Automatic Back Annotation of Timing into VHDL Behavioral Models

by
Gayatri P. Mahadevan

Thesis submitted to the faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
Master of Science
in

Electrical Engineering

APPROVED:

QR Ounislemg
(Df. J. R. Armstrong, Chairman

d:g’a‘)’\&/ @/ 4/«/

Dr. F. G. Gray/ Dr. WR Cyr&”

June 1995

Blacksburg, Virginia

Automatic Back Annotation of Timing into VHDL Behavioral Models
By
Gayatri Mahadevan
Dr. JR. Armstrong, Chairman
Electrical Engineering

(ABSTRACT)

This thesis presents a design system that significantly speeds up development of VHDL
behavioral models with back annotated timing. The behavioral model is developed using
the CAD tool called Modeler's Assistant by inputting the model in the form of a Process
Model Graph. Then using the built-in primitive process library and user responses the
Modeler's Assitant generates a complete VHDL source description of the model. The
models developed can be classified into four classes. The first class of circuits are
combinational fanout free circuits in which the fanout of each process in the Process
Model Graph is one. Combinational circuits in which outputs of the processes are fed in as
input to more than one process are classified as Class 2 circuits. Sequential register
circuits are classified as class 3 circuits. Class 4 circuits are highly sequential circuits which
have either feedback loops or irregular register or flip-flop structures. The principle for
back annotating the generic delay values is discussed for the first three classes of circuits.
The back annotation tool Backann2 uses the VHDL description from the Modelers
Assistant, the CLSI-VTIP CAD tool and the Synopsys Design Compiler to calculate the
timing delays and to back annotate the delays into the behavioral model. The CLSI-VTIP
tool is used to extract the details from the VHDL model and store it in the form of data
structures. These details are used for computing the paths traversed by the signals

associated with the generics. The behavioral model is synthesized into a gate level design

and the end to end delays in the model are obtained using Synopsys Design Compiler.
With the end to end delays and the different paths traversed by the signals an algorithm to
find realistic and accurate delays has been found. Thus a system is available to designers

which builds behavioral models with accurate timing information.

To
Ma, Pa, Paati, Karthik,
Anand, Prasad and Sathya
Thanks.

v

Acknowledgments

I wish to express my thanks to my advisor Dr. James R. Armstrong whose
guidance and encouragement was invaluable. It has been an honor and a great pleasure to

study and work under him.

Also, I would like to thank Dr. F. Gail Gray and Dr. Walling R. Cyre for serving as

members on my graduate committee.

I would also like to thank my family and friends for having stood behind me every
step of the way. I appreciate the backing and assistance of all my friends who have been
with me through thick and thin. My special thanks to Sravasti, for listening patiently to all

my views while programming.

Chapter 1. Introduction
1.1 Modeling in VHDL...

Table of Contents

oo

1.2 Task Defimition ..o e e e e

1.3 CONEIIDULIONS oo

1.4 Contents...................

Chapter 2. Background
2.1 Structural Modeling ..
2.2 Behavior Modeling ...
2.3 Process Model Graph

AN LIterature ReVIEW ...ciccieeeeeeeseesrercersessssesssssassesssessssesosse

2.4 Timing Analysis in Digital CIrCUItScccooiiiiiiiiiiiiiie e

2.5 Timing in Behavioral VHDL Models......................ccoooii e

Chapter 3. Algorithm D

CVEIOPMENL...cuaeeeereiiiiicisicssosnnsreniiossssssssssssessassasessssssssssssssass

vi

3.1 MOEIEI'S ASSISTAIE ..o e 16

3.2 Path ENUMerationccoooiiiiiiiiiiiiies e 17
321 CLSI VTIP, DLS and SPI..........ccooiiiiiiiii e 20
3.2.2 Adjacency Matrix and Adjacency List representation.......................c..coeeevveeene.. 27
3.2.3 Depth First Search Algorithm..........................oooii e, 29
3.3 BACKANN ... 33
3.4 Synthesis of the Model using Synopsys Design Compiler...................ccccooiinnnnn 35
3.5 Circuits and Their TYPESooviiiiiiiii oot 36
3.5.1 Calculation of delays.............ccoooiiiiiiiiiiiee e 39
3.6 Interface With MATLAB..........occoiiiiii e 41
Chapter 4. ReSUILSccicoivcreniicnsnrericsncssanniossssssiosssssssssessssssssesssssssssssssssssssssrossssssssonsss 46
4.1 CLASS T CITCUILSeviitie ettt 46
4.1.1 Majority Function Detector.............c.ooiiiiiiiiiiiiiieiii et 46
4.1.2 ALARM CiICUIL......ovviiiiiiiiie i 52
4.2 CLASS 2 CITCUILS ..ottt 58
4.2.1 AND-OR CITCUIL........ooviioiiiiiiieii oottt 58
4.2.2 AND-OR-INVERT CIICUItc.oooiiiiiiiiiiiiie e 65
4.2.3 ADDER-MUX CITCUILooviiiiiiiiiiitiiiie et 70
4.3 CLASS 3 CITCUIES ...ttt 80
4.3.1 A Simple Load Unit.........cc.oooiiiiiioiiiicee e 80
4.4 Summary and Interpretation of Results.........................c.oocoiii 87
Chapter 5. Suggestions and Future WorkK.......iviincnieciinicsnnicccssssnenssesccssscansees 89
5.1 Redundant SYynthesis.............c..oooiiiiiiiiiiiii e 89

vii

5.2 Calculation of delays..............cccoooiiiiiiiiiii e 90

5.3 Calculation of Generics for Class 4 Circuits.............c.coocoovieriiiiiiiniiieieeeee 90
Chapter 6. ConCIUSIONiciiviieeiicrnesiseicscssresssrocssssessssssesssstessssstessssssssssssssssssssasasssens 92
REFEIrEIICEScuueereeirciiereriecirtrteesciatetiessssessssssssasessssssnsensessssssrsssssssssassesssssssasasassesssass 93
Appendix-A: User commands for backann?2ceeerveeivnnersenssercssaeessaesssnsessasess 98
Vilaecesiessssiscsressssnesssncssanssssessssnsssasssassssasossasssssessssnsssassssesssnsassassssasesanssssasssssasessaasessasnes 101

viii

List of Illustrations

Figure 1 VHDL description and pictorial description of a 4x1 MUX gate..................... 10
Figure 2 Process Model Graph - Functional Partitioningccccocoeieiiol 12
Figure 3 Process Model Graph - Physical Partitioningcc.ccoocooviiiiniien. 12
Figure 4 Process Model Graph and its paths in terms of generic delays.................. v 18
Figure S VHDL description for PMG in Figure 4oocooooiiiiiiiiiiiee 19
Figure 6 Structure of DLS Data Definition...................cc.oooiiiiiiiiiiee 22
Figure 7 A portion of 'C' code to illustrate the use of SPI functions............................. 23
Figure 8 VTIP Design Library System (DLS)cccoiiiiiiiiiceeee 24
Figure 9 Algorithm for obtaining data from the DLS libraryc..cooooei 26
Figure 10 Algorithm for obtaining adjacency matrix and adjacency list........................ 29
Figure 11 DFS Algorithm to find all paths between inputs and outputs 30
Figure 12 Algorithm for represnting the paths in terms of generic delays..................... 31
Figure 13 The log file of user specified commands to the synthesizer 32
Figure 14 A part of the timing report file from Synopsys Design Compiler................... 34

X

Figure 15 Algorithm for extracting the delay values from the report file 37

Figure 16 Algorithm for calculating the delays PSPPSR 39
Figure 17 Flowchart of Backann2 ... 42
Figure 18 Process Model Graph of Majority function.. 47
Figure 19 VHDL description of MAJ3 ... 48
Figure 20 Paths obtained from input to output ports for MAJ3.................coooeviiiiiinn. 50
Figure 21 Equations used for obtaining delays for MAJ3 ..., 50
Figure 22 New delay values obtained from MATLABcooccooiiiiiiiii 51
Figure 23 Part of VHDL description after back annotation of generic delays............... 51
Figure 24 Process Model Graph of ALARM SyStem..................ccoooiiiviiiieeiiiiiieei 53
Figure 25 VHDL descriptiom of ALARM SyStemcccoovieeiiiioiiioiiieiiieeiieee 54
Figure 26 Different paths in the ALARM System..............ccccooiiiiriiiiniiiiieiiiecie e 57
Figure 27 Input to MATLAB for ALARM SYSteMcoveeiieiiiiiiiieiiieeiiceeiieeen 57
Figure 28 The delays obtained from backann2 for ALARM systemc........... 58
Figure 29 Process Model Graph of AND-OR Circuitcccocoeeviiiiiiiiiiii, 59
Figure 30 VHDL description of AND-OR CIrcuit.............cccocovviiiiiiiiiiiiiiieicee 60
Figure 31 The different paths in the AND-OR circuitccocooiininiiiiiiiii 61
Figure 32 The input equations to MATLAB for AND-OR circuit................ USRS 62
Figure 33 The outputs obtained from backann2 for AND-OR circuit.......................... 62
Figure 34 VHDL description of the back-annotated AND-OR circuit........................... 62
Figure 35 Process Model Graph of AND-OR-INVERT circuit..............cccoooviiiiiinnnn. 64
Figure 36 VHDL description of AND-OR-INVERT Circuitcccocvevviiiienniinenn. 65
Figure 37 Different paths in the AND-OR-INVERT cCircuit.............cccoevviviianiiiniinnns 68
Figure 38 Input to MATLAB for AND-OR-INVERT circuitcc.ccocoevviirionirnennn. 68

Figure 39 Output of MATLAB for AND-OR-INVERT circuit.............cccocooviiinennnnn. 69

Figure 40 VHDL description of back-annotated AND-OR-INVERT model 69

Figure 41 Process Model Graph of ADDER-MUX circuit.............c..ccoocooviiiionniin., 71
Figure 42 VHDL description of ADDER-MUX Circuitoccoooiiiioniiiiiiiecen 72
Figure 43 The different paths in the ADDER-MUX circuit..............cccocoovieiiiniiinnn.n, 76
Figure 44 The input equations to MATLAB for ADDER-MUX circuit........................ 76
Figure 45 Output of MATLAB for ADDER-MUX circuit............cccooovvriiiiiiinneenn.. 78
Figure 46 A part of VHDL description of back-annotated ADDER-MUX.................. 48
Figure 47 Process Model Graph of SIMPLEcccciiiiiiiiiiiecee 81
Figure 48 VHDL description of SIMPLE...............cooooiiiiiiiiieeee e 82
Figure 49 The different paths in SIMPLEccccooiiiiiiiiiiicee 84
Figure 50 The equations for calculation of delays for SIMPLE.....................c..ccocoee. 85
Figure 51 The outputs of backann2 for SIMPLE.................ccooociiiiiiiiie 85
Figure 52 VHDL description of SIMPLE (back-annotated model) 86

xi

List of Tables

Table 1 Comparison of delays for MAJ3 ... 52
Table 2 Comparison of delays for ALARM SYStem..............ccoovviiiiiiiiiiiiiiiiciiie e, 58
Table 3 Comparison of delays for AND-OR Circuitccccooovieriiiiiieiieiceie 63
Table 4 Comparison of delays for AND-OR-INVERT circuit...............coooeevienicennennn. 70
Table 5 Comparison of delays for ADDER-MUX Circuit............c.ccooovveiiiiniiienineainn 80
Table 6 Comparison of delays for SIMPLE ..., 86

xii

Chapter 1

Introduction

The field of VLSI design has undergone rapid technology changes. The complexity
of the circuitry that can be built on a single chip has been growing at an enormous rate.
This increase in complexity has rendered chip design at the transistor level virtually
impossible [1]. Also, the critical importance of the time to market is especially recognized
in high technology computer products [2]. New products, from global positioning system-
based computers for navigation to multimedia educational environments, demand that
microelectronics system designers find new approaches to the concept-to-deliverable
system design cycle. In turn, designers require ever-improving capabilities from their
computer-aided design (CAD) tools, which frequently require new developments in
theory. Advances in theory facilitate such needs as a provably correct design

methodology and formal languages for specifications.

The fast growth of rapid system prototyping, which signifies the need to develop
systems in significantly less time or with significantly less effort, provides the context for

the driving problem in the design community in the present and for years to come [2].

Development of systems in significantly less time needs a high level language with
hardware constructs, which can be easily mapped onto readily available commercial gate
arrays. The significant advantage in using this design flow is: it is faster and hence costs
less in terms of time. ASIC designs are now routinely used for microelectronic systems,
and entire systems are synthesized from models in hardware description languages (HDLs)

such as VHDL.

HDLs allow designers to create models of chips at various levels in the design
hierarchy ranging from the system level to the switch level. HDLs can model control flow,
data flow and timing relationships between the various blocks while reducing the quantity

and detail of information that a designer needs to manage [3].

The VHSIC Hardware Description Language (VHDL) [4] is becoming very
popular in the electronic industry as a modeling tool. It has a large set of constructs for
describing circuit behavior and the circuits can be designed in top-down or bottom-up
fashion through varying levels of abstraction. It can be used by the designer to describe
the chip at the behavioral level, which is at a much higher level in the design hierarchy than
the transistor level and thus makes design quicker and easier. These models can, and
should be created so that they accurately represent the timing and functionality of the
design. In order to study timing relationships between modules, it is important to have
accurate delay information for high level models of those modules. These delays should

be taken into account while simulating the design at any level of abstraction.

The creation of accurate VHDL models for any design was one of the primary

objectives for developing this software tool, backann2, that back annotates realistic timing

delays into the VHDL behavioral models. This work describes the design implementation

of backann2.

