pedon for every 350 to 500 km2.Though much of the continental United States 
exceeds this density, realistic sampling densities are still fairly sparse. Soil sampling is expensive, and the 
density is unlikely to change drastically in a small amount of time. SSURGO is unlikely to make the 
strides needed in this area to compensate for its shortcomings given this current metric of soil 
classification. Currently, this distribution of soils is the gold standard for several applications but 
describes landscape soils poorly as seen in chapters 2 & 3 as well as in multiple other studies (Moore et 
al., 1993; Collick et al., 2015; Fuka et al., 2016). These studies represent multiple geographic locations 
(Colorado, Vermont, New York, Pennsylvania, Texas and Virginia), implying that this issue is potentially 
widespread.  

Because soil properties relate strongly to landscape (Stolt et al., 1993; Zhi et al., 2008), DEMs 
and derivatives thereof can help predict soil properties (Moore et al., 1993; Gessler et al., 2000; Rezaei & 
Gilkes, 2005; Thompson et al., 2006; Collick et al., 2015). Because DEMs are important for a broad range 
of applications, innovations in this area of research will continue to surge. As a result, tying research to an 
innovative field with abundant diverse datasets is advantageous. In comparing the DEM sampling density 
(as small as a sample for every 0.09m2) to the SSURGO soil sampling density (as small as a sample for 
every ~1e+8 m2), it is clear that including DEMs for soil map creation can provide additional information. 
It is important to note that, though the sampling for DEMs is up to a billion times more dense, DEMs are 
not direct representations of soil, unlike the SSURGO soil samples. 

Chapter 2 of this dissertation found that SSURGO did not relate to any measured soil properties 
in a small watershed in southwest Virginia. Between the four DEMs examined, large (+/- 1m) spatially 
dependent disagreements between two DEMs were common. These disagreements propagated into 
derived spatial data; this finding is consistent with Wolock & Price (1994) and Sørensen & Seibert 
(2007). A single slope and SCA are selected to spatially distribute soil properties via multiple regression. 
The selected resolutions for the regressions were not homogenous for each soil property (i.e., there was 
no clear best resolution for distributing soil properties); five of six measured soil properties selected 
mixed resolution DEMs to best distribute soil properties. This resulted in soil maps with gradual changes 
for soil properties relative to the SSURGO distributed maps. Additionally, the proposed multiple 
regression did better than regression with LiDAR slopes and SCAs as inputs. Ultimately, this chapter 
found that both coarse and fine resolution DEMs showed promise in soils distribution.  

Chapter 3 focused on the relationship between resolution size and soil characteristics in addition 
to much of the analysis done in chapter 2. When fine resolution data was recursively coarsened, a plateau 
for high slope correlations is found at DEMs greater than 11m in size. A finer resolution than this 
correlates poorly with measured soil properties. When the same is evaluated for SCA, not much is 
gleaned. This research found (much like in the previous chapter) that spatial attributes derived from 
multiple DEMs are advantageous for all four soil properties explored. Similar to the chapter 2 findings, 
resulting soil maps were gradual with respect to the soil distribution relative to SSURGO, and the 
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proposed multiple regression outperformed the LiDAR multiple regression. The proposed regression 
models did not pick slopes derived from DEMs less than 10m, implying that slopes derived from small 
resolutions are poor predictors for this application. 

5.2 Future work: Distributing soil maps (Chapter 2 & 3) 

It is likely that the chapter 2 & 3 findings would not translate well to different physiographic 
regions. Physiographic regions have variable climates, topography, feature size, and vegetation. These 
factors would directly affect the mechanisms of landscape change such as erosion and deposition. Moore 
et al., (1993), Collick et al., (2015), Fuka et al., (2016), and the results discussed in chapters 2 & 3 display 
that there is certainly an opportunity to supplement and improve SSURGO distributed soils. There is 
considerable disagreement between previous research that evaluates best DEM resolutions for soils and 
hydrologic processes (Wolock & Price, 1994; Zhang & Montgomery, 1994; Hancock et al., 2006; 
Sørensen et al., 2006; Schumann et al., 2008; Vaze et al., 2010; Buchanan et al., 2014; Gibson et al., 
2021). The true best DEM is unlikely to be the same for all the regions or applications studied. Additional 
studies with diverse response variables and regions would be integral in understanding the resolution size 
and spatial attributes that best represent processes.  

5.3 Conclusions: Spring fed bioreactors (Chapter 4) 

 Legacy nitrogen is a widespread, difficult to address issue that is arguably preventing attainment 
of water quality goals (NRCS, 2015). Easton et al., (2019) investigates the prevalence and the expected 
mass nitrogen exported. They found that nutrient heavy springs could be responsible for 3,690 kg/yr of 
nitrogen. The concentrated sources of nitrogen provide a unique opportunity to apply an emerging 
technology to treat nitrogen: bioreactors. Bioreactors are most typically installed edge-of-field and treat 
highly variable flow and nitrogen load. The consistency in loading and flow provide a uniquely stable 
environment for denitrifiers. A spring in northern Virginia is outfitted with a bioreactor, and bioreactor 
bed temperature, flow, influent, and effluent concentrations are measured for 10 months. Bioreactor 
efficiency is quantified and modeled using a first order reaction driven model. Marginal effects of 
bioreactor bed temperature, age, and HRT are found to be consistent with Bock et. al, (2018), 
Christianson et al., (2012), Povilaitis & Matikienė (2020) and Lepine et al., (2016). This project discusses 
the benefits, including lack of drying-wetting cycles; eliminates bioreactor specific concerns regarding 
toxic effluent; and drawbacks, including colder water temperature resulting in a less efficient system 
relative to edge-of-field counterparts, of implementing spring bioreactors. 

5.4 Future work: Spring fed bioreactors (Chapter 4) 

 The consistency in spring fed bioreactor performance would allow economists to implement pay 
for performance systems with ease relative to edge-of-field counterparts. This idea consists of paying 
bioreactor managers for demonstrated performance of their bioreactor. The spring bioreactor efficiency 
was modeled successfully using woodchip age, bioreactor, flow and temperature (which could effectively 
be modeled by environmental temperature). As such, modeling bioreactor performance is attainable for a 
system such as this with fewer data points when compared to the more chaotic edge-of-field system. 
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