1.1 Modeling in VHDL

The behavioral VHDL model created by a designer is simulated and tested for
correct results. This VHDL representation is then synthesized and verified again before
being transferred to silicon [5]. In a VHDL model the interface to and from the design is
defined in the entity declaration. This specifies the name of the entity, the port clause and
generic clause. In the behavioral VHDL model, the architecture body specifies the actual
behavior of the system in terms of inputs and outputs and the relationship between them.
This is made up of procedures, functions and one or more processes which have signal
assignments. These signal assignment statements change the value of the signal at an
instant in the future. This instant can be specified by appending a delay to the signal
assignment in terms of a number, a generic, or an equation [6,7]. Generics are constants
that are declared in the entity declaration or in the component declaration [4], and can be
assigned values through component instantiations and configuration specification.
Usually, delays for signal assignments are specified in terms of generics and are of type
TIME. With this modeling style, the chip can be implemented using different technologies
and the values of these generics can be changed to reflect the change in technologies
without changing the functionality of the model. When the design is simulated these

generics are assigned values by the designer, depending upon the technology of the chip.

1.2 Task Definition

A simulation that performs an accurate timing analysis can give the designer the
leeway to test the timing tolerance of the design by simulating it for different conditions
[9]. With early HDL's the behavioral models were simulated to verify the behavior and
timing was not considered. From the discussion above, it is seen that the accuracy of the
simulation of a VHDL behavioral model created using generics depends upon the accuracy
of the values specified for the generics. The design of a complex system becomes a time
consuming and labor intensive task if the designer has to calculate these delays manually.
It is even more difficult to calculate these values without a physical representation of the
chip. Also, the actual delay values in the chip may vary from what the designer calculated
and incorporated for the model's simulation. This might lead to race problems and timing
hazards [10,11] at a later stage in the design process. With the synthesis tools available
now the behavioral model can be synthesized into a gate level circuit and the delays can be

obtained.

In a behavioral model that is comprised of processes, each processes is associated
with delays. Generics are used to represent these delays associated with each process.
Thus the problem is to supply the model with accurate generic values for it to simulate

correctly [12,13]. This is one of the obstacles facing every designer.

1.3 Contributions

The primary objective of developing this software tool, backann2, was to calculate
accurate generic delays associated with each process and back-annotate these values into
the VHDL behavioral models. It has the following characteristics:

1. It was developed on a SUN SPARC station platform and written in 'C'.

2. It is interfaced with an X-window based graphical tool, the Modeler's Assistant [14,15].

3. It uses the CLSI VHDL tool integration Platform and Design Library System to extract
information from the VHDL code.

4. With the information obtained from CLSI-VTIP all the paths from the input ports to the
output ports are enumerated. This capability is of immense importance since it is
possible to verify the delays along all the paths which help in calculating accurate
generic values.

5. The software also uses another software routine backann [16]. The routine backann
calculates the individual process delays, using extract [17] developed for the

hierarchical behavioral test generator which interfaces with Modeler's Assistant.

6. The Synopsys Design Compiler is used to realize the behavioral model

into a gate level circuit and obtain timing details from it.

Complex data structures were defined to store the information extracted from
VHDL source file (signal declarations, generic values, input and output ports) and delay
values obtained from the gate level design created by Synopsys Design Compiler. The
software program consists of 2500 lines of Sun-C code developed independently and
about 4500 lines of modified Sun-C code from the original backann routine. The software

is well documented and commented to facilitate further development.

1.4 Contents

Chapter 2 discusses the background and literature review behind the development

of backann2.
Chapter 3 discusses and overviews the interfaces used by backann2 and the
development of the algorithm. It also provides a detailed description of the path

enumeration algorithm used in obtaining the exact generic delays.

The results obtained by applying the software to different classes of VHDL

models is presented in Chapter 4.

The future developments possible and certain inadequacies are discussed in

Chapter 5.

The Conclusions drawn from the work done are discussed in Chapter 6.

Chapter 2

Background and Literature Review

One of the most widely used hardware description languages is the VHSIC
Hardware Description Language (VHDL) [3]. VHDL was standardized by IEEE in 1987
as its 1076 standard [4]. The growing popularity of VHDL is because of its powerful sets
of constructs for modeling. Work with VHDL has successfully been done in the areas of
behavioral modeling, structural level modeling and modeling for logic synthesis. The
VHDL models are generally defined in two domains in the abstraction hierarchy: the
structural domain and the behavioral domain. In the structural domain the model is
represented as an interconnection of lower level primitives. In the behavioral domain, the

model is described by defining its input and output response [3].

2.1 Structural Modeling

A structural form of the design hierarchy implies a design decomposition process

[3]. This is because, at any chosen level, the system model is composed of an

interconnection of the primitives defined for that level. These primitives are frequently
defined with more primitives in the next lower level of the hierarchy. At the lowest level of
this structure is the primitive that has been specified in terms of its behavior. Thus, a
structural design can be compared to a tree, with the different levels of the tree
corresponding to the different levels of the hierarchy, the leaves of the tree (lowest level)

being equivalent to the behavior of the lowest-level design components.

2.2 Behavior Modeling

The behavioral model differs from the structural model in the manner in which the
architectural body is represented. In this domain the component is described by defining its
input/output response. It is not structural and the responses are defined in the form of
procedures and functions. The behavioral descriptions of systems are frequently divided

into two types: algorithmic and data flow.

Algorithmic: A behavioral description in which the procedure defining the input/output

response is not meant to imply any particular physical implementation [3].

Data flow: A behavioral description in which the data dependencies in the description

match those in a real implementation [3].

When the designer creates a behavioral model of the system, the inputs and
outputs to the system, called ports [4] are defined along with the generics in the entity

declaration. The architectural body for a behavioral model consists of one or more

processes that run concurrently. These processes contain signal assignments, loops and

other constructs that characterize the input-output relationship of the system.

For synthesis, a behavioral model is preferred when compared to structural model
because, with the behavioral model, the scope of the synthesizer can be used extensively.
The synthesizer is given the freedom to design the VHDL model which is optimized in
terms of all the constraints given by the designer. In case of structural model the whole

decomposition process is predefined and only the lowermost level can be optimized.

The VHDL description of a system is a textual representation. Development of a
VHDL behavioral model using text alone is a time consuming process. The model
development may be speeded up by using pictorial representations combined with text.
The pictorial representations make it easier to specify the interconnections between the
different components in the system. The following section will look into one such
pictorial representation of the system that aids in the quick development of VHDL

behavioral models [3].

2.3 Process Model Graph

The architectural body in a behavioral model is used to define the behavior of the
device. Each architectural body is a set of concurrently running processes. The processes
are either process blocks or various forms of the signal assignment statement [4]. The
architectural body can be represented pictorially as a Process Model Graph (PMG). In a
PMG each node represents a process in the architectural body and arcs represent the

signals passed between these process nodes [3].

INg

N3
»
Y
N2
MU ouT
I
N]
\.Effg«ff
SEL1 SEL>

-- Process Name: MUX

MUX 1: process (IN4,IN3,IN2,IN1,SEL2,SEL1)
variable SEL: BIT VECTOR(1 downto 0);

begin
SEL := SEL1 & SELO;
case SEL is

when "00" => QUT <= INI after MUX DEL;

when "01" => OQUT <= IN2 after MUX DEL;

when "10" => QUT <= IN3 after MUX DEL;

when "11" => QUT <= IN4 after MUX DEL;
end process MUX 1;

Figure 1 VHDL description and pictorial representation of a 4x1 MUX gate

There are various ways to represent a Process Model Graph. One of the
representations considers every process in the behavioral model to be a node and
represents it pictorially as a circle. The signals going into and coming out of each process
are represented as bubbles on the circumference of this circle. These process inputs and

outputs are referred to as ports in the rest of this thesis. The signals that are in the

10

sensitivity list are shown as filled bubbles [3]. The variables declared inside each process
are denoted in the form of a square. A process and its pictorial representation is shown in

Figure 1.

A typical Process Model Graph consists of a number of similar representations
(circles) as shown in Figure 1, connected by arcs. Each process circle in the graph has a
behavioral description associated with it. The arcs represent the interconnection between
the processes. These interconnections represent the signals between the different

processes.

The Process Model Graph represents a partitioning of the model [3]. This
partitioning can either be physical or functional.Both types of partitioning are shown in
Figure 2 and Figure 3. With physical partitioning, the delay values on the arcs represent
the propagation delay across specific blocks of real logic gates and flip-flops. Thus the
nodes may represent hardware components like multiplexers, logic gates and flip-flops.
Functional partitioning, as the name suggests represents the major functions of the system.
These functions do not correspond to any particular block of hardware [3]. In fact, two
functional nodes may share a block of logic in some physical implementation. For example

both the fetch and execute nodes in Figure 2 could access the same "real" memory.

We thus see that a Process Model Graph pictorially represents a VHDL behavioral
model, clearly illustrating the various relationships between parts of the design.There are
other graphical representations for behavioral models [30,31,32] but none of them is as

suitable as the Process Model Graph for the task at hand.

11

CLOCK

RUN

Figure 2 Process Model Graph- Functional partitioning

B1 S ouT1

Figure 3 Physical partitioning in a PMG

12

2.4 Timing Analysis in Digital Circuits

For designers, at any of the levels of hierarchy, one of the tasks facing them is
timing. In the past timing analysis was performed only at the gate level. This is because the
design was not modeled at higher levels. With the rising growth of HDL's it is possible to
model the designs in the abstract level and perform timing analysis. It is an advantage to
do timing at higher levels to verify the interaction of the different modules. Also, if timing
is not considered at any level, erratic behavior of the system, resulting in hazards may
occur during actual implementation of the system. Various algorithms are being

investigated to overcome this problem at different levels of the design hierarchy [3].

Computation of exact circuit delays, under both bounded and unbounded delay
models, has been formulated using Timed Boolean Functions by William K.C. Lam, et.al,,
[18]. Exact delays of combinational circuits for transition delay and delay as a sequence of
vectors was also computed by proposing a general circuit delay model that unifies all delay

models.

A "Path-Oriented Approach for Reducing Hazards in Asynchronous Designs" was
proposed by Meng-lin Yu and P.A. Subrahmanyam [19] , from a specification in the form
of a signal transition graph. This approach also suggests a method to avoid hazards by

adjusting the delays in the circuit.

The fundamental timing analysis problem in the verification and synthesis of
interface logic circuitry is the determination of allowable time separations or skews

between interface events, given timing constraints and circuit propagation delays. An

13

algorithm that provides tighter skew bounds and how this can be applied to synthesis
tasks is discussed by Elizabeth A. Walkup and Gaetano Borriello [20].

2.5 Timing in Behavioral VHDL Models

As discussed in an earlier section, the delay values for the processes in a PMG
represent the propagation delay across specific blocks of gates and other components in
the gate level model. These can be represented in the behavioral model in the form of
generics. When simulating these behavioral models, it is imperative that these models
should correspond to the equivalent gate level design in behavior. This means that the
timing of the model should be identical to that of the gate level design. Some of the factors
affecting the timing of gate level design are the wire load, the input delay, external delay
and operating power. The behavioral model or process represented by this gate should

take into account all the above factors.

A VHDL subset for high-level synthesis allowing flexible timing specification of
the circuit interfaces such that the optimization potential of classical scheduling and
allocation techniques can be used had been presented by A.Stoll, J Biessenack and S.
Rumler [21]. This work mainly concentrates on the description style of VHDL model, so

that the algorithmic specification can be validated by a conventional VHDL simulator.
A. Gadagkar and JR. Armstrong [13] developed an algorithm for timing

distribution inside each process for a given end to end timing . The methodology detects

and corrects inconsistencies in the timing specifications and allocates block delays to

14

meet the specifications. This has been incorporated in a tool called TIMESPEC. A

weakness of this tool is that the delays calculated may not be realistic.

S. Narayanaswamy and J.R. Armstrong [16] developed an algorithm Backann to
find the individual process and signal assignment delays. Backann determines the delay
values that are required for the signal assignments in the behavioral model by generating
the gate-level design of the model using the Synopsys Design Compiler. It extracts the
values for the delays required from the gate-level design. It then back annotates these
values into the VHDL behavioral model. The VHDL model is in the form of a PMG.
Backann extracts each process from the PMG, converts it into a separate entity,
synthesizes it, extracts the signal assignment delays and back annotates them into the
VHDL model. Though it calculates the signal assignment delays for each signal accurately,
it does not take into fact that when the whole model is synthesized, the design obtained
will not be the same as the one when each process is synthesized individually. This is
because when synthesizing a gate-level design, logic from different processes is frequently

merged and optimized.

The approach used in backann can be modified and refined to calculate accurate
delays for the whole synthesized models. The following chapter describes this modified

approach in detail.

15

Chapter 3

Algorithm Development

Earlier work done to calculate timing delays in behavioral models and back
annotating them, was not accurate for the reasons discussed in the previous chapter [16].
In this chapter we discuss a methodology for calculating accurate process delays and the

various tools used to achieve the same.

3.1 Modeler's Assistant

The Modeler's Assistant provides an X-windows environment for the input of the
information required for generating VHDL models. The tool uses the Process Model
Graph described in Chapter 2 as the basis for the creation of VHDL behavioral models. It

makes the creation of behavioral models easy and error free.

The development of a VHDL behavioral model starts with the creation of the
processes required. The designer creates the processes that are not available as a part of

the built-in library. This creation, is done interactively by clicking and selecting the menus

16

to create a process, naming it and then adding different ports to it. The designer can also
add the generics, constants and variables used in the same manner the ports were added.
Once this is done the behavioral description of the process is entered as text by the
designer. The VHDL language was developed primarily for simulation and not all
constructs of VHDL are synthesizable [22,23]. Thus the description written should be

synthesizable by the Synopsys Design Compiler.

After creating the processes required, the designer use these processes (user-
defined and built-in) to create the whole entity. These processes are then interconnected
by adding signals that are represented by the lines between the circles in the PMG [14,15].
A Process Model Graph developed from Modeler's Assistant and its VHDL description is

shown in Figure 4 and Figure 5.

3.2 Path Enumeration

When assigning exact delay values to the generics that are provided as a part of the

PMG description, one must consider the path traversed by the signals associated with the
generics. This can be achieved by identifying all the paths from the primary inputs to the
primary outputs in the PMG and enumerating them in terms of the generic delays along
the paths traversed. For example, the paths from the primary inputs Al (B1) and the
inputs A2 (B2) to the primary output OUT1, for the PMG shown in Figure 4, are defined
in terms of the processes generics as follows:

PATH1 = NAND2 DEL2 + AND DEL

PATH2 = NAND2 DEL1 + AND DEL
where NAND2 DEL?2, NAND2 DEL1 and AND DEL are the generic delays associated

17

A1

IN1

B1
()OUT

IN2

Cc2
A2

B2

PATHS FROM PRIMARY INPUTS TO PRIMARY OUTPUTS

PATH1 = NAND2_DEL2 + AND_DEL

PATH2 = NAND2_DEL1 + AND_DEL

Figure 4 A Process Model Graph and its paths in terms of generic delays

18

use WORK.VHDLCAD.all, WORK.USER_TYPES.all;
2k ok sk ok ok ok sk ke sfe sk sk sk ok ok ok ok ok sk sk sk sk sk sk sk ok st ok ok sfe sl 3k sk dk ok sk sk ok ok sk sk ok ok ok sk ok ok ok ok ok Ak K ok ok ok ok ok Kk %k
entity EG1 is
generic (
AND DEL: TIME ;
NAND2 DEL2: TIME ;
NAND2 DELI: TIME
)’.
port (OUT1I: out BIT;
B2:in BIT;
A2:in BIT;
B1:in BIT;
Al:in BIT);
end EG1;
9k 3k ok 3k sk sk ok ok 3k sfe ok sk ok 3k ok sk sk ok ok sk sk sk ok sk sk ok sk sk ok sk ok sk sk sk sk sk sk sk ok ok ok sk ok sk ok ok sk ok sk sk ok e sk sk sk ok sk
architecture BEHAVIORAL of EG1 is
signal C2: BIT;
signal C1: BIT;
begin

-- Process Name: AND21

AND21 4: process (C2,C1)
begin

OUT1 <= (I and C2 after AND DEL ;
end process AND21 4;

-- Process Name: NAND2V?2

NAND2V2 10: process (B2,42)
begin

C2 <= not(A2 and B2) after NAND2 DEL?2 ;
end process NAND2V2 10;

- Process Name: NAND2V1

NAND2V1 16: process (B1,A1)
begin

Cl <= not(Al and Bl) after NAND2 DELI ;
end process NAND2V1 16;

end BEHAVIORAL;
Figure S VHDL Description for the PMG in Figure 4

19

with processes NAND2V2, NAND2V1 and AND21 respectively.
To extract the details from the VHDL code of the model for path enumeration

CLSI-VTIP CAD tool is being used.

3.2.1 CLSI VTIP, DLS and SPI

As mentioned above, the CLS-VTIP cad tool is used to extract the details from
the VHDL model and store it in the form of data structures. In this application, the input
to the CLSI VTIP is the VHDL code obtained from Modeler's Assistant. The analyzer
processes the VHDL description, checks for syntactic and semantic errors and stores it in

an internal format in the Design Library System (DLS) [25,26].

The DLS consists of two fundamental components - one abstract, the other
concrete. The abstract component is the DLS Data Definition, which specifies the data
elements, objects and structures that are supported by the DLS, together with the abstract
operations that can be performed upon them. The concrete component is the Software
Procedural Interface (SPI), which is a software implementation of the DLS Data
Definition that supports the development of applications based on the DLS Data

Definition.

The DLS Data Definition consists of three layers: the Data Model, the Schema
and the Information Model. The Data Model defines the basic data elements (e.g.,
BOOLEAN, INTEGER, etc.) that can be used to represent the simplest concepts in any

design data (such as numbers, strings, lists, etc.). Some of these elements are generics®

* as defined by CLSI-VTIP CAD tool

20

(like NODES, ATTRIBUTES, LISTS, ITEMS). The Schema defines specific versions of
such generic objects, and in doing so specifies their interpretation. For example
ObjectType is defined as an instance of the generic type Node. Various attributes are
defined for each ObjectType and constraints are defined for each attribute. The Schema
defines four categories of ObjectTypes: General ObjectTypes, Expression Objectlypes,
Miscellaneous ObjectTypes and Library ObjectTypes. The top-level organization of the
design data information stored by DLS consists of LIBRARIES that contain LIBRARY
UNITS. A library is modeled by ObjectType LibraryRegion.

The Information Model defines how the specific objects can be assembled into a
complex structure. It mainly describes how libraries and library units store design data
information in a domain with a hierarchy of region nodes forming the backbone of the
domain. This representation of the DLS can be better understood from the Figure 6
[25,26]. Each domain or view modeled within the DLS Data Definition involves a separate
segment, or slice, of the Schema or the Information Model, but each slice is based upon
the common Data Model [25,26]. The Information Model defines the type of each signal,
variable and generic along with its initial value. For the VHDL model in Figure 4 the three
process statements and the signal assignment declarations are defined in the DLS Data
Model and the information in each process and details of each signal assignment is defined
in either the Schema or the Information Model. The signal type (BIT) is also stored in the
Information Model. The Schema contains data like which library the model is in and

contains entity, architecture and procedure declarations.

21

Slice 1 2 3 4 5 6

DLS échem

DLS Information Nlodel

DLS Data Model

Figure 6 Structure of DLS Data Definition

The SPI is the fundamental part of the DLS [27]. The SPI consists of data types
and callable routines that implement the data types and operations of the DLS. The SPI
provides layers of data types and routines to support the layers (primitive and generic data
defined by the DLS model) of the DLS Data Definition. The SPI is implemented in the C
programming language. These routines provide high level functions that can be
implemented in terms of lower-level functions. They support addition of extra information
to nodes, evaluation of expressions, symbol searches and generalized queries of DLS
structures. These SPI routines are made accessible by compiling the 'C' source files with
the SPI library functions. The functions used by SPI have names that are the same as the
data structures used by the DLS structures (these can be viewed using disbrowse) and are
easy to use. Figure 7 is a part of 'C' source code that uses some of the SPI functions.
Most of the routines used to access different ObjectTypes are named as the ObjectType

names themselves. The first routine that should be called before any other routine is called

22

is the OpenDLS. This initializes the Library System and the SPI. A variable "Liba" is then
given a value by calling an SPI routine NewLibrarySymbol, with the LibNamea supplied

/***********************OpenDLS*****************/

OpenDLS();
SetReportLevel(Warning),
SetAbortLevel(Error);
strepy(LibNamea,"../CLSl/clsi work");

JRFRERRRRA XA RRA AR Opon [ibrary "LibName " **¥* ¥ ¥k kxkokokkokosk/

Liba = NewLibrarySymbol(LibNamea),
OpenlLibrary(Liba),

/*******************Open the Ul’llt eokok sde sk sk skeokok skeokok skl sk skokskok /

Unit = OpenUnit(Liba, entity name, arch name, VHDLView, AugmentMode);
/*** Locate the region corresponding to the design unit declaration ***/

region = qRegion(qView(Unit)); /* get the library-level region(1) */

Decl = Value(Lastltem(qDecls(region))),/* get its last declaration & Val */
Decll= Value(Lastltem(qDecls(qExtends(region)))),;/* get into the entity region*/
region = qRegion(Decl); /* get the corresponding region(2) */

Entity region = qRegion(Decll); /* this is the region inside entity */

Figure 7 A portion of 'C' code to illustrate the use of SPI functions

as parameter. This function creates a Library symbol node that serves as a parameter to
procedure OpenLib, which makes available the library units within it. An appropriate
library unit is opened using the function OpenUnit. Using the function call gView, the

VHDLView node is obtained and from here gRegion is used to get into the library-level

RegionNode.

23

Library Unit

DLS LIBRARY

i

Primary name/entity name

y

Entity Declaration

l

Library Unit

Primary name/entity name

Y

Entity Declaration

Architectural Decl.

Signal De

cl.

L]

and

Input ports

Output portﬂ

y

Constant Decl.

Y

Generics

Signals

Functions,
Procedures,

Process State-

N

-

DU |

Sensitivity list

Statement list

Architectural Decl.

Signal Decl.

L]

and

Input ports

Output portj v

Constant Decl.

Y

" a

Generics
Signals
Functions, !
Procedures,
Process State-

Sensitivity list

Statement list

For Loop v % For Loop
If Statement Case Stmt. If Statement
Var. Assign. ignal Assign. Var. Assign.

y

Y y

Case Stmt.

Y

Source and Targe

Generics

Y

Source and Targel

Generics

Figure 8 The VTIP Design Library System (DLS)

24

The DLS Browser, as mentioned above, is a screen-oriented utility that allows
the user to examine the DLS library units. The Browser enables a user to open library

units, traverse and examine the nodes, the lists and data structures within a library unit.

With the help of the SPI functions the paths from the VHDL model's inputs to the
outputs are obtained. It is easier to visualize the VHDL code that was parsed and stored
in the DLS as a tree of data structures whose top starts with a string that specifies the
name of the file in which the description is stored. This is called the main unit or the
library unit. The tree then moves to what is called the body where the entity and the
architecture declarations are made. In the entity declaration branch the input and output
ports and the generic values are all stored. In the architecture declaration branch the
different processes, procedures, function declarations or statements are stored if it is a
behavioral model, and component instantiations are stored in case of structural models.
The branches keep on growing till all the subtypes (statements) are covered. This is

shown in Figure 8 (for behavioral models).

For example, if a Statement list is considered, it is classified into different types
like signal assignment, variable assignment, case statement, for loop and if loop
statements. If it is a signal assignment statement it has attributes like source and farget
that may consist of a signal or a combination of signals, the generic associated with the
signal assignment, if any, and the line number it occurred in. Similarly, if it is any other
type of statement then it would branch off into a sub region that consists of statement lists,

which in turn would contain a number of statements.

25

Open the DLS library unit
Access the architectural body (secondary name) of the unit
Obtain the different process statements.
For Each Process,
Assign a unique number to it (process-number),
To get all the inputs scan the sensitivity list of the process.
Obtain all the inputs to the process
Jfor each input,
Get the mode (IN -> primary input,
INOUT-> an intermediate signal)
To get each output in the process scan all the signal assignment
statements.
Get all the outputs of the process
Jor each output,
Get the mode (OUT-> primary output,
INOUT -> an intermediate signal)
Get the delay associated with each output.
Store these in the form of data structures
Close the DLS unit

Figure 9 Algorithm for obtaining the data from DLS library

SPI functions are called by the program to extract information. The information
extracted using these functions consists of process names, the inputs to each process, the
outputs of each process, the mode of the input and output signals and the generic delay
associated with each signal assignment inside each process. Each process is given a
unique number for identification. According to CLSI VTIP, a signal can be classified into

one of the three modes. If a signal is an output or input to the whole model then it is of

26

mode OUT or IN respectively, else the signal is of mode INOUT* [25,26]. These are

stored with other details, as shown in Figure 8, in the form of data structures.
3.2.2 Adjacency Matrix and Adjacency List representation

With the data available from the SPI functions, the connectivity of each process is
established in the form of a square matrix. The rows and columns of the matrix will be the
processes that are represented by the unique number assigned. If the output of one
process is connected to the input of another process then the entry
[process_output][process_input] is assigned one. The connectivity details for each input
signal and output signal, is obtained as described in the previous section. This square
matrix thus obtained is the adjacency matrix. The edge from each vertex to itself is also
assigned zero if there is no feedback. For example a matrix A of order 4x4 with entries,

0 1 1 0

0 0 1 0

0 0 0 1

0 0 0 0
imply there are 4 processes in the system. The output(s) of process 1 is(are) connected to
input(s) of process 2 and process 3. Similarly, process 2 is connected to process 3 and

process 3 to process 4.

* as defined by CLSI-VTIP CAD tool

27

From the adjacency matrix an adjacency list for each process can be obtained. This
is nothing but a linked list that stores the adjacency between each process. The adjacency
list is used for easier access. For the above example the adjacency list is shown below.
for processl :1 >3 -> 2
for process2:2 > 3
for process3 :3 -> 4
for process4 : 4
The order of the adjacency list is determined when each element in each row of the matrix
is scanned for a value one. When a one appears it will store it in the linked list and the
algorithm goes on to the next column in the same row. If it finds a one it pushes the
previous value, like a stack, and stores the recent value. Once the row is finished, it scans

the other rows and stores it in the next list in the same manner.

The algorithm to obtain the adjacency matrix and hence the adjacency list is shown
in Figure 10. The adjacency matrix and adjacency list for the model in Figure 4 is shown
below. Numbers 1, 2 and 3 are assigned to the processes AND21, NAND2V2 and
NAND2V1 respectively as their unique numbers.

Adjacency matrix :

0 0 0
1 0 0
1 0 0

Adjacency list :

for process 1 : 1

for process 2 : 2 ->1

for process 3 : 3 ->1

28

Create an NxN matrix (N -- number of processes in the model). Make all its entries 0

For all the processes,
Compare the outputs of each process with the inputs of every other process.
If the two signals match (and the mode of these signals is INOUT) then the
Qutput of the former process is connected to the input of the later process.
If the above condition is true then set the matrix entry to 1.
The matrix thus formed is the Adjacency matrix.
In the adjacency matrix,
For each row in the matrix
for each column in that row,
Check if the entry is 1,
if it is 1 then push the previous node value and store the new
value in the list

else continue till all the columns are scanned.

Perform the same operation for each row and obtain the list for each row

Figure 10 Algorithm for obtaining the adjacency matrix and the adjacency list

3.2.3 Depth First Search Algorithm

The signal paths in the VHDL model are obtained by implementing the Depth First
Search (DFS) Algorithm [8]. As mentioned earlier, each of the processes in the PMG is
considered to be a node and the sensitivity list to each process is considered as inputs to
the node. To obtain a path the algorithm visits every node in the graph, the first node and
the last node being the process that contains the primary input and the process that
contains the primary output respectively, and checks every edge in the graph

systematically. The edges for the processes are checked by inspecting the adjacency list.

29

The program is written in such a way that an array is filled (mark val[]) as it visits every
node of the graph. The array is initially set to all zeros, so that the entry for mark val for
the i th node is a one when visited. To visit a node, we check all the edges to and from the
node to see if they lead to nodes that haven't yet been visited (as indicated by zero values);
if so visit them. The above mentioned recursive function, which visits all the intermediate
nodes from the input to the output, is called and all paths for a particular combination of
input to output is obtained. The output of each process connects to the input of another
process. Once the output node is reached it traces back to the input node and obtains all

the paths. The same procedure is used to trace all the paths from different inputs to

1. Obtain the start and end node (this is the process number of the nodes with primary
inputs and primary outputs)
2. Create an array and initialize all its elements to zero (val_mark[]). This array is to
denote whether the node has been visited.
3. Create an array which contains the latest path (que[]) and a variable (last) which
gives the number of entries in the array.
4. If the start and end node is the same, then a path has been obtained else
store the start node in a temp variable.
5. Assign the the link list to a variable of the same type.(say p)
6. If the node, in the linked list points to another node say x and the value of
val_mark{x] is equal to 0, add x to que and perform 4 to 6 again till the end node
is reached.
7. If the node, in the linked list points to another node say x and the value of val mark[x]
is equal to 1, p = linked field of p.

Perform steps 1 to 7 for all start-end node combinations.

Figure 11 DFS Algorithm to find all the paths between inputs and outputs

30

outputs. With the data obtained from the DLS and the adjacency list the paths are
obtained using this algorithm. The algorithm is explained in Figure 11. This gives the
paths in the form of node numbers. For example consider Figure 4, its adjacency matrix
and adjacency list. The inputs to the model are in Process 2 and Process 3 and the output
of the model is in Process 1. Using Depth First Search algorithm recursively, we obtain
2 land 31

as the paths. Each path is stored in a linked list. The paths obtained in the form of node
numbers are transformed to the form of generics. The algorithm for doing this is given in

Figure 12.

1. Obtain the initial node (number) and store it in i

2. Obtain the next node number from the linked list and store it in j

3. Find the processes corresponding to i and j

4. If i and j are equal then it is the final node, and so obtain the output of the process
and the generic delay associated with it. To obtain the output the signal will be of mode
our.

5. If i is not equal to j compare the output signal of process i and input signal of process
j and if they are equal and the mode is INOUT then find the generic associated with it.
Store the generic delays associated with each path in a file.

6. Now i = j and j = next number in the path.

Perform steps 4 -6 for all nodes in the path and steps 1 to 6 for all paths

Figure 12 Algorithm for representing the paths in terms of generic delays

31

search_path = ". /project/rassp1/synopsys3.2b/libraries/syn
/project/rasspl/synopsys3.2b/libraries /project/rassp1/synopsys3.2b/sparc/packages "
link library = "Isi_10k.db "

target library = "Isi_10k.db "

symbol_library = "Isi 10k.sdb "

default schematic _options = "-size infinite"

hdlin_source to gates mode = "off"

create_schematic -size infinite -gen database

set_operating conditions -library "Isi_10k" "BCCOM"

set wire load "20x20" -library "Isi 10k"

set_max_fanout 5 " /home/mahadev/scode/EG1.db:EG1"

set_min_fault coverage 95 -area_critical -timing critical

set_register type -flip _flop "FJK2SP"
derive_timing constraints -no_max_period -min_delay -fix hold -max_delay scale 1.00 -
min_delay scale 1.00 -period scale 1.00

set_boundary optimization " /home/mahadev/scode/EG1.db:EG1"

set_flatten true -design{"/home/mahadev/scode/EG1.db: EG1"} -effort high -minimize
none -phase true

set_structure true -design{"/home/mahadev/scode/EG1.db: EG1"}-boolean true -timing
frue

link -all

compile -map _effort high -verify -verify effort high -boundary optimization

report cell >> rep.out

report_area >> rep.out

report_constraints -all_violators >>rep.out

report_timing -from Al -to OQUTI -max_paths 2 >>rep.out

report_timing -from B1 -to OUT1 -max_paths 2 >>rep.out

report_timing -from A2 -to OUTI -max_paths 2 >>rep.out

report_timing -from B2 -to OUT1 -max_paths 2 >>rep.out

Figure 13 The logfile of user specified commands to the synthesizer for Figure 4

32

Thus using the CLSI VTIP tool and Depth First Search algorithm all the paths
from the input ports to the output ports can be found. These paths are used for calculating

the exact delays. This is explained in the sections below.

3.3 BACKANN

Backann is a software tool which uses the Process Model Graph and the VHDL
model generated by the Modeler's Assistant [14,15]. It synthesizes each process in the
PMG individually. The gate level design is synthesized for each process and the delays
across each process are calculated accurately. It extracts [17] each process, stores it as a
separate entity and uses the Synopsys Design Compiler to synthesize the gate level design
and calculate the end to end delays of each process, by calculating the delay values for
signal assignments in the process. Backann thus calculates each process delay and then
stores it back into the VHDL model as generics. The designer can specify whether a
minimum delay model (minimum rise and minimum fall) or a maximum delay model
(maximum rise and maximum fall) is required. Depending on the type of delay model
required, (maximum or minimum) the generic delays are calculated as an average of rise
time and fall time. The commands for executing the Design Compiler is obtained from a
script file. The script file is obtained from a log-file given by the user. A sample log_file is
shown in Figure 13. This file contains details like the design to be read, the constraints for
the model, the operating conditions, etc. The back annotated generic delays in the VHDL
model are important for analyzing the timing in all the paths, which was obtained in the

previous section by path enumeration.

33

Performing report_timing on port 'Al".
Performing report timing on port 'OUTI".

sk ke ok ok ok ok sk ok ok ok ok ke ke ok ok ok sk ok ok ok sk ok sk ke ok ok sk ok ke ok ok ok ok ok ok sk ke ok Kok
Report : timing
-path full
-delay max
-max_paths 2
Design : EG1
Version: v3.2b
Date : SunMay 7 15:45:46 1995

2k 3k 3k ok 2k 5k ok ok 3k 3k ok 3k ok 3K 2k 3k 3k 3k sk 3k ok 5k Kk ok ok Kk ok 5k sk ok sk %k ok 3k %k %k k ok k k

Operating Conditions: BCCOM Library: Isi_ 10k
Wire Loading Model Mode: top

Design Wire Loading Model Library

EGI 20x20 Isi_10k

Startpoint: Al (input port)
Endpoint: OUT1 (output port)
Path Group: default

Path Type: max

Point Incr Path
input external delay 0.00 0.00f
Al (in) 0.00 0.00f
U4/Z (AO2P) 0.47 047r
OUTI (out) 0.00 0.47r
data arrival time 0.47
max_delay 0.00 0.00
output external delay 0.00 0.00
data required time 0.00
data required time 0.00
data arrival time -0.47
slack (VIOLATED) -0.47

Figure 14 A part of the timing report from the Synopsys Design Compiler

34

3.4 Synthesis of the Model using Synopsys Design Compiler

The Synopsys Design Compiler is invoked from the program through the UNIX
Bourne shell and after synthesizing the design gives an optimized gate level circuit. The
level of optimization and the constraints for the design should be given before optimizing.
Since the circuit is optimized the intermediate signals cannot be identified unless the
design and the reports for the design are analyzed manually. Only the input and output
ports are visible to the designer. The set of commands for reading in and then optimizing
the design is done by creating a script file that will perform all the functions required by
the user. This file is specified in the command line to the Synopsys Design Compiler and

the required tasks are performed [29].

The specifications to the designer include the design libraries to be used, the
different components like specific flip-flop and latch types, maximum and minimum fanout
and fanin. Constraints like area, speed, setup time, hold time can also be specified. It also
includes the level of optimization and verification. These specifications are written by the
designer and stored as a log file. One such log file is shown in Figure 13. Since the Design
Compiler is evoked to compile each process in the design by backann, to synthesize each
process, and then to compile the whole design, two log-files are required. The first log file
is used to compile each process (using backann) and the second log file is used to compile
the whole model. The same log file cannot be used for both because while compiling the
whole design additional information for the timing report to be generated is required. To
differentiate these log-files the one used to store the whole design is stored with a suffix 1
(e.g. : EGl.logl and EG1.log). The main constraint used for calculating the generics for

the given model was minimum area. If registers are used in the circuit, the D flip-flop was

35

used. The maximum fanout of each gate in the circuit was restricted to five and Boolean
optimization was used. The Design Compiler is invoked by a script file created by the
software. The first line of the script file is

read -f <vhdl file name to be synthesized>
which when executed would read in the VHDL file to be synthesized. To open the Design
Compiler the command used is

dc_shell -f <script file name>

The contents of the log_file created by the user is appended to the script file. The log_file
also includes commands to extract delays in Synopsys Design Compiler. It is done by
using report_timing [28]. The report_timing command not only reports the delay values
required but also other information. The other information includes the technology used,
the wire delay model, which determines the propagation of a signal through a wire
between two cells, the start and end points of the signal, type of delay (maximum or
minimum), the intermediate cells through which the signal is propagated and delays
through each of the cells. These are all stored in the report file rep.out. A part of a

report_file generated for the VHDL model shown in Figure 4 is shown in Figure 14.

The program then scans the report file and obtains the delays and stores them in a
file. The algorithm for scanning the report file rep.out is given in Figure 15. It scans for
the string data arrival time in the report file and obtains the time taken for the signal. The

output is stored in a file TMPREP.OUT.

36

Open the report file
Open a new file to store the extracted data (IMPREP.OUT)
If string "Startpoint: " is found in the report file and
If string "Endpoint: " occurs in the next line,
then scan the next few lines for Arrival Time.
If arrival time is found then copy the value along with Startpoint and
Endpoint into the file IMPREP.OUT
Continue the procedure till all arrival times are obtained.

Figure 15 Algorithm for extracting the delay values from the report file

3.5 Circuits and Their Types

Circuits can be broadly classified as combinational and sequential. A combinational
circuit is one who's outputs depend only on its current inputs. The outputs of a sequential
circuit depend not only on the current inputs but also on the past sequence of inputs,
possibly far back in time. A feedback loop is a signal path of a circuit that allows the
output of a gate to propagate back to the input of the same or another gate; such a loop

generally creates a sequential circuit behavior.

In our application which uses Process Model Graphs, the above mentioned circuits
can be classified as :
Class 1 : Combinational fanout free circuits.
Class 2 : Combinational circuits with fanout.

Class 3 : Register Sequential Circuits

37

Class 4 : Highly Sequential Circuits

Fanout free combinational circuits are circuits in which the fanout of the outputs of each
process is one. In graphical terms this is like a binary tree, where the root of the tree is the
output and the leaves are the inputs. Circuits in which the outputs of the processes are fed
in as input to more than one process are classified as Class 2. Class 3 circuits are
sequential circuits that alternate blocks of combinational logic with registers. Class 4
circuits are sequential circuits which either have feedback loops or irregular register or
flip-flop structures. All the above circuits can either have asymmetrical nodes (e.g. :

ADDER's, MUX's) or symmetrical nodes (e.g. : AND gates, NOR gates etc.).

The principle for calculating the generic delays for the first three classes is
discussed. The circuits are subdivided into these classes for better understanding of the

algorithm used to obtain the delays.

3.5.1 Calculation of Delays

The VHDL model illustrated in Figure 4 is a Class 1 circuit. Using the result
obtained from Depth First Search Algorithm and the algorithm mentioned in Figure 12 the
paths obtained from the primary inputs to the primary outputs are,

PATH1 = NAND2 DEL2+AND DEL ;
PATH2 = NAND2 DEL1+AND DEL ;

When this model is synthesized as a whole, the functional paths that are

considered are PATH1 and PATH2. When the timing is reported we can find the time

taken for a signal to traverse through PATH1 and PATH2.

38

1. Consider all the paths from input to output
2. Obtain the values of each path from the Synopsys Design Compiler
3. From backann obtain the individual generic delay.
4. If there are paths with only one generic, i.e. if it traverses only one process
obtain the generic and store it. Also, overwrite the value earlier obtained for the
generic.
genericX = total delay of the path(single process delay)
5. If in any of the paths, if any of the above generic value occurs, subtract the generic
from the path and obtain the new path delay. This will be equal to the sum of the
remaining generic delays,which are to be obtained.
6. If after performing step 5 any singular generic delay is obtained, steps 4 and 5 are
repeated until all delays are exhausted.
7. If either all the singular delays are exhausted and the paths are equivalent to sum of
individual generic delays or steps 4,5 and 6 were never performed, consider the path
with minimum number of generics. For each generic in that path,
genericY _new = genericY/ <new path_delay> * path_delay (1)
genericY = genericY _new (2)

where genericY in (1) is the value calculated from backann, path delay - is the sum

of individual delays obtained from Synopsys Design Compiler or from step 5 and new
path_delay is the sum of the generics in that path obtained from backann. The path
maybe either the entire path from input to output or a portion of the path if Step 5 is
performed.
8. After step 7 check if any of the remaining paths has a generic just calculated. If it
does perform step 5 and 6 and if necessary steps 7 and 8 till all delays are exhausted. If|

it does not then perform steps 7 and 8.

Figure 16 Algorithm for calculating the delays

39

When each of these processes is converted into a separate entity as in Backann, the
optimization would be only for that process, but when the whole model is being optimized
the gate level circuit of the design can no longer be identified as individual processes. The
whole model would be optimized and redundancy in the code would also be checked for.
The end to end delay will no more be the sum of individual process delays. The new end
to end delay after optimizing the whole model will in general be different. It may be more
or less than the original values of PATH1 or PATH2 depending on the constraints applied

to it.

The motivation is to find individual process delays which would satisfy the given
constraints when the model is synthesized. It is clear that when the end to end path delay
changes, the logic corresponding to the processes in the original model also changes
accordingly. This means that an increase or decrease in the end to end delay signifies a
similar change in the original process delays. The word original is used because the gate
level circuit of the VHDL model will perform the same function as the behavioral model,

but the similarity ends there.

Now the problem of finding the generic delays reduces to a linear programming
problem (ratio problem). The algorithm for finding the individual process delays is shown
in Figure 16. Consider the above mentioned example. The new generic delays
from the algorithm (step 4 and step 5) will be of the following form,

NAND2 DEL2 new = NAND2 DEL2/PATHI1* < path delay from design comp>....(1)
NAND2 DEL2 =NAND2_DEL2 new....(2)

AND DEL new = AND DEL/PATHI1* < path delay from design comp>....(3)

AND DEL = AND_DEL new....(5)

40

NAND2 DEL1 new 2= < path delay from design comp> - AND DEL....(6)
The values for PATH1, NAND2 DEL2 and AND DEL in equations 1 and 3 are assigned

the values obtained in backann.

3.6 Interface with MATLAB

The new values were obtained using MATLAB which is a complete, self-contained
environment for programming and working with data and which often interacts with data
and programs external to it. The results obtained from the previous sections are stored in a
single file. MATLAB is invoked using system calls in 'C' and the output is stored in a file.
The file is then scanned and the delay values are obtained. These values are then back

annotated into the VHDL model.
This chapter thus explains the method by which individual process delays are

calculated and back annotated to the VHDL description. The entire flow of the process is

shown in Figure 17.

41

Text Input

Prompts

Responses

Modeler’s
Assistant
Input the log files
in format shown
\ 4

i

:

:

Process Model
Graph

VHDL behavioral
description

CLSI/DLS/VTIP

Figure 17 Flow chart for Backann2

42

Execute Backann

process delays

Obtain the procesJ

node number

Y

Obtain the inputs
to each process
and its mode

Y

Obtain the outputsl,
its modes and the
generic delays ass{
for each process

Y

Initialize a matrix
(Adjacency) with
all its entries zero

Y

Compare every O/P
with every /P of all
processes.

&

Figure 17 Flow chart for Backann2

Obtain individual 4—'

names and give 4—'

43

i1

If the above is true
and if their mode is
the same-entry of
adj. mat. is one

Y

From the adjacency
matrix obtain
adjacency list

Y

Applying Depth
First Search, find - C)
all the paths from

I/P’s to O/P’s

Create a Script
@ > file from the
log_file

Invoke Synopys
Design_Compiler

]

Parse file written b

Design_Compiler

and acquire the en
to end delays

&

Figure 17 Flow chart for Backann2

44

Store all values in
a file

L

Create a script
file to invoke
MATLAB

L

Extract new gene-
ric values from O/P
of MATLAB and

store it in a file

v

Check for the
correctness of
each generic delay

L]

Backannotate the
generics into the
VHDL model

Y

END

Figure 17 Flow chart for Backann2

45

Chapter 4

Results

In this chapter the back-annotated models produced by the software for three

classes of circuits will be discussed.

4.1 CLASS 1 Circuits

4.1.1 Majority Function Detector

This is a simple combinational circuit which performs the function
MAJ3 =1IN1.IN2 +IN3 . IN4 + IN5 . IN6
The inputs to the AND gates are bit_vectors of length 5 and the output is of the same

length. The three AND gates and the OR gate form the four processes in the Process

Model Graph as shown in Figure 18. The VHDL description of the combinational circuit

generated by Modeler's Assistant is shown in Figure 19. This type of classification can be

classified as Class 1 type since output of each process is fanout free.

46

Figure 18 Process Model Graph of Majority Function

47

use WORK.VHDLCAD.all, WORK.USER _TYPES.all;
e KK ok 3 3 3k 3k ok 3k ke ok ok ok ok ok ok ok ok oK 3k ok 3k 3k K 3K sk ok o K 3k 3k ok ok 3 ok ok ok 3k K ok ok ok 3k oK ok ok ok ok ok ok ok ok ok ok ok K
entity MAJ3 is
generic (
OR3 DEL: TIME;
AND?2 DEL3: TIME;
AND?2 DEL?2: TIME;
AND?2 DELI: TIME
)’.
port (MAJ OUT: out BIT V'ECTOR(4 downto 0);
ING: in BIT V'ECTOR(4 downto 0);
IN5: in BIT VECTOR(4 downto 0);
IN4: in BIT VECTOR(4 downto 0);
IN3: in BIT I'ECTOR(4 downto 0);
IN2: in BIT VECTOR(4 downto 0);
INI: in BIT VECTOR(4 downto 0));
end MAJ3;

% 2k ok 2k sk 3k 3k ok ok ok 2k ok ok 3k ok ok %k 5k ok 3k sk ok 3k sk 3k 3k ok ok 3k 3k ok 3k ok ok ok ok ok %k ok 3k %k ok 3k % 3k 3k %k ok ok %k ok ok %k ok 3k ok k Kk k

architecture BEHAVIORAL of MAJ3 is

signal OQUT3: BIT 'ECTOR(+ downto 0);

signal OUT2: BIT VECTOR(+4 downto 0);

signal OUT1: BIT VECTOR(+4 downto 0);
begin

-- Process Name: OR31

OR31 2: process (OUT3,0UT2,0UTI)
begin

MAJ OUT <= OUT! or OUT2 or OUTS3 after OR3_DEL;

end process OR31 2;

-- Process Name: AND2V'3

Figure 19 VHDL Description of MAJ3

48

AND21'3 20: process (IN6,INS5)
begin

OUT3 <= INS5 and IN6 after AND2 DEL3;

end process AND2V3 20;

-- Process Name: AND2]72

AND2V2 14: process (IN4,IN3)
begin

OQUT2 <= IN3 and IN4 after AND2 DEL2;

end process AND2172 14;

-- Process Name: AND2V1

AND21'] 8: process (IN2,IN1)
begin

OUT! <= INI and IN2 after AND2 DELI;

end process AND2V'1 _8;
end BEHAVIORAL;

Figure 19 VHDL description of MAJ3

49

The input to output paths are shown in Figure 20 and the delays obtained from

backann and the equations used for calculating the new delays are shown in Figure 21.

TP1 = AND2 DEL3+OR3 DEL ; IN6 MAJ OUT
TP2 = AND2 DEL2+OR3 DEL ; IN4 MAJ OUT
TP3 = AND2 DELI+OR3_DEL ; IN2 MAJ OUT

Figure 20 The paths obtained from input to output ports for MAJ3

In Figure 21 the first three equations are obtained from the report generated by the

Synopsys Design Compiler. The individual process delays are the outputs from backann.

1P1 = 0.545
P2 = 0.545
TP3 = 0.545

OR3 DEL = 0.485000
AND2 DEL3 = 0.360000
AND2 _DEL2 = 0.360000
AND2 DELI = 0.360000

TP1 newx = AND2 DEL3+0OR3 DEL ;

AND2 DEL3 new = AND2 DEL3/TP1 newx*TPl
AND?2 DEL3 = AND2 DEL3 new

OR3 DEL new = OR3 DEL/TP1 newx*TPl

OR3 DEL = OR3_DEL new

AND2 DEL?2 = TP2-OR3_DEL

AND2 DELI = TP3-OR3_DEL

Figure 21 The equations used for obtaining the delay values for MAJ3

The equations following the individual delays are obtained by manipulating the equations

50

in Figure 20. The delay values obtained are shown in Figure 22. These values are
backannotated into the VHDL model. A part of the back annotated model is shown in
Figure 23. A comparison of the actual value obtained from Synopsys and the calculated

value using backann2 is shown in Table 1. It is seen that there is an individual error of

AND2 DEL3 = 0.2322
OR3 DEL = 0.3128
AND2 DEL2 = 0.2322
AND2 DELI = 0.2322

Figure 22 The new delay values obtained from MATLAB

use WORK.VHDLCAD.all, WORK.USER_TYPES.all;

3k 3k 3k 3k ok 3k ok sk 3k 3k ok ok sk ok ok ok ok 3k 3k sk sk 3k ok ok 3k 3k sk ok sk 3k sk ok ok Sk 3k 3k A ok 3k ok ok 3k 3k ok sk sk 3k %k ok 5k 5k %k %k ok %k %k %k k *k

entity MAJ3 is
generic (
OR3 DEL: TIME := 0.3128 ns;
AND2 DEL3: TIME := 0.2322 ns;
AND?2 DEL2: TIME := 0.2322 ns;
AND?2 DELI: TIME := 0.2322 ns
)’.
port (MAJ OUT: out BIT VECTOR(4 downto 0);
ING6: in BIT VECTOR(4 downto 0);
IN5: in BIT VECTOR(4 downto 0);
IN4: in BIT 1'ECTOR(4 downto 0);
IN3: in BIT VECTOR(4 downto 0);
IN2: in BIT VECTOR(4 downto 0);
IN1: in BIT VECTOR(4 downto 0));
end MAJ3;

_eskok ok ok ok ok ok ok ok ok ok ok o ok e ok ek ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk sk kok skok ok osk sk sk kk ok ok ok

architecture BEHAVIORAL of MAJ3 is

signal OUT3: BIT VECTOR(4 downto 0);
signal OUT2: BIT VECTOR(+ downto 0);
signal OUT1: BIT VECTOR(4 downto 0);
begin
Figure 23 A part of the VHDL description after back annotation of generic delays

51

Table 1 Comparison of delay values for MAJ3

Generic Delays in the Values Obtained from Values obtained from

Model the report backann2
AND2_DEL3 0.22 0.2322
AND2 _DEL2 0.22 0.2322
AND2_DELI1 0.22 0.2322

OR3_DEL 0.32 0.3128

5.54% and 2.25 % for the AND_DEL and OR_DEL respectively. The average error is
found to be 4.86 %.

4.1.2 ALARM CIRCUIT

In this circuit [33], the output alarm of a house is triggered if the panic input is one
or if the enable input is one, the exiting input is zero, and the house is not secure, the
house is secure if window, door and garage inputs are all one. This circuit is a fanout
free combinational circuit where nodes are symmetrical but the circuit is not symmetrical.
The Process Model Graph and the VHDL description of the model are shown in Figure 24
and Figure 25 respectively. The different paths and the equations involved are shown in

Figure 26 and Figure 27 respectively.

This example is different from the previous example because there are paths which
traverse only one node and so all the steps mentioned in the algorithm are performed.

These nodes are first considered. Here, OR_DEL?2 is a path from PANIC to ALARM.

52

EX

NEXT
® ENABLE

Figure 24 Process Model Graph of ALARM System

53

The gate delay is obtained from the Synopsys Design Compiler. This delay is then
subtracted from the other paths as shown. Since in PATH3 the two generics INVDELI
and AND3DEL1 cannot be obtained like the other paths, it is obtained in the form of

proportions. The same principle can be used for all circuits.

The new generic values thus obtained, shown in Figure 28, are then back

ok e ok sk ok ol ok ok sk ok ok ok ok ok ok 3k ok ok 3k >k sk ok ok ok 3k 3k ok sk sk ok ok ok dk 3k 3k ok sk sk ok sk 3k sk ok ok sk ok ok ok ok o sk sk sk sk sk sk ok ok

entity ASYM is
generic (

INVVDELA: TIME;
INVVDELI: TIME;
OR2 DEL: TIME;
INVSECDEL?2: TIME;
AND3DELI: TIME
)’.

port (EXT: in BIT VECTOR(8 downto 0);
ALARM: out BIT VECTOR(8 downto 0);
PANIC: in BIT VECTOR(8 downto 0);
ENABLE: in BIT VECTOR(8 downto 0),
GAR: in BIT VECTOR(8 downto 0);
DOOR: in BIT VECTOR(S8 downto 0);
WIN: in BIT VECTOR(8 downto 0));

end ASYM;

ok sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok sk sk ok Sk 3k ok sk sk ok sk sk sk ok ok sk ok ok sk sk ok sk ok sk 3k sk e sfe ok ok ok ok sk ok ok sk sk kosk sk ok

architecture BEHAVIORAL of ASYM is

signal INEXT: BIT VECTOR(8 downto 0);

signal QUSEC: BIT VECTOR(S8 downto 0);

signal SEC: BIT VECTOR(8 downto 0);

signal INOR: BIT VECTOR(8 downto 0);
begin

-- Process Name: INVVA

Figure 25 VHDL description of ALARM system

54

INVVA 4: process (EXT)

begin
Jor1in 0 to 8 loop
INEXT(l) <= not EXT(I) after INVVDELA;
end loop;

end process INVVA 4;

-- Process Name: INVV

INVV 9: process (SEC)

begin
Jfor Iin 0 to 8 loop
QUSEC) <= not SEC(1) after INVVDELI;
end loop;

end process INVV 9;

-- Process Name: OR2V

OR2V 14: process (PANIC,INOR)
begin
for Iin 0 to 8 loop
ALARM(I) <= INOR(I) or PANIC(I) after OR2 _DEL;
end loop;

end process OR2V 14;

Figure 25 VHDL description of ALARM system

55

annotated to the VHDL behavioral model. The comparison of the delays obtained from

backann2 and Synopsys Design Compiler report is shown in Table 2.

-- Process Name: INVSEC

INVSEC 20: process (ENABLE,INEXT,OUSEC)

begin
for I in 0 to 8 loop
INOR(I) <= OQUSEC(I) and INEXT{(I) and ENABLE(I) after INVSECDEL2;
end loop;

end process INVSEC 20,

-- Process Name: AND3V1

AND3V1 27: process (GAR,DOOR, WIN)
begin
forI in 0 to 8 loop
SEC(I) <= WIN(I) and DOOR(I) and GAR(I) after AND3DELI;

end loop;

end process AND3VI 27;

end BEHAVIORAL;

Figure 25 VHDL description of ALARM system

56

It can be seen from Table 2, that AND3DEL1 and INVVDELI have an error percentage
of 1.18 and 1.05 respectively. The other generics have zero error. The average error

percentage is found to be 1.12 %.

TP1 = INVVDELA+INVSECDEL2+0OR2 DEL
TP2 = INVSECDEL2 + OR2 DEL
TP3 = AND3DELI1+INVVDELI+INVSECDEL2+0OR2 DEL
TP4 = OR2 DEL
Figure 26 The different paths in the ALARM system

TP1 = 1.035
P2 = 0.85
TIP3 = 1.565
P4 =0.36

INVVDELA = 0.150000
INVVDELI = 0.150000
OR2 _DEL = 0.360000
INVSECDEL?2 = 0.440000
AND3DELI = 0.440000

OR2 DEL = TP4

INVSECDEL?2 = TP2-OR2 DEL

INVVDELA = TP1-OR2 DEL-INVSECDEL?

TP3 new = TP3-OR2 DEL-INVSECDEL?2

TP3 newx = AND3DELI+INVVDELI
AND3DELI new = AND3DELI/TP3 newx*TP3 new
AND3DELI = AND3DELI new

INVVDELI new = INVVDEL1/TP3 newx*IP3 new
INVVDELI = INVVDELI new

Figure 27 Input to MATLAB for ALARM system

57

OR2 DEL - 0.3600

INVSECDEL?2 = 0.4900
INVVDELA = 0.1850
AND3DELI = 0.5336
INVVDELI = 0.1819

Figure 28 The delays obtained from backann2 for ALARM system

Table 2 Comparison of the delays for ALARM system

Generic delays of the Values Obtained from Values Obtained from

model the report Backann2
OR2_DEL 0.3600 0.3600
INVSECDEL2 0.4900 0.4900
INVVDELA 0.1850 0.1850
AND3DELI1 0.5400 0.5336
INVVDEL1 0.1800 0.1819

4.2 CLASS 2 CIRCUITS
4.2.1 AND-OR CIRCUIT

This is a simple combinational circuit with inputs XY,Z and A bit_vectors and

outputs OUT1 and OUT2. The operation performed by one of the processes, FUNCI,
F=XY+XYZ

is given in as input to 2 other processes INV3V and OR3V2 and the outputs are obtained.

The Process Model Graph representing the above combinational logic is shown in Figure

29 . The outputs OUT1 and OUT?2 are of the form

58

Figure 29 Process Model Graph of AND-OR circuit

59

OUTI=F=(XY +X.Y.2)
OUT2= A+F=A+XY+X .YZ

use WORK..VHDL.CAD.all, WORK.USER_TYPES.all;
= ko 3k ok sk ok 3k 3k 5k sk ok ok ok sk ok ok sk 3k A sk sk ok sk 3k sk ok ok sk sk 3k ok ok ok ok sk sk ok sk ok 3k ok sk % 3k ok ok ok ok 3k ok 3k 3k ok sk Kk Kk ok ok k
entity FOUT EGI is
generic (
OR DEL: TIME;
INV" DEL: TIME;
F DEL: TIME
),.
port (OUT2: out BIT VECTOR(3 downto 0);
A:in BIT I'ECTOR(3 downto 0);
OUTI: out BIT I'ECTOR(3 downto 0);
Z: in BIT VECTOR(3 downto 0);
Y:in BIT I'ECTOR(3 downto 0);
X: in BIT VECTOR(3 downto 0));
end FOUT EGI;

******i;***

architecture BEHAVIORAL of FOUT EGI is

signal F: BIT VECTOR(3 downto 0);
begin

-- Process Name: OR3)72

OR3172 4: process (F,A)
begin

OUT2 <= A or F after OR_DEL;
end loop;

end process OR3V2 _4;
Figure 30 VHDL description of the AND-OR circuit

60

-- Process Name: INV3V

INI'31" 10: process (F)
begin

OUT1(1) <= not F after INV DEL;

end process IN1'31" 10;

-- Process Name: FUNC1

FUNC1 15: process (Z,Y,X)
begin

F<=((Xand?) or ((not X) and Y and Z)) after F DEL,

end loop;

end process FUNC1 15

end BEHAVIORAL;
Figure 30 VHDL description of the AND-OR circuit

TPl = OR DEL ;
TP2 = F DEL+OR DEL ;
TP3 = F DEL+INV DEL ;

Figure 31 The different paths in the AND-OR circuit

61

TP1 =0.36
TP2 = 1.0250
TP3 = 0.8200

OR_DEL = 0.360000
INV _DEL = 0.150000
F DEL = 0.565000

OR DEL - TPl
F DEL = TP2-OR DEL
INV_DEL = TP3-F DEL

Figure 32 The input equations to MATLAB for AND-OR circuit

OR DEL - 0.3600
F DEL - 0.6650
INVDEL = 0.1550

Figure 33 The outputs obtained from backann2 for AND-OR circuit

Since the output of the process FUNC1 is fed in as input to two other processes this
circuit is classified under Class 2 circuits. The VHDL representation of this circuit is
shown in Figure 30. The different paths from the primary input to the primary outputs are

shown in Figure 31 and the equations involved to obtain the generic delays are shown in

_— sk 3k sk sk sk ok sk ok 3k ok 3K ok 3k ok 3k 3k ok 3 3k ok % 3k ok K ok 3k ok ok ok ok ok ok sk ok 3k ok sk sk ok ok 3k 3k ok ok e ok ok ok ok ok ok sk ok ok ok ok ok

entity FOUT EGI is
generic (
OR DEL: TIME := 0.3600 ns;
INV DEL: TIME := 0.1550 ns;
F DEL: TIME := 0.6650 ns
);
Figure 34 A part of the back annotated VHDL description (AND-OR circuit)

62

port (OUT?: out BIT VECTOR(3 downto 0);
A: in BIT 'ECTOR(3 downto 0);
OUTI: out BIT VECTOR(3 downto 0);
Z: in BIT VECTOR(3 downto 0);
Y:in BIT VECTOR(3 downto 0);
X:in BIT VECTOR(3 downto 0));
end FOUT EGI;

3k vk sk ok ok ok ok ok ok ok k %k %k 3k %k 3k sk ok ok sk ok sk ok ok ok ok ok ok sk 3k 3k sk sk %k ok ok ak ok sk ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok Kk kK

architecture BEHAVIORAL of FOUT EGI is

signal F: BIT VECTOR(3 downto 0);
begin
Figure 34 VHDL description of the back annotated AND-OR circuit

shown in Figure 32 The values obtained from MATLAB are then back annotated into the

VHDL description. These are shown in Figure 33 and Figure 34 respectively.

The values obtained from backann2 and the Synopsys design compiler are

compared and is shown in Table 3. It is seen that the values obtained by both are equal.

Table 3 Comparison of delay values for AND-OR circuit

Generic delays of the Values Obtained from Values Obtained from

model the report Backann2
OR_DEL 0.3600 0.3600
INV_DEL 0.1550 0.1550
F DEL 0.6650 0.6650

63

(J

@
B
OUT2A
) OHT2
BD1
D 0
OUT2A
)
AND2B (5 ouT2
BD
IN
GKic
)
OR2A (

Figure 35 Process Model Graph of AND-OR-INVERT circuit

TA

B

64

4.2.2 AND-OR-INVERT CIRCUIT

This circuit is another example of a fan-out (Class 2) circuit. It has more than one
fanout node. The outputs of this circuit are OUTA, OUTB and OUT2 and are expressed
of the form,

OUTA = (B.D.E)
OUTB = A+B.D.E
ouT2=C"'"'D.E
where A, B, C, D and E are inputs to the model. The Process Model Graph and its VHDL
description for the above circuit is shown in Figure 35 and Figure 36 respectively. The
different paths from inputs to outputs is shown in Figure 37. Figure 38 gives the input file
to MATLAB to calculate the generic delays and Figure 39 gives the corresponding

outputs.

use WORK.VHDL.CAD.all, WORK.USER_TYPES.all;

kool sk ok ok ok sk ok sk sk ok ok ok ok 3k ok 2k o ok ok ok 3k 3k ok sk ok 3k ok ok 3k dk sk ok 3k ok ok 3k ok ok ok ok ok ok ok ok ok sk sk sk ok ok Kk ki k ki k ok k

entity FOUT EG2 is

generic (
OR DEL: TIME;
INV DELA: TIME;
INV _DELB: TIME;
AND DELC: TIME;
AND DELB: TIME;
AND DELA: TIME
)’.

port (QUIB: out BIT,
A:in BIT;
C: in BIT;
QUTA: out BIT;
B:in BIT;
OUT2: out BIT;

Figure 36 VHDL Description of AND-OR-INVERT circuit

65

E: in BIT;
D: in BIT);
end FOUT EG2;

sk ok sfe ok ok sk sk sk ok ok 3k sk sk sk ok o ok sk sk ok sk sk sk sk sk ok ok ok ok sk sk sk sk sk sk sk s ke sle ok sk sk ok sk sk sk sk sk sk 3k e sk sk sk sk sk skeok

architecture BEHAVIORAL of FOUT EG2 is

signal OUT2A: BIT;

signal INC: BIT;

signal OUT1: BIT;
begin

-- Process Name: OR2A4

OR2A _2: process (A,OUT24)
begin
QUIB <= QUT24 or A after OR_DEL;

end process OR24_2;

-- Process Name: INVA

INVA_10: process (C)
begin
INC <= not C after INV_DELA;

end process INVA_10;

— Process Name: INVB

INVB_15: process (OUT24)
Figure 36 VHDL Description of AND-OR-INVERT circuit

66

begin
OUTA <= not OUT2A after INV_DELB;

end process INVB 15;

-- Process Name: AND2C

AND2C 20: process (OUT1,B)
begin
OUT2A4 <= B and OUT1 after AND DELC;

end process AND2C 20;

-- Process Name: AND2B

AND2B 26: process (INC,0UT1)
begin
OUT2 <= QUTI and INC after AND DELB;

end process AND2B 26,

-- Process Name: AND2A

AND2A4 32: process (E,D)
begin
OUTI <= D and E after AND DELA;

end process AND24 32;

end BEHAVIORAL;

Figure 36 VHDL Description of AND-OR-INVERT circuit

67

TPI = OR DEL ;

TP2 = AND DELC+OR DEL ;

TP3 = AND DELA+AND DELC+OR DEL ;
TP4 = AND DELC+INV DELB ;

TP5 = AND DELA+AND DELC+INV DELB ;
TP6 = AND DELA+AND DELB ;

7P7 = INV_DELA+AND DELB ;

Figure 37 The different paths in the AND-OR-INVERT circuit

TP1 =0.36
1P2 = 0.845
1P3 =1.285
P4 = 0.67
TP5 = 1.105
7P6 = 0.81
TP7 = 0.555

OR_DEL = 0.360000
INV DELA = 0.150000
INV DELB = 0.150000
AND DELC = 0.360000
AND DELB = 0.360000
AND DELA = 0.360000

OR DEL = TPI
AND DELC = TP2-OR_DEL

AND DELA = TP3-OR_DEL-AND DELC
INV DELB = TP4-AND DELC

AND DELB = TP6-AND DELA

INV DELA = TP7-AND DELB

Figure 38 The input to MATLAB for AND-OR-INVERT circuit

68

OR_DEL = 0.3600
AND _DELC =0.4850
AND DELA =0.4400
INV DELB =0.1800
AND DELB =0.3700
INV _DELA =0.1850

Figure 39 The output of MATLAB for AND-OR-INVERT circuit

use WORK.VHDL.CAD.all, WORK.USER_TYPES.all;
3ok sk ok sk ok ok sk sk sk ok sk ok sk sk ok ok sk ok sk sk ok sk ok ok ofe sk sk sk sk ok sk ok sk sk sk sk ok ok sk ok ok sk sk sk sk ok ok ok sk ok sk ook ok sk sksk ok
entity FOUT EG2 is
generic (
OR DEL: TIME := 0.3600 ns;
INV DELA: TIME := 0.1850 ns;
INV DELB: TIME := 0.1800 ns;
AND DELC: TIME := 0.4850 ns;
AND DELB: TIME := 0.3700 ns;
AND DELA: TIME := 0.4400 ns
)’.
port (OUTB: out BIT;
A: in BIT;
C: in BIT;
OUTA: out BIT;
B: in BIT;
OUT2: out BIT;
E: in BIT;
D: in BIT);
end FOUT EG2;

sk sk ok ok ok ok ok ok ok sk sk ok ok ok ke ok ok e ok ok sl ok sk sk ok ok sk ok ok sk ok s ok s ok ok ok o sk ke ok ok sk o ok sk ok ok skok ok sk ok sk ok skok

architecture BEHAVIORAL of FOUT EG2is

signal OUT2A: BIT;
signal INC: BIT;

Figure 40 VHDL description of the back annotated AND-OR-INVERT model

69

These values are back annotated into the VHDL model and is shown in Figure 40.
The values obtained from backann2 is compared with those obtained by the Synopsys
Design Compiler and the results are shown in Table 4. It is seen that both are almost
equal.
Table 4 Comparison of delays for AND-OR _INVERT circuit

Generic delays of the Values Obtained from Values Obtained from

model the report Backann2

OR_DEL 0.3600 0.3600
AND DELC 0.4850 0.4850
AND DELI 0.4400 0.4400
INV_DELB 0.1800 0.1800
AND _DELB 0.3750 0.3700
INV_DELA 0.1800 0.1850

4.2.3 ADDER-MUX CIRCUIT

This circuit is another example of a fanout circuit. The nodes in this circuit are
asymetrical. The Process Model Graph in Figure 41 shows two multiplexers, two adders
and five processes with simple combinational logic. The output of the first multiplexer is
fed into an adder (ADDER?2), a two input AND gate and the process FN1 which performs
a simple function. The output of the second multiplexer is fed in as input to the two adders
(ADDERI1 and ADDER2). The output of the process ENABLE is fed in as input to the
adders. The output of ADDERI is fed into a two input OR gate. The VHDL description

70

DS

"1

SM

NDS2

PRESET

NSTRB

MX

MPX
ADDER1
C

SUM1 c1
53
e
A
¢

ADDER2 () Sum2

Figure 41 Process Model Graph of the ADDER-MUX circuit

use WORK.VHDLCAD.all, WORK.USER_TYPES.all;

o skt ok ok ok sk ok ok ok ok sk sk s sk ok sk ok sk ok sk sk ok ok sk ok ok ok ok ok sk ok ok sk ok ok ok ok ok ke 3k ok e 2k ok Ak 2k ok sk 3k 3k sk ok ook kok ok ok

entity ADMX is

generic (

FNI1 DEL: TIME ;
ENBL DEL: TIME ;
MUPX2 DEL: TIME ;
MUPX DEL: TIME ;
CARRY2 DEL: TIME ;
SUM?2 DEL: TIME ;
CARRY!1 DEL: TIME ;
SUM1 DEL: TIME;
ENABLE DEL: TIME ;
AND DEL: TIME;

OR2S DEL: TIME

)’.

port (Y: out BIT;

Q: in BIT;
STRA: in BIT;
NSTRB: in BIT;
PRESET: in BIT;
J1: in BIT;
JO: in BIT;
SM: in BIT;
11:in BIT;
10: in BIT;
SL: in BIT;
COUTI: out BIT:
Al: in BIT;
COUT2: out BIT;
SUM?2: out BIT;
DSI: in BIT;
NDS2: in BIT;
CON: out BIT;
C2: in BIT;
CCOP: out BIT;
CC2: in BIT);

end ADMX;

3 skook sk sk sk sk sk sk ok ok sk sk sk ok ok sk ok sk sk ok sk sk ok sk sk ok sk ok sk sk ok sk ok ok sk ok sk ok ok ok ok ok sk ok ok ok sk ok ok K ke ok ok ok sk sk sk ok

architecture BEHAVIORAL of ADMX is
Figure 42 VHDL description of ADDER-MUX circuit

72

signal §6: BIT;
signal S2: BIT;
signal §4: BIT;
signal §8: BIT;
signal §7: BIT;
begin

-~ Process Name: FNI

FNI1 4: process (56,0,52)
begin
Y <= §6 and Q and not S2 after FN1 DEL ;

end process FN1 4,

-- Process Name: ENBL

ENBL 11: process (STRA,NSTRB,PRESET)
begin
if (PRESET='1") then
S6 <= STRA after ENBL DEL ;
else
S6 <= STRA and not NSTRB after ENBL DEL ;
end if;

end process ENBL 11;

-- Process Name: MUPX?2

MUPX2 _18: process (J1,J0,5SM)
begin
Figure 42 VHDL Description of ADDER-MUX circuit

if (SM="0’) then
S4 <= JO after MUPX2 DEL ;
else
S4 <= JI after MUPX2 DEL ;
end if;

end process MUPX2 18;

-- Process Name: MUPX

MUPX 25: process (11,10,SL)
begin
if (SL="0') then
S§2 <= 10 after MUPX DEL
else
82 <= [I after MUPX DEL ;
end if;

end process MUPX 25;

-- Process Name: ADDER2

ADDER?2 32: process (A1,57,54)
begin
S8 <= Al xor §7 xor S4 after SUM2 DEL ;
COUTI <= (Al and 57) or (A1 and S4) or (S7 and S4) after CARRY2 DEL ;

end process ADDER2 32;

-- Process Name: ADDERI

Figure 42 VHDL Description of ADDER-MUX circuit

ADDERI 41: process (S2,57,54)
begin
SUM2 <= 82 xor S7 xor §4 after SUM1 DEL ;
COUT2 <= (S§2 and 87) or (S2 and S4) or (87 and S4) after CARRY! DEL ;

end process ADDERI 41;

-- Process Name: ENABLE

ENABLE 50: process (DS1,NDS2)
begin
87 <= DS1 and not NDS2 after ENABLE DEL ;

end process ENABLE 50,

-- Process Name: AND2 AD

AND2 AD 56: process (52,C2)
begin
CON <= C2and S2 after AND DEL ;

end process AND2 AD 56;

-- Process Name: OR2S

OR2S 62: process (38,CC2)
begin
CCOP <= C(CC2 or 88 after OR2S DEL ;

end process OR2S 62;
end BEHAVIORAL;

Figure 42 VHDL Description of ADDER-MUX circuit

TPI = MUPX2 DEL+SUM?2 DEL+OR2S DEL
TP2 = SUM2 DEL+OR2S DEL
TIP3 = ENABLE DEL+SUM2 DEL+OR2S DEL
TP4 = OR2S DEL
TP5 = FNI _DEL
TP6 = ENBL DEL+FNI DEL
TP7 = MUPX DEL+FNI DEL
TP8 = MUPX2 DEL+CARRY2 DEL
TP9 = ENABLE DEL+CARRY2 DEL
TP10 = MUPX2 DEL+SUMI DEL
TP11 = MUPX2 DEL+CARRY! DEL
TP12 = MUPX DEL+SUMI1 DEL
TP13 = MUPX DEL+CARRYI DEL
TP14 = ENABLE DEL+SUMI DEL
TP15 = ENABLE DEL+CARRY1 DEL
TP16 = MUPX DEL+AND DEL
TP17 = AND DEL
Figure 43 The different paths in ADDER-MUX circuit

of the model is shown in Figure 42. The different paths in the circuit are illustrated in
Figure 43. Figure 44 and Figure 45 show the equations for calculating the generic delays
and the results obtained from MATLAB. In Figure 44 it is seen that the same generic
delay has been calculated more than once. This is because these generics can be calculated
in more than one way and which ever path is considered, it can be verified that the delay

obtained is the same.

TP1 = 4.31
P2 = 2.99
TP3 =481
P4 =0.615
1P5 =0.77
TP6 = 1.755
TP7 = 2.055
TP8 = 2.725
TP9 = 3.225
TP10 = 3.59
Figure 44 The input equations to MATLAB for ADDER-MUX circuit

76

P11 =2.725
TPI12 = 3.555
TP13 = 2.69

TP14 = 4.085
TP15 = 3.225
TP16 = 1.91

1P17 = 0.625

FNI _DEL = 0.625000
ENBL DEL = 0.755000
MUPX2 _DEL = 0.690000
MUPX DEL = 0.690000
CARRY2 DEL = 0.855000
SUM2 DEL = 1.315000
CARRYI DEL = 0.855000
SUMI _DEL = 1.315000
ENABLE _DEL = 0.460000
AND DEL = 0.360000
OR2S DEL = 0.360000

OR2S DEL = TP4
FNI DEL = TPS5
AND DEL = TP17
SUM?2 DEL = TP2-OR2S DEL
ENBL DEL = TP6-FNI DEL
MUPX DEL = TP7-FNI _DEL
MUPX DEL = TP16-AND _DEL
MUPX2 DEL = TP1-OR2S DEL-SUM2 DEL
ENABLE DEL = TP3-OR2S DEL-SUM?2 DEL
SUM1 DEL = TP12-MUPX DEL
CARRY1 DEL = TP13-MUPX DEL
CARRY2 DEL = TP8-MUPX2 DEL
CARRY2 DEL = TP9-ENABLE DEL
SUMI _DEL = TP10-MUPX2 _DEL
CARRYI1 DEL = TP11-MUPX2 DEL
SUM1 DEL = TP14-ENABLE DEL
CARRY! DEL = TPI15-ENABLE DEL
Figure 44 The input equations to MATLAB for ADDER-MUX circuit

77

OR2S DEL = 0.6150

FNI DEL = 0.7700
AND DEL = 0.6250
SUM2 DEL = 2.3750
ENBL DEL = 0.9850
MUPX DEL = 1.2850
MUPX DEL = 1.2850
MUPX2 DEL = 1.3200
ENABLE DEL = 1.8200
SUMI DEL = 2.2700
CARRYI DEL = 1.4050
CARRY2 DEL = 1.4050
CARRY2 DEL = 1.4050
SUMI DEL = 22700
CARRY] DEL = 1.4050
SUMI DEL = 2.2650
CARRYI DEL = 1.4050

Figure 45 The outputs from MATLAB for ADDER-MUX circuit

A part of the VHDL model with the delays back annotated is shown in Figure 46
and a comparison of the delays obtained from backann2 and the report generated by

Synopsys Design Compiler is shown in Table 5. It is seen that there is no error.

use WORK.VHDLCAD.all, WORK.USER_TYPES.all;
. skokeske sk ok ke ok ok sk ok ok sk ok ok ok ke ok ok sk ok ok s ok ok s ok sk s ok ok ok ok ok sk ke sk sk ke ok ok ok sk sk ok ok ok ok ok sk ok ok ok ok ke ok okok
entity ADMX is
generic (

FNI DEL: TIME := 0.7700 ns ;

ENBL DEL: TIME := 0.9850 ns ;

MUPX2 DEL: TIME := 1.1100 ns ;

MUPX DEL: TIME := 1.3200 ns ;

CARRY2 DEL: TIME := 1.4050 ns ;

SUM2 DEL: TIME := 2.3750ns ;

CARRY1 DEL: TIME := 1.4050 ns ;

SUMI1 DEL: TIME := 2.2650 ns ;

Figure 46 A part of the VHDL description of back annotated ADDER-MUX

78

ENABLE DEL: TIME := 1.8200 ns ;

AND DEL: TIME := 0.6250 ns ;
OR2S DEL: TIME := 0.6150 ns
)’.
port (Y: out BIT;
Q: in BIT;
STRA: in BIT;
NSTRB: in BIT;
PRESET: in BIT;
J1:in BIT;
JO: in BIT;
SM: in BIT;
I1:in BIT:
10: in BIT;
SL: in BIT;
COUTI: out BIT;
Al: in BIT;
COUT2: out BIT;
SUM?2: out BIT;
DS1: in BIT;
NDS2: in BIT;
CON: out BIT;
C2: in BIT;
CCOP: out BIT;
CC2:in BIT);
end ADMX;

sk e ok sk sk ok sk sk sk ok ok sk ok ok sk sk sk sk ok sk o sk sk sk ok ok sk sk sk sk ok sk ok sk ok ok ok 3k sk sk ok ok ofe o ok sk ok ok ok ok ok ok ke sk sk ok k

architecture BEHAVIORAL of ADMX is

signal S2: BIT;

signal S6:BIT;

signal S4: BIT;

signal §8: BIT;

signal §7: BIT;
begin

-- Process Name.: FN1

ENI1 4: process (56,0,52)
begin

Figure 46 A part of the VHDL description of back annotated ADDER-MUX

79

Table S Comparison of delays for ADDER-MUX circuit

Generic delays of the Values Obtained from Values Obtained from

model the report Backann2
OR2S_DEL 0.6150 0.6150
FN1_DEL 0.7700 0.7700
AND _DEL 0.6250 0.6250
SUM2_DEL 2.3750 2.3750
ENBL_DEL 0.9850 0.9850
MUPX DEL 1.2850 1.2850
MUPX2 DEL 1.3200 1.3200
ENABLE_DEL 1.8200 1.8200
SUM1_DEL 2.2650 2.2650
CARRY1_DEL 1.4050 1.4050
CARRY2_DEL 1.4050 1.4050

4.3 CLASS 3 CIRCUITS

4.3.1 A Simple Load Unit

This unit consists of a combinational logic, whose inputs are single bits of data
stored in a single bit register (flip-flop) and are available at the rising edge of the clock.
The principle used here can be applied for more than one register. The difference between

this sequential circuit and a purely combinational circuit is the way in which the log_file

30

CLR

ouT1

Figure 47 Process Model Graph of SIMPLE

81

is given. Since registers are involved, a clock should be specified in the log_file.

The Process Model Graph and the VHDL generated for it are shown in Figure 47
and Figure 48 respectively. The paths and the calculations involved is shown in Figure 49
and Figure 50 respectively. The delay values calculated by MATLAB is shown in Figure
51. The back annotated VHDL model is shown in Figure 52.

The delay values obtained are compared with the delays obtained from the

Synopsys Design compiler and are shown in Table 6.
__ sk okosk 3k ok ok sk ok sk sk ok sk sk ok sk ok ok sk ok sk ok sk sk ok ok sk ol ok sk sk sk ok ok sk ok ok s ok sk sk ok ok sk ok ok ok ok sk ok ok ok ok sk ok ki ok ok
entity SIMPLE is
generic (
AND DEL: TIME;
INV _DELB: TIME;
INVA DEL: TIME;
REGIB DEL: TIME;
REGIA DEL: TIME
)’.
port (AND _OUT: out BIT;
CLK: in BIT;
CLR: in BIT;
B:in BIT;
A: in BIT);
end SIMPLE;

sk st sk o ot oot o ol o s ok o ok ook ke sk ok oot ok ok ok ke s ok sk ok ok sk ke sk ok ok sk ke ook ok ok ok ook sk ok ok ok ok sk ok ok ok sk ok ok ok ok

architecture BEHAVIORAL of SIMPLE is

signal OUT2: BIT;

signal OUT1: BIT;

signal OUTB: BIT;

signal OUTA: BIT;
begin

Figure 48 VHDL description of SIMPLE

82

-- Process Name: AND2A

AND2A 4: process (OUT2,0UT1I)
begin
AND OUT <= QUTI and OUT2 after AND_DEL;

end process AND2A 4;

-- Process Name: INVB

INVB_10: process (OUTB)
begin
OUT2 <= not OUTB after INV_DELB;

end process INVB_10;

~-- Process Name: INVA

INVA_15: process (OUTA)
begin
OUTI1 <= not OUTA after INVA_DEL;

end process INVA_15;

-- Process Name: REGIB

REGIB_20: process (CLK,CLR,B)
begin
if (CLR ="1') then
Figure 48 VHDL description of SIMPLE

83

OQUTB <= "0" after REGIB_DEL,

elsif (CLK'event and CLK = "l') then
OUTB <= B after REGIB_DEL;

end if;

end process REGIB_20;

-- Process Name: REGIA

REGIA 27: process (CLK,CLR,A)
begin
if (CLR ="1') then
QUTA <="0"after REGIA DEL;

elsif (CLK'event and CLK = 'l') then
QUTA <= A after REGIA_DEL;

end if;

end process REGIA 27;

end BEHAVIORAL,
Figure 48 VHDL description of SIMPLE

TPl = REGIB DEL+INV DELB+AND DEL
TP2 = REGIA DEL+INVA DEL+AND DEL

Figure 49 The different paths in SIMPLE

84

TP1 =2.41
TP2 = 2.41

AND DELI = 0.290000
INV DELB = 0.150000
INV DELA = 0.150000
REGIB_DEL = 0.680000
REGIA_DEL = 0.680000

TP1 newx = REGIB _DEL+INV DELB+AND DELI ;
REGIB DEL new = REGIB DEL/TP1 newx*TP1
REGIB DEL = REGIB_DEL new

INV DELB new = INV DELB/TPI newx*IPl

INV DELB = INV _DELB_new

AND DELI new = AND DELI1/TPI newx*TPl

AND DEL1 = AND DELI new

TP2 = TP2-AND DELI

TP2 newx = REGIA DEL+INV DELA ;
REGIA DEL new = REGIA DEL/TP2 newx*TP2
REGIA DEL = REGIA DEL new

INV DELA new = INV _DELA/TP2 newx*TP2
INV DELA = INV DELA new

Figure 50 The equations for the calculation of delays for SIMPLE

REGIB DEL = 1.4632
INV DELB =0.3228
AND DELI =0.6240
REGIA DEL = 1.4632
INV DELA =0.3228

Figure 51 The output of backann2 for SIMPLE

85

_ deskokok sk ok sk ok ok ok sk ke ok sk ok ok ok ok ok sk ok ok ok sk ok sk ok ok ok ok sk o o ok s ok s sk sk ok sk ok sk sk sk e ok ok s ok ok ok sk ok ok ok ok ok

entity SIMPLE is
generic (
AND DEL: TIME := 0.6240 ns;
INV DELB: TIME := 0.3228 ns;
INVA DEL: TIME := 0.3228 ns;
REGIB_DEL: TIME := 1.4632 ns;
REGIA DEL: TIME := 1.4632 ns;
)'.
port (AND OUT: out BIT;
CLK: in BIT;
CLR: in BIT;
B: in BIT;
A: in BIT);
end SIMPLE;,

. okook sk ok sk sk ok ok ok sk sk ok ok sk ok 3k ok ok ok ok K sk sk 3k ok ok ok ok ok sk ok 3k 2k 2k ok ok ok 3k ok ok ok ok ok ok ok ok ok ok 3k ok ok ok ok Xk k ok sk k

architecture BEHAVIORAL of SIMPLE is

signal QUT2: BIT;
signal OUT1: BIT;
signal OUTB: BIT;
signal OUTA: BIT;
begin
Figure 52 VHDL description of SIMPLE (back annotated model)

Table 6 Comparison of delays for SIMPLE

Generic delays of the Values Obtained from Values Obtained from

model the report Backann2
AND DEL 0.6250 0.6240
INV_DELB 0.3100 0.3228
INVA DEL 0.3100 0.3228
REG1B_DEL 1.4750 1.4632
REG1A_DEL 1.4750 1.4632

86

From Figure 58 it is seen that the average error percentage is 2.69% and the

individual error peercentage for AND _DEL, INV_DEL and REG1 _DEL are 0.16%, 4.12

% and 0.8% respectively.

The example shown above can be extended to multiple registers and registers at

the output.

4.4 Summary and Interpretation of Results

Three classes of circuits have been discussed in this chapter and the generic delay

values for each model was found and compared with those obtained from the Synopsys

Design Compiler. The following conclusions can be reached by interpretation of the above

results :

1.

The accuracy of backann2 does not depend on the size of the circuit but on the way

each of the processes are connected.

. When in the model there is at least one process whose inputs and outputs are the

primary inputs and the primary outputs, the generic delay calculated is more

accurate than when there is no such process.

. The delay values backannotated are 100 % error free when there is one or more

process which has a path from input to output and these processes when connected to
other processes in the model, lead to equations such that these delays can be
calculated without using the propotionality method. This is shown in the ADDER
-MUX circuit.

. The worst case error obtained in the results is close to 5%. It is seen that it occurs in

models which there is no path in the circuit which has its primary input and primary

87

outputs in the same process.

88

Chapter S

Suggestions and Future Work

The software developed is a powerful tool, but certain inadequacies do exist in it.
One of the reasons these inadequacies arise is because it has to work with another
software like Backann even though it was designed with the same philosophy of

calculation of delay values.

5.1 Redundant Synthesis

Synthesis using Synopsys Design Compiler is being done n+2 times where n is the
number of processes in the model. The whole model is being synthesized twice and each
process is synthesized once. Synthesizing the whole model twice is redundant. The first
time, it is synthesized by the earlier version of backann to verify whether the model is
synthesizable and if the processes can be synthesized individually. The second time the
whole model is synthesized to find the end to end delays of the model. The source code
can be modified in such a way that synthesis of the whole model is done only once and

performs both the functions. This will reduce the execution time of backann2 and hence

89

speeden up the design cycle as it is the synthesizer that uses up most of the time required

to produce a working design.

5.2 Calculation of delays

The end to end path delays which are obtained from the report generated by the
Synopsys Design Compiler, is the average of the maximum rise and maximum fall times
for a maximum delay model. The software backann2, though, obtains both the maximum
and minimum values and uses only one of them. The average of the values obtained from
the report is calculated manually and fed in into the file and the remaining software is

executed. The calculation of the average path values can be automated.

It is seen that, in a model, if any of the processes has primary inputs and primary
outputs, as its inputs and outputs, the generic delays obtained have lesser error than the
generic delays obtained for models which does not have such inputs and outputs. This is
because the initial value of the generics, for the later case, are taken to be the individual
process delays obtained from backann. Instead if linear programming methods are used
such that these values are limiting values, better results may be obtained. One such method

is the simplex method [34].
5.3 Calculation of Generics for Class 4 Circuits

The algorithm discussed will work only for the first three classes of circuits. This
will not work for circuits with feedback loops or irregular register structures. The

principle for calculating the generic delay values is different. Other linear programming

90

techniques like the above mentioned Simplex method have to be used to calculate these
delays. However the path enumeration part of backann2 will work for Class 4 circuits

also.

91

Chapter 6

Conclusion

This thesis has presented a back-annotation tool - Backann2. The working of
Backann2 to back annotate timing delays has been explained. The results obtained have
been presented and were analyzed to show that the tool achieves its purpose with
reasonable accuracy. This tool is an important aid in the development of behavioral models
with back-annotated timing delays. This tool thus helps quicken the design cycle from

concept to silicon.

92

REFERENCES

[1]

(2]

(3]

(4]

[5]

D. D. Gajski, N. D. Dutt, A. C-H Wu, S. Y-L Lin, HIGH-LEVEL SYNTHESIS -

Introduction to Chip and System Design, Kluwer Academic Publishers, 1992.

Apostolo Dollas and Nick Kanopoulos, "Reducing time to market through Rapid

Prototyping", IEEE Computer

J.R. Armstrong and F. G. Gray, Structured Logic Design with VHDL, Prentice
Hall, 1993.

IEEE Standard VHDL Language Reference Manual, 1988.

L. Maliniak, "Synthesis Tools Move Into the Mainstream," Electronic Design,

August 1991.

93

[6]

[7]

J. R. Armstrong and D. G. Burnette, "A Systematic Approach to Chip Level
Modeling with VHDL," WESCON 89, pp.333-338, Nov 1989.

J. R. Armstrong, " ", SIGDA Newsletter, vol. 18, pp.72-75, Dec 1988.

[8] J. A Bondy and U. S. R. Murty, Graph Theory with Applications, New York :

[9]

[10]

(11]

[12]

[13]

[14]

North Holland, 1976.

D. Giles, C. Berking, K. Wacks, "Integrated Functional/Structural Timing for
Digital Simulation," IEEE Test Conference, pp.153-160, April 1982.

N.D.Dutt,D.D.Gajski,"Design Controlled Behavioral Synthesis," 26th ACM/IEEE
Design Automation Conference, 1989, pp754-757,

N.D.Dutt, T.Hadley, D.D.Gajski, "An Intermediate Representation for Behavioral
Synthesis," 27th ACM/IEEE Design Automation Conference,1990,pp-14-19

A. Gadagkar and J.R. Armstrong, "Timing Distribution in VHDL behavioral
Models," Proceedings of ICCAD 1992, pp. 82-89.

A. Gadagkar, "Timing Distribution in VHDL Behavioral Models," Master's Thesis,

Virginia Polytechnic Institute and State University, 1992.

B. Singh, "A Parametrized CAD tool for VHDL Model Development with X-

Windows," Master's Thesis, Virginia Polytechnic Institute and State University,

94

1990.

[15] P. A. Wright, "Rapid Development of VHDL Behavioral Models," Master's Thesis,

Virginia Polytechnic Institute and State University, 1992.

[16] S. Narayanaswamy, "Development of VHDL behavioral Models with Back
Annotated timing,", Master's Thesis, Virginia Polytechnic Institute and State

University, 1993.

[17] S.R. Rao, "A Hierarchical Approach to Effective Test Generation for VHDL
Behavioral Models," Master's Thesis, Virginia Polytechnic Institute and State

University, 1992.
[18] William K.C. Lam, Robert K. Brayton, Alberto L. Sangiovanni-Vincentelli,"Circuit
Delay Models and Their Exact Computation Using Timed Boolean functions," DAC

93, pp128-134.

[19] Meng-Lin Yu and P.A.Subrahmanyam,"A Path-Oriented Approach for Reducing
Hazards in Asynchronous Designs," DAC 92 pp239-244.

[20] Elizabeth A. Walkup, Gaetano Borriello,"Interface Timing Verification with
Application to Synthesis," DAC 94, pp106-112

[21] A.Stoll,J.Biesenack, S.Rumler,"Flexible Timing Specification in a VHDL Synthesis

Subset,"Furopean Design Automation Conference 92, pp610-615

95

[22] Paul D. Lindemann, "Top-Down Design Synthesis Using VHDL," Wescon 1990,
pp.382-383.

[23] E. Meyer, "VHDL strives to cover both synthesis and modeling," Computer
Design, Oct 1989, pp.42-45.

[24] E. A. Rundensteiner and D Gajski, "Functional Synthesis using Area and Delay
Optimization," 29th ACM/IEEE Design Automation Conference, pp.291-296.

[25] CAD Language Systems, VHDL Analyzer Designer's Manual, April 1993.

[26] CAD Language Systems, Design Library System, April 1991.

[27] CAD Language Systems, DLS Application Development : The Software
Procedural Interface, March 1993,

[28] Synopsys Inc., Command Reference , Dec 1992.

[29] Synopsys Inc., Design Compiler Reference Manual, Dec 1992,

[30] F. Vahid, S. Narayan, D. D. Gajski,, "SpecCharts: A Language for System Level
Synthesis," Proceedings of 15 1991, pp. 165-174.

[31] J. Lahti, J. Kivela, "Logic Compilation from Graphical Dependency Notation,"

96

ICCAD 90, pp.474-477, Nov 1990.

[32] i-Logix, Inc., Statemate User Reference Manual - Volume 1, June 1993.

[33] John F. Wakerly, Digital Design Principles and Practices, Prentice Hall, 1990

[34] Cooper and Steinberg, Methods and Applications of Linear Programming, W.B.

Saunders Company

97

Appendix A

This User Guide details procedures that have to be performed by a designer to

obtain the back-annotated model using Backann2.

Behavioral Model Creation
The designer creates a behavioral model using the Modeler's Assistant . After
creating the model the designer has to save the VHDL code generated by the Modeler's

Assistant in a file, using the VHDLDump option in the Unit menu.

CLSI-VTIP_VHDL Analyzer
The behavioral model has to be analyzed using the CLSI VHDL analyzer. The
analyzer stores the VHDL model in the form of a data tree which is accessed by backann2.
The command used to analyze the model is
vhdl -preserve <VHDL-filename>
Before invoking the CLSI-VTIP analyzer, the work library in which the data is stored has

to be created.

98

Creating the log_file

The user has to create two log_file which contains the specifications and
constraints to be adhered to by the Synopsys Design Compiler. These files are named
<entity name>.log
<entity name>.logl
The additional details in the second file that should be mentioned are
1. group -hdl_all_blocks which groups all the logic inside a process and optimizes it
2. The report_timing command for maximum rise and maximum fall from all input ports to
all output ports.
The group -hdl_all blocks should be written before the compile line. The compile line is
the last line of the first log file. The report_timing commands should be written after the
compile line in the second log file. A typical log_file of the second type is shown in Figure

13.

Invoking backann2

Backann2 is invoked with the name of a VHDL file as input. The format for
invoking backann?2 is
backann2 <VHDL filename>
Once backann? is executed, files TMPREP.OUT and PATH CAL.OUT will be obtained.
The TMPREP.OUT file contains the end-to-end delays obtained from the Synopsys
Design Compiler. The delays obtained are for maximum rise and maximum fall times for
each path. The average of the maximum rise and maximum fall has to be calculated

manually and should be written into PATH _CAL.OUT. A typical PATH CAL.OUT file

99

will be like the inputs to MATLAB for different models shown. The first set of equations
in the PATH CAL file is the maximum rise time for each path. These values should be
replaced by the average values calculated manually.
Once PATH_CAL.OUT is edited, the remaining part of backann2 is run using the
command delays. The output of this is the back-annotated VHDL file. This file is named
<VHDL filename>.new2
This is stored in the directory from which backann?2 is invoked.

100

Vita

Gayatri Mahadevan was born on the 7th of August, 1971 in India. She graduated with a
Bachelor of Engineering degree in Electronics and Communication Engineering from the
Government College of Technology, Coimbatore, India in May 1992. She attended
graduate school at Virginia Polytechnic Institute and State University and received a
Master of Science degree in Electrical Engineering in June 1995. She has been employed

with LSI Logic Lo, Milpitas, California since June 1995.

101

	Binder3.pdf
	000000
	000001
	000002
	000003
	000004
	000005
	000006
	000007
	000008

